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Abstract 

The main motivation of the thesis is to develop a fully integrated, modular, small baseline (<=3cm), low 

cost (<=CAD$600), real-time miniaturized embedded stereo-vision system which fits within 5x5cm and 

consumes very low power (700mA@3.3V). The system consists of two small profile cameras and a dual-

core embedded media processor, running at 600MHz per core. The stereo-matching engine performs sub-

sampling, rectification, pre-processing using census transform, correlation-based Sum of Hamming 

Distance matching using three levels of recursion, LRC check and post-processing. The novel post 

processing algorithm removes outliers due to low-texture regions and depth-discontinuities. A 

quantitative performance of the post processing algorithm is presented which shows that for all regions, it 

has an average percentage improvement of 13.61% (based on 2006 Middlebury dataset). To further 

enhance the performance of the system, optimization steps are employed to achieve a speed of around 

lOfps for disparity maps in MESVS-I and 20fps in MESVS-II system. 
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Chapter 1 

Introduction 

The process of obtaining geometric models in three-dimensions that represent with precision a real world 

object is referred to as shape/range/depth acquisition. It finds applications in several areas, including 

photogrammetry, archaeology, reverse engineering, robotic guidance, virtual reality, medicine, cinema, 

game programming, and others. A precise 3-D model is hard to acquire and numerous methods can be 

found in the literature which are used to acquire shapes of objects, each with their own advantages and 

disadvantages. Figure 1 shows the taxonomy of shape acquisition techniques. 

Non
destructive 

Figure 1. Taxonomy of shape acquisition techniques. 

Contact measurement techniques produce highly accurate 3D shapes; however the equipment 

used is often very expensive and requires the presence of an operator. On the other hand, optical range 

scanning methods are less invasive (non-contact), safer to use, less expensive, and relatively faster than 
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non-optical techniques. However, they suffer from many disadvantages including high sensitivity to 

transparencies, specularities, occlusion, depth-discontinuities, inter-reflections and low texture regions. 

Figure 2 shows the taxonomy of optical depth measurement techniques. 

mi 

Figure 2. Taxonomy of optical depth measurement techniques. 

Active vision techniques require the application of external power for the operation of the 

sensors. The excitation signal is modified by the sensor to produce an output. Even though they are highly 

efficient (often matched to the target characteristics), and enable long range operations, they are restricted 

to the frequencies that can be generated and radiated easily. This excludes part of the far IR (Infra-red), 

the UV (Ultra-Violet) and gamma ray spectra. They are more complex and less reliable as compared to 

the passive vision techniques. 

Passive vision techniques rely on sensors that directly generate an electric signal in response to a 

stimulus. They do not emit radiation, and thus enable covert operations. However, they rely on a locally 

generated or natural source of radiation (sunlight) or a field (gravity), and are prone to feature ambiguity 

and errors of scale. Typically, they can operate from ELF-Extremely Low Frequencies (<3xl03 Hz) to 
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gamma rays (>3xl019 Hz). Even though they offer good reliability due to the inherent simplicity, the 

availability at all times is not guaranteed (contrast, light levels etc.). 

Shape from shading is one of the forms of passive vision techniques which estimates surface 

normals and integrates to find the surfaces. It assumes that the surface has a known, constant reflectance, 

and is surrounded by known lighting condition. It employs a similar mechanism to human vision system, 

can work with a single image, and does not require correspondence estimation. However, it suffers from 

the problem of ambiguity, is mathematically unstable and is not very practical. 

Shape from silhouettes involves detecting 2D set of closed contours that outline the projection of 

the object onto the image plane. It requires taking a lot of images from different positions around the 

object, after which the silhouette is segmented. The larger the number of images acquired, the better is the 

fit of the final 3D shape. However, due to occluded regions, and non-convex object shapes, this technique 

only results in a crude model of the real world. 

Shape from focusing and defocusing relies on capturing multiple frames by stepping the focal 

point of the camera in order to estimate the structure of the 3D object. Passive version of this technique is 

very impractical for capturing shapes of real-world objects. 

Stereo vision technique gives depth, which is typically lost in perspective projection. Stereo 

vision systems take advantage of the fact that the depth of the objects in the scene can be inferred from 

the relative displacements, also called disparities, of the objects in the scene, when observed from two 

viewpoints, separated by a distance. Figure 3 illustrates the way we perceive depth. 

Figure 3. Human visual depth perception [1]. 
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The main objectives of the stereo-vision technique are to find: 

a. Correspondence geometry (given a point x in the first view, what is the position of the 

corresponding point x' in the second image?), 

b. Camera geometry (given a set of corresponding image points, what is the geometric 

transformation between the views?), and 

c. Scene geometry (given corresponding image points and geometric transformation between the 

two camera views, what is the position of the point x in 3D space?). 

Figure 4 shows the epipolar geometry or the canonical configuration of the two cameras with parallel 

optical axis. 

FoV 

T 
/ 
_L 

D 

D 

J9JL i 

setts. 

n % 

Object 

Camera Image Sensor 

Figure 4. Epipolar geometry-Canonical configuration of two cameras with parallel optical axis. 

Epipolar geometry is the projective geometry between two optical views which are independent 

of the scene's structure, and only depend on the cameras' internal and external parameters. Based on these 
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parameters, search can be restricted to only one dimension across the epipolar line. The final depth can be 

calculated from the following equation: 

b*f 
Depth = — 

Disparity 

(1) 

where, 

b is the baseline (camera separation), and/is the focal length. 

In Figure 4, 

q is the camera angular FoV (Field of View), 

Dsens is the sensor width, 

n is the number of pixels, 

p is the pixel width, 

a is the object extent, 

D is the distance to object, 

OL is the left camera's optical centre, and 

OR is the right camera's optical centre 

Some of the applications of the stereo-vision technique include 3D scene reconstruction, 

miniaturized mobile robotics, 3D object tracking, industrial automation, random bin-picking, volume 

measurement, automotive part measurement, topographical survey, and view synthesis amongst others. 

Figure 5 shows the left and right images from the pentagon dataset and the corresponding 3D 

reconstructed view based on correspondence between the images. 
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Left Image Right Image 

3-D Reconstructed view based on correspondence 

Figure 5. Left and right images from the pentagon dataset (top), and the corresponding 3-D 

reconstructed view based on correspondence between the images (bottom)1. 

There are two main categories of methods used in the field of stereo vision to compute the final 

disparity map-local (also known as area-based method) and global methods [2]. In local (window-based) 

methods, the disparity computation for a given pixel is dependent on the intensity values of the pixels 

surrounding it. By aggregating the support within a window, there is an implicit assumption made of 

smoothness. On the other hand, global algorithms tend to minimize the energy or cost function by 

making an explicit smoothness assumption and optimizing the disparity computation problem. Global 

algorithms tend to be computationally intensive and are not suitable for fast hardware implementations, 

1 Geiger, Davi, Lecture 6, http://www.cs.nyu.edu/courses/spring08/G22.2271-001/index.html 
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even though they produce a high quality disparity map, as compared to the local algorithms. Figure 6 

shows the common local, global and hybrid approaches to finding correspondence. 

Figure 6. Local, global and hybrid approaches to finding correspondence in stereo-vision. 

Stereo-vision has been one of the most heavily investigated areas of research in the field of 

computer vision. Even though many new algorithms [3], [4] introduced in this field focused on the 

quality and accuracy of the disparity (depth) maps, their successful implementation depends on the 

complexity of the algorithm and the availability of the hardware platform, which has a direct impact on 

their suitability for real-time implementation. 

Some of the challenges facing the stereo-vision technique include variable illumination, 

specularities in the scene (non-Lambertian), image noise, camera gain & bias, image sampling and 

pixelization error, regions that are occluded, low-texture regions, and depth-discontinuous regions. 

Some of the examples of real-time, operational stereo vision systems in the literature include 

systems relying on FPGA [5], commodity graphics [6], PC [7], ASIC [8] and hybrids incorporating 

various processor types [7]. The main focus of majority of these systems is on the raw performance, 

rather than on the size, quality and power consumption. 
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The aim of the thesis is to develop a fully integrated, small, modular, low-cost, efficient, real

time, miniaturized embedded stereo vision system (MESVS) which should be robust in-terms of 

radiometric variations, and should be capable of producing high density depth maps to be used for a wide 

variety of imaging applications in real-world environments. 

The thesis is organized as follows. Chapter 2 provides the relevant review of the literature 

followed by the description of the system design, hardware and software implementation in Chapter 3. 

The experimental results are presented in Chapter 4, which demonstrates the efficiency and robustness of 

the MESVS system. Conclusions, along with the suggestions regarding the future areas of development 

for the system are provided in Chapter 5. 
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Chapter 2 

Literature Review 

Stereo vision systems have previously been implemented using huge, complex, custom (expensive) 

hardware systems [10]. Due to the recent advances in the stereo-vision algorithms, an increase of 

computational power per square inch, exponential increase in speeds, reductions in the size and cost of the 

processors, it is now possible to implement a stereo-vision system capable of producing accurate, dense 

depth maps in real-time, which can fit comfortably in the palm of the hand. This chapter provides a 

review of the existing stereo-vision systems. 

Kanade et al [10] developed a custom five-camera stereovision machine (CMU machine) with 

C40 DSP arrays, able to process depth maps at 30 fps with image resolutions of 200x 200. SAD (Sum of 

Absolute Differences) algorithm was employed with disparity range of 64. 

Woodfill et al [11] designed a stereo vision system based on 16 Xilinx 4025 FPGAs, and 16 one-

megabyte SRAMs. The device generates dense disparity maps at 320x 240 image resolution at video rate, 

and communicates with PC via PCI bus. 

The above systems are quite large in size, expensive to build and operate and are thus not suitable 

for practical purposes. 

SRTs Small Vision Module (SVM) produces dense depth maps at 6 frames per second (fps) on 

160x120 images. It consists of two CMOS 320x240 grayscale cameras, low-power A/D converters, a 

digital signal processor and a small flash memory for program storage. The SVM fits within 2" x 3" (see 

Figure 7). During operation, the module consumes approximately 600mW power. The software consists 

of LOG transform of left and right images, followed by area based correlation (absolute differences) with 

disparity set to 16, post-filtering with an interest operator, left/right consistency check, and range 

interpolation [12]. 

TYZX DeepSea V2 Stereo Processor embedded in a PCI (Peripheral Component Interconnect) 

card features a custom ASIC which provides depth data (512x480 image resolution) to a PC (Personal 

Computer) at 60 fps, consuming <15W power (see Figure 7). It employs census based correlation 

algorithm. The useful operating range is from 2.7m to 35m, with range resolution of 0.01m @ 3m to 1.1m 

@ 38m, and spatial resolution of 0.004m @ 3m to 0.05m @ 38m [13]. 
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Videre Design's STOC stereo camera (640x480 image resolution) uses local area-based method 

for computing correlation at roughly 29fps (disparity range of 64, window size of 15x15), consuming 

about 2.4W power (see Figure 7). It employs Xilinx Spartan 3 - 1000 FPGA running at 84MHz [14]. 

MSVM-III uses three cameras to produce depth maps at 30 fps (640x480 image resolution, 64 

disparity levels) [15]. An FPGA chip running at 60MHz is employed to compute trinocular rectification, 

LoG filtering, and area-based matching (see Figure 7). 

Bumblebee2 [16] is a stereo vision system commercially produced by PointGrey research. It is 

capable of producing dense depth maps at 48 fps at image resolution of 640x480, consuming 2.5W atl2V. 

The image data is simply streamed over the Fire Wire port and the processing is done on the PC (see 

Figure 7). 
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low power 
coiisiunptioii 

Bulky, Hugh power 
consumption 

A-

•a 

• 

SRI's Small Vision 
Module (SYM) 

DSP based, local 
method, 2"x3*\ 
Sips 

TYZX DeepSea Stereo | > 3 C l i l 

FPGA/DSP 
hybrid. 15W. 
30fpg-200fps 

Videt"e Pesigiis-STOO FPGA based., local. 
b9cm. 2.4W, 29fps. 
l . - ' U x 
5.2"Lxl.5"W 

MSVM-III FPGA based, local, 
120fps 

Point Grey System.*- B ; B , | S e s_ l o c a J L 

Bumblebee bJ2em.4Stps, 

1 4"H. h 2"U 
1 S"\V 

Figure 7. Sample of some existing Stereo-vision systems.1 

1 SRI's Small Vision Module (SVM), http://www.ai.sri.com/~konolige/svs/svm.htm: TYZX DeepSea Stereo, 
http://www.tyzx.com/products/cameras.html: Videre Designs-STOC, http://www.videredesign.com/vision/stoc.htm: 
MSVM-III [15]; Point Grey Systems-Bumblebee, http://www.ptgrey.com/products/bumblebee2/index.asp 
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All the above systems are available for commercial purposes and are suitable for practical 

purposes. Videre Design's STOC camera relies on Laplacian of Gaussian (LoG) image filter for pre

processing input images, followed by sum of absolute differences over a square window to compute 

correlation. According to the recent studies [17], [18], [19] in the presence of local radiometric variations, 

rank and census transforms have been shown to outperform other methods such as LoG, NCC 

(Normalized-Cross Correlation), and HMI (Hierarchical Mutual Information) for correlation based 

matching. TYZX DeepSea stereo and PointGrey's Bumblebee2 systems require a PC to be attached to 

stereo cameras which does the processing. Thus, they are not suitable for applications that require the 

system to be compact, power efficient and mobile. MSVM-IH requires multi-baseline calibration, 

rectification and matching which is quite complex in nature. Even though more cameras may yield higher 

accuracies, they add to the system cost and affect the system size, and power consumption. SRI's SVM 

module does not produce depth maps at video rate. 

Thus, there is a requirement for a fully integrated, small, modular, low-cost, efficient, real-time, 

embedded stereo vision system that is capable of producing high density depth maps to be used for a wide 

variety of imaging applications in real-world environments. 

The following table summarizes the design specifications for an MESVS system: 

Table 1. Design specifications for a Miniaturized Embedded Stereo-Vision System (MESVS) 

Specification 

Baseline 

Dimensions 

Frame rate 

Resolution 

Power consumption 

Target Value 

<=3cm 

LxW <=5cm 

>=10fps 

>QQVGA (160x120) 

<3W 

Other Features: 

Produce accurate dense depth maps, Invariant to radiometric variations, Low-cost, Modular design. 
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Chapter 3 

Miniaturized Embedded Stereo-Vision 
System (MESVS) 

3.1 System Overview 

Miniaturization of the stereo-vision system is accomplished not only by reducing the overall dimensions 

of the components used, but also by reducing the baseline, i.e. the distance between the camera's centers 

of projection. The size of baseline has a direct impact on the range of measurable objects in the scene 

(Horopter) and the related accuracy (range resolution). As can be seen from (2), as the baseline b 

decreases, the range r decreases, whereas the range uncertainty A r increases. Thus, there has to be a 

trade-off between the horopter and the associated accuracies for disparity values. 

r2 

A r = (—)x A N 

(2) 

where,/is the focal length, x denotes the pixel size and the change in disparity is denoted by A N. Figure 

8 shows the relationship between range vs. disparity, and range vs. range uncertainty. 
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Figure 8. (a) Range vs. Disparity, (b) Range uncertainty vs. Range [20], [19]. 

To fit the system within 5x5cm, while having an acceptable measurable range and horopter, 

horopter and disparity ranges have to be carefully chosen. This analysis has to be based on the system's 

baseline (28mm), focal length (2.8mm), and pixel size (17um). With the horopter set to 5-35, and 

disparity range of 30 in the above equation, we get an acceptable measurable range of about 15-100 cm. 

For objects within close vicinity (less than 50 cm) the maximum uncertainty is around 5 cm. Careful 

analysis shows that using a well adjusted horopter and a large disparity range, the system is capable of 

compensating for the impact of small baseline and is capable of retrieving range information with 

acceptable level of accuracy. 

3.2 Processor selection 

Selecting the desired processor for a computationally intense, stereo-vision application, is of critical 

importance, as it heavily influences the product cost, performance, and power consumption. There are 

many types of processors available in the market including PC CPU, Embedded RISC CPU, application 

processors (like DSPs1), media processors (like ASIP2), FPGAs (Field Programmable Gate Arrays), and 

1 Digital Signal Processors 
2 Application Specific Integrated Processors 
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ASSPs (Application Specific Signal Processors). The selection criteria for choosing the proper processor 

type for the application of stereo-vision include: 

a. Performance considerations (like speed, memory handling, data buses, energy consumption, 

benchmarking results, etc.), 

b. Cost of Integration, 

c. Availability and roadmap, 

d. Development considerations (like single vs. multi-core, number of I/O ports, instruction set 

architecture, developer familiarity, compatibility, tools-compilers and profilers, support, etc.), 

e. Packaging requirements, and, 

f. Operating temperature range, among others. 

Media processors like ASIPs provide higher performance than most DSPs and GPPs (General 

Purpose Processors) and have better support for video processing; however, they have complex 

programming models, higher developmental cost, and higher associated risk as their roadmaps are 

unclear. FPGAs can be reconfigured dynamically, offer architectural flexibility, high throughput and 

performance, all resulting in higher efficiency. However, their suitability for low-power, cost sensitive 

and stereo-vision applications has not yet been proved. ASSPs incorporate one or more processor types 

that are well matched to the application, and thus offer excellent performance, and energy efficiency; 

however, ASSPs are often inflexible, have a sharp learning curve and require extensive tuning. Their 

roadmap is unclear and the benefits of low cost can only be realized when produced in mass-quantities. 

Application processors offer adequate performance, portability, energy efficiency, integration, and 

support for video-based applications; however, they are less powerful than other types of processors 

mentioned above [21]. 

Recently, a new family of Convergent processors (e.g. BlackFin by Analog Devices) has emerged 

that is ideal for advanced video processing applications, combining both MCU (Micro Controller Unit) 

and DSP functionality into a single device with a unified architecture, high clock speed, low power 

dissipation per unit of processing, smaller form factor and flexible programming model [22]. They 

function simultaneously as a 16-bit DSP and a 32-bit MCU while supporting both DMA (Direct Memory 

Access) and cache functionality. Embedded system programmers leverage the portability of the code 

written in C and try optimization approaches at the algorithm level and compiler level. However, in-order 

to achieve real-time performance, assembly language coding is required. 

Convergent processors allow the developers to create applications in C/C++, as the processor is 

optimized not only for computation on real-time multimedia data, but also for control tasks. The benefits 
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include: best utilization of existing skill sets within a team, reduced time to market and lifecycle costs, 

higher processing speeds, and ease of maintenance. Thus, we have chosen the dual core, BlackFin 

processor (ADSP-BF561) as our processing platform for the stereo-vision system. More details on the 

hardware and memory architecture can be found in the following sections. 

3.3 Hardware Implementation 

The system hardware consists of a state-of-the-art embedded processor ADSP-BF561, two tiny CMOS 

camera sensors, two Parallel Peripheral Interface (PPI), 64MB of SDRAM, 8MB of addressable flash 

memory, JTAG interface, and SPI port. Figure 9 shows a high-level block diagram of the system. 

ADSP-BF561 

Figure 9. System block diagram 
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ADSP-BF561 is one of the latest members of BlackFin family of embedded processors featuring 

a dual core processor, with each core capable of 1200 MMACs@600MHz (2400 MMACs total). ADSP-

BF561 provides the best compromise between performance and size versus cost and power consumption 

[20]. It also possesses two flexible video ports used to capture stereo image pairs from CMOS cameras. 

Table 2 provides a summary of ADSP-BF561 specifications. 

Table 2. Summary of specifications for BlackFin processor. 

Clock Speed (MHz) 

MMACS (Max) 

RAM Memory (kBytes) 

External Memory Bus 

PPI ports 

Core Voltage (V) 

Packages 

600MHz (per core) 

2400 

320 

32bit 

2 

0.8-1.2 

297-PBGA, CSP_BGA 

3.3.1 Memory Architecture 

Performance of an embedded system is directly dependent on how the memory and data is managed. 

BlackFin processors support a modified Harvard architecture along with a hierarchical memory structure. 

Figure 10 shows an overview of the memory architecture of our system. Each BlackFin processing core 

has access to the high-speed, high-performance, low-latency, Level 1 (LI) memory that typically operates 

at the processor speed. LI memory is made up of 64KB of data memory and 32KB of instruction 

memory. Memory Management Unit (MMU) defines the properties of a given memory space and protects 

the system registers from unintended access. A unified Level 2 (L2) memory shared by both of the cores 

operates at approximately half of the core-clock speed, resulting in a higher latency compared to LI 

memory. External memory also called Level 3 (L3) memory consists of 64MB of SDRAM and 8MB of 

flash memory. The system's firmware is burnt onto the flash memory. Although L3 memory is quite 

large, the access time is measured in System Clock Cycles (SCLK), which is usually much less than the 

CCLK rate. 
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Figure 10. Memory architecture of MESVS system. 

Multiple DMA channels facilitate data movement between the peripherals and the memory 

systems, with no overhead on the processor. Extensive deployment of DMA functionality has allowed us 

to improve system performance and reduce the run-time of the matching algorithm, and rectification, as 

explained in section 3.5. 
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3.3.2 CMOS vs. CCD Sensors 

Digital cameras use solid state image sensor which contain millions of photosensitive diodes called 

photosites. These sites integrate the intensity of the light falling on the diodes by accumulating the charge 

during the brief moment the shutter is open. A charge-coupled device or CCD utilizes an analog-to-digital 

converter to convert the charge to a digital number. The charges are coupled in such a way that only one 

row can be read at a time. 

In most CMOS (Complementary Metal-Oxide Semiconductors) devices, transistors are utilized to 

enable reading of individual pixel's intensity. Each pixel has its own charge-to-voltage conversion, and 

the sensor often also includes amplifiers, noise-correction, and digitization circuits, so that the chip 

outputs digital bits. This increases the complexity, reduces effective area to capture light and makes the 

system non-uniform. However, additional on-chip features can be added at little or no extra cost, which 

may include image stabilization and image compression. This in essence, makes the camera lighter, 

smaller and thus cheaper to produce. It also requires very low power consumption. Integrating these 

features in a CCD camera will make the manufacturing process so complex, that it would be un

economical to produce. The best performance on the CMOS cameras can be obtained in an outdoor 

environment, as they suffer in low-light conditions. 

The percentage of a pixel devoted to collecting light is called the pixel's fill factor which has a 

direct correlation with the sensitivity of the sensor and is inversely correlated with the exposure time. 

CCDs have a 100% fill factor but CMOS cameras have much less. To increase the fill factor for CMOS 

image sensors, micro-lenses are typically integrated in the package. 

A detailed comparison between the CCD and CMOS image sensors is provided in Table 3. 
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Table 3. Comparison of CCD vs. CMOS image sensors. 

Cost 

Power 

Noise 

Maturity 

Extended Functionality 

Fill Factor (percentage of a 

photo-site that is sensitive 

to light) 

CCD 

(Charge Coupled Device) Sensors 

Expensive to produce-special 

manufacturing methods employed 

Consumes up to lOOx more power than 

CMOS 

High quality, low noise images 

Produced for longer period, higher 

quality images, more pixels 

Technically feasible, other chips are 

used 

high 

CMOS 

(Complementary Metal-Oxide 

Semiconductors) 

Sensors 

Inexpensive to produce-semiconductor 

technology 

Low power consumption 

Susceptible to noise; lower performance 

in low light conditions 

Less mature 

Other circuitry easily incorporated on 

same chip 

low 

Taking into account all the above factors, we have chosen to go along with the OmniVision's 7660 

CMOS image sensors. 

Table 4 below, shows the main specifications of the chosen image sensor. 

Table 4. Specifications of OmniVision's OV7660 Camera module 

Feature 

Output Formats (8-bit) 

Lens Size 

Frame Rate 

Value 

YUV/YCbCr 4:2:2 ; RGB 4:2:2; Raw 

RGB Data 

1/5" 

l.OV/Lux-sec 
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S/N Ratio 

Dynamic Range 

Scan Mode 

Electronic Exposure 

Pixel Size 

Fixed Pattern Noise 

Package Dimensions 

>48dB (AGG off, Gamma=l) 

>72dB 

Progressive 

Up to 510:1 (for selected fps) 

4.2um x 4.2um 

< 0 . 0 3 % Of VpEAK-TO-PEAK 

6.5mmx6.5mmx4.84mm 

3.3.3 Design Considerations 

Electrical wiring or traces on the printed circuit board (PCB) can be thought of as multiple charge 

carrying conductors qj,q2, separated by a distance r. According to Coulomb's law, the force of attraction 

F can be given as: 

F = fc(—) 

(3) 

where, k is the coulomb's constant which depends on the properties of the space. It can be given 

as: 

k = 
Ana 

where, £ is the permittivity of dielectric, which can be calculated as: 

£r = — 

(4) 

(5) 

where,£ris the dielectric constant, and £0is the permittivity of empty space. 
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The force of attraction between the conductors adds to the noise, ground bounce and crosstalk. 

The construction materials used for PCBs have a set dielectric constant, the most common amongst those 

is Fr-4/glass with a dielectric constant of 4.1 and a loss tangent value of 0.019@lMHz [22]. The larger 

the loss tangent, the higher is the absorption of high frequencies by the dielectric material; the higher is 

the attenuation of signals. Di-electric constant has an effect of the impedance of transmission line (signal 

traces), where lower value permit faster propagation velocities vp as shown by the equation below: 

C 

(6) 

where, C is the speed of light (3xl08m/s). The propagation delay tpd for a length / of the 

conductor can be given as: 

/ 
hd- — vv 

(7) 

From the above equation, it can be clearly seen that as the length of the conductor increases, 

propagation delay increases. 

Two long length parallel traces also have a mutual capacitance between them. Changes in the 

voltage in one conductor causes the capacitance to change, resulting in cross-talk. Magnetic field from 

one trace can induce a signal in another trace, commonly referred to as mutual inductance. Due to 

mutually inductive effects, care should be taken in routing clock signals. The traces should be as straight 

as possible. Placing a ground plane next to the clock output minimizes noise. To avoid ringing caused by 

reflection on the transmission line, the impedance of the source (Zs) must equal the impedance of the trace 

(Zo), as well as the load (ZL). 

At low frequencies, current flows through the path of least resistance. At high frequencies, the 

current flows through the path of lease inductance. Due to proximity effect, at higher frequencies, the 

current returns to the ground plane. The current does not flow through the entire cross-section of the 

conductor, but flows on the surface of the traces. As the depth of the trace changes, current density 

changes. This phenomenon is referred to as skin depth. It is the depth at which the losses associated with 

a conductor carrying AC equals those of the hollow conductor carrying DC signals. The thicker the 

conductor, more pronounced is the skin effect. 
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As the frequencies increase, the rise time decreases causing high transient currents in outputs as 

they discharge load capacitances. Switching of many signals from high-to-low-to-high may cause a 

board-level phenomenon known as ground bounce. 

Every PCB generates electromagnetic interference (EMI) which is directly proportional to the 

change in current or voltage with respect to time. Minimizing crosstalk and proper grounding can 

significantly reduce EMI issues. Spacing between the signal lines should be widened as much as possible. 

Single ended signals should be routed on different layers of the PCB and should be orthogonal to each 

other. Decoupling capacitors should be added for VCC/GND pairs, and should be placed closed to the 

power pins. Wherever possible external pull-up resistors should be eliminated and replaced by pull-down 

resistors. Low effective series resistance (ESR) capacitors of ESR < 400 mQ should be used as 

decoupling capacitors. 

3.3.4 PCB design flow 

The design of a successful PCB layout starts with the schematic design followed by creating a Bill of 

Materials (BOM), design review, ordering of parts, generating design rules, component placement, 

routing, generation of silkscreen, assembly & fabrication drawings, followed by the actual fabrication, 

assembly and testing. Figure 11 shows the typical design flow: 
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Figure 11. Hardware design flow. 
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3.3.4.1 Schematic capture 

This involves capturing the electronic design i.e. how components are connected to each other (net-list). 

Package types of all the parts are created, usually a long, laborious process. 

3.3.4.2 Bill of Materials (BOM), Design Review and Ordering Parts 

Once the interconnection between the components is defined by the net-list, a bill of materials can be 

easily constructed defining the symbols used, type and description of parts, number of pins in the 

components, package types, dimensions and effective areas, distributor & manufacturing part numbers, 

unit prices, total quantities and effective total price. Table shows the breakdown of the costs of 

components used in MESVS module. 

Table 5. Breakdown of costs of components used in MESVS module. 

PART TYPE 

Processor 

Cameras 

Resistors 

Capacitors 

Voltage Regulators 

Oscillators 

Switches 

Connectors 

Diodes 

TOTAL COST 

PRICE 

$295.96 

$121.42 

$8.19 

$0.50 

$2.32 

$5.66 

$0.93 

$23.55 

$1.23 

-$459.76 +Tax + Shipping 

As can be seen from the table above, the most expensive components include the processor, 

cameras, and connectors. A review of the design is carefully conducted followed by ordering of the parts. 

3.3.4.3 Design Rule Check (DRC) 

All design parameters that are relevant to the PCB design and manufacturing are specified as design rules. 

Some of the parameters include number of routing layers, copper thickness, isolation thickness, minimum 
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size, clearances, distances & drill sizes between objects in the signal layers, size of pads, vias (plated 

through holes-PTH used to provide electrical connection between a trace on one layer of the to a trace on 

another layer) & micro-vias, restring width, and mask. Most PCB design software includes a bot 

(automated piece of software) which ensures that the design conforms to generally acceptable rules. They 

are often limited in scope, as they usually cannot detect errors such as mirrored layers, drill file problems, 

missing layers, or if traces are connected to the wrong pins on an IC. Thus, the check has to be then 

conducted by a human to detect defects, and catch errors at an early stage, thereby making sure high 

quality fabrication result. 

3.3.4.4 Generate Silkscreen and prepare assembly and fabrication drawings 

The PCB layout has to be submitted in the RS274X gerber format, which captures detailed information 

about the design. Most software output the following files as an output: 

• Top Copper Layer (*.cmp or *.gtl) 

• Top Solder Mask (stc or gts) 

• Top Silkscreen (pic or gto) 

• Bottom Copper Layer (sol or gbl) 

• Bottom Solder Mask (sts or gbs) 

• Bottom Silkscreen (pis or gbo) 

• Drill File (drd or txt) 

Silk-screens are colored marks (usually white) on the PCB board to identify components for later 

assembly and troubleshooting processes. 

3.3.4.5 PCB Fabrication 

Fabrication of a PCB typically involves many steps, starting with the drilling of the copper laminate 

followed by the deposition of Cu onto the drill board. The next step involves optical lithography, which 

transfers the desired pattern (PCB layout) onto the photo-resist substrate using a photo mask that is 

sensitive to light. This step is repeated several times, until the PCB layout is successfully transferred onto 

the surface. Then the substrate is plated or mechanically polished, followed by etching process. Etching 

process utilizes acids, bases or other chemicals to dissolve unwanted materials from the substrate thereby 

leaving the desired routing layout. Once the traces are clearly visible, Hot-Air-Solder-Leveling is used to 

apply solder to the circuit board based on the solder mask, and flux is applied to the boards. 
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Electrical conductivity tests can be performed at this stage using automated machines, followed 

by V-scoring to panelize the boards, if needed. PCB boards are then cleaned, packaged and shipped. 

3.3.4.6 PCB Assembly 

Since the boards use surface mount (SMT) technology, one of the hardest and most expensive of all steps 

is the actual assembly of the components on top of the PCB. Components are placed by automated 

machines onto the board, which is followed by visual inspection to detect missing or misaligned 

components and solder bridging. If needed, rework is done by manual intervention. 

3.3.4.7 PCB Testing 

From design to fabrication to assembly, errors may get accumulated over a period of time. A PCB has to 

be inspected and then tested to ensure that the boards work accordingly. Some of the tests include AOI 

(Automated Optical Inspection), X-Ray Testing, In-Circuit Testing, Flying Probe Testing and JTAG 

Testing. For more details, please refer to [24]. 

Figure 12 shows the final Miniaturized Embedded Stereo Vision System (MESVS). 

Shown with a ruler. Front side 
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Figure 12. Miniaturized Embedded Stereo Vision System (MESVS). 

3.4 Software Algorithms 

MESVS relies on an efficient and robust local stereo matching engine to retrieve the depth information of 

the scene in real-time (i.e. about 20 fps). As illustrated in Figure 13, there are five major stages that 

constitute the stereo matching engine, namely, image acquisition and sub-sampling, stereo rectification, 

pre-processing, matching and left/right consistency (LRC) check, and post-processing. 
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Figure 13. Overview of the stereo-matching engine 

3.4.1 Image Acquisition, Offline Camera Calibration and Sub-Sampling 

CMOS (Complementary Metal-Oxide Semiconductor) camera technology has been chosen for the 

module, as the camera modules cost less than the CCD (Charge Coupled Device) based imagers, consume 

relatively lower power, and can incorporate other circuitry on the same chip (like clock drivers, timing 

logic, signal processing, etc.). Images are captured by OmniVision's OV7660 camera modules, in VGA 

resolution, and thus require about 300KB of storage space, per image pair. An offline stereo camera 

calibration is performed initially to obtain both intrinsic and extrinsic parameters of the system, using the 
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MATLAB toolbox from the Institute of Robotics and Mechatronics at Caltech [25]. This step helps in 

rectification of the images and if needed, reconstruction of world views. 

In the calibration process, the main objective is to find the intrinsic quantities that affect the 

imaging process like position of the image center, focal length, scaling factors for row and column pixels, 

skew factor, and lens distortion among others; and extrinsic parameters such as rotation and translation of 

the camera. Images of a planar checker board target as captured by the camera are loaded into the toolbox 

(see Figure 14), which is then followed by running corner extraction, and the main calibration engine. If 

needed, accuracies are controlled, and images added, suppressed or un-distorted, to obtain the final 

calibration parameters. 

Figure 14. Sample of images of the planar checkerboard target used for calibration [25]. 

Following figure shows a sample spatial configuration of the two cameras and the calibration 

planes as viewed from the toolbox: 
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Figure 15. Sample spatial configuration of the two cameras and the calibration planes [25]. 

Based on our experimentation, tangential distortion removal step was not implemented, as it leads 

to only a slight improvement in the disparity, result, yet considerably increases the computational 

complexity of the un-distortion process. 

The images that are captured, cannot be stored directly in the internal memory of the processor 

(due to the limited amount of fast, on-chip LI memory available), but can be stored in external memory; 

however, the external memory typically operates at a much lower speed compared to the operating speed 

of the core processor(s). Therefore, there are significant delays associated with external memory accesses, 

which would reduce the overall system performance. To overcome this issue, and maximize the 

efficiency, the images are sub-sampled into QQVGA (160x120) resolution, in order to fit within the on-

chip memory of the BlackFin® processor. This is accomplished, by skipping every three rows and 

columns of the input image utilizing the 2D-DMA facility provided by the BlackFin® Processor's 

Internal Memory DMA (IMDMA) controller (see Figure 16). 
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Figure 16. Sub-sampling VGA images to QQVGA images by skipping 3 rows and columns. 

3.4.2 Rectification 

The images are rectified to make the pairs of conjugate epipolar lines collinear and parallel to the 

horizontal image axis. This reduces the 2D correspondence problem to a simpler ID search. 

Rectification takes the following intrinsic and extrinsic calibration parameters generated by the 

previous stage as an input: 

Input Left Image (var: leftImage), 

Input Right Image (var: rightlmage), 

Focal Length of Left Camera (var: fc_left), 

Principal point of Left Camera (var: cc_left), 

Skewness in the left camera (var: alpha_c_left), 

Distortion in the left camera (var: kc_left), 
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Focal Length of Right Camera (var: fc_right), 

Principal point of Right Camera (cc_right), 

Skewness in the Right camera (var: alpha_c_right) , 

Distortion in the right camera (var: kc_right), 

Rotation Vector (var: om), 

Translation Vector (var: T) , 

Number of rows (var: nx) , 

Number of columns (var: ny). 

and, generates as an output the left and right rectified images. 

Rectification step includes: back projection, distortion removal, and bi-linear interpolation of 

pixels, which requires floating-point operations; however the selected embedded media processor can 

only perform fixed point operations. 

Floating point operations can be emulated in software using the available library function calls 

(implemented in C) which can be inefficient. To ensure the optimum performance of the rectification 

algorithm, we have implemented a relaxed and fast floating-point routine in assembly language. 

Wherever possible, faster fractional data type operations (natively supported by BlackFin®) were used 

instead of floating-point operations, to further improve the efficiency of the algorithm. 

Figure 17 displays the left and right rectified images obtained from our module (MESVS-H). 

Left Rectified Image Right Rectified Image 

( h_RECT ) ( IR_RECT ) 

Figure 17. Left and Right rectified images belonging to the Mug dataset obtained from MESVS-H. 

Details on the implementation of the rectification stage can be found in Appendix A.1-A.8. 
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3.4.3 Pre-Processing 

Radiometric variations pose a significant problem in creating a high quality depth map. These variations 

can be caused by the variable settings (both internal and external) of the two cameras (such as gain, 

vignetting effect, etc.), image noise, properties of the light source (such as strength, position, orientation, 

etc.), and properties of the objects in the environment (such as Lambertian or non-Lambertian surfaces, 

etc). In-order to reduce the sensitivity of the matching algorithm, and increase its robustness to 

radiometric variations, we employ a pre-processing stage. 

Non-parametric local transforms such as rank and census compute the relative ordering of the 

intensity values within a neighborhood to reduce the effects of variations caused by camera's gain and 

bias, and increase the robustness to outliers that typically occur near depth-discontinuities [26]. Both of 

the two transforms are suitable for fast hardware implementations [27]. 

3.4.3.1 Rank Transform 

Rank Transform R(P) is a form of non-parametric local transform (i.e. relies on the relative ordering of 

local intensity values, and not on the intensity values themselves) used in image processing to rank the 

intensity values of the pixels within a square window N(P). The centre pixel's intensity value I(P) is 

replaced by its rank amongst the neighboring pixels I(P')[1] as shown in the following equation: 

R(P) = \\{P'EN(P)\I(P')<I(P)}\\ 

(8) 

Advantages: 

• Reduces effects of variations caused by camera's gain and bias. 

• Increase in robustness to outliers near depth-discontinuities. 

Disadvantages: 

• Loss of information associated with the pixel. 

• Rank transform cannot distinguish between rotations and reflections, and has been shown to 

produce the same rank for variety of patterns [28]. 
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The following figure shows the Rank Transform of various window sizes being applied to a sample of 

image-Cones from 2003 dataset: 

Sample Image-Cones Rank Transform (3x3) Rank Transform (5x5) 

Rank Transform (7x7) Rank Transform (9x9) Rank Transform (15x15) 

Figure 18. Rank Transforms of a sample image-Cones. Shown from left-right are Rank transforms 

with square window sizes 3x3,5x5,7x7,9x9 and 15x5. 

As can be seen from the above figure, Rank Transform loses color data and information about the 

local image structure. As the window size increases, the edges become clearer, however, the time required 

to process the image also increases. 

In-order to explore the sensitivity of the Rank Transform to rotations and reflections, test patterns 

were generated, as shown in the figure below [28]: 
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Test Pattern 1 Test Pattern 2 Test Pattern 3 

Test Pattern 4 Test Pattern 5 Test Pattern 6 

Figure 19. Test patterns used to explore the sensitivity of Rank Transform to Rotations and 

Reflections 

After applying Rank Transform to the above test patterns, it was found that all of the patterns 

yielded a rank result of 4, thus proving that Rank transform cannot distinguish between rotations and 

reflections. More of these patterns can be generated to emphasize the point. 

The code used to produce the above rank transforms can be found in Appendix A. 16. 

3.4.3.2 Census Transform 

Census Transform Rj{P) is another form of non-parametric local transform (i.e. relies on the relative 

ordering of local intensity values, and not on the intensity values themselves) used in image processing to 

map the intensity values of the pixels within a square window to a bit string, thereby capturing the image 

structure [26]. The centre pixel's intensity value is replaced by the bit string composed of set of Boolean 

comparisons such that in a square window, moving left to right, 
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If (CurrentPixelIntensity<CentrePixelIntensity) boolean bit=0 

else boolean bit=l 

The mathematical representation of this transform is given by the following equation: 

(9) 

where, ® is the concatenation operator on a set of pixels with a set of displacements D within a 

square window, and £(P, P') is equal to 1 when/(/>') < I(P) and 0 otherwise. 

For each set of comparisons the bit is shifted to the left, forming an 8 bit string for a census 

window of size 3x3 and a 32 bit string for a census window of size 5x5. 

Advantages: 

• Reduces effects of variations caused by camera's gain and bias. 

• Increase in robustness to outliers near depth-discontinuities. 

• Encodes local spatial structure. 

• Tolerant to factionalism (If a minority of pixels in a local neighborhood has a very different 

intensity distribution than the majority, only comparisons involving a member of the minority are 

affected). 

• It can distinguish between rotations and reflections 

Disadvantages: 

• Loss of information associated with the pixel. 

The following figure shows the Census Transform of window size 3x3and 5x5 being applied to a 

sample of image-Cones from 2003 dataset: 
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Sample Image-Cones 

mm 

Census Transform (3x3) Census Transform (5x5) 

Figure 20. Census Transforms of a sample image-Cones. Shown from left-right are Census 

Transforms with square window sizes 3x3 and 5x5. 

The code used to produce the above rank transforms can be found in Appendix A. 17. 

3.4.4 Correlation based matching and Left-Right Consistency (LRC) check 

One of the most computationally intense parts of the stereo vision system is correlation based matching 

and left-right consistency check. Correlation based matching typically produces dense depth maps by 

calculating the disparity at each pixel within a neighborhood. This is achieved by taking a square window 

of certain size around the pixel of interest in the reference image and finding the homologous pixel within 

the window in the target image, while moving along the corresponding scanline. The goal is to find the 

corresponding (correlated) pixel within a certain disparity range d (d e [O,....^^) that minimizes the 

associated error and maximizes the similarity. In brief, the matching process involves computation of the 

similarity measure for each disparity value, followed by an aggregation and optimization step. Since these 

steps consume a lot of processing power, there are significant speed-performance advantages to be had in 

optimizing the matching algorithm. 

The images can be matched by taking either left image as the reference (left-to-right matching, 

also known as direct matching) or right image as the reference (right-to-left matching, also known as 

reverse matching). Classical similarity measures are listed in the following table: 
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Table 6. Classical similarity measures SAD, SSD, and NCC, along with their corresponding 

equations, (ij) is the coordinate of the pixel in the square neighborhood window W. Ij is the 

reference image, I2 is the target image. 

Sum of Absolute Differences (SAD) 

Sum of Squared Differences (SSD) 

Normalized Cross Correlation (NCC) 

Sum of Hamming Distances (SHD) 

£ U10'J)-/2(x + i,y+;')| 
(ij)eW 

]r.(/i(iJ)-/2(* + i.y+;'))2 

(ij)ew 

I.a.i)ewh(.i'D-h(x + i,y+j) 

]JT.(i,j)EW l\ (\,D • T.a,j)ew ll(x + i,y+ j) 

V (ZiCij) bitwiseXOR I2(x + i,y + ;')) 

Sum of Absolute Differences (SAD) is one of the simplest of the similarity measures which is 

calculated by subtracting pixels within a square neighborhood between the reference image // and the 

target image I2 followed by the aggregation of absolute differences within the square window, and 

optimization with the winner-take-all (WTA) strategy [29]. If the left and right images exactly match, the 

resultant will be zero. 

In Sum of Squared Differences (SSD), the differences are squared and aggregated within a square 

window and later optimized by WTA strategy. This measure has a higher computational complexity 

compared to SAD algorithm as it involves numerous multiplication operations. 

Normalized Cross Correlation is even more complex to both SAD and SSD algorithms as it 

involves numerous multiplication, division and square root operations. 

Sum of Hamming Distances is normally employed for matching census-transformed images by 

computing bitwise-XOR of the values in left and right images, within a square window. This step is 

usually followed by a bit-counting operation which results in the final Hamming distance score. 
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Following figure illustrates the results of SAD, SSD, NCC, and SHE) on Tsukuba image from 

2001 dataset: 

Left Image 

Ground Truth Disparity Map 

i*
j 

f 

*.* { 

, •£ * * *?* * 

^H^« '^ 

SSD Disparity Map (Window Size: 9x9) 

Right Image 

MM*+ 

m «un j | i ., 

* 

SAD Disparity Map (Window Size: 9x9) 

W1 1ft 
. • PL S* 

NCC Disparity Map (Window Size: 9x9) 

• 

1 ,# 

*.'•' • .i'i fcHi 

SHD Disparity Map (Window Size: 9x9) 

Figure 211. Disparity maps computed by employing SAD, SSD, NCC and SHD on Tsukuba image 

from 2001 dataset. 
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The code used to produce SAD, SSD, NCC and SHD scores of left and right images can be found 

in Appendix A.9-A.12, A.18-A.19. 

The work done in [30], [31] has been extended further, to employ vertical, horizontal and 

modular recursion schemes for calculating the sum of hamming distance (SHD) scores. 

For a given disparity range d, and a square window of size (2n+l)x(2«+l), centered at (x,y) in the 

left census transformed image IL-CENSUS> and (x+d,y) in the right census transformed image IR.CENSUS (see 

Figure 22), the sum of hamming distance score SHD(x,y,d) can be given by: 

n 

SHD(x,y,d) = 2_, ,L-CENsus(.x+j,y+i)®IR-cENsus(.x + d+j,y + i) 

i,j=-n 

(10) 

where, ® is the bit-wise XOR operator. 

If we store the SHD scores associated with all the centre pixels comprising the width of the image 

(W), for all possible disparity range values (</„*„+1), then the SHD scores associated with all the centre 

pixels in the subsequent row SHD(x,y+l,d) can be calculated recursively by taking the SHD score 

SHD(x,y,d) before the vertical window shift, and excluding the contributions of the row above the shifted 

window, and considering the contributions from the new row within the shifted window (see Figure 22): 

SHD(x,y + l ,d) = SHD(x,y,d) + U(x,y + l,d) 

(ID 

where, U(x,y+l,d) is called the update term, given by: 

n 

-CENSUS 
(x+j,y + n + 1)®IR-CENSUS(X + d + j , y + n + 1) 

j=-n 

n 

- 2_, h-CENSusQc +j.y~ K)®IR-CENSUS(X + d+j,y-n) 
j=-n 

(12) 

40 



2n+l 
( \ 

o-
• 1 1 \ 

Centre pixel 

—coordinates (x, y) 

2n+l 

Left image IL-CENSUS 

(reference) 

PI Vertical shift in 

window 

2n+l Previous 

,' (excluded) 
1 \ 

1 T" 
D- _ 

Row 

Centre pixel 

coordinates (x, y+1) 
v.. New row (added) 

Left image IL-CENSUS 

(reference) 

M 
\ i 

— 

Centre pixel 

, - -coordinates (x+d, y) 

Right image IR.CENSUS 

t 
(target) 

Vertical shift in 

window 

2»+l Previous Row 

/ (excluded) 

D-
Centre pixel 

coordinates (x+d, y+1) 

« New row (added) 

Right image IR-CENSUS 

(target) 

Figure 22. Vertical recursion scheme for correlation based matching. SHD scores associated with 

window of size 3x3 centered at (x,y) in left pre-processed image, and (x+d,y) in right pre-processed 

image, are depicted in light yellow color. SHD scores associated with window centered at (x,y+l) in 

left pre-processed image, and (x+d,y+l) in right pre-processed image are depicted in light blue 

color. 

This optimization scheme above is called vertical recursion. 

Similarly, if we store the update terms for all possible values of disparity (dmax+l) associated with 

the centre pixel to the left of the current centre pixel (see Figure 23a), then it can be shown that the new 

update terms associated with the current centre pixel U(x, y+l,d) can be recursively calculated from the 

previous update terms U(x-1, y+1, d) by excluding the contributions of the two (left) corner pixels in 

previous update terms and considering the contributions of the two (right) corner pixels in the current 

update terms (see Figure 23b): 
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U(x,y + 1,d) = U(x - l , y + 1,d) + IL-CENSUS(.X + n,y + n + 1)®IR-CENSUS(.X + d + n,y + n + l) 

+ h-CENsusix + n,y- n)®lR.CENSUS(x + d + n,y-n) 

- IL-CENSUS(* -n-l,y + n+ 1)®IR-CENSUS(.X + d-n-l,y+ n +1) 

~ IL-CENSUS(X - n - l ,y - n)®IR-CENSUS(x + d-n-l,y-n) 

(13) 

Update terms associated ! 
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Figure 23. Horizontal recursion scheme for correlation based matching, (a) Update terms 

associated with the centre pixel to the left are shown with dotted border, whereas update terms 

associated with the current centre pixel are shown in thick solid border, (b) Corner pixels of the 

update terms are shown in green color. 

This optimization scheme above is called horizontal recursion. 
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From the above, it can be concluded that the run-time of matching algorithm would be 

independent of window size, which in turn enhances the system flexibility. Another advantage of this 

approach is the small amount of memory required, which is equal to WxD words, where W is the image 

width and D is the disparity range. We used the modular recursion as shown in Equations 14-16 . It is 

based on the observation that contributions associated with the two pixels at the top right corner of 

correlation window is the same as the contributions of the top left pixels after 2n+l iterations. Thus, the 

most recent 2n+l terms can be temporarily stored within a 2D array M(x',d) for each disparity value 

d € [0, dmax], and can be re-used 2n+l steps later to reduce the execution time of the algorithm [30], 

[20]. 

U(x, y + l,d) = U(x-l,y + !, d) + IL-CENSUS(X + n,y + n + 1)®IR-CENSUS(.X + d + n,y + n + l) 

- IL-CENSUS(X + n, y - n)®IR_CENSUS(x + d + n,y-n)- M(x', d) 

(14) 

Array M(x',d) can be updated modularly as follows: 

M{x', d) = IL-CENSUS(X -n-l,y + n + 1)®IR-CENSUS(X + d-n-l,y + n+i) 

- h-cENSusix - n - l , y - n)®lR-CENSUS{x + d-n-l,y-n) 

(15) 

where, 

x' = xmod{2n + 1), d £ [0, dmax] 

(16) 

For more details on the above, please refer to [20], [30]. 

To treat the half-occluded regions in the scene, and enhance the robustness of the algorithm, we 

have incorporated an efficient implementation of left/right consistency check (LRC) method that produces 

accurate results under variety of conditions, compared to other occlusion detection methods available 

[32]. LRC check detects majority of the occluded pixels and performs quite well in highly textured 

scenes. This is accomplished by temporarily storing the SHD values for each row within an array. In fact, 

we simply use the SHD values produced during the matching of right to left image, for cross-checking 

results. As a result, no additional memory is required to implement this validation step. For occluded 

regions, the disparity values are invalidated, and set to 0. 
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The code used to compute the LRC check can be found in Appendix A. 13. 

3.4.5 Post-Processing 

The post processing step combines the variance map of the target image, variance map of the disparity 

map and the disparity map itself, to detect and remove erroneous disparities caused by texture-less and 

depth discontinuous regions in the scene. If the pixel of interest lacks enough texture, and the estimated 

disparity value is not in agreement with the neighboring pixels (measured by comparing variation of 

disparity values over a local neighborhood against a threshold), the estimated disparity for that pixel is 

invalidated and removed from the disparity map (set to zero). This is reasonable for the background and 

occluded areas, but for the foreground, it may cause holes. The threshold values are determined through 

manual tuning [33]. The variance maps needed for the calculation are produced using three levels of 

recursion, similar to the matching process [20], [19]. 

The code used to post-process the disparity maps can be found in Appendix A.28. 

3.5 Achieving Real-time Performance 

Optimization includes three major steps: compiler based optimization, system based optimization and 

assembly level optimization. Compiler based optimization performed to maximize the speed, exploits the 

architectural features such as pipelining, vectorization, and compiler intrinsic functions (e.g. mult_frlxl6 

andadd_frlxl6). 

System level optimization is achieved by partitioning the memory efficiently and streamlining the 

data flow. To achieve real-time performance, it is essential to consider the processing speed, data transfer 

rates and how the memory system handles the data during processing. There is a trade-off between the 

memory access speed and the available physical size of the memory array. At 20 fps, for two gray scale 

images sub-sampled to QQVGA resolution, we would have (160x120 pixels/frame)x(l 

byte/pixel)x(20frames/sec)x(2 cameras) ~750 KB/sec of raw data throughput into the processor. This 

helps in estimating the amount of processing that is needed for the stereo vision system to function at 

20fps. As mentioned in section 3.3.1, each processing core has access to only 64KB of fast LI memory. 
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Since each image frame consists of 18.75KB of data, we can fit maximum of 3 images at the same time, 

within the LI memory. To achieve a performance advantage, and leverage the dual-core architecture of 

the processor, we have implemented a two-staged pipelined programming model, where one core's output 

is the next core's input [20]. Processing task separation is optimized by Core A performing image 

acquisition, sub-sampling, stereo-rectification, and, Core B performing pre-processing, matching, and 

post-processing. 

In a stereo-vision system, rectification and matching algorithms are the most time-consuming 

steps. The captured images are transferred into the L3 (external) memory using 2D DMA facility. Double 

buffering scheme allows Core A to process input images, while DMA transfers the next image frame into 

the external memory. This reduces the overhead on the processor. Using another 2D DMA operation, the 

image is sub-sampled and stored within the LI memory. 

During the rectification stage, constants like image indexes and coefficients have to be computed 

for the back-projection and bi-linear interpolation steps, respectively. These parameters need not be 

computed on the fly, as they take up a lot of core-clock cycles. Thus, the indexes and coefficients for each 

of the left and right images can be calculated and stored within the memory as a look-up table, to be used 

for rectification of the subsequent image pairs. The size of the index table can be computed as follows: 

(160x120pixels/frame)x(2 index values/pixel)x(lbyte/index) = 37.5KB 

Similarly, the size of the coefficients table can be computed as follows: 

(160x120 pixels/frame )x(4 coefficients/pixel)x(2bytes/coefficient) = 150KB 

From the above, it can be seen, that the total amount of memory required for the two tables would 

be 375 KB. This far exceeds the memory space available on-chip, therefore, the lookup tables are stored 

in the external memory. We use double buffering along with parallel DMA transfers to solve the problem 

of long delays associated with external memory accesses (see Figure 10), resulting in more than 50% 

improvement in the execution time of the rectification algorithm. The last step involves transferring the 

final rectified image into the shared L2 memory, using 2D DMA. 
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In order to improve the performance of our matching algorithm (implemented on Core B), we 

have introduced an in-place processing approach to reduce the amount of memory required. In the in-

place processing scheme, the source and destination memory locations remain the same. By keeping the 

processing core's access within the fast LI memory, the associated performance bottlenecks and 

degradations caused by slow memory latencies, are alleviated. 

We have also implemented the critical loops in assembly language, which allows us to leverage 

the efficient programming features provided by the BlackFin architecture such as specialized instructions 

(e.g. bit-counting facility for calculation of Hamming distance metric), utilization of multiple operations 

per cycle, hardware loop constructs, specialized addressing modes and interlocked instruction pipelines. 

The following figure shows the profile of the code used in MESVS system: 

IHf 

fflHlH 

B Post Processing 

• Correlation-based Matching & L/R Check 

B Pre-processing 

• Rectification 

• Image Acquisition and Sub-Sampling 

Core A CoreB 

Figure 242. Code profile of MESVS module. 
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3.6 Quality Metrics 

Performance of the stereo vision algorithm can be evaluated by measuring the quality of the computed 

depth map against the ground-truth disparity map. 

3.6.1 Root Mean Squared Error 

This measure is computed by the following formula: 

i 

RMS Error = (±£(*,y) |dc(x,y) - dt{x,y)\2J 

(17) 

where, N is the total number of pixels in an image, dc is the computed disparity map, and d, is the 

ground truth disparity map. 

3.6.2 Percentage of Bad Matching Pixels 

This measure is computed by the following formula: 

% Bad Matching = — ^ (\dc(x,y) - dt(x,y)\ > Sthresh) 
ix.y) 

(18) 

where, N is the total number of pixels in an image, dc is the computed disparity map, and d, is the 

ground truth disparity map, and 8thresh is the threshold for evaluating bad matched pixels (usually 

attains the value of 1.0). 

The code used to measure the RMS error and percentage of bad matching pixels can be found in 

Appendix A. 14-A. 15. 
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Stereo vision algorithms typically compute erroneous results when the objects in the scene are 

fully occluded or half occluded, there are sudden depth changes or discontinuities and when the object has 

very low texture. To further quantify the performance, maps of the above mentioned regions are 

constructed from the reference image and ground-truth disparity map. Table 7 shows the definitions of the 

occluded, depth-discontinuous and texture-less regions. 

Table 7. Definitions of occluded, depth-discontinuous and texture-less regions [2]. 

Occluded regions 

Regions that are occluded in the 

matching image, i.e., where the left-

to-right disparity lands at a location 

with a larger disparity [2]. 

Depth-Discontinuous regions 

Regions where neighboring 

disparities differ by more than a 

certain gap, dilated by a window of a 

given width [2]. 

Texture-less regions 

Regions where the squared 

horizontal intensity gradient 

averaged over a square window of a 

given size is below a given threshold 

[2]. 
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Chapter 4 

Experimental Results 

This chapter presents the practical experiments that were performed and the corresponding results 

obtained using MESVS. It begins with a quantitative comparison of the performance of Rank and Census 

transforms, followed by the quantitative comparison of the performance of post-processing algorithm. 

Next the results obtained from the MESVS module for each one of the algorithm stages are presented. 

Finally an experiment is designed to measure the average power consumption of the system. 

4.1 Quantitative comparison of the performance of Rank and 
Census Transforms 

A recent study [17] compared the commonly used stereo matching costs such as Birchfield and Tomasi 

(BT), normalized cross-correlation (NCC), Laplacian of Gaussian (LoG), hierarchical mutual information 

(HMI), rank and mean filter based costs. It was found, that rank transform appeared to be the best cost for 

the correlation-based method. Accordingly, the first generation of our system (MESVS-I) relied on rank 

transform for pre-processing the image pairs [20]. 

It has previously been shown that when census transform is used for pre-processing images, 

better disparity results are obtained due to lower incorrect matches as compared to rank transform [26], 

[27]. However, a comprehensive qualitative and quantitative comparison of rank versus census transform, 

under radiometric variations such as global and local intensity changes, is lacking in the literature. 

In this experiment, we measure the performance of rank and census transforms in the presence of 

global intensity changes (such as gain, and exposure variances), local intensity changes (such as 

vignetting, non-Lambertian surfaces, and variable lighting), and image noise. 
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4.1.1 Simulated Radiometric Variations 

The first set of experiments consist of applying artificial radiometric variations to the Middlebury stereo 

datasets Tsukuba, Venus, Teddy and Cones, as these images were captured under similar lighting 

conditions [2], [34]. The simulated radiometric changes include: linear global brightness change 

(gain/scale change), non-linear global brightness change (gamma change), application of vignetting 

effect, and the introduction of Gaussian noise. The images were then pre-processed using rank (3x3 

window size) and census (3x3 window size) transforms. Figure 25 shows the left images of each dataset, 

followed by the effects of scale change, gamma variation, vignetting, introduction of Gaussian noise, and 

respective rank and census transforms of left images. The disparity images were then computed by using 

a correlation window of size 17x17, followed by a left-right consistency check for invalidating occlusions 

and mismatches. These disparity maps were compared to the ground truth and the average error 

percentage in non-occluded regions was computed with the error threshold set to 1. We also ignore an 

area of 8 pixels (half of the correlation window) at the image border. 
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Figure 25. The first row corresponds to the left images of the Tsukuba, Venus, Teddy, and Cones 

stereo pairs, with subsequent rows displaying various intensity changes such as scale change 

(s=0.5), gamma change (g=2.5), vignetting effect (sv=0.3) and Gaussian noise (SNR=15dB), as 

applied to the datasets. The last two rows display the rank (3x3) and census (3x3) transformations 

of the left images of the datasets. 

Figure 26 plots the average error percentages in non-occluded regions as a function of the amount 

of intensity change for both rank and census transforms, within square windows of size 3x3 and 5x5. As 

can be seen from the experimental results, census transform of size 3x3 outperforms rank of size 3x3 

under simulated radiometric variations. 
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Figure 26. Effect of applying simulated radiometric changes or noise on the Tsukuba, Venus, Teddy 

and Cones datasets. The rows correspond to the graphs displaying the average error percentages 

for Rank (3x3) vs. Census (3x3), and Rank (5x5) vs. Census (3x3) comparisons in the presence of 

intensity and noise changes. 

4.1.2 Real Exposure and Lighting Variations 

The second set of experiments consists of measuring the performance of both rank and census transforms 

under real exposure and lighting variations. In this paper, we used the six datasets (Art, Books, Dolls, 

Laundry, Moebius, and Reindeer) from Middlebury Stereo [35], [17], with each dataset containing images 

that were captured under three different exposures and lighting variations, resulting in nine combinatorial 

pairs of images. Figure 27 shows the left images of these datasets along with their respective ground 

truths, obtained using the structured lighting technique [34]; while Figure 28 shows the left images of the 

Books dataset with three different exposures and three different lighting conditions. 

Figure 27. Stereo Datasets (2005) showing test images Art, Books, Dolls, Laundry, Moebius, and 

Reindeer, along with their ground truth maps. 
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Figure 28. Books dataset displaying left camera images under three different exposures and three 

different lighting conditions. 

We followed the same methodology outlined before to calculate the average error percentages. The 

resulting graphs are shown in Figure 29. 
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Figure 29. Effect of exposure and lighting variations on the Stereo Datasets (2005). The rows 

correspond to the graphs displaying the average error percentages for Rank (3x3) and Rank (5x5) 

vs. Census (3x3) comparisons with exposure and lighting variations. 

As can be seen from the experimental results above, census transform of size 3x3 outperforms 

rank of size 3x3 and rank of size 5x5 under real exposure and lighting variations. Accordingly, in the 

latest generation of the stereo vision system (MESVS-II), we utilize census transform (size 3x3), along 

with the Hamming distance metric for matching. They are implemented efficiently as a mix of C and 

assembly code, utilizing BlackFin's special, in-built, single-cycle instructions such as bit counting (Ones), 

and bit-wise exclusive-or (XOR). 

Use of these instructions, combined with the carefully optimized code has allowed us to develop a 

fast pre-processing stage, which is robust with respect to radiometric variations. Figure 30 displays the 

census transforms of both left and right images obtained from our module (MESVS-II). 
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Left pre-processed image Right pre-processed image 

(IL-C) (IR-C) 

Figure 30. Left and Right pre-processed images (using census transform) belonging to the Mug 

dataset obtained from MESVS-II. 

4.2 Quantitative comparison of the performance of post-processing 
algorithm 

Post processing step takes as an input the variance map of the left image, disparity map after LRC check 

D/x,y) and the variance map of the disparity map. The final estimated disparity value for a pixel is 

invalidated and marked zero whenever its texture ai(x,y) is less than a threshold TL and its disparity 

variation <5D(x,y) is more than the threshold TH. It will be marked as valid and will be retained otherwise. 

The values for TL and TH are manually tuned for best performance [33]. 

Following equation shows the mathematical representation for the proposed idea [20]: 

Df(x,y) 
(0/(x,y) <TL 

11 UD(x,y)>TH 
otherwise 

(19) 

Figure 31 shows the disparity map (left-to-right matching), disparity map after LRC check and 

the disparity map obtained after post-processing. 
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Disparity Map (Left-Right Matching) Disparity Map after LRC Check 

Post processed Disparity Map 

Figure 31. Showing the computed disparity map (left-to-right matching), disparity map after LRC 

Check and Post-processed disparity map of Aloe image from 2006 dataset. 

To quantify the results of the post-processing algorithm in various challenging regions, 2006 dataset from 

Middlebury Stereo website was chosen as it contains a variety of real-world images [35], [17]. Figure 32 

shows left and right images of Aloe dataset, ground-truth disparity map, along with the obtained texture-

less, occluded and depth-discontinuous maps. 
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Left Image 

Texture-less Map 

Right Image 

Occlusion Map 

Depth-Discontinuity Map Ground-Truth Disparity Map 

Figure 32. Shown from left to right, left image, right image, texture-less map, occlusion map, depth-

discontinuous map and ground-truth disparity map of Aloe image from 2006 dataset. 

Figure 33 shows some of the challenging images from the 2006 dataset. Baby 1 dataset contains a 

highly textured background and a relatively low textured foreground. Flowerpots dataset contains sudden 

depth changes and large number of occluded regions. Plastic dataset poses a tremendous challenge as it 

contains mostly low-textured regions, and a lot of occluded areas. Clothl dataset is heavily texture, and 

has very low number of pixels that fall in occluded and depth -discontinuous regions. Also shown in the 
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figure are the ground-truth disparity maps, computed disparity map, disparity map after LRC check and 

disparity map after post-processing. 
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Figure 33. Challenging images. From top to bottom: left image, texture-less map, occlusion map, 

depth-discontinuous map, ground-truth disparity map, computed disparity map (left-to-right 

matching), disparity map after LRC, and final post-processed disparity map. From left to right, 

images Babyl, Flowerpots, Plastic, and Clothl from 2006 dataset. 

In each one of the non-occluded, texture-less and depth discontinuous regions, percentage of bad 

matching pixels for each one of the 21 images, after initial disparity computation (Initial), after LRC 

Check and after post-processing was computed (see Figure 34). If the post-processing algorithm results in 

lower number of bad matching pixels, then we can safely say that the algorithm works by eliminating bad 

matched pixels from the final depth map. 
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(a) Percentage of Bad matching pixels in non-occluded regions. 
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(a) Percentage of Bad matching pixels in depth-discontinuous regions. 

25 

25 

60 -

40 

2 0 -
• • • • • • • • 

10 15 
Test image index 

20 

Initial • After LRC After PP 

25 
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Figure 34. Percentage of bad matching pixels after initial disparity computation, after LRC check 

and after Post-processing for non-occluded, texture-less, depth-discontinuous and all regions (top to 

bottom). 
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Table shows the mean, median and mode values of the percentage reduction in bad matching 

pixels obtained after LRC check and post-processing. As can be seen, for all regions, post processing 

algorithm has an average percentage reduction of bad matched pixels, or in other words average 

percentage improvement of 13.61%, in non-occluded, texture-less and depth-discontinuous regions the 

percentage improvement is 13.24%, 15.91% and 8.37% respectively. 

Table 8. Percentage reduction in bad matching pixels after LRC check and after post-processing. 

All regions 

Non-occluded 

regions 

Texture-less 

regions 

Depth-

discontinuous 

regions 

Percentage 

of Bad 

Matching 

pixels 

Mean (%) 

Median (%) 

Mode (%) 

Mean (%) 

Median (%) 

Mode (%) 

Mean (%) 

Median (%) 

Mode (%) 

Mean(%) 

Median (%) 

Mode (%) 

After Initial 

Disparity 

Computation 

37.30 

34.36 

19.74 

30.29 

27.12 

12.38 

33.99 

29.29 

11.95 

47.72 

46.11 

27.12 

After 

LRC 

Check 

24.02 

23.54 

10.65 

23.04 

22.57 

10.53 

25.33 

22.83 

9.285 

42.77 

42.36 

23.27 

Percentage 

reduction 

35.60 

31.49 

46.05 

23.93 

16.78 

14.94 

25.48 

22.05 

22.30 

10.37 

8.13 

14.20 

After Post

processing 

20.75 

19.61 

10.13 

19.99 

19.11 

10.07 

21.30 

21.60 

8.838 

39.19 

36.79 

21.32 

Percentage 

reduction 

13.61 

16.69 

4.88 

13.24 

15.33 

4.37 

15.91 

5.39 

4.81 

8.37 

13.15 

8.38 
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4.3 Overview of Stereo-matching engine 

The results produced by our stereo matching engine are shown in Figure 35. The results presented are 

obtained with the window size of 3x3 for census transform, and 15x15 for the correlation window. The 

disparity range is set to 30 with horopter of 5 to 35. Most of the erroneous matches associated with half-

occluded regions of the scene (shown in black) are eliminated by LRC algorithm. Qualitative assessment 

of the post-processing step can be performed by observing the results in of the post-processing algorithm 

in the figure. As can be seen, the shape of the object is clearly defined, especially around the curvature of 

the upper portion. It can also be seen that our post-processing algorithm significantly alleviates the 

foreground fattening problem associated with correlation-based matching methods. 
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Figure 35. Results of Stereo Vision Engine using another camera as the object of interest. 
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4.4 Power profile 

One of the most important criteria for evaluating the design of an embedded media processing system is 

its power consumption. This goes without saying for applications that require mobility, but it is also 

critical for tethered systems, as it has direct financial consequences in terms of energy consumption, 

number of features that can be added, density of components, packaging, and the overall life-span of 

parts. For systems that operate at high speeds, and consume a lot of power, heat dissipation, and thermal 

management becomes a significant challenge. Most often, this necessitates the usage of active cooling by 

fans to provide airflow for heat removal, adding to the power consumption, component costs and noise. 

Passive power management typically is a coordinated effort that involves careful selection of 

individual parts, optimum component layout and routing schemes, intelligent voltage regulation, 

separating power domains, implementing power management modes, dynamically changing frequency 

and voltage, and optimization of software algorithms. 

As the next generation processors move from 90nm process to 45nm process and further down 

the size ladder, the thinner isolation layers lead to high static power dissipation caused by transistor 

leakage currents during the quiescent state i.e. when the processor is idle. Static power consumption is a 

constant of the selected processor, which can be reduced by lowering the voltage applied to it, or by 

lowering the operating temperature. When the processor is not idle, there is variable/dynamic power 

dissipation /%, caused by active currents due to charge-discharge cycles of load capacitances at high 

switching frequencies. It is directly proportional to operating frequency / and square of the processor's 

core supply voltage VDDINT [36], [22]: 

Pdyn — ^DDlNT^f 

(20) 

where, K is a constant of load capacitance. 

As can be seen from equation (20), lowering the frequency would result in a linear reduction, 

whereas lowering the applied core-clock voltage results in an exponential decrease in dynamic power 

consumption. Keeping the voltage constant, and lowering just the frequency will not have the desired 

effect, as it will take longer for the code to run. For our system, we first lower the operating voltage, and 

only when no further decrease in voltage is possible, do we go for reduction in frequency. 
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In the MESVS-H system, apart from the dynamic management of frequency and voltage control, 

we have also incorporated several other power management features such as flexible operating power 

modes (such as full-on, active, sleep, deep-sleep and hibernate), separation of power domains (processor's 

core voltage rail separated from I/O supply rail and phased-locked-loop), and intelligent voltage 

regulation. In addition, we have also carefully tuned the algorithms to reduce the execution time using the 

Visual DSP++ tool suite's built in statistical profiler. The full-on, average power consumption of the 

MESVS-H module is around 2.3W (700mA @ 3.3V) as shown in figures 37 and 38 [20], [19]. 

Average Power Consumption of MESVS module 

0.014*x4 + 0.027*x3 - 0.0021*x2 - 0.0086*x + 2.3 

Power Consumption 

4th degree Polynomial Fitting 

Median Value 

Standard Deviation 

800 1000 1200 1400 
Time 

Figure 37. Average power consumption of MESVS Module 
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Temperature Profile of MESVS module 

Figure 38. Temperature profile of MESVS module 
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Chapter 5 

Conclusions 

5.1 Summary of contributions 

The goal of this work was to develop a fully integrated, small baseline (<=3cm), miniaturized embedded 

stereo vision system which fits into a tiny package of 5x5cm and consumes very low power 

(700mA@3.3V). The low cost (<=$600) system consists of two small profile CMOS cameras (image 

resolution QQVGA-160xl20), and a power efficient, dual-core embedded media processor, running at 

600MHz per core. The stereo-matching engine performs sub-sampling, rectification, pre-processing using 

rank transform, correlation-based SHD (Sum of Hamming Distance) matching using three levels of 

recursion, L/R consistency check and post-processing. A novel post processing algorithm has been 

proposed that removes outliers due to low-texture regions and depth-discontinuities by combining the 

contributions from the variance map of the rectified image, disparity map, and the variance map of the 

disparity map. A quantitative performance of the post processing algorithm has been presented which 

shows that for all regions, post processing algorithm has an average percentage reduction of bad matched 

pixels, or in other words average percentage improvement of 13.61%, in non-occluded, texture-less and 

depth-discontinuous regions the percentage improvement is 13.24%, 15.91% and 8.37% respectively. 

To further enhance the performance of the system, compiler based optimization, system based 

optimization and assembly level optimization has been performed. A two staged pipelined-processing 

scheme has been implemented, that takes advantage of the dual-core architecture of the embedded 

processor, thereby achieving a processing speed of around lOfps for disparity maps in MESVS-I system 

and 20fps in MESVS-H system. 

To enhance the robustness of the pre-processing stage to radiometric variations, census transform (size 

3x3) has been employed, which has been shown to out-perform rank (size 3x3 and 5x5). High quality 

depth map results obtained have also been presented. 

Some of the applications include miniaturized mobile robotics, drowsy driver detection, and 3D object 

tracking etc. 
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5. 2 Future Work 

Some of the areas where the work can be extended in future include 

• Improving the results in challenging areas like texture-less, occluded and depth discontinuous 

regions. 

• Increase the frame rate and image resolution by further optimization of algorithms and software 

algorithms. 

• Investigate the feasibility of incorporating a co-processors (FPGA/DSP) 

• Implement a global algorithm on the system. 
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Appendix A 

Software Source Code 

A.l Rectify Left and Right Images 

a * * ********************************************************************* * * 

% Title: Function Rectify left and right images 
% Author: Sicidhant Ahuja 
% Created: September 2008 
% Copyright Siddhant Ahuja, 2008 
% Inputs: Input Left Image (var: leftImage), Input Right Image (var: 
rightImage), 
% Focal Length of Left Camera (var: 
% fc_left), Principal point of Left Camera (var: cc_left), Skewness in the 
% left camera (var: alpha_c_left), E)istortion in the left camera (var: 
% kc_left), Focal Length of Right Camera (var: fc_right), Principal point 
% of Right Camera (cc_right), Skewness in the Right camera (var: 
% alpha_c_right), Distortion in the right camera (var: kc_right), Rotation 
% Vector (var: om) , Translation Vector (var: T) , Number of rows (var: nx), 
Number of 
% c o 1 u m n s (v a r : n y) 
% Outputs: Rectified Image (var: rectifiedlmg) , 
% Time taken (var: timeTaken) 
% Example Usage of Function: [rectifiedlmg, 
timeTaken]=funcRectifyt'left_sample_5.bmp', 'right_sample_5.bmp', [ 
% 755.06557 755.16795 ], [ 334.24409 251.98013 ], [ 0.00000 ], [ 
% 0.05080 -0.21590 -0.00997 0.01058 0.00000 ], [ 758.73630 
% 759.13330 ], [ 317.44101 230.19193 ], [ 0.00000 ], [ 0.01704 -0.21345 
% -0.00647 0.00525 0.00000 ], [ -0.00804 0.00752 0.03008 ], [ 
% -29.85007; -0.61101; -0.15665 ], 640, 480); 
£ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

function [leftRectifiedlmg, 
rightRectifiedlmg,timeTaken]=funcRectify(leftImage,rightlmage,fc_left, cc_left 
,alpha_c_left,kc_left,fc_right,cc_right, alpha_c_right, kc_right, om, T, nx, ny) ; 
%% set. the rectification parameters of hybrid approach manually 
% INTRINSIC PARAMETERS 
% Focal Length of Left Camera 
% fc_left = f 755.06557 755.16795 ]; 
% Principal point of Left Camera 
% cc_ieft - [ 334.24409 251.98013 ]; 
% Skewness in the left camera 
% alpha_.c_l.eft = [ 0.00000 ]; 
% Distortion in the left camera 
% kc_left = [ 0.05080 -0.21590 -0.00997 0.01058 0.00000 
% Focal Length of Right Camera 
% fc„right = [ 758.73630 759.13330 ]; 
% Principal point of Right Camera 
% cc_right = [ 317.44101 230.19193 ]; 
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% Skevmess in<the Right camera 
% alpha_c_right = [ 0.00000 ]; 
% Distortion in the right camera 
% kc_right = [ 0.01704 -0.21345 -0.00647 0.00525 0.00000 ]; 
% EXTRINSIC PARAMETERS 
% Rotation Vector 
% om ='[ -0.00804 0.00752 0.03008 ]; 
% Translation Vector 
% T = [ -29.85007; 0.61101; 0.15665 ]; 
% Image width 
% nx = 640; 
% Image height 
% ny = 480; 
% Read LeftImage 
leftlmage = double(rgb2gray(imread(leftImage))); 
% Read RightImage 
rightlmage = double(rgb2gray(imread(rightlmage))); 
% Find how many rows and columns are there in the left image. 
[nr,nc] = size(leftlmage); 
% Determine scale factor for rectification 
scale=floor(nx/nc); 
nx=nr; ny=nc; 
% Start Timer to measure execution time 
tic 
%% calculate constants 
R = rodrigues(om); 
% Bring the 2 cameras in the same orientation by rotating them "minimally": 
r_r = rodrigues(-om/2); 
r_l = r_r' ; 
t = r_r * T; 
% Rotate both cameras so as to bring the translation vector in alignment with 
the (1;0;0) axis: 
if abs(t(l)) > abs(t(2)), 

type_stereo = 0 ; 
uu = [1;0;0]; % Horizontal epipoiar lines 

else 
type_stereo = 1; 
uu = [0;1;0]; % Vertical epipoiar lines 

end; 
if dot(uu,t)<0, 

uu = -uu; % Swtich side of the vector 
end; 
ww = cross(t,uu); 
ww = ww/norm(ww); 
ww = acos(abs(dot(t,uu))/(norm(t)*norm(uu)))*ww; 
R2 = rodrigues(ww); 
% Global rotations to be applied to both views: 
R_R = R2 * r_r; 
R_L = R2 * r_l; 
% Computation of the *new* intrinsic parameters for both left and right 
cameras: 
% Vertical focal length *MUST* be the same for both images (here, we are 
trying to find a focal length that retains as much information contained in 
the original distorted images): 
if kc_left(l) < 0, 

fc_y_left_new = fc_left(2) * (1 + kc_left(1)*(nxA2 + 
nyA2)/(4*fc_left(2)A2)) ; 
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else 
fc_y_left_new = fc_left(2); 

end; 
if kc_right(l) < 0, 

fc_y_right_new = fc_right(2) * (1 + kc_right(1)*(nxA2 + 
nyA2)/(4*fc_right(2)A2)); 
else 

fc_y_right_new = fc_right(2); 
end; 
fc_y_new = min(fc_y_left_new,fc_y_right_new); 
% For simplicity, let's pick the same value for the horizontal focal length 
as the vertical focal length (resulting into square pixels): 
fc_left_new = round([fc_y_new;fc_y_new]); 
fc_right_new = round([fc_y_new;fc_y_new]); 
% Select the new principal points to maximize the visible area in the 
rectified images 
cc_left_new = [(nx-1)/2;(ny-1)/2] - mean(project_points2([normalize_pixel([0 
nx-1 nx-1 0; 0 0 ny-1 ny-1] , fc_left, cc_left,kc_left,alpha_c_left); [1 1 1 
1]],rodrigues(R_L),zeros(3,1),fc_left_new, [0;0],zeros (5,1),0),2); 
cc_right_new = [(nx-1)/2;(ny-1)/2] - mean(project_points2([normalize_pixel([0 
nx-1 nx-1 0; 0 0 ny-1 ny-1],fc_right,cc_right,kc_right,alpha_c_right) ; [1 1 1 
1]],rodrigues(R_R),zeros(3,1),fc_right_new,[0;0],zeros(5,1),0),2); 
% For simplivity, set the principal points for both cameras to be the average 
of the two principal points, 
if ~type_stereo, 

% — Horizontal stereo 
cc_y_new = (cc_left_new(2) + cc_right_new(2))/2; 
cc_left_new = [cc_left_new(l);cc_y_new]; 
cc_right_new = [cc_right_new(1);cc_y_new]; 

else 
% — Vertical stereo 
cc_x_new = (cc_left_new(l) + cc_right_new(1))/2; 
cc_left_new = [cc_x_new;cc_left_new(2)]; 
cc_right_new = [cc_x_new;cc_right_new(2)]; 

end; 
% Of course, we do not want any skew or distortion after rectification: 
alpha_c_left_new = 0 ; 
alpha_c_right_new = 0; 
kc_left_new = zeros (5,1); 
kc_right_new = zeros(5,1); 
% The resulting left and right camera matrices: 
KK_left_new = [fc_left_new(l) fc_left_new(1)*alpha_c_left_new 
cc_left_new(l);0 fc_left_new(2) cc_left_new(2); 0 0 1]; 
KK_right_new = [fc_right_new(l) fc_right_new(1)*alpha_c_right 
cc_right_new(l);0 fc_right_new(2) cc_right_new(2); 0 0 1]; 
% Apply scale factor 
KK_left_new(l,l) = KK_left_new(l,1) / scale; 
KK_left_new(l,3) = KK_left_new(l,3) / scale; 
KK_left_new(2,2) = KK_left_new(2,2) / scale; 
KK_left_new(2,3) = KK_left_new(2,3) / scale; 
KK_right_new(l,l) = KK_right_new(1,1) / scale; 
KK_right_new(l,3) = KK_right_new(1,3) / scale; 
KK_right_new(2,2) = KK_right_new(2,2) / scale; 
KK_right_new(2,3) = KK_right_new(2,3) / scale; 
fc_left = fc_left / scale; 
cc_left = cc_left / scale; 
fc_right = fc_right / scale; 
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cc_right = cc_right / scale; 
inv_KK_left_new = inv(KK_left_new); 
inv_KK_right_new = inv(KK_right_new) ; 
%% Apply Rectification to left image 
leftRectifiedlmg = 255*ones(nx,ny); 
for (i=l:nx) 

for (j=l:ny) 
rays = inv_KK_left_new*[j-1; i-1; 1] ; 
rays2 = R_L'*rays; 
x = [rays2(1,1)./rays2(3,1);rays2(2,1)./rays2(3,1)]; 
%% apply distortion 
k = kc_left; 
r2 = x(l,l)."2 + x(2,l).A2; 
r4 = r2.A2; 
r6 = r2.A3; 
% Radial distortion: 
cdist = 1 + k(l) * r2 + k(2) * r4 + k(5) * r6; 
xd(l,l) = x(l,l) * cdist; 
if ((xd(l,l) < -1) | (xd(l,l) >= 1)) 

a = 1 
end 
xd(2,l) = x(2,l) * cdist; 
if ((xd(2,l) < -1) | (xd(2,l) >= 1)) 

a = 1 
end 
% Tangential distortion: 
al = 2.*x(l,l) .*"x(2,l) ; 
a2 = r2 + 2*x(l,l).A2; 
a3 = r2 + 2*x(2,l)-A2; 
delta_x_l = k(3)*al + k(4)*a2; 
delta_x_2 = k(3) * a3 + k(4)*al; 
xd(l,l) = xd(l,l) + delta_x_l; 
xd(2,l) = xd(2,l) + delta_x_2; 
%% bilinear interpolation stage 
f = fc_left; 
c = cc_left; 
px2 = f(1) * xd(1,1) + c(1); 
py2 = f(2) * xd(2,l) + c(2); 
% interpolate between the closest pixels 
px_0 = floor(px2); 
py_0 = floor(py2); 
if ( (px_0 >= 0) & (px_0 <= (ny-2)) & (py_0 >= 0) & (py_0 <= (nx-2))) 

alpha_x = px2 - px_0; 
alpha_y = py2 - py_0; 
al = (1 - alpha_y).*(l - alpha_x); 
a2 = (1 - alpha_y).*alpha_x; 
a3 = alpha_y .* (1 - alpha_x); 
a4 = alpha_y .* alpha_x; 
value = al * leftlmage (py_0 + l, px_0 + l) + a2 * leftlmage (py_0 + l, 

px_0+2) + a3 * leftlmage(py_0+2, px_0+l) + a4 * leftlmage(py_0+2, px_0+2); 
leftRectifiedlmg(i,j) = value; 

end 
end 

end 
%% Apply Rectification to right image 
rightRectifiedlmg = 255*ones(nx,ny); 
for (i=l:nx) 
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rays = inv_KK_right_new*[j-1; i-1; 1]; 
rays2 = R_R'*rays; 
x = [rays2(l,l)./rays2(3,l);rays2(2,l)./rays2(3,l)]; 
%% apply distortion 
k = kc_right; 
r2 = x(l,l).A2 + x(2,l).A2; 
r4 = r2.A2; 
r6 = r2.A3; 
% Radial distortion: 
cdist = 1 + k(l) * r2 + k(2) * r4 + k(5) * r6; 
xd(l,l) = x(l,1) * cdist; 
xd(2,l) = x(2,l) * cdist; 
%% bilinear interpolation stage 
f = fc_right; 
c = cc_right; 
px2 = f(l) * xd(1,1) + c (1) ; 
py2 = f(2) * xd(2,l) + c(2); 
% interpolate between the closest pixels 
px_0 = floor(px2); 
py_0 = floor(py2); 
if ((px_0 >= 0) & (px_0 <= (nc-2)) & (py_0 >= 0) & (py_0 <= (nr-2))) 

alpha_x = px2 - px_0; 
alpha_y = py2 - py_0; 
al = (1 - alpha_y).*(l - alpha_x); 
a2 = (1 - alpha_y).*alpha_x; 
a3 = alpha_y .* (1 - alpha_x); 
a4 = alpha_y .* alpha_x; 
rightRectifiedlmg(i,j) = al * rightImage(py_0+l, px_0+l) + a2 

rightImage(py_0+l, px_0+2) + a3 * rightImage(py_0+2, px_0+l) + a4 
rightlmage(py_0+2, px_0+2); 

end 
end 

end 
% Stop Timer to measure execution time 
timeTaken=toc; 

A.2 Rodrigues.m function 

function [out,dout]=rodrigues(in) 

% RODRIGUES Transform rotation matrix into rotation vector and viceversa. 

% Sintax: [OUT]=RODRIGUES(IN) 
% If IN is a 3x3 rotation matrix then OUT is the 
% corresponding 3x1 rotation vector 
% if IN is a rotation 3-vector then OUT is the 
% corresponding 3x3 rotation matrix 



California Institute of Technology 

%% ALL CHECKED BY JEAN-YVES BOUGUET, October 1995. 
%% FOR ALL JACOBIAN MATRICES ! ! ! LOOK AT THE TEST AT THE END ! ! 

%% BUG when norm(om)=pi fixed — April 6th, 1997; 
%% Jean Yves Bouquet 

%% Acid projection of the 3x3 matrix onto the set of special ortogonal 
matrices SO(3) by SVD — February 7th, 2003; 
%% Jean-Yves Bouquet 

% BUG FOR THE CASE norm(oral=pi fixed by Mike Burl on Feb 27, 2007 

[m,n] = size(in); 
%bigeps = 10e+4*eps; 
bigeps = 10e+20*eps; 

if ((m==l) & (n==3)) | ((m==3) & (n==l)) %% it is a rotation vector 
theta = norm(in); 
if theta < eps 

R = eye(3); 

%if nargout > 1, 

dRdin = [0 0 0; 
0 0 1; 
0 -1 0; 
0 0 -1; 
0 0 0; 
1 0 0; 
0 10; 
-1 0 0; 
0 0 0]; 

else 

if n==length(in) in=in'; end; %% make it a column vec. if necess, 

%m3 = [in,theta] 

dm3din = [eye(3);in'/theta]; 

omega = in/theta; 

%m2 = [omega;theta] 

dm2dm3 = [eye (3)/theta -in/theta/"2; zeros (1,3) 1] ; 

alpha = cos(theta); 
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beta = sin(theta); 
gamma = 1-cos(theta); 
omegav=[[0 -omega(3) omega(2)];[omega(3) 0 -omega(1)];[-

omega(1) 0 ]]; 
A = omega*omega'; 

%ml = [alpha;beta;gamma;omegav;A]; 

dmldm2 = zeros(21,4); 
dmldm2(l,4) = -sin(theta); 
dmldm2(2,4) = cos(theta); 
dmldm2(3,4) = sin(theta); 
dmldm2(4:12,l:3) = [ 0 0 0 0 0 1 0 - 1 0 ; 

0 0 - 1 0 0 0 1 0 0; 
0 1 0 - 1 0 0 0 0 0 ] ' ; 

wl = omega(1); 
w2 = omega(2); 
w3 = omega(3); 

dmldm2(13:21,1) = [2*wl;w2;w3;w2;0;0;w3;0;0]; 
dmldm2(13: 21,2) = [0;wl;0;wl;2*w2;w3;0;w3;0]; 
dmldm2(13:21,3) = [0;0;wl;0;0;w2;wl;w2;2*w3]; 

R = eye(3)*alpha + omegav*beta + A*gamma; 

dRdml = zeros(9,21); 

dRdml([l 5 9],1) = ones(3,1); 
dRdml( 
dRdml( 
dRdml( 
dRdml( 

,2) = omegav(:); 
,4:12) = beta*eye(9); 
,3) = A C ) ; 
,13:21) = gamma*eye(9); 

dRdin = dRdml * dmldm2 * dm2dm3 * dm3din; 

end; 
out = R; 
dout = dRdin; 

%% it is prob. a rot raatr. 
elseif ((m==n) & (m==3) & (norm(in' * in - eye(3)) < bigeps) 

& (abs(det(in)-1) < bigeps)) 
R = in; 

% project the rotation matrix to SO(3); 
[U,S,V] = svd(R); 
R = U*V ; 

t r = ( t r a c e ( R ) - l ) / 2 ; 
d t r d R = [ 1 0 0 0 1 0 0 0 1 ] 1 2 ; 
theta = real.(acos (tr) ) ; 



sm(theta) >= le-4, 

dthetadtr = -1/sqrt(l-trA2); 

dthetadR = dthetadtr * dtrdR; 

% varl = [vth;theta]; 
vth = l/(2*sin(theta)); 
dvthdtheta = -vth*cos(theta)/sin(theta); 
dvarldtheta = [dvthdtheta;1]; 

dvarldR = dvarldtheta * dthetadR; 

oml = [R(3,2)-R(2,3), R(l,3)-R(3,1), R(2,1)-R(1,2)] ' ; 

domldR = [ 0 0 0 0 0 1 0 - 1 0 ; 
0 0 - 1 0 0 0 1 0 0; 
0 1 0 - 1 0 0 0 0 0 ] ; 

% v a r = [ o m l ; v t h ; t h e t a ] ; 
dvardR = [ d o m l d R ; d v a r l d R ] ; 

% var2 = [om;theta]; 
om = vth*oml; 
domdvar = [vth*eye(3) oml zeros(3,1)]; 
dthetadvar = [ 0 0 0 0 1 ] ; 
dvar2dvar = [domdvar;dthetadvar]; 

out = om*theta; 
domegadvar2 = [theta*eye(3) om]; 

dout = domegadvar2 * dvar2dvar * dvardR; 

if tr > 0; % case norm(om}=0; 

out = [0 0 0] '; 

d o u t = [ 0 0 0 0 0 1 / 2 0 - 1 / 2 0 ; 
0 0 - 1 / 2 0 0 0 1 / 2 0 0 ; 
0 1 / 2 0 - 1 / 2 0 0 0 0 0 ] ; 

e l s e 

% c a s e n o r m ( o m ) = p i ; 
i f ( 0 ) 

%% fixed April 6th by Bouquet — not working in all cases! 
out = theta * (sqrt((diag(R)+1)12) . *[1;2*(R(l,2:3)>=0)'-1]); 
%keyboard; 



else 

1,1,1; 1,1,-1; 

function 

% Solution by Mike Burl on Feb 27, 2007 
% This is a better way to determine the signs of the 
% entries of the rotation vector using a hash table on all 
% the combinations of signs of a pairs of products (in the 
% rotation matrix) 

% Define hashvec and Smat 
hashvec = [0; -1; -3; -9; 9; 3; 1; 13; 5; -7; -11]; 
Smat = [1,1,1; 1,0,-1; 0,1,-1; 1,-1,0; 1,1,0; 0,1,1; 1,0,1; 

1,-1,-1; 1,-1,1]; 

M = (R+eye(3,3))/2; 
uabs = sqrt(M(l,l)); 
vabs = sqrt(M(2,2)); 
wabs = sqrt(M(3,3)); 

mvec = [M(l,2), M(2,3), M(l,3)]; 
syn = ((mvec > le-4) - (mvec < -le-4)); % robust sign{) 

hash = syn * [9; 3; 1]; 
idx = find(hash == hashvec); 
svec = Smat(idx,:)'; 

out = theta * [uabs; vabs; wabs] .* svec; 

end; 

if nargout > 1, 
fprintf(1, 'WARNING!! ! ! Jacobian domdR undefined!! !\n'); 
dout = NaN*ones(3, 9); 

end; 
end; 

end; 

else 
error("Neither a rotation matrix nor a rotation vector were provided'); 

end; 

return; 

%% test of the Jacobians: 

%%%% TEST OF dRd.om: 

om = randn(3,1); 
dom = randn(3,l)/1000000; 

[Rl,dRl] = rodrigues(om); 
R2 = rodrigues(om+dora); 

R2a = Rl + reshape(dRl * dom,3,3); 
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gain = norm(R2 - Rl)/norm(R2 - R2a) 

%%% TEST OF ciOmciR: 
om = randn(3,1); 
R = rodrigues(om); 
dom = randn(3,1)/10000; 
dR = rodrigues(om+dom) - R; 

[omc,domdR] = rodrigues(R); 
[om2] = rodrigues(R+dR); 

om_app = omc + domdR*dR(:); 

gain = norm(om2 - omc)/norm(om2 - om_app) 

%%% OTHER BUG: (FIXED NOW!!!} 

omu = randn(3,1),• 
omu = omu/norm(omu) 
om = pi*omu; 
[R,dR]= rodrigues(om); 
[om2] = rodrigues(R); 
[om om2] 

%%% NORMAL OPERATION . 

om = randn(3,1); 
[R,dR]= rodrigues(om); 
[om2] = rodrigues(R); 
[om om2] 

return 

% Test: norm(om) = pi 

u = randn(3,1); 

u = u / sqrt(sum(u.A2)); 
om = pi*u; 
R = rodrigues(om); 

R2 = rodrigues(rodrigues(R)); 

norm(R - R2) 
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A.3 Skew3.m function 

function [V,dV] = skew3(v) 
%SKEW3 [V,dV] = skew3(v) 
% Takes a 3 components vector and calculates 
% the corresponding skew-symmetric matrix. 
% It is useful for implementing the vector 
% product of 3-vectors: v x u = sk.ew3(v) * u 

% dV (optional) returns the 9x3 matrix which repr 
% the 3x3x3 tensor of derivatives of V wrt v. 

% Updated 8/30/93 

V = zeros(3,3); 
V = [[0,-v(3),v(2)]; [v(3),0,-v(l)]; [-v(2),v(1),0]]; 

if (nargout >=2), 
dV = [0 0 0 ; 
0 0 -1 ; 
0 1 0 ; 
0 0 1 ; 
0 0 0 ; 
-10 0 ; 
0-1 0 ; 
1 0 0 ; 
0 0 0 ] ; 

end; 

return; 

v = rand(3,1) ; 
eps = le-6; 
for j=l:3, 

vp = v; 
vp(j) = v(j)+eps; 
dVtest(:,j) = qtoQ(1/eps*(skew3(vp) - skew3(v))); 

end; 

return; 

% difference test 
epsilon = le-6; 
csi = randn(3,l); 
rho = randn; 
for (k = 1:3), 

csip = csi; 
csip(k) = csip(k)+epsilon; 
diff = (skew3(csip)-skew3(csi))/epsilon; 
diff = diff '; 
dFdcsi_test(:,k) = diff(:); 

end; 



[F ,dFdcs i ] = s k e w 3 ( c s i ) ; 
d F d c s i - d F d c s i _ t e s t , 
norm(ans) 

A.4 Rigid_motion.m function 

f u n c t i o n [Y,dYdom, dYdT] = r ig id_jnot ion(X,om,T) ; 

%rigid__motion.m 
% 
%[Y,dYdom,dYdT] - rigid_motion(X,om,T) 
% 
%Computes the rigid motion transformation Y =•• R*X+T, where R = rodrigues (om) . 
% 
%INPUT: X; 3D structure in the world coordinate frame (3xN matrix for N 
points) 
% (om,T): Rigid motion parameters between world coordinate frame and 
camera reference frame 
% om: rotation vector (3x1 vector); T: translation vector (3x1 
vector) 
% 
%OUTPUT: Y: 3D coordinates of the structure points in the camera reference 
frame (3xN matrix for N points) 
% dYdom: Derivative of Y with respect to om ((3N)x3 matrix) 
% dYdT: Derivative of Y with respect to T ((3N)x3 matrix) 
% 
%Definitions: 
%Let F be a point in 3D of coordinates X in the world reference frame (stored. 
in the matrix X) 
%The coordinate vector of P in the camera reference frame is: Y = R*X + T 
%where R is the rotation matrix corresponding to the rotation vector om: R = 
rodrigues(om); 
% 
%Important function called within that program: 
% 
%rodrigues.m: Computes the rotzition matrix corresponding to a rotation vector 

if nargin < 3, 
T = zeros(3,1); 
if nargin < 2, 

om = zeros(3,1); 
if nargin < 1, 

error ('Need at least a 3D structure as input (in rigid._motion.rn)'); 
return; 

end; 
end; 

end; 

[R,dRdom] = rodrigues(om); 
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[m, n] = size (X) ; 

Y = R*X + repmat(T,[1 n]); 

if nargout > 1, 

dYdR = zeros(3*n,9); 
dYdT = zeros(3*n,3); 

dYdR(l:3:end,l:3:end) = X'; 
dYdR(2:3:end,2:3:end) = X'; 
dYdR(3:3:end,3:3:end) = X'; 

dYdT(l:3:end,l) = ones(n,l); 
dYdT(2:3:end,2) = ones(n,l); 
dYdT(3:3:.end,3) = ones(n,l); 

dYdom = dYdR * dRdom; 

end; 

A.5 Project_points2.m function 

function [xp,dxpdom,dxpdT,dxpdf,dxpdc,dxpdk,dxpdalpha] = 
project_points2(X,om,T,f,c,k,alpha) 

% p r o j e c t __p o i n t. s 2 . m 
% 
%[xp, dxpdom,dxpdT,dxpdf,dxpdc,dxpdk] = project_points2(X,om,T,f,c,k,alpha) 
% 
%Projeets a 3D structure onto the image plane. 
% 
%INPUT: X: 3D structure in the world coordinate frame (3xN matrix for N 
points) 
% (om,T): Rigid motion parameters between world coordinate frame and 
camera reference frame 
% . om; rotation vector (3x1 vector); T: translation vector (3x1 
vector) 
% f: camera focal length in units of horizontal and vertical pixel 
units (2x1 vector) 
% c: principal point location in pixel units (2x1 vector) 
% k: Distortion coefficients (radial and tangential) (4x1 vector) 
% alpha: Skew coefficient between x and y pixel (alpha = 0 <=> square 
pixels) 
% 
%OUTPUT: xp: Projected pixel coordinates (2xN matrix for N points) 
% dxpdom: Derivative of xp with respect to om ((2N)x3 matrix) 
% dxpdT: Derivative of xp with respect to T ((2N)x3 matrix) 
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% dxpdf: Derivative of xp with respect to f ((2N)x2 matrix if f is 
2x1, or (2N)xl matrix is f is a scalar) 
% clxpdc: Derivative of xp with respect to c ((2N)x2 matrix) 
% dxpdk: Derivative of xp with respect to k {(2N)x4 matrix) 

"6 D e f ± n 2. t i o n s * 
%Let P be a point in 3D of coordinates X in the world reference frame (stored 
in the matrix X) 
%Ihe coordinate vector of P in the camera reference frame is: Xc = R*X + T 
%wnere R is the rotation matrix corresponding to the rotation vector om: R = 
rodrigu.es (om) ; 
%cail x, y and z the 3 coordinates of Xc: x = Xc(l); y = Xc(2); z = Xc(3); 
%The pinehole projection coordinates of P is [a;b] where a=x/z and b=y/z. 
%call rA2 = a"2 + bA2. 
%The distorted point coordinates are: xd = [xx;yy] where: 
o, 

%xx - a * (1 + kc(l)*rA2 + kc(2)*r"4 + ke(5)*rA6) + 2*kc(3)*a*b + 
kc(4)*(rA2 + 2*aA2); 
%yy = b * (1 + kc(l)*rA2 + kc(2)*rA4 + kc(5)*rA6) + kc(3)*(rA2 + 
2*bA2) + 2*kc(4)*a*b; 
o 

%The left terms correspond to radial distortion (6th degree) , the right terms 
correspond to tangential distortion 

%Finally, convertion into pixel coordinates: The final pixel coordinates 
vector xp=[xxp;yyp] where: 

%xxp = f(l)*(xx + alpha*yy) + c(l) 
%yvP = f(2)*yy + c(2) 
"6 

'o 

%NOTE: About 90 percent of the code takes care fo computing the Jacobian 
matrices 

"6 

%Important function called within that program: 

- %rodrigues.m: Computes the rotation matrix corresponding to a rotation vector 

%rigid_motion.m: Computes the rigid motion transformation of a given 
structure 

if nargin < 7, 
alpha = 0; 
if nargin < 6, 

k = zeros (5,1); 
if nargin < 5, 

c = zeros(2,1); 
if nargin < 4, 

f = ones(2,1); 
if nargin < 3, 

T = zeros (3,1) ; 
if nargin < 2, 

om = zeros(3,1); 
if nargin < 1, 
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error('Need at least a 3D structure to project 
(in project_points.m)'); 

return; 
end; 

end; 
end; 

end; 
end; 

end; 
end; 

[m, n] = size (X) ; 

if nargout > 1, 
[Y,dYdom,dYdT] = rigid_motion(X,om,T); 

else 
Y = rigid_motion(X,om, T) ; 

end; 

inv_Z = l./Y(3,:); 

x = (Y(l:2,:) .* (ones(2,l) * inv_Z)) ; 

bb = (-x(l,:) .* inv_Z)'*ones(l,3) ; 
cc = (-x(2,r) . * inv_Z) ' *ones(l,3) ; 

if nargout > 1, 
dxdom = zeros(2*n,3); 
dxdom(l:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdom(l:3:end,:) 

dYdom(3:3:end,:); 
dxdom(2:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdom(2:3:end,:) 

dYdom(3:3:end,:); 

dxdT = zeros(2*n,3); 
dxdT(1:2 rend,:) = ((inv_Z')*ones(1,3)) .* dYdT(1r3 rend, :) 

dYdT(3:3 rend,r); 
dxdT(2r2 rend, r) = ((inv_Z')*ones (1,3) ) .* dYdT(2r3 rend, r) 

dYdT(3r3 rend, r); 
end; 

% Acid distortion: 

r2 = x(l,r).A2 + x(2,r).A2; 

if nargout > 1, 
dr2dom = 2*((x(1,r)')*ones(1,3)) 

2*((x(2, r) ')*ones(l,3)) .* dxdom(2:2:end,:); 
dr2dT = 2*((x(l,:)')*ones(l,3)) 

2*((x(2, :) ')*ones(l,3)) .* dxdT(2:2:end, : ) ; 
end; 

+ bb 

+ cc 

+ bb 

+ cc 

dxdom(1r2rend,r) + 

dxdT(lr2 rend, r) + 
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r4 = r2.A2; 

if nargout > 1, 
dr4dom = 2*((r2')*ones(1,3)) .* dr2dom; 
dr4dT = 2*((r2')*ones(l,3)) .* dr2dT; 

end 

r6 = r2.A3; 

if nargout > 1, 
dr6dom = 3*((r2'.A2)*ones(1,3)) .* dr2dom; 
dr6dT = 3*((r2'.A2)*ones(1,3)) .* dr2dT; 

end; 

cdist = 1 + k(l) * r2 + k(2) * r4 + k(5) * r6; 

if nargout > 1, 
dcdistdom = k(1) * dr2dom + k(2) * dr4dom + k(5) * dr6dom; 
dcdistdT = k(l) * dr2dT + k(2) * dr4dT + k(5) * dr6dT; 
dcdistdk = [ r2' r4* zeros(n,2) r6']; 

end; 

xdl = x .* (ones(2,1)*cdist); 

if nargout > 1, 
dxdldom = zeros(2*n,3); 
dxdldom(l:2:end, :) = (x (1, :) '*ones(1,3)) .* dcdistdom; 
dxdldom(2:2:end,:) = (x(2,:)'*ones(1,3)) . * dcdistdom; 
coeff = (reshape([cdist;cdist] , 2*n, 1)*ones(1, 3) ) ; 
dxdldom = dxdldom + coeff.* dxdom; 

dxdldT = zeros(2*n,3); 
dxdldT(1:2 rend, :) = (x(1, r) '*ones(1,3)) 
dxdldT(2:2 rend, r) = (x(2, r) '*ones(1,3)) 
dxdldT = dxdldT + coeff.* dxdT; 

dxdldk = zeros(2*n,5); 
dxdldk(1:2 rend, :) = (x(1, r) '*ones(1,5)) .* dcdistdk; 
dxdldk(2:2:end,:) = (x(2,:)'*ones(1,5)) .* dcdistdk; 

end; 

% tangential distortion: 

al = 2.*x(l,:).*x(2,:); 
a2 = r2 + 2*x(l,:).A2; 
a3 = r2 + 2*x(2, :) ./s2; 

delta_x = [k(3)*al + k(4)*a2 ; 
k(3) * a3 + k(4)*al]; 
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%ddelta_xdx = zeros(2*n,2*n); 
aa = (2*k(3)*x(2,:)+6*k(4)*x(l, 
bb = (2*k(3)*x(l,:)+2*k(4)*x(2, 
cc = (6*k(3)*x(2,:)+2*k(4)*x(l, 

))'*ones(l,3) 
))'*ones(l,3) 
))'*ones(l,3) 

if nargout > 1, 
ddelta_xdom = zeros(2*n,3); 
ddelta_xdom(l:2:end,:) = aa 
ddelta_xdom(2:2rend,:) = bb 

.* dxdom(l:2 rend, :) + bb 

.* dxdom(lr2 rend, :) + cc 
.* dxdom(2 r 2 r end, : ) ; 
.* dxdom(2r2 rend, r); 

ddelta_xdT = zeros(2*n,3); 
ddelta_xdT(1r2 rend, r) = aa 
ddelta_xdT(2r2rend,r) = b b 

* dxdT(lr2rend,:) + bb 
* dxdT(lr2rend,:) + cc 

, * dxdT(2r2:end, :) ; 
,* dxdT(2r2:end,:); 

ddelta_xdk = zeros(2*n,5); 
ddelta_xdk(lr2rend,3) = al' 
ddelta_xdk(l:2rend,4) = a2' 
ddelta_xdk(2r2rend,3) = a3' 
ddelta_xdk(2r2rend,4) = al' 

end; 

xd2 = xdl + delta_x; 

if nargout > 1, 
dxd2dom = dxdldom + ddelta_xdom ; 
dxd2dT = dxdldT + ddelta_xdT; 
dxd2dk = dxdldk + ddelta_xdk ; 

end; 

Add Skew: 

xd3 = [xd2(l,r) + alpha*xd2(2, r);xd2(2, r)]; 

% Compute: dxdSdom, dxd3d.T, dxd3dk, dxd3dalpha 
if nargout > 1, 

dxd3dom = zeros(2*n,3); 
dxd3dom(lr2r2*n,r) = dxd2dom(lr2r2*n, r) + alpha*dxd2dom(2r2r2*n,:); 
dxd3dom(2r2:2*n,r) = dxd2dom<2:2r2*n,r); 
dxd3dT = zeros(2*n,3); 
dxd3dT(l:2:2*n, :) = dxd2dT(1:2r2*n,r) + alpha*dxd2dT(2r2r2*n,r); 
dxd3dT(2r2r2*n,r) = dxd2dT(2:2r2*n,:); 
dxd3dk = zeros(2*n,5); 
dxd3dk(lr2:2*n, r) = dxd2dk(1r2:2*n, r) + alpha*dxd2dk(2r2r2*n, :) ; 
dxd3dk(2r2:2*n, r) = dxd2dk(2r2:2*n, r) ; 
dxd3dalpha = zeros(2*n,1); 
dxd3dalpha(lr2r2*n, r) = xd2(2,r)'; 

end; 
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% Pixel coordinates: 
if length(f)>l, 

xp = xd3 .* (f * ones(l,n)) + c*ones(1,n); 
if nargout > 1, 

coeff = reshape(f*ones(1, n) , 2*n,1); 
dxpdom = (coeff*ones(1, 3)) .* dxd3dom; 
dxpdT = (coeff*ones(l,3)) .* dxd3dT; 
dxpdk = (coeff*ones(1,5)) .* dxd3dk; 
dxpdalpha = (coeff) .* dxd3dalpha; 
dxpdf = zeros(2*n,2); 
dxpdf(1:2 rend,1) =xd3(l,:)'; 
dxpdf(2:2:end,2) =xd3(2,:)'; 

end; 
else 

xp = f * xd3 + c*ones(l,n); 
if nargout > 1, 

dxpdom = f * dxd3dom; 
dxpdT = f * dxd3dT; 
dxpdk = f * dxd3dk; 
dxpdalpha = f .* dxd3dalpha; 
dxpdf = xd3(:); 

end; 
end; 

if nargout > 1, 
dxpdc = zeros(2*n,2); 
dxpdc(1:2:end,1) = ones(n,l); 
dxpdc(2:2:end,2) = ones(n,l); 

end; 

return; 

% Test of the Jacobians: 

n = 10; 

X = 10*randn(3,n); 

om = randn(3,1); 
T = [10*randn(2,l);40]; 
f = 1000*rand(2,l); 
c = 1000*randn(2,1); 
k = 0.5*randn(5,l); 
alpha = 0.01*randn(l,l); 

[x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points2(X,om,T,f,c,k,alpha); 

% Test on om: OK 

dom = 0.000000001 * norm(om)*randn(3,1); 
om2 = om + dom; 

[x2] = project_points2(X,om2,T,f,c,k,alpha); 
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x_pred = x + reshape(dxdom * dom,2,n); 

norm(x2-x)/norm(x2 - x_pred) 

% Test on T: OK!! 

dT = 0.0001 * norm(T)*randn(3,l); 
T2 = T + dT; 

[x2] = project_points2(X,om,T2,f,c,k,alpha); 

x_pred = x + reshape(dxdT * dT,2,n); 

norm(x2-x)/norm(x2 - x_pred) 

% Test on f: OK!! 

df = 0.001 * norm(f)*randn(2,l); 
f2 = f + df; 

[x2] = project_points2(X,om,T,f2,c,k,alpha); 

x_pred = x + reshape(dxdf * df,2,n); 

norm(x2-x)/norm(x2 - x_pred) 

% Test on c: OK!! 

dc = 0.01 * norm(c)*randn(2,1); 
c2 = c + dc; 

[x2] = project_points2(X,om,T,f,c2,k,alpha); 

xjored = x + reshape(dxdc * dc,2,n); 

norm(x2-x)/norm(x2 - x_pred) 

% Test on k: OK!! 

dk = 0.001 * norm(k)*randn(5,1); 
k2 = k + dk; 

[x2] = project_points2(X,om,T,f,c,k2,alpha); 
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x_pred = x + reshape(dxdk * dk,2,n); 

norm(x2-x)/norm(x2 - x_pred) 

% Test on alpha: OK!! 

dalpha = 0.001 * norm(k)*randn(1,1); 
alpha2 = alpha + dalpha; 

[x2] = project_points2(X,om,T,f,c,k,alpha2); 

x_pred = x + reshape(dxdalpha * dalpha,2,n); 

norm(x2-x)/norm(x2 - x_pred) 

A.6 Normalize_pixel.m function 

function [xn] = normalize_pixel(x_kk,fc,cc,kc,alpha_c) 

%riormalize 

% [xn] = .normaIize_pixei (x_kk, f c, cc, kc, alpha_c) 
"5 

%Computes the normalized coordinates xn given the pixel coordinates x_kk 
land the intrinsic camera parameters fc, cc and kc. 
"6 

%INPUT: x_kk: Feature locations on the images 
% fc; Camera focal length 
% cc: Principal point coordinates 
% kc: Distortion coefficients 
% alpha_c: Skew" coefficient 

%OUTPUT: xn: Normalized feature locations on the image plane (a 2XN matrix) 
"6 

%Important functions called within that program: 

%comp_distortion_oulu: undistort pixel coordinates. 

if nargin < 5, 
alpha_c = 0; 
if nargin < 4; 

kc = [0;0;0;0;0]; 
if nargin < 3; 

cc = [0;0] ; 
if nargin < 2, 

fc = [1;1]; 
end; 

end; 
end; 



end; 

% First: Subtract principal point, and divide by the focal length: 
x_distort = [(x_kk(l,:) - cc(1))/fc(1); (x_kk(2, :) - cc (2))/fc(2)]; 

% Second: undo skew 
x_distort(1, :) = x_distort(1, :) - alpha_c * x_distort(2, : ) ; 

if norm(kc) ~= 0, 
% Third: Compensate for lens distortion: 
xn = comp_distortion_oulu(x_distort,kc); 

else 
xn = x_distort; 

end; 

A.7 dAB.m Function 

function [dABdA,dABdB] = dAB(A,B); 

% [dABdA,dABdB] = dAB(A,B); 

% returns : dABdA and dABdB 

[p,n] = size(A); [n2,q] = size(B); 

if n2 ~= n, 
error(' A and B must nave equal inner dimensions1); 

end; 

if issparse(A) | issparse(B) | p*q*p*n>625 , 
dABdA=spalloc(p*q,p*n, p*q*n); 

else 
dABdA=zeros(p*q,p*n); 

end; 

for i=l:q, 
for j=l:p, 
ij = j + (i-l)*p; 

for k=l:n, 
kj = j + (k-l)*p; 
dABdA(ij,kj) =B(k,i); 

end; 
end; 

end; 

if issparse(A) | issparse(B) | p*q*n*q>625 , 
dABdB=spalloc(p*q, n*q, p*q*n) ; 
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else 
dABdB=zeros(p*q, q*n) ; 

end; 

for i=l:q 
dABdB([i*p-p+l:i*p]',[i*n-n+l:i*n]) = A; 

end; 

A.8 Comp_distortion_oulu.m function 

function [x] = comp_distortion_oulu(xd, k) ; 

% c omp__d i s t o r t i o n_o u 1 u . m 
% 
% [x] = comp_distortion_oulu (xd, k.) 
% 
%Compensates for radial and tangential distortion. Model From Oulu 
university. 
%For more informatino about the distortion model, check the forward 
projection mapping function: 
%project_points.m 
% 
%IMPUT: xd: distorted (normalized) point coordinates in the image plane (2xN 
matrix) 
% k: Distortion coefficients (radial and tangential) (4x1 vector) 
% 
%OUTPUT: x: undistorted (normalized) point coordinates in the image plane 
(2xN matrix) 
% 
%Method: Iterative method for compensation. 
% 
%NOTE: This compensation has to be done after the subtraction 
% of the principal point, and division by the focal length. 

if length(k) == 1, 

[x] = comp_distortion(xd,k); 

else 

k l 
k2 
k3 
P i 
P 2 

= M l ) ; 
= M 2 ) ; 
= k ( 5 ) ; 
= k ( 3 ) ; 
= k ( 4 ) ; 

x = xd; % initial guess 

for kk=l:20, 
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r_2 = sum(x.A2) ; 
k_radial = 1 + kl * r_2 + k2 * r_2.A2 + k3 * r_2.A3; 
delta_x = [2*pl*x(l, :).*x(2,:) + p2*(r_2 + 2*x(1, :).A2) ; 
pi * (r_2 + 2*x(2,:).A2)+2*p2*x(1,:).*x(2,:)]; 
x = (xd - delta_x)./(ones(2,1)*k_radial); 

end; 

end; 

A.9 Correlation based similarity measure-Sum of Absolute 
Differences (SAD)-Right to Left matching 

% Title: Function-Compute Correlation between two images using the 
% similarity measure of Sum of Absolute Differences (SAD) with Right Image 
% as reference. 
% Author: Siddhant Ahuja 
% Created: May 2008 
% Copyright Siddhant Ahuja, 2008 
% Inputs: Left Image (var: leftlmage), Right Image (var: rightImage), 
% Window Size (var: windowSize), Minimum Disparity (dispMin), Maximum 
% Disparity (dispMax) 
% Outputs: Disparity Map (var: dispMap), Time taken (var: timeTaken) 
% Example Usage of Function: [dispMap, 
timeTaken]=funcSADR2L('StereogramLeft.jpg', 'StereogramRight.jpg', 9, 0, 16); 
5- k ~k k. - k k k ~k: -k -k ~k k: k: -k k k: k: -k -k k. k * •& k: k: k k k k: k k -k k: k -k k k: k -k k k: k k k k: k k k ~k: ~k * ~k -k k ~k -k k k: k k k k: ~k k k: ~k; ~k -k ~k k: k k ~k k: 

function [dispMap, timeTaken]=funcSADR2L(leftlmage, rightlmage, windowSize, 
dispMin, dispMax) 
try 

% Grab the image information (metadata) of left image using the function 
imfinfo 

leftlmagelnfo=imfinfo(leftlmage); 
% Since SADR2L is applied on a grayscale image, determine if the 
% input left image is already in grayscale or'color 
if(getfield(leftlmagelnfo, 'Colorlype')==*truecolor') 
% Read an image using imread function, convert from RGB color space to 
% grayscale using rgb2gray function and assign it to variable leftlmage 

leftlmage=rgb2gray(imread(leftlmage)); 
% Convert the image from uint8 to double 
leftImage=double(leftlmage); 

else if(getfield(leftlmagelnfo, 'ColorType')=='grayscale') 
% If the image is already in grayscale, then just read it. 

leftlmage=imread(leftlmage); 
% Convert the image from uint8 to double 
leftImage=double(leftlmage); 

else 
error('The Color Type of Left Image is not acceptable. Acceptable 

color types are truecolor or grayscale.'); 
end 
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end 
catch 

% if it is not an image but a variable 
leftlmage=leftImage; 

end 
try 

% Grab the image information (metadata) of right image using the function 
imfinfo 

rightlmagelnfo=imfinfo(rightlmage); 
% Since SADR2L is applied on a grayscale image, determine if the 
% input right image is already in grayscale or color 
if(getfield(rightlmagelnfo,'ColorType')=='truecolor') 
% Read an image using imread function, convert from RGB color space to 
% grayscale using rgb2gray function and assign it to variable rightlmage 

rightlmage=rgb2gray(imread(rightlmage)); 
% Convert the image from uintS to double 
rightImage=double(rightlmage); 

else if(getfield(rightlmagelnfo,'ColorType!)=='grayscale') 
% If the image is already in grayscale, then just read it, 

rightImage=imread(rightlmage); 
% Convert the image from uintS to double 
rightImage=double(rightlmage); 

else 
error('The Color Type of Right Image is not acceptable. 

Acceptable color types are truecolor or grayscale.'); 
end 

end 
catch 

% if it is not an image but a variable 
rightImage=rightImage; 

end 
% Find the size (columns and rows) of the left image and assign the rows to 
% variable nrLeft, and columns to variable ncLeft 
[nrLeft,ncLeft] = size(leftlmage); 
% Find the size (columns and rows) of the right image and assign the rows to 
% variable nrRight, and columns to variable ncRight 
[nrRight,ncRight] = size(rightlmage); 
% Check to see if both the left and right images have same number of rows 
% and columns 
if(nrLeft==nrRight && ncLeft==ncRight) 
else 

error('Both left and right images should have the same number of rows and 
columns'); 
end 
% Check the size of window to see if it is an odd number. 
if (mod(windowSize,2)==0) 

error('The window size must be an odd number.'); 
end 
% Check whether minimum disparity is less than the maximum disparity, 
if (dispMin>dispMax) 

error('Minimum Disparity must be less than the Maximum disparity.'); 
end 
% Create an image of size nrLeft and ncLeft, fill it with zeros and assign 
% it to variable dispMap 
dispMap=zeros(nrLeft, ncLeft); 
% Find out how many rows and columns are to the left/'right/up/down of the 
% central pixel based on the window size 
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win=(windowSize-1)/2; 
tic; % Initialize the timer to calculate the time consumed. 
for(i=l+win:1:nrLeft-win) 

for(j=l+win:1:ncLeft-win-dispMax) 
prevSAD = 65532; 
temp=0.0; 
bestMatchSoFar = dispMin; 
for(dispRange=dispMin:1:dispMax) 

sad=0.0; 
for(a=-win:1:win) 

for(b=-win:1:win) 
if (j+b+dispRange <= ncLeft) 

temp=rightImage(i+a,j+b)-
leftlmage(i+a,j+b+dispRange) ; 

if(temp<0.0) 
temp=temp*-l.0; 

end 
sad=sad+temp; 

end 
end 

end 
if (prevSAD > sad) 

prevSAD = sad; 
bestMatchSoFar = dispRange; 

end 
end 
dispMap(i,j) = bestMatchSoFar; 

end 
end 
% Stop the timer to calculate the time consumed. 
timeTaken=toc; 

A.10 Correlation based similarity measure-Sum of Absolute 
Differences (SAD)-Left to Right matching 

9- ~k k A k -k k * k -A- k k A- ~k k k k k k k -k k k k -k A- k k k A k k k -A- k ~k k A- -k k k -k -k k k k A- k k k -k k k ~k -A- k k ~k ~k k k k k k k k k k k k k k k k: 

% Title: Function-Compute Correleition between two images using the 
% similarity measure of Sum of Absolute Differences (SAD) with Left Image 
% ess reference. 
% Author: Siddhant Ahuja 
% Created: May 2008 
% Copyright Siddhant Ahuja, 2008 
% Inputs: Left Image (var: leftlmage), Right Image (var: rightlmage), 
% Window Size (var: windowSize), Minimum Disparity (dispMin), Maximum 
% Disparity (dispMax) 
% Outputs: Disparity Map (var: dispMap), lime taken (var: timeTaken) 
% Example Usage of Function: [dispMap, 
timeTaken]=funcSADL2R('StereogramLeft.jpg', 'StereogramRight.jpg', 9, 0, 16); 
S- •* "Jc k k -k k k k k k k k k k k k k k. ~k. k k k ~k k k k, k k k k k, k k k k k k k k k k k k k k -k k k k k k k. k ~k -k. k k k k k k k k ~k k k k k k k k k k 

function [dispMap, timeTaken]=funcSADL2R(leftlmage, rightlmage, windowSize, 
dispMin, dispMax) 
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% Grab the image information (metadata) . of left image using the function 
imfinfo 

leftlmagelnfo=imfinfo(leftlmage); 
% Since SADL2R is applied on a grayscale image, determine if the 
% input left image is already in grayscale or color 
if(getfield(leftlmagelnfo,'ColorType')=='truecolor') 
% Read an image using imread function, convert from RGB color space to 
% grayscale using rgb2gray function and assign it to variable leftlmage 

leftlmage=rgb2gray(imread(leftlmage)); 
% Convert the image from uintS to double 
leftImage=double(leftlmage); 

else if(getfield(leftlmagelnfo,'ColorType')=='grayscale') 
% If the image is already in grayscale, then just read it. 

leftlmage=imread(leftlmage); 
% Convert the image from uiritS to double 
leftImage=double(leftlmage); 

else 
error('The Color Type of Left Image is not acceptable. Acceptable 

color types are truecolor or grayscale.*); 
end 

end 
catch 

% if it is not an image but a variable 
leftImage=leftlmage; 

end 
try 

% Grab the image information (metadata) of right image using the function 
imfinfo 

rightlmagelnfo=imfinfo(rightlmage); 
% Since SADL2R is applied on a grayscale image, determine if the 
% input right image is already in grayscale or color 
if(getfield(rightlmagelnfo,'ColorType')=='truecolor') 
% Read an image using imread function, convert from RGB color space to 
% grayscale using rgb2gray function and assign it to variable rightlmage 

rightlmage=rgb2gray(imread(rightImage)); 
% Convert the image from uintS to double 
rightImage=double(rightlmage); 

else if(getfield(rightlmagelnfo, 'ColorType ')=='grayscale') 
% If the image is already in grayscale, then just read it. 

rightlmage=imread(rightlmage); 
% Convert the image from uintS to double 
rightImage=double(rightlmage); 

else 
error ('The Color Type of Plight Image is not acceptable. 

Acceptable color types are truecolor or grayscale.'); 
end 

end 
catch 

% if it is not an image but a variable 
rightlmage=rightlmage; 

end 
% Find the size (columns and rows) of the left image and assign the rows to 
% variable nrLeft, and columns to variable ncLeft 
[nrLeft,ncLeft] = size(leftlmage); 
% Find the size (columns and rows) of the right image and assign the rows to 
% variable nrRight, and columns to variable ncRight 
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[nrRight,ncRight] = size(rightlmage); 
% Check to see if both the left and right images have same number of rows 
% and columns 
if(nrLeft==nrRight && ncLeft==ncRight) 
else 

error('Both left and right images should have the same number of rows a 
columns') ; 
end 
% Check the size of window to see if it is an odd number, 
if (mod(windowSize, 2)==0) 

error('The window size must be an odd number.'); 
end 
% Check whether minimum disparity is less than the maximum disparity, 
if (dispMin>dispMax) 

error('Minimum Disparity must be less than the Maximum disparity.'); 
end 
% Create an image of size nrLeft and ncLeft, fill it with zeros and assign 
% it to variable dispMap 
dispMap=zeros(nrLeft, ncLeft); 
% Find out how many rows and columns are to the left/right/up/down of the 
% central pixel based on the window size 
win=(windowSize-1)/2; 
tic; % Initialize the timer to calculate the time consumed, 
for(i=l+win:1:nrLeft-win) 

for(j=l+win+dispMax:1:ncLeft-win) 
prevSAD = 65532; 
temp=0.0; 
bestMatchSoFar = dispMin; 
for(dispRange=-dispMin:-1:-dispMax) 

sad=0.0; 
for(a=-win:1:win) 

for(b=-win:1:win) 
if (j-win+dispRange > 0) 

temp=leftlmage(i+a,j+b)-
rightlmage(i+a,j+b+dispRange); 

if(temp<0.0) 
temp=temp*-l.0; 

end 
sad=sad+temp; 

end 
end 

end 
if (prevSAD > sad) 

prevSAD = sad; 
bestMatchSoFar = dispRange; 

end 
end 
dispMap(i,j) = -bestMatchSoFar; 

end 
end 
% Stop the timer to calculate the time consumed. 
timeTaken=toc; 



A.ll Correlation based similarity measure-Sum of Squared 
Differences (SSD)-Right to Left matching 

% Title: Function Compute Correlation between two images using the 
% similarity measure of Sum of Squared Differences (SSD) with Right Image 
% as reference, 
% Author: Siddhant Ahuja 
% Created: May 2008 
% Copyright Siddhant Ahuja, 2008 
% Inputs: Left Image (var: leftlmage), Right Image (var: rightImage), 
% Window Size (var: windowSize), Minimum Disparity (dispMin), Maximum 
% Disparity (dispMax) 
% Outputs: Disparity Map (var: dispMap), Time taken (var: timeTaken) 
% Example Usage of Function: [dispMap, 
timeTaken]=funcSSDR2L('StereogramLeft.jpg', 'StereogramRight.jpg', 9, 0, 16); 
% k k k k k -k k k k k k k k ~k k k k ~k k k k ~k A- k k k ~k k k k k -k k k k k k k k k k k k k k k k -A k k k ~k k k k k k k k k k k k -k k k * k -k k k k -A-

o 

function [dispMap, timeTaken]=funcSSDR2L(leftlmage, rightlmage, windowSize, 
dispMin, dispMax) 
try 

% Grab the image information (metadata) of left image using the function 

leftlmagelnfo=imfinfo(leftlmage); 
% Since SSDR2L is applied on a grayscale image, determine if the 
% input left image is already in grayscale or color 
if(getfield(leftlmagelnfo,'ColorType')=='truecolor') 
% Read an image using iraread function, convert from RGB color space to 
% grayscale using rgb2gray function and assign it to variable leftlmage 

leftlmage=rgb2gray(imread(leftlmage)); 
% Convert the image from uintS to double 
leftImage=double(leftlmage); 

else if(getfield(leftlmagelnfo, 'ColorType *)=='grayscale') 
% If the image is already in grayscale, then just read it, 

leftlmage=imread(leftlmage) ; 
% Convert the image from uintS to double 
leftImage=double(leftlmage); 

else 
error('The; Color Type of Left Image is not acceptable. Acceptable 

color types are truecolor or grayscale.'); 
end 

end 
catch 

% if it is not an image but a variable 
leftImage=leftlmage; 

end 
try 

% Grab the image information (metadata) of right image using the function 
imfInfo 

rightlmagelnfo=imfinfo(rightlmage) ; 
% Since SSDR2L is applied on a grayscale image, determine if the 
% input right image is already in grayscale or color 
if(getfield(rightlmagelnfo,'ColorType')=='truecolor') 
% Read an image using imread function, convert from RGB color space to 
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% grayscale using rgb2gray function and assign it to variable rightImage 
rightlmage=rgb2gray(imread(rightImage)); 
% Convert the image from uintS to double 
rightImage=double(rightlmage); 

else if(getfield(rightlmagelnfo,'ColorType')=='grayscale') 
% If the image is already in grayscale, then just read it. 

rightImage=imread(rightlmage); 
% Convert the image from uintS to double 
rightImage=double(rightlmage) ; 

else 
error ('The Color Type of Right Image is not acceptabl. 

Acceptable color types are truecolor or grayscale.'); 
end 

end 
catch 

% if it is not an image but. a variable 
rightImage=rightImage; 

end 
% Find the size (columns and rows) of the left image and assign the rows to 
% variable nrLeft, and columns to variable ncLeft 
[nrLeft,ncLeft] = size(leftlmage); 
% Find the size (columns and rows) of the right image and assign the rows to 
% variable nrRight, and columns to variable ncRight 
[nrRight,ncRight] = size(rightlmage); 
% Check to see if both the left and right images have same number of rows 
% and columns 
if(nrLeft==nrRight && ncLeft==ncRight) 
else 

error('Both left and right images should have the same number of rows a 
columns'); 
end 
% Check the size of window to see if it is an odd. number, 
if (mod(windowSize,2)==0) 

error('The window size must be an odd number,'); 
end 
% Check whether minimum disparity is less than the maximum disparity, 
if (dispMin>dispMax) 

error('Minimum Disparity must be less than the Maximum disparity.'); 
end 
% Create an image of size nrLeft and ncLeft, fill it with zeros and assign 
% it to variable dispMap 
dispMap=zeros(nrLeft, ncLeft); 
% Find out how many rows and columns are to the left/right/up/down of the 
% central pixel based on the window size 
win=(windowsize-1)12; 
tic; % Initialize the timer to calculate the time consumed. 
for(i=l+win:1:nrLeft-win) 

for(j=l+win:1:ncLeft-win-dispMax) 
prevSSD = 65532; 
temp=0.0; 
bestMatchSoFar = dispMin; 
for(dispRange=dispMin:1:dispMax) 

ssd=0.0; 
for(a=-win:1:win) 

for(b=-win:1:win) 
if (j+b+dispRange <= ncLeft) 



temp=rightlmage(i+a,j+b)-
leftlmage(i+a,j+b+dispRange); 

temp=temp*temp; 
ssd=ssd+temp; 

end 
end 

end 
if (prevSSD > ssd) 

prevSSD = ssd; 
bestMatchSoFar = dispRange; 

end 
end 
dispMap(i,j) = bestMatchSoFar; 

end 
end 
% Stop the timer to calculate the time consumed. 
timeTaken=toc; 

A.12 Correlation based similarity measure-Normalized Cross 
Correlation (NCC)-Right to Left matching 

£. * A' is -k -k -k is k -k -k •*• k -k is is -k -k ~k r̂ -k -k -k is is "k -k is is -k -k -k is -k -k is is -k -k is is k -k is ~k ~k -k is is is -k is is -k k ^ is is -^ is is -k -k -k is is -k -k is is -k -k is is 

% Title: Function-Compute Correlation between two images using the 
% similarity measure of Normalized Cross Correlation (NCC) with Right Image 
% as reference. 
% Author: Siddhant Ahuja 
% Created: May 2008 
% Copyright Siddhant Ahuja, 2008 
% Inputs: Left Image (var: leftlmage), Right Image (var: right Image), 
% Window Size (var: windowSize), Minimum Disparity (dispMin), Maximum 
% Disparity (dispMax) 
% Outputs: Disparity Map (var: dispMap), Time taken (var: timeTaken) 
% Example Usage of Function: [dispMap, 
timeTaken]=funcNCCR2L('StereogramLeft.jpg', 'StereogramRight.jpg', 9, 0, 16); 
9r * * * * * * * * * * ± * * * * * * ^ x * * * * * * * * * * * A * * * * x * * * * * * * ^ 

function [dispMap, timeTaken]=funcNCCR2L(leftlmage, rightlmage, windowSize, 
dispMin, dispMax) 
try 

% Grab the image information (metadata) of left image using the function 
imfinfo 

leftlmagelnfo=imfinfo(leftlmage) ; 
% Since NCCR2L is applied on a grayscale image, determine if the 
% input left image is already in grayscale or color 
if(getfieId(leftImageInfo, 'ColorType')=='truecolor ' ) 
% Read an image using imread function, convert from RGB color space to 
% grayscale using rgb2gray function and assign it to variable leftlmage 

leftlmage=rgb2gray(imread(leftImage)); 
% Convert the image from uintB to double 
leftImage=double(leftlmage) ; 

else if(getfield(leftlmagelnfo, 'ColorType')=='grayscale') 
% If the image is already in grayscale, then just read it. 
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leftImage=imread(leftImage); 
% Convert the image from uintS to double 
leftImage=double(leftlmage) ; 

else 
error('The Color Type of Left Image is not acceptable. Acceptable 

color types are truecolor or grayscale.'); 
end 

end 
catch 

% if it is not an image but a variable 
leftImage=leftImage; 

end 
try 

% Grab the image information (metadata) of right image using the function 
imfinfo 

rightImageInfo=imfinfo(rightlmage); 
% Since NCCR2L is applied on a grayscale image, determine if the 
% input right image is already in grayscale or color 
if(getfield(rightImageInfo,'ColorType')=='truecolor') 
% Read an image using imread function, convert from RGB color space to 
% grayscale using rgb2gray function and assign it to variable rightlmage 

rightlmage=rgb2gray(imread(rightlmage)); 
% Convert the image from uint.8 to double 
rightImage=double(rightlmage); 

else if(getfield(rightImageInfo,'ColorType')=='grayscale') 
% If the image is already in grayscale, then just read it. 

rightlmage=imread(rightlmage); 
% Convert the image from uint8 to double 
rightImage=double(rightlmage); 

else 
error ('The Color Type of Right. Image is not acceptable. 

Acceptable color types are truecolor or grayscale.'); 
end 

end 
catch 

% if it is not an image but a variable 
rightImage=rightImage; 

end 
% Find the size (columns and rows) of the left image and assign the rows to 
% variable nrLeft, and. columns to variable ncLeft 
[nrLeft,ncLeft] = size(leftlmage); 
% Find the size (columns and ross) of the right image and assign the rows to 
% variable nrRight, and columns to Vctriable ncRight 
[nrRight,ncRight] = size(rightlmage); 
% Check to see if both the left and right images have same number of rows 
% and columns 
if(nrLeft==nrRight && ncLeft==ncRight) 
else 

error('Both left and right images should have the same number of rows and 
columns!); 
end 
% Check the size of window to see if it is an odd number, 
if (mod(windowSize,2)==0) 

error('The window size must be an odd number.'); 
end 
% Check whether minimum disparity is less than the maximum disparity, 
if (dispMin>dispMax) 
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error('Minimum Disparity must be less than the Maximum disparity.');' 
end 
% Create cm image of size nrLeft and ncLeft, fill it with zeros and assign 
% it to variable dispMap 
dispMap=zeros(nrLeft, ncLeft); 
% Find out how many rows and columns are to the left/right/up/down of the 
% central pixel based on the window size 
win=(windowsize-1)/2; 
tic; % Initialize the timer to calculate the time consumed, 
for(i=l+win:1:nrLeft-win) 

for(j=l+win:1:ncLeft-win-dispMax) 
prevNCC =0.0; 
bestMatchSoFar = dispMin; 
for(dispRange=dispMin:1:dispMax) 

ncc=0.0; 
nccNumerator=0.0; 
nccDenominator=0.0; 
nccDenominatorRightWindow=0.0; 
nccDenominatorLeftWindow=0.0; 
for(a=-win:1:win) 

for(b=-win:1:win) 

nccNumerator=nccNumerator+(rightImage(i+a,j+b)*leftImage(i+a, j+b+dispRange) ) ; 

nccDenominatorRightWindow=nccDenominatorRightWindow+(rightlmage(i+a,j+b)*righ 
tlmage(i+a,j+b)); 

nccDenominatorLeftWindow=nccDenominatorLeftWindow+(leftlmage(i+a,j+b+dispRang 
e)*leftlmage(i+a,j+b+dispRange)); 

end 
end 

nccDenominator=sqrt(nccDenominatorRightWindow*nccDenominatorLeftWindow); 
ncc=nccNumerator/nccDenominator; 
if (prevNCC < ncc) 

prevNCC = ncc; 
bestMatchSoFar = dispRange; 

end 
end 
dispMap(i,j) = bestMatchSoFar; 

end 
end 
% Stop the timer to calculate the time consumed. 
timeTaken=toc; 
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A.13 Left/Right Consistency (LRC) Check 

96 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

% Title: Function-Left/Right Consistency Check 
% Author: Siddhant Ahuja 
% Created: May 2008 
% Copyright Siddhant Ahuja, 2008 
% Inputs: Left Image (var: leftlmage), Right Image (var: rightlmage), 
% Window Size (var: windowSize), Minimum Disparity (dispMin), Maximum 
% Disparity (dispMax), Threshold for the check (var: thresh) typically 1.0 
% Outputs: Disparity Map (var: dispMap), Time taken (var: timeTaken) 
% Example Usage of Function: [dispMapLRC, 
timeTaken]=funcLRCCheck('TsukubaLeft.jpg', 'TsukubaRight.jpg', 9, 0, 16,2); 
=j * • * i t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

function [dispMapLRC, timeTaken]=funcLRCCheck(leftlmage, rightlmage, 
windowSize, dispMin, dispMax, thresh) 
% Initiate the Timer to calculate the time consumed. 
tic; 
% Perform SAD Correlation based matching (Right to Left) 
[dispMapR2L, timeTakenR2L]=funcSADR2L(leftlmage, rightlmage, windowSize, 
dispMin, dispMax); 
% Perform SAD Correlation based matching (Left to Right) 
[dispMapL2R, timeTakenL2R]=funcSADL2R(leftlmage, rightlmage, 
windowSize,dispMin , dispMax); 
% Prepare matrix for subtraction and scale it for comparison 
dispMapL2R=-dispMapL2R; 
% Find the size (columns and rows) of the L2R Disparity map and assign the 
rows to 
% variable nrLRCCheck, and columns to variable ncLRCCheck 
[nrLRCCheck,ncLRCCheck] = size(dispMapL2R); 
% Create an image of size nrLRCCheck and ncLRCCheck, fill it with zeros and 
a s s i gn 
% it to variable dispMapLRC 
dispMapLRC=zeros(nrLRCCheck, ncLRCCheck) ; 
% Find out how many rows and columns are to the left/right/up/down of the 
% central pixel based on the window size 
win=(windowSize-l)/2; 
for(i=l:1:nrLRCCheck) 

for(j=l:1:ncLRCCheck) 
xl=j; 
xr=xl+dispMapL2R(i,xl) ; 
if (xr>ncLRCCheck||xr<l) 

dispMapLRC(i,j) = 0; %% occluded pixel 
else 

xlp=xr+dispMapR2L(i,xr); 
if (abs(xl-xlpXthresh) 

dispMapLRC(i, j) = -dispMapL2R(i,j); %% non-occluded pixel 
else 

dispMapLRC(i,j) = 0; %% occluded pixel 
end 

end 
end 

end 
% Terminate the Timer to calculate the time consumed. 
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timeTaken=toc; 

A.14 Quality Metric-Root Mean Squared Error (RMS) 

% ************************************************************-************* 
% Title: Function-Compute Root Mean Squared (RMS) Error 
% Author: Siddhant Ahuja 
% Created: May 2008 
% Copyright Siddhant Ahuja, 2008 
% Inputs: Computed Disparity Map (var: computedDisparityMap), Ground Truth 
Disparity Map (var: groundTruthDisparityMap), 
% How many pixels to ignore at the border (var: borderPixelsToIgnore). For 
% a 9x9 windowSize used, border pixels to ignore should be (9 l)/2 or 4 
% pixels, Disparity range (var: dispRange), Scale factor for groundtruth 
% (var: scale) 
% Outputs: RMS Error (var: rmsError), Time taken (var: timeTaken) 
% Example; Usage of Function: [rmsError, timeTaken] = 
RMSError('TsukubaSAD9x9DispRange=0-16.png*,'TsukubaGroundTruth.png!,4,16,8); 
% ****************************************************** * * ***************** 
function [rmsError, timeTaken]= 
funcRMSError(computedDisparityMap,groundTruthDisparityMap,borderPixelsToIgnor 
e,dispRange, scale) 
% Read an image using imread function, and assign it to variable 
% computedDisparityMap 
try 

computedDisparityMap=imread(computedDisparityMap); 
catch 

% if it is not an image but a variable 
computedDisparityMap=computedDisparityMap; 

end 
% Convert the image from uint8 to double 
computedDisparityMap=double(computedDisparityMap); 
% Read an image using imread function, and assign it to variable 
% groundTruthDisparityMap 
groundTruthDisparityMap=imread(groundTruthDisparityMap) ; 
% Convert the image from uint8 to double 
groundTruthDisparityMap=double(groundTruthDisparityMap); 
% Find the size (columns and rows) of the left image and assign the rows to 
% variable nrComputedDisparityMap, and columns to variable 
ncComputedDisparityMap 
[nrComputedDisparityMap,ncComputedDisparityMap] = size(computedDisparityMap); 
% Find the size (columns and rows) of the image and assign the rows to 
% variable nrGroundTruthDisparityMap, and columns to variable 
ncGroundTruthDisparityMap 
[nrGroundTruthDisparityMap,ncGroundTruthDisparityMap] = 
size(groundTruthDisparityMap); 
% Check to see if both the left and right images have same number of rows 
% and columns 
if(nrComputedDisparityMap==nrGroundTruthDisparityMap && 
ncComputedDisparityMap==ncGroundTruthDisparityMap) 
else 
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error('Both Computed Disparity Map and Groundtruth Disparity Map images 
should have the same number of rows; and columns') ; 
end 
numPixels=0; 
rmsError=0.0; 
tic; % Initialize the timer to calculate the time consumed. 
% Calculate rms error 
for (i=borderPixelsToIgnore:1:nrComputedDisparityMap-borderPixelsToIgnore) 

for(j=borderPixelsToIgnore:1:ncComputedDisparityMap-borderPixelsToIgnore-
dispRange) 

if(groundTruthDisparityMap(i,j)~=0.0) % Ignore Pixels with unknown 
disparity in the groundTruthDisparityMap 

rmsError= rmsError+(abs((computedDisparityMap(i,j)*scale)-
groundTruthDisparityMap(i, j))A2) ; 

numPixels=numPixels+l; 
end 

end 
end 
rmsError=sqrt(rmsError/numPixels) ; 
% Stop the timer to calculate the time consumed. 
timeTaken=toc; 

A.15 Quality Metric-Percentage of Bad Matching Pixels 

^ * 'A -A- k * -k -A- k * * * k -k -k -A- * ~k * -A- k * k ~k k k k -A- k k k k k k k k -k k * -A- k• k k -A' k k * -A- -A- * k * -A- k k * -A- k k kk k k k -A- A- k k k k k k ~k k 

% Title: Function-Compute Percentage of bad matching pixels 
% Author: Siddhant Ahuja 
% Created: May 2008 
% Copyright Siddhant Ahuja, 2008 
% Inputs: Computed Disparity Map (var: computedDisparityMap), Ground Truth 
Disparity Map {var: groundTruthDisp£irityMap) , 
% How many pixels to ignore at the border (var: borderPixelsT'oIgnore) . For 
% a 9x9 windowSize used, border pixels to ignore should be (9-l)/2 or 4 
% pixels, Disparity range (var: dispRange), Threshold (var: thresh), Scale 
% factor for groundtruth (var: scale) 
% Outputs: Percentage Bad matching pixels (var: perBADMatch), Time taken 
% (var: timeTaken) 
% Example Usage of Function: [perBADMatch, timeTaken]= 
% funcPercentBadMatchingPixels(dispMap,'VenusGroundTruthL2R.png',4,16,1,8) 
9S •kk*kk-kkkkk*kkk*k*k*kkk-kkkk*kkk-kk*k**kk*k*kkkk*-kkkkkirkkkkk*-k-kk*kkk*k-kkkk-kk 

function [perBADMatch, timeTaken]= 
funcPercentBadMatchingPixels(computedDisparityMap,groundTruthDisparityMap, bor 
derPixelsToIgnore,dispRange,thresh, scale) 
% Read an image using imread function, and assign it to variable 
% computedDisparityMap 
try 

computedDisparityMap=imread(computedDisparityMap); 
catch 

% if it is not an image but a variable 
computedDisparityMap=computedDisparityMap; 

end 
% Convert the image from uintS to double 
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computedDisparityMap=double(computedDisparityMap); 
% Read an image using imread function, and assign it to variable 
% groundTruthDisparityMap 
groundTruthDisparityMap=imread(groundTruthDisparityMap); 
% Convert the image from uint8 to double 
groundTruthDisparityMap=double(groundTruthDisparityMap); 
% Find the size (columns and rows) of the left image and assign the rows to 
% variable nrComputedDisparityMap, and columns to variable 
ncComputedDisparityMap 
[nrComputedDisparityMap,ncComputedDisparityMap] = size(computedDisparityMap); 
% Find the size (columns and rows) of the image and. assign the rows to 
% variable nrGroundTruthDisparityMap, and columns to variable 
n c G r o u n d T r u t h D i s p a r i t y Ma p 
[nrGroundTruthDisparityMap,ncGroundTruthDisparityMap] = 
size(groundTruthDisparityMap) ; 
% Check to see if both the left and right images have same number of rows 
% and columns 
if(nrComputedDisparityMap==nrGroundTruthDisparityMap && 
ncComputedDisparityMap==ncGroundTruthDisparityMap) 
else 

error('Both Computed Disparity Map and Groundtruth Disparity Map images 
should have the same number of rows and columns'); 
end 
numPixels=0; 
perBADMatch=0.0; 
tic; % Initialize the timer to calculate the time consumed. 
% Calculate Percentage Bad Matching Pixels 
for (i=borderPixelsToIgnore:1:nrComputedDisparityMap-borderPixelsToIgnore) 

for(j=borderPixelsToIgnore:1:ncComputedDisparityMap-borderPixelsToIgnore-
dispRange) 

if(groundTruthDisparityMap(i,j)~=0.0) % Ignore Pixels with unknown 
disparity in the groundTruthDisparityMap 

if(abs((computedDisparityMap(i,j)*scale)-
groundTruthDisparityMap(i,j))>thresh) 

perBADMatch=perBADMatch+l; 
end 
numPixels=numPixels+l; 

end 
end 

end 
perBADMatch=perBADMatch/numPixels; 
% Stop the timer to calculate the time consumed. 
timeTaken=toc; 
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A. 16 Rank Transform 

SI * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

% Title: Function-Rank Transform of a given Image 
% Author: Siddhant Ahuja 
% Created: May 2008 
% Copyright Siddhant Ahuja, 2008 
% Inputs: Image (var: inputlmage), Window size assuming square window (van 
% windowSize) 
% Outputs: Rank Tranforraed Image (var: rankTransformedlmage) , 
% Time taken (var: timelaken) 
% Example Usage of Function: [a,b]=funeRankOnelmage{'Img.png', 3) 
S| * * * * * * * * * * -A- * i * * * * * * * -k * * * * * * * k * * * * * * * * * * k * * * * * * * * * * * * * * * * * * * * * * * * * * * * * '* * * * 

function [rankTransformedlmage, timeTaken] = funeRankOnelmage(inputlmage, 
windowSize) 
% Grab the image information (metadata) using the function imfinfo 
imagelnfo=imfinfo(inputlmage); 
% Since Rank Transform is applied on a grayscale image, determine if the 
% input image is already in grayscale or color 
if(getfield(imagelnfo, 'ColorType')=='truecolor') 
% Read an image using imread function, convert from RGB color space to 
% grayscale using rgb2gray function and assign it to variable inputlmage 

inputImage=rgb2gray(imread(inputlmage)); 
else if(getfield(imagelnfo,'ColorType*)=='grayscale') 
% If the image is already in grayscale, then just read it. 

inputImage=imread(inputlmage); 
else 

error('The Color Type of Input Image is not acceptable. Acceptable 
color types are truecolor or grayscale.'); 

end 
end 
% Check the size: of window to see if it is an odd number, 
if (mod(windowSize,2)==0) 

error("The window size must be an odd number.'); 
end 
% Initialize the timer to calculate the time consumed. 
tic; 
% Find the size (columns and rows) of the image and assign the rows to 
% variable nr, and columns to variable nc 
[nr,nc] = size(inputlmage); 
% Create an image of size nr and nc, fill it. with zeros and assign 
% it to variable rankTransformedlmage 
rankTransformedlmage = zeros(nr,nc); 
% Find out how many rows and columns are to the left/right/up/down of the 
% central pixel based on the window size 
R= (windowSize-l)/2; 
for (i=R+l: 1 :nr-R) % Go through all the rows in an image (minus R at the 
borders) 

for (j=R+l: l:nc-R) % Go through all the columns in an image (minus R at 
the borders) 

rank = 0; % Initialize default rank to 0 
for (a=-R:l:R) % Within the square window, go through all the rows 

for (b=-R:l:R) % Within the square window, go through all the 
columns 

105 



% If the intensity of the neighboring pixel is less than 
% that of the central pixel, then increase the rank 
if (inputlmage(i+a,j+b) < inputImage(i, j)) 

rank=rank+l; 
end 

end 
end 
% Assign the rank value to the pixel in imgTemp 
rankTransformedlmage(i,j) = rank; 

end 
end 
% Stop the timer to calculate the time consumed, 
timeTaken=toc; 

A.17 Census Transform 

9fj * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

% Title: Function-Census Transform of a given Image 
% Author; Siddhant Ahuja 
% Created: May 2008 
% Copyright Siddhant Ahuja, 2008 
% Inputs: Image (var: inputlmage), Window size assuming square window (var: 
% windowSize) of 3x3 or 5x5 only. 
% Outputs: Census Transformed Image (var: censusTransformedlmage) , 
% Time taken (var: timeTaken) 
% Example Usage of Function: [a,b]=funcCensusOnelmage('Img.png', 3) 
9- * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

function [censusTransformedlmage, timeTaken] = funcCensusOnelmage(inputlmage, 
windowSize) 
% Grab the image information (metadata) using the function imfinfo 
imagelnfo=imfinfo(inputlmage); 
% Since Census Transform is applied on a grayscale image, determine if the 
% input image is already in grayscale or color 
if(getfield(imageInfo,'ColorType')=='truecolor') 
% Read an image using imread function, convert from RGB color space to 
% grayscale using rgb2gray function and assign it to variable inputlmage 

inputImage=rgb2gray(imread(inputImage)); 
else if(getfield(imagelnfo,'ColorType')=='grayscale') 
% If the image is already in grayscale, then just read it. 

inputlmage=imread(inputlmage) ; 
else 

error('The Color Type of Input Image is not acceptable. Acceptable 
color types are truecolor or grayscale.'); 

end 
end 
% Find the size (columns and rows) of the image and assign the rows to 
% variable nr, and columns to variable nc 
[nr,nc] = size(inputlmage); 
% Check the size of window to see if it is an odd number, 
if (mod(windowSize,2)==0) 

error('The window size must be an odd number.'); 
end 



if (windowSize==3) 
bits=uint8(0) ; 

% Create an image of size nr and nc, fill it with zeros and assign 
% it to variable censusTransformedlmage of type uintS 

censusTransf ormedI.mage=uint8(zeros(nr,nc)); 
else if (windowSize==5) 

bits=uint32(0); 
% Create an image of size nr and nc, fill it with zeros and assign 
% it to variable censusTransf ormedlmage of type uint:32 

censusTransformedImage=uint32(zeros(nr,nc)); 
else 

error ( rIhe size of the window is not acceptable. Just 3x3 and 5x5 
windows are acceptable.'); 

end 
end 
% Initialise the timer to calculate the time consumed. 
tic; 
% Find out how many rows and. columns are to the left/right/up/down of the 
% central pixel 
C= (windowSize-1)/2; 
for (j=C+l: 1 :nc-C) % Go through all the columns in an image (minus C at the 
borders) 

for (i=C+l: 1 :nr-C) % Go through all the rows in an image (minus C at the 
borders) 

census = 0 ; % Initialize default census to 0 
for (a=-C:l:C) % Within the square window, go through all the rows 

for (b=-C:l:C) % Within the square window, go through all the 
columns 

if (~(a==C+l && b==C+l)) % Exclude the centre pixel from the 
calculation 

census=bitshift(census,1); %Shift the bits to the left 
by 1 

% If the intensity of the neighboring pixel is less than 
% that of the central pixel, then add one to the bit 
% string 
if (inputlmage(i+a,j+b) < inputImage(i,j)) 

census=census+l; 
end 

end 
end 

end 
% Assign the census bit string value to the pixel in imgTemp 
censusTransformedlmage(i,j) = census; 

end 
end 
% Stop the timer to calculate the time consumed. 
timeTaken=toc; 
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A. 18 Sum of Hamming Distances-Right to Left Matching 

96 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

% Title: Function-Compute Correlation between two images using the 
% similarity measure of Sum of Hamming Distances (SHD) with Right Image 
% as reference. 
% Author: Siddhant Ahuja 
% Created: May 2008 
% Copyright Siddhant Ahuja, 2008 
% Inputs: Left Image (var: leftlmage), Right Image (var: rightlraage), 
% Window Size {var: windowSize), Minimum Disparity (dispMin), Maximum 
% Disparity (dispMax) 
% Outputs: Disparity Map (var: dispMap), Time taken (var: timeTaken) 
% Example Usage of Function: [dispMap, 
timeTaken]=funcSHDR2L('TsukubaLeft.jpg', 'TsukubaRight.jpg', 9, 0, 16); 
S~ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

function [dispMap, timeTaken]=funcSHDR2L(leftlmage, rightlmage, windowSize, 
dispMin, dispMax) 
try 

% Grab the image information (metadata) of left image using the function 
imfinfo 

leftlmagelnfo=imfinfo(leftlmage); 
% Since SHDR2L is applied on a grayscale image, determine if the 
% input left image is already in grayscale or color 
if(getfield(leftlmagelnfo,'Colorlype')=='truecolor') 
% Read an image using imread function, convert from RGB color space to 
% grayscale using rgb2gray function and. assign it to variable leftlmage 

leftlmage=rgb2gray(imread(leftlmage)); 
else if(getfield(leftlmagelnfo,'ColorType')=='grayscale') 
% If the image is already in grayscale, then just read it. 

leftlmage=imread(leftlmage); 
else 

error('The Color Type of Left Image is not acceptable. Acceptable 
color types are truecolor or grayscale."); 

end 
end 

catch 
% if it is not an image but a variable 
leftImage=leftlmage; 

end 
try 

% Grab the image information (metadata) of right image using the function 
imfinfo 

rightlmagelnfo=imfinfo(rightlmage); 
% Since SHDR2L is applied on a grayscale image, determine if the 
% input right image is already in grayscale or color 
if(getfield(rightlmagelnfo,'ColorType')=='truecolor') 
% Read an image using imread function, convert from RGB color space to 
% grayscale using rgb2gray function and assign it to variable rightlmage 

rightlmage=rgb2gray(imread(rightlmage)); 
else if(getfield(rightlmagelnfo,'ColorType')=='grayscale') 
% If the image is already in grayscale, then just read it. 

rightlmage=imread(rightlmage); 
else 
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error('The Color Type of Right Image is not acceptable. 
Acceptable color types are truecolor or grayscale.'); 

end 
end 

catch 
% if it is not an image but a variable 
rightImage=rightImage; 

end 
% Find the size (columns and rows) of the left image and assign the rows to 
% variable nrLeft, and columns to variable ncLeft 
[nrLeft,ncLeft] = size(leftlmage); 
% Find the size (columns and rows) of the right image and assign the rows to 
% variable nrRight, and columns to variable ncRight 
[nrRight,ncRight] = size(rightImage); 
% Check to see if both the left and right images have same number of rows 
% and columns 
if(nrLeft==nrRight && ncLeft==ncRight) 
else 

error('Both left and right images should have the same number of rows ana 
columns'); 
end 
% Check the size of window to see if it is an odd number, 
if (mod(windowSize,2)==0) 

error('The window size must be an odd number.'); 
end 
% Check whether minimum disparity is less than the maximum disparity, 
if (dispMin>dispMax) 

error("Minimum Disparity must be less than the Maximum disparity."); 
end 
% Create an image of size nrLeft and ncLeft, fill it with zeros and assign 
% it to variable dispMap 
dispMap=zeros(nrLeft, ncLeft); 
% Find out how many rows and columns are to the left/right/up/down of the 
% central pixel based on the window size 
win=(windowsize-1)/2; 
numberOfBits=8; 
tic; % Initialize the timer to calculate the time consumed, 
for(i=l+win:1:nrLeft-win) 

for(j=l+win:1:ncLeft-win-dispMax) 
min=0; 
position=0; 
rightWindow=rightImage(i-win:i+win, j-win:j+win); 
for(dispRange=dispMin:1rdispMax) 

sad=0.0; 
if (j+win+dispRange <= ncLeft) 

leftWindow=leftlmage(i-win:i+win, j-
win+dispRange:j+win+dispRange); 

bloc3=bitxor(rightWindow,leftWindow); 
distance=uint8(zeros(windowSize,windowSize)) ; 
for (k=l:1:numberOfBits) 

distance=distance+bitget(bloc3, k) ; 
end 
dif=sum(sum(distance)) ; 
if (dispRange==0) 

min=dif; 
elseif (min>dif) 

min=dif; 
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position=dispRange; 
end 

end 
end 
dispMap(i,j) = position; 

end 
end 
% Stop the timer to calculate the time consumed. 
timeTaken=toc; 

A.19 Sum of Hamming Distances-Left to Right Matching 

%• k k k * k * k ~k k k * -k k -k k k -k * k k k -k k k -k k k * * * k ~k -k k- k k -k k k k k -k k * k -k k k k k -k k k k k k k k k k * k k k k k * * * k k * k 

% Title: Function-Compute Correlation between two images using the 
% similarity measure of Sum of Hamming Distances (SHD) with Left Image 
% as reference. 
% Author: Siddhant Ahuja 
% Created: May 2008 
% Copyright Siddhant Ahuja, 2008 
% Inputs: Left Image (var: leftlmage), Right Image (var: rightlmage), 
% Window Size (var: windowSice), Minimum Disparity (dispMin), Maximum 
% Disparity (dispMaz) 
% Outputs: Disparity Map (var: dispMap), Time taken (var: timeTaken) 
% Example Usage of Function: [dispMap, 
timeTaken] =func.SHDL2R( 'TsukubaLef t. jpg', 'TsukubaRight.jpg', 9, 0, 16); 
% •* k * -k -k k *- -k -k * * k-k k k k -k k ~k k -k k k k -k k k * ~k -k k k * -k k -k k k k k k -k k k * * k k k -k k k k -k k k * * * k k -k k * k k -k ~k k: -k k k k 

function [dispMap, timeTaken]=funcSHDL2R(leftlmage, rightlmage, windowSize, 
dispMin, dispMax) 
try 

% Grab the image information (metadata) of left image using the function 
imfinfo 

leftlmagelnfo=imfinfo(leftlmage); 
% Since SHDL2R is applied on a grayscale image, determine if the 
% input left image is already in grayscale or color 
if(getfield(leftlmagelnfo,'ColorType')=='truecolor') 
% Read an image using imread function, convert from RGB color space to 
% grayscale using rgb2gray function and assign it to variable leftlmage 

leftlmage=rgb2gray(imread(leftlmage)); 
else if(getfield(leftlmagelnfo,'ColorType')=='grayscale") 
% If the image is already in grayscale, then just read it. 

leftlmage=imread(leftlmage); 
else 

error('The Color Type of Left Image is not acceptable. Acceptable 
color types are truecolor or grayscale.'); 

end 
end 

catch 
% if it is not an image but a variable 
leftlmage=leftlmage; 

end 
try 

% Grab the image information (metadata) of right image using the function 
imfinfo 
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rightlmagelnfo=imfinfo(rightlmage); 
% Since SHDL2R is applied on a grayscale image, determine if the 
% input right image is already in grayscale or color 
if(getfield(rightlmagelnfo,'ColorType')=='truecolor') 
% Read an image using imread function, convert from RGB color space to 
% grayscale using rgb2gray function and assign it to variable rightlmage 

rightlmage=rgb2gray(imread(rightlmage)) ; 
else if(getfield(rightlmagelnfo,'ColorType')=='grayscale') 
% If the image is already in grayscale, then just read it. 

rightImage=imread(rightlmage) ; 
else 

error('The Color Type of Right Image is not acceptable. 
Acceptable color types are truecolor or grayscale.'); 

end 
end 

catch 
% if it is not an image but a variable 
rightImage=rightImage; 

end 
% Find the size (columns and rows) of the left image and assign the rows to 
% variable nrLeft, and columns to variable ricLeft 
[nrLeft, ncLeft] = size(leftlmage); 
% Find the size (columns and rows) of the right image and assign the rows to 
% variable nrRight, and columns to variable ncRight 
[nrRight,ncRight] = size(rightlmage); 
% Check to see if both the left and right images have same number of rows 
% and columns 
if(nrLeft==nrRight && ncLeft==ncRight) 
else 

error('Both left and right images should have the same number of rows and 
columns'); 
end 
% Check the size of window to see if it is an odd number, 
if (mod(windowSize,2)==0) 

error('The window size must be an odd number.'); 
end 
% Check whether minimum disparity is less than the maximum disparity, 
if (dispMin>dispMax) 

error('Minimum Disparity must be less than the Maximum disparity.'); 
end 
% Create an image of size nrLeft and ncLeft, fill it with zeros and assign 
% it to variable dispMap 
dispMap=zeros(nrLeft, ncLeft); 
% Find out how many rows and columns are to the left/right/up/down of the 
% central pixel based on the window size 
win=(windowSize-1)/2; 
numberOfBits=8; 
tic; % Initialize the timer to calculate the time consumed. 
for(i=l+win:1:nrLeft-win) 

for(j=l+win+dispMax:1:ncLeft-win) 
min=0; 
position=0; 
leftWindow=leftImage(i-win:i+win, j-win:j+win); 
for(dispRange=-dispMin:-l:-dispMax) 

if (j-win+dispRange > 0) 
rightWindow=rightImage(i-win:i+win, j-

win+dispRange:j+win+dispRange) ; 
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bloc3=bitxor(leftWindow,rightWindow); 
distance=uint8(zeros(windowSize,windowSize)) ; 
for (k=l:l:numberOfBits) 

distance=distance+bitget(bloc3,k); 
end 
dif=sum(sum(distance)); 
if (dispRange==0) 

min=dif; 
elseif (min>dif) 

min=dif; 
position=dispRange; 

end 
end 

end 
dispMap(i,j) = -position; 

end 
end 
% Stop the timer to calculate the time consumed. 
timeTaken=toc; 

A.20 Finding Occluded Regions 

j|. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

% Title: Function-Find Occluded regions of an image 
% Notes: Occluded regions are defined as regions that are occluded in the 
% matching image, i.e., where the forward-mapped disparity 
% lands at a location with a larger (nearer) disparity. 
% Author: Siddhant Ahuja 
% Created: September 2008 
% Copyright Siddhant Ahuja, 2008 
% Inputs: Left to Right Disparity Image (var: dispMapL2R), Right to Left 
Disparity Image (var: dispMapR2L) , 
% Scale factor of ground truth map (var: scale) typically 4.0, Threshold for 
the check (var: thresh) typically 2.0 
% Outputs: Disparity Map (var: dispMap), Time taken (var: timeTaken) 
% Example Usage of Function: [occludedlmg, 
timeTaken]=funcOccludedRegions('disp_l_r.png', 'disp_r_l.png', 4, 2} ; 
s6 ************************************************************************* 
function [occludedlmg, timeTaken]=funcOccludedRegions(dispMapL2R, dispMapR2L, 
scale, thresh) 
% Initiate the Timer to calculate the time consumed. 
tic; 
dispMapL2R=imread(dispMapL2R); 
dispMapR2L=imread(dispMapR2L); 
dispMapL2R = floor(double (dispMapL2R)/scale); 
dispMapR2L = floor(double (dispMapR2L)/scale); 
% Prepare matrix for subtraction and scale it for comparison 
dispMapL2R=-dispMapL2R; 
% Find the size (columns and rows) of the L2R Disparity map and assign the 
rows to 
% variable nrLRCCheck, and columns to variable ncLRCCheck 
[nrLRCCheck,ncLRCCheck] = size(dispMapL2R); 
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% Create an image of size nrLRCCheck and ncLRCCheck, fill it with zeros and 
assign 
% it to variable occludedlmg 
occludedImg=zeros(nrLRCCheck, ncLRCCheck) ; 
for(i=l:1:nrLRCCheck) 

for(j=l:1:ncLRCCheck) 
xl=j; 
xr=xl+dispMapL2R(i,xl); 
if (xr>ncLRCCheck||xr<l) 

occludedlmg(i,j) = 0; %% occluded pixel 
else 

xlp=xr+dispMapR2L(i,xr); 
if (abs(xl-xlp)<thresh) 

occludedlmg(i,j) = -dispMapL2R(i,j); %% non-occluded pixel 
else 

occludedlmg(i,j) = 0; %% occluded pixel 
end 

end 
end 

end 
% Terminate the Timer to calculate the time consumed. 
timeTaken=toc; 

A.21 Finding Depth-Discontinuous Regions 

95 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

% Title: Function-Find Discontinuous regions of an image 
% Notes: 
% 1, According to paper [A Taxonomy and Evaluation of Dense Two-Frame Stereo 
Correspondence Algorithms], Depth Discontinuous regions are defined as pixels 
whose neighboring 
% disparities differ by more than a certain gap, dilated 
% by a window of width windowsize. 
% 2. According to paper [ An Experimental Comparison of Stereo Algorithms], A 
pixel is a depth 
% discontinuity if any of its (4-conneeted) neighbors has a disparity that 
differs by more than 1 from 
% its disparity. Neighboring pixels that are part of a sloped surface can 
easily differ by 1 pixel, but 
% should not be counted as discontinuities. 
% Author: Siddhant Ahuja 
% Created: May 2008 
% Copyright Siddhant Ahuja, 2008 
% Inputs: Input Image-Depth Map (var: inputImage), Window Size (var: 
windowSize), 
% Threshold (var: thresh) Typical value is 3 
% Outputs: Discontinuous Map (var: discontinuouslmg) , Time taken (var: 
timeTaken) 
% Example Usage of Function: [discontinuouslmg, 
timeTaken]=funcDiscontinuousRegions( !TsukubaGroundTruthL2R.pgm', 9, 3) ; 
s, * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
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function [discontinuouslmg, timeTaken]=funcDiscontinuousRegions(inputlmage, 
windowSize, thresh) 
% Read the input image 
try 

% Read an image using imread function 
inputImage=imread(inputlmage); 
% grab the number of rows, columns, and channels 
[nr, nc, nChannels]=size(inputlmage); 
% Grab the image information (metadata) of input image using the 

function imfinfo 
inputlmagelnfo=imfinfo(inputlmage); 
% Determine if input left image is already in grayscale or color 
if(getfield(inputlmagelnfo,'ColorType')=='truecolor') 

inputlmage=rgb2gray(inputlmage); 
else if(getfield(inputImageInfo,'ColorType')=='grayscale') 

inputImage=inputImage; 
else 
error('The Color Type of Left Image is not acceptable. Acceptable 

color types are truecolor or grayscale."); 
end 

end 
catch 

% if it is not an image but a variable 
% grab the number of channels 
[nr, nc, nChannels]=size(inputlmage) ;: 
if(nChannels)>1 

inputlmage=rgb2gray(inputlmage); 
else 

inputImage=inputImage; 
end 

end 
% Check the size of window to see if it is an odd number, 
if (mod(windowSize,2)==0) 

error('The window size must be an odd number.'); 
end 
% Create an image of size nr and nc, fill it with zeros and assign 
% it to variable discontinuouslmg 
discontinuousImg=zeros(nr, nc) ; 
% Create an image of size nr and nc, fill it with zeros and assign 
% it to variable edgelmg 
edgeImg=zeros(nr, nc) ; 
% Find out how many rows and columns are to the left/right/up/down of the 
% central pixel based on the window size 
win=(windowSize-1)/2; 
inputImage=double(inputlmage); 
tic; % Initialize the timer to calculate the time consumed. 
% Find variation/edges in disparity values in horizontal and vertical 
directions 
for (i=l:l:nr-l) 

for (j=l:l:nc-l) 
% Traverse in horizontal direction 
if (abs(inputlmage(i,j)-inputlmage(i,j+1)) > thresh ) 

edgelmg(i,j) = 255; 
edgelmg(i,j+1) =255; 

end 
% Traverse in vertical direction 
if (abs(inputlmage(i,j)-inputlmage(i+1,j)) > thresh ) 
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edgelmg(i,j) = 255; 
edgelmg(i+1,j) = 255; 

end 
end 

end 
% Dilate within the window 
for (i=l+win:nr-win) 

for (j=l+win:nc-win) 
% Go over the square window 
sum = 0.0; 
for (a=-win:1:win) 

for (b=-win:1:win) 
sum = sum + edgelmg(i+a,j+b); 

end 
end 
% Apply Threshold 
if (sum>0) 

discontinuouslmg(i, j) = 255; 
else 

discontinuouslmg(i,j) = 0; 
end 

end 
end 
% Stop the timer to calculate the time consumed. 
timeTaken=toc; 

A.22 Finding Low-Texture Regions 

% Title: Function-Find Textureless regions of an image 
% Notes: Textureless regions are defined as regions where the squared 
horizontal 
% intensity gradient averaged over a. square window of a given size 
% (windowSize) is below a given threshold (thresh); 
% Author: Siddhant Ahuja 
% Created: May 2006 
% Copyright Siddhant Ahuja, 2008 
% Inputs: input Image (var: inputlmage), Window Size (var: windowSize), 
% Threshold (var: thresh) Typical value is 4 
% Outputs: Textureless Map {var: texturelesslmg) , Time taken (var: 
timeTaken) 
% Example Usage of Funct ion: [ t ex ture less lmg, 
t i m e T a k e n ] = f u n c T e x t u r e 1 e s s R e g i o n s { * T s u k u b a L e f t C o 1 o r . p n g', 9, 4) ; 
•|- -k * * * * * -k * * * A- * * * * * * * -k * * * -k * * * * * * * * * * * * k * * * * * * * * * ************* -k * * * k ******* * * * * * * * 

function [texturelesslmg, timeTaken]=funcTexturelessRegions(inputlmage, 
windowSize, thresh) 
% Read the input image 
try 

% Read an image using imread function 
inputlmage=imread(inputlmage) ; 
% grab the number of rows, columns, and channels 
[nr, nc, nChannels]=size(inputlmage); 
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% Grab the image information (metadata) of input image using the 
function imfinfo 

inputImageInfo=imfinfo(inputlmage); 
% Determine if input left image is already in grayscale or color 
if(getfield(inputlmagelnfo,'ColorType')=='truecolor') 

colored=l; 
else if(getfield(inputImageInfo,'ColorType')=='grayscale') 

colored=0; 
else 
error('The Color Type of Left Image is not acceptable. Acceptable 

color types are truecolor or grayscale.'); 
end 

end 
catch 

% if it is not an image but a variable 
% grab the number of channels 
[nr, nc, nChannels]=size(inputlmage); 
if(nChannels)>1 

colored=l; 
else 

colored=0; 
end 

end 
% Check the size of window to see if it is an odd number, 
if (mod(windowSize,2)==0) 

error('The window size must be an odd number.*); 
end 
% Create an image of size nr and nc, fill it with zeros and assign 
% it to variable texturelesslmg 
texturelessImg=zeros(nr, nc); 
% Create an image of size nr and nc, fill it with zeros and assign 
% it to variable sqGradlmg 
sqGradImg=zeros(nr,nc); 
% Find out how many rows and columns are to the left/right/up/down of the 
% central pixel based on the window size 
win=(windowSize-1)/2; 
inputImage=double(inputlmage); 
tic; % Initialize the timer to calculate the time consumed. 
% Produce Squared Horizontal Gradient image sqGradlmg 
for (i=l:l:nr) 

for (j=l:l:nc-l) 
sum = 0.0; 
for (k=l:1:nChannels) 

diff = inputlmage(i,j,k) - inputlmage(i,j + 1, k); 
sum = sum + (diff*diff); 

end 
sum = sum / nChannels; 
sqGradlmg(i,j+1) = sum; 
if (j==l) 

sqGradlmg(i,j) = sum; 
end 
if (sum > sqGradlmg(i, j)) 

sqGradlmg(i,j) = sum; 
end 

end 
end 
% Compute average within predefined box window of size windowSize x 
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% winaowSize 
for (i=l+win:nr-win) 

for (j=l+win:nc-win) 
% go over the square window 
sum = 0.0; 
avg = 0.0; 
for (a=-win:1:win) 

for (b=-win:1:win) 
sum = sum + sqGradlmg(i+a,j+b); 

end 
end 
% Compute the etvera.ge 
avg = sum / (windowSize*windowSize); 
% Apply threshold 
if (avg < (thresh*thresh)) 

texturelesslmg(i,j) = 255; % mark detected textureless pixel as 
white 

end 
end 

end 
% Stop the timer to calculate the time consumed. 
timeTaken=toc; 

A.23 Introduce Vignetting effect 

^ * * * * * * * * * * -A- * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

% Title: Function-Introduce Vignetting effect to the image 
% Author: Siddnant Ahuja 
% Created: September 2008 
% Copyright Siddnant Ahuja, 2008 
% Inputs: Input Image (var: inputlmage) , Scale Change level (var: 
% scaleLevel) Valid values for scale change should go from 0,1 to 1 
% Outputs: Vignetting effect added image (var: vignettlmg", Time taken (var: 
timeTaken) 
% Example Usage of Function: [vignettlmg, 
timeTaken]=funcVignettingEffeet('TsukubaLeftColor. png', 0.5); 

function [vignettlmg, timeTaken]=funcVignettingEffeet(inputlmage, scaleLevel) 
% Read the input image 
try 

% Read an image using imread function 
inputImage=imread(inputlmage); 
% grab the number of rows, columns, and channels 
[nr, nc, nChannels]=size(inputlmage); 
% Grab the image information (metadata) of input image using the 

function imfinfo 
inputImageInfo=imfinfo(inputlmage); 
% Determine if input left, image is already in grayscale or color• 
if(getfield(inputlmagelnfo, 'ColorType')=='truecolor') 

colored=l; 
else if(getfield(leftImageInfo, 'ColorType')=='grayscale') 

colored=0; 
else 
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error(*The Color Type .of Left Image is not acceptable, 
color types are truecolor or grayscale.'); 

end 
end 

catch 
% if it is not an image but a variable 
inputImage=inputImage; 
% grab the number of channels 
[nr, nc, nChannels]=size(inputlmage); 
if(nChannels)>1 

colored=l; 
else 

colored=0; 
end 

end 
if scaleLevel <= 0 

error('Scale value must be > 0') ; 
end 
vignettImg=inputImage; 
tic; % Initialize the timer to calculate the time consumed. 
imgCntX = nc/2; 
imgCntY = nr/2; 
maxDistance = sqrt (imgCntYA2 + imgCntXA2) ; 
if(colored==l) 

for (i=l:nr) 
for (j=l:nc) 

dis = sqrt (abs(i-imgCntY)A2 + abs(j-imgCntX)A2) ; 
%% reduce brightness of pixel based on distance from 

center 
vignettlmg(i,j,1) = vignettlmg(i,j,1)* (1 

scaleLevel)*(dis/maxDistance) ); 
vignettImg(i,j,2) = vignettlmg(i,j,2)* (1 

scaleLevel)*(dis/maxDistance) ); 
vignettlmg(i,j,3) = vignettlmg(i,j,3)* (1 

scaleLevel)*(dis/maxDistance) ); 
end 

end 
else 
%gray 

for (i=l:nr) 
for (j=l:nc) 

dis = sqrt (abs(i-imgCntY)A2 + abs(j-imgCntX)A2); 
%% reduce brighness of pixel based on distance from 

center 
vignettlmg(i,j) = vignettlmg(i,j)* (1 

scaleLevel)*(dis/maxDistance) ); 
end 

end 
end 
% Stop the timer to calculate the time consumed. 
timeTaken=toc; 



A.24 Introduce Scale change 

55- * ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' * * * * ' * * * ' * * * * * * * * * * * * * * * * 
O 

% Title: Function-Add scale change to the image. 
% Author: Siddhant Ahuja 
% Created: September 2 008 
% Copyright Siddhant Ahuja, 2008 
% Inputs: Input Image (var: inputImage), Scale Change level (var: 
% scaleLevel)Valid values for scale change should go from 0,1 to 1 
% Outputs: Scale changed image (var: scaledlmg, Time taken (var: timeTaken) 
% Example Usage of Function: [scaledlmg, 
timeTaken ] =f unc-ScaleChange ( ' TsukubaLef tColor , png', 0.5); 
% * * k * * * * k *- * * * * * k * * * -A- * * * * * * * * * * * * * k k * * * * * * * * k k k * k k k * * k k k k * -k * k k k * k -k k * k k -k k k: k k o 

function [scaledlmg, timeTaken]=funcScaleChange(inputlmage, scaleLevel) 
% Read the input image 
try 

inputImage=imread(inputImage) ; 
catch 

inputImage=inputImage; 
end 
tic; % Initialize the timer to calculate the time consumed. 
scaledlmg = inputlmage*(scaleLevel*10); 
% Stop the timer to calculate the time consumed. 
timeTaken=toc; 

A.25 Introduce Gaussian noise 

Oj * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

% Title: Function Add gaussian noise to the image. 
% Notes: Gaussian white noise has mean of 0 and 
% variance V as the noiseLevel. When unspecified, M and. V default to 0 and 
0.01 respectively. 
% The mean and variance parameters for 'gaussian' noise are always specified. 
as if for a double image 
% in the range [0, 1]. If the input image is of class uint.8 or uintl6, 
% the imnoise function converts the image to double, adds noise 
% according to the specified type and parameters, and then converts the 
% noisy image back, to the same class as the input. 
% Author: Siddhant Ahuja 
% Created: September 2006 
% Copyright Siddhant Ahuja, 2008 
% Inputs: Input. Image (var: inputlmage), Noise level (var: noiseLevel) 
corresponds to 15dB; 
%0.00002=>50;0.00004=>47;0.00006=>45;0.00012S=>42;0.00020=>40;0.00035=>37.5;0 
.0006=>35;0.00117=>32.5;0.00195=>30;0.003 7=>27.5;0.0065=>25;0.012=>22.5;0.021 
=>20;0.043=>17.5; 
%0.09=>15;0.27=>12.5 
% Outputs: Gaussian noise added image (var: gaussNoiselmg, Time taken (var: 
timeTaken) 
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% Example Usage of Funct ion: [gaussNoiselmg, 
t imeTaken]=funcGaussianNoise{ 'TsukubaLeft . jpg ' , 0 .09) ; 
% ****** kk*kkk + * * * * ^ k k * k k k * * k k * k * k + * k k k * k k * * * k k * * k k * k k k * k * k * k k k * k * k k k k k * - k k k 

function [gaussNoiselmg, timeTaken]=funcGaussianNoise(inputlmage, noiseLevel) 
% Read the input image 
try 

inputImage=imread(inputImage); 
catch 

inputImage=inputImage; 
end 
tic; % Initialize the timer to calculate the time consumed. 
gaussNoiselmg = imnoise (inputlmage, 'gaussian', 0,noiseLevel); 
% Stop the timer to calculate the time consumed. 
timeTaken=toc; 

A.26 Adjust Gamma variation 

% k k * * * •* * * * * * * -k * * * * * yr * * k * * -k k * * * * * * * * -k * * * -k * X * * * -k k k * * * * * * k * * -A * * * * -A- * * * -A- * * * * * * * 

% T i t l e : Function-Add gamma change to the irrrage. 
% Author: Siddhant Ahuja 
% Created: September 2008 
% Copyright Siddhant Ahuja, 2008 
% Inputs: Input Image (var: inputlmage), Gamma Change level (var: 
% gammaLevel)Valid values for gamma change should go from 0.1 to 5 
% Outputs: Gamma changed image (var: gamrnalmg, lime taken (var: timeTaken) 
% Example Usatge of Function: [gamrnalmg, 
timeTaken]=funcGaminaChange('TsukubaLeftCoIor.png' , 0.5); 
!£ ************************************************************************* 

function [gamrnalmg, timeTaken]=funcGammaChange(inputlmage,gammaLevel) 
% Read the input image 
try 

% Read an image using imread function 
inputImage=imread(inputlmage); 
% Grab the image information (metadata.) of input image using the 

function imfinfo 
inputImageInfo=imfinfo(inputlmage); 
% Determine if input left image is already in grayscale or color 
if(getfield(inputImageInfo,'ColorType')=='truecolor') 

colored=l; 
else if (getfielddeftlmagelnfo, 'ColorType' )==' grayscale ' ) 

colored=0; 
else 
error(*The Color Type of Left Image is not acceptable. Acceptable 

color types are truecolor or grayscale.'); 
end 

end 
catch 

% if it is not an image but a variable 
inputImage=inputlmage; 
% grab the number of channels 
[nr, nc, nChannels]=size(inputlmage); 
if(nChannels)>1 
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colored=l; 
else 

colored=0; 
end 

end 
if gammaLevel <= 0 

error('Gamma value must be > 0'); 
end 
if isa(inputlmage,'uint8"); 

gammalmg = double(inputImage); 
else 

gammalmg = inputImage; 
end 
tic; % Initialize the timer to calculate the time consumed, 
if(colored==l) 

% Red component 
gammalmg(:,:,1) = gammalmg(:,:,1)-min(min(gammalmg(:,:,1))); 
gammalmg(:, :,1) = gammalmg(:, :,1) ./max(max(gammalmg(:, :, 1))) ; 
gammalmg(:,:,1) = gammalmg(:,:,1).A(1/gammaLevel); % Apply gamma 

function 
% Green component 
gammalmg(:, :,2) = gammalmg(:,:,2)-min(min(gammalmg(:,:, 2) )) ; 
gammalmg(:,:,2) = gammalmg(:,:,2)./max(max(gammalmg(:,:,2))); 
gammalmg(:,:,2) = gammalmg(:,:,2).A(1/gammaLevel); % Apply gamma 

function 
% Blue component 
gammalmg(:,:,3) = gammalmg(:,:,3)-min(min(gammalmg(:,:, 3))) ; 
gammalmg(:,:,3) = gammalmg(:,:,3) ./max(max(gammalmg(:,:, 3))) ; 
gammalmg(:,:,3) = gammalmg(:,:, 3) . A (1/gammaLevel); % Apply gamma 

function 
else 

gammalmg(:,:) = gammalmg(:,:)-min(min(gammalmg(:,:))); 
gammalmg(:,:) = gammalmg(:,:)./max(max(gammalmg(:,:))); 
gammalmg(:,:) = gammalmg(:,:).A(1/gammaLevel); % Apply gamma function 

end 
% Stop the timer to calculate the time consumed. 
timeTaken=toc; 

A.27 Generate Variance Map 

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I T * * * * * * * * * * * * * * * * * * * * * * * * 

% Title: Function-Compute Variance map of the image 
% Author: Siddhant Ahuja 
% Created: May 2008 
% Copyright Siddhant Ahuja, 2008 
% Inputs: Input Image (var: inputlmage), Window Size (van windowSize), 
% Threshold (var: thresh) Typical value is 140 
% Outputs: Variance Map (var: variancelmg) , Time taken (var: timeTaken) 
% Example Usage of Function: [variancelmg, 
timeTaken]=funcVarianceMap('TsukubaLeftColor.png', 9, 1); 
a - * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *• * * * * * * * * * •*• * * * * * * 
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function [variancelmg, timeTaken]=funcVarianceMap(inputlmage, windowSize, 
thresh) 
try 

% Grab the image information (metadata) of input image using the function 
imfinfo 

inputlmagelnfo=imfinfo(inputlmage); 
if(getfield(inputlmagelnfo, 'ColorType')=='truecolor') , 
% Read an image using imread function, convert from RGB color space to 
% grayscale using rgb2gray function and assign it to variable inputlmage 

inputlmage=rgb2gray(imread(inputlmage)); 
% Convert the image from uintS to double 
inputImage=double(inputlmage); 

else if(getfield(inputlmagelnfo,'ColorType')=='grayscale') 
% If the image is already in grayscale, then just read it. 

inputImage=imread(inputlmage) ; 
% Convert the image from uintS to double 
inputImage=double(inputlmage); 

else 
error('The Color Type of Left Image is not. acceptable. Acceptable 

color types are truecolor or grayscale.'); 
end 

end 
catch 

% if it is not an image but a variable 
inputImage=inputImage; 

end 
% Find the size (columns and rows) of the input image and assign the rows to 
% variable nr, and columns to variable nc 
[nr,nc] = size(inputlmage); 
% Check the size of window to see if it is an odd number, 
if (mod(windowSize,2)==0) 

error('The window size must be an odd number.'); 
end 
% Create an image of size nr and nc, fill it with zeros and assign 
% it to variable meanlmg 
meanImg=zeros(nr, nc); 
% Create an image of size nr and nc, fill it with zeros and assign 
% it to variable variancelmg 
varianceImg=zeros(nr, nc) ; 
% Find out how many rows and columns are to the left/right/up/down of the 
% central pixel based on the window size 
win=(windowSize-1)/2; 
tic; % Initialize the timer to calculate the time consumed. 
% Compute a map> of mean values 
for(i=l+win:1:nr-win) 

for(j=l+win:1:nc-win) 
sum=0.0; 
for(a=-win:1:win) 

for(b=-win:1:win) 
sum=sum+inputlmage(i+a,j+b); 

end 
end 
meanlmg(i,j)=sum/(windowSize*windowSize); 

end 
end 
% Compute a map of variance values 
for(i=l+win:1:nr-win) 



for(j=l+win:1:nc-win) 
sum=0.0; 
for(a=-win:1:win) 

for(b=-win:1:win) 
sum=sum+((inputImage(i+a,j+b)-meanlmg(i, j))A2); 

end 
end 
varianceImg(i,j)=sum/((windowsize*windowsize)-1) ; 

end 
end 
% Apply threshold to produce a bi.nari.zed variance map 
for(i=l+win:1:nr-win) 

for(j=l+win:1:nc-win) 
if (variancelmg(i,j) > thresh) 

variancelmg(i,j) = 255; 
else 

variancelmg(i,j) = 0 ; 
end 

end 
end 
% Stop the timer to calculate the time cons\imed. 
timeTaken=toc; 

A.28 Post-processing algorithm 

9,r * * * *' 'k * * * * * * * ~k 'k * * * 'k * * * ~k * * -k -k -k * -k * -k * -k -k X * *- -k -k -k * -k -k -k -k * * * * * * * * * * * * * * * * * * * * * * * * * ~k * * 

% Title: Function-Post process an image 
% Author: Siddhant Ahuja 
% Created: Septembed 2008 
%' Copyright Siddhant Ahuja, 2008 
% Inputs: Image (var: inputImage), Disparity Map {var: dispMap), Threshold 
% for 'variance map of input image {var:: threshlxt) typically 135, Threshold 
for variance 
% map of input Disparity Map (var: tnreshTdisp) typically 17 
% Outputs: Post Processed Image {var: postProcessedlmg), 
% Time taken (var: timeTaken) 
% Example Usage of Function: [postProcessedlmg, 
% timeTaken] =funcPostProcess {' imL.png', ' disp___l__r ,prigr, 1.35, 17) 
%_ y>; -k -k k y=: •k -k k ~k ~k * ~k f-. k k ~k "A" k: -k k -k •£; -k k fr i<; -k k "k -k -k -k ~k i<: k -k -k k: -k -k k k: -k -k ~k k: -k -k k y1-: i<: •k k k: k: -k k k, k: k k k, k; ~k k k k: -k k k. k: k -k 

function [postProcessedlmg, timeTaken]=funcPostProcess(inputlmage, dispMap, 
threshTxt, threshTdisp) 
tic; % Initialize the timer to calculate the time consumed. 
% Compute Variance map of input image 
[variancelnputlmg, time]=funcVarianceMap(inputlmage, 9, threshTxt); 
% Compute Variance map of input disparity map 
[varianceDispMap, time]=funcVarianceMap(dispMap, 9, threshTxt); 
postProcessedImg=imread(dispMap); 
[nr, nc]=size(postProcessedlmg); 
for(i=l:l:nr) 

for(j=l:1:nc) 
if(variancelnputlmg(i,j)<=threshTxt | | 

varianceDispMap(i,j)>=threshTdisp) 
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postProcessedlmg(i,j)=0; 
end 

end 
end 
% Stop the timer to calculate the time consumed. 
timeTaken=toc; 

A.29 Initialize 2001 Dataset from Middlebury 
% Initialize 2001 Dataset array of structures 

% barnl 
Dataset2001(l).index=l; 
Dataset2001 (1) .name='barnl'; 
Dataset20 01 (1) . leftlmage=' im2 .pprn' ; 
Dataset2001 (1) . rightlmage='im6.pprn'; 
Dataset2001(1).groundTruthL2R='disp2.pgm'; 
Dataset2001(1).groundTruthR2L='disp6.pgm'; 
Dataset2001(1).dispMax=16; 
Dataset2001(1).scale=8; 

% barn2 
Dataset2001(2).index=2; 
Dataset2001(2).name='barn2'; 
Dataset2001 (2) .leftlmage='im2.ppm'; 
Dataset2 001 (2) .rightlmage='im6.ppm'; 
Dataset2001(2).groundTruthL2R='disp2.pgm'; 
Dataset2001 (2) .groundTruthR2L='disp6.pgm'; 
Dataset2001(2).dispMax=20; 
Dataset2001(2).scale=8; 

% bull 
Dataset2001(3).index=3; 
Dataset2001(3).name='bull'; 
Dataset2001 (3) .leftImage='im2.ppm'; 
Dataset2001 (3) .rightImage='im6.ppm'; 
Dataset2001(3).groundTruthL2R='disp2.pgm'; 
Dataset2001(3).groundTruthR2L='disp6.pgm'; 
Dataset2001(3).dispMax=20; 
Dataset2001(3).scale=8; 

% map 
Dataset2001(4).index=4; 
Dataset2 001(4).name='map'; 
Dataset2001(4).leftlmage='imO.pgm'; 
Dataset2001(4).rightImage='iml.pgm'; 
Dataset2 0 01(4) .groundTruthL2R='dispO.pgm!; 
Dataset2001(4).groundTruthR2L='displ.pgm'; 
Dataset2001(4).dispMax=30; 
Dataset2001(4).scale=8; 

Dataset2001(5).index=5; 
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Dataset2001(5).name='poster'; 
Dataset2001(5).leftlmage='im2.ppm'; 
Dataset2001(5).rightlmage='im6.ppm'; 
Dataset2001(5).groundTruthL2R='disp2 
Dataset2001(5).groundTruthR2L='disp6 
Dataset2001(5).dispMax=20; 
Dataset2001(5).scale=8; 

:o sawtooth 
Dataset2001(6).index=6; 
Dataset2001(6).name='sawtooth'; 
Dataset2001 (6) .leftlmage=' im2.ppm' ; 
Dataset2001(6).rightlmage='im.6.ppm'; 
Dataset2001 (6) .groundTruthL2R='disp2.pgrn' ; 
Dataset2001 (6) .groundTruthR2L='disp6 .pgm' ; 
Dataset2001(6).dispMax=20; 
Dataset2001(6).scale=8; 

% tsukuba 
Dataset2001(7).index=7; 
Dataset2001 (7) .name='tsukuba'; 
Dataset2001(7).leftlmage='imL.png'; 
Dataset2001(7).rightImage='imR.png'; 
Dataset2001(7).groundTruthL2R='truedispl.row3.col3.pgm'; 
Dataset2001(7).groundTruthR2L='truedisp2.row3.col3.pgm'; 
Dataset2001(7).dispMax=30; 
Dataset2001(7).scale=16; 

% venus 
Dataset2001(8).index=8; 
Dataset2001(8).name=*venus'; 
Dataset2001(8).leftImage='imL.png'; 
Dataset2001 (8) .rightImage='imR.png'; 
Dataset2001(8).groundTruthL2R='disp2.pgm'; 
Dataset2001 (8) .groundTruthR2L='disp6.pgm'; 
Dataset2001(8).dispMax=20; 
Dataset2001(8).scale=8; 

A.30 Initialize 2003 Dataset from Middlebury 

% Initialize 2003 Dataset array of.structures 

% teddy 
Dataset2003(1).index=l; 
Dataset2003(1).name='teddy'; 
Dataset2003(1).leftlmage='imL.png'; 
Dataset20 03(1).rightImage='imR.png'; 
Dataset2003(1).groundTruthL2R=*disp2.png"; 
Dataset20 03(1).groundTruthR2L= * dispo.png'; 
Dataset2003(l).dispMax=53; 
Dataset2003(1).scale=4; 

.pgm'; 

.pgm'; 



% cones 
Dataset2003(2).index=2; 
Dataset2003 (2) .name='cones'; 
Dataset2003(2).leftlmage='imL.png'; 
Dataset2003(2) .rightlmage='imR.png' ; 
Dataset2003(2).groundTruthL2R='disp2.png*; 
Dataset2003(2).groundTruthR2L='disp6.png'; 
Dataset2003(2).dispMax=55; 
Dataset2003(2).scale=4; 

A.31 Initialize 2006 Dataset from Middlebury 

% Initialize 2006 Dataset array of structures 

Dataset2006 (1) .index=l; 
Dataset2006(1).name='aloe'; 
Dataset2006(1) .leftlmage='viewl.png' ; 
Dataset2006(1) .rightlmage=!view5.png' ; 
Dataset2006(1).groundTruthL2R=!displ.png'; 
Dataset2006(1).groundTruthR2L='dispS.png'; 
Dataset2006(1).dispMax=70; 
Dataset2006(1).scale=3; 

% babyl 
Dataset2006 (2) .index=2; 
Dataset2006(2).name='babyl'; 
Dataset2006(2).leftlmage='viewl.png!; 
Dataset2006(2) .rightImage='view5.png' ; 
Dataset2006(2).groundTruthL2R='displ.png'; 
Dataset2006(2).groundTruthR2L='disp5.png'; 
Dataset2006(2).dispMax=45; 
Dataset2006(2).scale=3; 

% baby2 
Dataset2006 (3) .index=3; 
Dataset2006(3).name='baby2*; 
Dataset2006(3).leftlmage='viewl.png'; 
Dataset2006(3) .rightlmage='viewS.png' ; 
Dataset2006(3).groundTruthL2R=!displ.png'; 
Dataset2006(3).groundTruthR2L='disp5.png'; 
Dataset2006(3).dispMax=53; 
Dataset2006(3).scale=3; 

Dataset2006(4).index=4; 
Dataset2006(4).name='baby3'; 
Dataset2006(4) .leftlmage='viewl.png'; 
Dataset2006 (4) . rightlmage=" viev/5 .png' ; 
Dataset2006(4).groundTruthL2R='displ.png'; 
Dataset2006(4).groundTruthR2L=*dispS.png'; 
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Dataset2006 (4) .dispMax=51; 
Dataset2006(4).scale=3; 

% bowlingl 
Dataset2006 (5) .index=5; 
Dataset2006(5).name='bowlingl'; 
Dataset2006(5).leftlmage='viewl.png*; 
Dataset2006 (5) .rightlmage=' viewS ,p.ng' ; 
Dataset2006(5).groundTruthL2R='displ.png'; 
Dataset2006(5).groundTruthR2L='disp5 .prig'; 
Dataset2006(5).dispMax=77; 
Dataset2006(5).scale=3; 

% bo"»*ling2 
Dataset2006(6).index=6; 
Dataset2006(6).name='bowling2'; 
Dataset2006 (6) . leftlmage=' viewl .prig* ; 
Dataset2006(6).rightImage='view5.png'; 
Dataset2006(6).groundTruthL2R='displ.png'; 
Dataset2006(6).groundTruthR2L='disp5.png'; 
Dataset2006(6).dispMax=67; 
Dataset2006(6).scale=3; 

% clothl 
Dataset2006(7).index=7; 
Dataset2006 (7) .name=*clothl'; 
Dataset2006(7).leftlmage='viewl.png'; 
Dataset2006(7).rightlmage='view5.png'; 
Dataset2006(7).groundTruthL2R='displ.png'; 
Dataset2006(7).groundTruthR2L='dispS.png'; 
Dataset2006(7).dispMax=57; 
Dataset2006(7).scale=3; 

% cioth2 
Dataset2006(8).index=8; 
Dataset2006 (8) .name='cloth2'; 
Dataset2006(8).leftImage=!viewl.png'; 
Dataset2006(8).rightlmage='viewS.png'; 
Dataset2006(8).groundTruthL2R='displ.png'; 
Dataset2006(8).groundTruthR2L='disp5.pngf; 
Dataset2006(8).dispMax=77; 
Dataset2006(8).scale=3; 

% cloth3 
Dataset2006(9).index=9; 
Dataset2006(9).name='clothS'; 
Dataset2006(9).leftlmage='viewl.png'; 
Dataset2006(9).rightlmage='view5.png'; 
Dataset2006 (9) .groundTruthL2R='clispl .png' ; 
Dataset2006(9).groundTruthR2L='dispS.png'; 
Dataset2006(9).dispMax=55; 
Dataset2006(9).scale=3; 

% cloth4 
Dataset2006(10).index=10; 
Dataset2006 (10) .name='cloth4 ' ; 
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Dataset2006 (10) . lef tlmage= ' viswl .prig' ; 
Dataset2 006(10).rightImage='view5.png'; 
Dataset2006(10).groundTruthL2R='displ.png'; 
Dataset2006(10).groundTruthR2L='disp5.png'; 
Dataset2006(10).dispMax=67; 
Dataset2006(10).scale=3; 

% flowerpots 
Dataset2006(11).index=ll; 
Dataset2006(11).name='flowerpots'; 
Dataset2 006(11).leftImage='viewl.png'; 
Dataset2006 (11) . rightlmage='vi.sw5 .prig' ; 
Dataset2006 (11) . groundTruthL2R='displ .prig' ; 
Dataset2006(11).groundTruthR2L='disp5.png'; 
Dataset2006(11).dispMax=61; 
Dataset2006(11).scale=3; 

% lampshade1 
Dataset2006(12).index=12; 
Dataset2006(12).name='lampshadel'; 
Dataset2006(12).leftlmage='viewl.png'; 
Dataset2006(12).rightImage='viewS.png'; 
Dataset2006(12).groundTruthL2R='displ.png'; 
Dataset2006 (12) . groundTruthR2L=' disp5 . prig ' ; 
Dataset2006(12).dispMax=65; 
Dataset2006(12).scale=3; 

% lampshade2 
Dataset2006 (13) .index=13; 
Dataset2006(13).name='lampshade2'; 
Dataset2006(13).leftlmage='viewl.png'; 
Dataset2006(13).rightImage='view5.png'; 
Dataset2006(13).groundTruthL2R='displ.png'; 
Dataset2006(13).groundTruthR2L='disp5.png'; 
Dataset2006(13).dispMax=65; 
Dataset2006(13).scale=3; 

% middl 
Dataset2006 (14) .index=14; 
Dataset2 006(14) .name=!middl' ; 
Dataset20 06(14).leftImage='viewl.png'; 
Dataset2006(14).rightImage='view5.png'; 
Dataset2006(14).groundTruthL2R='displ.png'; 
Dataset2006(14).groundTruthR2L='disp5.png'; 
Dataset2006(14).dispMax=69; 
Dataset2006 (14) .scale=3; 

% midd2 
Dataset2006 (15) .index=15; 
Dataset2006(15).name='midd2'; 
Dataset2 0 06(15).leftImage='viewl.png'; 
Dataset2006(15).rightlmage='view5.png'; 
Dataset2006(15).groundTruthL2R='displ.png'; 
Dataset2006(15).groundTruthR2L='disp5.png'; 
Dataset2006(15).dispMax=63; 
Dataset2006(15).scale=3; 



% monopoly 
Dataset2006(16).index=16; 
Dataset2006(16).name='monopoly'; 
Dataset2006(16). leftlmage='viewl,png'; 
Dataset2006(16).rightImage='viewS.png'; 
Dataset2006(16).groundTruthL2R='displ.png'; 
Dataset2006(16).groundTruthR2L='disp5.png*; 
Dataset2006(16).dispMax=65; 
Dataset2006(16).scale=3; 

% plastic 
Dataset2006(17).index=17; 
Dataset2006(17).name='plastic'; 
Dataset2006(17).leftlmage='viewl.png'; 
Dataset2006(17) .rightImage='viewS.png' ; 
Dataset2006(17).groundTruthL2R=rdispl.png'; 
Dataset2006(17).groundTruthR2L='disp5.png'; 
Dataset2006 (17) .dispMax=65; 
Dataset2006(17).scale=3; 

% rocksl 
Dataset2006(18).index=18; 
Dataset2006(18).name='rocksl'; 
Dataset2006(18).leftlmage='viewl.png'; 
Dataset2006(18).rightlmage='viewS.png'; 
Dataset2006(18).groundTruthL2R='displ.png'; 
Dataset2006(18).groundTruthR2L='disp5.png'; 
Dataset2006 (18) .dispMax=57; 
Dataset2006 (18) .scale=3; 

% rocks2 
Dataset2006(19).index=19; 
Dataset2006(19).name='rocks2'; 
Dataset2006(19).leftlmage='viewl.png'; 
Dataset2006(19).rightImage='view5.png'; 
Dataset2006 (19) . groundTruthL2R=' displ .prig ' ; 
Dataset2006(19).groundTruthR2L='dispS.png'; 
Dataset2006(19).dispMax=57; 
Dataset2006(19).scale=3; 

% woodl 
Dataset2006(20).index=20; 
Dataset2006(20).name='woodl'; 
Dataset2006(20).leftImage="viewl.png'; 
Dataset2006(20).rightImage='viewS.png'; 
Dataset2006(20).groundTruthL2R='displ.png'; 
Dataset2006(20).groundTruthR2L='dispS.png'; 
Dataset2006(20).dispMax=73; 
Dataset2006(20).scale=3; 

% VvOod2 
Dataset2006(21).index=21; 
Dataset2006(21).name='wood2'; 
Dataset2006(21).leftlmage="viewl.png'; 
Dataset2006(21).rightImage=!view5.png'; 



Dataset2006 (21) . groundTruthL2R='displ .prig' ; 
Dataset2006(21).groundTruthR2L='disp5.png'; 
Dataset2006(21).dispMax=73; 
Dataset2006(21).scale=3; 
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