
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2009

Design and implementation of a real-time miniaturized embedded Design and implementation of a real-time miniaturized embedded

stereo-vision system stereo-vision system

Siddhant Ahuja
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Ahuja, Siddhant, "Design and implementation of a real-time miniaturized embedded stereo-vision system"
(2009). Electronic Theses and Dissertations. 7952.
https://scholar.uwindsor.ca/etd/7952

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7952&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7952?utm_source=scholar.uwindsor.ca%2Fetd%2F7952&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

NOTE TO USERS

This reproduction is the best copy available.

UMI*

DESIGN AND IMPLEMENTATION OF A REAL-TIME

MINIATURIZED EMBEDDED STEREO-VISION SYSTEM

by

SIDDHANT AHUJA

A Thesis

Submitted to the Faculty of Graduate Studies

through Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada

2009

© 2009, Siddhant Ahuja

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre inference
ISBN: 978-0-494-57594-9
Our file Notre reference
ISBN: 978-0-494-57594-9

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1*1

Canada

Declaration of Co-Authorship/Previous Publication

I hereby declare that this thesis incorporates material that is result of joint research, as follows:

This thesis also incorporates the outcome of a joint research undertaken in collaboration with Mr.

Bahador Khaleghi under the supervision of Professor Jonathan Wu. The collaboration is covered in

Chapter 3 of the thesis as the design and development of the software algorithms and in Chapter 4 as the

quantitative comparison of the performance of rank vs. census transform. In all rest of the cases, the key

ideas, primary contributions, experimental designs, data analysis and interpretation, were performed by

the author.

I am aware of the University of Windsor Senate Policy on Authorship and I certify that I have properly

acknowledged the contribution of other researchers to my thesis, and have obtained written permission

from each of the co-author(s) to include the above material(s) in my thesis.

I certify that, with the above qualification, this thesis, and the research to which it refers, is the product of

my own work.

This thesis borrows some of its material from two original papers that have been previously published, as

follows:

1. S. Ahuja, B. Khaleghi, and Q. M. J. Wu, "A New Miniaturized Embedded Stereo-Vision System

(MESVS-I)," in Canadian Conference on Computer and Robot Vision, 2008 (CRV '08), 28-30

May 2008, pp. 26-33.

2. S. Ahuja, B. Khaleghi, and Q. M. J. Wu, "An improved real-time miniaturized embedded stereo

vision system (MESVS-U)," in IEEE Computer Society Conference on Computer Vision and

Pattern Recognition Workshops, 2008 (CVPRW'08), Anchorage, Alaska, 23-28 June 2008, pp. 1-

8.

I certify that I have obtained a written permission from the copyright owner(s) to include the above

published material(s) in my thesis. I certify that the above material describes work completed during my

registration as graduate student at the University of Windsor. I declare that, to the best of my knowledge,

my thesis does not infringe upon anyone's copyright nor violate any proprietary rights and that any ideas,

in

techniques, quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard referencing practices.

Furthermore, to the extent that I have included copyrighted material that surpasses the bounds of fair

dealing within the meaning of the Canada Copyright Act, I certify that I have obtained a written

permission from the copyright owner(s) to include such material(s) in my thesis. I declare that this is a

true copy of my thesis, including any final revisions, as approved by my thesis committee and the

Graduate Studies office, and that this thesis has not been submitted for a higher degree to any other

University of Institution.

IV

Abstract

The main motivation of the thesis is to develop a fully integrated, modular, small baseline (<=3cm), low

cost (<=CAD$600), real-time miniaturized embedded stereo-vision system which fits within 5x5cm and

consumes very low power (700mA@3.3V). The system consists of two small profile cameras and a dual-

core embedded media processor, running at 600MHz per core. The stereo-matching engine performs sub-

sampling, rectification, pre-processing using census transform, correlation-based Sum of Hamming

Distance matching using three levels of recursion, LRC check and post-processing. The novel post

processing algorithm removes outliers due to low-texture regions and depth-discontinuities. A

quantitative performance of the post processing algorithm is presented which shows that for all regions, it

has an average percentage improvement of 13.61% (based on 2006 Middlebury dataset). To further

enhance the performance of the system, optimization steps are employed to achieve a speed of around

lOfps for disparity maps in MESVS-I and 20fps in MESVS-II system.

v

mailto:700mA@3.3V

Acknowledgements

First and foremost, I would like to thank my thesis advisors Dr. Jonathan Wu, for his invaluable guidance

and support throughout this research work. I also thank Dr. Narayan Kar, my departmental reader, as well

as Dr. Dan Wu, my external reader, for their own advice toward the completion of my research and this

thesis.

My thanks also go out to various other faculty and staff at the University of Windsor who in one

way or another supported my work. The department technicians, Mr. Don Tersigni and Mr. Frank

Cicchello, and the Technical Support Centre staff provided materials and expertise instrumental to the

experiments herein.

Finally, I would like to express my gratitude to my colleague Mr. Bahador Khaleghi as without

his support and collaboration, it would be impossible to realize this research work.

The work is supported in part by the CRC program, the NSERC Discovery Grant, and the

AUT021 NCE.

VI

Table of Contents

Declaration of Co-Authorship/Previous Publication iii

Abstract v

Acknowledgements vi

List of Tables xi

List of Figures xii

1. Introduction.... 1

2. Literature Review 9

3. Miniaturized Embedded Stereo-Vision System (MESVS) 12

3.1 System Overview 12

3.2 Processor selection 13

3.3 Hardware Implementation 15

3.3.1 Memory Architecture 16

3.3.2 CMOS vs. CCD Sensors 18

3.3.3 Design Considerations 20

3.3.4 PCB design flow 22

3.3.4.1 Schematic capture 24

3.3.4.2 Bill of Materials (BOM), Design Review and Ordering Parts 24

3.3.4.3 Design Rule Check (DRC) 24

3.3.4.4 Generate Silkscreen and prepare assembly and fabrication drawings 25

3.3.4.5 PCB Fabrication 25

3.3.4.6 PCB Assembly 26

3.3.4.7 PCB Testing 26

3.4 Software Algorithms 27

vii

3.4.1 Image Acquisition, Offline Camera Calibration and Sub-Sampling 28

3.4.2 Rectification 31

3.4.3 Pre-Processing 33

3.4.3.1 Rank Transform 33

3.4.3.2 Census Transform ..35

3.4.4 Correlation based matching and Left-Right Consistency (LRC) check 37

3.4.5 Post-Processing 44

3.5 Achieving Real-time Performance 44

3.6 Quality Metrics 47

3.6.1 Root Mean Squared Error 47

3.6.2 Percentage of Bad Matching Pixels 47

4. Experimental Results 49

4.1 Quantitative comparison of the performance of Rank and Census Transforms 49

4.1.1 Simulated Radiometric Variations 50

4.1.2 Real Exposure and Lighting Variations 53

4.2 Quantitative comparison of the performance of post-processing algorithm 55

4.3 Overview of Stereo-matching engine 62

4.4 Power profile 64

5. Conclusions 67

5.1 Summary of contributions 67

5. 2 Future Work , 68

A. Software Source Code 69

A.l Rectify Left and Right Images 69

A.2 Rodrigues.m function 73

A.3 Skew3.m function 79

A.4 Rigid_motion.m function 80

A.5 Project_points2.m function 81

viii

A.6 Normalize_pixel.m function 88

A.7dAB.m Function 89

A.8 Comp_distortion_oulu.m function 90

A.9 Correlation based similarity measure-Sum of Absolute Differences (SAD)-Right to Left

matching 91

A. 10 Correlation based similarity measure-Sum of Absolute Differences (SAD)-Left to Right

matching 93

A. 11 Correlation based similarity measure-Sum of Squared Differences (SSD)-Right to Left

matching 96

A. 12 Correlation based similarity measure-Normalized Cross Correlation (NCC)-Right to Left

matching 98

A.13 Left/Right Consistency (LRC) Check 101

A.14 Quality Metric-Root Mean Squared Error (RMS) 102

A.15 Quality Metric-Percentage of Bad Matching Pixels 103

A.16 Rank Transform 105

A.17 Census Transform 106

A.18 Sum of Hamming Distances-Right to Left Matching 108

A. 19 Sum of Hamming Distances-Left to Right Matching 110

A.20 Finding Occluded Regions 112

A.21 Finding Depth-Discontinuous Regions 113

A.22 Finding Low-Texture Regions 115

A.23 Introduce Vignetting effect 117

A.24 Introduce Scale change 119

A.25 Introduce Gaussian noise 119

A.26 Adjust Gamma variation 120

A.27 Generate Variance Map 121

A.28 Post-processing algorithm 123

A.29 Initialize 2001 Dataset from Middlebury 124

ix

A.30 Initialize 2003 Dataset from Middlebury 125

A.31 Initialize 2006 Dataset from Middlebury , 126

Bibliography 131

VitaAuctoris 135

x

List of Tables

Table 1. Design specifications for a Miniaturized Embedded Stereo-Vision System (MESVS) 11

Table 2. Summary of specifications for BlackFin processor 16

Table 3. Comparison of CCD vs. CMOS image sensors 19

Table 4. Specifications of OmniVision's OV7660 Camera module 19

Table 5. Breakdown of costs of components used in MESVS module 24

Table 6. Classical similarity measures SAD, SSD, and NCC, along with their corresponding equations.

(i,j) is the coordinate of the pixel in the square neighborhood window W. Ii is the reference image, h is

the target image 38

Table 7. Definitions of occluded, depth-discontinuous and texture-less regions 48

Table 8. Percentage reduction in bad matching pixels after LRC check and after post-processing 61

XI

List of Figures

Figure 1. Taxonomy of shape acquisition techniques 1

Figure 2. Taxonomy of optical depth measurement techniques 2

Figure 3. Human visual depth perception 3

Figure 4. Epipolar geometry-Canonical configuration of two cameras with parallel optical axis 4

Figure 5. Left and right images from the pentagon dataset (top), and the corresponding 3-D reconstructed

view based on correspondence between the images (bottom) 6

Figure 6. Local, global and hybrid approaches to finding correspondence in stereo-vision 7

Figure 7. Sample of some existing Stereo-vision systems 10

Figure 8. (a) Range vs. Disparity, (b) Range uncertainty vs. Range 13

Figure 9. System block diagram 15

Figure 10. Memory architecture of MESVS system 17

Figure 11. Hardware design flow 23

Figure 12. Miniaturized Embedded Stereo Vision System (MESVS) 26

Figure 13. Overview of the stereo-matching engine 28

Figure 14. Sample of images of the planar checkerboard target used for calibration 29

Figure 15. Sample spatial configuration of the two cameras and the calibration planes 30

Figure 16. Sub-sampling VGA images to QQVGA images by skipping 3 rows and columns 31

Figure 17. Left and Right rectified images belonging to the Mug dataset obtained from MESVS-II 32

Figure 18. Rank Transforms of a sample image-Cones. Shown from left-right are Rank transforms with

square window sizes 3x3, 5x5, 7x7, 9x9 and 15x5 34

Figure 19. Test patterns used to explore the sensitivity of Rank Transform to Rotations and Reflections 35

Figure 20. Census Transforms of a sample image-Cones. Shown from left-right are Census Transforms

with square window sizes 3x3 and 5x5 37

Figure 21. Disparity maps computed by employing SAD, SSD, NCC and SHD on Tsukuba image from

2001 dataset 39

Figure 22. Vertical recursion scheme for correlation based matching. SHD scores associated with window

of size 3x3 centered at (x,y) in left pre-processed image, and (x+d,y) in right pre-processed image, are

xn

depicted in light yellow color. SHD scores associated with window centered at (x,y+l) in left pre-

processed image, and (x+d,y+l) in right pre-processed image are depicted in light blue color 41

Figure 23. Horizontal recursion scheme for correlation based matching, (a) Update terms associated with

the centre pixel to the left are shown with dotted border, whereas update terms associated with the current

centre pixel are shown in thick solid border, (b) Corner pixels of the update terms are shown in green

color 42

Figure 24. Code profile of MESVS module 46

Figure 25. The first row corresponds to the left images of the Tsukuba, Venus, Teddy, and Cones stereo

pairs, with subsequent rows displaying various intensity changes such as scale change (s=0.5), gamma

change (g=2.5), vignetting effect (sv=0.3) and Gaussian noise (SNR=15dB), as applied to the datasets.

The last two rows display the rank (3x3) and census (3x3) transformations of the left images of the

datasets 50

Figure 26. Effect of applying simulated radiometric changes or noise on the Tsukuba, Venus, Teddy and

Cones datasets. The rows correspond to the graphs displaying the average error percentages for Rank

(3x3) vs. Census (3x3), and Rank (5x5) vs. Census (3x3) comparisons in the presence of intensity and

noise changes 52

Figure 27. Stereo Datasets (2005) showing test images Art, Books, Dolls, Laundry, Moebius, and

Reindeer, along with their ground truth maps 53

Figure 28. Books dataset displaying left camera images under three different exposures and three different

lighting conditions 54

Figure 29. Effect of exposure and lighting variations on the Stereo Datasets (2005). The rows correspond

to the graphs displaying the average error percentages for Rank (3x3) and Rank (5x5) vs. Census (3x3)

comparisons with exposure and lighting variations 54

Figure 30. Left and Right pre-processed images (using census transform) belonging to the Mug dataset

obtained from MESVS-E 55

Figure 31. Showing the computed disparity map (left-to-right matching), disparity map after LRC Check

and Post-processed disparity map of Aloe image from 2006 dataset. 56

Figure 32. Shown from left to right, left image, right image, texture-less map, occlusion map, depth-

discontinuous map and ground-truth disparity map of Aloe image from 2006 dataset 57

Figure 33. Challenging images. From top to bottom: left image, texture-less map, occlusion map, depth-

discontinuous map, ground-truth disparity map, computed disparity map (left-to-right matching), disparity

xm

map after LRC, and final post-processed disparity map. From left to right, images Babyl, Flowerpots,

Plastic, and Clothl from 2006 dataset 59

Figure 34. Percentage of bad matching pixels after initial disparity computation, after LRC check and

after Post-processing for non-occluded, texture-less, depth-discontinuous and all regions (top to bottom).

60

Figure 35. Results of Stereo Vision Engine using another camera as the object of interest 63

Figure 37. Average power consumption of MESVS Module 65

Figure 38. Temperature profile of MESVS module 66

xiv

Chapter 1

Introduction

The process of obtaining geometric models in three-dimensions that represent with precision a real world

object is referred to as shape/range/depth acquisition. It finds applications in several areas, including

photogrammetry, archaeology, reverse engineering, robotic guidance, virtual reality, medicine, cinema,

game programming, and others. A precise 3-D model is hard to acquire and numerous methods can be

found in the literature which are used to acquire shapes of objects, each with their own advantages and

disadvantages. Figure 1 shows the taxonomy of shape acquisition techniques.

Non
destructive

Figure 1. Taxonomy of shape acquisition techniques.

Contact measurement techniques produce highly accurate 3D shapes; however the equipment

used is often very expensive and requires the presence of an operator. On the other hand, optical range

scanning methods are less invasive (non-contact), safer to use, less expensive, and relatively faster than

1

non-optical techniques. However, they suffer from many disadvantages including high sensitivity to

transparencies, specularities, occlusion, depth-discontinuities, inter-reflections and low texture regions.

Figure 2 shows the taxonomy of optical depth measurement techniques.

mi

Figure 2. Taxonomy of optical depth measurement techniques.

Active vision techniques require the application of external power for the operation of the

sensors. The excitation signal is modified by the sensor to produce an output. Even though they are highly

efficient (often matched to the target characteristics), and enable long range operations, they are restricted

to the frequencies that can be generated and radiated easily. This excludes part of the far IR (Infra-red),

the UV (Ultra-Violet) and gamma ray spectra. They are more complex and less reliable as compared to

the passive vision techniques.

Passive vision techniques rely on sensors that directly generate an electric signal in response to a

stimulus. They do not emit radiation, and thus enable covert operations. However, they rely on a locally

generated or natural source of radiation (sunlight) or a field (gravity), and are prone to feature ambiguity

and errors of scale. Typically, they can operate from ELF-Extremely Low Frequencies (<3xl03 Hz) to

2

gamma rays (>3xl019 Hz). Even though they offer good reliability due to the inherent simplicity, the

availability at all times is not guaranteed (contrast, light levels etc.).

Shape from shading is one of the forms of passive vision techniques which estimates surface

normals and integrates to find the surfaces. It assumes that the surface has a known, constant reflectance,

and is surrounded by known lighting condition. It employs a similar mechanism to human vision system,

can work with a single image, and does not require correspondence estimation. However, it suffers from

the problem of ambiguity, is mathematically unstable and is not very practical.

Shape from silhouettes involves detecting 2D set of closed contours that outline the projection of

the object onto the image plane. It requires taking a lot of images from different positions around the

object, after which the silhouette is segmented. The larger the number of images acquired, the better is the

fit of the final 3D shape. However, due to occluded regions, and non-convex object shapes, this technique

only results in a crude model of the real world.

Shape from focusing and defocusing relies on capturing multiple frames by stepping the focal

point of the camera in order to estimate the structure of the 3D object. Passive version of this technique is

very impractical for capturing shapes of real-world objects.

Stereo vision technique gives depth, which is typically lost in perspective projection. Stereo

vision systems take advantage of the fact that the depth of the objects in the scene can be inferred from

the relative displacements, also called disparities, of the objects in the scene, when observed from two

viewpoints, separated by a distance. Figure 3 illustrates the way we perceive depth.

Figure 3. Human visual depth perception [1].

3

The main objectives of the stereo-vision technique are to find:

a. Correspondence geometry (given a point x in the first view, what is the position of the

corresponding point x' in the second image?),

b. Camera geometry (given a set of corresponding image points, what is the geometric

transformation between the views?), and

c. Scene geometry (given corresponding image points and geometric transformation between the

two camera views, what is the position of the point x in 3D space?).

Figure 4 shows the epipolar geometry or the canonical configuration of the two cameras with parallel

optical axis.

FoV

T
/
_L

D

D

J9JL i

setts.

n %

Object

Camera Image Sensor

Figure 4. Epipolar geometry-Canonical configuration of two cameras with parallel optical axis.

Epipolar geometry is the projective geometry between two optical views which are independent

of the scene's structure, and only depend on the cameras' internal and external parameters. Based on these

4

parameters, search can be restricted to only one dimension across the epipolar line. The final depth can be

calculated from the following equation:

b*f
Depth = —

Disparity

(1)

where,

b is the baseline (camera separation), and/is the focal length.

In Figure 4,

q is the camera angular FoV (Field of View),

Dsens is the sensor width,

n is the number of pixels,

p is the pixel width,

a is the object extent,

D is the distance to object,

OL is the left camera's optical centre, and

OR is the right camera's optical centre

Some of the applications of the stereo-vision technique include 3D scene reconstruction,

miniaturized mobile robotics, 3D object tracking, industrial automation, random bin-picking, volume

measurement, automotive part measurement, topographical survey, and view synthesis amongst others.

Figure 5 shows the left and right images from the pentagon dataset and the corresponding 3D

reconstructed view based on correspondence between the images.

5

Left Image Right Image

3-D Reconstructed view based on correspondence

Figure 5. Left and right images from the pentagon dataset (top), and the corresponding 3-D

reconstructed view based on correspondence between the images (bottom)1.

There are two main categories of methods used in the field of stereo vision to compute the final

disparity map-local (also known as area-based method) and global methods [2]. In local (window-based)

methods, the disparity computation for a given pixel is dependent on the intensity values of the pixels

surrounding it. By aggregating the support within a window, there is an implicit assumption made of

smoothness. On the other hand, global algorithms tend to minimize the energy or cost function by

making an explicit smoothness assumption and optimizing the disparity computation problem. Global

algorithms tend to be computationally intensive and are not suitable for fast hardware implementations,

1 Geiger, Davi, Lecture 6, http://www.cs.nyu.edu/courses/spring08/G22.2271-001/index.html

6

http://www.cs.nyu.edu/courses/spring08/G22.2271-001/index.html

even though they produce a high quality disparity map, as compared to the local algorithms. Figure 6

shows the common local, global and hybrid approaches to finding correspondence.

Figure 6. Local, global and hybrid approaches to finding correspondence in stereo-vision.

Stereo-vision has been one of the most heavily investigated areas of research in the field of

computer vision. Even though many new algorithms [3], [4] introduced in this field focused on the

quality and accuracy of the disparity (depth) maps, their successful implementation depends on the

complexity of the algorithm and the availability of the hardware platform, which has a direct impact on

their suitability for real-time implementation.

Some of the challenges facing the stereo-vision technique include variable illumination,

specularities in the scene (non-Lambertian), image noise, camera gain & bias, image sampling and

pixelization error, regions that are occluded, low-texture regions, and depth-discontinuous regions.

Some of the examples of real-time, operational stereo vision systems in the literature include

systems relying on FPGA [5], commodity graphics [6], PC [7], ASIC [8] and hybrids incorporating

various processor types [7]. The main focus of majority of these systems is on the raw performance,

rather than on the size, quality and power consumption.

7

The aim of the thesis is to develop a fully integrated, small, modular, low-cost, efficient, real

time, miniaturized embedded stereo vision system (MESVS) which should be robust in-terms of

radiometric variations, and should be capable of producing high density depth maps to be used for a wide

variety of imaging applications in real-world environments.

The thesis is organized as follows. Chapter 2 provides the relevant review of the literature

followed by the description of the system design, hardware and software implementation in Chapter 3.

The experimental results are presented in Chapter 4, which demonstrates the efficiency and robustness of

the MESVS system. Conclusions, along with the suggestions regarding the future areas of development

for the system are provided in Chapter 5.

8

Chapter 2

Literature Review

Stereo vision systems have previously been implemented using huge, complex, custom (expensive)

hardware systems [10]. Due to the recent advances in the stereo-vision algorithms, an increase of

computational power per square inch, exponential increase in speeds, reductions in the size and cost of the

processors, it is now possible to implement a stereo-vision system capable of producing accurate, dense

depth maps in real-time, which can fit comfortably in the palm of the hand. This chapter provides a

review of the existing stereo-vision systems.

Kanade et al [10] developed a custom five-camera stereovision machine (CMU machine) with

C40 DSP arrays, able to process depth maps at 30 fps with image resolutions of 200x 200. SAD (Sum of

Absolute Differences) algorithm was employed with disparity range of 64.

Woodfill et al [11] designed a stereo vision system based on 16 Xilinx 4025 FPGAs, and 16 one-

megabyte SRAMs. The device generates dense disparity maps at 320x 240 image resolution at video rate,

and communicates with PC via PCI bus.

The above systems are quite large in size, expensive to build and operate and are thus not suitable

for practical purposes.

SRTs Small Vision Module (SVM) produces dense depth maps at 6 frames per second (fps) on

160x120 images. It consists of two CMOS 320x240 grayscale cameras, low-power A/D converters, a

digital signal processor and a small flash memory for program storage. The SVM fits within 2" x 3" (see

Figure 7). During operation, the module consumes approximately 600mW power. The software consists

of LOG transform of left and right images, followed by area based correlation (absolute differences) with

disparity set to 16, post-filtering with an interest operator, left/right consistency check, and range

interpolation [12].

TYZX DeepSea V2 Stereo Processor embedded in a PCI (Peripheral Component Interconnect)

card features a custom ASIC which provides depth data (512x480 image resolution) to a PC (Personal

Computer) at 60 fps, consuming <15W power (see Figure 7). It employs census based correlation

algorithm. The useful operating range is from 2.7m to 35m, with range resolution of 0.01m @ 3m to 1.1m

@ 38m, and spatial resolution of 0.004m @ 3m to 0.05m @ 38m [13].

9

Videre Design's STOC stereo camera (640x480 image resolution) uses local area-based method

for computing correlation at roughly 29fps (disparity range of 64, window size of 15x15), consuming

about 2.4W power (see Figure 7). It employs Xilinx Spartan 3 - 1000 FPGA running at 84MHz [14].

MSVM-III uses three cameras to produce depth maps at 30 fps (640x480 image resolution, 64

disparity levels) [15]. An FPGA chip running at 60MHz is employed to compute trinocular rectification,

LoG filtering, and area-based matching (see Figure 7).

Bumblebee2 [16] is a stereo vision system commercially produced by PointGrey research. It is

capable of producing dense depth maps at 48 fps at image resolution of 640x480, consuming 2.5W atl2V.

The image data is simply streamed over the Fire Wire port and the processing is done on the PC (see

Figure 7).

Compact,
low power
coiisiunptioii

Bulky, Hugh power
consumption

A-

•a

•

SRI's Small Vision
Module (SYM)

DSP based, local
method, 2"x3*\
Sips

TYZX DeepSea Stereo | > 3 C l i l

FPGA/DSP
hybrid. 15W.
30fpg-200fps

Videt"e Pesigiis-STOO FPGA based., local.
b9cm. 2.4W, 29fps.
l . - ' U x
5.2"Lxl.5"W

MSVM-III FPGA based, local,
120fps

Point Grey System.*- B ; B , | S e s_ l o c a J L

Bumblebee bJ2em.4Stps,

1 4"H. h 2"U
1 S"\V

Figure 7. Sample of some existing Stereo-vision systems.1

1 SRI's Small Vision Module (SVM), http://www.ai.sri.com/~konolige/svs/svm.htm: TYZX DeepSea Stereo,
http://www.tyzx.com/products/cameras.html: Videre Designs-STOC, http://www.videredesign.com/vision/stoc.htm:
MSVM-III [15]; Point Grey Systems-Bumblebee, http://www.ptgrey.com/products/bumblebee2/index.asp

10

http://www.ai.sri.com/~konolige/svs/svm.htm
http://www.tyzx.com/products/cameras.html
http://www.videredesign.com/vision/stoc.htm
http://www.ptgrey.com/products/bumblebee2/index.asp

All the above systems are available for commercial purposes and are suitable for practical

purposes. Videre Design's STOC camera relies on Laplacian of Gaussian (LoG) image filter for pre

processing input images, followed by sum of absolute differences over a square window to compute

correlation. According to the recent studies [17], [18], [19] in the presence of local radiometric variations,

rank and census transforms have been shown to outperform other methods such as LoG, NCC

(Normalized-Cross Correlation), and HMI (Hierarchical Mutual Information) for correlation based

matching. TYZX DeepSea stereo and PointGrey's Bumblebee2 systems require a PC to be attached to

stereo cameras which does the processing. Thus, they are not suitable for applications that require the

system to be compact, power efficient and mobile. MSVM-IH requires multi-baseline calibration,

rectification and matching which is quite complex in nature. Even though more cameras may yield higher

accuracies, they add to the system cost and affect the system size, and power consumption. SRI's SVM

module does not produce depth maps at video rate.

Thus, there is a requirement for a fully integrated, small, modular, low-cost, efficient, real-time,

embedded stereo vision system that is capable of producing high density depth maps to be used for a wide

variety of imaging applications in real-world environments.

The following table summarizes the design specifications for an MESVS system:

Table 1. Design specifications for a Miniaturized Embedded Stereo-Vision System (MESVS)

Specification

Baseline

Dimensions

Frame rate

Resolution

Power consumption

Target Value

<=3cm

LxW <=5cm

>=10fps

>QQVGA (160x120)

<3W

Other Features:

Produce accurate dense depth maps, Invariant to radiometric variations, Low-cost, Modular design.

11

Chapter 3

Miniaturized Embedded Stereo-Vision
System (MESVS)

3.1 System Overview

Miniaturization of the stereo-vision system is accomplished not only by reducing the overall dimensions

of the components used, but also by reducing the baseline, i.e. the distance between the camera's centers

of projection. The size of baseline has a direct impact on the range of measurable objects in the scene

(Horopter) and the related accuracy (range resolution). As can be seen from (2), as the baseline b

decreases, the range r decreases, whereas the range uncertainty A r increases. Thus, there has to be a

trade-off between the horopter and the associated accuracies for disparity values.

r2

A r = (—)x A N

(2)

where,/is the focal length, x denotes the pixel size and the change in disparity is denoted by A N. Figure

8 shows the relationship between range vs. disparity, and range vs. range uncertainty.

12

o
C
(0

140

120

100

80

60

40

20

0

30

25
E
o

* 20

S 15

& 10
c
to

0 10 20 30
Disparity (pixels)

(a)

40
0 —

0 20 40 60 80
Range (cm)

(b)

100 120

Figure 8. (a) Range vs. Disparity, (b) Range uncertainty vs. Range [20], [19].

To fit the system within 5x5cm, while having an acceptable measurable range and horopter,

horopter and disparity ranges have to be carefully chosen. This analysis has to be based on the system's

baseline (28mm), focal length (2.8mm), and pixel size (17um). With the horopter set to 5-35, and

disparity range of 30 in the above equation, we get an acceptable measurable range of about 15-100 cm.

For objects within close vicinity (less than 50 cm) the maximum uncertainty is around 5 cm. Careful

analysis shows that using a well adjusted horopter and a large disparity range, the system is capable of

compensating for the impact of small baseline and is capable of retrieving range information with

acceptable level of accuracy.

3.2 Processor selection

Selecting the desired processor for a computationally intense, stereo-vision application, is of critical

importance, as it heavily influences the product cost, performance, and power consumption. There are

many types of processors available in the market including PC CPU, Embedded RISC CPU, application

processors (like DSPs1), media processors (like ASIP2), FPGAs (Field Programmable Gate Arrays), and

1 Digital Signal Processors
2 Application Specific Integrated Processors

13

ASSPs (Application Specific Signal Processors). The selection criteria for choosing the proper processor

type for the application of stereo-vision include:

a. Performance considerations (like speed, memory handling, data buses, energy consumption,

benchmarking results, etc.),

b. Cost of Integration,

c. Availability and roadmap,

d. Development considerations (like single vs. multi-core, number of I/O ports, instruction set

architecture, developer familiarity, compatibility, tools-compilers and profilers, support, etc.),

e. Packaging requirements, and,

f. Operating temperature range, among others.

Media processors like ASIPs provide higher performance than most DSPs and GPPs (General

Purpose Processors) and have better support for video processing; however, they have complex

programming models, higher developmental cost, and higher associated risk as their roadmaps are

unclear. FPGAs can be reconfigured dynamically, offer architectural flexibility, high throughput and

performance, all resulting in higher efficiency. However, their suitability for low-power, cost sensitive

and stereo-vision applications has not yet been proved. ASSPs incorporate one or more processor types

that are well matched to the application, and thus offer excellent performance, and energy efficiency;

however, ASSPs are often inflexible, have a sharp learning curve and require extensive tuning. Their

roadmap is unclear and the benefits of low cost can only be realized when produced in mass-quantities.

Application processors offer adequate performance, portability, energy efficiency, integration, and

support for video-based applications; however, they are less powerful than other types of processors

mentioned above [21].

Recently, a new family of Convergent processors (e.g. BlackFin by Analog Devices) has emerged

that is ideal for advanced video processing applications, combining both MCU (Micro Controller Unit)

and DSP functionality into a single device with a unified architecture, high clock speed, low power

dissipation per unit of processing, smaller form factor and flexible programming model [22]. They

function simultaneously as a 16-bit DSP and a 32-bit MCU while supporting both DMA (Direct Memory

Access) and cache functionality. Embedded system programmers leverage the portability of the code

written in C and try optimization approaches at the algorithm level and compiler level. However, in-order

to achieve real-time performance, assembly language coding is required.

Convergent processors allow the developers to create applications in C/C++, as the processor is

optimized not only for computation on real-time multimedia data, but also for control tasks. The benefits

14

include: best utilization of existing skill sets within a team, reduced time to market and lifecycle costs,

higher processing speeds, and ease of maintenance. Thus, we have chosen the dual core, BlackFin

processor (ADSP-BF561) as our processing platform for the stereo-vision system. More details on the

hardware and memory architecture can be found in the following sections.

3.3 Hardware Implementation

The system hardware consists of a state-of-the-art embedded processor ADSP-BF561, two tiny CMOS

camera sensors, two Parallel Peripheral Interface (PPI), 64MB of SDRAM, 8MB of addressable flash

memory, JTAG interface, and SPI port. Figure 9 shows a high-level block diagram of the system.

ADSP-BF561

Figure 9. System block diagram

15

ADSP-BF561 is one of the latest members of BlackFin family of embedded processors featuring

a dual core processor, with each core capable of 1200 MMACs@600MHz (2400 MMACs total). ADSP-

BF561 provides the best compromise between performance and size versus cost and power consumption

[20]. It also possesses two flexible video ports used to capture stereo image pairs from CMOS cameras.

Table 2 provides a summary of ADSP-BF561 specifications.

Table 2. Summary of specifications for BlackFin processor.

Clock Speed (MHz)

MMACS (Max)

RAM Memory (kBytes)

External Memory Bus

PPI ports

Core Voltage (V)

Packages

600MHz (per core)

2400

320

32bit

2

0.8-1.2

297-PBGA, CSP_BGA

3.3.1 Memory Architecture

Performance of an embedded system is directly dependent on how the memory and data is managed.

BlackFin processors support a modified Harvard architecture along with a hierarchical memory structure.

Figure 10 shows an overview of the memory architecture of our system. Each BlackFin processing core

has access to the high-speed, high-performance, low-latency, Level 1 (LI) memory that typically operates

at the processor speed. LI memory is made up of 64KB of data memory and 32KB of instruction

memory. Memory Management Unit (MMU) defines the properties of a given memory space and protects

the system registers from unintended access. A unified Level 2 (L2) memory shared by both of the cores

operates at approximately half of the core-clock speed, resulting in a higher latency compared to LI

memory. External memory also called Level 3 (L3) memory consists of 64MB of SDRAM and 8MB of

flash memory. The system's firmware is burnt onto the flash memory. Although L3 memory is quite

large, the access time is measured in System Clock Cycles (SCLK), which is usually much less than the

CCLK rate.

16

ADSP-BF561

> CORE 1

Ll MEMORY
[32KB)

INSTRUCTION
SRAM/CACHE

K-H MMU

BLACK <k

CORE 2
> 600 MHz

Ll MEMORY
164KB)

DATA SRA
CACHE

M /

Ll MEMORY
{32KB)

INSTRUCTION
SRAM/CACHE

MMU TOP

Ll MEMORY
JS4KBJ

DATA SRA1
CACHE

M /

• y T • i • T

CORE SYSTEM/BUS INTERFACE I IMDMA CONTROLLER

32,

External
Access

Bus (EAB)

BOOT
ROM

32

DMA
Controller I

DMA
External
Bus (DEB)

DMA
Access
Bus (DAB)

32

16

DMA
Controller 2

DMA
Access

Bus (DAB)

Peripheral
Access

Bus (PAB)
16

• • T

T
NON-DMA PERIPHERALS

t t t t

L2SRAM
(128KB)

T T • • • • • •
DMA PERIPHERALS

EXTERNAL PORT
FLASH/SDRAM CONTROL

64MB
SDRAM

ON-CHIP

OFF-CHIP

>600MHz

Core Clock
iCCLK) domain

Single cycle
to access

>300WIHz

System Clock
(SCLK) domain

Several cycles
to access

8MB FLASH

<=133MH2

Several System
cycles to access

Figure 10. Memory architecture of MESVS system.

Multiple DMA channels facilitate data movement between the peripherals and the memory

systems, with no overhead on the processor. Extensive deployment of DMA functionality has allowed us

to improve system performance and reduce the run-time of the matching algorithm, and rectification, as

explained in section 3.5.

17

3.3.2 CMOS vs. CCD Sensors

Digital cameras use solid state image sensor which contain millions of photosensitive diodes called

photosites. These sites integrate the intensity of the light falling on the diodes by accumulating the charge

during the brief moment the shutter is open. A charge-coupled device or CCD utilizes an analog-to-digital

converter to convert the charge to a digital number. The charges are coupled in such a way that only one

row can be read at a time.

In most CMOS (Complementary Metal-Oxide Semiconductors) devices, transistors are utilized to

enable reading of individual pixel's intensity. Each pixel has its own charge-to-voltage conversion, and

the sensor often also includes amplifiers, noise-correction, and digitization circuits, so that the chip

outputs digital bits. This increases the complexity, reduces effective area to capture light and makes the

system non-uniform. However, additional on-chip features can be added at little or no extra cost, which

may include image stabilization and image compression. This in essence, makes the camera lighter,

smaller and thus cheaper to produce. It also requires very low power consumption. Integrating these

features in a CCD camera will make the manufacturing process so complex, that it would be un

economical to produce. The best performance on the CMOS cameras can be obtained in an outdoor

environment, as they suffer in low-light conditions.

The percentage of a pixel devoted to collecting light is called the pixel's fill factor which has a

direct correlation with the sensitivity of the sensor and is inversely correlated with the exposure time.

CCDs have a 100% fill factor but CMOS cameras have much less. To increase the fill factor for CMOS

image sensors, micro-lenses are typically integrated in the package.

A detailed comparison between the CCD and CMOS image sensors is provided in Table 3.

18

Table 3. Comparison of CCD vs. CMOS image sensors.

Cost

Power

Noise

Maturity

Extended Functionality

Fill Factor (percentage of a

photo-site that is sensitive

to light)

CCD

(Charge Coupled Device) Sensors

Expensive to produce-special

manufacturing methods employed

Consumes up to lOOx more power than

CMOS

High quality, low noise images

Produced for longer period, higher

quality images, more pixels

Technically feasible, other chips are

used

high

CMOS

(Complementary Metal-Oxide

Semiconductors)

Sensors

Inexpensive to produce-semiconductor

technology

Low power consumption

Susceptible to noise; lower performance

in low light conditions

Less mature

Other circuitry easily incorporated on

same chip

low

Taking into account all the above factors, we have chosen to go along with the OmniVision's 7660

CMOS image sensors.

Table 4 below, shows the main specifications of the chosen image sensor.

Table 4. Specifications of OmniVision's OV7660 Camera module

Feature

Output Formats (8-bit)

Lens Size

Frame Rate

Value

YUV/YCbCr 4:2:2 ; RGB 4:2:2; Raw

RGB Data

1/5"

l.OV/Lux-sec

19

S/N Ratio

Dynamic Range

Scan Mode

Electronic Exposure

Pixel Size

Fixed Pattern Noise

Package Dimensions

>48dB (AGG off, Gamma=l)

>72dB

Progressive

Up to 510:1 (for selected fps)

4.2um x 4.2um

< 0 . 0 3 % Of VpEAK-TO-PEAK

6.5mmx6.5mmx4.84mm

3.3.3 Design Considerations

Electrical wiring or traces on the printed circuit board (PCB) can be thought of as multiple charge

carrying conductors qj,q2, separated by a distance r. According to Coulomb's law, the force of attraction

F can be given as:

F = fc(—)

(3)

where, k is the coulomb's constant which depends on the properties of the space. It can be given

as:

k =
Ana

where, £ is the permittivity of dielectric, which can be calculated as:

£r = —

(4)

(5)

where,£ris the dielectric constant, and £0is the permittivity of empty space.

20

The force of attraction between the conductors adds to the noise, ground bounce and crosstalk.

The construction materials used for PCBs have a set dielectric constant, the most common amongst those

is Fr-4/glass with a dielectric constant of 4.1 and a loss tangent value of 0.019@lMHz [22]. The larger

the loss tangent, the higher is the absorption of high frequencies by the dielectric material; the higher is

the attenuation of signals. Di-electric constant has an effect of the impedance of transmission line (signal

traces), where lower value permit faster propagation velocities vp as shown by the equation below:

C

(6)

where, C is the speed of light (3xl08m/s). The propagation delay tpd for a length / of the

conductor can be given as:

/
hd- — vv

(7)

From the above equation, it can be clearly seen that as the length of the conductor increases,

propagation delay increases.

Two long length parallel traces also have a mutual capacitance between them. Changes in the

voltage in one conductor causes the capacitance to change, resulting in cross-talk. Magnetic field from

one trace can induce a signal in another trace, commonly referred to as mutual inductance. Due to

mutually inductive effects, care should be taken in routing clock signals. The traces should be as straight

as possible. Placing a ground plane next to the clock output minimizes noise. To avoid ringing caused by

reflection on the transmission line, the impedance of the source (Zs) must equal the impedance of the trace

(Zo), as well as the load (ZL).

At low frequencies, current flows through the path of least resistance. At high frequencies, the

current flows through the path of lease inductance. Due to proximity effect, at higher frequencies, the

current returns to the ground plane. The current does not flow through the entire cross-section of the

conductor, but flows on the surface of the traces. As the depth of the trace changes, current density

changes. This phenomenon is referred to as skin depth. It is the depth at which the losses associated with

a conductor carrying AC equals those of the hollow conductor carrying DC signals. The thicker the

conductor, more pronounced is the skin effect.

21

As the frequencies increase, the rise time decreases causing high transient currents in outputs as

they discharge load capacitances. Switching of many signals from high-to-low-to-high may cause a

board-level phenomenon known as ground bounce.

Every PCB generates electromagnetic interference (EMI) which is directly proportional to the

change in current or voltage with respect to time. Minimizing crosstalk and proper grounding can

significantly reduce EMI issues. Spacing between the signal lines should be widened as much as possible.

Single ended signals should be routed on different layers of the PCB and should be orthogonal to each

other. Decoupling capacitors should be added for VCC/GND pairs, and should be placed closed to the

power pins. Wherever possible external pull-up resistors should be eliminated and replaced by pull-down

resistors. Low effective series resistance (ESR) capacitors of ESR < 400 mQ should be used as

decoupling capacitors.

3.3.4 PCB design flow

The design of a successful PCB layout starts with the schematic design followed by creating a Bill of

Materials (BOM), design review, ordering of parts, generating design rules, component placement,

routing, generation of silkscreen, assembly & fabrication drawings, followed by the actual fabrication,

assembly and testing. Figure 11 shows the typical design flow:

22

Schematic — » • BOM — » • Design Review — • Order Parts

f

Generate Design
Rules for PCB

— •
Component
Placement

— • Critical Routing — • Final Routing

f

Design Rule
Check

— > Generate
Silkscreen

Prepare Assembly
and Fabrication

drawings
— • Fabrication

f

Assembly —* Testing

Figure 11. Hardware design flow.

23

3.3.4.1 Schematic capture

This involves capturing the electronic design i.e. how components are connected to each other (net-list).

Package types of all the parts are created, usually a long, laborious process.

3.3.4.2 Bill of Materials (BOM), Design Review and Ordering Parts

Once the interconnection between the components is defined by the net-list, a bill of materials can be

easily constructed defining the symbols used, type and description of parts, number of pins in the

components, package types, dimensions and effective areas, distributor & manufacturing part numbers,

unit prices, total quantities and effective total price. Table shows the breakdown of the costs of

components used in MESVS module.

Table 5. Breakdown of costs of components used in MESVS module.

PART TYPE

Processor

Cameras

Resistors

Capacitors

Voltage Regulators

Oscillators

Switches

Connectors

Diodes

TOTAL COST

PRICE

$295.96

$121.42

$8.19

$0.50

$2.32

$5.66

$0.93

$23.55

$1.23

-$459.76 +Tax + Shipping

As can be seen from the table above, the most expensive components include the processor,

cameras, and connectors. A review of the design is carefully conducted followed by ordering of the parts.

3.3.4.3 Design Rule Check (DRC)

All design parameters that are relevant to the PCB design and manufacturing are specified as design rules.

Some of the parameters include number of routing layers, copper thickness, isolation thickness, minimum

24

size, clearances, distances & drill sizes between objects in the signal layers, size of pads, vias (plated

through holes-PTH used to provide electrical connection between a trace on one layer of the to a trace on

another layer) & micro-vias, restring width, and mask. Most PCB design software includes a bot

(automated piece of software) which ensures that the design conforms to generally acceptable rules. They

are often limited in scope, as they usually cannot detect errors such as mirrored layers, drill file problems,

missing layers, or if traces are connected to the wrong pins on an IC. Thus, the check has to be then

conducted by a human to detect defects, and catch errors at an early stage, thereby making sure high

quality fabrication result.

3.3.4.4 Generate Silkscreen and prepare assembly and fabrication drawings

The PCB layout has to be submitted in the RS274X gerber format, which captures detailed information

about the design. Most software output the following files as an output:

• Top Copper Layer (*.cmp or *.gtl)

• Top Solder Mask (stc or gts)

• Top Silkscreen (pic or gto)

• Bottom Copper Layer (sol or gbl)

• Bottom Solder Mask (sts or gbs)

• Bottom Silkscreen (pis or gbo)

• Drill File (drd or txt)

Silk-screens are colored marks (usually white) on the PCB board to identify components for later

assembly and troubleshooting processes.

3.3.4.5 PCB Fabrication

Fabrication of a PCB typically involves many steps, starting with the drilling of the copper laminate

followed by the deposition of Cu onto the drill board. The next step involves optical lithography, which

transfers the desired pattern (PCB layout) onto the photo-resist substrate using a photo mask that is

sensitive to light. This step is repeated several times, until the PCB layout is successfully transferred onto

the surface. Then the substrate is plated or mechanically polished, followed by etching process. Etching

process utilizes acids, bases or other chemicals to dissolve unwanted materials from the substrate thereby

leaving the desired routing layout. Once the traces are clearly visible, Hot-Air-Solder-Leveling is used to

apply solder to the circuit board based on the solder mask, and flux is applied to the boards.

25

Electrical conductivity tests can be performed at this stage using automated machines, followed

by V-scoring to panelize the boards, if needed. PCB boards are then cleaned, packaged and shipped.

3.3.4.6 PCB Assembly

Since the boards use surface mount (SMT) technology, one of the hardest and most expensive of all steps

is the actual assembly of the components on top of the PCB. Components are placed by automated

machines onto the board, which is followed by visual inspection to detect missing or misaligned

components and solder bridging. If needed, rework is done by manual intervention.

3.3.4.7 PCB Testing

From design to fabrication to assembly, errors may get accumulated over a period of time. A PCB has to

be inspected and then tested to ensure that the boards work accordingly. Some of the tests include AOI

(Automated Optical Inspection), X-Ray Testing, In-Circuit Testing, Flying Probe Testing and JTAG

Testing. For more details, please refer to [24].

Figure 12 shows the final Miniaturized Embedded Stereo Vision System (MESVS).

Shown with a ruler. Front side

26

Figure 12. Miniaturized Embedded Stereo Vision System (MESVS).

3.4 Software Algorithms

MESVS relies on an efficient and robust local stereo matching engine to retrieve the depth information of

the scene in real-time (i.e. about 20 fps). As illustrated in Figure 13, there are five major stages that

constitute the stereo matching engine, namely, image acquisition and sub-sampling, stereo rectification,

pre-processing, matching and left/right consistency (LRC) check, and post-processing.

27

9 #
c

1
1

Offline

Calibration

)W /bbO Lett Camera OV7660 Right Camera

Image Acquisition VGA (640x480)

L *

i ' i r

Sub-Sampling QQVGA (160X120)

ir i '
Rectification

1
Pre-Processing

ir ir

Correlation based matching & Left/Right

Consistency check
i ' i '

Post-Processing

1
Final Depth Map

Figure 13. Overview of the stereo-matching engine

3.4.1 Image Acquisition, Offline Camera Calibration and Sub-Sampling

CMOS (Complementary Metal-Oxide Semiconductor) camera technology has been chosen for the

module, as the camera modules cost less than the CCD (Charge Coupled Device) based imagers, consume

relatively lower power, and can incorporate other circuitry on the same chip (like clock drivers, timing

logic, signal processing, etc.). Images are captured by OmniVision's OV7660 camera modules, in VGA

resolution, and thus require about 300KB of storage space, per image pair. An offline stereo camera

calibration is performed initially to obtain both intrinsic and extrinsic parameters of the system, using the

28

MATLAB toolbox from the Institute of Robotics and Mechatronics at Caltech [25]. This step helps in

rectification of the images and if needed, reconstruction of world views.

In the calibration process, the main objective is to find the intrinsic quantities that affect the

imaging process like position of the image center, focal length, scaling factors for row and column pixels,

skew factor, and lens distortion among others; and extrinsic parameters such as rotation and translation of

the camera. Images of a planar checker board target as captured by the camera are loaded into the toolbox

(see Figure 14), which is then followed by running corner extraction, and the main calibration engine. If

needed, accuracies are controlled, and images added, suppressed or un-distorted, to obtain the final

calibration parameters.

Figure 14. Sample of images of the planar checkerboard target used for calibration [25].

Following figure shows a sample spatial configuration of the two cameras and the calibration

planes as viewed from the toolbox:

29

Extrinsic parameters

200 0

Figure 15. Sample spatial configuration of the two cameras and the calibration planes [25].

Based on our experimentation, tangential distortion removal step was not implemented, as it leads

to only a slight improvement in the disparity, result, yet considerably increases the computational

complexity of the un-distortion process.

The images that are captured, cannot be stored directly in the internal memory of the processor

(due to the limited amount of fast, on-chip LI memory available), but can be stored in external memory;

however, the external memory typically operates at a much lower speed compared to the operating speed

of the core processor(s). Therefore, there are significant delays associated with external memory accesses,

which would reduce the overall system performance. To overcome this issue, and maximize the

efficiency, the images are sub-sampled into QQVGA (160x120) resolution, in order to fit within the on-

chip memory of the BlackFin® processor. This is accomplished, by skipping every three rows and

columns of the input image utilizing the 2D-DMA facility provided by the BlackFin® Processor's

Internal Memory DMA (IMDMA) controller (see Figure 16).

30

6 4 0

o

VGA

I [HI IL2. 2-D
•M D MA

• • • B l l
mmmmmi

"S '3

QQVGA

Figure 16. Sub-sampling VGA images to QQVGA images by skipping 3 rows and columns.

3.4.2 Rectification

The images are rectified to make the pairs of conjugate epipolar lines collinear and parallel to the

horizontal image axis. This reduces the 2D correspondence problem to a simpler ID search.

Rectification takes the following intrinsic and extrinsic calibration parameters generated by the

previous stage as an input:

Input Left Image (var: leftImage),

Input Right Image (var: rightlmage),

Focal Length of Left Camera (var: fc_left),

Principal point of Left Camera (var: cc_left),

Skewness in the left camera (var: alpha_c_left),

Distortion in the left camera (var: kc_left),

31

Focal Length of Right Camera (var: fc_right),

Principal point of Right Camera (cc_right),

Skewness in the Right camera (var: alpha_c_right) ,

Distortion in the right camera (var: kc_right),

Rotation Vector (var: om),

Translation Vector (var: T) ,

Number of rows (var: nx) ,

Number of columns (var: ny).

and, generates as an output the left and right rectified images.

Rectification step includes: back projection, distortion removal, and bi-linear interpolation of

pixels, which requires floating-point operations; however the selected embedded media processor can

only perform fixed point operations.

Floating point operations can be emulated in software using the available library function calls

(implemented in C) which can be inefficient. To ensure the optimum performance of the rectification

algorithm, we have implemented a relaxed and fast floating-point routine in assembly language.

Wherever possible, faster fractional data type operations (natively supported by BlackFin®) were used

instead of floating-point operations, to further improve the efficiency of the algorithm.

Figure 17 displays the left and right rectified images obtained from our module (MESVS-H).

Left Rectified Image Right Rectified Image

(h_RECT) (IR_RECT)

Figure 17. Left and Right rectified images belonging to the Mug dataset obtained from MESVS-H.

Details on the implementation of the rectification stage can be found in Appendix A.1-A.8.

32

3.4.3 Pre-Processing

Radiometric variations pose a significant problem in creating a high quality depth map. These variations

can be caused by the variable settings (both internal and external) of the two cameras (such as gain,

vignetting effect, etc.), image noise, properties of the light source (such as strength, position, orientation,

etc.), and properties of the objects in the environment (such as Lambertian or non-Lambertian surfaces,

etc). In-order to reduce the sensitivity of the matching algorithm, and increase its robustness to

radiometric variations, we employ a pre-processing stage.

Non-parametric local transforms such as rank and census compute the relative ordering of the

intensity values within a neighborhood to reduce the effects of variations caused by camera's gain and

bias, and increase the robustness to outliers that typically occur near depth-discontinuities [26]. Both of

the two transforms are suitable for fast hardware implementations [27].

3.4.3.1 Rank Transform

Rank Transform R(P) is a form of non-parametric local transform (i.e. relies on the relative ordering of

local intensity values, and not on the intensity values themselves) used in image processing to rank the

intensity values of the pixels within a square window N(P). The centre pixel's intensity value I(P) is

replaced by its rank amongst the neighboring pixels I(P')[1] as shown in the following equation:

R(P) = \\{P'EN(P)\I(P')<I(P)}\\

(8)

Advantages:

• Reduces effects of variations caused by camera's gain and bias.

• Increase in robustness to outliers near depth-discontinuities.

Disadvantages:

• Loss of information associated with the pixel.

• Rank transform cannot distinguish between rotations and reflections, and has been shown to

produce the same rank for variety of patterns [28].

33

The following figure shows the Rank Transform of various window sizes being applied to a sample of

image-Cones from 2003 dataset:

Sample Image-Cones Rank Transform (3x3) Rank Transform (5x5)

Rank Transform (7x7) Rank Transform (9x9) Rank Transform (15x15)

Figure 18. Rank Transforms of a sample image-Cones. Shown from left-right are Rank transforms

with square window sizes 3x3,5x5,7x7,9x9 and 15x5.

As can be seen from the above figure, Rank Transform loses color data and information about the

local image structure. As the window size increases, the edges become clearer, however, the time required

to process the image also increases.

In-order to explore the sensitivity of the Rank Transform to rotations and reflections, test patterns

were generated, as shown in the figure below [28]:

34

Test Pattern 1 Test Pattern 2 Test Pattern 3

Test Pattern 4 Test Pattern 5 Test Pattern 6

Figure 19. Test patterns used to explore the sensitivity of Rank Transform to Rotations and

Reflections

After applying Rank Transform to the above test patterns, it was found that all of the patterns

yielded a rank result of 4, thus proving that Rank transform cannot distinguish between rotations and

reflections. More of these patterns can be generated to emphasize the point.

The code used to produce the above rank transforms can be found in Appendix A. 16.

3.4.3.2 Census Transform

Census Transform Rj{P) is another form of non-parametric local transform (i.e. relies on the relative

ordering of local intensity values, and not on the intensity values themselves) used in image processing to

map the intensity values of the pixels within a square window to a bit string, thereby capturing the image

structure [26]. The centre pixel's intensity value is replaced by the bit string composed of set of Boolean

comparisons such that in a square window, moving left to right,

35

If (CurrentPixelIntensity<CentrePixelIntensity) boolean bit=0

else boolean bit=l

The mathematical representation of this transform is given by the following equation:

(9)

where, ® is the concatenation operator on a set of pixels with a set of displacements D within a

square window, and £(P, P') is equal to 1 when/(/>') < I(P) and 0 otherwise.

For each set of comparisons the bit is shifted to the left, forming an 8 bit string for a census

window of size 3x3 and a 32 bit string for a census window of size 5x5.

Advantages:

• Reduces effects of variations caused by camera's gain and bias.

• Increase in robustness to outliers near depth-discontinuities.

• Encodes local spatial structure.

• Tolerant to factionalism (If a minority of pixels in a local neighborhood has a very different

intensity distribution than the majority, only comparisons involving a member of the minority are

affected).

• It can distinguish between rotations and reflections

Disadvantages:

• Loss of information associated with the pixel.

The following figure shows the Census Transform of window size 3x3and 5x5 being applied to a

sample of image-Cones from 2003 dataset:

36

Sample Image-Cones

mm

Census Transform (3x3) Census Transform (5x5)

Figure 20. Census Transforms of a sample image-Cones. Shown from left-right are Census

Transforms with square window sizes 3x3 and 5x5.

The code used to produce the above rank transforms can be found in Appendix A. 17.

3.4.4 Correlation based matching and Left-Right Consistency (LRC) check

One of the most computationally intense parts of the stereo vision system is correlation based matching

and left-right consistency check. Correlation based matching typically produces dense depth maps by

calculating the disparity at each pixel within a neighborhood. This is achieved by taking a square window

of certain size around the pixel of interest in the reference image and finding the homologous pixel within

the window in the target image, while moving along the corresponding scanline. The goal is to find the

corresponding (correlated) pixel within a certain disparity range d (d e [O,....^^) that minimizes the

associated error and maximizes the similarity. In brief, the matching process involves computation of the

similarity measure for each disparity value, followed by an aggregation and optimization step. Since these

steps consume a lot of processing power, there are significant speed-performance advantages to be had in

optimizing the matching algorithm.

The images can be matched by taking either left image as the reference (left-to-right matching,

also known as direct matching) or right image as the reference (right-to-left matching, also known as

reverse matching). Classical similarity measures are listed in the following table:

37

Table 6. Classical similarity measures SAD, SSD, and NCC, along with their corresponding

equations, (ij) is the coordinate of the pixel in the square neighborhood window W. Ij is the

reference image, I2 is the target image.

Sum of Absolute Differences (SAD)

Sum of Squared Differences (SSD)

Normalized Cross Correlation (NCC)

Sum of Hamming Distances (SHD)

£ U10'J)-/2(x + i,y+;')|
(ij)eW

]r.(/i(iJ)-/2(* + i.y+;'))2

(ij)ew

I.a.i)ewh(.i'D-h(x + i,y+j)

]JT.(i,j)EW l\ (\,D • T.a,j)ew ll(x + i,y+ j)

V (ZiCij) bitwiseXOR I2(x + i,y + ;'))

Sum of Absolute Differences (SAD) is one of the simplest of the similarity measures which is

calculated by subtracting pixels within a square neighborhood between the reference image // and the

target image I2 followed by the aggregation of absolute differences within the square window, and

optimization with the winner-take-all (WTA) strategy [29]. If the left and right images exactly match, the

resultant will be zero.

In Sum of Squared Differences (SSD), the differences are squared and aggregated within a square

window and later optimized by WTA strategy. This measure has a higher computational complexity

compared to SAD algorithm as it involves numerous multiplication operations.

Normalized Cross Correlation is even more complex to both SAD and SSD algorithms as it

involves numerous multiplication, division and square root operations.

Sum of Hamming Distances is normally employed for matching census-transformed images by

computing bitwise-XOR of the values in left and right images, within a square window. This step is

usually followed by a bit-counting operation which results in the final Hamming distance score.

38

Following figure illustrates the results of SAD, SSD, NCC, and SHE) on Tsukuba image from

2001 dataset:

Left Image

Ground Truth Disparity Map

i*
j

f

. {

, •£ * * *?* *

^H^« '^

SSD Disparity Map (Window Size: 9x9)

Right Image

MM*+

m «un j | i .,

*

SAD Disparity Map (Window Size: 9x9)

W1 1ft
. • PL S*

NCC Disparity Map (Window Size: 9x9)

•

1 ,#

*.'•' • .i'i fcHi

SHD Disparity Map (Window Size: 9x9)

Figure 211. Disparity maps computed by employing SAD, SSD, NCC and SHD on Tsukuba image

from 2001 dataset.

39

The code used to produce SAD, SSD, NCC and SHD scores of left and right images can be found

in Appendix A.9-A.12, A.18-A.19.

The work done in [30], [31] has been extended further, to employ vertical, horizontal and

modular recursion schemes for calculating the sum of hamming distance (SHD) scores.

For a given disparity range d, and a square window of size (2n+l)x(2«+l), centered at (x,y) in the

left census transformed image IL-CENSUS> and (x+d,y) in the right census transformed image IR.CENSUS (see

Figure 22), the sum of hamming distance score SHD(x,y,d) can be given by:

n

SHD(x,y,d) = 2_, ,L-CENsus(.x+j,y+i)®IR-cENsus(.x + d+j,y + i)

i,j=-n

(10)

where, ® is the bit-wise XOR operator.

If we store the SHD scores associated with all the centre pixels comprising the width of the image

(W), for all possible disparity range values (</„*„+1), then the SHD scores associated with all the centre

pixels in the subsequent row SHD(x,y+l,d) can be calculated recursively by taking the SHD score

SHD(x,y,d) before the vertical window shift, and excluding the contributions of the row above the shifted

window, and considering the contributions from the new row within the shifted window (see Figure 22):

SHD(x,y + l ,d) = SHD(x,y,d) + U(x,y + l,d)

(ID

where, U(x,y+l,d) is called the update term, given by:

n

-CENSUS
(x+j,y + n + 1)®IR-CENSUS(X + d + j , y + n + 1)

j=-n

n

- 2_, h-CENSusQc +j.y~ K)®IR-CENSUS(X + d+j,y-n)
j=-n

(12)

40

2n+l
(\

o-
• 1 1 \

Centre pixel

—coordinates (x, y)

2n+l

Left image IL-CENSUS

(reference)

PI Vertical shift in

window

2n+l Previous

,' (excluded)
1 \

1 T"
D- _

Row

Centre pixel

coordinates (x, y+1)
v.. New row (added)

Left image IL-CENSUS

(reference)

M
\ i

—

Centre pixel

, - -coordinates (x+d, y)

Right image IR.CENSUS

t
(target)

Vertical shift in

window

2»+l Previous Row

/ (excluded)

D-
Centre pixel

coordinates (x+d, y+1)

« New row (added)

Right image IR-CENSUS

(target)

Figure 22. Vertical recursion scheme for correlation based matching. SHD scores associated with

window of size 3x3 centered at (x,y) in left pre-processed image, and (x+d,y) in right pre-processed

image, are depicted in light yellow color. SHD scores associated with window centered at (x,y+l) in

left pre-processed image, and (x+d,y+l) in right pre-processed image are depicted in light blue

color.

This optimization scheme above is called vertical recursion.

Similarly, if we store the update terms for all possible values of disparity (dmax+l) associated with

the centre pixel to the left of the current centre pixel (see Figure 23a), then it can be shown that the new

update terms associated with the current centre pixel U(x, y+l,d) can be recursively calculated from the

previous update terms U(x-1, y+1, d) by excluding the contributions of the two (left) corner pixels in

previous update terms and considering the contributions of the two (right) corner pixels in the current

update terms (see Figure 23b):

41

U(x,y + 1,d) = U(x - l , y + 1,d) + IL-CENSUS(.X + n,y + n + 1)®IR-CENSUS(.X + d + n,y + n + l)

+ h-CENsusix + n,y- n)®lR.CENSUS(x + d + n,y-n)

- IL-CENSUS(* -n-l,y + n+ 1)®IR-CENSUS(.X + d-n-l,y+ n +1)

~ IL-CENSUS(X - n - l ,y - n)®IR-CENSUS(x + d-n-l,y-n)

(13)

Update terms associated !

with the centre pixel to the-^^

left

A

-I

2/i+i

1

1 5

H "'

~\

\<
\

fv

Left image ^CENSUS

Update terms associated

with the current centre pixel

Current centre pixel

~(x,y+l)

Corner pixel in the

previous update term

(x-n-1, y-n)

(reference)
(a)

- - 1 1 5 I"
n

Corner pixel in the

previous update term

(x-n-1, y+n+1)

/ Left image IL-CENSUS ^

(reference)

(b)

Corner pixel in the

current update term

(x+n, y-n)

Corner pixel in the

surrent update term

(x+n, y+n+1)

Figure 23. Horizontal recursion scheme for correlation based matching, (a) Update terms

associated with the centre pixel to the left are shown with dotted border, whereas update terms

associated with the current centre pixel are shown in thick solid border, (b) Corner pixels of the

update terms are shown in green color.

This optimization scheme above is called horizontal recursion.

42

From the above, it can be concluded that the run-time of matching algorithm would be

independent of window size, which in turn enhances the system flexibility. Another advantage of this

approach is the small amount of memory required, which is equal to WxD words, where W is the image

width and D is the disparity range. We used the modular recursion as shown in Equations 14-16 . It is

based on the observation that contributions associated with the two pixels at the top right corner of

correlation window is the same as the contributions of the top left pixels after 2n+l iterations. Thus, the

most recent 2n+l terms can be temporarily stored within a 2D array M(x',d) for each disparity value

d € [0, dmax], and can be re-used 2n+l steps later to reduce the execution time of the algorithm [30],

[20].

U(x, y + l,d) = U(x-l,y + !, d) + IL-CENSUS(X + n,y + n + 1)®IR-CENSUS(.X + d + n,y + n + l)

- IL-CENSUS(X + n, y - n)®IR_CENSUS(x + d + n,y-n)- M(x', d)

(14)

Array M(x',d) can be updated modularly as follows:

M{x', d) = IL-CENSUS(X -n-l,y + n + 1)®IR-CENSUS(X + d-n-l,y + n+i)

- h-cENSusix - n - l , y - n)®lR-CENSUS{x + d-n-l,y-n)

(15)

where,

x' = xmod{2n + 1), d £ [0, dmax]

(16)

For more details on the above, please refer to [20], [30].

To treat the half-occluded regions in the scene, and enhance the robustness of the algorithm, we

have incorporated an efficient implementation of left/right consistency check (LRC) method that produces

accurate results under variety of conditions, compared to other occlusion detection methods available

[32]. LRC check detects majority of the occluded pixels and performs quite well in highly textured

scenes. This is accomplished by temporarily storing the SHD values for each row within an array. In fact,

we simply use the SHD values produced during the matching of right to left image, for cross-checking

results. As a result, no additional memory is required to implement this validation step. For occluded

regions, the disparity values are invalidated, and set to 0.

43

The code used to compute the LRC check can be found in Appendix A. 13.

3.4.5 Post-Processing

The post processing step combines the variance map of the target image, variance map of the disparity

map and the disparity map itself, to detect and remove erroneous disparities caused by texture-less and

depth discontinuous regions in the scene. If the pixel of interest lacks enough texture, and the estimated

disparity value is not in agreement with the neighboring pixels (measured by comparing variation of

disparity values over a local neighborhood against a threshold), the estimated disparity for that pixel is

invalidated and removed from the disparity map (set to zero). This is reasonable for the background and

occluded areas, but for the foreground, it may cause holes. The threshold values are determined through

manual tuning [33]. The variance maps needed for the calculation are produced using three levels of

recursion, similar to the matching process [20], [19].

The code used to post-process the disparity maps can be found in Appendix A.28.

3.5 Achieving Real-time Performance

Optimization includes three major steps: compiler based optimization, system based optimization and

assembly level optimization. Compiler based optimization performed to maximize the speed, exploits the

architectural features such as pipelining, vectorization, and compiler intrinsic functions (e.g. mult_frlxl6

andadd_frlxl6).

System level optimization is achieved by partitioning the memory efficiently and streamlining the

data flow. To achieve real-time performance, it is essential to consider the processing speed, data transfer

rates and how the memory system handles the data during processing. There is a trade-off between the

memory access speed and the available physical size of the memory array. At 20 fps, for two gray scale

images sub-sampled to QQVGA resolution, we would have (160x120 pixels/frame)x(l

byte/pixel)x(20frames/sec)x(2 cameras) ~750 KB/sec of raw data throughput into the processor. This

helps in estimating the amount of processing that is needed for the stereo vision system to function at

20fps. As mentioned in section 3.3.1, each processing core has access to only 64KB of fast LI memory.

44

Since each image frame consists of 18.75KB of data, we can fit maximum of 3 images at the same time,

within the LI memory. To achieve a performance advantage, and leverage the dual-core architecture of

the processor, we have implemented a two-staged pipelined programming model, where one core's output

is the next core's input [20]. Processing task separation is optimized by Core A performing image

acquisition, sub-sampling, stereo-rectification, and, Core B performing pre-processing, matching, and

post-processing.

In a stereo-vision system, rectification and matching algorithms are the most time-consuming

steps. The captured images are transferred into the L3 (external) memory using 2D DMA facility. Double

buffering scheme allows Core A to process input images, while DMA transfers the next image frame into

the external memory. This reduces the overhead on the processor. Using another 2D DMA operation, the

image is sub-sampled and stored within the LI memory.

During the rectification stage, constants like image indexes and coefficients have to be computed

for the back-projection and bi-linear interpolation steps, respectively. These parameters need not be

computed on the fly, as they take up a lot of core-clock cycles. Thus, the indexes and coefficients for each

of the left and right images can be calculated and stored within the memory as a look-up table, to be used

for rectification of the subsequent image pairs. The size of the index table can be computed as follows:

(160x120pixels/frame)x(2 index values/pixel)x(lbyte/index) = 37.5KB

Similarly, the size of the coefficients table can be computed as follows:

(160x120 pixels/frame)x(4 coefficients/pixel)x(2bytes/coefficient) = 150KB

From the above, it can be seen, that the total amount of memory required for the two tables would

be 375 KB. This far exceeds the memory space available on-chip, therefore, the lookup tables are stored

in the external memory. We use double buffering along with parallel DMA transfers to solve the problem

of long delays associated with external memory accesses (see Figure 10), resulting in more than 50%

improvement in the execution time of the rectification algorithm. The last step involves transferring the

final rectified image into the shared L2 memory, using 2D DMA.

45

In order to improve the performance of our matching algorithm (implemented on Core B), we

have introduced an in-place processing approach to reduce the amount of memory required. In the in-

place processing scheme, the source and destination memory locations remain the same. By keeping the

processing core's access within the fast LI memory, the associated performance bottlenecks and

degradations caused by slow memory latencies, are alleviated.

We have also implemented the critical loops in assembly language, which allows us to leverage

the efficient programming features provided by the BlackFin architecture such as specialized instructions

(e.g. bit-counting facility for calculation of Hamming distance metric), utilization of multiple operations

per cycle, hardware loop constructs, specialized addressing modes and interlocked instruction pipelines.

The following figure shows the profile of the code used in MESVS system:

IHf

fflHlH

B Post Processing

• Correlation-based Matching & L/R Check

B Pre-processing

• Rectification

• Image Acquisition and Sub-Sampling

Core A CoreB

Figure 242. Code profile of MESVS module.

46

3.6 Quality Metrics

Performance of the stereo vision algorithm can be evaluated by measuring the quality of the computed

depth map against the ground-truth disparity map.

3.6.1 Root Mean Squared Error

This measure is computed by the following formula:

i

RMS Error = (±£(*,y) |dc(x,y) - dt{x,y)\2J

(17)

where, N is the total number of pixels in an image, dc is the computed disparity map, and d, is the

ground truth disparity map.

3.6.2 Percentage of Bad Matching Pixels

This measure is computed by the following formula:

% Bad Matching = — ^ (\dc(x,y) - dt(x,y)\ > Sthresh)
ix.y)

(18)

where, N is the total number of pixels in an image, dc is the computed disparity map, and d, is the

ground truth disparity map, and 8thresh is the threshold for evaluating bad matched pixels (usually

attains the value of 1.0).

The code used to measure the RMS error and percentage of bad matching pixels can be found in

Appendix A. 14-A. 15.

47

Stereo vision algorithms typically compute erroneous results when the objects in the scene are

fully occluded or half occluded, there are sudden depth changes or discontinuities and when the object has

very low texture. To further quantify the performance, maps of the above mentioned regions are

constructed from the reference image and ground-truth disparity map. Table 7 shows the definitions of the

occluded, depth-discontinuous and texture-less regions.

Table 7. Definitions of occluded, depth-discontinuous and texture-less regions [2].

Occluded regions

Regions that are occluded in the

matching image, i.e., where the left-

to-right disparity lands at a location

with a larger disparity [2].

Depth-Discontinuous regions

Regions where neighboring

disparities differ by more than a

certain gap, dilated by a window of a

given width [2].

Texture-less regions

Regions where the squared

horizontal intensity gradient

averaged over a square window of a

given size is below a given threshold

[2].

48

Chapter 4

Experimental Results

This chapter presents the practical experiments that were performed and the corresponding results

obtained using MESVS. It begins with a quantitative comparison of the performance of Rank and Census

transforms, followed by the quantitative comparison of the performance of post-processing algorithm.

Next the results obtained from the MESVS module for each one of the algorithm stages are presented.

Finally an experiment is designed to measure the average power consumption of the system.

4.1 Quantitative comparison of the performance of Rank and
Census Transforms

A recent study [17] compared the commonly used stereo matching costs such as Birchfield and Tomasi

(BT), normalized cross-correlation (NCC), Laplacian of Gaussian (LoG), hierarchical mutual information

(HMI), rank and mean filter based costs. It was found, that rank transform appeared to be the best cost for

the correlation-based method. Accordingly, the first generation of our system (MESVS-I) relied on rank

transform for pre-processing the image pairs [20].

It has previously been shown that when census transform is used for pre-processing images,

better disparity results are obtained due to lower incorrect matches as compared to rank transform [26],

[27]. However, a comprehensive qualitative and quantitative comparison of rank versus census transform,

under radiometric variations such as global and local intensity changes, is lacking in the literature.

In this experiment, we measure the performance of rank and census transforms in the presence of

global intensity changes (such as gain, and exposure variances), local intensity changes (such as

vignetting, non-Lambertian surfaces, and variable lighting), and image noise.

49

4.1.1 Simulated Radiometric Variations

The first set of experiments consist of applying artificial radiometric variations to the Middlebury stereo

datasets Tsukuba, Venus, Teddy and Cones, as these images were captured under similar lighting

conditions [2], [34]. The simulated radiometric changes include: linear global brightness change

(gain/scale change), non-linear global brightness change (gamma change), application of vignetting

effect, and the introduction of Gaussian noise. The images were then pre-processed using rank (3x3

window size) and census (3x3 window size) transforms. Figure 25 shows the left images of each dataset,

followed by the effects of scale change, gamma variation, vignetting, introduction of Gaussian noise, and

respective rank and census transforms of left images. The disparity images were then computed by using

a correlation window of size 17x17, followed by a left-right consistency check for invalidating occlusions

and mismatches. These disparity maps were compared to the ground truth and the average error

percentage in non-occluded regions was computed with the error threshold set to 1. We also ignore an

area of 8 pixels (half of the correlation window) at the image border.

50

Figure 25. The first row corresponds to the left images of the Tsukuba, Venus, Teddy, and Cones

stereo pairs, with subsequent rows displaying various intensity changes such as scale change

(s=0.5), gamma change (g=2.5), vignetting effect (sv=0.3) and Gaussian noise (SNR=15dB), as

applied to the datasets. The last two rows display the rank (3x3) and census (3x3) transformations

of the left images of the datasets.

Figure 26 plots the average error percentages in non-occluded regions as a function of the amount

of intensity change for both rank and census transforms, within square windows of size 3x3 and 5x5. As

can be seen from the experimental results, census transform of size 3x3 outperforms rank of size 3x3

under simulated radiometric variations.

51

Rank (3x3)

• Census (3x3)

0.2 0.4 0.6
Scale factor (s)

0.8

(a) Global scale change-Rank 3x3 vs. Census 3x3

14 r

12 i

_ 10-

> 6f

Rank (5x5)

Census (3x3)

0.2 0.4 0.6
Scale f actor (s)

0.8

(a) Global scale change-Rank 5x5 vs. Census 3x3

s?
n

LU

X
m
>

16

14

1?

•

Rank (3x3)

Census (3x3)

10 i
• • * » » • • • • • • • • •

2 3
Gamma factor (g)

16 [

r 14 L

S> 12-

Rank (5x5)

• Census (3x3)

10
i • • • . • • • • • • • • • • <

2 3
Gamma factor (g)

(b) Global gamma change-Rank 3x3 vs. Census 3x3 (b) Global gamma change-Rank 5x5 vs. Census 3x3

14 r

12

10

Rank (3x3)

Census (3x3)

• • • • '

0.2 0.4 0.6 0.8 1
Scale factor at image border (sv)

14

S- 12

§ 10 r • • > <
• •

Rank (5x5)

Census (3x3)

• •

0.2 0.4 0.6 0.8 1
Scale factor at image border (sv)

(c) Vignetting-Rank 3x3 vs. Census 3x3 (c) Vignetting-Rank 5x5 vs. Census 3x3

52

40 r

| 30

uu

$ 20
> <

Rank (3x3)

Census (3x3)

10 •
• • - • • • • • •

40

| 30
UJ
<D

2 20
a) > <

10

Rank (5x5)

Census (3x3)

" • • * . • • • •

10 15 20 25 30 35 40 45 50
Signal to Noise Ratio (SNR) [dB]

(d) Adding Gaussian noise-Rank 3x3 vs. Census 3x3

10 15 20 25 30 35 40 45 50
Signal to Noise Ratio (SNR) [dB]

(d) Adding Gaussian noise-Rank 5x5 vs. Census 3x3

Figure 26. Effect of applying simulated radiometric changes or noise on the Tsukuba, Venus, Teddy

and Cones datasets. The rows correspond to the graphs displaying the average error percentages

for Rank (3x3) vs. Census (3x3), and Rank (5x5) vs. Census (3x3) comparisons in the presence of

intensity and noise changes.

4.1.2 Real Exposure and Lighting Variations

The second set of experiments consists of measuring the performance of both rank and census transforms

under real exposure and lighting variations. In this paper, we used the six datasets (Art, Books, Dolls,

Laundry, Moebius, and Reindeer) from Middlebury Stereo [35], [17], with each dataset containing images

that were captured under three different exposures and lighting variations, resulting in nine combinatorial

pairs of images. Figure 27 shows the left images of these datasets along with their respective ground

truths, obtained using the structured lighting technique [34]; while Figure 28 shows the left images of the

Books dataset with three different exposures and three different lighting conditions.

Figure 27. Stereo Datasets (2005) showing test images Art, Books, Dolls, Laundry, Moebius, and

Reindeer, along with their ground truth maps.

53

Figure 28. Books dataset displaying left camera images under three different exposures and three

different lighting conditions.

We followed the same methodology outlined before to calculate the average error percentages. The

resulting graphs are shown in Figure 29.

55

50

a 45

= 40

S 35
UJ

£ 30

Census (3x3)

Rank (3x3)

Rank (5x5)

S 55

50

45

40

35 L

Census (3x3)

Rank (3x3)

Rank (5x5)

1/1 1/2 1/3 2/1 2/2 2/3 3/1 3/2 3/3
3x3 left/right image combinations

(a) Exposure variation

1/1 1/2 1/3 2/1 2/2 2/3 3/1 3/2 3/3
3x3 left/right image combinations

(b) Lighting variation

Figure 29. Effect of exposure and lighting variations on the Stereo Datasets (2005). The rows

correspond to the graphs displaying the average error percentages for Rank (3x3) and Rank (5x5)

vs. Census (3x3) comparisons with exposure and lighting variations.

As can be seen from the experimental results above, census transform of size 3x3 outperforms

rank of size 3x3 and rank of size 5x5 under real exposure and lighting variations. Accordingly, in the

latest generation of the stereo vision system (MESVS-II), we utilize census transform (size 3x3), along

with the Hamming distance metric for matching. They are implemented efficiently as a mix of C and

assembly code, utilizing BlackFin's special, in-built, single-cycle instructions such as bit counting (Ones),

and bit-wise exclusive-or (XOR).

Use of these instructions, combined with the carefully optimized code has allowed us to develop a

fast pre-processing stage, which is robust with respect to radiometric variations. Figure 30 displays the

census transforms of both left and right images obtained from our module (MESVS-II).

54

Left pre-processed image Right pre-processed image

(IL-C) (IR-C)

Figure 30. Left and Right pre-processed images (using census transform) belonging to the Mug

dataset obtained from MESVS-II.

4.2 Quantitative comparison of the performance of post-processing
algorithm

Post processing step takes as an input the variance map of the left image, disparity map after LRC check

D/x,y) and the variance map of the disparity map. The final estimated disparity value for a pixel is

invalidated and marked zero whenever its texture ai(x,y) is less than a threshold TL and its disparity

variation <5D(x,y) is more than the threshold TH. It will be marked as valid and will be retained otherwise.

The values for TL and TH are manually tuned for best performance [33].

Following equation shows the mathematical representation for the proposed idea [20]:

Df(x,y)
(0/(x,y) <TL

11 UD(x,y)>TH
otherwise

(19)

Figure 31 shows the disparity map (left-to-right matching), disparity map after LRC check and

the disparity map obtained after post-processing.

55

Disparity Map (Left-Right Matching) Disparity Map after LRC Check

Post processed Disparity Map

Figure 31. Showing the computed disparity map (left-to-right matching), disparity map after LRC

Check and Post-processed disparity map of Aloe image from 2006 dataset.

To quantify the results of the post-processing algorithm in various challenging regions, 2006 dataset from

Middlebury Stereo website was chosen as it contains a variety of real-world images [35], [17]. Figure 32

shows left and right images of Aloe dataset, ground-truth disparity map, along with the obtained texture-

less, occluded and depth-discontinuous maps.

56

Left Image

Texture-less Map

Right Image

Occlusion Map

Depth-Discontinuity Map Ground-Truth Disparity Map

Figure 32. Shown from left to right, left image, right image, texture-less map, occlusion map, depth-

discontinuous map and ground-truth disparity map of Aloe image from 2006 dataset.

Figure 33 shows some of the challenging images from the 2006 dataset. Baby 1 dataset contains a

highly textured background and a relatively low textured foreground. Flowerpots dataset contains sudden

depth changes and large number of occluded regions. Plastic dataset poses a tremendous challenge as it

contains mostly low-textured regions, and a lot of occluded areas. Clothl dataset is heavily texture, and

has very low number of pixels that fall in occluded and depth -discontinuous regions. Also shown in the

57

figure are the ground-truth disparity maps, computed disparity map, disparity map after LRC check and

disparity map after post-processing.

58

Figure 33. Challenging images. From top to bottom: left image, texture-less map, occlusion map,

depth-discontinuous map, ground-truth disparity map, computed disparity map (left-to-right

matching), disparity map after LRC, and final post-processed disparity map. From left to right,

images Babyl, Flowerpots, Plastic, and Clothl from 2006 dataset.

In each one of the non-occluded, texture-less and depth discontinuous regions, percentage of bad

matching pixels for each one of the 21 images, after initial disparity computation (Initial), after LRC

Check and after post-processing was computed (see Figure 34). If the post-processing algorithm results in

lower number of bad matching pixels, then we can safely say that the algorithm works by eliminating bad

matched pixels from the final depth map.

80;

60 r

<= 40 h

"S 20 ! • •

10 15
Test image index

20 25

Initial After LRC After PP

(a) Percentage of Bad matching pixels in non-occluded regions.

59

80 r

60

S 40 i

°- 20 + •
• •

~. 70 h

60

50

40

30

20

10 15
Test image index

20

Initial — • - # - - - After LRC After PP

(a) Percentage of Bad matching pixels in textureless regions.

• • • ' f
- - T - •

10 15
Test image index

• •

20

Initial • After LRC After PP

(a) Percentage of Bad matching pixels in depth-discontinuous regions.

25

25

60 -

40

2 0 -
• • • • • • • •

10 15
Test image index

20

Initial • After LRC After PP

25

(a) Percentage of Bad matching pixels in all regions.

Figure 34. Percentage of bad matching pixels after initial disparity computation, after LRC check

and after Post-processing for non-occluded, texture-less, depth-discontinuous and all regions (top to

bottom).

60

Table shows the mean, median and mode values of the percentage reduction in bad matching

pixels obtained after LRC check and post-processing. As can be seen, for all regions, post processing

algorithm has an average percentage reduction of bad matched pixels, or in other words average

percentage improvement of 13.61%, in non-occluded, texture-less and depth-discontinuous regions the

percentage improvement is 13.24%, 15.91% and 8.37% respectively.

Table 8. Percentage reduction in bad matching pixels after LRC check and after post-processing.

All regions

Non-occluded

regions

Texture-less

regions

Depth-

discontinuous

regions

Percentage

of Bad

Matching

pixels

Mean (%)

Median (%)

Mode (%)

Mean (%)

Median (%)

Mode (%)

Mean (%)

Median (%)

Mode (%)

Mean(%)

Median (%)

Mode (%)

After Initial

Disparity

Computation

37.30

34.36

19.74

30.29

27.12

12.38

33.99

29.29

11.95

47.72

46.11

27.12

After

LRC

Check

24.02

23.54

10.65

23.04

22.57

10.53

25.33

22.83

9.285

42.77

42.36

23.27

Percentage

reduction

35.60

31.49

46.05

23.93

16.78

14.94

25.48

22.05

22.30

10.37

8.13

14.20

After Post

processing

20.75

19.61

10.13

19.99

19.11

10.07

21.30

21.60

8.838

39.19

36.79

21.32

Percentage

reduction

13.61

16.69

4.88

13.24

15.33

4.37

15.91

5.39

4.81

8.37

13.15

8.38

61

4.3 Overview of Stereo-matching engine

The results produced by our stereo matching engine are shown in Figure 35. The results presented are

obtained with the window size of 3x3 for census transform, and 15x15 for the correlation window. The

disparity range is set to 30 with horopter of 5 to 35. Most of the erroneous matches associated with half-

occluded regions of the scene (shown in black) are eliminated by LRC algorithm. Qualitative assessment

of the post-processing step can be performed by observing the results in of the post-processing algorithm

in the figure. As can be seen, the shape of the object is clearly defined, especially around the curvature of

the upper portion. It can also be seen that our post-processing algorithm significantly alleviates the

foreground fattening problem associated with correlation-based matching methods.

62

:x

OV7660 (Left Camera) 7660 (Left Ca

La m
Left Image (lL)

Left Rectified Image (IL_RECT)

Left Pre-Processed Image (IL_PREPROC)

OV7660 (Right Camera)

m
Right Image f 7R J

Right Rectified Image (IRRECT)

330%-

Right Pre-processed Image (IR_PREPROC)

Left to Right Matphing result (Dm) Right to Left Matching result (DRL)

Disparity after L/R Consistency check (Djjtc)

Disparity after LRC check

(Dutc)

Variance of Left Rectified image Variance of Disparity map after LRC

(VL_RECT) (VD_utc)

I
T

I

Final disparity map after post-processing (DFINAL)

Figure 35. Results of Stereo Vision Engine using another camera as the object of interest.

63

4.4 Power profile

One of the most important criteria for evaluating the design of an embedded media processing system is

its power consumption. This goes without saying for applications that require mobility, but it is also

critical for tethered systems, as it has direct financial consequences in terms of energy consumption,

number of features that can be added, density of components, packaging, and the overall life-span of

parts. For systems that operate at high speeds, and consume a lot of power, heat dissipation, and thermal

management becomes a significant challenge. Most often, this necessitates the usage of active cooling by

fans to provide airflow for heat removal, adding to the power consumption, component costs and noise.

Passive power management typically is a coordinated effort that involves careful selection of

individual parts, optimum component layout and routing schemes, intelligent voltage regulation,

separating power domains, implementing power management modes, dynamically changing frequency

and voltage, and optimization of software algorithms.

As the next generation processors move from 90nm process to 45nm process and further down

the size ladder, the thinner isolation layers lead to high static power dissipation caused by transistor

leakage currents during the quiescent state i.e. when the processor is idle. Static power consumption is a

constant of the selected processor, which can be reduced by lowering the voltage applied to it, or by

lowering the operating temperature. When the processor is not idle, there is variable/dynamic power

dissipation /%, caused by active currents due to charge-discharge cycles of load capacitances at high

switching frequencies. It is directly proportional to operating frequency / and square of the processor's

core supply voltage VDDINT [36], [22]:

Pdyn — ^DDlNT^f

(20)

where, K is a constant of load capacitance.

As can be seen from equation (20), lowering the frequency would result in a linear reduction,

whereas lowering the applied core-clock voltage results in an exponential decrease in dynamic power

consumption. Keeping the voltage constant, and lowering just the frequency will not have the desired

effect, as it will take longer for the code to run. For our system, we first lower the operating voltage, and

only when no further decrease in voltage is possible, do we go for reduction in frequency.

64

In the MESVS-H system, apart from the dynamic management of frequency and voltage control,

we have also incorporated several other power management features such as flexible operating power

modes (such as full-on, active, sleep, deep-sleep and hibernate), separation of power domains (processor's

core voltage rail separated from I/O supply rail and phased-locked-loop), and intelligent voltage

regulation. In addition, we have also carefully tuned the algorithms to reduce the execution time using the

Visual DSP++ tool suite's built in statistical profiler. The full-on, average power consumption of the

MESVS-H module is around 2.3W (700mA @ 3.3V) as shown in figures 37 and 38 [20], [19].

Average Power Consumption of MESVS module

0.014*x4 + 0.027*x3 - 0.0021*x2 - 0.0086*x + 2.3

Power Consumption

4th degree Polynomial Fitting

Median Value

Standard Deviation

800 1000 1200 1400
Time

Figure 37. Average power consumption of MESVS Module

65

Temperature Profile of MESVS module

Figure 38. Temperature profile of MESVS module

66

Chapter 5

Conclusions

5.1 Summary of contributions

The goal of this work was to develop a fully integrated, small baseline (<=3cm), miniaturized embedded

stereo vision system which fits into a tiny package of 5x5cm and consumes very low power

(700mA@3.3V). The low cost (<=$600) system consists of two small profile CMOS cameras (image

resolution QQVGA-160xl20), and a power efficient, dual-core embedded media processor, running at

600MHz per core. The stereo-matching engine performs sub-sampling, rectification, pre-processing using

rank transform, correlation-based SHD (Sum of Hamming Distance) matching using three levels of

recursion, L/R consistency check and post-processing. A novel post processing algorithm has been

proposed that removes outliers due to low-texture regions and depth-discontinuities by combining the

contributions from the variance map of the rectified image, disparity map, and the variance map of the

disparity map. A quantitative performance of the post processing algorithm has been presented which

shows that for all regions, post processing algorithm has an average percentage reduction of bad matched

pixels, or in other words average percentage improvement of 13.61%, in non-occluded, texture-less and

depth-discontinuous regions the percentage improvement is 13.24%, 15.91% and 8.37% respectively.

To further enhance the performance of the system, compiler based optimization, system based

optimization and assembly level optimization has been performed. A two staged pipelined-processing

scheme has been implemented, that takes advantage of the dual-core architecture of the embedded

processor, thereby achieving a processing speed of around lOfps for disparity maps in MESVS-I system

and 20fps in MESVS-H system.

To enhance the robustness of the pre-processing stage to radiometric variations, census transform (size

3x3) has been employed, which has been shown to out-perform rank (size 3x3 and 5x5). High quality

depth map results obtained have also been presented.

Some of the applications include miniaturized mobile robotics, drowsy driver detection, and 3D object

tracking etc.

67

mailto:700mA@3.3V

5. 2 Future Work

Some of the areas where the work can be extended in future include

• Improving the results in challenging areas like texture-less, occluded and depth discontinuous

regions.

• Increase the frame rate and image resolution by further optimization of algorithms and software

algorithms.

• Investigate the feasibility of incorporating a co-processors (FPGA/DSP)

• Implement a global algorithm on the system.

68

Appendix A

Software Source Code

A.l Rectify Left and Right Images

a * * *** * *

% Title: Function Rectify left and right images
% Author: Sicidhant Ahuja
% Created: September 2008
% Copyright Siddhant Ahuja, 2008
% Inputs: Input Left Image (var: leftImage), Input Right Image (var:
rightImage),
% Focal Length of Left Camera (var:
% fc_left), Principal point of Left Camera (var: cc_left), Skewness in the
% left camera (var: alpha_c_left), E)istortion in the left camera (var:
% kc_left), Focal Length of Right Camera (var: fc_right), Principal point
% of Right Camera (cc_right), Skewness in the Right camera (var:
% alpha_c_right), Distortion in the right camera (var: kc_right), Rotation
% Vector (var: om) , Translation Vector (var: T) , Number of rows (var: nx),
Number of
% c o 1 u m n s (v a r : n y)
% Outputs: Rectified Image (var: rectifiedlmg) ,
% Time taken (var: timeTaken)
% Example Usage of Function: [rectifiedlmg,
timeTaken]=funcRectifyt'left_sample_5.bmp', 'right_sample_5.bmp', [
% 755.06557 755.16795], [334.24409 251.98013], [0.00000], [
% 0.05080 -0.21590 -0.00997 0.01058 0.00000], [758.73630
% 759.13330], [317.44101 230.19193], [0.00000], [0.01704 -0.21345
% -0.00647 0.00525 0.00000], [-0.00804 0.00752 0.03008], [
% -29.85007; -0.61101; -0.15665], 640, 480);
£ *

function [leftRectifiedlmg,
rightRectifiedlmg,timeTaken]=funcRectify(leftImage,rightlmage,fc_left, cc_left
,alpha_c_left,kc_left,fc_right,cc_right, alpha_c_right, kc_right, om, T, nx, ny) ;
%% set. the rectification parameters of hybrid approach manually
% INTRINSIC PARAMETERS
% Focal Length of Left Camera
% fc_left = f 755.06557 755.16795];
% Principal point of Left Camera
% cc_ieft - [334.24409 251.98013];
% Skewness in the left camera
% alpha_.c_l.eft = [0.00000];
% Distortion in the left camera
% kc_left = [0.05080 -0.21590 -0.00997 0.01058 0.00000
% Focal Length of Right Camera
% fc„right = [758.73630 759.13330];
% Principal point of Right Camera
% cc_right = [317.44101 230.19193];

69

http://alpha_.c_l.eft

% Skevmess in<the Right camera
% alpha_c_right = [0.00000];
% Distortion in the right camera
% kc_right = [0.01704 -0.21345 -0.00647 0.00525 0.00000];
% EXTRINSIC PARAMETERS
% Rotation Vector
% om ='[-0.00804 0.00752 0.03008];
% Translation Vector
% T = [-29.85007; 0.61101; 0.15665];
% Image width
% nx = 640;
% Image height
% ny = 480;
% Read LeftImage
leftlmage = double(rgb2gray(imread(leftImage)));
% Read RightImage
rightlmage = double(rgb2gray(imread(rightlmage)));
% Find how many rows and columns are there in the left image.
[nr,nc] = size(leftlmage);
% Determine scale factor for rectification
scale=floor(nx/nc);
nx=nr; ny=nc;
% Start Timer to measure execution time
tic
%% calculate constants
R = rodrigues(om);
% Bring the 2 cameras in the same orientation by rotating them "minimally":
r_r = rodrigues(-om/2);
r_l = r_r' ;
t = r_r * T;
% Rotate both cameras so as to bring the translation vector in alignment with
the (1;0;0) axis:
if abs(t(l)) > abs(t(2)),

type_stereo = 0 ;
uu = [1;0;0]; % Horizontal epipoiar lines

else
type_stereo = 1;
uu = [0;1;0]; % Vertical epipoiar lines

end;
if dot(uu,t)<0,

uu = -uu; % Swtich side of the vector
end;
ww = cross(t,uu);
ww = ww/norm(ww);
ww = acos(abs(dot(t,uu))/(norm(t)*norm(uu)))*ww;
R2 = rodrigues(ww);
% Global rotations to be applied to both views:
R_R = R2 * r_r;
R_L = R2 * r_l;
% Computation of the *new* intrinsic parameters for both left and right
cameras:
% Vertical focal length *MUST* be the same for both images (here, we are
trying to find a focal length that retains as much information contained in
the original distorted images):
if kc_left(l) < 0,

fc_y_left_new = fc_left(2) * (1 + kc_left(1)*(nxA2 +
nyA2)/(4*fc_left(2)A2)) ;

70

else
fc_y_left_new = fc_left(2);

end;
if kc_right(l) < 0,

fc_y_right_new = fc_right(2) * (1 + kc_right(1)*(nxA2 +
nyA2)/(4*fc_right(2)A2));
else

fc_y_right_new = fc_right(2);
end;
fc_y_new = min(fc_y_left_new,fc_y_right_new);
% For simplicity, let's pick the same value for the horizontal focal length
as the vertical focal length (resulting into square pixels):
fc_left_new = round([fc_y_new;fc_y_new]);
fc_right_new = round([fc_y_new;fc_y_new]);
% Select the new principal points to maximize the visible area in the
rectified images
cc_left_new = [(nx-1)/2;(ny-1)/2] - mean(project_points2([normalize_pixel([0
nx-1 nx-1 0; 0 0 ny-1 ny-1] , fc_left, cc_left,kc_left,alpha_c_left); [1 1 1
1]],rodrigues(R_L),zeros(3,1),fc_left_new, [0;0],zeros (5,1),0),2);
cc_right_new = [(nx-1)/2;(ny-1)/2] - mean(project_points2([normalize_pixel([0
nx-1 nx-1 0; 0 0 ny-1 ny-1],fc_right,cc_right,kc_right,alpha_c_right) ; [1 1 1
1]],rodrigues(R_R),zeros(3,1),fc_right_new,[0;0],zeros(5,1),0),2);
% For simplivity, set the principal points for both cameras to be the average
of the two principal points,
if ~type_stereo,

% — Horizontal stereo
cc_y_new = (cc_left_new(2) + cc_right_new(2))/2;
cc_left_new = [cc_left_new(l);cc_y_new];
cc_right_new = [cc_right_new(1);cc_y_new];

else
% — Vertical stereo
cc_x_new = (cc_left_new(l) + cc_right_new(1))/2;
cc_left_new = [cc_x_new;cc_left_new(2)];
cc_right_new = [cc_x_new;cc_right_new(2)];

end;
% Of course, we do not want any skew or distortion after rectification:
alpha_c_left_new = 0 ;
alpha_c_right_new = 0;
kc_left_new = zeros (5,1);
kc_right_new = zeros(5,1);
% The resulting left and right camera matrices:
KK_left_new = [fc_left_new(l) fc_left_new(1)*alpha_c_left_new
cc_left_new(l);0 fc_left_new(2) cc_left_new(2); 0 0 1];
KK_right_new = [fc_right_new(l) fc_right_new(1)*alpha_c_right
cc_right_new(l);0 fc_right_new(2) cc_right_new(2); 0 0 1];
% Apply scale factor
KK_left_new(l,l) = KK_left_new(l,1) / scale;
KK_left_new(l,3) = KK_left_new(l,3) / scale;
KK_left_new(2,2) = KK_left_new(2,2) / scale;
KK_left_new(2,3) = KK_left_new(2,3) / scale;
KK_right_new(l,l) = KK_right_new(1,1) / scale;
KK_right_new(l,3) = KK_right_new(1,3) / scale;
KK_right_new(2,2) = KK_right_new(2,2) / scale;
KK_right_new(2,3) = KK_right_new(2,3) / scale;
fc_left = fc_left / scale;
cc_left = cc_left / scale;
fc_right = fc_right / scale;

71

cc_right = cc_right / scale;
inv_KK_left_new = inv(KK_left_new);
inv_KK_right_new = inv(KK_right_new) ;
%% Apply Rectification to left image
leftRectifiedlmg = 255*ones(nx,ny);
for (i=l:nx)

for (j=l:ny)
rays = inv_KK_left_new*[j-1; i-1; 1] ;
rays2 = R_L'*rays;
x = [rays2(1,1)./rays2(3,1);rays2(2,1)./rays2(3,1)];
%% apply distortion
k = kc_left;
r2 = x(l,l)."2 + x(2,l).A2;
r4 = r2.A2;
r6 = r2.A3;
% Radial distortion:
cdist = 1 + k(l) * r2 + k(2) * r4 + k(5) * r6;
xd(l,l) = x(l,l) * cdist;
if ((xd(l,l) < -1) | (xd(l,l) >= 1))

a = 1
end
xd(2,l) = x(2,l) * cdist;
if ((xd(2,l) < -1) | (xd(2,l) >= 1))

a = 1
end
% Tangential distortion:
al = 2.*x(l,l) .*"x(2,l) ;
a2 = r2 + 2*x(l,l).A2;
a3 = r2 + 2*x(2,l)-A2;
delta_x_l = k(3)*al + k(4)*a2;
delta_x_2 = k(3) * a3 + k(4)*al;
xd(l,l) = xd(l,l) + delta_x_l;
xd(2,l) = xd(2,l) + delta_x_2;
%% bilinear interpolation stage
f = fc_left;
c = cc_left;
px2 = f(1) * xd(1,1) + c(1);
py2 = f(2) * xd(2,l) + c(2);
% interpolate between the closest pixels
px_0 = floor(px2);
py_0 = floor(py2);
if ((px_0 >= 0) & (px_0 <= (ny-2)) & (py_0 >= 0) & (py_0 <= (nx-2)))

alpha_x = px2 - px_0;
alpha_y = py2 - py_0;
al = (1 - alpha_y).*(l - alpha_x);
a2 = (1 - alpha_y).*alpha_x;
a3 = alpha_y .* (1 - alpha_x);
a4 = alpha_y .* alpha_x;
value = al * leftlmage (py_0 + l, px_0 + l) + a2 * leftlmage (py_0 + l,

px_0+2) + a3 * leftlmage(py_0+2, px_0+l) + a4 * leftlmage(py_0+2, px_0+2);
leftRectifiedlmg(i,j) = value;

end
end

end
%% Apply Rectification to right image
rightRectifiedlmg = 255*ones(nx,ny);
for (i=l:nx)

72

rays = inv_KK_right_new*[j-1; i-1; 1];
rays2 = R_R'*rays;
x = [rays2(l,l)./rays2(3,l);rays2(2,l)./rays2(3,l)];
%% apply distortion
k = kc_right;
r2 = x(l,l).A2 + x(2,l).A2;
r4 = r2.A2;
r6 = r2.A3;
% Radial distortion:
cdist = 1 + k(l) * r2 + k(2) * r4 + k(5) * r6;
xd(l,l) = x(l,1) * cdist;
xd(2,l) = x(2,l) * cdist;
%% bilinear interpolation stage
f = fc_right;
c = cc_right;
px2 = f(l) * xd(1,1) + c (1) ;
py2 = f(2) * xd(2,l) + c(2);
% interpolate between the closest pixels
px_0 = floor(px2);
py_0 = floor(py2);
if ((px_0 >= 0) & (px_0 <= (nc-2)) & (py_0 >= 0) & (py_0 <= (nr-2)))

alpha_x = px2 - px_0;
alpha_y = py2 - py_0;
al = (1 - alpha_y).*(l - alpha_x);
a2 = (1 - alpha_y).*alpha_x;
a3 = alpha_y .* (1 - alpha_x);
a4 = alpha_y .* alpha_x;
rightRectifiedlmg(i,j) = al * rightImage(py_0+l, px_0+l) + a2

rightImage(py_0+l, px_0+2) + a3 * rightImage(py_0+2, px_0+l) + a4
rightlmage(py_0+2, px_0+2);

end
end

end
% Stop Timer to measure execution time
timeTaken=toc;

A.2 Rodrigues.m function

function [out,dout]=rodrigues(in)

% RODRIGUES Transform rotation matrix into rotation vector and viceversa.

% Sintax: [OUT]=RODRIGUES(IN)
% If IN is a 3x3 rotation matrix then OUT is the
% corresponding 3x1 rotation vector
% if IN is a rotation 3-vector then OUT is the
% corresponding 3x3 rotation matrix

California Institute of Technology

%% ALL CHECKED BY JEAN-YVES BOUGUET, October 1995.
%% FOR ALL JACOBIAN MATRICES ! ! ! LOOK AT THE TEST AT THE END ! !

%% BUG when norm(om)=pi fixed — April 6th, 1997;
%% Jean Yves Bouquet

%% Acid projection of the 3x3 matrix onto the set of special ortogonal
matrices SO(3) by SVD — February 7th, 2003;
%% Jean-Yves Bouquet

% BUG FOR THE CASE norm(oral=pi fixed by Mike Burl on Feb 27, 2007

[m,n] = size(in);
%bigeps = 10e+4*eps;
bigeps = 10e+20*eps;

if ((m==l) & (n==3)) | ((m==3) & (n==l)) %% it is a rotation vector
theta = norm(in);
if theta < eps

R = eye(3);

%if nargout > 1,

dRdin = [0 0 0;
0 0 1;
0 -1 0;
0 0 -1;
0 0 0;
1 0 0;
0 10;
-1 0 0;
0 0 0];

else

if n==length(in) in=in'; end; %% make it a column vec. if necess,

%m3 = [in,theta]

dm3din = [eye(3);in'/theta];

omega = in/theta;

%m2 = [omega;theta]

dm2dm3 = [eye (3)/theta -in/theta/"2; zeros (1,3) 1] ;

alpha = cos(theta);

74

beta = sin(theta);
gamma = 1-cos(theta);
omegav=[[0 -omega(3) omega(2)];[omega(3) 0 -omega(1)];[-

omega(1) 0]];
A = omega*omega';

%ml = [alpha;beta;gamma;omegav;A];

dmldm2 = zeros(21,4);
dmldm2(l,4) = -sin(theta);
dmldm2(2,4) = cos(theta);
dmldm2(3,4) = sin(theta);
dmldm2(4:12,l:3) = [0 0 0 0 0 1 0 - 1 0 ;

0 0 - 1 0 0 0 1 0 0;
0 1 0 - 1 0 0 0 0 0] ' ;

wl = omega(1);
w2 = omega(2);
w3 = omega(3);

dmldm2(13:21,1) = [2*wl;w2;w3;w2;0;0;w3;0;0];
dmldm2(13: 21,2) = [0;wl;0;wl;2*w2;w3;0;w3;0];
dmldm2(13:21,3) = [0;0;wl;0;0;w2;wl;w2;2*w3];

R = eye(3)*alpha + omegav*beta + A*gamma;

dRdml = zeros(9,21);

dRdml([l 5 9],1) = ones(3,1);
dRdml(
dRdml(
dRdml(
dRdml(

,2) = omegav(:);
,4:12) = beta*eye(9);
,3) = A C) ;
,13:21) = gamma*eye(9);

dRdin = dRdml * dmldm2 * dm2dm3 * dm3din;

end;
out = R;
dout = dRdin;

%% it is prob. a rot raatr.
elseif ((m==n) & (m==3) & (norm(in' * in - eye(3)) < bigeps)

& (abs(det(in)-1) < bigeps))
R = in;

% project the rotation matrix to SO(3);
[U,S,V] = svd(R);
R = U*V ;

t r = (t r a c e (R) - l) / 2 ;
d t r d R = [1 0 0 0 1 0 0 0 1] 1 2 ;
theta = real.(acos (tr)) ;

sm(theta) >= le-4,

dthetadtr = -1/sqrt(l-trA2);

dthetadR = dthetadtr * dtrdR;

% varl = [vth;theta];
vth = l/(2*sin(theta));
dvthdtheta = -vth*cos(theta)/sin(theta);
dvarldtheta = [dvthdtheta;1];

dvarldR = dvarldtheta * dthetadR;

oml = [R(3,2)-R(2,3), R(l,3)-R(3,1), R(2,1)-R(1,2)] ' ;

domldR = [0 0 0 0 0 1 0 - 1 0 ;
0 0 - 1 0 0 0 1 0 0;
0 1 0 - 1 0 0 0 0 0] ;

% v a r = [o m l ; v t h ; t h e t a] ;
dvardR = [d o m l d R ; d v a r l d R] ;

% var2 = [om;theta];
om = vth*oml;
domdvar = [vth*eye(3) oml zeros(3,1)];
dthetadvar = [0 0 0 0 1] ;
dvar2dvar = [domdvar;dthetadvar];

out = om*theta;
domegadvar2 = [theta*eye(3) om];

dout = domegadvar2 * dvar2dvar * dvardR;

if tr > 0; % case norm(om}=0;

out = [0 0 0] ';

d o u t = [0 0 0 0 0 1 / 2 0 - 1 / 2 0 ;
0 0 - 1 / 2 0 0 0 1 / 2 0 0 ;
0 1 / 2 0 - 1 / 2 0 0 0 0 0] ;

e l s e

% c a s e n o r m (o m) = p i ;
i f (0)

%% fixed April 6th by Bouquet — not working in all cases!
out = theta * (sqrt((diag(R)+1)12) . *[1;2*(R(l,2:3)>=0)'-1]);
%keyboard;

else

1,1,1; 1,1,-1;

function

% Solution by Mike Burl on Feb 27, 2007
% This is a better way to determine the signs of the
% entries of the rotation vector using a hash table on all
% the combinations of signs of a pairs of products (in the
% rotation matrix)

% Define hashvec and Smat
hashvec = [0; -1; -3; -9; 9; 3; 1; 13; 5; -7; -11];
Smat = [1,1,1; 1,0,-1; 0,1,-1; 1,-1,0; 1,1,0; 0,1,1; 1,0,1;

1,-1,-1; 1,-1,1];

M = (R+eye(3,3))/2;
uabs = sqrt(M(l,l));
vabs = sqrt(M(2,2));
wabs = sqrt(M(3,3));

mvec = [M(l,2), M(2,3), M(l,3)];
syn = ((mvec > le-4) - (mvec < -le-4)); % robust sign{)

hash = syn * [9; 3; 1];
idx = find(hash == hashvec);
svec = Smat(idx,:)';

out = theta * [uabs; vabs; wabs] .* svec;

end;

if nargout > 1,
fprintf(1, 'WARNING!! ! ! Jacobian domdR undefined!! !\n');
dout = NaN*ones(3, 9);

end;
end;

end;

else
error("Neither a rotation matrix nor a rotation vector were provided');

end;

return;

%% test of the Jacobians:

%%%% TEST OF dRd.om:

om = randn(3,1);
dom = randn(3,l)/1000000;

[Rl,dRl] = rodrigues(om);
R2 = rodrigues(om+dora);

R2a = Rl + reshape(dRl * dom,3,3);

77

gain = norm(R2 - Rl)/norm(R2 - R2a)

%%% TEST OF ciOmciR:
om = randn(3,1);
R = rodrigues(om);
dom = randn(3,1)/10000;
dR = rodrigues(om+dom) - R;

[omc,domdR] = rodrigues(R);
[om2] = rodrigues(R+dR);

om_app = omc + domdR*dR(:);

gain = norm(om2 - omc)/norm(om2 - om_app)

%%% OTHER BUG: (FIXED NOW!!!}

omu = randn(3,1),•
omu = omu/norm(omu)
om = pi*omu;
[R,dR]= rodrigues(om);
[om2] = rodrigues(R);
[om om2]

%%% NORMAL OPERATION .

om = randn(3,1);
[R,dR]= rodrigues(om);
[om2] = rodrigues(R);
[om om2]

return

% Test: norm(om) = pi

u = randn(3,1);

u = u / sqrt(sum(u.A2));
om = pi*u;
R = rodrigues(om);

R2 = rodrigues(rodrigues(R));

norm(R - R2)

78

A.3 Skew3.m function

function [V,dV] = skew3(v)
%SKEW3 [V,dV] = skew3(v)
% Takes a 3 components vector and calculates
% the corresponding skew-symmetric matrix.
% It is useful for implementing the vector
% product of 3-vectors: v x u = sk.ew3(v) * u

% dV (optional) returns the 9x3 matrix which repr
% the 3x3x3 tensor of derivatives of V wrt v.

% Updated 8/30/93

V = zeros(3,3);
V = [[0,-v(3),v(2)]; [v(3),0,-v(l)]; [-v(2),v(1),0]];

if (nargout >=2),
dV = [0 0 0 ;
0 0 -1 ;
0 1 0 ;
0 0 1 ;
0 0 0 ;
-10 0 ;
0-1 0 ;
1 0 0 ;
0 0 0] ;

end;

return;

v = rand(3,1) ;
eps = le-6;
for j=l:3,

vp = v;
vp(j) = v(j)+eps;
dVtest(:,j) = qtoQ(1/eps*(skew3(vp) - skew3(v)));

end;

return;

% difference test
epsilon = le-6;
csi = randn(3,l);
rho = randn;
for (k = 1:3),

csip = csi;
csip(k) = csip(k)+epsilon;
diff = (skew3(csip)-skew3(csi))/epsilon;
diff = diff ';
dFdcsi_test(:,k) = diff(:);

end;

[F ,dFdcs i] = s k e w 3 (c s i) ;
d F d c s i - d F d c s i _ t e s t ,
norm(ans)

A.4 Rigid_motion.m function

f u n c t i o n [Y,dYdom, dYdT] = r ig id_jnot ion(X,om,T) ;

%rigid__motion.m
%
%[Y,dYdom,dYdT] - rigid_motion(X,om,T)
%
%Computes the rigid motion transformation Y =•• R*X+T, where R = rodrigues (om) .
%
%INPUT: X; 3D structure in the world coordinate frame (3xN matrix for N
points)
% (om,T): Rigid motion parameters between world coordinate frame and
camera reference frame
% om: rotation vector (3x1 vector); T: translation vector (3x1
vector)
%
%OUTPUT: Y: 3D coordinates of the structure points in the camera reference
frame (3xN matrix for N points)
% dYdom: Derivative of Y with respect to om ((3N)x3 matrix)
% dYdT: Derivative of Y with respect to T ((3N)x3 matrix)
%
%Definitions:
%Let F be a point in 3D of coordinates X in the world reference frame (stored.
in the matrix X)
%The coordinate vector of P in the camera reference frame is: Y = R*X + T
%where R is the rotation matrix corresponding to the rotation vector om: R =
rodrigues(om);
%
%Important function called within that program:
%
%rodrigues.m: Computes the rotzition matrix corresponding to a rotation vector

if nargin < 3,
T = zeros(3,1);
if nargin < 2,

om = zeros(3,1);
if nargin < 1,

error ('Need at least a 3D structure as input (in rigid._motion.rn)');
return;

end;
end;

end;

[R,dRdom] = rodrigues(om);

80

http://rigid._motion.rn)'

[m, n] = size (X) ;

Y = R*X + repmat(T,[1 n]);

if nargout > 1,

dYdR = zeros(3*n,9);
dYdT = zeros(3*n,3);

dYdR(l:3:end,l:3:end) = X';
dYdR(2:3:end,2:3:end) = X';
dYdR(3:3:end,3:3:end) = X';

dYdT(l:3:end,l) = ones(n,l);
dYdT(2:3:end,2) = ones(n,l);
dYdT(3:3:.end,3) = ones(n,l);

dYdom = dYdR * dRdom;

end;

A.5 Project_points2.m function

function [xp,dxpdom,dxpdT,dxpdf,dxpdc,dxpdk,dxpdalpha] =
project_points2(X,om,T,f,c,k,alpha)

% p r o j e c t __p o i n t. s 2 . m
%
%[xp, dxpdom,dxpdT,dxpdf,dxpdc,dxpdk] = project_points2(X,om,T,f,c,k,alpha)
%
%Projeets a 3D structure onto the image plane.
%
%INPUT: X: 3D structure in the world coordinate frame (3xN matrix for N
points)
% (om,T): Rigid motion parameters between world coordinate frame and
camera reference frame
% . om; rotation vector (3x1 vector); T: translation vector (3x1
vector)
% f: camera focal length in units of horizontal and vertical pixel
units (2x1 vector)
% c: principal point location in pixel units (2x1 vector)
% k: Distortion coefficients (radial and tangential) (4x1 vector)
% alpha: Skew coefficient between x and y pixel (alpha = 0 <=> square
pixels)
%
%OUTPUT: xp: Projected pixel coordinates (2xN matrix for N points)
% dxpdom: Derivative of xp with respect to om ((2N)x3 matrix)
% dxpdT: Derivative of xp with respect to T ((2N)x3 matrix)

81

% dxpdf: Derivative of xp with respect to f ((2N)x2 matrix if f is
2x1, or (2N)xl matrix is f is a scalar)
% clxpdc: Derivative of xp with respect to c ((2N)x2 matrix)
% dxpdk: Derivative of xp with respect to k {(2N)x4 matrix)

"6 D e f ± n 2. t i o n s *
%Let P be a point in 3D of coordinates X in the world reference frame (stored
in the matrix X)
%Ihe coordinate vector of P in the camera reference frame is: Xc = R*X + T
%wnere R is the rotation matrix corresponding to the rotation vector om: R =
rodrigu.es (om) ;
%cail x, y and z the 3 coordinates of Xc: x = Xc(l); y = Xc(2); z = Xc(3);
%The pinehole projection coordinates of P is [a;b] where a=x/z and b=y/z.
%call rA2 = a"2 + bA2.
%The distorted point coordinates are: xd = [xx;yy] where:
o,

%xx - a * (1 + kc(l)*rA2 + kc(2)*r"4 + ke(5)*rA6) + 2*kc(3)*a*b +
kc(4)*(rA2 + 2*aA2);
%yy = b * (1 + kc(l)*rA2 + kc(2)*rA4 + kc(5)*rA6) + kc(3)*(rA2 +
2*bA2) + 2*kc(4)*a*b;
o

%The left terms correspond to radial distortion (6th degree) , the right terms
correspond to tangential distortion

%Finally, convertion into pixel coordinates: The final pixel coordinates
vector xp=[xxp;yyp] where:

%xxp = f(l)*(xx + alpha*yy) + c(l)
%yvP = f(2)*yy + c(2)
"6

'o

%NOTE: About 90 percent of the code takes care fo computing the Jacobian
matrices

"6

%Important function called within that program:

- %rodrigues.m: Computes the rotation matrix corresponding to a rotation vector

%rigid_motion.m: Computes the rigid motion transformation of a given
structure

if nargin < 7,
alpha = 0;
if nargin < 6,

k = zeros (5,1);
if nargin < 5,

c = zeros(2,1);
if nargin < 4,

f = ones(2,1);
if nargin < 3,

T = zeros (3,1) ;
if nargin < 2,

om = zeros(3,1);
if nargin < 1,

82

http://rodrigu.es

error('Need at least a 3D structure to project
(in project_points.m)');

return;
end;

end;
end;

end;
end;

end;
end;

[m, n] = size (X) ;

if nargout > 1,
[Y,dYdom,dYdT] = rigid_motion(X,om,T);

else
Y = rigid_motion(X,om, T) ;

end;

inv_Z = l./Y(3,:);

x = (Y(l:2,:) .* (ones(2,l) * inv_Z)) ;

bb = (-x(l,:) .* inv_Z)'*ones(l,3) ;
cc = (-x(2,r) . * inv_Z) ' *ones(l,3) ;

if nargout > 1,
dxdom = zeros(2*n,3);
dxdom(l:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdom(l:3:end,:)

dYdom(3:3:end,:);
dxdom(2:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdom(2:3:end,:)

dYdom(3:3:end,:);

dxdT = zeros(2*n,3);
dxdT(1:2 rend,:) = ((inv_Z')*ones(1,3)) .* dYdT(1r3 rend, :)

dYdT(3:3 rend,r);
dxdT(2r2 rend, r) = ((inv_Z')*ones (1,3)) .* dYdT(2r3 rend, r)

dYdT(3r3 rend, r);
end;

% Acid distortion:

r2 = x(l,r).A2 + x(2,r).A2;

if nargout > 1,
dr2dom = 2*((x(1,r)')*ones(1,3))

2*((x(2, r) ')*ones(l,3)) .* dxdom(2:2:end,:);
dr2dT = 2*((x(l,:)')*ones(l,3))

2*((x(2, :) ')*ones(l,3)) .* dxdT(2:2:end, :) ;
end;

+ bb

+ cc

+ bb

+ cc

dxdom(1r2rend,r) +

dxdT(lr2 rend, r) +

83

r4 = r2.A2;

if nargout > 1,
dr4dom = 2*((r2')*ones(1,3)) .* dr2dom;
dr4dT = 2*((r2')*ones(l,3)) .* dr2dT;

end

r6 = r2.A3;

if nargout > 1,
dr6dom = 3*((r2'.A2)*ones(1,3)) .* dr2dom;
dr6dT = 3*((r2'.A2)*ones(1,3)) .* dr2dT;

end;

cdist = 1 + k(l) * r2 + k(2) * r4 + k(5) * r6;

if nargout > 1,
dcdistdom = k(1) * dr2dom + k(2) * dr4dom + k(5) * dr6dom;
dcdistdT = k(l) * dr2dT + k(2) * dr4dT + k(5) * dr6dT;
dcdistdk = [r2' r4* zeros(n,2) r6'];

end;

xdl = x .* (ones(2,1)*cdist);

if nargout > 1,
dxdldom = zeros(2*n,3);
dxdldom(l:2:end, :) = (x (1, :) '*ones(1,3)) .* dcdistdom;
dxdldom(2:2:end,:) = (x(2,:)'*ones(1,3)) . * dcdistdom;
coeff = (reshape([cdist;cdist] , 2*n, 1)*ones(1, 3)) ;
dxdldom = dxdldom + coeff.* dxdom;

dxdldT = zeros(2*n,3);
dxdldT(1:2 rend, :) = (x(1, r) '*ones(1,3))
dxdldT(2:2 rend, r) = (x(2, r) '*ones(1,3))
dxdldT = dxdldT + coeff.* dxdT;

dxdldk = zeros(2*n,5);
dxdldk(1:2 rend, :) = (x(1, r) '*ones(1,5)) .* dcdistdk;
dxdldk(2:2:end,:) = (x(2,:)'*ones(1,5)) .* dcdistdk;

end;

% tangential distortion:

al = 2.*x(l,:).*x(2,:);
a2 = r2 + 2*x(l,:).A2;
a3 = r2 + 2*x(2, :) ./s2;

delta_x = [k(3)*al + k(4)*a2 ;
k(3) * a3 + k(4)*al];

84

.* dcdistdT;

.* dcdistdT;

%ddelta_xdx = zeros(2*n,2*n);
aa = (2*k(3)*x(2,:)+6*k(4)*x(l,
bb = (2*k(3)*x(l,:)+2*k(4)*x(2,
cc = (6*k(3)*x(2,:)+2*k(4)*x(l,

))'*ones(l,3)
))'*ones(l,3)
))'*ones(l,3)

if nargout > 1,
ddelta_xdom = zeros(2*n,3);
ddelta_xdom(l:2:end,:) = aa
ddelta_xdom(2:2rend,:) = bb

.* dxdom(l:2 rend, :) + bb

.* dxdom(lr2 rend, :) + cc
.* dxdom(2 r 2 r end, :) ;
.* dxdom(2r2 rend, r);

ddelta_xdT = zeros(2*n,3);
ddelta_xdT(1r2 rend, r) = aa
ddelta_xdT(2r2rend,r) = b b

* dxdT(lr2rend,:) + bb
* dxdT(lr2rend,:) + cc

, * dxdT(2r2:end, :) ;
,* dxdT(2r2:end,:);

ddelta_xdk = zeros(2*n,5);
ddelta_xdk(lr2rend,3) = al'
ddelta_xdk(l:2rend,4) = a2'
ddelta_xdk(2r2rend,3) = a3'
ddelta_xdk(2r2rend,4) = al'

end;

xd2 = xdl + delta_x;

if nargout > 1,
dxd2dom = dxdldom + ddelta_xdom ;
dxd2dT = dxdldT + ddelta_xdT;
dxd2dk = dxdldk + ddelta_xdk ;

end;

Add Skew:

xd3 = [xd2(l,r) + alpha*xd2(2, r);xd2(2, r)];

% Compute: dxdSdom, dxd3d.T, dxd3dk, dxd3dalpha
if nargout > 1,

dxd3dom = zeros(2*n,3);
dxd3dom(lr2r2*n,r) = dxd2dom(lr2r2*n, r) + alpha*dxd2dom(2r2r2*n,:);
dxd3dom(2r2:2*n,r) = dxd2dom<2:2r2*n,r);
dxd3dT = zeros(2*n,3);
dxd3dT(l:2:2*n, :) = dxd2dT(1:2r2*n,r) + alpha*dxd2dT(2r2r2*n,r);
dxd3dT(2r2r2*n,r) = dxd2dT(2:2r2*n,:);
dxd3dk = zeros(2*n,5);
dxd3dk(lr2:2*n, r) = dxd2dk(1r2:2*n, r) + alpha*dxd2dk(2r2r2*n, :) ;
dxd3dk(2r2:2*n, r) = dxd2dk(2r2:2*n, r) ;
dxd3dalpha = zeros(2*n,1);
dxd3dalpha(lr2r2*n, r) = xd2(2,r)';

end;

85

% Pixel coordinates:
if length(f)>l,

xp = xd3 .* (f * ones(l,n)) + c*ones(1,n);
if nargout > 1,

coeff = reshape(f*ones(1, n) , 2*n,1);
dxpdom = (coeff*ones(1, 3)) .* dxd3dom;
dxpdT = (coeff*ones(l,3)) .* dxd3dT;
dxpdk = (coeff*ones(1,5)) .* dxd3dk;
dxpdalpha = (coeff) .* dxd3dalpha;
dxpdf = zeros(2*n,2);
dxpdf(1:2 rend,1) =xd3(l,:)';
dxpdf(2:2:end,2) =xd3(2,:)';

end;
else

xp = f * xd3 + c*ones(l,n);
if nargout > 1,

dxpdom = f * dxd3dom;
dxpdT = f * dxd3dT;
dxpdk = f * dxd3dk;
dxpdalpha = f .* dxd3dalpha;
dxpdf = xd3(:);

end;
end;

if nargout > 1,
dxpdc = zeros(2*n,2);
dxpdc(1:2:end,1) = ones(n,l);
dxpdc(2:2:end,2) = ones(n,l);

end;

return;

% Test of the Jacobians:

n = 10;

X = 10*randn(3,n);

om = randn(3,1);
T = [10*randn(2,l);40];
f = 1000*rand(2,l);
c = 1000*randn(2,1);
k = 0.5*randn(5,l);
alpha = 0.01*randn(l,l);

[x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points2(X,om,T,f,c,k,alpha);

% Test on om: OK

dom = 0.000000001 * norm(om)*randn(3,1);
om2 = om + dom;

[x2] = project_points2(X,om2,T,f,c,k,alpha);

86

x_pred = x + reshape(dxdom * dom,2,n);

norm(x2-x)/norm(x2 - x_pred)

% Test on T: OK!!

dT = 0.0001 * norm(T)*randn(3,l);
T2 = T + dT;

[x2] = project_points2(X,om,T2,f,c,k,alpha);

x_pred = x + reshape(dxdT * dT,2,n);

norm(x2-x)/norm(x2 - x_pred)

% Test on f: OK!!

df = 0.001 * norm(f)*randn(2,l);
f2 = f + df;

[x2] = project_points2(X,om,T,f2,c,k,alpha);

x_pred = x + reshape(dxdf * df,2,n);

norm(x2-x)/norm(x2 - x_pred)

% Test on c: OK!!

dc = 0.01 * norm(c)*randn(2,1);
c2 = c + dc;

[x2] = project_points2(X,om,T,f,c2,k,alpha);

xjored = x + reshape(dxdc * dc,2,n);

norm(x2-x)/norm(x2 - x_pred)

% Test on k: OK!!

dk = 0.001 * norm(k)*randn(5,1);
k2 = k + dk;

[x2] = project_points2(X,om,T,f,c,k2,alpha);

87

x_pred = x + reshape(dxdk * dk,2,n);

norm(x2-x)/norm(x2 - x_pred)

% Test on alpha: OK!!

dalpha = 0.001 * norm(k)*randn(1,1);
alpha2 = alpha + dalpha;

[x2] = project_points2(X,om,T,f,c,k,alpha2);

x_pred = x + reshape(dxdalpha * dalpha,2,n);

norm(x2-x)/norm(x2 - x_pred)

A.6 Normalize_pixel.m function

function [xn] = normalize_pixel(x_kk,fc,cc,kc,alpha_c)

%riormalize

% [xn] = .normaIize_pixei (x_kk, f c, cc, kc, alpha_c)
"5

%Computes the normalized coordinates xn given the pixel coordinates x_kk
land the intrinsic camera parameters fc, cc and kc.
"6

%INPUT: x_kk: Feature locations on the images
% fc; Camera focal length
% cc: Principal point coordinates
% kc: Distortion coefficients
% alpha_c: Skew" coefficient

%OUTPUT: xn: Normalized feature locations on the image plane (a 2XN matrix)
"6

%Important functions called within that program:

%comp_distortion_oulu: undistort pixel coordinates.

if nargin < 5,
alpha_c = 0;
if nargin < 4;

kc = [0;0;0;0;0];
if nargin < 3;

cc = [0;0] ;
if nargin < 2,

fc = [1;1];
end;

end;
end;

end;

% First: Subtract principal point, and divide by the focal length:
x_distort = [(x_kk(l,:) - cc(1))/fc(1); (x_kk(2, :) - cc (2))/fc(2)];

% Second: undo skew
x_distort(1, :) = x_distort(1, :) - alpha_c * x_distort(2, :) ;

if norm(kc) ~= 0,
% Third: Compensate for lens distortion:
xn = comp_distortion_oulu(x_distort,kc);

else
xn = x_distort;

end;

A.7 dAB.m Function

function [dABdA,dABdB] = dAB(A,B);

% [dABdA,dABdB] = dAB(A,B);

% returns : dABdA and dABdB

[p,n] = size(A); [n2,q] = size(B);

if n2 ~= n,
error(' A and B must nave equal inner dimensions1);

end;

if issparse(A) | issparse(B) | p*q*p*n>625 ,
dABdA=spalloc(p*q,p*n, p*q*n);

else
dABdA=zeros(p*q,p*n);

end;

for i=l:q,
for j=l:p,
ij = j + (i-l)*p;

for k=l:n,
kj = j + (k-l)*p;
dABdA(ij,kj) =B(k,i);

end;
end;

end;

if issparse(A) | issparse(B) | p*q*n*q>625 ,
dABdB=spalloc(p*q, n*q, p*q*n) ;

89

else
dABdB=zeros(p*q, q*n) ;

end;

for i=l:q
dABdB([i*p-p+l:i*p]',[i*n-n+l:i*n]) = A;

end;

A.8 Comp_distortion_oulu.m function

function [x] = comp_distortion_oulu(xd, k) ;

% c omp__d i s t o r t i o n_o u 1 u . m
%
% [x] = comp_distortion_oulu (xd, k.)
%
%Compensates for radial and tangential distortion. Model From Oulu
university.
%For more informatino about the distortion model, check the forward
projection mapping function:
%project_points.m
%
%IMPUT: xd: distorted (normalized) point coordinates in the image plane (2xN
matrix)
% k: Distortion coefficients (radial and tangential) (4x1 vector)
%
%OUTPUT: x: undistorted (normalized) point coordinates in the image plane
(2xN matrix)
%
%Method: Iterative method for compensation.
%
%NOTE: This compensation has to be done after the subtraction
% of the principal point, and division by the focal length.

if length(k) == 1,

[x] = comp_distortion(xd,k);

else

k l
k2
k3
P i
P 2

= M l) ;
= M 2) ;
= k (5) ;
= k (3) ;
= k (4) ;

x = xd; % initial guess

for kk=l:20,

90

r_2 = sum(x.A2) ;
k_radial = 1 + kl * r_2 + k2 * r_2.A2 + k3 * r_2.A3;
delta_x = [2*pl*x(l, :).*x(2,:) + p2*(r_2 + 2*x(1, :).A2) ;
pi * (r_2 + 2*x(2,:).A2)+2*p2*x(1,:).*x(2,:)];
x = (xd - delta_x)./(ones(2,1)*k_radial);

end;

end;

A.9 Correlation based similarity measure-Sum of Absolute
Differences (SAD)-Right to Left matching

% Title: Function-Compute Correlation between two images using the
% similarity measure of Sum of Absolute Differences (SAD) with Right Image
% as reference.
% Author: Siddhant Ahuja
% Created: May 2008
% Copyright Siddhant Ahuja, 2008
% Inputs: Left Image (var: leftlmage), Right Image (var: rightImage),
% Window Size (var: windowSize), Minimum Disparity (dispMin), Maximum
% Disparity (dispMax)
% Outputs: Disparity Map (var: dispMap), Time taken (var: timeTaken)
% Example Usage of Function: [dispMap,
timeTaken]=funcSADR2L('StereogramLeft.jpg', 'StereogramRight.jpg', 9, 0, 16);
5- k ~k k. - k k k ~k: -k -k ~k k: k: -k k k: k: -k -k k. k * •& k: k: k k k k: k k -k k: k -k k k: k -k k k: k k k k: k k k ~k: ~k * ~k -k k ~k -k k k: k k k k: ~k k k: ~k; ~k -k ~k k: k k ~k k:

function [dispMap, timeTaken]=funcSADR2L(leftlmage, rightlmage, windowSize,
dispMin, dispMax)
try

% Grab the image information (metadata) of left image using the function
imfinfo

leftlmagelnfo=imfinfo(leftlmage);
% Since SADR2L is applied on a grayscale image, determine if the
% input left image is already in grayscale or'color
if(getfield(leftlmagelnfo, 'Colorlype')==*truecolor')
% Read an image using imread function, convert from RGB color space to
% grayscale using rgb2gray function and assign it to variable leftlmage

leftlmage=rgb2gray(imread(leftlmage));
% Convert the image from uint8 to double
leftImage=double(leftlmage);

else if(getfield(leftlmagelnfo, 'ColorType')=='grayscale')
% If the image is already in grayscale, then just read it.

leftlmage=imread(leftlmage);
% Convert the image from uint8 to double
leftImage=double(leftlmage);

else
error('The Color Type of Left Image is not acceptable. Acceptable

color types are truecolor or grayscale.');
end

91

end
catch

% if it is not an image but a variable
leftlmage=leftImage;

end
try

% Grab the image information (metadata) of right image using the function
imfinfo

rightlmagelnfo=imfinfo(rightlmage);
% Since SADR2L is applied on a grayscale image, determine if the
% input right image is already in grayscale or color
if(getfield(rightlmagelnfo,'ColorType')=='truecolor')
% Read an image using imread function, convert from RGB color space to
% grayscale using rgb2gray function and assign it to variable rightlmage

rightlmage=rgb2gray(imread(rightlmage));
% Convert the image from uintS to double
rightImage=double(rightlmage);

else if(getfield(rightlmagelnfo,'ColorType!)=='grayscale')
% If the image is already in grayscale, then just read it,

rightImage=imread(rightlmage);
% Convert the image from uintS to double
rightImage=double(rightlmage);

else
error('The Color Type of Right Image is not acceptable.

Acceptable color types are truecolor or grayscale.');
end

end
catch

% if it is not an image but a variable
rightImage=rightImage;

end
% Find the size (columns and rows) of the left image and assign the rows to
% variable nrLeft, and columns to variable ncLeft
[nrLeft,ncLeft] = size(leftlmage);
% Find the size (columns and rows) of the right image and assign the rows to
% variable nrRight, and columns to variable ncRight
[nrRight,ncRight] = size(rightlmage);
% Check to see if both the left and right images have same number of rows
% and columns
if(nrLeft==nrRight && ncLeft==ncRight)
else

error('Both left and right images should have the same number of rows and
columns');
end
% Check the size of window to see if it is an odd number.
if (mod(windowSize,2)==0)

error('The window size must be an odd number.');
end
% Check whether minimum disparity is less than the maximum disparity,
if (dispMin>dispMax)

error('Minimum Disparity must be less than the Maximum disparity.');
end
% Create an image of size nrLeft and ncLeft, fill it with zeros and assign
% it to variable dispMap
dispMap=zeros(nrLeft, ncLeft);
% Find out how many rows and columns are to the left/'right/up/down of the
% central pixel based on the window size

92

win=(windowSize-1)/2;
tic; % Initialize the timer to calculate the time consumed.
for(i=l+win:1:nrLeft-win)

for(j=l+win:1:ncLeft-win-dispMax)
prevSAD = 65532;
temp=0.0;
bestMatchSoFar = dispMin;
for(dispRange=dispMin:1:dispMax)

sad=0.0;
for(a=-win:1:win)

for(b=-win:1:win)
if (j+b+dispRange <= ncLeft)

temp=rightImage(i+a,j+b)-
leftlmage(i+a,j+b+dispRange) ;

if(temp<0.0)
temp=temp*-l.0;

end
sad=sad+temp;

end
end

end
if (prevSAD > sad)

prevSAD = sad;
bestMatchSoFar = dispRange;

end
end
dispMap(i,j) = bestMatchSoFar;

end
end
% Stop the timer to calculate the time consumed.
timeTaken=toc;

A.10 Correlation based similarity measure-Sum of Absolute
Differences (SAD)-Left to Right matching

9- ~k k A k -k k * k -A- k k A- ~k k k k k k k -k k k k -k A- k k k A k k k -A- k ~k k A- -k k k -k -k k k k A- k k k -k k k ~k -A- k k ~k ~k k k k k k k k k k k k k k k k:

% Title: Function-Compute Correleition between two images using the
% similarity measure of Sum of Absolute Differences (SAD) with Left Image
% ess reference.
% Author: Siddhant Ahuja
% Created: May 2008
% Copyright Siddhant Ahuja, 2008
% Inputs: Left Image (var: leftlmage), Right Image (var: rightlmage),
% Window Size (var: windowSize), Minimum Disparity (dispMin), Maximum
% Disparity (dispMax)
% Outputs: Disparity Map (var: dispMap), lime taken (var: timeTaken)
% Example Usage of Function: [dispMap,
timeTaken]=funcSADL2R('StereogramLeft.jpg', 'StereogramRight.jpg', 9, 0, 16);
S- •* "Jc k k -k k k k k k k k k k k k k k. ~k. k k k ~k k k k, k k k k k, k k k k k k k k k k k k k k -k k k k k k k. k ~k -k. k k k k k k k k ~k k k k k k k k k k

function [dispMap, timeTaken]=funcSADL2R(leftlmage, rightlmage, windowSize,
dispMin, dispMax)

93

% Grab the image information (metadata) . of left image using the function
imfinfo

leftlmagelnfo=imfinfo(leftlmage);
% Since SADL2R is applied on a grayscale image, determine if the
% input left image is already in grayscale or color
if(getfield(leftlmagelnfo,'ColorType')=='truecolor')
% Read an image using imread function, convert from RGB color space to
% grayscale using rgb2gray function and assign it to variable leftlmage

leftlmage=rgb2gray(imread(leftlmage));
% Convert the image from uintS to double
leftImage=double(leftlmage);

else if(getfield(leftlmagelnfo,'ColorType')=='grayscale')
% If the image is already in grayscale, then just read it.

leftlmage=imread(leftlmage);
% Convert the image from uiritS to double
leftImage=double(leftlmage);

else
error('The Color Type of Left Image is not acceptable. Acceptable

color types are truecolor or grayscale.*);
end

end
catch

% if it is not an image but a variable
leftImage=leftlmage;

end
try

% Grab the image information (metadata) of right image using the function
imfinfo

rightlmagelnfo=imfinfo(rightlmage);
% Since SADL2R is applied on a grayscale image, determine if the
% input right image is already in grayscale or color
if(getfield(rightlmagelnfo,'ColorType')=='truecolor')
% Read an image using imread function, convert from RGB color space to
% grayscale using rgb2gray function and assign it to variable rightlmage

rightlmage=rgb2gray(imread(rightImage));
% Convert the image from uintS to double
rightImage=double(rightlmage);

else if(getfield(rightlmagelnfo, 'ColorType ')=='grayscale')
% If the image is already in grayscale, then just read it.

rightlmage=imread(rightlmage);
% Convert the image from uintS to double
rightImage=double(rightlmage);

else
error ('The Color Type of Plight Image is not acceptable.

Acceptable color types are truecolor or grayscale.');
end

end
catch

% if it is not an image but a variable
rightlmage=rightlmage;

end
% Find the size (columns and rows) of the left image and assign the rows to
% variable nrLeft, and columns to variable ncLeft
[nrLeft,ncLeft] = size(leftlmage);
% Find the size (columns and rows) of the right image and assign the rows to
% variable nrRight, and columns to variable ncRight

94

[nrRight,ncRight] = size(rightlmage);
% Check to see if both the left and right images have same number of rows
% and columns
if(nrLeft==nrRight && ncLeft==ncRight)
else

error('Both left and right images should have the same number of rows a
columns') ;
end
% Check the size of window to see if it is an odd number,
if (mod(windowSize, 2)==0)

error('The window size must be an odd number.');
end
% Check whether minimum disparity is less than the maximum disparity,
if (dispMin>dispMax)

error('Minimum Disparity must be less than the Maximum disparity.');
end
% Create an image of size nrLeft and ncLeft, fill it with zeros and assign
% it to variable dispMap
dispMap=zeros(nrLeft, ncLeft);
% Find out how many rows and columns are to the left/right/up/down of the
% central pixel based on the window size
win=(windowSize-1)/2;
tic; % Initialize the timer to calculate the time consumed,
for(i=l+win:1:nrLeft-win)

for(j=l+win+dispMax:1:ncLeft-win)
prevSAD = 65532;
temp=0.0;
bestMatchSoFar = dispMin;
for(dispRange=-dispMin:-1:-dispMax)

sad=0.0;
for(a=-win:1:win)

for(b=-win:1:win)
if (j-win+dispRange > 0)

temp=leftlmage(i+a,j+b)-
rightlmage(i+a,j+b+dispRange);

if(temp<0.0)
temp=temp*-l.0;

end
sad=sad+temp;

end
end

end
if (prevSAD > sad)

prevSAD = sad;
bestMatchSoFar = dispRange;

end
end
dispMap(i,j) = -bestMatchSoFar;

end
end
% Stop the timer to calculate the time consumed.
timeTaken=toc;

A.ll Correlation based similarity measure-Sum of Squared
Differences (SSD)-Right to Left matching

% Title: Function Compute Correlation between two images using the
% similarity measure of Sum of Squared Differences (SSD) with Right Image
% as reference,
% Author: Siddhant Ahuja
% Created: May 2008
% Copyright Siddhant Ahuja, 2008
% Inputs: Left Image (var: leftlmage), Right Image (var: rightImage),
% Window Size (var: windowSize), Minimum Disparity (dispMin), Maximum
% Disparity (dispMax)
% Outputs: Disparity Map (var: dispMap), Time taken (var: timeTaken)
% Example Usage of Function: [dispMap,
timeTaken]=funcSSDR2L('StereogramLeft.jpg', 'StereogramRight.jpg', 9, 0, 16);
% k k k k k -k k k k k k k k ~k k k k ~k k k k ~k A- k k k ~k k k k k -k k k k k k k k k k k k k k k k -A k k k ~k k k k k k k k k k k k -k k k * k -k k k k -A-

o

function [dispMap, timeTaken]=funcSSDR2L(leftlmage, rightlmage, windowSize,
dispMin, dispMax)
try

% Grab the image information (metadata) of left image using the function

leftlmagelnfo=imfinfo(leftlmage);
% Since SSDR2L is applied on a grayscale image, determine if the
% input left image is already in grayscale or color
if(getfield(leftlmagelnfo,'ColorType')=='truecolor')
% Read an image using iraread function, convert from RGB color space to
% grayscale using rgb2gray function and assign it to variable leftlmage

leftlmage=rgb2gray(imread(leftlmage));
% Convert the image from uintS to double
leftImage=double(leftlmage);

else if(getfield(leftlmagelnfo, 'ColorType *)=='grayscale')
% If the image is already in grayscale, then just read it,

leftlmage=imread(leftlmage) ;
% Convert the image from uintS to double
leftImage=double(leftlmage);

else
error('The; Color Type of Left Image is not acceptable. Acceptable

color types are truecolor or grayscale.');
end

end
catch

% if it is not an image but a variable
leftImage=leftlmage;

end
try

% Grab the image information (metadata) of right image using the function
imfInfo

rightlmagelnfo=imfinfo(rightlmage) ;
% Since SSDR2L is applied on a grayscale image, determine if the
% input right image is already in grayscale or color
if(getfield(rightlmagelnfo,'ColorType')=='truecolor')
% Read an image using imread function, convert from RGB color space to

96

% grayscale using rgb2gray function and assign it to variable rightImage
rightlmage=rgb2gray(imread(rightImage));
% Convert the image from uintS to double
rightImage=double(rightlmage);

else if(getfield(rightlmagelnfo,'ColorType')=='grayscale')
% If the image is already in grayscale, then just read it.

rightImage=imread(rightlmage);
% Convert the image from uintS to double
rightImage=double(rightlmage) ;

else
error ('The Color Type of Right Image is not acceptabl.

Acceptable color types are truecolor or grayscale.');
end

end
catch

% if it is not an image but. a variable
rightImage=rightImage;

end
% Find the size (columns and rows) of the left image and assign the rows to
% variable nrLeft, and columns to variable ncLeft
[nrLeft,ncLeft] = size(leftlmage);
% Find the size (columns and rows) of the right image and assign the rows to
% variable nrRight, and columns to variable ncRight
[nrRight,ncRight] = size(rightlmage);
% Check to see if both the left and right images have same number of rows
% and columns
if(nrLeft==nrRight && ncLeft==ncRight)
else

error('Both left and right images should have the same number of rows a
columns');
end
% Check the size of window to see if it is an odd. number,
if (mod(windowSize,2)==0)

error('The window size must be an odd number,');
end
% Check whether minimum disparity is less than the maximum disparity,
if (dispMin>dispMax)

error('Minimum Disparity must be less than the Maximum disparity.');
end
% Create an image of size nrLeft and ncLeft, fill it with zeros and assign
% it to variable dispMap
dispMap=zeros(nrLeft, ncLeft);
% Find out how many rows and columns are to the left/right/up/down of the
% central pixel based on the window size
win=(windowsize-1)12;
tic; % Initialize the timer to calculate the time consumed.
for(i=l+win:1:nrLeft-win)

for(j=l+win:1:ncLeft-win-dispMax)
prevSSD = 65532;
temp=0.0;
bestMatchSoFar = dispMin;
for(dispRange=dispMin:1:dispMax)

ssd=0.0;
for(a=-win:1:win)

for(b=-win:1:win)
if (j+b+dispRange <= ncLeft)

temp=rightlmage(i+a,j+b)-
leftlmage(i+a,j+b+dispRange);

temp=temp*temp;
ssd=ssd+temp;

end
end

end
if (prevSSD > ssd)

prevSSD = ssd;
bestMatchSoFar = dispRange;

end
end
dispMap(i,j) = bestMatchSoFar;

end
end
% Stop the timer to calculate the time consumed.
timeTaken=toc;

A.12 Correlation based similarity measure-Normalized Cross
Correlation (NCC)-Right to Left matching

£. * A' is -k -k -k is k -k -k •*• k -k is is -k -k ~k r̂ -k -k -k is is "k -k is is -k -k -k is -k -k is is -k -k is is k -k is ~k ~k -k is is is -k is is -k k ^ is is -^ is is -k -k -k is is -k -k is is -k -k is is

% Title: Function-Compute Correlation between two images using the
% similarity measure of Normalized Cross Correlation (NCC) with Right Image
% as reference.
% Author: Siddhant Ahuja
% Created: May 2008
% Copyright Siddhant Ahuja, 2008
% Inputs: Left Image (var: leftlmage), Right Image (var: right Image),
% Window Size (var: windowSize), Minimum Disparity (dispMin), Maximum
% Disparity (dispMax)
% Outputs: Disparity Map (var: dispMap), Time taken (var: timeTaken)
% Example Usage of Function: [dispMap,
timeTaken]=funcNCCR2L('StereogramLeft.jpg', 'StereogramRight.jpg', 9, 0, 16);
9r * * * * * * * * * * ± * * * * * * ^ x * * * * * * * * * * * A * * * * x * * * * * * * ^

function [dispMap, timeTaken]=funcNCCR2L(leftlmage, rightlmage, windowSize,
dispMin, dispMax)
try

% Grab the image information (metadata) of left image using the function
imfinfo

leftlmagelnfo=imfinfo(leftlmage) ;
% Since NCCR2L is applied on a grayscale image, determine if the
% input left image is already in grayscale or color
if(getfieId(leftImageInfo, 'ColorType')=='truecolor ')
% Read an image using imread function, convert from RGB color space to
% grayscale using rgb2gray function and assign it to variable leftlmage

leftlmage=rgb2gray(imread(leftImage));
% Convert the image from uintB to double
leftImage=double(leftlmage) ;

else if(getfield(leftlmagelnfo, 'ColorType')=='grayscale')
% If the image is already in grayscale, then just read it.

98

leftImage=imread(leftImage);
% Convert the image from uintS to double
leftImage=double(leftlmage) ;

else
error('The Color Type of Left Image is not acceptable. Acceptable

color types are truecolor or grayscale.');
end

end
catch

% if it is not an image but a variable
leftImage=leftImage;

end
try

% Grab the image information (metadata) of right image using the function
imfinfo

rightImageInfo=imfinfo(rightlmage);
% Since NCCR2L is applied on a grayscale image, determine if the
% input right image is already in grayscale or color
if(getfield(rightImageInfo,'ColorType')=='truecolor')
% Read an image using imread function, convert from RGB color space to
% grayscale using rgb2gray function and assign it to variable rightlmage

rightlmage=rgb2gray(imread(rightlmage));
% Convert the image from uint.8 to double
rightImage=double(rightlmage);

else if(getfield(rightImageInfo,'ColorType')=='grayscale')
% If the image is already in grayscale, then just read it.

rightlmage=imread(rightlmage);
% Convert the image from uint8 to double
rightImage=double(rightlmage);

else
error ('The Color Type of Right. Image is not acceptable.

Acceptable color types are truecolor or grayscale.');
end

end
catch

% if it is not an image but a variable
rightImage=rightImage;

end
% Find the size (columns and rows) of the left image and assign the rows to
% variable nrLeft, and. columns to variable ncLeft
[nrLeft,ncLeft] = size(leftlmage);
% Find the size (columns and ross) of the right image and assign the rows to
% variable nrRight, and columns to Vctriable ncRight
[nrRight,ncRight] = size(rightlmage);
% Check to see if both the left and right images have same number of rows
% and columns
if(nrLeft==nrRight && ncLeft==ncRight)
else

error('Both left and right images should have the same number of rows and
columns!);
end
% Check the size of window to see if it is an odd number,
if (mod(windowSize,2)==0)

error('The window size must be an odd number.');
end
% Check whether minimum disparity is less than the maximum disparity,
if (dispMin>dispMax)

99

error('Minimum Disparity must be less than the Maximum disparity.');'
end
% Create cm image of size nrLeft and ncLeft, fill it with zeros and assign
% it to variable dispMap
dispMap=zeros(nrLeft, ncLeft);
% Find out how many rows and columns are to the left/right/up/down of the
% central pixel based on the window size
win=(windowsize-1)/2;
tic; % Initialize the timer to calculate the time consumed,
for(i=l+win:1:nrLeft-win)

for(j=l+win:1:ncLeft-win-dispMax)
prevNCC =0.0;
bestMatchSoFar = dispMin;
for(dispRange=dispMin:1:dispMax)

ncc=0.0;
nccNumerator=0.0;
nccDenominator=0.0;
nccDenominatorRightWindow=0.0;
nccDenominatorLeftWindow=0.0;
for(a=-win:1:win)

for(b=-win:1:win)

nccNumerator=nccNumerator+(rightImage(i+a,j+b)*leftImage(i+a, j+b+dispRange)) ;

nccDenominatorRightWindow=nccDenominatorRightWindow+(rightlmage(i+a,j+b)*righ
tlmage(i+a,j+b));

nccDenominatorLeftWindow=nccDenominatorLeftWindow+(leftlmage(i+a,j+b+dispRang
e)*leftlmage(i+a,j+b+dispRange));

end
end

nccDenominator=sqrt(nccDenominatorRightWindow*nccDenominatorLeftWindow);
ncc=nccNumerator/nccDenominator;
if (prevNCC < ncc)

prevNCC = ncc;
bestMatchSoFar = dispRange;

end
end
dispMap(i,j) = bestMatchSoFar;

end
end
% Stop the timer to calculate the time consumed.
timeTaken=toc;

100

A.13 Left/Right Consistency (LRC) Check

96 *

% Title: Function-Left/Right Consistency Check
% Author: Siddhant Ahuja
% Created: May 2008
% Copyright Siddhant Ahuja, 2008
% Inputs: Left Image (var: leftlmage), Right Image (var: rightlmage),
% Window Size (var: windowSize), Minimum Disparity (dispMin), Maximum
% Disparity (dispMax), Threshold for the check (var: thresh) typically 1.0
% Outputs: Disparity Map (var: dispMap), Time taken (var: timeTaken)
% Example Usage of Function: [dispMapLRC,
timeTaken]=funcLRCCheck('TsukubaLeft.jpg', 'TsukubaRight.jpg', 9, 0, 16,2);
=j * • * i t *

function [dispMapLRC, timeTaken]=funcLRCCheck(leftlmage, rightlmage,
windowSize, dispMin, dispMax, thresh)
% Initiate the Timer to calculate the time consumed.
tic;
% Perform SAD Correlation based matching (Right to Left)
[dispMapR2L, timeTakenR2L]=funcSADR2L(leftlmage, rightlmage, windowSize,
dispMin, dispMax);
% Perform SAD Correlation based matching (Left to Right)
[dispMapL2R, timeTakenL2R]=funcSADL2R(leftlmage, rightlmage,
windowSize,dispMin , dispMax);
% Prepare matrix for subtraction and scale it for comparison
dispMapL2R=-dispMapL2R;
% Find the size (columns and rows) of the L2R Disparity map and assign the
rows to
% variable nrLRCCheck, and columns to variable ncLRCCheck
[nrLRCCheck,ncLRCCheck] = size(dispMapL2R);
% Create an image of size nrLRCCheck and ncLRCCheck, fill it with zeros and
a s s i gn
% it to variable dispMapLRC
dispMapLRC=zeros(nrLRCCheck, ncLRCCheck) ;
% Find out how many rows and columns are to the left/right/up/down of the
% central pixel based on the window size
win=(windowSize-l)/2;
for(i=l:1:nrLRCCheck)

for(j=l:1:ncLRCCheck)
xl=j;
xr=xl+dispMapL2R(i,xl) ;
if (xr>ncLRCCheck||xr<l)

dispMapLRC(i,j) = 0; %% occluded pixel
else

xlp=xr+dispMapR2L(i,xr);
if (abs(xl-xlpXthresh)

dispMapLRC(i, j) = -dispMapL2R(i,j); %% non-occluded pixel
else

dispMapLRC(i,j) = 0; %% occluded pixel
end

end
end

end
% Terminate the Timer to calculate the time consumed.

101

timeTaken=toc;

A.14 Quality Metric-Root Mean Squared Error (RMS)

% **-*************
% Title: Function-Compute Root Mean Squared (RMS) Error
% Author: Siddhant Ahuja
% Created: May 2008
% Copyright Siddhant Ahuja, 2008
% Inputs: Computed Disparity Map (var: computedDisparityMap), Ground Truth
Disparity Map (var: groundTruthDisparityMap),
% How many pixels to ignore at the border (var: borderPixelsToIgnore). For
% a 9x9 windowSize used, border pixels to ignore should be (9 l)/2 or 4
% pixels, Disparity range (var: dispRange), Scale factor for groundtruth
% (var: scale)
% Outputs: RMS Error (var: rmsError), Time taken (var: timeTaken)
% Example; Usage of Function: [rmsError, timeTaken] =
RMSError('TsukubaSAD9x9DispRange=0-16.png*,'TsukubaGroundTruth.png!,4,16,8);
% ** * * *****************
function [rmsError, timeTaken]=
funcRMSError(computedDisparityMap,groundTruthDisparityMap,borderPixelsToIgnor
e,dispRange, scale)
% Read an image using imread function, and assign it to variable
% computedDisparityMap
try

computedDisparityMap=imread(computedDisparityMap);
catch

% if it is not an image but a variable
computedDisparityMap=computedDisparityMap;

end
% Convert the image from uint8 to double
computedDisparityMap=double(computedDisparityMap);
% Read an image using imread function, and assign it to variable
% groundTruthDisparityMap
groundTruthDisparityMap=imread(groundTruthDisparityMap) ;
% Convert the image from uint8 to double
groundTruthDisparityMap=double(groundTruthDisparityMap);
% Find the size (columns and rows) of the left image and assign the rows to
% variable nrComputedDisparityMap, and columns to variable
ncComputedDisparityMap
[nrComputedDisparityMap,ncComputedDisparityMap] = size(computedDisparityMap);
% Find the size (columns and rows) of the image and assign the rows to
% variable nrGroundTruthDisparityMap, and columns to variable
ncGroundTruthDisparityMap
[nrGroundTruthDisparityMap,ncGroundTruthDisparityMap] =
size(groundTruthDisparityMap);
% Check to see if both the left and right images have same number of rows
% and columns
if(nrComputedDisparityMap==nrGroundTruthDisparityMap &&
ncComputedDisparityMap==ncGroundTruthDisparityMap)
else

102

error('Both Computed Disparity Map and Groundtruth Disparity Map images
should have the same number of rows; and columns') ;
end
numPixels=0;
rmsError=0.0;
tic; % Initialize the timer to calculate the time consumed.
% Calculate rms error
for (i=borderPixelsToIgnore:1:nrComputedDisparityMap-borderPixelsToIgnore)

for(j=borderPixelsToIgnore:1:ncComputedDisparityMap-borderPixelsToIgnore-
dispRange)

if(groundTruthDisparityMap(i,j)~=0.0) % Ignore Pixels with unknown
disparity in the groundTruthDisparityMap

rmsError= rmsError+(abs((computedDisparityMap(i,j)*scale)-
groundTruthDisparityMap(i, j))A2) ;

numPixels=numPixels+l;
end

end
end
rmsError=sqrt(rmsError/numPixels) ;
% Stop the timer to calculate the time consumed.
timeTaken=toc;

A.15 Quality Metric-Percentage of Bad Matching Pixels

^ * 'A -A- k * -k -A- k * * * k -k -k -A- * ~k * -A- k * k ~k k k k -A- k k k k k k k k -k k * -A- k• k k -A' k k * -A- -A- * k * -A- k k * -A- k k kk k k k -A- A- k k k k k k ~k k

% Title: Function-Compute Percentage of bad matching pixels
% Author: Siddhant Ahuja
% Created: May 2008
% Copyright Siddhant Ahuja, 2008
% Inputs: Computed Disparity Map (var: computedDisparityMap), Ground Truth
Disparity Map {var: groundTruthDisp£irityMap) ,
% How many pixels to ignore at the border (var: borderPixelsT'oIgnore) . For
% a 9x9 windowSize used, border pixels to ignore should be (9-l)/2 or 4
% pixels, Disparity range (var: dispRange), Threshold (var: thresh), Scale
% factor for groundtruth (var: scale)
% Outputs: Percentage Bad matching pixels (var: perBADMatch), Time taken
% (var: timeTaken)
% Example Usage of Function: [perBADMatch, timeTaken]=
% funcPercentBadMatchingPixels(dispMap,'VenusGroundTruthL2R.png',4,16,1,8)
9S •kk*kk-kkkkk*kkk*k*k*kkk-kkkk*kkk-kk*k**kk*k*kkkk*-kkkkkirkkkkk*-k-kk*kkk*k-kkkk-kk

function [perBADMatch, timeTaken]=
funcPercentBadMatchingPixels(computedDisparityMap,groundTruthDisparityMap, bor
derPixelsToIgnore,dispRange,thresh, scale)
% Read an image using imread function, and assign it to variable
% computedDisparityMap
try

computedDisparityMap=imread(computedDisparityMap);
catch

% if it is not an image but a variable
computedDisparityMap=computedDisparityMap;

end
% Convert the image from uintS to double

103

computedDisparityMap=double(computedDisparityMap);
% Read an image using imread function, and assign it to variable
% groundTruthDisparityMap
groundTruthDisparityMap=imread(groundTruthDisparityMap);
% Convert the image from uint8 to double
groundTruthDisparityMap=double(groundTruthDisparityMap);
% Find the size (columns and rows) of the left image and assign the rows to
% variable nrComputedDisparityMap, and columns to variable
ncComputedDisparityMap
[nrComputedDisparityMap,ncComputedDisparityMap] = size(computedDisparityMap);
% Find the size (columns and rows) of the image and. assign the rows to
% variable nrGroundTruthDisparityMap, and columns to variable
n c G r o u n d T r u t h D i s p a r i t y Ma p
[nrGroundTruthDisparityMap,ncGroundTruthDisparityMap] =
size(groundTruthDisparityMap) ;
% Check to see if both the left and right images have same number of rows
% and columns
if(nrComputedDisparityMap==nrGroundTruthDisparityMap &&
ncComputedDisparityMap==ncGroundTruthDisparityMap)
else

error('Both Computed Disparity Map and Groundtruth Disparity Map images
should have the same number of rows and columns');
end
numPixels=0;
perBADMatch=0.0;
tic; % Initialize the timer to calculate the time consumed.
% Calculate Percentage Bad Matching Pixels
for (i=borderPixelsToIgnore:1:nrComputedDisparityMap-borderPixelsToIgnore)

for(j=borderPixelsToIgnore:1:ncComputedDisparityMap-borderPixelsToIgnore-
dispRange)

if(groundTruthDisparityMap(i,j)~=0.0) % Ignore Pixels with unknown
disparity in the groundTruthDisparityMap

if(abs((computedDisparityMap(i,j)*scale)-
groundTruthDisparityMap(i,j))>thresh)

perBADMatch=perBADMatch+l;
end
numPixels=numPixels+l;

end
end

end
perBADMatch=perBADMatch/numPixels;
% Stop the timer to calculate the time consumed.
timeTaken=toc;

104

A. 16 Rank Transform

SI *

% Title: Function-Rank Transform of a given Image
% Author: Siddhant Ahuja
% Created: May 2008
% Copyright Siddhant Ahuja, 2008
% Inputs: Image (var: inputlmage), Window size assuming square window (van
% windowSize)
% Outputs: Rank Tranforraed Image (var: rankTransformedlmage) ,
% Time taken (var: timelaken)
% Example Usage of Function: [a,b]=funeRankOnelmage{'Img.png', 3)
S| * * * * * * * * * * -A- * i * * * * * * * -k * * * * * * * k * * * * * * * * * * k * '* * * *

function [rankTransformedlmage, timeTaken] = funeRankOnelmage(inputlmage,
windowSize)
% Grab the image information (metadata) using the function imfinfo
imagelnfo=imfinfo(inputlmage);
% Since Rank Transform is applied on a grayscale image, determine if the
% input image is already in grayscale or color
if(getfield(imagelnfo, 'ColorType')=='truecolor')
% Read an image using imread function, convert from RGB color space to
% grayscale using rgb2gray function and assign it to variable inputlmage

inputImage=rgb2gray(imread(inputlmage));
else if(getfield(imagelnfo,'ColorType*)=='grayscale')
% If the image is already in grayscale, then just read it.

inputImage=imread(inputlmage);
else

error('The Color Type of Input Image is not acceptable. Acceptable
color types are truecolor or grayscale.');

end
end
% Check the size: of window to see if it is an odd number,
if (mod(windowSize,2)==0)

error("The window size must be an odd number.');
end
% Initialize the timer to calculate the time consumed.
tic;
% Find the size (columns and rows) of the image and assign the rows to
% variable nr, and columns to variable nc
[nr,nc] = size(inputlmage);
% Create an image of size nr and nc, fill it. with zeros and assign
% it to variable rankTransformedlmage
rankTransformedlmage = zeros(nr,nc);
% Find out how many rows and columns are to the left/right/up/down of the
% central pixel based on the window size
R= (windowSize-l)/2;
for (i=R+l: 1 :nr-R) % Go through all the rows in an image (minus R at the
borders)

for (j=R+l: l:nc-R) % Go through all the columns in an image (minus R at
the borders)

rank = 0; % Initialize default rank to 0
for (a=-R:l:R) % Within the square window, go through all the rows

for (b=-R:l:R) % Within the square window, go through all the
columns

105

% If the intensity of the neighboring pixel is less than
% that of the central pixel, then increase the rank
if (inputlmage(i+a,j+b) < inputImage(i, j))

rank=rank+l;
end

end
end
% Assign the rank value to the pixel in imgTemp
rankTransformedlmage(i,j) = rank;

end
end
% Stop the timer to calculate the time consumed,
timeTaken=toc;

A.17 Census Transform

9fj *

% Title: Function-Census Transform of a given Image
% Author; Siddhant Ahuja
% Created: May 2008
% Copyright Siddhant Ahuja, 2008
% Inputs: Image (var: inputlmage), Window size assuming square window (var:
% windowSize) of 3x3 or 5x5 only.
% Outputs: Census Transformed Image (var: censusTransformedlmage) ,
% Time taken (var: timeTaken)
% Example Usage of Function: [a,b]=funcCensusOnelmage('Img.png', 3)
9- *

function [censusTransformedlmage, timeTaken] = funcCensusOnelmage(inputlmage,
windowSize)
% Grab the image information (metadata) using the function imfinfo
imagelnfo=imfinfo(inputlmage);
% Since Census Transform is applied on a grayscale image, determine if the
% input image is already in grayscale or color
if(getfield(imageInfo,'ColorType')=='truecolor')
% Read an image using imread function, convert from RGB color space to
% grayscale using rgb2gray function and assign it to variable inputlmage

inputImage=rgb2gray(imread(inputImage));
else if(getfield(imagelnfo,'ColorType')=='grayscale')
% If the image is already in grayscale, then just read it.

inputlmage=imread(inputlmage) ;
else

error('The Color Type of Input Image is not acceptable. Acceptable
color types are truecolor or grayscale.');

end
end
% Find the size (columns and rows) of the image and assign the rows to
% variable nr, and columns to variable nc
[nr,nc] = size(inputlmage);
% Check the size of window to see if it is an odd number,
if (mod(windowSize,2)==0)

error('The window size must be an odd number.');
end

if (windowSize==3)
bits=uint8(0) ;

% Create an image of size nr and nc, fill it with zeros and assign
% it to variable censusTransformedlmage of type uintS

censusTransf ormedI.mage=uint8(zeros(nr,nc));
else if (windowSize==5)

bits=uint32(0);
% Create an image of size nr and nc, fill it with zeros and assign
% it to variable censusTransf ormedlmage of type uint:32

censusTransformedImage=uint32(zeros(nr,nc));
else

error (rIhe size of the window is not acceptable. Just 3x3 and 5x5
windows are acceptable.');

end
end
% Initialise the timer to calculate the time consumed.
tic;
% Find out how many rows and. columns are to the left/right/up/down of the
% central pixel
C= (windowSize-1)/2;
for (j=C+l: 1 :nc-C) % Go through all the columns in an image (minus C at the
borders)

for (i=C+l: 1 :nr-C) % Go through all the rows in an image (minus C at the
borders)

census = 0 ; % Initialize default census to 0
for (a=-C:l:C) % Within the square window, go through all the rows

for (b=-C:l:C) % Within the square window, go through all the
columns

if (~(a==C+l && b==C+l)) % Exclude the centre pixel from the
calculation

census=bitshift(census,1); %Shift the bits to the left
by 1

% If the intensity of the neighboring pixel is less than
% that of the central pixel, then add one to the bit
% string
if (inputlmage(i+a,j+b) < inputImage(i,j))

census=census+l;
end

end
end

end
% Assign the census bit string value to the pixel in imgTemp
censusTransformedlmage(i,j) = census;

end
end
% Stop the timer to calculate the time consumed.
timeTaken=toc;

107

A. 18 Sum of Hamming Distances-Right to Left Matching

96 *

% Title: Function-Compute Correlation between two images using the
% similarity measure of Sum of Hamming Distances (SHD) with Right Image
% as reference.
% Author: Siddhant Ahuja
% Created: May 2008
% Copyright Siddhant Ahuja, 2008
% Inputs: Left Image (var: leftlmage), Right Image (var: rightlraage),
% Window Size {var: windowSize), Minimum Disparity (dispMin), Maximum
% Disparity (dispMax)
% Outputs: Disparity Map (var: dispMap), Time taken (var: timeTaken)
% Example Usage of Function: [dispMap,
timeTaken]=funcSHDR2L('TsukubaLeft.jpg', 'TsukubaRight.jpg', 9, 0, 16);
S~ *

function [dispMap, timeTaken]=funcSHDR2L(leftlmage, rightlmage, windowSize,
dispMin, dispMax)
try

% Grab the image information (metadata) of left image using the function
imfinfo

leftlmagelnfo=imfinfo(leftlmage);
% Since SHDR2L is applied on a grayscale image, determine if the
% input left image is already in grayscale or color
if(getfield(leftlmagelnfo,'Colorlype')=='truecolor')
% Read an image using imread function, convert from RGB color space to
% grayscale using rgb2gray function and. assign it to variable leftlmage

leftlmage=rgb2gray(imread(leftlmage));
else if(getfield(leftlmagelnfo,'ColorType')=='grayscale')
% If the image is already in grayscale, then just read it.

leftlmage=imread(leftlmage);
else

error('The Color Type of Left Image is not acceptable. Acceptable
color types are truecolor or grayscale.");

end
end

catch
% if it is not an image but a variable
leftImage=leftlmage;

end
try

% Grab the image information (metadata) of right image using the function
imfinfo

rightlmagelnfo=imfinfo(rightlmage);
% Since SHDR2L is applied on a grayscale image, determine if the
% input right image is already in grayscale or color
if(getfield(rightlmagelnfo,'ColorType')=='truecolor')
% Read an image using imread function, convert from RGB color space to
% grayscale using rgb2gray function and assign it to variable rightlmage

rightlmage=rgb2gray(imread(rightlmage));
else if(getfield(rightlmagelnfo,'ColorType')=='grayscale')
% If the image is already in grayscale, then just read it.

rightlmage=imread(rightlmage);
else

108

error('The Color Type of Right Image is not acceptable.
Acceptable color types are truecolor or grayscale.');

end
end

catch
% if it is not an image but a variable
rightImage=rightImage;

end
% Find the size (columns and rows) of the left image and assign the rows to
% variable nrLeft, and columns to variable ncLeft
[nrLeft,ncLeft] = size(leftlmage);
% Find the size (columns and rows) of the right image and assign the rows to
% variable nrRight, and columns to variable ncRight
[nrRight,ncRight] = size(rightImage);
% Check to see if both the left and right images have same number of rows
% and columns
if(nrLeft==nrRight && ncLeft==ncRight)
else

error('Both left and right images should have the same number of rows ana
columns');
end
% Check the size of window to see if it is an odd number,
if (mod(windowSize,2)==0)

error('The window size must be an odd number.');
end
% Check whether minimum disparity is less than the maximum disparity,
if (dispMin>dispMax)

error("Minimum Disparity must be less than the Maximum disparity.");
end
% Create an image of size nrLeft and ncLeft, fill it with zeros and assign
% it to variable dispMap
dispMap=zeros(nrLeft, ncLeft);
% Find out how many rows and columns are to the left/right/up/down of the
% central pixel based on the window size
win=(windowsize-1)/2;
numberOfBits=8;
tic; % Initialize the timer to calculate the time consumed,
for(i=l+win:1:nrLeft-win)

for(j=l+win:1:ncLeft-win-dispMax)
min=0;
position=0;
rightWindow=rightImage(i-win:i+win, j-win:j+win);
for(dispRange=dispMin:1rdispMax)

sad=0.0;
if (j+win+dispRange <= ncLeft)

leftWindow=leftlmage(i-win:i+win, j-
win+dispRange:j+win+dispRange);

bloc3=bitxor(rightWindow,leftWindow);
distance=uint8(zeros(windowSize,windowSize)) ;
for (k=l:1:numberOfBits)

distance=distance+bitget(bloc3, k) ;
end
dif=sum(sum(distance)) ;
if (dispRange==0)

min=dif;
elseif (min>dif)

min=dif;

109

position=dispRange;
end

end
end
dispMap(i,j) = position;

end
end
% Stop the timer to calculate the time consumed.
timeTaken=toc;

A.19 Sum of Hamming Distances-Left to Right Matching

%• k k k * k * k ~k k k * -k k -k k k -k * k k k -k k k -k k k * * * k ~k -k k- k k -k k k k k -k k * k -k k k k k -k k k k k k k k k k * k k k k k * * * k k * k

% Title: Function-Compute Correlation between two images using the
% similarity measure of Sum of Hamming Distances (SHD) with Left Image
% as reference.
% Author: Siddhant Ahuja
% Created: May 2008
% Copyright Siddhant Ahuja, 2008
% Inputs: Left Image (var: leftlmage), Right Image (var: rightlmage),
% Window Size (var: windowSice), Minimum Disparity (dispMin), Maximum
% Disparity (dispMaz)
% Outputs: Disparity Map (var: dispMap), Time taken (var: timeTaken)
% Example Usage of Function: [dispMap,
timeTaken] =func.SHDL2R('TsukubaLef t. jpg', 'TsukubaRight.jpg', 9, 0, 16);
% •* k * -k -k k *- -k -k * * k-k k k k -k k ~k k -k k k k -k k k * ~k -k k k * -k k -k k k k k k -k k k * * k k k -k k k k -k k k * * * k k -k k * k k -k ~k k: -k k k k

function [dispMap, timeTaken]=funcSHDL2R(leftlmage, rightlmage, windowSize,
dispMin, dispMax)
try

% Grab the image information (metadata) of left image using the function
imfinfo

leftlmagelnfo=imfinfo(leftlmage);
% Since SHDL2R is applied on a grayscale image, determine if the
% input left image is already in grayscale or color
if(getfield(leftlmagelnfo,'ColorType')=='truecolor')
% Read an image using imread function, convert from RGB color space to
% grayscale using rgb2gray function and assign it to variable leftlmage

leftlmage=rgb2gray(imread(leftlmage));
else if(getfield(leftlmagelnfo,'ColorType')=='grayscale")
% If the image is already in grayscale, then just read it.

leftlmage=imread(leftlmage);
else

error('The Color Type of Left Image is not acceptable. Acceptable
color types are truecolor or grayscale.');

end
end

catch
% if it is not an image but a variable
leftlmage=leftlmage;

end
try

% Grab the image information (metadata) of right image using the function
imfinfo

110

rightlmagelnfo=imfinfo(rightlmage);
% Since SHDL2R is applied on a grayscale image, determine if the
% input right image is already in grayscale or color
if(getfield(rightlmagelnfo,'ColorType')=='truecolor')
% Read an image using imread function, convert from RGB color space to
% grayscale using rgb2gray function and assign it to variable rightlmage

rightlmage=rgb2gray(imread(rightlmage)) ;
else if(getfield(rightlmagelnfo,'ColorType')=='grayscale')
% If the image is already in grayscale, then just read it.

rightImage=imread(rightlmage) ;
else

error('The Color Type of Right Image is not acceptable.
Acceptable color types are truecolor or grayscale.');

end
end

catch
% if it is not an image but a variable
rightImage=rightImage;

end
% Find the size (columns and rows) of the left image and assign the rows to
% variable nrLeft, and columns to variable ricLeft
[nrLeft, ncLeft] = size(leftlmage);
% Find the size (columns and rows) of the right image and assign the rows to
% variable nrRight, and columns to variable ncRight
[nrRight,ncRight] = size(rightlmage);
% Check to see if both the left and right images have same number of rows
% and columns
if(nrLeft==nrRight && ncLeft==ncRight)
else

error('Both left and right images should have the same number of rows and
columns');
end
% Check the size of window to see if it is an odd number,
if (mod(windowSize,2)==0)

error('The window size must be an odd number.');
end
% Check whether minimum disparity is less than the maximum disparity,
if (dispMin>dispMax)

error('Minimum Disparity must be less than the Maximum disparity.');
end
% Create an image of size nrLeft and ncLeft, fill it with zeros and assign
% it to variable dispMap
dispMap=zeros(nrLeft, ncLeft);
% Find out how many rows and columns are to the left/right/up/down of the
% central pixel based on the window size
win=(windowSize-1)/2;
numberOfBits=8;
tic; % Initialize the timer to calculate the time consumed.
for(i=l+win:1:nrLeft-win)

for(j=l+win+dispMax:1:ncLeft-win)
min=0;
position=0;
leftWindow=leftImage(i-win:i+win, j-win:j+win);
for(dispRange=-dispMin:-l:-dispMax)

if (j-win+dispRange > 0)
rightWindow=rightImage(i-win:i+win, j-

win+dispRange:j+win+dispRange) ;

111

bloc3=bitxor(leftWindow,rightWindow);
distance=uint8(zeros(windowSize,windowSize)) ;
for (k=l:l:numberOfBits)

distance=distance+bitget(bloc3,k);
end
dif=sum(sum(distance));
if (dispRange==0)

min=dif;
elseif (min>dif)

min=dif;
position=dispRange;

end
end

end
dispMap(i,j) = -position;

end
end
% Stop the timer to calculate the time consumed.
timeTaken=toc;

A.20 Finding Occluded Regions

j|. *

% Title: Function-Find Occluded regions of an image
% Notes: Occluded regions are defined as regions that are occluded in the
% matching image, i.e., where the forward-mapped disparity
% lands at a location with a larger (nearer) disparity.
% Author: Siddhant Ahuja
% Created: September 2008
% Copyright Siddhant Ahuja, 2008
% Inputs: Left to Right Disparity Image (var: dispMapL2R), Right to Left
Disparity Image (var: dispMapR2L) ,
% Scale factor of ground truth map (var: scale) typically 4.0, Threshold for
the check (var: thresh) typically 2.0
% Outputs: Disparity Map (var: dispMap), Time taken (var: timeTaken)
% Example Usage of Function: [occludedlmg,
timeTaken]=funcOccludedRegions('disp_l_r.png', 'disp_r_l.png', 4, 2} ;
s6 ***
function [occludedlmg, timeTaken]=funcOccludedRegions(dispMapL2R, dispMapR2L,
scale, thresh)
% Initiate the Timer to calculate the time consumed.
tic;
dispMapL2R=imread(dispMapL2R);
dispMapR2L=imread(dispMapR2L);
dispMapL2R = floor(double (dispMapL2R)/scale);
dispMapR2L = floor(double (dispMapR2L)/scale);
% Prepare matrix for subtraction and scale it for comparison
dispMapL2R=-dispMapL2R;
% Find the size (columns and rows) of the L2R Disparity map and assign the
rows to
% variable nrLRCCheck, and columns to variable ncLRCCheck
[nrLRCCheck,ncLRCCheck] = size(dispMapL2R);

112

% Create an image of size nrLRCCheck and ncLRCCheck, fill it with zeros and
assign
% it to variable occludedlmg
occludedImg=zeros(nrLRCCheck, ncLRCCheck) ;
for(i=l:1:nrLRCCheck)

for(j=l:1:ncLRCCheck)
xl=j;
xr=xl+dispMapL2R(i,xl);
if (xr>ncLRCCheck||xr<l)

occludedlmg(i,j) = 0; %% occluded pixel
else

xlp=xr+dispMapR2L(i,xr);
if (abs(xl-xlp)<thresh)

occludedlmg(i,j) = -dispMapL2R(i,j); %% non-occluded pixel
else

occludedlmg(i,j) = 0; %% occluded pixel
end

end
end

end
% Terminate the Timer to calculate the time consumed.
timeTaken=toc;

A.21 Finding Depth-Discontinuous Regions

95 *

% Title: Function-Find Discontinuous regions of an image
% Notes:
% 1, According to paper [A Taxonomy and Evaluation of Dense Two-Frame Stereo
Correspondence Algorithms], Depth Discontinuous regions are defined as pixels
whose neighboring
% disparities differ by more than a certain gap, dilated
% by a window of width windowsize.
% 2. According to paper [An Experimental Comparison of Stereo Algorithms], A
pixel is a depth
% discontinuity if any of its (4-conneeted) neighbors has a disparity that
differs by more than 1 from
% its disparity. Neighboring pixels that are part of a sloped surface can
easily differ by 1 pixel, but
% should not be counted as discontinuities.
% Author: Siddhant Ahuja
% Created: May 2008
% Copyright Siddhant Ahuja, 2008
% Inputs: Input Image-Depth Map (var: inputImage), Window Size (var:
windowSize),
% Threshold (var: thresh) Typical value is 3
% Outputs: Discontinuous Map (var: discontinuouslmg) , Time taken (var:
timeTaken)
% Example Usage of Function: [discontinuouslmg,
timeTaken]=funcDiscontinuousRegions(!TsukubaGroundTruthL2R.pgm', 9, 3) ;
s, *

113

function [discontinuouslmg, timeTaken]=funcDiscontinuousRegions(inputlmage,
windowSize, thresh)
% Read the input image
try

% Read an image using imread function
inputImage=imread(inputlmage);
% grab the number of rows, columns, and channels
[nr, nc, nChannels]=size(inputlmage);
% Grab the image information (metadata) of input image using the

function imfinfo
inputlmagelnfo=imfinfo(inputlmage);
% Determine if input left image is already in grayscale or color
if(getfield(inputlmagelnfo,'ColorType')=='truecolor')

inputlmage=rgb2gray(inputlmage);
else if(getfield(inputImageInfo,'ColorType')=='grayscale')

inputImage=inputImage;
else
error('The Color Type of Left Image is not acceptable. Acceptable

color types are truecolor or grayscale.");
end

end
catch

% if it is not an image but a variable
% grab the number of channels
[nr, nc, nChannels]=size(inputlmage) ;:
if(nChannels)>1

inputlmage=rgb2gray(inputlmage);
else

inputImage=inputImage;
end

end
% Check the size of window to see if it is an odd number,
if (mod(windowSize,2)==0)

error('The window size must be an odd number.');
end
% Create an image of size nr and nc, fill it with zeros and assign
% it to variable discontinuouslmg
discontinuousImg=zeros(nr, nc) ;
% Create an image of size nr and nc, fill it with zeros and assign
% it to variable edgelmg
edgeImg=zeros(nr, nc) ;
% Find out how many rows and columns are to the left/right/up/down of the
% central pixel based on the window size
win=(windowSize-1)/2;
inputImage=double(inputlmage);
tic; % Initialize the timer to calculate the time consumed.
% Find variation/edges in disparity values in horizontal and vertical
directions
for (i=l:l:nr-l)

for (j=l:l:nc-l)
% Traverse in horizontal direction
if (abs(inputlmage(i,j)-inputlmage(i,j+1)) > thresh)

edgelmg(i,j) = 255;
edgelmg(i,j+1) =255;

end
% Traverse in vertical direction
if (abs(inputlmage(i,j)-inputlmage(i+1,j)) > thresh)

114

edgelmg(i,j) = 255;
edgelmg(i+1,j) = 255;

end
end

end
% Dilate within the window
for (i=l+win:nr-win)

for (j=l+win:nc-win)
% Go over the square window
sum = 0.0;
for (a=-win:1:win)

for (b=-win:1:win)
sum = sum + edgelmg(i+a,j+b);

end
end
% Apply Threshold
if (sum>0)

discontinuouslmg(i, j) = 255;
else

discontinuouslmg(i,j) = 0;
end

end
end
% Stop the timer to calculate the time consumed.
timeTaken=toc;

A.22 Finding Low-Texture Regions

% Title: Function-Find Textureless regions of an image
% Notes: Textureless regions are defined as regions where the squared
horizontal
% intensity gradient averaged over a. square window of a given size
% (windowSize) is below a given threshold (thresh);
% Author: Siddhant Ahuja
% Created: May 2006
% Copyright Siddhant Ahuja, 2008
% Inputs: input Image (var: inputlmage), Window Size (var: windowSize),
% Threshold (var: thresh) Typical value is 4
% Outputs: Textureless Map {var: texturelesslmg) , Time taken (var:
timeTaken)
% Example Usage of Funct ion: [t ex ture less lmg,
t i m e T a k e n] = f u n c T e x t u r e 1 e s s R e g i o n s { * T s u k u b a L e f t C o 1 o r . p n g', 9, 4) ;
•|- -k * * * * * -k * * * A- * * * * * * * -k * * * -k * * * * * * * * * * * * k * * * * * * * * * ************* -k * * * k ******* * * * * * * *

function [texturelesslmg, timeTaken]=funcTexturelessRegions(inputlmage,
windowSize, thresh)
% Read the input image
try

% Read an image using imread function
inputlmage=imread(inputlmage) ;
% grab the number of rows, columns, and channels
[nr, nc, nChannels]=size(inputlmage);

115

% Grab the image information (metadata) of input image using the
function imfinfo

inputImageInfo=imfinfo(inputlmage);
% Determine if input left image is already in grayscale or color
if(getfield(inputlmagelnfo,'ColorType')=='truecolor')

colored=l;
else if(getfield(inputImageInfo,'ColorType')=='grayscale')

colored=0;
else
error('The Color Type of Left Image is not acceptable. Acceptable

color types are truecolor or grayscale.');
end

end
catch

% if it is not an image but a variable
% grab the number of channels
[nr, nc, nChannels]=size(inputlmage);
if(nChannels)>1

colored=l;
else

colored=0;
end

end
% Check the size of window to see if it is an odd number,
if (mod(windowSize,2)==0)

error('The window size must be an odd number.*);
end
% Create an image of size nr and nc, fill it with zeros and assign
% it to variable texturelesslmg
texturelessImg=zeros(nr, nc);
% Create an image of size nr and nc, fill it with zeros and assign
% it to variable sqGradlmg
sqGradImg=zeros(nr,nc);
% Find out how many rows and columns are to the left/right/up/down of the
% central pixel based on the window size
win=(windowSize-1)/2;
inputImage=double(inputlmage);
tic; % Initialize the timer to calculate the time consumed.
% Produce Squared Horizontal Gradient image sqGradlmg
for (i=l:l:nr)

for (j=l:l:nc-l)
sum = 0.0;
for (k=l:1:nChannels)

diff = inputlmage(i,j,k) - inputlmage(i,j + 1, k);
sum = sum + (diff*diff);

end
sum = sum / nChannels;
sqGradlmg(i,j+1) = sum;
if (j==l)

sqGradlmg(i,j) = sum;
end
if (sum > sqGradlmg(i, j))

sqGradlmg(i,j) = sum;
end

end
end
% Compute average within predefined box window of size windowSize x

116

% winaowSize
for (i=l+win:nr-win)

for (j=l+win:nc-win)
% go over the square window
sum = 0.0;
avg = 0.0;
for (a=-win:1:win)

for (b=-win:1:win)
sum = sum + sqGradlmg(i+a,j+b);

end
end
% Compute the etvera.ge
avg = sum / (windowSize*windowSize);
% Apply threshold
if (avg < (thresh*thresh))

texturelesslmg(i,j) = 255; % mark detected textureless pixel as
white

end
end

end
% Stop the timer to calculate the time consumed.
timeTaken=toc;

A.23 Introduce Vignetting effect

^ * * * * * * * * * * -A- *

% Title: Function-Introduce Vignetting effect to the image
% Author: Siddnant Ahuja
% Created: September 2008
% Copyright Siddnant Ahuja, 2008
% Inputs: Input Image (var: inputlmage) , Scale Change level (var:
% scaleLevel) Valid values for scale change should go from 0,1 to 1
% Outputs: Vignetting effect added image (var: vignettlmg", Time taken (var:
timeTaken)
% Example Usage of Function: [vignettlmg,
timeTaken]=funcVignettingEffeet('TsukubaLeftColor. png', 0.5);

function [vignettlmg, timeTaken]=funcVignettingEffeet(inputlmage, scaleLevel)
% Read the input image
try

% Read an image using imread function
inputImage=imread(inputlmage);
% grab the number of rows, columns, and channels
[nr, nc, nChannels]=size(inputlmage);
% Grab the image information (metadata) of input image using the

function imfinfo
inputImageInfo=imfinfo(inputlmage);
% Determine if input left, image is already in grayscale or color•
if(getfield(inputlmagelnfo, 'ColorType')=='truecolor')

colored=l;
else if(getfield(leftImageInfo, 'ColorType')=='grayscale')

colored=0;
else

117

error(*The Color Type .of Left Image is not acceptable,
color types are truecolor or grayscale.');

end
end

catch
% if it is not an image but a variable
inputImage=inputImage;
% grab the number of channels
[nr, nc, nChannels]=size(inputlmage);
if(nChannels)>1

colored=l;
else

colored=0;
end

end
if scaleLevel <= 0

error('Scale value must be > 0') ;
end
vignettImg=inputImage;
tic; % Initialize the timer to calculate the time consumed.
imgCntX = nc/2;
imgCntY = nr/2;
maxDistance = sqrt (imgCntYA2 + imgCntXA2) ;
if(colored==l)

for (i=l:nr)
for (j=l:nc)

dis = sqrt (abs(i-imgCntY)A2 + abs(j-imgCntX)A2) ;
%% reduce brightness of pixel based on distance from

center
vignettlmg(i,j,1) = vignettlmg(i,j,1)* (1

scaleLevel)*(dis/maxDistance));
vignettImg(i,j,2) = vignettlmg(i,j,2)* (1

scaleLevel)*(dis/maxDistance));
vignettlmg(i,j,3) = vignettlmg(i,j,3)* (1

scaleLevel)*(dis/maxDistance));
end

end
else
%gray

for (i=l:nr)
for (j=l:nc)

dis = sqrt (abs(i-imgCntY)A2 + abs(j-imgCntX)A2);
%% reduce brighness of pixel based on distance from

center
vignettlmg(i,j) = vignettlmg(i,j)* (1

scaleLevel)*(dis/maxDistance));
end

end
end
% Stop the timer to calculate the time consumed.
timeTaken=toc;

A.24 Introduce Scale change

55- * ' * ' * * * * ' * * * ' * * * * * * * * * * * * * * * *
O

% Title: Function-Add scale change to the image.
% Author: Siddhant Ahuja
% Created: September 2 008
% Copyright Siddhant Ahuja, 2008
% Inputs: Input Image (var: inputImage), Scale Change level (var:
% scaleLevel)Valid values for scale change should go from 0,1 to 1
% Outputs: Scale changed image (var: scaledlmg, Time taken (var: timeTaken)
% Example Usage of Function: [scaledlmg,
timeTaken] =f unc-ScaleChange (' TsukubaLef tColor , png', 0.5);
% * * k * * * * k *- * * * * * k * * * -A- * * * * * * * * * * * * * k k * * * * * * * * k k k * k k k * * k k k k * -k * k k k * k -k k * k k -k k k: k k o

function [scaledlmg, timeTaken]=funcScaleChange(inputlmage, scaleLevel)
% Read the input image
try

inputImage=imread(inputImage) ;
catch

inputImage=inputImage;
end
tic; % Initialize the timer to calculate the time consumed.
scaledlmg = inputlmage*(scaleLevel*10);
% Stop the timer to calculate the time consumed.
timeTaken=toc;

A.25 Introduce Gaussian noise

Oj *

% Title: Function Add gaussian noise to the image.
% Notes: Gaussian white noise has mean of 0 and
% variance V as the noiseLevel. When unspecified, M and. V default to 0 and
0.01 respectively.
% The mean and variance parameters for 'gaussian' noise are always specified.
as if for a double image
% in the range [0, 1]. If the input image is of class uint.8 or uintl6,
% the imnoise function converts the image to double, adds noise
% according to the specified type and parameters, and then converts the
% noisy image back, to the same class as the input.
% Author: Siddhant Ahuja
% Created: September 2006
% Copyright Siddhant Ahuja, 2008
% Inputs: Input. Image (var: inputlmage), Noise level (var: noiseLevel)
corresponds to 15dB;
%0.00002=>50;0.00004=>47;0.00006=>45;0.00012S=>42;0.00020=>40;0.00035=>37.5;0
.0006=>35;0.00117=>32.5;0.00195=>30;0.003 7=>27.5;0.0065=>25;0.012=>22.5;0.021
=>20;0.043=>17.5;
%0.09=>15;0.27=>12.5
% Outputs: Gaussian noise added image (var: gaussNoiselmg, Time taken (var:
timeTaken)

119

% Example Usage of Funct ion: [gaussNoiselmg,
t imeTaken]=funcGaussianNoise{ 'TsukubaLeft . jpg ' , 0 .09) ;
% ****** kk*kkk + * * * * ^ k k * k k k * * k k * k * k + * k k k * k k * * * k k * * k k * k k k * k * k * k k k * k * k k k k k * - k k k

function [gaussNoiselmg, timeTaken]=funcGaussianNoise(inputlmage, noiseLevel)
% Read the input image
try

inputImage=imread(inputImage);
catch

inputImage=inputImage;
end
tic; % Initialize the timer to calculate the time consumed.
gaussNoiselmg = imnoise (inputlmage, 'gaussian', 0,noiseLevel);
% Stop the timer to calculate the time consumed.
timeTaken=toc;

A.26 Adjust Gamma variation

% k k * * * •* * * * * * * -k * * * * * yr * * k * * -k k * * * * * * * * -k * * * -k * X * * * -k k k * * * * * * k * * -A * * * * -A- * * * -A- * * * * * * *

% T i t l e : Function-Add gamma change to the irrrage.
% Author: Siddhant Ahuja
% Created: September 2008
% Copyright Siddhant Ahuja, 2008
% Inputs: Input Image (var: inputlmage), Gamma Change level (var:
% gammaLevel)Valid values for gamma change should go from 0.1 to 5
% Outputs: Gamma changed image (var: gamrnalmg, lime taken (var: timeTaken)
% Example Usatge of Function: [gamrnalmg,
timeTaken]=funcGaminaChange('TsukubaLeftCoIor.png' , 0.5);
!£ ***

function [gamrnalmg, timeTaken]=funcGammaChange(inputlmage,gammaLevel)
% Read the input image
try

% Read an image using imread function
inputImage=imread(inputlmage);
% Grab the image information (metadata.) of input image using the

function imfinfo
inputImageInfo=imfinfo(inputlmage);
% Determine if input left image is already in grayscale or color
if(getfield(inputImageInfo,'ColorType')=='truecolor')

colored=l;
else if (getfielddeftlmagelnfo, 'ColorType')==' grayscale ')

colored=0;
else
error(*The Color Type of Left Image is not acceptable. Acceptable

color types are truecolor or grayscale.');
end

end
catch

% if it is not an image but a variable
inputImage=inputlmage;
% grab the number of channels
[nr, nc, nChannels]=size(inputlmage);
if(nChannels)>1

120

colored=l;
else

colored=0;
end

end
if gammaLevel <= 0

error('Gamma value must be > 0');
end
if isa(inputlmage,'uint8");

gammalmg = double(inputImage);
else

gammalmg = inputImage;
end
tic; % Initialize the timer to calculate the time consumed,
if(colored==l)

% Red component
gammalmg(:,:,1) = gammalmg(:,:,1)-min(min(gammalmg(:,:,1)));
gammalmg(:, :,1) = gammalmg(:, :,1) ./max(max(gammalmg(:, :, 1))) ;
gammalmg(:,:,1) = gammalmg(:,:,1).A(1/gammaLevel); % Apply gamma

function
% Green component
gammalmg(:, :,2) = gammalmg(:,:,2)-min(min(gammalmg(:,:, 2))) ;
gammalmg(:,:,2) = gammalmg(:,:,2)./max(max(gammalmg(:,:,2)));
gammalmg(:,:,2) = gammalmg(:,:,2).A(1/gammaLevel); % Apply gamma

function
% Blue component
gammalmg(:,:,3) = gammalmg(:,:,3)-min(min(gammalmg(:,:, 3))) ;
gammalmg(:,:,3) = gammalmg(:,:,3) ./max(max(gammalmg(:,:, 3))) ;
gammalmg(:,:,3) = gammalmg(:,:, 3) . A (1/gammaLevel); % Apply gamma

function
else

gammalmg(:,:) = gammalmg(:,:)-min(min(gammalmg(:,:)));
gammalmg(:,:) = gammalmg(:,:)./max(max(gammalmg(:,:)));
gammalmg(:,:) = gammalmg(:,:).A(1/gammaLevel); % Apply gamma function

end
% Stop the timer to calculate the time consumed.
timeTaken=toc;

A.27 Generate Variance Map

% * I T *

% Title: Function-Compute Variance map of the image
% Author: Siddhant Ahuja
% Created: May 2008
% Copyright Siddhant Ahuja, 2008
% Inputs: Input Image (var: inputlmage), Window Size (van windowSize),
% Threshold (var: thresh) Typical value is 140
% Outputs: Variance Map (var: variancelmg) , Time taken (var: timeTaken)
% Example Usage of Function: [variancelmg,
timeTaken]=funcVarianceMap('TsukubaLeftColor.png', 9, 1);
a - *• * * * * * * * * * •*• * * * * * *

121

function [variancelmg, timeTaken]=funcVarianceMap(inputlmage, windowSize,
thresh)
try

% Grab the image information (metadata) of input image using the function
imfinfo

inputlmagelnfo=imfinfo(inputlmage);
if(getfield(inputlmagelnfo, 'ColorType')=='truecolor') ,
% Read an image using imread function, convert from RGB color space to
% grayscale using rgb2gray function and assign it to variable inputlmage

inputlmage=rgb2gray(imread(inputlmage));
% Convert the image from uintS to double
inputImage=double(inputlmage);

else if(getfield(inputlmagelnfo,'ColorType')=='grayscale')
% If the image is already in grayscale, then just read it.

inputImage=imread(inputlmage) ;
% Convert the image from uintS to double
inputImage=double(inputlmage);

else
error('The Color Type of Left Image is not. acceptable. Acceptable

color types are truecolor or grayscale.');
end

end
catch

% if it is not an image but a variable
inputImage=inputImage;

end
% Find the size (columns and rows) of the input image and assign the rows to
% variable nr, and columns to variable nc
[nr,nc] = size(inputlmage);
% Check the size of window to see if it is an odd number,
if (mod(windowSize,2)==0)

error('The window size must be an odd number.');
end
% Create an image of size nr and nc, fill it with zeros and assign
% it to variable meanlmg
meanImg=zeros(nr, nc);
% Create an image of size nr and nc, fill it with zeros and assign
% it to variable variancelmg
varianceImg=zeros(nr, nc) ;
% Find out how many rows and columns are to the left/right/up/down of the
% central pixel based on the window size
win=(windowSize-1)/2;
tic; % Initialize the timer to calculate the time consumed.
% Compute a map> of mean values
for(i=l+win:1:nr-win)

for(j=l+win:1:nc-win)
sum=0.0;
for(a=-win:1:win)

for(b=-win:1:win)
sum=sum+inputlmage(i+a,j+b);

end
end
meanlmg(i,j)=sum/(windowSize*windowSize);

end
end
% Compute a map of variance values
for(i=l+win:1:nr-win)

for(j=l+win:1:nc-win)
sum=0.0;
for(a=-win:1:win)

for(b=-win:1:win)
sum=sum+((inputImage(i+a,j+b)-meanlmg(i, j))A2);

end
end
varianceImg(i,j)=sum/((windowsize*windowsize)-1) ;

end
end
% Apply threshold to produce a bi.nari.zed variance map
for(i=l+win:1:nr-win)

for(j=l+win:1:nc-win)
if (variancelmg(i,j) > thresh)

variancelmg(i,j) = 255;
else

variancelmg(i,j) = 0 ;
end

end
end
% Stop the timer to calculate the time cons\imed.
timeTaken=toc;

A.28 Post-processing algorithm

9,r * * * *' 'k * * * * * * * ~k 'k * * * 'k * * * ~k * * -k -k -k * -k * -k * -k -k X * *- -k -k -k * -k -k -k -k * ~k * *

% Title: Function-Post process an image
% Author: Siddhant Ahuja
% Created: Septembed 2008
%' Copyright Siddhant Ahuja, 2008
% Inputs: Image (var: inputImage), Disparity Map {var: dispMap), Threshold
% for 'variance map of input image {var:: threshlxt) typically 135, Threshold
for variance
% map of input Disparity Map (var: tnreshTdisp) typically 17
% Outputs: Post Processed Image {var: postProcessedlmg),
% Time taken (var: timeTaken)
% Example Usage of Function: [postProcessedlmg,
% timeTaken] =funcPostProcess {' imL.png', ' disp___l__r ,prigr, 1.35, 17)
%_ y>; -k -k k y=: •k -k k ~k ~k * ~k f-. k k ~k "A" k: -k k -k •£; -k k fr i<; -k k "k -k -k -k ~k i<: k -k -k k: -k -k k k: -k -k ~k k: -k -k k y1-: i<: •k k k: k: -k k k, k: k k k, k; ~k k k k: -k k k. k: k -k

function [postProcessedlmg, timeTaken]=funcPostProcess(inputlmage, dispMap,
threshTxt, threshTdisp)
tic; % Initialize the timer to calculate the time consumed.
% Compute Variance map of input image
[variancelnputlmg, time]=funcVarianceMap(inputlmage, 9, threshTxt);
% Compute Variance map of input disparity map
[varianceDispMap, time]=funcVarianceMap(dispMap, 9, threshTxt);
postProcessedImg=imread(dispMap);
[nr, nc]=size(postProcessedlmg);
for(i=l:l:nr)

for(j=l:1:nc)
if(variancelnputlmg(i,j)<=threshTxt | |

varianceDispMap(i,j)>=threshTdisp)

123

http://bi.nari.zed

postProcessedlmg(i,j)=0;
end

end
end
% Stop the timer to calculate the time consumed.
timeTaken=toc;

A.29 Initialize 2001 Dataset from Middlebury
% Initialize 2001 Dataset array of structures

% barnl
Dataset2001(l).index=l;
Dataset2001 (1) .name='barnl';
Dataset20 01 (1) . leftlmage=' im2 .pprn' ;
Dataset2001 (1) . rightlmage='im6.pprn';
Dataset2001(1).groundTruthL2R='disp2.pgm';
Dataset2001(1).groundTruthR2L='disp6.pgm';
Dataset2001(1).dispMax=16;
Dataset2001(1).scale=8;

% barn2
Dataset2001(2).index=2;
Dataset2001(2).name='barn2';
Dataset2001 (2) .leftlmage='im2.ppm';
Dataset2 001 (2) .rightlmage='im6.ppm';
Dataset2001(2).groundTruthL2R='disp2.pgm';
Dataset2001 (2) .groundTruthR2L='disp6.pgm';
Dataset2001(2).dispMax=20;
Dataset2001(2).scale=8;

% bull
Dataset2001(3).index=3;
Dataset2001(3).name='bull';
Dataset2001 (3) .leftImage='im2.ppm';
Dataset2001 (3) .rightImage='im6.ppm';
Dataset2001(3).groundTruthL2R='disp2.pgm';
Dataset2001(3).groundTruthR2L='disp6.pgm';
Dataset2001(3).dispMax=20;
Dataset2001(3).scale=8;

% map
Dataset2001(4).index=4;
Dataset2 001(4).name='map';
Dataset2001(4).leftlmage='imO.pgm';
Dataset2001(4).rightImage='iml.pgm';
Dataset2 0 01(4) .groundTruthL2R='dispO.pgm!;
Dataset2001(4).groundTruthR2L='displ.pgm';
Dataset2001(4).dispMax=30;
Dataset2001(4).scale=8;

Dataset2001(5).index=5;

124

Dataset2001(5).name='poster';
Dataset2001(5).leftlmage='im2.ppm';
Dataset2001(5).rightlmage='im6.ppm';
Dataset2001(5).groundTruthL2R='disp2
Dataset2001(5).groundTruthR2L='disp6
Dataset2001(5).dispMax=20;
Dataset2001(5).scale=8;

:o sawtooth
Dataset2001(6).index=6;
Dataset2001(6).name='sawtooth';
Dataset2001 (6) .leftlmage=' im2.ppm' ;
Dataset2001(6).rightlmage='im.6.ppm';
Dataset2001 (6) .groundTruthL2R='disp2.pgrn' ;
Dataset2001 (6) .groundTruthR2L='disp6 .pgm' ;
Dataset2001(6).dispMax=20;
Dataset2001(6).scale=8;

% tsukuba
Dataset2001(7).index=7;
Dataset2001 (7) .name='tsukuba';
Dataset2001(7).leftlmage='imL.png';
Dataset2001(7).rightImage='imR.png';
Dataset2001(7).groundTruthL2R='truedispl.row3.col3.pgm';
Dataset2001(7).groundTruthR2L='truedisp2.row3.col3.pgm';
Dataset2001(7).dispMax=30;
Dataset2001(7).scale=16;

% venus
Dataset2001(8).index=8;
Dataset2001(8).name=*venus';
Dataset2001(8).leftImage='imL.png';
Dataset2001 (8) .rightImage='imR.png';
Dataset2001(8).groundTruthL2R='disp2.pgm';
Dataset2001 (8) .groundTruthR2L='disp6.pgm';
Dataset2001(8).dispMax=20;
Dataset2001(8).scale=8;

A.30 Initialize 2003 Dataset from Middlebury

% Initialize 2003 Dataset array of.structures

% teddy
Dataset2003(1).index=l;
Dataset2003(1).name='teddy';
Dataset2003(1).leftlmage='imL.png';
Dataset20 03(1).rightImage='imR.png';
Dataset2003(1).groundTruthL2R=*disp2.png";
Dataset20 03(1).groundTruthR2L= * dispo.png';
Dataset2003(l).dispMax=53;
Dataset2003(1).scale=4;

.pgm';

.pgm';

% cones
Dataset2003(2).index=2;
Dataset2003 (2) .name='cones';
Dataset2003(2).leftlmage='imL.png';
Dataset2003(2) .rightlmage='imR.png' ;
Dataset2003(2).groundTruthL2R='disp2.png*;
Dataset2003(2).groundTruthR2L='disp6.png';
Dataset2003(2).dispMax=55;
Dataset2003(2).scale=4;

A.31 Initialize 2006 Dataset from Middlebury

% Initialize 2006 Dataset array of structures

Dataset2006 (1) .index=l;
Dataset2006(1).name='aloe';
Dataset2006(1) .leftlmage='viewl.png' ;
Dataset2006(1) .rightlmage=!view5.png' ;
Dataset2006(1).groundTruthL2R=!displ.png';
Dataset2006(1).groundTruthR2L='dispS.png';
Dataset2006(1).dispMax=70;
Dataset2006(1).scale=3;

% babyl
Dataset2006 (2) .index=2;
Dataset2006(2).name='babyl';
Dataset2006(2).leftlmage='viewl.png!;
Dataset2006(2) .rightImage='view5.png' ;
Dataset2006(2).groundTruthL2R='displ.png';
Dataset2006(2).groundTruthR2L='disp5.png';
Dataset2006(2).dispMax=45;
Dataset2006(2).scale=3;

% baby2
Dataset2006 (3) .index=3;
Dataset2006(3).name='baby2*;
Dataset2006(3).leftlmage='viewl.png';
Dataset2006(3) .rightlmage='viewS.png' ;
Dataset2006(3).groundTruthL2R=!displ.png';
Dataset2006(3).groundTruthR2L='disp5.png';
Dataset2006(3).dispMax=53;
Dataset2006(3).scale=3;

Dataset2006(4).index=4;
Dataset2006(4).name='baby3';
Dataset2006(4) .leftlmage='viewl.png';
Dataset2006 (4) . rightlmage=" viev/5 .png' ;
Dataset2006(4).groundTruthL2R='displ.png';
Dataset2006(4).groundTruthR2L=*dispS.png';

126

Dataset2006 (4) .dispMax=51;
Dataset2006(4).scale=3;

% bowlingl
Dataset2006 (5) .index=5;
Dataset2006(5).name='bowlingl';
Dataset2006(5).leftlmage='viewl.png*;
Dataset2006 (5) .rightlmage=' viewS ,p.ng' ;
Dataset2006(5).groundTruthL2R='displ.png';
Dataset2006(5).groundTruthR2L='disp5 .prig';
Dataset2006(5).dispMax=77;
Dataset2006(5).scale=3;

% bo"»*ling2
Dataset2006(6).index=6;
Dataset2006(6).name='bowling2';
Dataset2006 (6) . leftlmage=' viewl .prig* ;
Dataset2006(6).rightImage='view5.png';
Dataset2006(6).groundTruthL2R='displ.png';
Dataset2006(6).groundTruthR2L='disp5.png';
Dataset2006(6).dispMax=67;
Dataset2006(6).scale=3;

% clothl
Dataset2006(7).index=7;
Dataset2006 (7) .name=*clothl';
Dataset2006(7).leftlmage='viewl.png';
Dataset2006(7).rightlmage='view5.png';
Dataset2006(7).groundTruthL2R='displ.png';
Dataset2006(7).groundTruthR2L='dispS.png';
Dataset2006(7).dispMax=57;
Dataset2006(7).scale=3;

% cioth2
Dataset2006(8).index=8;
Dataset2006 (8) .name='cloth2';
Dataset2006(8).leftImage=!viewl.png';
Dataset2006(8).rightlmage='viewS.png';
Dataset2006(8).groundTruthL2R='displ.png';
Dataset2006(8).groundTruthR2L='disp5.pngf;
Dataset2006(8).dispMax=77;
Dataset2006(8).scale=3;

% cloth3
Dataset2006(9).index=9;
Dataset2006(9).name='clothS';
Dataset2006(9).leftlmage='viewl.png';
Dataset2006(9).rightlmage='view5.png';
Dataset2006 (9) .groundTruthL2R='clispl .png' ;
Dataset2006(9).groundTruthR2L='dispS.png';
Dataset2006(9).dispMax=55;
Dataset2006(9).scale=3;

% cloth4
Dataset2006(10).index=10;
Dataset2006 (10) .name='cloth4 ' ;

127

Dataset2006 (10) . lef tlmage= ' viswl .prig' ;
Dataset2 006(10).rightImage='view5.png';
Dataset2006(10).groundTruthL2R='displ.png';
Dataset2006(10).groundTruthR2L='disp5.png';
Dataset2006(10).dispMax=67;
Dataset2006(10).scale=3;

% flowerpots
Dataset2006(11).index=ll;
Dataset2006(11).name='flowerpots';
Dataset2 006(11).leftImage='viewl.png';
Dataset2006 (11) . rightlmage='vi.sw5 .prig' ;
Dataset2006 (11) . groundTruthL2R='displ .prig' ;
Dataset2006(11).groundTruthR2L='disp5.png';
Dataset2006(11).dispMax=61;
Dataset2006(11).scale=3;

% lampshade1
Dataset2006(12).index=12;
Dataset2006(12).name='lampshadel';
Dataset2006(12).leftlmage='viewl.png';
Dataset2006(12).rightImage='viewS.png';
Dataset2006(12).groundTruthL2R='displ.png';
Dataset2006 (12) . groundTruthR2L=' disp5 . prig ' ;
Dataset2006(12).dispMax=65;
Dataset2006(12).scale=3;

% lampshade2
Dataset2006 (13) .index=13;
Dataset2006(13).name='lampshade2';
Dataset2006(13).leftlmage='viewl.png';
Dataset2006(13).rightImage='view5.png';
Dataset2006(13).groundTruthL2R='displ.png';
Dataset2006(13).groundTruthR2L='disp5.png';
Dataset2006(13).dispMax=65;
Dataset2006(13).scale=3;

% middl
Dataset2006 (14) .index=14;
Dataset2 006(14) .name=!middl' ;
Dataset20 06(14).leftImage='viewl.png';
Dataset2006(14).rightImage='view5.png';
Dataset2006(14).groundTruthL2R='displ.png';
Dataset2006(14).groundTruthR2L='disp5.png';
Dataset2006(14).dispMax=69;
Dataset2006 (14) .scale=3;

% midd2
Dataset2006 (15) .index=15;
Dataset2006(15).name='midd2';
Dataset2 0 06(15).leftImage='viewl.png';
Dataset2006(15).rightlmage='view5.png';
Dataset2006(15).groundTruthL2R='displ.png';
Dataset2006(15).groundTruthR2L='disp5.png';
Dataset2006(15).dispMax=63;
Dataset2006(15).scale=3;

% monopoly
Dataset2006(16).index=16;
Dataset2006(16).name='monopoly';
Dataset2006(16). leftlmage='viewl,png';
Dataset2006(16).rightImage='viewS.png';
Dataset2006(16).groundTruthL2R='displ.png';
Dataset2006(16).groundTruthR2L='disp5.png*;
Dataset2006(16).dispMax=65;
Dataset2006(16).scale=3;

% plastic
Dataset2006(17).index=17;
Dataset2006(17).name='plastic';
Dataset2006(17).leftlmage='viewl.png';
Dataset2006(17) .rightImage='viewS.png' ;
Dataset2006(17).groundTruthL2R=rdispl.png';
Dataset2006(17).groundTruthR2L='disp5.png';
Dataset2006 (17) .dispMax=65;
Dataset2006(17).scale=3;

% rocksl
Dataset2006(18).index=18;
Dataset2006(18).name='rocksl';
Dataset2006(18).leftlmage='viewl.png';
Dataset2006(18).rightlmage='viewS.png';
Dataset2006(18).groundTruthL2R='displ.png';
Dataset2006(18).groundTruthR2L='disp5.png';
Dataset2006 (18) .dispMax=57;
Dataset2006 (18) .scale=3;

% rocks2
Dataset2006(19).index=19;
Dataset2006(19).name='rocks2';
Dataset2006(19).leftlmage='viewl.png';
Dataset2006(19).rightImage='view5.png';
Dataset2006 (19) . groundTruthL2R=' displ .prig ' ;
Dataset2006(19).groundTruthR2L='dispS.png';
Dataset2006(19).dispMax=57;
Dataset2006(19).scale=3;

% woodl
Dataset2006(20).index=20;
Dataset2006(20).name='woodl';
Dataset2006(20).leftImage="viewl.png';
Dataset2006(20).rightImage='viewS.png';
Dataset2006(20).groundTruthL2R='displ.png';
Dataset2006(20).groundTruthR2L='dispS.png';
Dataset2006(20).dispMax=73;
Dataset2006(20).scale=3;

% VvOod2
Dataset2006(21).index=21;
Dataset2006(21).name='wood2';
Dataset2006(21).leftlmage="viewl.png';
Dataset2006(21).rightImage=!view5.png';

Dataset2006 (21) . groundTruthL2R='displ .prig' ;
Dataset2006(21).groundTruthR2L='disp5.png';
Dataset2006(21).dispMax=73;
Dataset2006(21).scale=3;

130

Bibliography

[1] R. Cooper. (1995) Magic Eye How to See 3D. [Online], http://www.vision3d.com/stereo.html

[2] D. Scharstein and R. Szeliski, "A taxonomy and evaluation of dense two-frame stereo

correspondence algorithms," International Journal of Computer Vision, vol. 47(1/2/3), pp. 7-42, Apr.

2002.

[3] P. F. Felzenszwalb and D. P. Huttenlocher, "Efficient Belief Propagation for Early Vision,"

International Journal of Computer Vision, vol. 70, no. 1, pp. 41-54, Oct. 2006.

[4] Y. Boykov, O. Veksler, and R. Zabih, "Fast Approximate Energy Minimization Via Graph Cuts,"

IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 23, no. 11, pp. 1222-1239,

Nov. 2001.

[5] C. Murphy, et al., "Low-Cost Stereo Vision on an FPGA," in IEEE FCCM, April 2007, pp. 333-334.

[6] Y. Ruigang, M. Pollefeys, and L. Sifang, "Improved Real-Time Stereo on Commodity Graphics

Hardware," in IEEE CVPR Workshop, June 2004, pp. 36-44.

[7] L. D. Stefano, M. Marchionni, and S. Mattoccia, "A PCbased real-time stereo vision system,"

International Journal of Machine Graphics and Vision, vol. 13, no. 3, pp. 197-220, Jan. 2004.

[8] G. v. d. Wal, M. Hansen, and M. Piacentino, "The Acadia vision processor," in Proceedings of 5th

International Workshop on Computer Architecture for Machine Perception, Padova, Italy, 2001, p.

31-40.

[9] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nister, "High-Quality Real-Time Stereo Using

Adaptive Cost Aggregation and Dynamic Programming," in 3DPVT, 2006, pp. 798-805.

[10] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka, "A Stereo Machine for Video-Rate Dense

Depth Mapping and Its New Applications," in Proceedings of the 1996 Conference on Computer

131

http://www.vision3d.com/stereo.html

Vision and Pattern Recognition (CVPR '96), 1996, p. 196.

[11] J. Woodfill and B. V. Herzen, "Real-Time Stereo Vision on the PARTS Reconfigurable Computer,"

in The 5th Annual IEEE Symposium on FPGAsfor Custom Computing Machines, Napa Valley, CA,

USA, 1997, pp. 201-210.

[12] K. Konolige, "Small vision system, hardware and implementation," in Proc. International

Symposium on Robotics Research, Hayama, Japan, 1997, pp. 111-116.

[13] J. I. Woodfill, G. Gordon, and R. Buck, "Tyzx DeepSea High Speed Stereo Vision System," in

Conference on Computer Vision and Pattern Recognition Workshop, 2004 (CVPRW '04), June 2004,

p. 41.

[14] (2008, Sep.) STOC Stereo on a Chip. [Online], http://www.videredesign.com/vision/stoe.htm

[15] Y. Jia, X. Zhang, M. Li, and L. An, "A Miniature Stereo Vision Machine (MSVM-JH) for Dense

Disparity Mapping," in Proceedings of the Pattern Recognition, 17th International Conference on

(ICPR'04) Volume 1 - Volume 01, 2004, pp. 728-731.

[16] (2008, Sep.) Bumblebee®2 Stereo vision camera by PointGrey research. [Online].

http://www.ptgrey.com/products/bumblebee2/

[17] H. Hirschmuller and D. Scharstein, "Evaluation of Cost Functions for Stereo Matching," in IEEE

CVPR, June 2007, pp. 1-8.

[18] H. Hirschmuller, "Improvements in Real-Time Correlation-Based Stereo Vision," in Proceedings of

the IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV'01), Washington, DC, USA, 2001,

p. 141.

[19] S. Ahuja, B. Khaleghi, and Q. M. J. Wu, "An improved real-time miniaturized embedded stereo

vision system (MESVS-II)," in IEEE Computer Society Conference on Computer Vision and Pattern

Recognition Workshops, 2008 (CVPRW'08), Anchorage, Alaska, 23-28 June 2008, pp. 1-8.

[20] S. Ahuja, B. Khaleghi, and Q. M. J. Wu, "A New Miniaturized Embedded Stereo-Vision System

(MESVS-I)," in Canadian Conference on Computer and Robot Vision, 2008 (CRV '08), 28-30 May

132

http://www.videredesign.com/vision/stoe.htm
http://www.ptgrey.com/products/bumblebee2/

2008, pp. 26-33.

[21] (2008, Sep.) Selecting Processors for Video Applications. [Online], http://www.bdti.com

[22] D. J. Katz and R. Gentile, Embedded Media Processing. New York, USA: Elsevier, 2006.

[23] (2008, Sep.) High-Speed Board Layout Guidelines. [Online].

http://www.altera.com/literature/an/an224.pdf

[24] N. Gianotti. (2008, Jun.) Fully automated PCB test: in-line automated loading and unloading allows

low-volume, high-mix product testing to continue around the clock, Printed Circuit Design &

Manufacture. [Online], http://www.entrepreneur.com/tradejournals/article/165362399.html

[25] (2008, Sep.) Camera Calibration Toolbox for Matlab. [Online].

www.vision.caltech.edu/bouguetj/calib doc/

[26] R. Zabih and W. John, "Non-parametric local transforms for computing visual correspondence," in

ECCV, 2004, pp. 151-158.

[27] B. Cyganek, "Comparison of Nonparametric Transformations and Bit Vector Matching for Stereo

Correlation," in Combinatorial Image Analysis, Lecture Notes in Computer Science. Springer Berlin

/ Heidelberg, 2005, vol. Volume 3322/2005, pp. 534-547.

[28] J. Banks and P. Corke, "Quantitative Evaluation of Matching Methods and Validity Measures for

Stereo Vision," The International Journal of Robotics Research, vol. 20, no. 7, pp. 512-532, Jul.

2001.

[29] T. Kanade, H. Kano, and S. Kimura, "Development of a video-rate stereo machine," in Image

UnderstandingWorkshop, Monterey,CA, 1994, p. 549-557.

[30] L. D. Stefano, M. Marchionni, S. Mattoccia, and G. Neri, "A Fast Area-Based Stereo Matching

Algorithm," Image and Vision Computing, Proceedings from the 15th International Conference on

Vision Interface, vol. 22, no. 12, pp. 983-1005, Oct. 2004.

133

http://www.bdti.com
http://www.altera.com/literature/an/an224.pdf
http://www.entrepreneur.com/tradejournals/article/165362399.html
http://www.vision.caltech.edu/bouguetj/calib

[31] L. D. Stefano, M. Marchionni, S. Mattoccia, and G. Neri, "A Fast Area-Based Stereo Matching

Algorithm," in 6th IAPR/IEEE International Conference on Pattern Recognition (ICPR 2002),

Quebec City, Canada, August 11-15, 2002.

[32] G. Egnal and R. P. Wildes, "Detecting binocular half-occlusions: empirical comparisons of five

approaches," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 8, pp.

1127-1133, Aug. 2002.

[33] B. Khaleghi, Miniaturized Embedded Stereo Vision System (MESVS). Windsor, ON, Canada: MASc.

Thesis, University of Windsor, 2008.

[34] D. Scharstein and R. Szeliski, "High-accuracy stereo depth maps using structured light," in IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), vol. 1,

Madison, WI, June 2003, pp. 195-202.

[35] D. Scharstein and C. Pal, "Learning Conditional Random Fields for Stereo," in IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR 2007), Minneapolis, MN,

June 2007, pp. 1-8.

[36] (September,) Estimating Power for ADSP-BF561 Blackfin® Processors, Analog devices Engineer-

to-Engineer note 293. [Online], www.analog.com

[37] M. J. Hannah, "Computer Matching of Areas in Stereo Images," in PhD Thesis, Stanford University,

1974.

134

http://www.analog.com

Vita Auctoris

Siddhant Ahuja was born in 1984 in India. He went on to the University of Windsor, where he obtained a

B.A.Sc. in Electrical and Computer Engineering in 2007. He is currently a candidate for the Master of

Applied Science degree in Electrical and Computer Engineering at the University of Windsor, and plans

to graduate in Spring 2009.

135

	Design and implementation of a real-time miniaturized embedded stereo-vision system
	Recommended Citation

	ProQuest Dissertations

