
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. J.-Ph. Thiran, président du jury
Prof. Y. Leblebici, Dr A. Schmid, directeurs de thèse

Prof. L. Claesen, rapporteur
Prof. P. Frossard, rapporteur

Prof. J.-I. Guo, rapporteur

Real-Time High-Resolution Multiple-Camera Depth Map
Estimation Hardware and Its Applications

THÈSE NO 6573 (2015)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 16 AVRIL 2015

À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE DE SYSTÈMES MICROÉLECTRONIQUES

PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE

Suisse
2015

PAR

Abdulkadir AKIN

Nature is not on the surface,

it is in the depths.

Colors are an expression of these depths on the surface.

They rise from the roots of the world.

— Paul Cezanne

If one day,

real-time depth perception of machines becomes always better than human,

at that time,

intelligence and learning ability of human will not be needed anymore to develop technology.

— Kadir

To my family. . .

Acknowledgements

First of all, I would like to thank my thesis director Prof. Yusuf Leblebici who gave me the

opportunity to pursue my research in Microelectronic Systems Laboratory (LSM). Prof.

Leblebici always encouraged me to implement my creative ideas, and he always provided

his aspiring guidance and advices. In addition, I am cordially thankful to him, since he

established a laboratory with brilliant ambiance, friendship, collaboration and passion. I

know that, the fabulous culture of this laboratory is an output of his intensive efforts, and the

positive synergy of LSM led me to pursue successful research during my PhD studies.

I would like to thank my thesis co-director Dr. MER. Alexandre Schmid especially for his

guidance on the organization of my research. His suggestions on task scheduling and

risk/benefit analysis kept me on the correct research path. In addition, his valuable comments

on my papers significantly helped me to have attractive publications.

I would like to thank my thesis committee members, Prof. Jean-Philippe Thiran, Prof. Luc

Claesen, Prof. Jiun In Guo and Prof. Pascal Frossard, who have evaluated this thesis and

provided constructive comments. I would like to thank Melinda Mischler, Corine Degott and

Patricia Vonlanthen for their support in the administrative works at EPFL. I would like to

thank Alain Vachoux for his technical helps and advices.

During my research, I have collaborated with several PhD students, master students, interns

and engineers on different aspects of my studies. I would like to present my grateful thanks

to my these precious friends and collaborators. First, I would like to thank master students

that I supervised: İpek Baz for the algorithm development of two- and three-camera disparity

estimation (DE), Luis Gaemperle for the development of ethernet interface of DE system and

development of graphical user interface (GUI), Raffaele Capoccia for the three-camera DE

hardware implementation, Jonathan Narinx for the ASIC implementation of two-camera

DE hardware, Jonathan Masur for the hardware implementation of free viewpoint synthesis,

and Halima Najibi for the hardware implementation of the Caltech rectification algorithm.

In addition, I would like to thank interns that I supervised: Gremaud Xavier Louis for the

improvement of GUI, İrem Boybat for the algorithm development of two-camera DE and

compressed rectification, Baris Hüseyin Atakan for the algorithm development of two-camera

DE, Elif Erdede for the implementation of enhanced omnidirectional image reconstruction

i

Acknowledgements

algorithm. Moreover, I would like to thank PhD students: Youngjoo Seo for the development

of depth estimation based head/body tracking applications, Omer Cogal for his intensive

collaboration on the development of ultra high resolution omnidirectional camera, and

Kerem Seyid, Selman Ergünay, Hossein Afshari and Vladan Popovic for their useful technical

helps, comments and advices. Furthermore, I would like to thank Tuğba Demirci for her

co-supervision of Jonathan Narinx on ASIC implementation, Peter Brühlmeier for the design

of all the PCB boards that are fabricated and used in the research, and Sylvain Hauser for the

establishment of fabulous mechanical set-ups. While I was working with my collaborators,

all the heavy work turned out just a fun thanks to their passion on their profession and

friendship.

Being part of LSM gave me a chance to have great friends. Therefore I would like to extend

my special thanks with former and current LSM members, especially Mustafa Kılıç, Gülperi

Özsema, Can Baltacı, Zuhal Taşdemir, Şeniz Esra Küçük, Gözen Köklü, Clemens Nyffeler,

Kiarash Gharibdoust, Nikola Katic, Mahsa Shoaran, Cosimo Aprile, Jury Sandrini, Gain Kim,

Behnoush Attarimashalkoubeh, Reza Ranjandish, Elmira Shahrabi and Sebastian Rodriguez.

I had a great time in Lausanne with my all friends. I would like to thank to Ece Boran, Ziya

Köstereli, Ahmed Doğan, Nezihe Merve Gürel, Alp Yurtsever, Metin Kaycı, Ivan Beretta, Baran

Gözcü, Florence Fraigneau, Emine Can, Enver Kılınç, Onur Yürüten, Ruben Braojos, Egeyar

Bağcıoğlu, Elodie Lamothe, George Foustouskos and Özlem İpek for their friendship. The

friendship of all these people made Lausanne a lovely city to me.

Finally, I would like to present my special thanks to my family, my mother Ayla, my father

Ömer and my sisters Büşra, Şeyma and Elif Naz for their love and support during all my life.

Particularly I want to thank again to my sister Elif Naz for the figure below that she drew using

paint while she was 8 years old. While I was working on my thesis, she was upset that she could

not have enough time to play with me. She told that she can help me to finish my works, then

we would play some games together. I showed her the video results of my depth estimation

system, then I asked her to draw a picture to summarize my work which I can put in my thesis.

That was what I told just to make her busy, but now I keep my promise, here it is my beloved

sister.

Lausanne, 6 March 2015 Kadir

ii

Abstract

Depth information is used in a variety of 3D based signal processing applications such as

autonomous navigation of robots and driving systems, 3D geographic information systems,

object detection and tracking, computer games, 3D television, and free view-point synthesis.

These applications require high accuracy and speed performances for depth estimation.

Depth maps can be generated using disparity estimation methods, which are obtained from

stereo matching between multiple images.

The computational complexity of disparity estimation algorithms and the need of large

size and bandwidth for the external and internal memory make the real-time processing of

disparity estimation challenging, especially for high resolution images. This thesis proposes a

high-resolution high-quality multiple-camera depth map estimation hardware. The proposed

hardware is verified in real-time with a complete system from the initial image capture to the

display and applications. The details of the complete system are presented.

This thesis proposes binocular and trinocular hardware-oriented adaptive window size

disparity estimation algorithms, which target high-resolution video with high-quality

disparity results. The algorithms are carefully designed to be suitable to real-time hardware

implementation by allowing efficient parallel and local processing while providing high-quality

results.

The proposed binocular and trinocular disparity estimation algorithms are implemented in

hardware. The hardware implementation of the proposed binocular disparity estimation

algorithm can process 60 frames per second on a Virtex-5 FPGA at a 1024 × 768 XGA

video resolution for a 128 pixel disparity range. The hardware implementation of the

proposed trinocular disparity estimation algorithm can process 55 frames per second on a

Virtex-7 FPGA for the same resolution and disparity range. The implementation details of

these efficient binocular and trinocular disparity estimation hardware are presented. The

proposed binocular disparity estimation hardware provides best quality compared to existing

high-resolution disparity estimation hardware implementations.

Rectification is an important pre-processing step of the disparity estimation to remove the

distortions in the lens and to solve the camera misalignments. A novel compressed-look up

iii

Abstract

table based rectification algorithm and its real-time hardware implementation are presented.

The proposed compression scheme is able to fit the look-up-tables into the on-chip BRAMs of

the Virtex-5 FPGA. The low-complexity decompression process of the rectification hardware

utilizes a negligible amount of LUT and DFF resources of the FPGA while it does not require

the existence of external memory.

The first real-time high-resolution free viewpoint synthesis hardware utilizing three-camera

disparity estimation is presented. The proposed hardware generates high-quality free

viewpoint video at 55 frames per second using a Virtex-7 FPGA at a 1024 × 768 XGA video

resolution for any horizontally aligned arbitrary camera positioned between the leftmost and

rightmost physical cameras.

The full embedded system of the depth estimation is explained. The presented embedded

system transfers disparity results together with synchronized RGB pixels to the PC for

application development. Several real-time applications are developed on a PC using the

obtained RGB+D results. The implemented depth estimation based real-time software

applications are: depth based image thresholding, speed and distance measurement,

head-hands-shoulders tracking, virtual mouse using hand tracking and face tracking

integrated with free viewpoint synthesis.

The proposed binocular disparity estimation hardware is implemented in an ASIC. The ASIC

implementation of disparity estimation imposes additional constraints with respect to the

FPGA implementation. These restrictions, their implemented efficient solutions and the ASIC

implementation results are presented.

In addition, a very high-resolution (82.3 MP) 360°×100° omnidirectional multiple camera

system is proposed. The hemispherical camera system is able to view the target locations close

to horizontal plane with more than two cameras. Therefore, it can be used in high-resolution

360° depth map estimation and its applications in the future.

Keywords: Depth Estimation, Disparity Estimation, Rectification, Free Viewpoint Synthesis,

Multiple Camera, Hardware Implementation, Real-Time, FPGA, ASIC.

iv

Résumé

L’estimation de la profondeur (distance mesurée depuis l’observateur par rapport à chaque

objet) est utilisée dans de multiples applications de traitement de signaux basés sur la

3D, comme par exemple les systèmes de pilotage automatique de robots et de véhicules,

les systèmes d’information géographique 3D, la détection et le suivi d’objets, les jeux

d’ordinateurs, la télévision 3D ou encore la synthèse d’images d’un point de vue virtuel. Ces

applications nécessitent de grandes performances en précision et en vitesse dans l’estimation

de profondeur de champ. En utilisant des méthodes d’estimation de la disparité obtenues à

l’aide d’une comparaison entre plusieurs images stéréo, une cartographie complète de cette

profondeur peut être calculée.

La complexité de calcul des algorithmes d’estimation de la disparité ainsi que le besoin de

mémoires internes et externes de grande capacité et à forte bande passante rendent difficile le

traitement en temps réel de l’estimation de la disparité, particulièrement pour les images

à haute résolution. Cette thèse propose un hardware d’estimation de la cartographie de

profondeur à haute résolution et de haute qualité utilisant plusieurs caméras. Ce dernier est

vérifié en temps réel avec un système complet, depuis la capture de l’image initiale jusqu’à

l’affichage et ses applications correspondantes. Tous les détails concernant ce système sont

présentés.

Cette thèse propose des algorithmes binoculaires et trinoculaires d’estimation de la disparité

orientés hardware à l’aide de fenêtres de tailles adaptatives qui ciblent la vidéo de haute

résolution avec des résultats de haute qualité pour l’estimation de la profondeur. Les

algorithmes sont soigneusement développés pour être adaptés à une implémentation en

temps réel, permettant un calcul en parallèle efficace et local, tout en fournissant des résultats

de haute qualité.

Les algorithmes d’estimation de disparité binoculaires et trinoculaires proposés sont

implémentés en hardware. L’implémentation hardware de l’algorithme d’estimation de la

disparité binoculaire proposé peut traiter 60 images par seconde sur une FPGA Virtex-5

dans une résolution vidéo XGA de 1024×768 pixels pour une plage de disparité de 128 pixels.

L’implémentation hardware de l’algorithme d’estimation de la disparité trinoculaire proposé

peut traiter 55 images par seconde sur une FPGA Virtex-7, pour la même résolution et la

v

Résumé

même plage de la disparité. Les détails de l’implémentation hardware de ces deux algorithmes

sont présentés. Le matériel proposé délivre la meilleure qualité d’estimation de disparité

comparée aux implémentations hardware existantes.

La rectification est une étape de prétraitement importante pour estimer la disparité afin de

supprimer les distorsions dans les lentilles et de corriger l’alignement imparfait des caméras.

Un nouvel algorithme, basé sur table de transcorrespondance (LUT) compressée, ainsi

que son implémentation dans un hardware temps réel sont présentés. Un algorithme de

compression est proposé et est capable d’accommoder les tables de transcorrespondance

dans les BRAMs internes de la FPGA Virtex-5. Grâce à la faible complexité du processus de

décompression, le hardware de la rectification utilise une quantité négligeable de LUTs et de

DFFs de la FPGA, tout en ne nécessitant aucune mémoire externe.

Le premier hardware en temps réel et à haute résolution pour la synthèse de point de vue

virtuel utilisant l’estimation de la disparité à trois caméras est présenté. Le hardware proposé

génère une vidéo à point de vue virtuel de haute qualité à 55 images par seconde, utilisant

la FPGA Virtex-7 à une résolution video XGA de 1024×768, pour toute caméra virtuelle

alignée horizontalement entre les caméras physiques situées aux extrémités gauches et droites.

Le système embarqué complet d’estimation de la profondeur est présenté. Ce dernier transfère

les résultats de manière synchrone avec les pixels RGB vers le PC pour le développement

d’applications. Plusieurs applications temps réel sont développées sur PC en utilisant les

résultats RGB+D obtenus. Les applications software implémentées sur l’estimation de

profondeur de champ en temps réel sont les suivantes : seuillage d’image de profondeur de

champ, mesure de la vitesse et de la distance, suivi de la tête, des mains et des épaules, souris

virtuelle en utilisant le suivi de la main, suivi de la tête intégré avec la synthèse de point de vue

virtuel.

Le hardware d’estimation de la profondeur binoculaire est implémenté dans un ASIC.

Cette implémentation en ASIC impose des contraintes additionnelles par rapport à

l’implémentation sur FPGA. Ces restrictions et leurs solutions efficaces, ainsi que les résultats

de cette implémentation, sont présentés dans cette thèse.

De plus, un système omnidirectionnel 360°×100° à caméras multiples de très haute

résolution (82.3 MP) est proposé. Ce système de caméra hémisphérique est capable de voir les

emplacements cibles proches du plan horizontal avec plus de deux caméras. Il peut donc être

utilisé dans une estimation de profondeur de 360° à très haute-résolution dans le futur.

Mots clefs : Estimation de la profondeur, Estimation de la disparité, Rectification, Synthèse de

point de vue virtuel, caméras multiples, implémentation hardware, temps réel, FPGA, ASIC.

vi

Contents

Acknowledgements i

Abstract (English/Français) iii

List of figures xi

List of tables xvii

1 Introduction 1

1.1 Large Angle of View Image Capture Systems . 2

1.2 Depth Estimation Systems . 4

1.3 Contribution of the Thesis . 8

1.3.1 Proposed Depth Map Estimation Systems 8

1.3.2 Proposed Large Angle of View Image Capture and Reconstruction Systems 14

1.4 Thesis organization . 14

2 State of the Art 15

2.1 Hemispherical Multiple Camera Image Reconstruction Systems 15

2.2 Binocular Stereo Matching Algorithms and Their Hardware Implementations . 19

2.2.1 Camera Calibration . 22

2.2.2 Rectification . 26

2.2.3 Matching Cost Computation . 27

2.2.4 Cost Aggregation . 30

2.2.5 Disparity Selection and Optimization . 30

2.2.6 Disparity Refinement . 32

2.3 Trinocular Stereo Matching Algorithms and Their Hardware Implementations . 33

2.4 Thesis Goals . 36

3 Binocular Adaptive Window Size Disparity Estimation Algorithm and Its Hardware

Implementation 39

3.1 Binocular Hardware-Oriented Adaptive Window Size Disparity Estimation

Algorithm . 39

3.1.1 Window Size Determination . 40

vii

Contents

3.1.2 Disparity Voting . 41

3.1.3 Disparity Refinement . 43

3.2 Hardware Implementation of Proposed Binocular AWDE Algorithm 44

3.2.1 Overview . 44

3.2.2 Data Allocation and Disparity Voting . 46

3.2.3 Disparity Refinement . 51

3.3 Iterative Refinement for the Enhanced AWDE implementation 52

3.4 Implementation Results . 54

4 Trinocular Adaptive Window Size Disparity Estimation Algorithm and Its Hardware

Implementation 63

4.1 Trinocular Hardware-Oriented Adaptive Window Size Disparity Estimation

Algorithm . 63

4.2 Trinocular Adaptive Window Size Disparity Estimation Hardware 65

4.3 Implementation Results . 69

5 Compressed Look-Up-Table Based Rectification Algorithms and Their Hardware

Implementations 73

5.1 Compressed Look-Up-Table based Rectification Algorithm 74

5.2 Real-Time De-Compression Hardware of CLUTR 82

5.3 Limitations of the CLUTR . 85

5.4 Enhanced Compressed Look-Up-Table based Rectification Algorithm 88

5.5 Real-Time De-Compression Hardware of E-CLUTR 91

5.6 Real-Time Hardware of Caltech Rectification . 94

5.7 Implementation Results . 96

6 Embedded System for Depth Map Estimation 103

6.1 The Overview of the Depth Map Estimation System 103

6.2 Video Processing Hardware Cores and Circuits . 104

6.3 Peripherals of the Embedded System . 109

6.4 Embedded Software . 116

7 Hardware and Software based Applications of Disparity Estimation 119

7.1 Free View Synthesis Hardware Using Trinocular Disparity Estimation 119

7.1.1 Hardware-Oriented Three-Camera Free Viewpoint Synthesis Algorithm 119

7.1.2 Real-Time Free Viewpoint Synthesis Hardware 122

7.1.3 Implementation Results . 125

7.2 System GUI and Software Based Real-Time Applications 127

7.2.1 Capture and the display of the video . 127

7.2.2 Front-end of the GUI . 128

7.2.3 Software based real-time applications . 129

viii

Contents

8 ASIC Implementation of Binocular Disparity Estimation 133

8.1 Disparity Estimation ASIC Specifications . 133

8.2 Adaptation of Disparity Estimation Hardware for ASIC 141

8.3 ASIC Design . 144

8.3.1 Synthesis . 145

8.3.2 Placement and Routing . 146

8.4 Test System . 151

9 High-Quality Omnidirectional Multi-Camera Systems 153

9.1 Enhanced Omnidirectional Image Reconstruction Algorithm and Its Real-Time

Hardware Implementation . 153

9.1.1 Equal Area Distribution Algorithm . 153

9.1.2 Hardware Implementation of Equal Area Distribution Algorithm 157

9.1.3 Implementation Results . 162

9.2 Giga-Eye Camera . 163

9.2.1 System Parameters and Requirements . 164

9.2.2 System Architecture . 167

9.2.3 Implementation Results . 170

10 Conclusion 175

A High-Resolution Visual Results of Proposed Systems 183

A.1 Visual Results of the Depth Estimation System . 183

A.2 Visual Results of the Giga-Eye Multiple-Camera System 183

Bibliography 192

Abbreviations 193

Curriculum Vitae 197

ix

List of Figures

1.1 Simplified block diagram of the complete depth map estimation system. 9

2.1 Ladybug3 multiple camera system . 16

2.2 R7 multiple camera system of Google for Street View application 16

2.3 Panoptic camera . 17

2.4 Hemispherical structure with multiple floors . 18

2.5 (a) hemispherical surface showing θ and ϕ angles and unit vectors used

in omnidirectional image reconstruction calculations, (b) ω vector and

corresponding unit vectors; t (focus direction of the camera), u (vertical direction

in the pixel representation of the camera), v (horizontal direction in the pixel

representation of the camera) (c) 2D reconstruction using linear pixelization . 18

2.6 Inverse relationship between the depth and disparity. 19

2.7 Geometrical relationship between disparity and depth. 20

2.8 Distance measurement precision of disparity estimation based depth estimation. 21

2.9 Coordinate systems for pinhole camera model. 23

2.10 Mathematical alignment of the two cameras into an unique image plane. 26

2.11 Census transform computation. 29

2.12 Disparity selection. 31

2.13 Collinear placement of three cameras for disparity estimation 33

2.14 Triangular placement of three cameras for disparity estimation 33

2.15 Geometrical relationship between the cameras of the trinocular stereo system . 34

3.1 9 selected pixels in a block for BW-SAD calculation. 49 pixels in a block are

searched in parallel in hardware. 40

3.2 49 selected pixels of adaptive windows (yellow (1): 7×7, green (2): 13×13 and

blue (3): 25×25). 41

3.3 Examples for selecting 17 contributing pixels for 7×7, 13×13 and 25×25 window

sizes during the disparity refinement process (yellow (1): 7×7, green (2): 13×13

and blue (3): 25×25). 43

3.4 Top level block diagram of the disparity estimation module. 45

3.5 Timing diagram of the system. 46

3.6 Block diagram of the Reconfigurable Data Allocation Module. 46

xi

List of Figures

3.7 DFF Array and the Weaver (yellow: 7×7, green: 13×13 and blue: 25×25). . . . 47

3.8 Block diagram of the Reconfigurable Computation of Metrics. 49

3.9 Processing Scheme (“x” indicates 9 selected pixels in a block for BW-SAD

calculations). 49

3.10 Disparity Refinement-Array of the Disparity Refinement Module (yellow (1): 7×7,

green (2): 13×13 and blue (3): 25×25). 51

3.11 Processing Element of the Disparity Refinement Module. The Highest Frequency

Selection Module includes seven of these DR-PE elements. 52

3.12 DR-Array of the Iterative Disparity Refinement Module (yellow line: 7 × 17

candidates for 7×7 window, green line: candidates for 13×13, and blue line:

candidates for 25×25). 53

3.13 Visual disparity estimation results of AWDE and AWDE-IR algorithms for HR

benchmark Clothes. Black regions in the ground truths are not taken into

account for the error computations as explained in Middlebury evaluation. (a)

left image (b) ground truth (c) DE result of AWDE (d) DE result of AWDE-IR . . 58

3.14 Visual disparity estimation results of AWDE and AWDE-IR algorithms for HR

benchmark Art. Black regions in the ground truths are not taken into account

for the error computations as explained in Middlebury evaluation. (a) left image

(b) ground truth (c) DE result of AWDE (d) DE result of AWDE-IR 59

3.15 Visual disparity estimation results of AWDE and AWDE-IR algorithms for HR

benchmark Aloe. Black regions in the ground truths are not taken into account

for the error computations as explained in Middlebury evaluation. (a) left image

(b) ground truth (c) DE result of AWDE (d) DE result of AWDE-IR 60

3.16 Visual disparity estimation results of AWDE and AWDE-IR algorithms for the

1024 × 768 resolution pictures captured by the implemented stereo camera

system. The ground truth for these images is not available. (a) left image (b)

right image (c) DE result of AWDE (d) DE result of AWDE-IR 61

4.1 Matching directions of the T-AWDE algorithm . 64

4.2 Block diagram of the full system. 66

4.3 I2C multiplexing hardware (resistors and level-shifters are not drawn) 67

4.4 Block diagram of trinocular DE hardware . 68

4.5 Parallel processing scheme for two pairs . 69

4.6 Processing element of the fusion module (PE-F). The fusion module includes 49

PE-F elements. 70

4.7 DE results obtained by MATLAB for Middlebury benchmarck image set

“Bowling2” (a) Left Image (b) Center Image (c) Right Image (d) Ground Truth

(black pixels are ignorable) (e) IR-AWDE for center-left (18.01%) (f) T-AWDE

(9.41%) (g) IR- AWDE for center-right (15.60%) . 71

4.8 Real-time snapshots captured by the proposed system. A ground truth for these

images is not available. (a) Left Image (b) Center Image (c) Right Image (d) AWDE

for center-left (e) T-AWDE (f) AWDE for center-right 72

xii

List of Figures

5.1 Inverse mapping with fractional precision coordinates. Corners indicate integer

pixel coordinates. 74

5.2 Forward mapping with fractional precision coordinates. 75

5.3 Flow-chart of the proposed compressed look-up-table based stereo image

rectification process. 76

5.4 Third step of the compression flow (a) Due to the 3D rotation, some of the pixels

in the rectified image cannot be related to their source pixels in the original

image (b) selection of nearest source pixels from fractional inverse mapping (c)

extraction of forward mapping with integer coordinates. 78

5.5 Integer coordinate precision forward mapping look-up-tables after the third

step. Regular orders are shown with red ellipses (a) mapping of Y coordinates (b)

mapping of X coordinates. 79

5.6 Coded regular orders after the third step (a) coded mapping of Y coordinates (b)

coded mapping of X coordinates. 79

5.7 Look-up-tables after filling the NT pixels using the fourth step (a) mapping of Y

coordinates (b) mapping of X coordinates. 79

5.8 Coded regular orders after filling the NT pixels using the fourth step (a) coded

mapping of Y coordinates (b) coded mapping of X coordinates. 79

5.9 Visualization of the reason for the voids in the rectified image (a) inverse

mappings with fractional coordinates (b) forward mapping with integer

coordinate. 80

5.10 Filling the voids in the rectified image in the fifth step (a) finding the source

location of a pixel at one row above the void (b) marking the source pixel as

double targeted pixel. 80

5.11 Coding the behavior of breakpoints at the sixth step (a) coded mapping of Y

coordinates (b) coded mapping of X coordinates. 80

5.12 Concatenation of the locations and behaviors at the seventh step (a) for the

mapping of Y coordinates (b) for the mapping of X coordinates. 81

5.13 Utilization example of the proposed rectification hardware. 83

5.14 Top-level block diagram of the proposed rectification hardware of CLUTR. . . . 83

5.15 Block diagram of the proposed rectification hardware for decompressing the

table of Y coordinates. Pipeline stages are presented with dashed lines. 84

5.16 Block diagram of the proposed rectification hardware for decompressing the

table of X coordinates. 84

5.17 Visualization of the breakpoint frequency capacity of the X and Y coordinate

mappings (a) breakpoints for the mapping of Y coordinates (b) breakpoints for

the mapping of X coordinates . 86

5.18 Visualization of the reason for the frequent breakpoints (a) finding the source

locations of three pixels that are targeting one row above of the three consecutive

voids (b) four break-points in consecutive five locations. 87

5.19 Visualization of the reason for the voids which can not be filled by CLUTR. . . . 88

xiii

List of Figures

5.20 Filling the voids in the rectified image in the fifth step (a) DT option of CLUTR

(b) DT options of E-CLUTR. 89

5.21 Reducing the frequency of breakpoints using multiple DT options of E-CLUTR (a)

finding alternative source locations for void pixels of rectified image (b) reduced

frequency of breakpoints for the same row of the look-up-table of Y coordinates. 89

5.22 Vertically adjacent void pixels can be filled by E-CLUTR using multiple DT options. 90

5.23 Brief representation for the concatenation of the locations and behaviors it the

seventh step of E-CLUTR for the mapping of Y coordinates. 91

5.24 Concatenation of the locations and behaviors at the seventh step for E-CLUTR

for the mapping of Y coordinates (a) Concatenation scheme for DT options

(b) Concatenation scheme for the breakpoint conditions for changing the last

targeted row. 91

5.25 Concatenation of the locations and behaviors at the seventh step of E-CLUTR

for the mapping of X coordinates. 91

5.26 Top-level block diagram of the proposed rectification hardware of E-CLUTR. . 92

5.27 Block diagram of the proposed rectification hardware for decompressing the

table of X coordinates. 93

5.28 Block diagram of the proposed rectification hardware for decompressing the

table of Y coordinates. Pipeline stages are presented with dashed lines. 93

5.29 Block diagram of the proposed hardware implementation for Caltech

rectification algorithm. 95

5.30 Visual results of the first test using roughly aligned cameras: Original images

have still distortions as observed near the lamp, bag, folder and cup; horizontal

epipolar lines are displayed in red near the edge of these objects (a) left image

(b) right image. 97

5.31 Visual results of the first test using roughly aligned cameras: The proposed

CLUTR algorithm corrects distortions (a) left image (b) right image. 97

5.32 Visual results of the first test using roughly aligned cameras: Breakpoint

locations obtained by CLUTR for the left image (a) breakpoints of the targeted Y

coordinates; coded row-by-row. (b) breakpoints of the targeted X coordinates;

coded column-by-column. 98

5.33 Visual results of the second test using excessively misaligned cameras: Original

images have excessive distortions as observed on the lines (a) left image (b) right

image. 99

5.34 Visual results of the second test using excessively misaligned cameras: E-CLUTR

corrects distortions as observed on the lines (a) left image (b) right image. . . . 99

5.35 Visual results of the second test using excessively misaligned cameras:

Breakpoint locations of the left image (a) breakpoints of the targeted Y

coordinates; coded row-by-row. (b) breakpoints of the targeted X coordinates;

coded column-by-column. 100

xiv

List of Figures

6.1 Demonstration of the system set-up. (a) close-up to the three cameras and the

FPGA board (b) full demonstration system also including a PC and large-screen TV.103

6.2 Block diagram of the full system setup. 105

6.3 RGB component values in function of the multiplied disparity values, used for

the color representation. 108

6.4 Snapshot of the DE result of binocular disparity estimation system. The hardware

is able to switch between to representations: (a) Gray scale disparity map

(brighter color is closer, darker color is further), (b) Color mapped disparity

map (hotter color is closer, colder color is further) 109

6.5 Block-diagram of the interface between the disparity estimation hardware and

the DDR3 memory. 114

6.6 Block-diagram of the Output Selection circuit for three possible outputs. 114

6.7 Flowchart representation of the logic block functionality. 115

6.8 Top-level schematic of software accessible registers. 117

7.1 Definition of the three-camera free viewpoint synthesis setup. 120

7.2 The illustration of free viewpoint synthesis algorithm that utilizes trinocular

disparity estimation. (Each square grid represents 4×4 pixels. Only one

out of four column/row grids are represented to improve the clarity of the

representation). 121

7.3 Block diagram of the free viewpoint synthesis system. 123

7.4 Rendering hardware (pipeline stages are not shown). 124

7.5 Real-time snapshots captured by the proposed system. (a) Left image (b) Center

image (c) Right image (d)IR-AWDE for center-left (e) T-AWDE (f)IR-AWDE for

center-right (g) synthesized free viewpoint image for an arbitrary camera located

at q=(-0.5) (h) synthesized free viewpoint image for an arbitrary camera located

at q=(0.5) (images best viewed in high resolution from the pdf files) 126

7.6 Screen shot of the stream viewer software running on Linux. 128

8.1 Depth estimation system that is utilizing two cameras 134

8.2 Modules present in the Disparity Estimation ASIC 136

8.3 top level inputs and outputs of the disparity estimation final ASIC. 136

8.4 Floorplan of the first design. 147

8.5 Floorplan of the second design. 148

8.6 Floorplan of the third design. 149

8.7 The three disparity estimation ASIC designs after P&R. For visual comparison,

the proportions have been kept. (a)First design (b)Second design (c) Third design150

8.8 The final ASIC design after P&R and placing the IO pads 151

8.9 Top-level diagram of the test system of ASIC. One VC707 board is connected to

the test-board containing the ASIC package. 152

8.10 The emulation and verification set-up of the ASIC. 152

xv

List of Figures

9.1 256 × 1024 resolution omnidirectional 2D reconstructions using a) Linear

pixelization b) Equal area distribution . 155

9.2 Captured images from two different cameras a) top camera b) side camera . . 155

9.3 Hemispheric structure for resolution calculation in terms of ppaa 156

9.4 Relationship between N and - angle for different methods of pixelization 156

9.5 Block diagram of omnidirectional image reconstruction algorithms 158

9.6 Block diagram of the Concentrator FPGA . 159

9.7 Block diagram of the omnidirectional vision reconstruction unit inside the image

processing and application block . 160

9.8 θ and ϕ angle generation module architecture for the OIR and EOIR

implementations . 160

9.9 Architecture of the camera select and distance generation sub-block for the EOIR

algorithm . 160

9.10 Reconstructed 360° views . 162

9.11 Top-level block diagram of the system hardware architecture 169

9.12 The complete omnidirectional imaging and recording system (Giga-Eye), overall

system dimensions are 56x48x78 cm . 171

9.13 Omnidirectional image obtained with the Giga-Eye system at 21.6 MP resolution

showing the central campus square of EPFL, and two selected details

(sub-regions) in this image. This omnidirectional image corresponds to one

single frame of the 30 fps video obtained by the system. 172

9.14 Omnidirectional image obtained with the Giga-Eye system at 82.3 MP resolution.

This omnidirectional image corresponds to one single frame of the 9.5 fps video

obtained by the system. Flying plane and the moving car are shown in sub-windows172

9.15 Measured coverage map of the omnidirectional imaging system showing a high

pixel redundancy especially close to the equator. The color labels indicate the

number of the overlapping individual camera AOVs 173

xvi

List of Tables

3.1 Parameters of the AWDE . 54

3.2 Disparity Estimation Performance Comparisons. Error rates (%) are provided

compared to DE ground truths of the benchmark pictures. 55

3.3 Hardware Performance Comparison . 57

5.1 Bit-size Parameters of the Caltech rectification hardware 95

5.2 Numerical results of the first test using roughly aligned cameras: PSNR (dB) with

the rectified images produced by Caltech rectification algorithm 98

5.3 Numerical results of the first test using roughly aligned cameras: PSNR (dB)

Comparison of the Disparity Estimation Results Using Different Disparity

Estimation Algorithms . 98

5.4 Numerical results of the second test using excessively misaligned cameras: PSNR

(dB) with the rectified images produced by Caltech rectification algorithm . . . 100

5.5 Hardware Resource Comparison of the Rectification Hardware Implementations 101

8.1 ARM SRAMs Area Configuration Comparison (in µm2) 137

8.2 Approximate power consumption for the different SRAM types of the ASIC design

(in mW). 137

8.3 Register list and default values. *1 = always 1; 0 = always 0; d = programmable; –

= read only . 138

8.4 Core Registers descriptions . 139

8.5 Area report of the three synthesized hardware. 146

8.6 Total power of the DE ASIC (in mW). 149

8.7 Dimensions of ASIC designs . 150

9.1 Surface Area Coverage (%) with respect to θ angles (radians) for Possible

Pixelization Methods. 154

9.2 Resolution values [ppaa] for different θ angles 156

9.3 Implementation Results . 162

9.4 Properties of the omnidirectional imaging system. 164

9.5 System Constraints to generate 30 fps 21.6 MP Omnidirectional Video. 166

9.6 System Constraints to generate 9.5 fps 82.3 MP Omnidirectional Video. 167

xvii

List of Tables

9.7 Comparison of the Giga-Eye with existing high-resolution omnidirectional

camera systems. 174

xviii

1 Introduction

The stereoscopic depth perception is first described by the British scientist and inventor

Charles Wheatstone in 1838. Wheatstone made a device called stereoscope to provide

stereoscopic vision to a human observer. He used a pair of mirrors mounted with an angle

of 45° with respect to the two drawings at the sides to reflect the drawings to the observer.

He showed that brain makes the fusion of these drawings and perceives a three dimensional

image. In 1850s, the American physician Oliver Wendell Holmes used glasses with two

prismatic lenses to provide stereocopic vision. The invention of this portable device led

to the development of rotating cardboard disks with image pairs which became a popular

entertainment and virtual tourism tool until mid-20th century.

In the very early times of the stereoscopy, pictures were taken by a single camera, moving it

along its horizontal axis. Later, stereo cameras were manufactured following an increasing

demand of stereo vision. In the late 19th century, a stereo camera called Verascope was

invented. In 1967, a color stereo camera called Stereo Realist was invented. This invention

was followed by the development of 3D displayers for color images and videos.

Color anaglyph-based 3D glasses were popular in the late 20th century. These glasses include

two chromatically opposite colors (red and cyan) in each glass, which filter the left and right

images separately for each eye. The brain operates the fusion and forms a three dimensional

color scene.

In the late 20th century, the artificial presence in a computer-generated or real-world

environment, so-called virtual reality systems, became an important demand of medical,

gaming and military applications and cinema industry. This demand was supported by the

advances in digital photography and video which led to the development of advanced 3D

vision and display systems.

1

Chapter 1. Introduction

Active shutter based glasses are mainly used today for 3D cinematography. Active shutter

glasses works by rapidly showing two images to the left or right eye by blocking one of them.

Meanwhile the image on the monitor shifts to the view of right or left eye synchronously to

form stereoscopic view.

Head-mounted displays (HMD) are one of the popular 3D display devices available today.

HMDs include optics and a wearable digital monitor to display computer generated video or

movie transferred from a PC. HMDs may utilize active-shutter based multiplexing or side by

side multiplexing to provide depth perception. HMDs are mainly used for military and video

gaming applications to view the scene with 360°×90° angle of view (AOV) in 3D.

3D TVs can utilize different type of methods to provide depth perception. The previously

developed 3D TVs needed color anaglyph based 3D glasses for proper operation. Currently,

most of the 3D TVs operate with active shutter based glasses. However, the requirement

to wear 3D glasses is usually perceived uncomfortable which impedes any wide usage of

stereoscopic 3D displays. Recently, autostereoscopic displays have emerged to provide

glasses-free depth perception [1]. The autostereoscopic technology or so-called free viewpoint

television (FVT) utilizes physical parallax barriers to display multiple views that provide a

stereo pair regardless of the positions of the viewer. Although increasing the number of views

decrease the limited distance range of these displays, broadcasting all the views is challenging

in terms of bandwidth limitations. [2] demonstrates that standard 2D displays can act as 3D

displays by deceiving human perception without using intricate autostereoscopic technique if

the free view is generated efficiently considering the position of the head of the viewer. [2]

presents the efficiency of this method using computer generated images and pre-computed

depth map.

The emerging technology of virtual reality applications should be supported not only by the

displays, but also from high-quality video capture, coding and processing technologies should

be developed. Large AOV image capture systems and depth measurement are important

requirements of advanced virtual reality and video processing applications, which should

progress in parallel to the advances on display technologies.

1.1 Large Angle of View Image Capture Systems

In order to support the wide AOV requirement of virtual reality applications, recent research

has mainly focused on developing complex lenses, mirrors and multiple-camera systems.

Fish-eye lenses are major lens types that provide an AOV between 180° to 200° using a single

2

1.1. Large Angle of View Image Capture Systems

camera. However, distortion in the edges of the images limits the use of single complex lenses.

In [3], a camera system with a convex mirror is developed in order to create 360°

omnidirectional images. This method does not require intricate hardware or software

for constructing omnidirectional images, and is thus widely cited in literature related to

omnidirectional image reconstruction. In [4], the real-time panoromic image reconstruction

hardware utilizing a system consisting of a convex mirror placed over a single camera is

presented. The hardware presented in [4] provides 360° panoramic images of 3200×768

resolution at 40fps. The presented hardware fits into a Spartan 3 FPGA. Nevertheless, the

resolution of omnidirectional images is limited to the resolution of a single camera. Moreover,

it is incapable of showing the overall top view since the AOV of the camera is restricted to the

area located below the mirror. Also, the convex mirror provides distortion at the edges of the

image. Furthermore, the platform cannot be used for depth estimation and 3D reconstruction

due to its single observation point feature.

An alternate method enabling wide AOV image acquisition is based on a single-camera

multiple-lens optical sensors system [5–7]. Devices taking advantage of this technique

and presenting very large AOVs are mainly inspired by the insect faceted eyes. Faceted

insect eyes consist of hundreds to thousands channels, each called ommatidia [8]. These

channels capture light within a defined angle and transmit it to light sensitive receptor cells.

In [5], artificial insect eyes, cluster eyes and artificial apposition compound eyes (APCO)

are fabricated using wafer-scale techniques. In [6], the AOV of eye clusters and APCOs is

improved to 124° by using two additional micro-lenses in each channel, thereby causing

significant distortion. In [7], a system named Krill-eye is presented. The Krill-eye utilizes 180

gradient-index lenses and hence, provides distortion-free 180° AOV. However, designing a

Krill-eye composed of 180 lenses is not trivial, while the AOV remains significantly limited

under 360°.

Multiple-camera systems are proposed as an alternative method, which enables obtaining

wide AOVs. The synchronization of the cameras and the very large data bandwidth impose

challenges for the implementation of these systems. Some camera array systems were

developed for recording; the recordings were processed at a later time offline on a PC[9]. Many

multiple-camera systems are only used for object tracking and detection, where the goal

does not involve the creation of single omnidirectional images [10–12]. Each image obtained

from multiple cameras should be appropriately combined in order to prevent unrealistic

discontinuity. An image mosaic algorithm and its real-time hardware implementation are

presented in [13]. This multi-camera system supports three cameras, and is capable of

reaching an AOV smaller than 180°. The system operates in real-time benefiting from the

utilization of digital signal processors (DSPs). Furthermore, the resulting omnidirectional

image does not exhibit significant distortion or discontinuity.

3

Chapter 1. Introduction

In [14], a planar multiple-camera system composed of 100 cameras is presented as a solution

to reach high resolution, high frame rates and high AOV. The presented platform consisting

of 100 FPGAs is aimed to record large amounts of data to process offline, and thus provides

limited local processing at the camera level. However, it reaches less than 180° AOV due to its

planar structure.

A system composed of multiple cameras is presented in [15] targeting an immersive cockpit

application. The system reaches a 150° horizontal and 110° vertical FOVs by utilizing eight

320×240 pixel CCD cameras, and a PC-based acquisition system. Another omnidirectional

image capture device that uses six 1024×768 pixel CCD sensors that are placed in a cubic

arrangement is reported in [16]. Each camera has a wide-angle lens, and a custom calibration

and image generation method is developed. Currently, the Google Street View camera is one

of the most well-known 360° imaging systems [17]. The system presented in [17] utilizes 15

5MP cameras to cover more than 80% of the full sphere with a panoramic image resolution of

8192×4096 by capturing pictures every 2.5 second.

Recently, a spherical multi-camera vision sensor called the Panoptic camera and a specific

omnidirectional image reconstruction algorithm (OIR) have been proposed to enable 360°

AOV with a high resolution [18]. The Panoptic camera is a biologically-inspired multi-camera

vision sensor mimicking the eyes of flying insects where multiple imagers, each with a

distinct focal point, are distributed over a hemisphere. The details of real-time hardware

implementation of the OIR is presented in [19]. The system presented in [19] utilizes

40 cameras each with a 352×288 pixel resolution, and creates 256×1024 pixel resolution

omnidirectional images in real-time. This video capture system can artificially make

the viewer feel himself being at the place of the Panoptic camera using HMD devices or

prospective future 360°×90° hemispheric displays.

1.2 Depth Estimation Systems

Depth is a strong component of human vision. The stereoscopic imaging and utilization

of glasses can provide depth perception to the user without the requirement of depth

measurement. However, its measurement is required for many recent advanced virtual reality

applications and 3D-based smart vision systems. Depth estimation is an algorithmic step in a

variety of applications such as autonomous navigation of robot and driving systems [20], 3D

geographic information systems [21], object detection and tracking [22], medical imaging [23],

computer games and advanced graphic applications [24], 3D holography [25], 3D television

[26], multiview coding for stereoscopic video compression [27], and disparity-based rendering

[28]. These applications require high accuracy and speed performances for depth estimation.

4

1.2. Depth Estimation Systems

Depth estimation can be performed by exploiting six main techniques: time-of-flight (TOF)

camera, LIDAR sensors, radars, structured infrared light projection, learning based single

camera algorithms and stereo camera. A TOF camera easily measures the distance between

the object and camera using a sensor and projection of light pulse, circumventing the need

of intricate digital image processing hardware [29]. However, it does not provide efficient

results when the distance between the object and camera is high. Moreover, the resolution

of TOF cameras is usually very low (200×200) [29] in comparison to the Full HD display

standard (1920×1080). Multiple TOF systems can not be oriented to the same location due

to interference of the multiple projections. Furthermore, their commercial price is much

higher than the CMOS and CCD cameras. LIDAR sensors are similar to the TOF cameras, but

they compute the depth image by using laser scanning mechanism [30]. LIDAR sensors are

also very expensive compared to CMOS and CCD cameras. Due to laser scanning hardware,

LIDAR sensors are heavy and bulky devices. Laser scanner based systems can measure the

distance of the very far objects. However, the strength of the laser may damage the human

eye if it is looking in the direction of the source of laser light for a long time. Radars utilize

radio waves to measure the distance of the far and big size objects [31]. They are not useful to

provide high resolution for close and small objects. Structured infrared light projection-based

depth measurement systems such as Microsoft Kinect [32] and Structure Sensor of Occipital

[33] provide high-quality results even for the textureless objects and in dark environment.

However, they are not able to provide high quality results under sunlight due to interference of

the infrared lights of the sun. Both Kinect and Structure Sensor can provide depth estimation

results in VGA resolution (640×480). Their resolution is lower than the CMOS and CCD

cameras since the pixel size of infrared sensors is large. Their depth measurement range

is limited by the projection power of the infrared beamer. For example, Kinect is not able

to measure the distance of the object if they are further than 7 m. In addition, multiple

structured infrared light projection systems can not be oriented to the same location due to

interference of the multiple projections. Single camera based depth estimation algorithms

require very large training sets and learning approach [34]. Indeed, learning and intelligence

are significant features of human vision that provides depth perception even with a single

eye. However, implementing a high-quality and real-time depth estimation system is very

challenging using a single camera since these algorithms are computationally intensive and

require very large data sets. Consequently, in order to compute the depth map for real-time

video processing applications, the majority of research focus on extracting the disparity

information using two or more synchronized images taken from different viewpoints, using

CMOS or CCD cameras [35].

Disparity estimation (DE) based depth estimation systems can measure the distance of the

objects even if the objects are very close or far by mechanically adapting distance between

the stereo cameras. Multiple DE systems can be used in same environment since they don’t

project any light. In addition to indoor environment, they can be also used in outdoor, since

5

Chapter 1. Introduction

sunlight does not make interference problem. Possible damage of laser light on human eye is

not a case for DE based depth measurement systems since they require only passive sensors.

However, implementation of real-time and high-quality DE for high resolution (HR) video is

challenging due to its computational complexity.

Many disparity estimation algorithms have been developed with the goal to provide

high-quality disparity results. These are ranked with respect to their performance in the

evaluation of Middlebury benchmarks [35]. Although top performer algorithms provide

impressive visual and quantitative results [36–38], their implementations in real-time HR

stereo video are challenging due to their complex multi-step refinement processes or their

global processing requirements that demand huge memory size and bandwidth. For example,

the AD-Census algorithm [36], currently the top published performer, provides successful

results that are very close to the ground truths. However, this algorithm consists of multi

disparity enhancement sub-algorithms, and implementing them into a mid-range FPGA is

very challenging both in terms of hardware resource and memory limitations.

Various hardware architectures that are presented in literature provide real-time DE [39–45].

Some implemented hardware architectures only target CIF or VGA video [39–42]. The

hardware proposed in [39] only claims real time for CIF video. It uses the Census transform

[46] and currently provides the highest quality disparity results compared to real time

hardware implementations in ASICs and FPGAs. The hardware presented in [39] uses the

low-complexity Mini-Census method to determine the matching cost, and aggregates the

Hamming costs following the method in [36]. Due to the high complexity of cost aggregation,

the hardware proposed in [39] requires high memory bandwidth and intense hardware

resource utilization, even for Low Resolution (LR) video. Therefore, it is able to reach less than

3 frames per second (fps) when its performance is scaled to 1024×768 video resolution and

128 pixel disparity range.

Real-time DE of HR images offers some crucial advantages compared to low resolution DE.

First, processing HR stereo images increases the disparity map resolution which improves the

quality of the object definition. Better object definition is essentially important for a variety of

high-quality video processing applications such as object detection and tracking. Second,

DE of HR stereo images offers the capacity to define the disparity with sub-pixel efficiency

compared to the DE for LR image. Therefore, the DE for HR provides more precise depth

measurements than the DE for LR.

Despite the advantages of HR disparity estimation, the use of HR stereo images presents some

challenges. Disparity estimation needs to be assigned pixel by pixel for high-quality disparity

estimation. Pixel-wise operations cause a sharp increase in computational complexity when

6

1.2. Depth Estimation Systems

the DE targets HR stereo video. Moreover, DE for HR stereo images requires stereo matching

checks with larger number of candidate pixels than the disparity estimation for LR images.

The large number of candidates increases the difficulty to reach real-time performance for HR

images. Furthermore, high-quality disparity estimation may require multiple reads of input

images or intermediate results, which poses severe demands on off-chip and on-chip memory

size and bandwidth especially for HR images.

The systems proposed in [43–45] claim to reach real time for HR video. Still, their quality

results in terms of the HR benchmarks given in [35] are not provided. [43] claims to reach 550

fps for 80 pixel disparity range at a 800×600 video resolution, but it requires high amount of

hardware resources. In addition, [43] claims that their hardware implementation operates at

511 MHz using a Stratix IV FPGA, however without providing detail information related to the

architecture and design that enable this high performance. A simple edge-directed method

presented in [44] reaches 50 fps at a 1280×1024 video resolution and 120 pixel disparity range,

but does not provide satisfactory DE results due to a low-complexity architecture. In [45],

a hierarchical structure with respect to image resolution is presented to reach 30 fps at a

1920×1080 video resolution and 256 pixel disparity range, but it does not provide high quality

DE for HR.

More than two cameras can be used to improve the depth map. As presented in [47], trinocular

DE solves most of the occlusion problems present in a single-pair camera system since any

occluded region in a matched stereo pair (center-left) is not occluded in the opposite matched

pair (center-right). Moreover, the double-checking scheme of trinocular DE improves

binocular DE results even for unoccluded regions and provides correct disparity results even if

the object is located in the left or right edge of the center image.

A limited number of trinocular disparity estimation hardware implementations are presented

in the literature [48, 49]. The hardware presented in [48] enables handling 52 fps on an Altera

Cyclone-IV FPGA at a 640×480 video resolution. The hardware presented in [49] uses a

triangular configuration of three cameras and enables handling 30 fps on a Xilinx Virtex-4

FPGA at a 320×240 video resolution for a 64 pixels disparity range.

Camera calibration and image rectification are important pre-processing parts of the DE. The

stereo matching process compares the pixels in the left and right images and provides the

disparity value corresponding to each pixel. If the cameras could be perfectly aligned parallel

and the lenses were perfect, without any distortion, the matching pixels would be located

in the same row of the right and left images. However, providing a perfect set-up is virtually

impossible. Lens distortion and camera misalignments should be modeled and removed by

internal and external stereo camera calibration and image rectification processes [50].

7

Chapter 1. Introduction

Many real-time stereo-matching hardware implementations [39, 43, 51] prove their DE

efficiency using already calibrated and rectified benchmarks of the Middlebury evaluation

set [52], while some do not provide detailed information related to the rectification of the

original input images [45]. In a system that processes the disparity estimation in real-time,

image rectification should also be performed in real-time. The rectification hardware

implementation presented in [53] solves the complex equations that model distortion, and

consumes a significant amount of hardware resources.

A look-up-table based approach is a straightforward solution that consumes a low amount of

hardware resources in an FPGA or ASIC [54–56]. In [54–56], the mappings between original

image pixel coordinates and rectified image pixel coordinates are pre-computed and then

used as look-up-tables. Due to the significant amount of generated data, these tables are

stored in an external memory such as a DDR or SRAM [54, 55]. Using external storage for the

image rectification process may increase the cost of the disparity estimation hardware system

or impose additional external memory bandwidth limitations on the system. In [56], the

look-up-tables are encoded to consume 1.3 MB data for 1280×720 size stereo images with a

low-complexity compression scheme. This amount of data requires at least 295 Block RAMs

(BRAM) without considering pixel buffers, thus it can only be supported by the largest Virtex-5

FPGAs or other recent high-end FPGAs.

1.3 Contribution of the Thesis

In this thesis, novel, efficient and high-performance systems for depth map estimation

and large AOV image capture are presented. The presented systems can be used for the

development of advanced virtual reality applications and 3D-based video processing systems.

1.3.1 Proposed Depth Map Estimation Systems

This thesis proposes binocular and trinocular disparity estimation algorithms and their

efficient hardware implementations. The systems that are utilizing two cameras and three

cameras are verified in real-time. The simplified block diagram of the depth map estimation

system that is utilizing three cameras is presented in Fig. 1.1. In this thesis, the details of the

complete depth map estimation system from the initial image capture to the display and

applications are presented.

8

1.3. Contribution of the Thesis

Figure 1.1: Simplified block diagram of the complete depth map estimation system.

Binocular Disparity Estimation Algorithm and Its Hardware Implementation

A binocular hardware-oriented adaptive window size disparity estimation (AWDE) algorithm

and its real-time high-resolution reconfigurable hardware implementation are presented

[51]. The challenge of the disparity estimation is not only reaching real-time but also the

development of a high quality algorithm. Therefore, the algorithm should be designed very

carefully by considering all the details of its efficient hardware implementation. The main

focus of the AWDE algorithm is its compatibility with real-time hardware implementation

while providing high quality DE results for HR. The algorithm is designed to be efficiently

parallelized and to require minimal on-chip memory size. The algorithm allows searching 49

pixel of the left image in the right image in parallel. The proposed AWDE algorithm combines

the strengths of the Census Transform and the Binary Window SAD (BW-SAD) [60] methods,

and thus enables an efficient hybrid solution for the hardware implementation. Although

the low-complexity Census method can determine the disparity of the pixels where the

image has a texture, mismatches are observed in textureless regions. Moreover, due to a 1-bit

representation of neighboring pixels, the Census easily selects wrong disparity results. In

order to correct these mismatches, our proposed AWDE algorithm uses the support of the

BW-SAD, instead of using the complex cost aggregation method [36, 39].

The benefit of using different window sizes for different texture features on the image is

observed from the DE results in [60], which inspired the dynamic window selection feature of

the proposed AWDE algorithm. The selection of a large window size improves the algorithm

performance in textureless regions while requiring higher computational load. However, the

usage of small window sizes provides better disparity results where the image has a texture.

Moreover, the use of BW-SAD provides better disparity estimation results than the SAD for the

depth discontinuities [60]. The hardware presented in [60] is not able to dynamically change

the window size, since it requires to re-synthesize the hardware for using different window

9

Chapter 1. Introduction

sizes. In addition, the hardware presented in [60] does not benefit from the Census cost metric.

The proposed hardware of the AWDE algorithm provides dynamic and static configurability

to have satisfactory disparity estimation quality for the images with different contents. It

provides dynamic reconfigurability to switch between window sizes of 7×7, 13×13 and 25×25

pixels in run-time to adapt to the texture of the image. As a general rule, increasing the

window size increases the algorithm and hardware complexity [60]. In the proposed AWDE

algorithm, in order to provide constant hardware complexity over the three different window

sizes, 49 neighbors are constantly sampled for different window sizes. Therefore, the proposed

hardware architecture is able to reach the largest window size (25×25) among the hardware

architectures implemented for DE [39–45, 60]. The proposed AWDE implementation utilizes a

pixel intensity based refinement step to remove faulty disparity computations. In order to

remove the faulty computations, the most frequent disparity value within the neighborhood is

used.

The disparity estimation quality of the AWDE algorithm is improved using an iterative

disparity refinement process. The proposed enhanced AWDE algorithm that utilizes Iterative

Refinement (AWDE-IR) is implemented in hardware and its implementation details are

presented [61]. Using the refinement process multiple times removes noisy computations

more efficiently, and increases the disparity estimation quality.

The AWDE and AWDE-IR implementations provide static configurability to allow the user to

change the disparity range, the strengths of Census and BW-SAD in hybrid cost computation,

the closest and furthest expected distances and used color domain (Y, Cb or Cr) for disparity

estimation. The architecture proposed in [43] is not able to provide configurability of disparity

range since it is designed to search 80 disparity candidates in parallel, instead of providing

parallelization to search multiple pixels in the left image. Therefore, a fixed amount of

disparities is searched in [43], and changing the disparity range requires a redesign of their

hardware.

The MATLAB implementation of the proposed AWDE-IR algorithm generates one single depth

image at 1024×768 pixels resolution for a 128 disparity range in 1.5 hours using Intel i5 CPU at

2.67 GHz. Considering that 60 frames should be processed in every second, more than 3 days

is required for a processor of the PC to generate one second of the depth video. The proposed

hardware architectures for AWDE and AWDE-IR provides 60 frames per second at a 1024×768

XGA video resolution for a 128 pixel disparity range. Thereby, the proposed hardware

implementations generates one second of the depth video in less than one second. The

implemented disparity estimation hardware receives stream input of the stereo images and

provides stream RGB+D output video. The hardware is carefully designed to do not require the

10

1.3. Contribution of the Thesis

existence of external memory for the disparity estimation computations. The latency of the

hardware is just 0.84 ms for the same resolution and frame-rate, which allows to develop wide

range of real-time depth estimation based applications. In addition, the proposed AWDE and

AWDE-IR implementations provide better DE results than existing real-time high-resolution

DE hardware implementations [43–45] for the tested HR Middleburry benchmarks [35].

Therefore, the proposed efficient AWDE hardware overcomes the main challenge of the

disparity estimation process by both reaching real-time for HR video and providing very high

quality depth estimation results, thanks to concurrent and careful design of the algorithm and

the hardware.

Trinocular Disparity Estimation Algorithm and Its Hardware Implementation

A trinocular hardware-oriented adaptive window size disparity estimation (T-AWDE)

algorithm and its hardware implementation are proposed to improve the disparity estimation

quality of the AWDE and AWDE-IR implementations [62]. The T-AWDE algorithm and its

hardware are the enhanced versions of the binocular AWDE-IR algorithm and its hardware

implementation. The T-AWDE hardware generates a very high-quality depth map by merging

two depth maps obtained from the center-left and center-right camera pairs. The T-AWDE

hardware enhances disparity results by applying a double checking scheme which solves

most of the occlusion problems existing in the AWDE-IR implementation while providing

correct disparity results even for objects located in the left or right edge of the center image.

The implemented T-AWDE hardware is the first hardware implementation that succeeds to

provide real-time trinocular DE for HR video.

Rectification

A real-time disparity estimation system needs to perform real-time rectification which requires

solving the models of lens distortions, image translations and rotations. Look-up-table

based rectification algorithms allow image rectification without demanding high-complexity

operations. However, they require an external memory to store large-size look-up-tables. In

this thesis, an intermediate solution that compresses the rectification information to fit the

look-up-table into the on-chip memory of a Virtex-5 FPGA is presented [63]. The proposed

compressed look-up-table based rectification algorithm (CLUTR) can be used to rectify

the stereo images if the lens distortion is not extreme and the cameras are not excessively

misaligned.

In addition, in order to solve difficult camera alignment and distortion issues while

maintaining the low complexity architecture, an enhanced version of the compressed

look-up-table based rectification algorithm (E-CLUTR) and its real-time hardware are

11

Chapter 1. Introduction

presented [64]. The low-complexity de-compression processes of CLUTR and E-CLUTR

require a negligible amount of hardware resources for their real-time implementation and

do not require the existence of external memory to store the look-up-tables. The capacity of

CLUTR and E-CLUTR to fit the look-up-tables into the on-chip memory of the Virtex-5 FPGA

is approximately six times and two times more efficient than [56], respectively, as a benefit of

their efficient compression scheme.

Furthermore, the Caltech rectification algorithm [50] which does not benefit from

look-up-tables is implemented in hardware, and its hardware resource consumption results

are presented to improve the hardware comparison and to evidence the efficiency of

CLUTR and E-CLUTR in an appropriate way. Hardware implementations of CLUTR and

E-CLUTR require much less hardware resource than the hardware implementation of Caltech

rectification while providing almost identical rectification results with very high PSNR results.

Since the proposed high-quality compressed rectification implementations utilize negligible

amount of hardware resources and do not require the existence of the external memory, they

can be easily integrated into the state-of-the-art disparity estimation implementations which

do not utilize rectification process due to its complexity.

Embedded System for Depth Map Estimation

The hardware architectures given in [39–45] present the main disparity estimation video

processing cores but they do not reveal significant information about the other important

peripherals of the complete embedded system such as softcore processor, its data bus, camera

interface, display interface, external memory interface, DMA modules etc, and most of

them claims verification only according to behavioral simulations. In this thesis, the full

depth estimation embedded system that verifies the real-time functionality of the disparity

estimation hardware is explained. The efficient communication and data exchange scheme

of the system peripherals to transfer RGB+D output to a PC are presented. The proposed

embedded system can be used to guide the authors of state-of-the-art disparity estimation

hardware implementations to allow efficient real-time realization of their disparity estimation

hardware.

Hardware and Software based Applications of Disparity Estimation

Depth map estimation can be used in a wide range of image and video processing applications.

However, due to its challenge in real-time implementation, most of the applications of

disparity estimation in state-of-the-art are realized by offline processing. This thesis presents

several real-time hardware and software based applications of disparity estimation. The

implemented applications conceptually prove that the high-quality and high-performance

RGB+D outputs of the proposed real-time disparity estimation hardware can be used for

12

1.3. Contribution of the Thesis

enhanced 3D based video processing applications.

Free viewpoint synthesis is one of the important applications of depth map estimation. Free

viewpoint synthesis is straightforward for computer generated images [2]. However, applying

the same algorithms to real-world images is challenging since this process requires precise

distance computation for every object. Many researches focus on developing high-quality

free viewpoint synthesis algorithms [65, 66], while few results are published about real-time

hardware implementation of free viewpoint synthesis [67, 68]. In this thesis, the first real-time

high resolution free viewpoint synthesis system that utilizes three-camera disparity estimation

hardware is presented [69]. The proposed hardware generates high-quality free viewpoint

video at 55 frames per second using a Virtex-7 FPGA at a 1024×768 XGA video resolution for

any horizontally aligned arbitrary camera positioned between the leftmost and rightmost

physical cameras.

In this thesis, several software based real-time applications of disparity estimation are

presented. The implemented software applications are operated at PC and visualized by

the user-friendly graphical user interface (GUI) of the complete system. The implemented

software applications are: Speed and distance measurement, depth based image thresholding,

head-hands-shoulders tracking, virtual mouse using hand tracking, and face tracking

integrated with free viewpoint synthesis. The implemented software applications prove that

the proposed system can be used for advanced video processing applications where the depth

computation is required. The proposed disparity estimation system can be utilized in many

other 3D based video processing applications in the future.

ASIC implementation of Binocular Disparity Estimation

The proposed binocular disparity estimation hardware is implemented in an ASIC. In this

thesis, the ASIC implementation details of the binocular DE hardware are presented. The ASIC

is designed to be used as an accelerator for any complete system that requires stereoscopic

depth computation. The ASIC solution for the developed hardware offers crucial advantages

to the system compared to its FPGA implementation, such as less power consumption, faster

performance and cost effectiveness. The ASIC implementation imposes some additional

constraints with respect to the FPGA implementation. These restrictions mainly relate to the

pin count, area and the usage of multiple clock domains. Therefore, several modifications

are applied to the binocular DE hardware used for FPGA implementation. The specifications

of the ASIC implementation are presented. The modifications applied to the binocular DE

hardware are presented. The ASIC design and its possible utilization scheme are presented.

The ASIC implementation can allow utilization of the depth estimation system in consumer

electronic products such as mobile phones and wearable technologies.

13

Chapter 1. Introduction

1.3.2 Proposed Large Angle of View Image Capture and Reconstruction Systems

An enhanced version of the omnidirectional image reconstruction algorithm (EOIR) and

its real-time hardware implementation are presented [57]. The EOIR algorithm provides

homogeneous resolution over the entire reconstruction area. The proposed EOIR algorithm

increases the realistic aspect of omnidirectional images captured by the Panoptic camera.

The entire system provides the high bandwidth required to simultaneously process data

originating from 40 cameras, and reconstruct omnidirectional images of 256×1024 pixels at

25 frames per second. Moreover, the hardware architecture is designed to provide flexibility

in the selection of image resolution, AOV, contributing camera as well as algorithm choice

between OIR and EOIR. Omnidirectional images are transmitted to the PC through a USB

channel. The hemispherical 360° reconstruction can be viewed in real-time on a PC.

The omnidirectional video quality of the EOIR implementation is limited by the 352×288

resolution of the image sensors. Therefore, a very high-resolution multiple-camera

omnidirectional video recording system called Giga-Eye is implemented using 5MP cameras.

Giga-Eye records high-resolution images to reconstruct very-high resolution omnidirectional

images in off-line processing [58]. The proposed Giga-Eye system is the highest resolution 360°

omnidirectional camera that provides standard frame-rate video output (more than 25 fps) by

its 21.6 MP video output capability at 30 fps. Moreover, Giga-Eye is the highest resolution 360°

omnidirectional camera with its 82.3 MP output capability at 9.5 fps [59]. Giga-Eye is able to

view the target locations close to horizontal plane with more than two cameras. Therefore, the

presented video recording device can be used in ultra-high resolution omnidirectional video

processing applications including depth map estimation and super-resolution in the future.

1.4 Thesis organization

This thesis is structured as follows. Chapter 2 presents the state-of-the-art of omnidirectional

image reconstruction and depth map estimation. Chapter 3 presents the proposed binocular

disparity estimation algorithms AWDE and AWDE-IR and their hardware implementations.

The trinocular disparity estimation algorithm T-AWDE and its hardware implementation are

presented in Chapter 4. Chapter 5 presents the compressed look-up-table based rectification

algorithms CLUTR and ECLUTR and their hardware implementations. Chapter 6 presents the

full embedded system of the disparity estimation hardware. The hardware and software based

applications of the proposed disparity estimation hardware are presented in Chapter 7. The

ASIC implementation of the binocular disparity estimation algorithm AWDE-IR is presented in

Chapter 8. The proposed high-quality omnidirectional multiple-camera systems are presented

in Chapter 9. The conclusion of the thesis is presented in Chapter 10. The high-quality visual

results of the proposed systems are presented in Appendix A.

14

2 State of the Art

In this chapter, the state-of-the-art of 360°×90° AOV multiple-camera omnidirectional image

reconstruction systems and disparity estimation systems is presented. The algorithms and

hardware features of these systems are explained. In addition, the goals which distinguish the

research presented in this thesis from the state-of-the-art are presented.

2.1 Hemispherical Multiple Camera Image Reconstruction

Systems

The visualization of a full 360°×90° AOV scene forms the foundation enabling the emergence

of novel applications in security systems, automotive platforms and mobile robots, realistic

computer games, generation of street-level city maps and 3D cinematography.

The Ladybug3 camera [16] presented in Fig. 2.1 is an omnidirectional image capture device

developed by Point Grey. Ladybug3 utilizes six 1024×768 pixel CCD sensors placed in a

cubic arrangement to generate 360°×90° AOV images in real-time. Each camera has a wide

AOV lens. The cameras are controlled by a GUI. The stitching and blending processes are

implemented in software on a PC. Due to utilization of only six image sensors, mutual image

overlap is low. The PC operated software computes the calibration parameters of these images

utilizing the low size of the overlaps. The details of the calibration process and the hardware

system are not revealed by Point Grey, since Ladybug3 is a commercial product.

Google’s Street View camera, R7 [17], is presented in Fig. 2.2. R7 utilizes 15 5MP cameras to

cover more than 80% of the full sphere with a panoramic image resolution of 8192×4096

pixels by capturing pictures every 2.5 seconds. The multiple-camera image capture device

is accompanied with a laser scanner to measure the distances. The hemispherical images

15

Chapter 2. State of the Art

Figure 2.1: Ladybug3 multiple camera system

are reconstructed off-line. Distance measurement and 3D models of the buildings are used

to remove parallax errors caused by depth discontinuity. Google utilizes R7 on fast moving

vehicles, which results in blurring the original captured images. Therefore, information

pertaining to the speed of the carrying vehicle and optical flow estimation are utilized to

recover the images prior to the omnidirectional image reconstruction process.

Figure 2.2: R7 multiple camera system of Google for Street View application

A spherical multi-camera vision sensor called Panoptic utilizes a specific omnidirectional

image reconstruction algorithm (OIR) to construct 360°×90° AOV panoramic images in

real-time [19]. The Panoptic camera is presented in Fig. 2.3. The system presented in

[19] utilizes 40 cameras, each with a 352×288 pixel resolution, and creates 256×1024 pixel

resolution omnidirectional images.

The hemispherical arrangement of Panoptic is fully covered with cameras following a

systematic organization depicted in Fig. 2.4. The Panoptic camera has 7 floors to allow

16

2.1. Hemispherical Multiple Camera Image Reconstruction Systems

Figure 2.3: Panoptic camera

mounting 104 cameras. 40 of these locations are used to generate omnidirectional images.

The AOVs of each camera are 53°and 43°, in the horizontal and vertical axis, respectively. The

intrinsic and extrinsic calibrations of the cameras are computed using Caltech calibration tool

[50].

The OIR algorithm assumes that the space located around the Panoptic camera is

hemispherical, where the surface of the structure is divided into an equiangular grid with

Nθ latitude and Nϕ longitude pixels. Fig. 2.5a shows a hemispherical surface over which a

linear pixelization scheme is applied, and Fig. 2.5c depicts its 2D reconstruction. The latter is

divided into 256 and 1024 pixels for Nθ and Nϕ respectively, which are linearly distributed.

The direction of each pixel is described by a unit vector, ω with spherical coordinates (θω, ϕω),

which is visually presented in Fig. 2.5b.

The vector t, which is shown in Fig. 2.5a, represents the focus direction, whereas u and v

vectors stand for the vertical and horizontal directions of the camera in pixel representation.

After the computation of ω, all cameras having ω in their angle of view are determined by

processing the dot product of ω with t. Then, pixel grid locations onto which each ω projects

are found. However, due to the fact that ω may not coincide with the exact pixels on the

camera images, each projected pixel is interpolated with its adjacent pixels in order to extract

the light intensity in that particular ω direction.

17

Chapter 2. State of the Art

Figure 2.4: Hemispherical structure with multiple floors

(a) (b)

(c)

Figure 2.5: (a) hemispherical surface showing θ and ϕ angles and unit vectors used in
omnidirectional image reconstruction calculations, (b) ω vector and corresponding unit
vectors; t (focus direction of the camera), u (vertical direction in the pixel representation
of the camera), v (horizontal direction in the pixel representation of the camera) (c) 2D
reconstruction using linear pixelization

Since the AOVs of the cameras may overlap, the final light intensity of each pixel is determined

by assigning a weight to each contributing camera. The weight of a camera is calculated by

computing its 2D distance to the pixel that is being considered, and taking its reciprocal.

Two optional schemes are presented to carry out the final interpolation process, namely

nearest neighbor interpolation and linear interpolation. The nearest neighbor interpolation

18

2.2. Binocular Stereo Matching Algorithms and Their Hardware Implementations

Figure 2.6: Inverse relationship between the depth and disparity.

method extracts pixels from the cameras that provide maximum weights, whereas the linear

interpolation scheme linearly interpolates the light intensity extracted from each contributing

camera.

2.2 Binocular Stereo Matching Algorithms and Their Hardware

Implementations

In the human vision system, the disparity term describes the difference in location of

corresponding points that are seen by the left and right eyes [35]. There is an inverse

relationship between disparity and depth. This inverse relation is presented in Fig. 2.6. An

object located further away provides a smaller horizontal location change in the left and

right images, i.e. a smaller disparity result. Generally, horizontal displacements are used in

disparity estimation, however the same principle can be applied as a vertical displacement if

two cameras are located one top of each other.

In disparity estimation, the (x, y) coordinates of the disparity map are calculated by finding

the relationship between a pixel coordinates (x, y) of the reference image (processed image)

and its corresponding coordinates (x1, y1) in the matching image (searched image) [35]. The

relationship is expressed in eq 2.1. In eq 2.1; s=±1 is a sign based on the choice of the reference

and matching images to guarantee that the disparity value is positive. Thereby, the disparity

of a pixel in the left or right image can be defined as (d = xl – xr).

x1 = x + sd(x, y), y1 = y (2.1)

The disparity values can be converted to the depth Z by using geometrical relationships

19

Chapter 2. State of the Art

Figure 2.7: Geometrical relationship between disparity and depth.

between triangles [70], as presented in Fig. 2.7. The left and right image pixels coordinates

are shown as (xl , yl) and (xr , yr), respectively. The centers of the projections are represented

as Ol and Or . (cx , cy) is the principal point. The focal length is represented by f. B indicates

the distance between the cameras which is called the baseline. The mathematical relation

between the depth and disparity is shown in eq. 2.2. The detailed information about the

camera calibration methods to obtain f and (cx , cy) parameters are presented in subsection

2.2.1.

Z = f B

xl −xr
(2.2)

The theoretical distance precision limitations of the disparity estimation based depth

estimation system is presented in Fig. 2.8. The precision values are presented in cm for a

varying perpendicular depth values. Therefore, lower cm values of precision in the figure

indicate better depth sensitivity, i.e. better precision. The precision values are generated for

1024×768 pixels resolution cameras that include 6 mm of lens. The maximum disparity range

is considered as 255, and consecutive integer disparity values are considered as differentiable.

As presented in Fig. 2.8, the distance measurement precision of the depth camera increases

20

2.2. Binocular Stereo Matching Algorithms and Their Hardware Implementations

when the distance between the stereo cameras is increased. For example, when the baseline is

20 cm, the disparity estimation system can differentiate 0.5 cm of distance at 1 m, whereas,

when the baseline is 10 cm, the disparity estimation system can differentiate 1.1 cm of

distance at 1 m. The depth measurement precision reduces for increasing value of the depth

for any constant baseline. For example, when the baseline is 20cm, the expected precision is

0.5 cm for an object at 1 m, whereas, the expected precision is 56 cm for an object at 10 m.

Therefore, in order to increase the precision for far objects, the baseline should be increased.

However, increasing the baseline reduces overlapping region between stereo images for close

objects. Therefore, large baseline may not allow distance measurement for very close objects

or increases the maximum required disparity range. For example, when the baseline is 50

cm and the maximum disparity range is 255, the system can not measure the distance of

the object at 1 m, whereas, when the baseline is 10 cm, the disparity estimation system can

measure the distance of the object at 1 m. Therefore, the baseline should be mechanically

arranged according to expected distance range of the objects and target application. Although

disparity estimation system can maintain distance measurement for any distance by changing

the baseline, light projection based depth estimation systems are limited by the strength of

the projected light source. For example, Kinect is not able to measure the distance of the

object if they are further than 7 m. Laser scanner based systems can measure the distance of

the very far objects, but in this case, the strength of the light may damage the human eye if it

is looking in the direction of the source of laser light for a long time. On contrary, disparity

estimation based depth estimation includes only passive sensors, which can not give any

damage to human eye.

Figure 2.8: Distance measurement precision of disparity estimation based depth estimation.

Stereo matching algorithms are mainly classified into two categories, namely the local and

global approaches. Local methods compute each pixel’s disparity independently, based on the

intensity similarity over the matching window. Depending on the algorithms, matching costs

are aggregated over the matching window. Then the disparity value which gives the smallest

cost is generally selected as the disparity of the pixel using a winner-take-all approach. In

local methods, the selection of the stereo matching window size plays a significant role in

the performance of the algorithm [60]. As presented in [60], a small window size provides

good performance for high textured regions and object boundaries, whereas a large window

21

Chapter 2. State of the Art

size usually fails and blurs the object boundaries of disparity map. However, in low-textured

regions, a large window size gives good results.

In global methods, the disparity estimation problem is considered as minimizing the energy

function presented in eq. 2.3, which consists of data (Ed at a) and smoothness (Esmooth) terms,

through various optimization techniques and weights (λ). The data term formulates the

matching cost. The second term includes the smoothness assumption of the algorithm.

The energy function can be minimized by different methods such as Morkov random fields,

dynamic programming and graph-cut [35]. Although many global methods give better results

than the local methods, they require very high computational load and memory bandwidth

to minimize the energy function. Therefore, the use of global minimization-based disparity

estimation algorithms is impractical in real-time hardware implementation, in consideration

of hardware resource limitations.

E(d) = Ed at a(d)+λEsmooth(d) (2.3)

Based on the Middlebury taxonomy [35] of stereo algorithms, disparity estimation algorithms

usually subdivide the stereo matching processes into the six consecutive steps: Calibration,

Rectification, Matching Cost Computation, Cost Aggregation, Disparity Selection and

Optimization, and Disparity Refinement. The details of these processes and their hardware

implementations in the state-of-the-art developments are presented in following subsections.

2.2.1 Camera Calibration

In disparity estimation, epipolar line geometry is required to search a correspondence pixel in

a horizontal line. Alignment mismatches between cameras in a stereo vision system make

disparity estimation operation difficult by preventing the horizontal search assumption.

Therefore, camera misalignments and distortions should be modeled and solved.

The camera calibration consists of estimating the mathematical relations that describe the

projection of an object from 3D space to image space for each camera. These mathematical

relations include parameters related to the physical characteristic (intrinsic parameters) as

well as the position (extrinsic parameters) of each camera. The calibration can be performed

using pictures of known and unknown structures. Chessboard can be used as known structure

in calibration. By taking the picture of chessboard from a variety of angles and distances, it is

possible to compute the relative orientations of the stereo cameras as well as their intrinsic

parameters [70]. The calibration parameters can be obtained without using any known

22

2.2. Binocular Stereo Matching Algorithms and Their Hardware Implementations

pattern. This process is called auto-calibration. Auto-calibration requires the detection

of local features of the image [71]. Known structure-based calibration methods can be

considered as more accurate since unknown patterns may cause ambiguity to the matching of

the positions of the local features, especially in the presence of repetitive patterns or if there

are not enough texture in the stereo images.

The pinhole camera model presented in Fig. 2.9 is used to describe the calibration procedure.

In this model, light is envisioned as entering from the scene or a distant object, but only a

single ray enters from any particular angle. This ray is then projected onto an imaging surface

[70]. The pinhole camera can be modeled by using intrinsic and extrinsic parameters. Three

orthogonal coordinate systems should be defined to clearly describe these parameters. As

presented in Fig. 2.9, these three coordinate systems are the world coordinate system (X,Y,Z),

the camera coordinate system (Xc,Yc,Zc), and the image coordinates system as (x, y).

 O

Yc

Zc

x

y

X

Z

Y

f

Figure 2.9: Coordinate systems for pinhole camera model.

The intrinsic parameters represent the internal characteristic of the camera. These are the

focal length, the principal point and skew coefficient. According to the pinhole camera

model, focal length can be defined as the distance from the pinhole aperture to the screen as

presented in Fig. 2.9. The principal point can be defined as the coordinates of the center of the

image in the image coordinate system. Expressed differently, it is a point which is located at

the intersection of the optical axis with the image plane. The skew coefficient is the cosine of

23

Chapter 2. State of the Art

the angle between x and y coordinates, which is ideally equal to 0 since the axes are supposed

to be orthogonal. Following these definitions, a camera matrix describing the transformation

from 3D to 2D coordinate system, containing all internal characteristics of the camera can

be formulated as given in eq. 2.4. In eq. 2.4, (cx ,cy) and (fx ,fy) represent the principal point

and the focal lengths in pixel-related units. The intrinsic camera matrix parameters do not

depend on the scene view. After the computation of intrinsic parameters, they can be used

many times if the focus, optics or camera resolution are not changed.

A =

 f x 0 cx

0 f y c y

0 0 1

 (2.4)

Lenses cause radial and tangential distortions on the images [70]. In the case of radial

distortion, pixels located near the borders of images is noticeably distorted by the lenses of

cameras. It is known that light rays further from the center of the lens are bent more than

those closer to the center. Therefore, the radial distortion is 0 at the optical center of the

image, and it increases towards the edges. The second distortion is the tangential distortion

and it is mainly due to the lens that is not exactly parallel to the imaging plane. These radial

and tangential distortions can be corrected using Brown’s distortion model given in equations

2.5 and 2.6. The calibration process requires to determine the internal camera calibration

parameters k1, k2, k3 for radial distortion and p1, p2 for tangential distortions. In these

equations, (x, y) is the position of a 3D point after applying camera transformation matrix,

and (xcorrected, ycorrected) is the position of the 3D point in the 2D image after correcting the

errors caused by the distortions.

r 2 = x2 + y2

xcor r ected = x(1+k1r 2 +k2r 4 +k3r 6)+d x

ycor r ected = y(1+k1r 2 +k2r 4 +k3r 6)+d y

(2.5)

d x = 2p1x y +p2(r 2 +2x2)

d y = 2p1(r 2 +2y2)+2p2x y
(2.6)

After the pixel coordinates are corrected to cancel the lens distortions, the extrinsic parameters

of the cameras should be computed. The geometrical model of the transformation between

the camera coordinate system and the scene coordinate system can be determined after the

24

2.2. Binocular Stereo Matching Algorithms and Their Hardware Implementations

computation of external calibration parameters [72]. These parameters are related to camera

position and orientation. The 3×4 transformation matrix includes rotation parameters

(r11-. . . -r33) and translation vector (t1,t2,t3).

sm′ = A[RT]M ′ (2.7)

s

u

v

w

=

 f x 0 cx

0 f y c y

0 0 1


r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3




X

Y

Z

1

 (2.8)

The final transformation formula is presented in eq. 2.7 and 2.8. (X, Y, Z) are the scene

coordinates of a 3D point in the world coordinate system (M). (u, v) are the coordinates in

image plane (m) in number of pixels. R is the rotation matrix, T is the translation matrix and s

is the scale factor.

The internal and external calibration equations can be reformulated to obtain a single

equation presented in eq. 2.9. The Open-CV Calibration Toolbox [73] and Caltech’s Matlab

Calibration Toolbox [50] are user-friendly software implementations that are used to obtain

the parameters of eq. 2.9.

x ′ = x/z

y ′ = y/z

x ′′ = x ′(1+k1r 2 +k2r 4 +k3r 6)+ [2p1x ′y ′+p2(r 2 +2x ′2)]

y ′′ = y ′(1+k1r 2 +k2r 4 +k3r 6)+ [p1(r 2 +2y ′2)+2p2x ′y ′]

where

r 2 = x ′2 + y ′2

u = fx ∗x ′′+ cx

v = fy ∗ y ′′+ cy

(2.9)

25

Chapter 2. State of the Art

Ol O r T

 P

Pl Pr

pl pr

Translation: T
R

Figure 2.10: Mathematical alignment of the two cameras into an unique image plane.

2.2.2 Rectification

Image rectification is a transformation process applied to stereo images using the internal and

external camera calibration parameters. The output of this process consists of row-aligned

images. The final rectified images can be generated by calculating new transformation

matrixes from the scene coordinates to image coordinate by rotating the old images around

their optical center until the focal planes become coplanar [74], as shown in Fig. 2.10.

[50] and [73] attempt to maximize common viewing area by minimizing the amount of change

of the reprojection produces for each of the two images. The rotation matrix R that gives the

rotation from the right camera’s image plane into the left camera’s image plane is divided

in half between the two cameras. As a result of this division, the distortions that come from

reprojection are minimized. As a result of this process, the left and right images are rotated by

a half, and the images are put into coplanar alignment.

The formula of the rotation matrix to obtain row aligned image planes is presented in eq.

2.10. In eq. 2.10, Rl is the rotation to be applied to the left image, Rr is the rotation to be

applied to the right image. rl and rr are obtained by applying half a rotation clockwise and

counterclockwise, so that R=rT
l rr . Repi is the matrix to push the epipoles towards infinity,

thereby epipolar lines become horizontal. Rl and Rr are used in eq. 2.7 to apply the projection.

26

2.2. Binocular Stereo Matching Algorithms and Their Hardware Implementations

Rl = Repi rl

Rr = Repi rr
(2.10)

The equation to obtain Repi is presented in eq. 2.11 where T is the translation between the

two cameras.

e1 = T

||T ||

e2 =
[−Ty Tx 0]T√

T 2
x +T 2

y

e3 = e1 ×e2

Repi =

(e1)T

(e2)T

(e3)T


(2.11)

A real-time rectification hardware should apply operations pertaining to rotation and

translation, and should correct the lens distortions. The rectification process requires

high-precision fractional operations, and thus a high amount of hardware resources. Therefore,

look-up-table based rectification hardware implementations are presented in [54–56]. In this

method, the mappings between the original image pixel coordinates and the rectified image

pixel coordinates are pre-computed and then implemented into look-up-tables. Although the

computational complexity of the look-up-table based approach is very low, using these tables

requires a significant amount of memory bandwidth and size. For example, for the rectification

of 1024×768 resolution stereo images with 6 bits fractional precision, the rectification map

alone approximately requires 2×1024×768×2×(10+6) = 6 MB of memory space. This memory

size is very high for regarding the on-chip memory capacity of mid-range FPGAs, which

necessities the utilization of an external memory [54, 55]. The hardware presented in [56]

encodes the difference between each element of the look-up-table to reduce the bitsize of the

elements. This encoding method reduces the look-up-table size of 1280×720 size image from

7.5 MB to 1.3 MBs. Therefore, the look-up-tables of 1280×720 size images fit into the on-chip

memory of a Virtex-5 FPGA.

2.2.3 Matching Cost Computation

In order to identify the corresponding pixels in stereo images, a matching cost should be

computed for each candidate matchings. The absolute differences (AD), sum of absolute

27

Chapter 2. State of the Art

difference (SAD), squared differences (SD), sum of square difference (SSD) and Census

transform are the most commonly used pixel-based matching costs [35]. These matching

costs are explained in this sub-section.

Assuming that a pixel intensity in the gray-level left image is Il (xl ,yl), and the candidate pixel

in the gray-level right image is Ir (xl -d,y) then the SD and AD matching costs between these

pixels can be expressed as in eq. 2.12 and 2.13, respectively. The SAD and SSD matching costs

can be calculated over the search window ((2w+1)×(2w+1)) centered at the (xl ,y) pixel. The

SAD and SSD matching costs can be formulated as presented in eq. 2.14 and 2.15, respectively.

Since the SSD operation requires multiplication operations and thus a high amount of

hardware resources, it is not usually preferred for a hardware implementation.

SD(xl , y,d) = (Il (xl , y)− Ir (xl −d , y))2 (2.12)

AD(xl , y,d) = (Il (xl , y)− Ir (xl −d , y)) (2.13)

S AD(xl , y,d) =
w∑

i=−w

w∑
j=−w

|Il (xl)+ i , y + j)− Ir (xl + i −d , y + j)| (2.14)

SSD(xl , y,d) =
w∑

i=−w

w∑
j=−w

(Il (xl)+ i , y + j)− Ir (xl + i −d , y + j))2
(2.15)

According to matching costs calculation using SAD, it is assumed that the 8-bit luminance of

a pixel in a reference image and its correspondence pixel in the matching image are equal.

The same procedure can be also applied for the matching of 24-bit RGB values as presented

in [43]. However, applying the matching computations using RGB requires three times the

matching computations using luminance values, but it does not significantly improve the

disparity estimation results.

Using binary windows (BW) together with SAD computation increases the quality of the stereo

matching for the object boundaries, which is presented in [60]. BW is computed for processed

pixel by detecting neighboring pixels with same intensity values in a support window. BW

28

2.2. Binocular Stereo Matching Algorithms and Their Hardware Implementations

is used to determine contributing pixels to the SAD computation. The computed BW-SAD

metric provides high-quality results, especially for object boundaries.

The matching cost computation using SAD provides high-quality results using computer

generated stereo images. However, SAD does not always provide high-quality results for

real-world images since different color or intensity value can be delivered by two cameras

observing the same object. Therefore, ambiguity occurs for the selection of the disparity with

the minimum matching cost. Census transform is proposed to overcome this problem [35].

1 0 1 0 1 0 0

0

… 0 0 1 0

1 0 1 0 0 1 0

0 …

… 1 1 0 0

40 103 20 52 43 47 203

205 …

45

… 107 46 33 76

35 79 45 107 203 65 104

83 …

78

… 73 73 78 104

Census Transform

Figure 2.11: Census transform computation.

The Census transform [46] decreases the dependency of the stereo matching process to the

sensitivity of the camera gains. Census transform codes the processed pixels according to

their relation to the neighboring pixels. The algorithm assumes that even if one stereo image

is relatively brighter to the other one, still the correlation between a pixel and its neighboring

pixels should be regular. The Census transform is visualized in Fig. 2.11. A neighboring

pixel that has an intensity value smaller than the center pixel intensity is coded as 1. A

neighboring pixel that has an intensity value larger than or equal to the center pixel intensity

is coded as 0. The hamming distance is used to compare the similarity between the two

strings. The Hamming distance computes the number of different bits in two strings. The

29

Chapter 2. State of the Art

computational complexities of the Census transform and Hamming computation are much

less than the SAD, since they require low bit-size adders, comparators and XOR computations.

The hardware presented in [39] utilizes Census transform for the matching cost computations.

The disadvantage of the Census transform is its cost representation sensitivity compared to

SAD, which causes ambiguity for the selection of the best matching. For example, assuming

7×7 windows are used, the Hamming results can be between 0 and 48, while SAD can provide

matching cost values between 0 and 12240. In addition, the Census transform is more

sensitive than SAD to the existence of perfect calibration and rectification, which is usually

challenging to obtain with real-world images.

The hardware presented in [44] utilizes edge detection method to reduce the computational

load of matching cost computation compared to the SAD. It utilizes sobel edge detection to

convert gray images to 1-bit pixel size images. Then, it performs XOR operations between the

matching windows, and accumulates the 1-bit costs using adder-tree. Although [44] utilizes

low amount of hardware resources, it does not provide high-quality disparity estimation

results due to matching ambiguities caused by 1-bit representation of the pixels.

2.2.4 Cost Aggregation

In the cost aggregation, matching costs are summed and averaged over a support region [35].

The support region is generally three-dimensional in the srx-sry-d space, where srx and sry

are the size of the support window and d is the disparity range. The support region should

be generated for every processed pixel. The cost aggregation step smoothens the matching

costs with ambiguity and provides a decrease in the disparity estimation mismatches [36].

However, the accumulation and averaging of all the cost values in a support region for every

processed pixel require significant amount of hardware resources and memory bandwidth.

Although cost aggregation step is generally used especially by the top performer algorithms

[35], its usage is not suitable for hardware adaptable disparity estimation algorithms especially

for high-resolution and high disparity range. The hardware presented in [39] utilizes cost

aggregation, but it can perform in real-time only for CIF images (352×288).

2.2.5 Disparity Selection and Optimization

In most of the local processing based DE methods, the disparity value which gives the

minimum cost over the disparity range is selected as the final disparity of a processed pixel.

This operation is called winner-take-all (WTA). For example, if the matching costs are obtained

as presented in Fig. 2.12, the WTA operation should determine 33 as the disparity of the

processed pixel.

30

2.2. Binocular Stereo Matching Algorithms and Their Hardware Implementations

The WTA process can deliver incorrect disparity estimation results if there are strong local

minima or if the global minima is very close to the matching cost of several other candidate

disparity values. For this reason, in addition to the matching cost, confidence metrics are

used to select the correct disparity result.

Figure 2.12: Disparity selection.

The confidence metrics can be generated using the matching costs [75, 76]. In the calculation

of confidence metrics, c1 represents the minimum matching cost and d1 is the corresponding

disparity value of the minimum matching cost. Furthermore, c2 symbolizes the second

minimum matching cost and d2 is the corresponding disparity value of the second minimum

matching cost. Different confidence metrics can be defined. Some of them are explained in

this sub-section.

The sharpness around the global minimum can be measured by eq. 2.16. A candidate disparity

value which does not provide sufficient sharpness is considered not-confident.

CCU R =−2c(d1)+ c(d1 −1)+ c(d1 +1) (2.16)

Another confidence metric can be defined to provide information related to the strength

31

Chapter 2. State of the Art

of the global minimum compared to other local minimums. This metric can be defined as

presented in eq. 2.17. Other strong costs within the disparity range causes ambiguity in the

selected global minimum [75, 76].

CPK RN = c2

c1
(2.17)

An alternate confidence metric can be calculated using two disparity maps. In the first map,

the left image is used as the reference image and the right image is used as the matching

image. In the second disparity map, the right image is used as the reference image and the left

image is used as the matching image. These disparity maps are cross-checked to define the

confidence. The hardware presented in [45] utilizes this confidence metric. Although this

metric improves the DE quality, it doubles the computational cost of the disparity estimation

hardware.

CLRC (x, y) =−|d1 −DR (x −d1, y)| (2.18)

2.2.6 Disparity Refinement

Disparity refinement is a post-processing step to the disparity map estimation. Different

methods to refine the calculated disparity map can be applied such as sub-pixel accurate

disparity estimation and median filtering [35].

A low resolution of the input stereo images reduces the precision of the depth sensitivity. In

order to increase the depth sensitivity of these images sub-pixel disparity estimation can be

used [36].

Many disparity estimation algorithms do not provide satisfactory result in occluded regions.

Using the left-right crosscheck method, left-to-right and right-to-left disparity maps are

compared to detect the occluded regions and confident values. Afterwards, the occluded

regions can be inpainted with confident disparity values [35].

The Median filter based approach is another method to refine the disparity maps. It can be

used to filter the mismatches in disparity map. This smoothing method provides high-quality

results when used along with object segmentation algorithms. However, the computational

32

2.3. Trinocular Stereo Matching Algorithms and Their Hardware Implementations

complexity and memory bandwidth requirements of the object segmentation process are

high [35]. Therefore, this disparity smoothing method is not suitable to real-time hardware

implementation.

2.3 Trinocular Stereo Matching Algorithms and Their Hardware

Implementations

Trinocular disparity estimation is an extended version of binocular system. Trinocular vision

system receives three separate views from three different viewpoints of the same scene. Hence,

an occluded region in one of the binocular pairs may be visible in the other image pair. The

three cameras can be located in the same horizontal epipolar line, i.e. collinear as presented

in Fig. 2.13, or in a triangular placement as presented in Fig. 2.14.

Figure 2.13: Collinear placement of three cameras for disparity estimation

Figure 2.14: Triangular placement of three cameras for disparity estimation

33

Chapter 2. State of the Art

In a trinocular system consisting of three horizontally alligned cameras, the center image is

used as reference image and two binocular disparity estimation maps are calculated for both

the center-right and center-left image pairs. The most important part of trinocular disparity

estimation relates to find a fusion method to merge two binocular disparity maps into a

robust and accurate trinocular disparity map. The main aim is to determine which binocular

disparity map gives the best disparity result for the searched pixel.

The trinocular DE hardware presented in [48] enables handling 52 fps on an Altera Cyclone-IV

FPGA at a 640×480 video resolution. It utilizes a hierarchical classifier to select the most

promising disparity value. It computes a hierarchical classifier using information provided by

the calculated cost curves and the spatial neighborhood of the pixels.

The hardware presented in [49] uses a triangular configuration of three cameras and enables

handling 30 fps on a Xilinx Virtex-4 FPGA at a 320×240 video resolution for a 64 pixels disparity

range. It solves the occlusion problem of the left-right camera pair using the up-down camera

pair. Triangular allignment provides better results than collinear alignment especially for

regions containing horizontal repetitive patterns. However, triangular allignment reduces the

data reuse capability and increases the memory bandwidth requirement since the search

directions are not symmetric considering the top-down and left-right binocular pairs.

y
c

zc

y
l

xl

xc

z l

zr

y
r

xr

Rcl

T cl

Rrl T rl

Left
Camera

Center
Camera

Right
Camera

Figure 2.15: Geometrical relationship between the cameras of the trinocular stereo system

34

2.3. Trinocular Stereo Matching Algorithms and Their Hardware Implementations

Camera calibration and rectification are also important pre-processing parts of the

trinocular DE. In contrast to binocular stereo calibration and rectification, few works present

multi-camera calibration [77–79] and rectification methods [80–82]. In multiple-camera

calibration, one of the cameras is determined as the reference camera and binocular camera

calibration procedures are applied between the reference camera and the other cameras in

the system.

In a trinocular stereo system, firstly the two camera pairs are determined and then the

positional relationships of the two camera pairs are obtained by using the binocular

calibration parameters. The calibration process of a trinocular camera system is presented in

Fig. 2.15. The left camera is the reference for the calibration process. The transformation

matrixes from the world coordinate system to the image coordinate system for the left, center

and right cameras are represented as presented in eq. 2.19, eq. 2.20 and eq. 2.21, respectively.

Rl , Rc , and Rr are the rotation matrixes of the cameras. Tl , Tc and Tr are the translation

matrixes of the cameras. Based on these transformation matrixes, the corresponding

relationship between the left and right cameras and the corresponding relationship between

the left and center cameras are expressed in eq. 2.22 and 2.23, respectively [77]. In eq. 2.22, Rr l

and Tr l are the rotation and translation matrixes from the center camera coordinate system to

the left camera system. In eq. 2.23, Rcl and Tcl are the rotation and translation matrixes from

the right camera coordinate system to the left camera system.

xl

yl

zl

= Ml


X

Y

Z

1

 =

rl1 rl 2 r1l3 tl x

rl4 rl 5 rl 6 tl y

rl7 rl 8 rl 9 tl z




X

Y

Z

1


Ml = [Rl Tl]

(2.19)

xc

yc

zc

= Mc


X

Y

Z

1

 =

rc1 rc2 rc3 tcx

rc4 rc5 rc6 tc y

rc7 rc8 rc9 tcz




X

Y

Z

1


Mc = [Rc Tc]

(2.20)

35

Chapter 2. State of the Art

xr

yr

zr

= Mr


X

Y

Z

1

 =

rr 1 rr 2 rr 3 tr x

rr 4 rr 5 rr 6 tr y

rr 7 rr 8 rr 9 tr z




X

Y

Z

1


Mr = [Rr Tr]

(2.21)

xl

yl

zl

= Rl R−1
r

xr

yr

zr

+Tl −Rl R−1
r Tr

Rr l = Rl R−1
r

Tr l = Tl −Rl R−1
r Tr

(2.22)

xl

yl

zl

= Rl R−1
c

xc

yc

zc

+Tl −Rl R−1
c Tc

Rcl = Rl R−1
c

Tcl = Tl −Rl R−1
c Tc

(2.23)

Rectification is applied at the end of global calibration process. During the rectification, the

three-camera coordinate systems are reprojected into a one-coordinate system according to

multi-camera calibration parameters [80–82]. Firstly, a reference camera is chosen, and the

common coordinate system is determined based on the reference camera. Then, all cameras

in the system are reprojected into the common coordinate system [73].

2.4 Thesis Goals

The binocular disparity estimation algorithms in state-of-the-art either target very high-quality

results but no real-time performance, or real-time implementation but they do not provide

high-quality results for high-resolution video. The target of this thesis is carefully designing

an high-quality disparity estimation algorithm considering the details of the hardware

implementation such as minimizing hardware resource utilization and memory bandwidth,

and maximizing the parallel and local processing. Thereby, high-quality and high-resolution

real-time disparity estimation hardware can be used in advanced 3D-based video processing

applications.

36

2.4. Thesis Goals

Many of the hardware implementations of the disparity estimation are not implemented in to

ASIC, or their hardware implementations into an ASIC would be challenging since they require

to access external memory. In this thesis, a streaming-input and streaming-output hardware

implementation of the binocular DE which does not require the existence of external memory

is targeted. Thereby, designing an efficent ASIC implementation of the binocular DE hardware

is targetted. The targetted ASIC can significantly reduce the cost and power consumption

compared to the disparity estimation hardware implemented for FPGA, which is important if

massive production of the depth estimation system for consumer electronics is required.

A novel compressed look-up-table based rectification algorithm and its efficient hardware

implementation are targetted. Consuming lower memory size than existing look-up-table

based solutions while keeping the high-quality is targetted. Thereby, look-up-table based

rectification can be utilized without using external memory, which can reduce the total cost of

the depth estimation system.

Trinocular DE solves most of the occlusion problems in disparity estimation. Although few

trinocular disparity estimation hardware implementations have been presented, none of

them targets real-time for high-resolution video. This thesis targets the first high-resolution

and high-quality trinocular disparity estimation hardware. Therefore, the targetted trinocular

DE hardware can be used if removing the wrong estimation results in the occluded region is a

significant necessity of a 3D-based video processing application.

Free-view synthesis is an important application of depth estimation which is mainly used for

generating multi-views of glass-free TVs. The first high-resolution real-time free viewpoint

synthesis hardware utilizing trinocular disparity estimation is targetted. Therefore, the

targetted hardware can be used in glass-free 3D TVs to synthesize free view images in real-time.

Infrared projection based depth estimation devices such as Microsoft Kinect [32] and

Structure Sensor of Occipital [33] are used for several 3D based video processing applications

such as skeleton detection and gaming. However, Kinect and Structure Sensor do not

work efficiently if there are multiple devices viewing the same scene, or they are used

under the sun-light. Whereas, disparity estimation does not present these interference

problems. In this thesis, the demonstration of the complete disparity estimation system

with several 3D based video processing applications is targetted. In order to reach this goal,

real-time software implementations of speed and distance measurement, depth-based

image thresholding, head-hands-shoulders tracking, virtual mouse using hand tracking,

and face tracking integrated with free viewpoint synthesis are targetted. The target of

this thesis is to evidence that proposed disparity estimation system provides high-quality

depth estimation results to be used in advanced real-time 3D-based video processing

37

Chapter 2. State of the Art

applications. Thereby, implementation of a depth estimation system that can be used

both in indoor and outdoor, and even if in the case of utilization of multiple devices is targetted.

In addition, in this thesis, the implementation of the high-quality omnidirectional

multiple-camera system is targetted. In order to reach this goal, improving the realist

aspects of existing Panoptic camera is first targetted with an enhanced omnidirectional

image reconstruction algorithm and its implementation. Since the omnidirectional video

quality of the Panoptic camera is limited by the 352×288 resolution of the image sensors,

an implementation of a novel high-resolution multiple-camera omnidirectional video

recording system using 5MP cameras is targetted. Thereby, the goal is to implement the

highest resolution 360° omnidirectional camera video record system which can be used in

high-quality virtual reality applications. Moreover, the goal of the novel 360° omnidirectional

camera system is to view the target locations close to horizontal plane with more than two

cameras to allow its usage in depth map estimation in the future.

38

3 Binocular Adaptive Window Size
Disparity Estimation Algorithm and
Its Hardware Implementation

A hardware-oriented adaptive window size disparity estimation (AWDE) algorithm and its

real-time reconfigurable hardware implementation are presented in this Chapter [51]. The

implemented hardware processes high resolution (HR) stereo video with high-quality disparity

estimation results. In addition, the disparity estimation quality of the AWDE algorithm is

improved using the iterative disparity refinement process. The proposed enhanced AWDE

algorithm that utilizes Iterative Refinement (AWDE-IR) is implemented in hardware and its

implementation details are presented [61].

3.1 Binocular Hardware-Oriented Adaptive Window Size Disparity

Estimation Algorithm

The main focus of the AWDE algorithm is its compatibility with real-time hardware

implementation while providing high quality DE results for HR. The algorithm is designed to

be efficiently parallelized, to require minimal on-chip memory size and external memory

bandwidth.

The term “block” is used in this Thesis to define the 49 pixels in the left image that are

processed in parallel. The term “window” is used to define the 49 sampled neighboring pixels

of any pixel in the right or left images with variable sizes of 7×7, 13×13 or 25×25. The pixels

in the window are used to calculate the Census and BW-SAD cost metrics during the search

process.

The algorithm consists of three main parts: window size determination, disparity voting,

and disparity refinement. The parameters that are used in the AWDE algorithm are given in

Section 3.4.

39

Chapter 3. Binocular Adaptive Window Size Disparity Estimation Algorithm and Its
Hardware Implementation

3.1.1 Window Size Determination

The window size of the 49 pixels in each block is adaptively determined according to the

Mean Absolute Deviation (MAD) of the pixel in the center of the block with its neighbors. The

formula of the MAD is presented in (3.1), where c is the center pixel location of the block and q

is the pixel location in the neighborhood, Nc , of c. The center of the block is the pixel located

at block(4, 4) in Fig. 3.1. A high MAD value is a sign of high texture content and a low MAD

value is a sign of low texture content. Three different window sizes are used. As expressed in

(3.2), a 7×7 window is used if the MAD of the center pixel is high, and a 25×25 window is used

if the MAD is very low.

M AD(c) = 1

48
× ∑

q∈Nc

|IL(q)− IL(c)| (3.1)

Window Size =


7×7 if M AD(c) > tr7×7

13×13 else if M AD(c) > tr13×13

25×25 otherwise

(3.2)

Figure 3.1: 9 selected pixels in a block for BW-SAD calculation. 49 pixels in a block are searched
in parallel in hardware.

As a general rule, increasing the window size increases the algorithm and hardware complexity

[60]. As shown in Fig. 3.2, in our proposed algorithm, in order to provide constant hardware

complexity over the three different window sizes, 49 neighbors are constantly sampled for

different window sizes. “1”, “2” and “3” indicate the 49 pixels used for the different window

sizes 7×7, 13×13 and 25×25, respectively. If the sampling of 49 pixels in a window is not

applied and all the pixels in a window are used during the matching process, an improvement

in the disparity estimation quality can be obtained. The overhead of computational

complexity for this high-complexity case and the degradation of the DE quality due to

sampling are presented in Section 3.4.

40

3.1. Binocular Hardware-Oriented Adaptive Window Size Disparity Estimation Algorithm

Figure 3.2: 49 selected pixels of adaptive windows (yellow (1): 7×7, green (2): 13×13 and blue
(3): 25×25).

3.1.2 Disparity Voting

A hybrid solution involving the Binary Window SAD and Census cost computation methods is

presented to benefit from their combined advantages. The SAD is one of the most commonly

used similarity metrics. The use of BW-SAD provides better results than using the SAD when

there is disparity discontinuity since it combines information about the shape of the object

with the SAD [60]. However, the computational complexity of the BW-SAD is high, thus result

of this metric is provided for nine of the 49 pixels in a block and they are linearly interpolated

to find the BW-SAD values for the remaining 40 pixels in a block. The selected nine pixels

for the computation of BW-SAD are shown in Fig. 3.1. The low complexity Census metric is

computed for all of the 49 pixels of a block.

The formula expressing the BW-SAD for a pixel p=(x, y) is shown in (3.3) and (3.4). The

41

Chapter 3. Binocular Adaptive Window Size Disparity Estimation Algorithm and Its
Hardware Implementation

BW-SAD is calculated over all pixels q of a neighborhood Np , where the notation d is

used to denote the disparity. The Binary Window, w, is used to accumulate absolute

differences of the pixels, if they have an intensity value which is similar to the intensity

value of the center of the window. The multiplication with w in (3.4) does not cause

significant computational load for the hardware since it is implemented as reset signal for the

resulting absolute differences (AD). In the rest of the paper, the term, “Shape” is indicated by w.

Depending on the texture of the image, the Census and the BW-SAD have different strengths

and sensibility for the disparity calculation. To this purpose, a hybrid selection method is

used to combine them. As shown in (3.5) and (3.6), an adaptive penalty (ap) that depends on

the texture observed in the image is applied to the Hamming differences. Subsequently, the

disparity with the minimum Hybrid Cost (HC) is selected as the disparity of a searched pixel.

2’s order penalty values are used to turn the multiplication operation into a shift operation.

If there is a texture on the block, the BW-SAD difference between the candidate disparities

needs to be more convincing to change the decision of Census, thus a higher penalty value is

applied. If there is no texture on the block, a small penalty value is applied since the BW-SAD

metric is more reliable than the decision of Census.

w =
0 if |IL(q)− IL(p)| > thr eshol dw ,q ∈ Np

1 else
(3.3)

BW -S AD(p,d) = ∑
q∈Np

|IL(q)− IR (q−d)| ·w (3.4)

HC (p,d) = BW -S AD(p,d)+hamming(p,d)×ap (3.5)

ap =


ap7×7 if window size == 7×7

ap13×13 else if window size == 13×13

ap25×25 else if window size == 25×25

(3.6)

42

3.1. Binocular Hardware-Oriented Adaptive Window Size Disparity Estimation Algorithm

3.1.3 Disparity Refinement

The proposed Disparity Refinement (DR) process assumes that neighboring pixels within the

same Shape needs to have an identical disparity value, since they may belong to one unique

object. In order to remove the faulty computations, the most frequent disparity value within

the Shape is used.

Figure 3.3: Examples for selecting 17 contributing pixels for 7×7, 13×13 and 25×25 window
sizes during the disparity refinement process (yellow (1): 7×7, green (2): 13×13 and blue (3):
25×25).

As shown in Fig. 3.3, since the proposed hardware processes seven rows in parallel during the

search process of a block, the DR process only takes the disparity of pixels in the processed

seven rows. The DR process of each pixel is complemented with the disparities of 16 neighbor

pixels and its own disparity value. Finally, the most frequent disparity in the selected 17

contributors is replaced with the disparity of that processed pixel.

The selection of these 17 contributors proceeds as follows. The disparity of the processed

pixel and the disparity of its four adjacent pixels always contribute to the selection of the most

frequent disparity. Four farthest possible Shape locations are pre-computed as a mask. If

these locations are activated by Shape, the disparity values of these corner locations and their

two adjacent pixels also contribute. Therefore, at most 17 and at least 5 disparities contribute

to the refinement process of each pixel.

In Fig. 3.3, examples of the selection of contributing pixel locations are shown for three

different window sizes. Considering the proposed contributor selection scheme, the pixels in

the same row with the same window size have identical masks. The masks for the seven rows

of a block and three window sizes are different. Therefore, 21 different masks are applied in

the refinement process. These masks turn out to simple wiring in hardware.

Median filtering of the selected 17 contributors provides negligible improvement on the DR

quality, but it requires high-complexity sorting scheme. The highest frequency selection is

used for the refinement process since it can be implemented in hardware with low-complexity

equality comparators and accumulators. The maximum number of contributors is fixed

43

Chapter 3. Binocular Adaptive Window Size Disparity Estimation Algorithm and Its
Hardware Implementation

to 17 which provides an efficient trade off between hardware complexity and the disparity

estimation quality.

3.2 Hardware Implementation of Proposed Binocular AWDE

Algorithm

The efficient hardware implementation of the proposed hardware-oriented binocular AWDE

algorithm is presented in this Section. The proposed hardware architecture of the AWDE

algorithm enables handling 60 fps on a Virtex-5 FPGA at a 1024×768 XGA video resolution for

a 128 pixel disparity. The proposed hardware provides dynamic and static configurability

to have satisfactory disparity estimation quality for the images with different contents. It

provides dynamic reconfigurability to switch between window sizes of 7×7, 13×13 and

25×25 pixels in run-time to adapt to the texture of the image. In addition, it provides static

configurability to allow users to change the disparity range, the strengths of Census and

BW-SAD in HC computation, the closest and furthest expected distances, the used color

domain (Y, Cb or Cr), etc.

3.2.1 Overview

The top-level block diagram of the proposed reconfigurable disparity estimation hardware

and the required embedded system components for the realization of the full system are

shown in Fig. 3.4. The details of main real-time video processing hardware core of binocular

disparity estimation is presented in this section. The details of the remaining embedded

system components are presented in Chapter 6. The proposed Reconfigurable Disparity Map

Estimation module involves 5 sub-modules and 62 dual port BRAMs. These five sub-modules

are the Control Unit, Reconfigurable Data Allocation, Reconfigurable Computation of Metrics

(RCM), Adaptive Disparity Selection (ADS) and Disparity Refinement. 31 of the 62 BRAMs

are used to store 31 consecutive rows of the right image, and the remaining 31 BRAMs are

used to store 31 rows of the left image. The dual port feature of the BRAMs is exploited

to replace processed pixels with the new required pixels during the search process. The

proposed hardware is designed to find the disparity of the pixels in the left image by searching

candidates in the right image. The pixels of the right image are not searched in the left image,

and thus cross-check of the DE is not applied.

The external memory bandwidth is an important limitation for disparity estimation of HR

images. For example, the disparity estimation of a 1024×768 resolution stereo video at 60

fps requires 540 MB/s memory bandwidth considering loading and reading each image one

time. The ZBT SRAM and DDR2 memories that are mounted on FPGA prototyping boards

44

3.2. Hardware Implementation of Proposed Binocular AWDE Algorithm

Figure 3.4: Top level block diagram of the disparity estimation module.

can typically reach approximately 1 GB/s and 5 GB/s, respectively. However, an algorithm or

hardware implementation that requires multiple reads of a pixel from an external memory

can easily exceed these bandwidth limitations. Using multiple stereo cameras in future targets

or combining different applications in one system may bring external memory bandwidth

challenges. The hardware in [39] needs to access external memory at least five times for each

pixel. The hardware presented in [43] requires external memory accesses at least seven times

for each pixel assuming that the entire data allocation scheme is explained. Our proposed

memory organization and data allocation scheme require reading each pixel only one time

from the external memory during the search process. In addition, it can be adapted to receive

stream input and provide stream output without using external memory when the number of

input buffer BRAMs are increased from 62 to 78 as presented in Section 6.

The system timing diagram of the AWDE is presented in Fig. 3.5. The disparity refinement

process is not applied to the pixels that belong to the two blocks at the right and left edges of

the left image. For the graphical visualization of the reconfigurable disparity computation

process together with the disparity refinement process, the timing diagram is started from

the process of the sixth block of the left image. As presented in Fig. 3.5, efficient pipelining

is applied between the disparity refinement and disparity selection processes. Therefore,

the disparity refinement process does not affect the overall system throughput but only

increases the latency. The system is able to process 49 pixels every 197 clock cycles for a 128

pixel disparity search range. Important timings during the processes are also presented with

dashed lines along with their explanations.

45

Chapter 3. Binocular Adaptive Window Size Disparity Estimation Algorithm and Its
Hardware Implementation

Figure 3.5: Timing diagram of the system.

3.2.2 Data Allocation and Disparity Voting

Figure 3.6: Block diagram of the Reconfigurable Data Allocation Module.

The block diagram of the Reconfigurable Data Allocation module is shown in Fig. 3.6. The

data allocation module reads pixels from BRAMs, and depending on the processed rows, it

rotates the rows using the Vertical Rotator to maintain the consecutive order. This process is

controlled by the Control Unit through the rotate amount signal. The search process starts

with reading the 31×31 size window of the searched block from the BRAMs of the left image.

Therefore, the Control Unit sends the image select signal to the multiplexers that are shown in

Fig. 3.6 to select the BRAMs of the left image. Moreover, the color select signal provides static

configurability to select one of the pixel’s components (Y, Cb or Cr) during the search process.

This user-triggered selection is useful if the Y components of the pixels are not well distributed

on the histogram of the captured images. While the windows of the searched block are loaded

to the D flip-flop (DFF) Array, the RCM computes and stores the 49 Census transforms, 49

Shapes and 9 windows pertaining to the pixels in the block for the computation of BW-SAD.

46

3.2. Hardware Implementation of Proposed Binocular AWDE Algorithm

The Census transforms and windows of the candidate pixels in the right image are also needed

for the matching process. After loading the pixels for the computation of metrics for the 7×7

block, the Control Unit selects the pixels in the right image by changing the image select signal,

and starts to read the pixels in the right image from the highest level of disparity by sending

the address signals of the candidate pixels to the BRAMs.

Figure 3.7: DFF Array and the Weaver (yellow: 7×7, green: 13×13 and blue: 25×25).

The disparity range can be configured by the user depending on the expected distance to the

objects. Configuring the hardware for a low disparity range increases the hardware speed.

In contrast, a high disparity range allows the user to find the depth of close objects. The

architecture proposed in [43] is not able to provide this configurability since it is designed

to search 80 disparity candidates in parallel, instead of providing parallelization to search

multiple pixels in the left image. Therefore, a fixed amount of disparities is searched in [43],

and changing the disparity range requires a redesign of their hardware.

The detailed block diagram of the DFF Array and the Weaver are shown in Fig. 3.7. They are

the units of the system that provide the configurability of the adaptive window size. As a

terminology, the term weaving is used to denote selecting 49 contributor pixels in different

window sizes 7×7, 13×13 and 25×25 by skipping 1, 2 and 4 pixels respectively. Seven rows

and one column are processed in parallel by the Weaver, and the processed pixels flow inside

the DFF Array from the left to the right. Additionally, the weaving process is applied to the

location (15, 8) of the DFF Array at the beginning of the search process only, to select the

window size by computing the deviation of the center of the block from its neighbors for 7×7

47

Chapter 3. Binocular Adaptive Window Size Disparity Estimation Algorithm and Its
Hardware Implementation

and 13×13 windows.

The DFF Array is a 31×25 array of 8-bit registers shown in Fig. 3.7. The DFF Array has 25

columns since it always takes the inputs of the largest window size, i.e. 25×25, and it has

12+12+7=31 rows to process seven rows in parallel. While the pixels are shifting to the right,

the Weaver is able to select the 49 components of the different window sizes from the DFF

Array with a simple wiring and multiplexing architecture. Some of the contributor pixels of

the windows for different window sizes are shown in Fig. 3.7 in different colors. The Weaver

and DFF Array are controlled by the Control Unit through the calculate deviation, window size

and shift to right signals. The Weaver sends seven windows to be processed by RCM as process

row 1 to process row 7, and each process row consists of 49 selected pixels.

A large window size normally involves high amounts of pixels and thus requires more

hardware resources and computational cost to support the matching process. By using the

proposed weaving architecture, even if the window size is changed, the windows only consist

of 49 selected pixels. Therefore, the proposed hardware architecture is able to reach the

largest window size (25×25) among the hardware architectures implemented for DE [39–45].

The adaptability of the window size between the small and large window sizes provides

high-quality disparity estimation results for HR images.

During the weaving process of the 49 pixels in the block and the candidate pixels in the right

image, the RCM computes the Census and Shape of these pixels in a pipeline architecture. The

block diagram of the RCM is shown in Fig. 3.8. The process for each block starts by computing

and storing the Census and Shape results for the 7×7 block. In Fig. 3.8, the registers are named

as Shaperow_column and Censusrow_column. Since the BW-SAD is only applied for 9 of the 49

pixels, the BW-SAD computation sub-modules are only implemented in process rows 2, 4 and 6.

The BW-SAD sub-module in Fig. 3.8 takes the Shape, registered window of the pixel in a block

and the candidate window of the searched pixel as inputs, and provides the BW-SAD result as

an output. The computation of the Hamming distance requires significantly less hardware

area than the BW-SAD. Therefore, the Hamming computation is used for all of the 49 pixels in

a block.

As shown in Fig. 3.8, when a new candidate Census for the process row 1 is computed by

the Census sub-module of the RCM, its Hamming distance with the preliminary computed

seven Census1_[1:7] of the block is computed by the seven Hamming sub-modules. The seven

resulting Hamming Results of the process row 1 are passed to the ADS module. Since this

process also progresses in parallel for seven process rows, the proposed hardware is able to

compute the Hamming distances of 49 pixels in a block in parallel. This parallel processing

48

3.2. Hardware Implementation of Proposed Binocular AWDE Algorithm

Figure 3.8: Block diagram of the Reconfigurable Computation of Metrics.

scheme is presented in Fig. 3.9. While the proposed architecture computes the Hamming

distance for the left-most pixels of the block, the Hamming for disparity d, rightmost pixels of

the block computes their Hamming for disparity d+6. Therefore, the resulting Hamming costs

are delayed in the ADS to synchronize the costs. This delay is also an issue of the BW-SAD

results and they are also synchronized in the ADS.

Figure 3.9: Processing Scheme (“x” indicates 9 selected pixels in a block for BW-SAD
calculations).

The internal architecture of the Census transform involves 48 subtractors. The Census module

subtracts the intensity of center from the 48 neighboring pixels in a window, and uses the sign

49

Chapter 3. Binocular Adaptive Window Size Disparity Estimation Algorithm and Its
Hardware Implementation

bit of the subtraction to define 48-bit Census result. The Shape computation module reuses

the subtraction results of Census module. The Shape module takes the absolute values of the

subtraction results and compares the absolute values with the thresholdw. The Hamming

computation module applies 48-bit XOR operation and counts the number of 1s with an

adder tree.

The Deviation module shown in Fig. 3.8 only exists on the process row 4 since it is only needed

for the center of the 7×7 block to determine the window size. The module accumulates the

absolute difference of the 48 neighboring pixels from the center. The Control Unit receives

the deviation result of the 7× 7 and 13× 13 window sizes in consecutive clock cycles and

determines window size. The mathematical calculation of the MAD requires dividing the total

deviation by 48. In order to remove the complexity of the division hardware, the thresholds

tr7×7 and tr13×13 are re-computed by multiplying them with 48 and compared with the

resulting absolute deviations.

The use of BW-SAD provides better results than using the SAD in presence of disparity

discontinuities [60]. However, if the processed image involves a significant amount of texture

without much depth discontinuity, using the regular SAD provides better results. Especially

for the 7×7 window size, using SAD instead of BW-SAD provides better visual results since

it is the sign of significantly textured region. In order to take advantage of this property,

dynamic configurability is provided to change the BW-SAD computation metric to the SAD

computation for a 7×7 window. The SAD module computes the ADs and the result of ADs

are stored in registers prior to accumulation. An active-low reset signal is used at the register

of the AD to make its result 0, when the architecture is configured for the BW-SAD, and the

respective Shape of the pixel in the block is 0. Otherwise, the AD register takes its actual value.

The ADS module, which is shown in Fig. 3.4 receives the Hamming results and the BW-SAD

results from the RCM block and determines the disparity of the searched pixels. Since the

BW-SAD results are computed for 9 of the 49 pixels, the RCM linearly interpolates these nine

values to find the estimated BW-SAD results of the remaining 40 pixels in the block. Due to an

efficient positioning of the nine pixels in a block, the linear interpolation requires a division by

2 and 4, which are implemented as shift operations.

The ADS module shifts the Hamming results of the candidate pixels depending on the 2’s

order adaptive penalty for the multiplication process as shown in formula (3.5). The ADS

module adds the resulting Hamming penalty on the BW-SADs to compute Hybrid Costs. 49

comparators are used to select the 49 disparity results that point minimum Hybrid Costs.

50

3.2. Hardware Implementation of Proposed Binocular AWDE Algorithm

3.2.3 Disparity Refinement

The DR module receives the 49 disparity results from the ADS and the Shapes of the 49 pixels

of a block from the RCM and determines the final refined disparity values. As presented in Fig.

3.10, after the ADS module has computed 49 disparity values in parallel, it loads this data in to

the DFF Array of the DR module (DR-Array). The DR-Array has a size of five blocks for the

refinement process. The Control Unit enables the DFFs by using the Load Disparity signal

when the 49 disparity outputs of ADS module are ready for the refinement process. In each

cell of the DR-Array, the respective Shape of a pixel is loaded from the RCM using the Load

Shape signal. DR-Array is designed to shift the disparity and Shape values from right to left to

allocate data for the refinement processes.

Figure 3.10: Disparity Refinement-Array of the Disparity Refinement Module (yellow (1): 7×7,
green (2): 13×13 and blue (3): 25×25).

The DR hardware contains a Highest Frequency Selection (HFS) module that consists of seven

identical Processing Elements (DR-PE). As presented in Fig. 3.10, DR-PEs are positioned to

refine seven disparities in the 15th column of the DR Array in parallel while the disparity

and Shape values shift through the DR-Array. The hardware architecture of a single DR-PE

is presented in Fig. 3.11. The location of a single DR-PE is indictated in the 6th row of the

DR-Array with a bold square.

In Fig. 3.10, while 17 disparity values are selected by the multiplexers, the Shape information

corresponding to the four corners is also selected from the 49-bit Shape information of the

processed pixel. The selected 4-bits inform the DR-PE which of these 12 disparity values on

the corners will be used while computing the highest frequency disparity. These 4 bits of

the Shape are called activation bits in Fig. 3.11. Each activation bit activates itself together

51

Chapter 3. Binocular Adaptive Window Size Disparity Estimation Algorithm and Its
Hardware Implementation

Figure 3.11: Processing Element of the Disparity Refinement Module. The Highest Frequency
Selection Module includes seven of these DR-PE elements.

with its two adjacent disparities. Since the center disparity and its four neighbors are always

activated, the 17-bit activation information is loaded to the DR-PE together with the respective

disparities.

As presented in Fig. 3.11, the DR-PE hardware consists of two parts: Comparison of Disparities

and Comparison of Frequencies. In the Comparison of Disparities part, the 17-bit activation

information and the 17 disparities are stored into two DFF Arrays. One of these DFF Arrays is

used as a reference and the other one rotates to compare each disparity with the 16 other

disparities. During the rotation process, 17 Compare and Accumulate (C&A) sub-modules

compare the disparities in parallel. If the compared disparities are identical and both of them

are activated, the values of the accumulators are increased by one. After 17 clock cycles, the

values in the accumulators and their respective disparities are loaded into the DFF Array in

the Comparison of Frequencies part of the DR-PE. In the pipeline architecture, at the same

time, the Control Unit shifts the DR-Array to the left by one to load new 17 contributors to the

DR-PE. The Compare and Select (C&S) sub-module compares the values of the accumulators

to find the highest value in the accumulators, and selects the disparity with the highest

frequency as the refined disparity. Since the DR process works in parallel with the other

hardware modules of AWDE, it does not affect the throughput of the DE system if the disparity

range is configured as more than 70.

3.3 Iterative Refinement for the Enhanced AWDE implementation

The intuition behind the proposed Iterative Refinement process of the IR-AWDE algorithm is

identical to the DR process presented in the Section 3.1.3: neighboring pixels within the same

Shape need to have an identical disparity value, since they may belong to one unique object.

52

3.3. Iterative Refinement for the Enhanced AWDE implementation

Using the refinement process multiple times removes noisy computations more efficiently,

and increases the disparity estimation quality.

Figure 3.12: DR-Array of the Iterative Disparity Refinement Module (yellow line: 7 × 17
candidates for 7×7 window, green line: candidates for 13×13, and blue line: candidates
for 25×25).

The iterative refinement hardware is presented in Fig. 3.12 which consists of an improved

version of the DR hardware presented in Fig. 3.10. The proposed Iterative Refinement process

utilizes three concatenated Highest Frequency Selection modules. Each HFS module includes

seven identical DR-PEs, one of which is presented in Fig. 3.11. All DR-PEs receive 17 selected

disparities from their own multiplexer. The DR-Array in Fig. 3.10 includes DFFs to keep record

of the computed disparities for five blocks. Instead, for the IR, the size of the DFF-Array is

increased to six blocks since the disparities need to be pipelined for longer duration. Moreover,

the DR hardware presented in Fig. 3.10 provides the most frequent disparities as an output as

the refined disparities. Instead, the HFS modules for the IR hardware write back the refined

disparities on DR-Array. Writing back the most frequent disparities into the DR-Array provides

an iterative refinement of the estimated disparities. Since the disparity results shift inside the

DR-Array, refined disparities are overwritten 2 pixels left of the consecutive pixel location.

For example, as presented in Fig. 3.12, while the HFS module refines the disparities of the

seven pixels in column 21 of the DR-Array, the DR-Array shifts the disparity values 2 times.

Therefore, the computed seven highest frequency disparities in the column 19 of the DR-Array

are overwritten.

In addition to removing noisy computations, IR provides efficient results in assigning

disparities of occluded regions. While searching pixels from the left image inside the

right image, occluded regions appear on the left side of objects [35]. Consequently, wrong

computations due to occlusion appear on the left sides of the objects in the image, which

should be replaced by the correct disparities that are assigned to the left adjacent pixels of the

53

Chapter 3. Binocular Adaptive Window Size Disparity Estimation Algorithm and Its
Hardware Implementation

occluded ones. The proposed iterative refinement process scans the estimated disparities

from left to right. In addition, HFS modules receive updated disparities from their left since

they are already overwritten by the refined ones. Therefore, this process iteratively spreads the

correct disparities to the occluded regions while considering the object boundaries with the

Shape information. While disparities shift inside the DR-Array, the leftmost disparities in the

column 0 of the DR-Array are provided as the refined disparity value outputs of the IR Module.

3.4 Implementation Results

The reconfigurable hardware architecture of the proposed AWDE algorithm is implemented

using Verilog HDL, and verified using Modelsim 6.6c. The Verilog RTL models are mapped to a

Virtex-5 XCUVP-110T FPGA comprising 69k Look-Up Tables (LUT), 69k DFFs and 144 Block

RAMs (BRAM). The proposed hardware consumes 59% of the LUTs, 51% of the DFF resources

and 42% of the BRAM resources of the Virtex-5 FPGA. The proposed hardware operates at

190 MHz after place & route and computes the disparities of 49 pixels in 197 clock cycles for

128 pixel disparity range. Therefore, it can process 60 fps at a 1024×768 XGA video resolution.

The AWDE-IR is implemented to further improve the disparity estimation quality of AWDE

using an efficient iterative refinement step. The hardware implementation of AWDE-IR is

mapped to a same FPGA and verified using Modelsim 6.6c. The proposed AWDE-IR hardware

consumes 70% of the LUTs, 63% of the DFF resources and 42% of the BRAM resources of the

Virtex-5 FPGA. It can work at same speed performance due to the pipeline structure of the

refinement process.

The parameters of the AWDE algorithm are shown in Table 3.1. Parameters are selected by

sweeping to obtain high quality DE of HR images considering different features pertaining to

the image content.

Table 3.1: Parameters of the AWDE

t r7×7 t r13×13 ap7×7 ap13×13 ap25×25 t hr eshol dw

5 2 32 16 4 8

Table 3.2 and Table 3.3 compare the disparity estimation performance and hardware

implementation results of the AWDE architecture with other existing hardware

implementations that targets HR [43–45] and currently the highest quality DE hardware that

targets LR [39]. These papers do not provide the disparity estimation quality results for the HR

benchmarks of the Middlebury data-set [35]. Thus, we implemented [39, 43, 45] in software,

and the software implementation of [44] is obtained from its authors. The DE results for the

54

3.4. Implementation Results

Table 3.2: Disparity Estimation Performance Comparisons. Error rates (%) are provided
compared to DE ground truths of the benchmark pictures.

Tsukuba
(288x384)

Venus
(383x434)

Aloe
(1110x1282)

Art
(1110x1390)

Clothes
(1110x1300)

Chang [39] 4.15 0.56 3.75 12.80 2.97
Ttofis [44] 13.21 4.56 8.88 32.18 7.67

Greisen [45] 12.42 4.14 8.65 23.46 5.30
Georgoulas [43] 12.38 15.20 6.97 23.75 9.15

Census7 26.05 30.80 20.36 45.39 21.80
Census13 18.19 18.83 11.21 31.65 9.36
Census25 15.94 15.38 10.41 29.66 7.16
BWSAD7 12.19 19.45 8.31 34.03 13.33

BWSAD13 11.23 15.16 7.13 28.57 9.27
BWSAD25 10.43 11.12 6.74 24.74 6.28

FWDE7 9.53 12.59 5.38 20.87 5.39
FWDE13 7.90 6.82 4.81 16.97 3.16
FWDE25 8.03 5.66 5.16 18.12 3.87

AWDE 7.64 5.33 4.94 16.33 2.89
AWDE-HC 7.47 4.73 4.92 16.17 2.95
AWDE-IR 6.53 5.01 4.30 14.47 2.94

Census and the BW-SAD metrics for different window sizes are also presented in Table 3.2.

The comparisons of the resulting disparities with the ground-truths are done as prescribed by

the Middlebury evaluation module. If the estimated disparity value is not within a ±1 range of

the ground truth, the disparity estimation of the respective pixel is considered erroneous. 18

pixels located on the borders are neglected in the evaluation of LR benchmarks Tsukuba and

Venus, and a disparity range of 30 is applied for all algorithms. 30 pixels located on the borders

are neglected in the evaluation of HR benchmarks Aloe, Art and Clothes, and a disparity range

of 120 is applied for all algorithms.

The Census and BW-SAD results that are shown in Table 3.2 are provided by sampling 49 pixels

in a window. FW-DE indicates the combination of BW-SAD and Census for a fixed window

size. The numbers terminating the name of the algorithms indicate the fixed window sizes of

these algorithms.

Although the Census and the BW-SAD algorithms do not individually provide very efficient

results, the combination of these algorithms into the FW-DE provides an efficient hybrid

solution as presented in Table 3.2. For example, if a 7×7 window size and Census method

are exclusively used for DE on the HR benchmark Art, 45.39% erroneous DE computation is

observed from the result of Census7. Exclusively using a 7×7 window size and BW-SAD method

for the same image yields 34.03% erroneous computation. However, if only a 7×7 window

55

Chapter 3. Binocular Adaptive Window Size Disparity Estimation Algorithm and Its
Hardware Implementation

size is used combining the Census and BW-SAD methods, 20.87% erroneous computation is

observed as presented in the result of FW-DE7. 20.87% erroneous computation is significantly

smaller than 45.39% and 34.03%, which justifies the importance of combining the Census

and BW-SAD into a hybrid solution. For the same image, using the FW-DE13 and FW-DE25

algorithms yields 16.97% and 18.12% erroneous DE computations, respectively. Combining

the FW-DE7, FW-DE13 and FW-DE25 into a reconfigurable hardware with an adaptive window

size feature further improves the algorithm results as demonstrated from the results of AWDE.

AWDE provides 16.33% erroneous computation for the same image which is smaller than

20.87%, 16.97% and 18.12%, thus numerically emphasizing the importance of adaptive

window size selection. The algorithmic performance of AWDE, 16.33%, is considerably better

than the DE performance results of HR DE hardware implementations [44], [45] and [43] that

provide 32.18%, 23.46% and 23.75% erroneous computations respectively for the same image.

If the sampling of 49 pixels in a window is not applied and all the pixels in a window are used

during the matching process, the complexity of the AWDE algorithm increases by 12 times.

The result of the high complexity version of the AWDE algorithm (AWDE-HC) is also provided

in Table 3.2 for comparison. The AWDE-HC provides almost the same quality results as the

AWDE. Considering the hardware overhead of AWDE-HC, the low complexity version of the

algorithm, AWDE, is selected for hardware implementation, and its efficient reconfigurable

hardware is presented.

Improving the results of AWDE is possible using the low complexity iterative refinement

step as indicated from the results of AWDE-IR. AWDE-IR efficiently removes a significant

amount of noisy computations by iteratively replacing the disparity estimations with the most

frequent neighboring ones as can be observed from the results of Tsukuba, Venus, Aloe and

Art. Moreover, IR does not require significant amount of additional computational complexity.

Therefore, AWDE-IR is implemented in hardware for the further improvement of the disparity

estimation quality.

The algorithm presented in [39] uses the Census algorithm with the cost aggregation method,

and provides the best results for both LR and HR stereo images except the HR benchmark

Clothes. As shown in Table 3.3, due to the high-complexity of cost aggregation, it only

reaches 42 fps for CIF images, thereby consuming a large amount of hardware resource. If the

performance of [39] is scaled to 1024×768 for a disparity range of 128, less than 3 fps can be

achieved.

None of the compared algorithms that have a real-time HR hardware implementation [43–45]

is able to exceed the DE quality of AWDE and AWDE-IR for HR images. The overall best

results following the results of AWDE and AWDE-IR are obtained from [45]. The hardware

56

3.4. Implementation Results

Table 3.3: Hardware Performance Comparison

Hardware Technology
Image

Resolution
DFF

consumption
LUT

consumption
Disparity

Range
fps

Clock
Speed
(MHz)

Chang[39] ASIC-90nm 352×288 562k Gates 64 42 95
Ttofis[44] Virtex-5 1280×1024 31k 47k 120 50 100
Greis.[45] Stratix-III 1920×1080 26k 54k 256 30 130
Georg.[43] Stratix-IV 800×600 15k 146k 80 550 511

1024×768 128 60
AWDE Virtex-5 640×480 35k 40k 64 221 190

352×288 64 670
1024×768 128 60

AWDE-IR Virtex-5 640×480 43k 48k 64 221 190
352×288 64 670

presented in [45] consumes 20% of the 270k Adaptive LUT (ALUT) resources of a Stratix-III

FPGA. It provides high disparity range due to its hierarchical structure. However, this structure

easily causes faulty computations when the disparity selection finds wrong matches in low

resolution.

The hardware implementation of [43] provides the highest speed performance in our

comparison. However this hardware applies 480 SAD computations for a 7×7 window in

parallel. The hardware presented in [43] consumes 60% of the 244k ALUT resources of a

Stratix-IV FPGA. In our hardware implementation we only use 9 SAD computations in parallel

for the same size window and this module consumes 16% of the resources of a Virtex-5 FPGA

on its own. Therefore, the hardware proposed in [43] may not fit into 3 Virtex-5 FPGAs.

The visual results of the AWDE and AWDE-IR algorithms for the HR benchmarks Clothes,

Art and Aloe are shown in Fig. 3.13, Fig. 3.14 and Fig. 3.15, respectively. The disparity map

result of the AWDE algorithm for the 1024 × 768 resolution pictures taken by our stereo

camera system is shown in Fig. 3.16. The proposed binocular disparity estimation hardware

architectures provide both quantitative and visual satisfactory results and they reach real-time

for HR.

57

Chapter 3. Binocular Adaptive Window Size Disparity Estimation Algorithm and Its
Hardware Implementation

(a) (b)

(c) (d)

Figure 3.13: Visual disparity estimation results of AWDE and AWDE-IR algorithms for HR
benchmark Clothes. Black regions in the ground truths are not taken into account for the error
computations as explained in Middlebury evaluation. (a) left image (b) ground truth (c) DE
result of AWDE (d) DE result of AWDE-IR

58

3.4. Implementation Results

(a) (b)

(c) (d)

Figure 3.14: Visual disparity estimation results of AWDE and AWDE-IR algorithms for HR
benchmark Art. Black regions in the ground truths are not taken into account for the error
computations as explained in Middlebury evaluation. (a) left image (b) ground truth (c) DE
result of AWDE (d) DE result of AWDE-IR

59

Chapter 3. Binocular Adaptive Window Size Disparity Estimation Algorithm and Its
Hardware Implementation

(a) (b)

(c) (d)

Figure 3.15: Visual disparity estimation results of AWDE and AWDE-IR algorithms for HR
benchmark Aloe. Black regions in the ground truths are not taken into account for the error
computations as explained in Middlebury evaluation. (a) left image (b) ground truth (c) DE
result of AWDE (d) DE result of AWDE-IR

60

3.4. Implementation Results

(a) (b)

(c) (d)

Figure 3.16: Visual disparity estimation results of AWDE and AWDE-IR algorithms for the
1024× 768 resolution pictures captured by the implemented stereo camera system. The
ground truth for these images is not available. (a) left image (b) right image (c) DE result of
AWDE (d) DE result of AWDE-IR

61

4 Trinocular Adaptive Window Size
Disparity Estimation Algorithm and
Its Hardware Implementation

This chapter presents a hardware-oriented trinocular adaptive window size disparity

estimation (T-AWDE) algorithm and the first real-time trinocular disparity estimation

(DE) hardware that targets high-resolution images with high-quality disparity results [88].

The proposed trinocular DE hardware is the enhanced version of the binocular AWDE

implementation that is presented in Chapter 3. The T-AWDE hardware generates a very high

quality depth map by merging two depth maps obtained from the center-left and center-right

camera pairs. The T-AWDE hardware enhances disparity results by applying a double checking

scheme which solves most of the occlusion problems existing in the AWDE implementation

while providing correct disparity results even for objects located at left or right edge of the

center image.

4.1 Trinocular Hardware-Oriented Adaptive Window Size Disparity

Estimation Algorithm

The proposed T-AWDE algorithm is developed to support efficient parallel operations, to

consume low hardware resources and to avoid the requirement of an external memory

while providing very high-quality DE results. As presented in Fig. 4.1, while processing the

trinocular DE for every pixel of the center image, the candidate disparities on the right side are

searched for the center-left pair, and the candidate disparities on the left side are searched for

the center-right pair. Therefore, in the T-AWDE algorithm, two disparity maps are calculated

for the center-left and center-right pairs. The T-AWDE algorithm combines these two disparity

maps to provide a very high quality DE result for the center camera. The proposed T-AWDE

algorithm consists of six main parts: preprocessing, window size determination, matching

cost calculation, disparity selection, fusion of the disparity maps, and iterative refinement

(IR).

63

Chapter 4. Trinocular Adaptive Window Size Disparity Estimation Algorithm and Its
Hardware Implementation

Image rectification is one of the most essential preprocessing parts of DE. The rectification

process requires internal and external calibrations to model distortions of the lenses and

the mechanical misalignment of the cameras. The Open-CV calibration toolbox [70] is used

for external and internal calibrations. The Caltech rectification algorithm [50] is used to

horizontally align the images captured from three cameras.

The window size determination, matching cost calculation and binocular disparity selection

parts of the T-AWDE algorithm for each camera pair are identical to the AWDE algorithm.

As presented in Fig. 4.1, the T-AWDE searches 49 pixels of the center image in parallel in

candidate disparities of the right and left images. Each of these 49 pixels is independently

searched, using their own window. The selection of a large window size improves the

algorithm performance in textureless regions while requiring higher computational load.

However, the usage of small window sizes provides better disparity results in regions where

the image has a texture. The T-AWDE dynamically changes the windows size as either 7×7,

13×13 or 25×25 pixels to adapt to different texture features of the images. It utilizes the

mean absolute deviation (MAD) to measure the local texture feature of the center image, and

compares the MAD values with the threshold values to adaptively determine the window

size. A constant hardware complexity over the three different window sizes is provided by

constantly selecting 49 contributor pixels in different window sizes of 7×7, 13×13 and 25×25

pixels by skipping 1, 2 and 4 pixels, respectively. The T-AWDE adaptively utilizes the Census

and binary-window sum of absolute difference (BW-SAD) matrixes as a hybrid solution. The

computation of the Hybrid Cost (HC) provides high quality results for object boundaries

and adapts to different light conditions of real images. Further details about window size

determination, matching cost calculation and binocular disparity selection are presented in

Chapter 3.

Figure 4.1: Matching directions of the T-AWDE algorithm

The fusion process includes two steps. In the first step, the T-AWDE compares HC values of the

center-left and center-right pairs for every disparity, in order to select the one that exhibits the

minimum cost as a disparity value. The winner-take-all (WTA) approach provides high quality

results especially in occluded and low textured regions thanks to the strengths of the AWDE

64

4.2. Trinocular Adaptive Window Size Disparity Estimation Hardware

algorithm and the usage of three horizontally aligned cameras. In the next step of the fusion,

a confidence metric is computed to further improve the DE results. The expression of the

confidence metric is presented in 4.1. Here, c1 represents the minimum matching cost and d1

is the corresponding disparity value of the minimum matching cost. c2 represents the second

minimum matching cost and d2 is the corresponding disparity value of the second minimum

matching cost. (c1, d1) and (c2, d2) belong to the overall matching cost computation obtained

from any of the stereo pairs. This metric identifies the strength of the global minima compared

to local minima. Ambiguity in the selected minima is identified when two low-value costs are

detected within the disparity range, while very different attached distances are computed.

The confidence value of d1 is then assigned as 0. The confidence metric is used in the disparity

refinement process.

Con f i dence =
{

0 (c1 − c2) ≤ (c1/4) and (|d1 −d2|) > 5

1 other wi se
(4.1)

The T-AWDE smoothens the computed disparity map using the brightness values of the

neighboring pixels following the IR scheme prescribed in Chapter 3. The refinement process

assumes that neighboring pixels with similar brightness values need to have identical

disparity values, since they may belong to one unique object. In the refinement process, the

disparities that are not frequently observed in the neighborhood are considered as faulty

computations, and they are replaced by the most frequent disparity value that is computed in

the neighborhood. This process is iteratively handled from the left to the right of the disparity

image. In addition to the IR scheme presented in Chapter 3, the confidence metric is used in

the IR process of T-AWDE algorithm. The unconfident disparity values are disregarded while

determining the most frequent disparity value in order to prevent propagating them into the

final DE result. Using the confidence metric during the IR process eliminates a significant

amount of incorrect propagations, especially within low-textured regions.

4.2 Trinocular Adaptive Window Size Disparity Estimation

Hardware

The block diagram of the full system that implements the T-AWDE algorithm is presented

in Fig. 4.2. A Virtex-7 FPGA included in the VC707 Evaluation Board is used to prototype

the developed hardware. All real time video processing computations are implemented in

hardware. The PC is used as a display, to control the system and to obtain camera calibration

parameters. The resulting disparity images are transferred to the PC using 1Gb raw Ethernet.

A standard 2D TV is connected to the PC using HDMI to offer a better display. A MicroBlaze

softcore is used to initialize cameras through I2C, to control Ethernet and to communicate

65

Chapter 4. Trinocular Adaptive Window Size Disparity Estimation Algorithm and Its
Hardware Implementation

with the PC. A DDR3 memory is only used for Ethernet buffering. The details of main real-time

video processing hardware core of trinocular disparity estimation is presented in this Section.

The details of the other embedded system components are presented in Chapter 6.

Figure 4.2: Block diagram of the full system.

The camera interface, rectification and disparity estimation blocks are designed to avoid

using the DDR3 memory; thus they receive a streaming input and provide a streaming output.

Therefore, the video processing core can be easily converted to a single ASIC. Eliminating the

DDR3 memory from the video processing is a benefit of the efficient and hardware-oriented

algorithm that only requires local processing, the utilization of local on-chip Block RAMs

(BRAMs), and the perfect synchronization of cameras. Perfect synchronization of the cameras

also always keeps fast moving objects in the same epipolar lines of the cameras to provide best

DE quality for these objects. The system is able to deliver 32-bit pixel RGB+Disparity video

of a center camera, or RGB video of any camera. Moreover, the system can be configured to

deliver trinocular DE, center-left DE, or center-right DE results as a final disparity value to

provide easy comparison of the results.

The two-cameras synchronization method presented in Chapter 9 is extended for a

three-camera system. The perfect synchronization of cameras is achieved by providing a

common clock source to the cameras from the FPGA, and simultaneously programming

the cameras using the same I2C module. Using the same clock source for the cameras is

66

4.2. Trinocular Adaptive Window Size Disparity Estimation Hardware

necessary to obtain an identical frame rate from the cameras. Simultaneous programming of

the cameras is needed to start cameras exactly at the same time. The Xilinx I2C IP and I2C lines

of the cameras are connected through multiplexers and tristate IO buffers as presented in Fig.

4.3. All three cameras have the same I2C address. The MicroBlaze controls the select modes of

the multiplexers using a 2-bit general purpose output (GPO). The multiplexing scheme allows

to write the control registers of three camera sensors at the same time, to write to one of the

selected camera, or to read from one of the selected camera. This connection method allows

to concurrently write control registers of three cameras by ignoring the acknowledge signal.

This transmission method does not conform the definition of I2C. Nevertheless, according to

our real-time tests, data is always correctly transmitted if I2C is used at low frequency.

Figure 4.3: I2C multiplexing hardware (resistors and level-shifters are not drawn)

The Caltech rectification hardware is implemented to solve the lens distortions and camera

misalignments. The implemented rectification hardware utilizes 64 on-chip BRAMs for each

camera. Each BRAM is used to buffer one row of the image. The rectification hardware

processes the images of three cameras in parallel, and synchronously transfers rectified YCbCr

images to the disparity estimation module. The proposed Caltech rectification hardware is

presented in Chapter 5.

The block diagram of the trinocular DE hardware is shown in Fig. 4.4. The disparity estimation

hardware buffers the input pixel values using 39 single-port BRAMs for each camera to realize

a window-based matching scheme. The three-camera disparity estimation hardware is

composed of two high-performance and high-quality binocular disparity estimators presented

in Chapter 3. Each of these estimators includes three modules named as Reconfigurable Data

Allocation (RDA), Reconfigurable Computation of Metrics (RCM) and Adaptive Disparity

Selection (ADS). The Fusion module combines the DE outputs of the two estimators. The

IR module smoothens DE computations and provides the final output of the trinocular DE.

Finally, the 8-bit disparity values and the 24-bit RGB pixels of the left, center and right cameras

are buffered and synchronized using 16 BRAMs for each channel before transferring this

data to the Output Selection module that is presented in Fig. 4.2. The Controller generates

67

Chapter 4. Trinocular Adaptive Window Size Disparity Estimation Algorithm and Its
Hardware Implementation

read-addresses to the BRAMs, manages DE hardware modules to maintain their synchronous

process, and interfaces with the MicroBlaze to apply user-programmable features that are

provided from the GUI. In order to allow the programmability of the DE hardware, the

controller includes software accessible registers. The hardware is configurable by the user who

can select the maximum disparity range (maximum 255 is allowed), the disparity-start and

disparity-end values to provide best DE quality at a certain distance interval, the strengths of

the Census and BW-SAD metrics in the HC computation, and the resolution of depth images

(maximum 1024×768 is allowed) to allow faster frame rates at lower resolution video.

The RDA module includes a vertical rotator, DFF-array and weaver sub-modules to

arrange adaptive window sizes. The RCM computes the Census transforms, neighborhood

information, BW-SAD and Hamming costs of the 49 parallel processed pixels. The ADS

module receives the Hamming results and the BW-SAD results from the RCM, computes the

HC values and determines the disparities of the 49 searched pixels pertaining to the center-left

and center-right pairs.

Figure 4.4: Block diagram of trinocular DE hardware

The parallel processing scheme of the T-AWDE hardware is presented in Fig. 4.5. The search

process starts by reading the windows of the 49 processed pixels from the BRAMs of the

center image. The RDA and RCM compute the Census and neighborhood information of the

49 processed pixels and permanently saves these values. Subsequently, the synchronous

and symmetric scanning processes of candidate disparities start. The Controller starts to

synchronously read the pixels in the right and left image from the highest level of disparity

by sending the address signals of the candidate pixels to the BRAMs. The Controller sends

addresses to the right image BRAMs in increasing order whereas it sends addresses to the

left image BRAMs in decreasing order. Although the scanning process is symmetric, due

to the square shape of the processed block, the Hamming and BW-SAD values of the pairs

are not synchronously computed for the same disparity. For the center-right pair, while the

proposed architecture computes the Hamming values for the left-most pixels of the block, the

Hamming for disparity d, the rightmost pixels of the searched block computes their Hamming

68

4.3. Implementation Results

for disparity d+6. Whereas, for the center-left pair, while the proposed architecture computes

the Hamming values for the left-most pixels of the block, the Hamming for disparity d+6,

rightmost pixels of the block computes their Hamming for disparity d. The RCM applies

additional pipelining to synchronize the matching cost. This synchronization process is

necessary to allow fusion module to concurrently compare HC values obtained from pairs for

the same disparity values.

Figure 4.5: Parallel processing scheme for two pairs

The fusion module compares the HC values obtained from two pairs, and applies WTA to

determine the trinocular disparity values of 49 pixels in parallel. Moreover it computes

confidence values to be used for the IR process. The processing element of fusion hardware

(PE-F) is presented in Fig. 4.6. The fusion hardware includes 49 PE-F to compute 49 trinocular

disparities in parallel. The PE-F compares HC values obtained from two pairs to determine

the c1, d1, c2 and d2 values using comparators and multiplexers. The PE-F computes

mathematical operations of the confidence calculation presented in (1), and transfers d1

and its respective confidence value to the disparity refinement module to compute the final

disparity outputs.

The IR hardware of T-AWDE implementation is different from the hardware presented in

Chapter 3, since the T-AWDE additionally utilizes a confidence metric. The IR module of the

T-AWDE computes most frequent disparity value in the neighborhood and replaces noisy DE

computations with the most frequent disparity values. If a particular disparity value is not

deemed trustable, the value is removed from the neighborhood of other pixels by using logical

AND gates. Using this method, only disparity values that are identified as confident propagate

to the neighboring pixels.

4.3 Implementation Results

The proposed real-time trinocular DE hardware is implemented using Verilog HDL, and

verified using Modelsim 10.1d. The Verilog RTL models are mapped to a Virtex 7 XC7VX485T

FPGA comprising 607k Look-Up-Tables (LUT), 303k DFFs and 1030 BRAMs. The trinocular

DE hardware consumes 25% of the LUTs, 11% of the DFF and 16% of the BRAM resources of

69

Chapter 4. Trinocular Adaptive Window Size Disparity Estimation Algorithm and Its
Hardware Implementation

Figure 4.6: Processing element of the fusion module (PE-F). The fusion module includes 49
PE-F elements.

the FPGA. The proposed hardware operates at 175 MHz after place and route, and computes

the disparities of 49 pixels in 198 clock cycles for a 128 pixel disparity range. Therefore, it

can process 55 fps at a 768×1024 XGA video resolution. The system is functionally verified

in real-time. Although a 55 fps performance is verified using Chipscope, the current display

output of the system is 18 fps due to the bandwidth limitation of raw Ethernet output. The 55

fps performance of the hardware will be fully exploitable using USB3 or HDMI in the future

versions.

The visual results of the T-AWDE and AWDE algorithms using the Middlebury benchmark

image set Bowling2 (1276×1110) are obtained from MATLAB simulations and presented in

Fig. 4.7. The comparisons of the resulting disparities with the ground-truth are realized as

prescribed by the Middlebury evaluation module. Using the AWDE algorithm for center-left

and center-right pairs yields 18.01% and 15.60% erroneous DE computations, respectively.

Combining the binocular pairs into proposed trinocular DE improves the algorithm results

as demonstrated in Fig. 4.7f. The proposed T-AWDE algorithm provides 9.41% erroneous

computation for the same image thus numerically emphasizes the importance of proposed

trinocular DE algorithm. 1024×768 resolution real-time snapshots captured by the proposed

system are presented in Fig. 4.8. Models stand stable in front of the system while capturing

multiple consecutive snapshots. The center-left, trinocular and center-right DE results are

presented in Fig. 4.8d, 4.8e and 4.8f, respectively. The T-AWDE solves a significant amount of

the occlusion and incorrect estimation errors exploiting the fusion of the DE results of the two

pairs. Hence, the proposed T-AWDE system delivers high-quality results and realizes the first

real-time trinocular DE hardware for high resolution.

70

4.3. Implementation Results

(a) (b) (c)

(d)

(e) (f) (g)

Figure 4.7: DE results obtained by MATLAB for Middlebury benchmarck image set “Bowling2”
(a) Left Image (b) Center Image (c) Right Image (d) Ground Truth (black pixels are ignorable)
(e) IR-AWDE for center-left (18.01%) (f) T-AWDE (9.41%) (g) IR- AWDE for center-right (15.60%)

71

Chapter 4. Trinocular Adaptive Window Size Disparity Estimation Algorithm and Its
Hardware Implementation

(a) (b) (c)

(d) (e) (f)

Figure 4.8: Real-time snapshots captured by the proposed system. A ground truth for these
images is not available. (a) Left Image (b) Center Image (c) Right Image (d) AWDE for center-left
(e) T-AWDE (f) AWDE for center-right

72

5 Compressed Look-Up-Table Based
Rectification Algorithms and Their
Hardware Implementations

Stereo image rectification is a pre-processing step of disparity estimation intended to remove

image distortions and camera misalignments to enable stereo matching along an epipolar

line. A real-time disparity estimation system needs to perform real-time rectification which

requires solving the models of lens distortions, image translations and rotations. Solving

these complex equations requires a significant amount of hardware resources. Look-up-table

based rectification algorithms allow image rectification without demanding high complexity

operations. However, they require an external memory to store large size look-up-tables. In

this chapter, a novel compressed look-up-table based rectification method is presented as an

intermediate solution. The proposed method keeps the look-up-table based approach but

compresses the look-up-tables to fit them into the on-chip memory of a Virtex-5 FPGA. In this

chapter, first, a very low complexity compressed look-up-table based rectification algorithm

(CLUTR) and its real-time hardware are presented. The implemented CLUTR hardware

rectifies the stereo images if the lens distortion is not extreme and the cameras are not

excessively misaligned. In order to solve more difficult camera alignment and distortion issues

while maintaining the low complexity architecture, an enhanced version of the compressed

look-up-table based rectification algorithm (E-CLUTR) and its real-time hardware are

presented. The low-complexity de-compression processes of CLUTR and E-CLUTR require

negligible amount of hardware resources for their real-time implementation. Furthermore,

the Caltech rectification algorithm [50] which does not benefit from look-up-tables is

implemented in hardware, and its hardware resource consumption results are presented to

improve the hardware comparison and to evidence the efficiency of CLUTR and E-CLUTR

much fairly.

73

Chapter 5. Compressed Look-Up-Table Based Rectification Algorithms and Their
Hardware Implementations

5.1 Compressed Look-Up-Table based Rectification Algorithm

The CLUTR algorithm is proposed to compress the look-up-table based rectification

information in order to fit them into the on-chip memory of a Virtex-5 FPGA. In this section,

first standard look-up-table based rectification is briefly explained, then the proposed

look-up-table compression scheme is presented.

In general, look-up-table based rectification methods can be distinguished by two different

image warping flows: forward mapping and inverse mapping. Forward mapping computes

the rectified target pixel locations based on the given pixel locations in the original image.

Inverse mapping computes the original source pixel locations based on the given pixel

locations in the rectified image. The mapping requires separate tables for X and Y coordinates,

and for the right and left images. Therefore, four tables are needed. The formulations of

forward and inverse mappings are presented in equations 5.1 and 5.2, respectively. In these

equations, ForwT is the forward mapping table, InvT is the inverse mapping table, Ori

represents the original image taken from the camera, Rec represents the rectified image. YRec ,

XRec , Yor i and Xor i represent the Y and X coordinates.

Forward : (YRec , XRec) = (
ForwTy(YOr i , XOr i), ForwTx(YOr i , XOr i)

)
Rec(y, x) = linear_interpolation

(
nearest neighbors of Rec(y, x)

) (5.1)

Inverse : (YOr i , XOr i) = (
InvTy (YRec , XRec), InvTx (YRec , XRec)

)
Rec(y, x) = linear_interpolation

(
nearest neighbors of Ori(YOri, XOri)

) (5.2)

Figure 5.1: Inverse mapping with fractional precision coordinates. Corners indicate integer
pixel coordinates.

A typical rectification process utilizes fractional pixel precision which requires the linear

interpolation of four pixels. The linear interpolation schemes for inverse and forward

74

5.1. Compressed Look-Up-Table based Rectification Algorithm

Figure 5.2: Forward mapping with fractional precision coordinates.

mappings are represented in Fig. 5.1 and Fig. 5.2, respectively. The linear interpolation

process for forward mapping is more complex than the linear interpolation process of

inverse mapping, since it requires additional computations and an intermediate memory

consumption to find the closest target pixels in the rectified image. The look-up-table based

rectification hardware architectures presented in [54–56] use inverse mapping due to its

simplicity.

The size of the look-up-table depends on the size of the rectified image and the fractional

precision. For example, for the rectification of 1024×768 resolution stereo images with 6 bits

fractional precision, the rectification map alone requires approximately 6 MB of space in a

memory. This amount of data is excessive to fit into the on-chip memory of a mid-range FPGA.

Therefore, dumping look-up-tables into an external memory is preferred in the hardware

implementations of [54, 55].

In contrast to the selection of the hardware implementations of [54–56], a forward mapping

based rectification scheme is selected for the proposed CLUTR algorithm. In CLUTR,

fractional precision is ignored. Ignoring fractional precision allows an efficient compression

scheme. The negligible distortion in the rectified images originating from this simplification is

analyzed in Section 5.7.

The compression scheme is presented in the flow-graph in Fig. 5.3. The proposed compressed

rectification algorithm produces four compressed tables. The compression scheme requires

eight steps. The details of steps 1-2 can be found in [50] and Chapter 2. The details of steps

3-8 are presented in this section.

In the third step, integer coordinate precision forward mapping is extracted from the fractional

precision inverse mapping. The extraction scheme is demonstrated in Fig. 5.4. The example

original and rectified pictures have a size of 4×5 pixels. First, inverse mapping is applied to

75

Chapter 5. Compressed Look-Up-Table Based Rectification Algorithms and Their
Hardware Implementations

Figure 5.3: Flow-chart of the proposed compressed look-up-table based stereo image
rectification process.

find the fractional source pixel locations of all pixels in the rectified image. Due to the 3D

rotation, some of the pixels in the rectified image cannot be related to their source pixels in

the 4×5 original image, as shown in Fig. 5.4a. The nearest integer coordinates of all fractional

source coordinates are computed, and they are targeted onto the integer pixel coordinates in

the rectified image, as presented in Fig. 5.4b and 5.4c. Thus one-to-one mapping is provided

in the third step.

The integer pixel precision forward mapping extracted for the example picture in Fig. 5.4b

yields the look-up-tables of X and Y coordinates shown in Fig. 5.5. The pixels that are not

targeted to any location are identified with NT. Ori(2,2) and Ori(2,3) are adjacent pixels, and

both of them target “row no 2” of the rectified image; Ori(2,2) and Ori(3,2) are adjacent pixels

and both target “column no 1” of the rectified image. This regular order is more apparent

with higher resolution images. According to our experiments with a 1024×768 image, up to

220 times repetition of a single target coordinate is observed in the integer precision forward

76

5.1. Compressed Look-Up-Table based Rectification Algorithm

mapping table of X coordinates.

The method governing compressed rectification is similar to the run-length encoding

technique [89]. In the proposed coding scheme, instead of coding the run-length of the

regular order, the locations where the regular order changes are encoded. These locations are

called breakpoints. Moreover, the proposed scheme includes additional specific techniques to

compress the integer precision forward mapping efficiently.

The regular order of the Y coordinate mapping is encoded following a row-by-row scheme,

and the regular order of the X coordinate mapping is encoded following a column-by-column

scheme. The resulting look-up-tables after encoding Fig. 5.5a and Fig. 5.5b are presented in

Fig. 5.6a and Fig. 5.6b. In Fig. 5.6a, the elements of the compressed table are represented as

(column number, new value in row). In Fig. 5.6b, the elements of the compressed table are

represented as (row number, new value in column).

The high number of NT pixels dramatically increases the number of breakpoints. This issue

becomes more pronounced for high resolution images. Therefore, the fourth step of the

compression algorithm fills the NT pixel locations to keep the regular order. In order to fill the

NT pixel locations, the same order is repeated vertically and horizontally for Y and X locations,

respectively. After the fourth step, Fig. 5.5 is transformed into Fig. 5.7, and Fig. 5.6 into Fig. 5.8.

After the first two steps, two or more source fractional coordinates can have the same pixel

coordinate in the original image as their nearest neighbor, as presented in Fig. 5.9a. However,

after step three and four, every integer pixel coordinate of the original image is targeted to a

single coordinate in the rectified image. Consequently, some pixels in the rectified image may

be void, as presented in Fig. 5.9b. These pixels will remain as void, i.e. black pixels, in the

rectified image if they are not filled. The fifth step is applied to fill these voids. As shown in Fig.

5.10, the pixels on the original image which target the pixel coordinates that are located on the

row above these voids are marked. Marked pixels are used to fill the voids as source pixels

which have double targets (DT). Thus, DT pixels are used to concurrently target two vertically

neighboring pixels in the rectified image.

The sixth step of the algorithm extracts the breakpoint locations and analyzes the behavior of

the breakpoints. As shown in Fig. 5.8, the difference between the new and previous target

locations equals plus or minus one, which can be encoded consuming less data than encoding

the exact integer coordinates. An example of coding the behavior of the cells in Fig. 5.8 is

presented in Fig. 5.11 as (location, behavior). The initialization coordinates are provided in

the first column of the look up table for Y coordinates, and in the first row of the look up

table for X coordinates. The next breakpoint values are identified with ±1. Moreover, dummy

77

Chapter 5. Compressed Look-Up-Table Based Rectification Algorithms and Their
Hardware Implementations

(a)

(b)

(c)

Figure 5.4: Third step of the compression flow (a) Due to the 3D rotation, some of the pixels in
the rectified image cannot be related to their source pixels in the original image (b) selection
of nearest source pixels from fractional inverse mapping (c) extraction of forward mapping
with integer coordinates.

78

5.1. Compressed Look-Up-Table based Rectification Algorithm

(a) (b)

Figure 5.5: Integer coordinate precision forward mapping look-up-tables after the third step.
Regular orders are shown with red ellipses (a) mapping of Y coordinates (b) mapping of X
coordinates.

(a) (b)

Figure 5.6: Coded regular orders after the third step (a) coded mapping of Y coordinates (b)
coded mapping of X coordinates.

(a) (b)

Figure 5.7: Look-up-tables after filling the NT pixels using the fourth step (a) mapping of Y
coordinates (b) mapping of X coordinates.

(a) (b)

Figure 5.8: Coded regular orders after filling the NT pixels using the fourth step (a) coded
mapping of Y coordinates (b) coded mapping of X coordinates.

79

Chapter 5. Compressed Look-Up-Table Based Rectification Algorithms and Their
Hardware Implementations

(a) (b)

Figure 5.9: Visualization of the reason for the voids in the rectified image (a) inverse mappings
with fractional coordinates (b) forward mapping with integer coordinate.

(a) (b)

Figure 5.10: Filling the voids in the rectified image in the fifth step (a) finding the source
location of a pixel at one row above the void (b) marking the source pixel as double targeted
pixel.

(a) (b)

Figure 5.11: Coding the behavior of breakpoints at the sixth step (a) coded mapping of Y
coordinates (b) coded mapping of X coordinates.

80

5.1. Compressed Look-Up-Table based Rectification Algorithm

(a) (b)

Figure 5.12: Concatenation of the locations and behaviors at the seventh step (a) for the
mapping of Y coordinates (b) for the mapping of X coordinates.

breakpoints are inserted at the edges of the image to simplify the hardware implementation.

Dummy insertions are represented by (5,0) and (4,0) in Fig. 5.11a and Fig. 5.11b, respectively.

In the seventh step, the locations and behaviors of the breakpoints are concatenated and

stored in a data array. Every BRAM in a Virtex-5 FPGA has 1024 addresses and it can

be configured to store one array composed of 1024×36bits or two arrays composed of

1024×18bits. The BRAMs of the FPGAs are configured to store 18-bits in each address in

the proposed concatenation scheme. As shown in Fig. 5.12, 3-bits are used for coding the

behaviors, and the remaining 15-bits encode the locations of the breakpoints. Therefore,

the proposed concatenation scheme can be applied to an image that has a resolution lower

than 32767×32767 pixels. In Fig. 5.12a, DT and changing the last targeted row by ±1 are

independent breakpoint conditions of Y coordinates, which can be applied to source pixels,

concurrently or separately. Therefore, the “X” symbol in the -1 and +1 columns of Fig. 5.12

implies keeping the last targeted coordinate.

The number of breakpoints in every row of the Y table and the number of breakpoints in every

column of the X table depend on the distortion of the lens, the resolution of the image sensor

and the mechanical misalignment. The experimental setup used for the development of

CLUTR algorithm consists of 1024×768 resolution cameras. In the experiments, cameras are

aligned in parallel configuration without using any sensitive mechanical placement tool. At

most 21 breakpoints are observed in any given row of Y tables, and at most 17 breakpoints are

observed in any given column of X tables. Data arrays of CLUTR are created for 24 possible

breakpoint locations for Y tables and 20 possible breakpoint locations for X tables to support

more challenging distortion conditions. Therefore, storing the X and Y tables for the right and

left images requires 38 BRAMs which can even be supported by low cost FPGAs. The data

arrays that are programmed into the BRAMs are converted into coefficient (COE) files using

MATLAB.

81

Chapter 5. Compressed Look-Up-Table Based Rectification Algorithms and Their
Hardware Implementations

In the eighth step, 38 BRAMs are instantiated as single port ROMs. The pre-computed

compressed rectification maps are programmed into the BRAMs using the Xilinx ISE 12.4 and

COE files.

5.2 Real-Time De-Compression Hardware of CLUTR

The de-compression process is simpler than the off-line compression process in terms of

computational complexity. The proposed rectification module can be used as a hardware

accelerator taking place between the camera interface hardware and the on-chip memory

controller, as shown in Fig. 5.13. The rectification module is used for the left and right

cameras separately. The rectification module processes source pixel values as Ori(Yori, Xori)

and the respective source row and source column coordinates as Y Ori and X Ori. The

rectification module computes the target row and target column coordinates as Y Rec and

X Rec, and the 1-bit DT signal to identify double targeted locations. Ori(Yori, Xori) is delayed for

6 clock cycles and Rec(Yrec, Xrec) is given as an output. Thanks to the pipelined structure of

the hardware, inputs can be consecutively received and outputs can be consecutively provided.

The top-level block diagram of the rectification module is presented in Fig. 5.14. The

rectification module involves (768×24×18)/(1024×36) = 9 BRAMs to store the compressed

table of Y coordinates and (1024×20×18)/(1024×36) = 10 BRAMs to store the compressed

table of X coordinates. Half of 1 additional BRAM is used to store the last breakpoint locations

and the last target X coordinates of the row which is located above the row currently being

processed.

The block diagram of the decompression hardware of Y coordinates is presented in Fig.

5.15. The hardware resets itself every time X Ori is equal to zero which implies that the

first pixel of a new row is fetched from the camera. The target Y coordinate of the first

incoming pixel in a new row is loaded from the ROM and written to the output register of

Y Rec. For every consecutive pixel, X Ori is compared to the coordinate of the next breakpoint

which is loaded from the ROM. When a breakpoint is reached, the Y Rec value is changed

using a multiplexer depending on the coded behaviors of the breakpoints. Meanwhile,

the hardware loads the coordinate of the next breakpoints to compare with the upcoming X Ori.

The block diagram of the decompression hardware of X coordinates is presented in

Fig. 5.16. Pixels are supplied by the camera row-by-row, whereas the X coordinates are

compressed column-by-column. This situation causes one important difference between the

de-compression hardware architectures of the X and Y tables. When the camera provides

82

5.2. Real-Time De-Compression Hardware of CLUTR

Figure 5.13: Utilization example of the proposed rectification hardware.

Figure 5.14: Top-level block diagram of the proposed rectification hardware of CLUTR.

pixels of a new row, the de-compression hardware needs to keep record of the previous

X Rec coordinates and the last checked breakpoint address in the ROM for the respective

column of the previous row. Two 1×1024 size data arrays are needed to store this information.

These arrays are named array_last_break_x and array_last_target_x in Fig. 5.14. These arrays

are concatenated for respective column coordinates of the original image, and stored into

one half of the 1 BRAM, which is named X_last_data_BRAM in Fig. 5.16. The values in

X_last_data_BRAM are replaced with the new ones when a breakpoint is reached for the

respective X Ori. The de-compression hardware of the Y coordinates does not comprise

these arrays because Y coordinates are compressed row-by-row. Therefore, the last Y Rec

can be directly used for computing the next Y Rec of the next pixel in the same row of the

original image. The decompression hardware of X coordinates operates in a similar fashion as

the decompression hardware of Y coordinates, with the exception of keeping record of the

information about the previous row.

83

Chapter 5. Compressed Look-Up-Table Based Rectification Algorithms and Their
Hardware Implementations

Figure 5.15: Block diagram of the proposed rectification hardware for decompressing the table
of Y coordinates. Pipeline stages are presented with dashed lines.

Figure 5.16: Block diagram of the proposed rectification hardware for decompressing the table
of X coordinates.

The proposed rectification hardware can be used in any stereo-matching system. The stereo

matching process can be started when the required amount of rows is buffered in the BRAMs

of the stereo matching hardware. Processed rows in these BRAMs can be overwritten by new

rows during the stereo matching process.

The hardware architectures presented in [55, 56] require large pixel buffers due to the inverse

mapping scheme. The proposed de-compression does not need large pixel buffers between

the camera interface and the rectification modules. In contrast, the hardware requires these

pixels buffers for the rectified image. However, typically DE hardware implementations already

include BRAMs to buffer the pixels [39, 43, 45, 51]. Therefore, these buffers can be used for the

proposed de-compression hardware. Thus, using the proposed rectification hardware on a

complete DE system may not need additional large pixel buffers.

84

5.3. Limitations of the CLUTR

5.3 Limitations of the CLUTR

In an ideal case, i.e. where the cameras are perfectly parallel and lenses do not have distortion,

two breakpoints are required for every row of the look-up-table for Y coordinates and two

breakpoints are required for every column of the look-up-table for X coordinates. One of these

two breakpoints is needed to define the initial breakpoint location to target coordinate 0, and

the other one is needed to define the final target location as the horizontal or vertical size of

the image. In the classical case of a real-time working environment, the mechanical set-up of

the stereo-matching system should be carefully designed to be close to an ideal case. Still the

main goal of the rectification consists of solving lens distortions and sensitive mechanical

misalignments.

According to tests applied to the CLUTR algorithm and hardware, the pixel location difference

of two consecutive breakpoints typically reaches more than 15 pixels and the number of

breakpoints is smaller than the pre-defined breakpoint capacity of the ROMs of CLUTR.

Therefore, CLUTR successfully rectifies the images when the lens distortion and the

mechanical misalignments are not excessive. However, unusual conditions bring limitations

on the CLUTR hardware.

Two important limitations of the CLUTR hardware must be considered to maintain its

suitability to rectify challenging situations. The first limitation relates to the capacity of

the ROMs to store a sufficient number of breakpoints. The second limitation relates to the

frequency of the breakpoints.

The limitation caused by the number of breakpoints is mainly due to the mechanical

misalignment of the cameras. In order to identify the limit of the breakpoint storage capacity

of ROMs, two cameras are manually rotated approximately 3 degrees around opposite

directions of all rotational axis. This test can be considered as an excessive misalignment of a

carefully designed mechanical setup of the stereo-matching system. Using the compression

scheme of CLUTR, 43 breakpoints are needed in the look-up-table of X coordinates for one

column, and 69 breakpoints are needed in the look-up-table of Y coordinates for one row.

The pre-defined breakpoint capacity of CLUTR does not support this condition. Overcoming

this first limitation is straightforward to achieve by increasing the size of ROMs to store more

breakpoints.

CLUTR supports rectification if the two breakpoints of the Y coordinates have at least 4 pixel

position difference. When a breakpoint location is reached, the hardware needs to read the

next breakpoint from the ROM. The address computation and reading the next breakpoint

from the ROM operations consume 4 clock cycles. The camera continues to send pixels and

the camera controller increases X Ori during the address computation and reading breakpoints

85

Chapter 5. Compressed Look-Up-Table Based Rectification Algorithms and Their
Hardware Implementations

(a)

(b)

Figure 5.17: Visualization of the breakpoint frequency capacity of the X and Y coordinate
mappings (a) breakpoints for the mapping of Y coordinates (b) breakpoints for the mapping
of X coordinates

from the ROM. Therefore, if there are multiple breakpoints in 4 consecutive pixels, CLUTR

is not able to apply a breakpoint condition to those pixels. Hence, the limits of the CLUTR

hardware to successfully rectify stereo images is exceeded if breakpoints are frequent, i.e. if

two breakpoints of Y coordinates in a row have less than 4 pixel position difference. Since the

breakpoints of X coordinates are coded column by column but the camera sends pixels row by

row, the time to process consecutive breakpoints in same column and consecutive rows is

sufficiently long. Therefore, frequent breakpoints in the same column of the look-up-table

of X coordinates do not cause a limitation. The frequency limitation of CLUTR is visually

explained in Fig. 5.17.

The main reason for the occurrence of frequent breakpoints is the high number of adjacent

void pixels, which is caused by excessive camera misalignment or lens distortion. An example

86

5.3. Limitations of the CLUTR

(a)

,
(b)

Figure 5.18: Visualization of the reason for the frequent breakpoints (a) finding the source
locations of three pixels that are targeting one row above of the three consecutive voids (b)
four break-points in consecutive five locations.

of one such challenging condition is presented in Fig. 5.18. As shown in Fig. 5.18b, 4 out of 5

consecutive pixels are marked as breakpoints. 3 out of these 4 breakpoints are DT breakpoints

which are coded in the look-up-table of Y coordinates, and the other one is located at Ori(1,5)

which requires changing the target row number from 2 to 3. This challenging example case

exceeds the limits of CLUTR, since CLUTR is not able to apply a breakpoint condition if there

are multiple breakpoints in 4 consecutive pixels.

Adjacent void pixels may occur not only horizontally but also vertically. Vertically adjacent

void pixels may cause void pixels, which cannot be filled by the DT feature of CLUTR. As

visualized in Fig. 5.19, DT pixels can fill the voids located one row below the targeted pixel in

the rectified image. If there are two voids which are vertically adjacent, the void located below

can not be filled by CLUTR since the pixel above is not targeted directly by any source pixel.

Another limitation of CLUTR is related to the usage of ROMs for the hardware implementation

which increases the off-line processing duration. Using ROMs is suitable to demonstrate the

87

Chapter 5. Compressed Look-Up-Table Based Rectification Algorithms and Their
Hardware Implementations

Figure 5.19: Visualization of the reason for the voids which can not be filled by CLUTR.

efficiency of compressed look-up-table based rectification. However, after each adjustment of

the camera settings and alignments, creating new compressed tables of the hardware requires

re-synthesis and place & route of the implementation. Thus initializing the CLUTR hardware

takes a long time.

5.4 Enhanced Compressed Look-Up-Table based Rectification

Algorithm

The E-CLUTR algorithm and its hardware implementation are designed to overcome the

limitations of CLUTR while maintaining the low complexity decompression scheme. The

limitations of CLUTR are mainly solved by improving the design of the decompression

hardware. Moreover, algorithmic enhancements are applied to further improve the

efficiency of the compression scheme to handle challenging lens distortions and mechanical

misalignments.

Algorithmic enhancements are explained in this Section. The flow-chart of the compression

scheme of E-CLUTR is identical to the flow-chart presented in Fig. 5.3. The steps 5, 6 and 7

that are shown in Fig. 5.3 are enhanced in E-CLUTR. The algorithmic enhancement for the

compression scheme is proposed to reduce the frequency of DT breakpoints. In order to

decrease the amount of consecutive breakpoints in a row, the condition type of breakpoints

for filling the voids are improved. As explained in Section 5.1 in step 5, DT breakpoints

are used to fill the voids that are located one pixel below the targeted pixel. To avoid any

confusion, the DT condition of CLUTR is renamed as below-DT (B-DT) in E-CLUTR. In

addition to B-DT, below-backward-DT (BB-DT), below-forward-DT (BF-DT), upper-DT

(U-DT), upper-backward-DT (UB-DT) and upper-forward-DT (UF-DT) breakpoint conditions

are defined in E-CLUTR. Using extra DT conditions, the source pixel can be targeted not only

to one pixel below the target, but additional options are provided to fill any of 6 possible

neighbors of the targeted pixel of the rectified image. These additional options are visualized

in Fig. 5.20.

88

5.4. Enhanced Compressed Look-Up-Table based Rectification Algorithm

(a)

,
(b)

Figure 5.20: Filling the voids in the rectified image in the fifth step (a) DT option of CLUTR (b)
DT options of E-CLUTR.

(a)

,
(b)

Figure 5.21: Reducing the frequency of breakpoints using multiple DT options of E-CLUTR (a)
finding alternative source locations for void pixels of rectified image (b) reduced frequency of
breakpoints for the same row of the look-up-table of Y coordinates.

89

Chapter 5. Compressed Look-Up-Table Based Rectification Algorithms and Their
Hardware Implementations

Figure 5.22: Vertically adjacent void pixels can be filled by E-CLUTR using multiple DT options.

As presented in Fig. 5.21, the frequency of breakpoints in the same row is reduced compared

to Fig. 5.18, by using BF-DT, BB-DT and U-DT breakpoint conditions. As presented in Fig.

5.19, vertically adjacent void pixels are problematic for CLUTR. However, these voids can be

filled by multiple DT options of E-CLUTR as presented in Fig. 5.22.

In step 6, the breakpoints are coded considering the new DT breakpoint conditions. In

the challenging example, there should be support of 2 consecutive breakpoints at least in

3 consecutive pixel coordinates, as presented for the breakpoints at Ori(1,4) and Ori(1,5).

Therefore, the algorithmic enhancement requires the support of at least 2 breakpoints for

3 consecutive locations as an additional constraint. The hardware based enhancement to

provide this support is explained in Section 5.5.

Black pixels occur at the borders of the rectified image. These stem from the 3-D rotation

of the original image and the mapping of the rectified image to the original resolution.

Consequently, the effective resolution slightly decreases in the rectified image [50]. Due to this

fact, changing row and column coordinates stay in the range of ±1. However, this range may

not be guaranteed for all possible extreme conditions. Thus, a generic solution should cover

all possible extreme situations. In order to cover the cases that create a situation beyond the

challenging camera misalignment tests, ±2 row and ±2 column coordinate change options are

included as a breakpoint condition in step 6 of E-CLUTR.

The concatenation scheme presented in Fig. 5.12 of CLUTR is modified for E-CLUTR as

presented in Fig. 5.23, Fig. 5.24 and Fig. 5.25 using improved breakpoint conditions. The

breakpoint conditions for DT conditions and row changing can be applied concurrently

or separately to the source pixel. Consequently, 7×5=35 different conditions occur for the

concatenation of the conditions for the breakpoints of Y coordinates. A brief concatenation

scheme of the Y coordinates is presented in Fig. 5.23. The concatenation scheme for DT codes

and row changing are separately presented in Fig. 5.24a and Fig. 5.24b. The concatenation

scheme of the X coordinates is presented in Fig. 5.25.

90

5.5. Real-Time De-Compression Hardware of E-CLUTR

Figure 5.23: Brief representation for the concatenation of the locations and behaviors it the
seventh step of E-CLUTR for the mapping of Y coordinates.

(a) (b)

Figure 5.24: Concatenation of the locations and behaviors at the seventh step for E-CLUTR for
the mapping of Y coordinates (a) Concatenation scheme for DT options (b) Concatenation
scheme for the breakpoint conditions for changing the last targeted row.

Figure 5.25: Concatenation of the locations and behaviors at the seventh step of E-CLUTR for
the mapping of X coordinates.

5.5 Real-Time De-Compression Hardware of E-CLUTR

The top-level block diagram of the E-CLUTR module is presented in Fig. 5.26. Data arrays

of E-CLUTR are created for 80 possible breakpoint locations for Y tables and 50 possible

breakpoint locations for X tables in order to support very challenging distortion conditions.

91

Chapter 5. Compressed Look-Up-Table Based Rectification Algorithms and Their
Hardware Implementations

Figure 5.26: Top-level block diagram of the proposed rectification hardware of E-CLUTR.

The rectification module involves (768×80×18)/(1024×36) = 30 BRAMs to store the compressed

table of Y coordinates and (1024×50×18)/(1024×36) = 25 BRAMs to store the compressed

table of X coordinates. As presented in Figure 26, the ROMs are converted to RAM to ease

the initialization of the look-up-tables of E-CLUTR after changing the camera settings. The

decompression hardware for the X coordinates is presented in Fig. 5.27. The decompression

hardware for Y coordinates is presented in Fig. 5.28.

As presented in Fig. 5.27, the decompression hardware of E-CLUTR pertaining to X coordinates

is similar to the hardware used in CLUTR. The multiplexing stage is adapted to provide the ±2

target pixel column change feature for the X breakpoints.

The decompression hardware of E-CLUTR pertaining to Y coordinates is redesigned to

support frequent breakpoints and the six different DT options. As presented in Fig. 5.28, the

E-CLUTR hardware reads the first six breakpoints from the RAM as soon as the camera starts

to send a new row. The first breakpoint is used to initialize the target row and the next five

breakpoints are buffered in a local cache. Whenever a new breakpoint location is reached, the

next breakpoint location is read from the RAM and the cache shifts the existing upcoming

breakpoint locations. Using this local cache of the breakpoints, the original pixel coordinates

can be compared to the pixel locations in the cache. Therefore, the breakpoint conditions can

be applied to all passing pixels even if the breakpoints are frequent.

The multiplexing stage for the computation of the next target row is improved to provide the

±2 target pixel row change feature. Moreover, the hardware sends the 3-bit DT condition to

the BRAM controller together with the pipelined source pixel and its target locations Y Rec and

X Rec, synchronously.

92

5.5. Real-Time De-Compression Hardware of E-CLUTR

Figure 5.27: Block diagram of the proposed rectification hardware for decompressing the table
of X coordinates.

Figure 5.28: Block diagram of the proposed rectification hardware for decompressing the table
of Y coordinates. Pipeline stages are presented with dashed lines.

The BRAM controller that is shown in Fig. 5.13 writes the pipelined source pixels to the

decompressed target row and target column coordinates. E-CLUTR hardware is verified by

merging it with the binocular DE hardware presented in Chapter 3, which buffers pixels of

rows in its own separate BRAMs. Y Rec is used to select and enable the BRAM to write target

pixel. X Rec is used to determine the write address of the enabled BRAM of the DE hardware. If

a DT condition exists, the same source pixel is concurrently written to two BRAMs by enabling

two BRAMs that buffer two consecutive rows. If the DT condition is pointing into forward

or backward positions, the address port of the BRAM that is targeted by the DT condition

receives the computed target BRAM address ±1.

93

Chapter 5. Compressed Look-Up-Table Based Rectification Algorithms and Their
Hardware Implementations

5.6 Real-Time Hardware of Caltech Rectification

The Caltech rectification algorithm [50] which does not benefit from look-up-tables is

implemented in hardware to evidence the efficiency of CLUTR and E-CLUTR implementations

much fairly. The camera rotation and lens distortion parameters are computed in a PC using

Caltech calibration software and transferred to the proposed rectification hardware through

UART communication.

The top-level block diagram of the proposed Caltech rectification hardware for a single

camera is presented in Fig. 5.29. The two-camera disparity estimation hardware includes

two of these modules working in parallel and the three camera disparity estimation module

includes three of the modules working in parallel. The top-level rectification module

receives the YCbCr pixel data from the camera interface. The Calibration Parameters

module receives the camera calibration parameters that are provided from the PC and

stores them in DFF array. The control module counts the rectified pixel row and column

locations, synchronizes the internal operations of the sub-modules of rectification hardware,

generates addresses to read and write the on-chip BRAMs. The Rectification Index and

Apply Distortion hardware modules proceed the mathematical operations to compute

the fractional source pixel locations of the processed pixels of the rectified image. The

Interpolation hardware module performs linear interpolation between the four neighbors of

the pointed fractional source pixel location and provides the output rectified pixel YCbCr value.

The hardware is a fully parametrized and pipelined implementation of the Caltech rectification

algorithm. The hardware provides one rectified pixel location, Y Rec and X Rec, and its pixel

value, Rec(Yrec, Xrec), for each clock cycle. A fixed-point implementation is used to provide

fractional precision. The Caltech rectification algorithm is very sensitive to the fractional

precision of the variables. The parameters that define the sizes of the signals and their

fixed-point precision are determined to provide high quality results. Still, some parameters

for the fixed-point precision can be increased to guarantee better results, especially in cases

where the multiple-camera setup is very defective. However, increasing the fixed-point

precision significantly increases the hardware resource consumption. The bit-size for the

main input parameters of the hardware are provided in Table 5.1. The equations related with

these parameters can be consulted in [50].

The Caltech rectification hardware buffers the incoming camera data in the 64 dual-port

BRAMS. The Rectification Index module solves image rotation equations. The Apply Distortion

module includes computationally intensive operations for solving lens distortion. The Apply

Distortion module involves high precision and sensitive division and multiplication operations.

94

5.6. Real-Time Hardware of Caltech Rectification

Figure 5.29: Block diagram of the proposed hardware implementation for Caltech rectification
algorithm.

Therefore, it takes part as the main hardware resource consuming module of the rectification

hardware. After the fractional source pixel coordinate of the processed rectified pixel is

calculated, the four neighboring pixels of the computed source pixel location are read from

the dual-port BRAMS in parallel. These four pixels are linearly interpolated and the output is

provided as a rectified YCbCr image pixel. The Interpolation module utilizes the fractional

precision computed by the Apply Distortion module to perform linear interpolation between

four pixels. The interpolation of the pixel values for the Y, Cb and Cr channels are processed in

parallel.

Table 5.1: Bit-size Parameters of the Caltech rectification hardware

Input Parameter # Total Bits # Bits of Fractional Precision
P_new 28 26
rays 28 26
cx/cy 16 6
k 12 10
f 16 2
intermediate signals - 16

95

Chapter 5. Compressed Look-Up-Table Based Rectification Algorithms and Their
Hardware Implementations

5.7 Implementation Results

The proposed rectification hardware architectures of CLUTR and E-CLUTR are implemented

using Verilog HDL, and verified using Modelsim 10.1d. The Verilog RTL models are mapped

to a Virtex 5 XCUVP-110T FPGA comprising 69k Look-Up-Tables (LUT), 69k DFFs and 148

BRAMs. One rectification module of CLUTR consumes 0.32% of the LUTs, 0.28% of the DFF

resources and 14% of the BRAM resources of the Virtex-5 FPGA. One rectification module of

E-CLUTR consumes 0.63% of the LUTs, 0.51% of the DFF resources and 38% of the BRAM

resources of the Virtex-5 FPGA. The proposed E-CLUTR hardware operates at 212 MHz after

place & route. Therefore, it can process up to 269 fps at a 1024×768 XGA video resolution.

In addition, the proposed rectification hardware of CLUTR and E-CLUTR are merged with

the DE hardware presented in Chapter 3. The merged DE systems are also verified using

Modelsim 10.1d.

The proposed rectification hardware of CLUTR and E-CLUTR do not need the support of

external memory if the cameras are synchronized. The cameras can be perfectly synchronized

by driving the cameras with same clock source and using one common I2C module for the

initialization of the cameras as explained in Chapter 9.

The proposed compression and decompression algorithms are evaluated using the pictures

taken by the stereo camera system presented in Chapter 3. Two different tests are applied

to prove the quality of the CLUTR and E-CLUTR implementations. In the first test, cameras

are roughly alligned since in the classical case of a real-time working environment, the

mechanical set-up of the stereo-matching system should be carefully designed to be close to

an ideal case. As a second test, two cameras are manually rotated approximately 3 degrees

around opposite directions of all rotational axis. The second test can be considered as an

excessive misalignment of a carefully designed mechanical setup of the stereo-matching

system.

The 1024×768 size original left and right pictures that are taken for the first test are shown in

Fig. 5.30. The original images are rectified using the full precision MATLAB implementation of

the Caltech rectification algorithm [50] and the proposed CLUTR algorithm. The rectification

results of the CLUTR are presented in Fig. 5.31. The breakpoint locations pertaining to the

X and Y coordinates of the left image are presented in Fig. 5.32. The result of the E-CLUTR

algorithm is not provided separately for the first test since CLUTR and E-CLUTR provide

identical visual and numerical results when the cameras are not extremely misaligned.

The PSNR between the rectification results of the CLUTR and Caltech rectification algorithms

are evaluated in Table 5.2. The PSNR of the left image is 42.67 dB, and the PSNR of the right

image is 41.87 dB. Generally, a PSNR larger than 30 dB is considered acceptable to the human

96

5.7. Implementation Results

(a) (b)

Figure 5.30: Visual results of the first test using roughly aligned cameras: Original images have
still distortions as observed near the lamp, bag, folder and cup; horizontal epipolar lines are
displayed in red near the edge of these objects (a) left image (b) right image.

(a) (b)

Figure 5.31: Visual results of the first test using roughly aligned cameras: The proposed CLUTR
algorithm corrects distortions (a) left image (b) right image.

eye. Therefore, CLUTR provides very high quality rectification results. The PSNR between

the original images and the rectification results of Caltech are also provided in Table 5.2 for

comparison.

The performance loss of CLUTR is also evaluated for different DE algorithms. The DE

algorithms that are implemented on real-time hardware are used for the evaluation

[39, 43, 45, 51]. The DE results obtained using the images that are rectified by Caltech

rectification algorithm are assumed as the respective ground truths of the DE algorithms.

These ground truths are compared with the DE results of the respective algorithms using the

images that are rectified by CLUTR. The PSNR results are provided in Table 5.3. 120 and 255

are applied as a disparity range (DR) and the respective DRs are used as peak signals for PSNR

97

Chapter 5. Compressed Look-Up-Table Based Rectification Algorithms and Their
Hardware Implementations

calculations. CLUTR provides 32.87 dB and 27.94 dB PSNR for the AWDE algorithm [51] and

Greisen et al. [45], for a 255 DR, respectively. Therefore, the proposed CLUTR algorithm has

an insignificant effect on the quality of the DE, and it can be used in different DE systems. The

PSNR between the DE results using the original images and the DE results using the rectified

images of Caltech are also provided in Table 5.3 for the comparison.

(a) (b)

Figure 5.32: Visual results of the first test using roughly aligned cameras: Breakpoint locations
obtained by CLUTR for the left image (a) breakpoints of the targeted Y coordinates; coded
row-by-row. (b) breakpoints of the targeted X coordinates; coded column-by-column.

Table 5.2: Numerical results of the first test using roughly aligned cameras: PSNR (dB) with the
rectified images produced by Caltech rectification algorithm

Comparison with
Rectified Left Image [50]

Comparison with
Rectified Right Image [50]

Original Image 15.69 16.08
Proposed (CLUTR) 42.67 41.87

Table 5.3: Numerical results of the first test using roughly aligned cameras: PSNR (dB)
Comparison of the Disparity Estimation Results Using Different Disparity Estimation
Algorithms

DE using [50] vs.
DE using CLUTR

DE using [50] vs.
DE using Original Images

DR=120 DR=255 DR=120 DR=255
Mini-Census [39] 29.98 32.49 12.01 11.70
Georgulas [43] 28.72 32.31 12.39 13.44
AWDE [51] 29.95 32.87 12.93 13.65
Greisen [45] 26.30 27.94 11.20 10.79

98

5.7. Implementation Results

The 1024×768 size original left and right pictures that are taken for the second test is shown

in Fig. 5.33. The pictures in Fig. 5.33 are taken under a camera misalignment condition

that exceeds the limits of CLUTR implementation. The original images in Fig. 5.33 are

rectified using the Caltech rectification algorithm and the proposed E-CLUTR algorithm. The

rectification results of the E-CLUTR are presented in Fig. 5.34. The extreme rotation of the

rectified image can be visually observed in Fig. 5.34. The breakpoint locations pertaining to the

X and Y coordinates of the left image are presented in Fig. 5.35. The result of CLUTR algorithm

is not provided separately for the second test since the excessive camera misalignment of this

test case exceeds the capacity of the CLUTR hardware implementation.

(a) (b)

Figure 5.33: Visual results of the second test using excessively misaligned cameras: Original
images have excessive distortions as observed on the lines (a) left image (b) right image.

(a) (b)

Figure 5.34: Visual results of the second test using excessively misaligned cameras: E-CLUTR
corrects distortions as observed on the lines (a) left image (b) right image.

99

Chapter 5. Compressed Look-Up-Table Based Rectification Algorithms and Their
Hardware Implementations

(a) (b)

Figure 5.35: Visual results of the second test using excessively misaligned cameras: Breakpoint
locations of the left image (a) breakpoints of the targeted Y coordinates; coded row-by-row. (b)
breakpoints of the targeted X coordinates; coded column-by-column.

The PSNR between the rectification results of E-CLUTR and Caltech rectification algorithm

are evaluated in Table 5.4. The PSNR of the left image is 43.10 dB, and the PSNR of the right

image is 42.02 dB. Therefore, E-CLUTR provides very high quality rectification results even

though cameras are excessively misaligned. The PSNR between the original images and the

rectification results of Caltech are also provided in Table 5.4 for comparison.

Table 5.4: Numerical results of the second test using excessively misaligned cameras: PSNR
(dB) with the rectified images produced by Caltech rectification algorithm

Comparison with
Rectified Left Image [50]

Comparison with
Rectified Right Image [50]

Original Image 17.99 19.34
Proposed (E-CLUTR) 43.10 42.02

The hardware implementation of the CLUTR and E-CLUTR are compared with the stereo

image rectification hardware implementations in Table 5.5. The hardware architecture of [53]

requires a significant amount of hardware resources to support complex operations for solving

the lens distortion models. Hardware architectures of look-up-table based implementations

[54] and [55] require an external memory. Combining the CLUTR with a BRAM controller

or E-CLUTR with a BRAM controller consumes less LUT and DFF resources than [53–55].

The DFF and LUT consumption of [56] is not available (NA). Nevertheless, the capacity of

CLUTR and ECLUTR to fit the look-up-tables into the on-chip memory of the Virtex-5 FPGA is

approximately six times and two times more efficient than [56], respectively, as a benefit of

their efficient compression scheme. Moreover, hardware resource consumption results of

the presented high precision hardware of the Caltech rectification algorithm is provided in

Table 5.5 for comparison. The hardware implementations of CLUTR and E-CLUTR require

100

5.7. Implementation Results

much less hardware resource than the hardware implementation of Caltech rectification while

providing almost identical rectification results with very high PSNR results.

The hardware resource consumption of E-CLUTR is higher than CLUTR. However, if the

cameras are extremely misaligned, the limitations of CLUTR can be exceeded. In these

extreme conditions, E-CLUTR still supports rectification. Whereas, using CLUTR hardware

can be more profitable if the stereo cameras are carefully aligned.

Table 5.5: Hardware Resource Comparison of the Rectification Hardware Implementations

Device Resolution LUT DFF
On-Chip

Memory (KB)
External
Memory

[53] Virtex-4 752x480 3418 5932 0 X
[54] Virtex-E 640x512 2459 2075 99 X
[55] Spartan-2 640x480 ≈2396 ≈2396 16 X
[56] Virtex-5 1280x720 NA NA 1300 X
Caltech Hardware Virtex-5 1024x768 24384 25346 192 X
CLUTR Virtex-5 1024x768 227 197 90 X
2x(CLUTR+
BRAM Contr.)

Virtex-5 1024x768 784 427 176 X

E-CLUTR Virtex-5 1024x768 434 350 252 X
2x(E-CLUTR+
BRAM Contr.)

Virtex-5 1024x768 2278 956 500 X

101

6 Embedded System for Depth Map
Estimation

In this chapter, the embedded system of the depth estimation is explained. The efficient

communication and data exchange scheme of the system peripherals are explained. In

following sections, first, the general overview of the complete system is presented. Secondly,

the overview of the video processing hardware cores and circuits is presented. Thirdly,

embedded system peripherals other than video processing cores are explained. Lastly, the

embedded software operated in softcore processor is explained.

(a) (b)

Figure 6.1: Demonstration of the system set-up. (a) close-up to the three cameras and the
FPGA board (b) full demonstration system also including a PC and large-screen TV.

6.1 The Overview of the Depth Map Estimation System

The system setup of the depth map estimation is shown in Fig. 6.1. The complete system in

Fig. 6.1 consists of three horizontally aligned XGA (1024×768) resolution cameras, a Xilinx

VC707 Evaluation Board, a PC and a TV. A Virtex-7 FPGA included in the VC707 board is used

to prototype the developed rectification hardware, disparity estimation hardware, rendering

103

Chapter 6. Embedded System for Depth Map Estimation

hardware and the system peripherals that interface with cameras, a PC and video processing

cores.

In the following sections, the full embedded system obtained after merging the separate

hardware modules is explained. Fig. 6.2 shows a block-diagram of the full depth estimation

system. All real-time video processing computations are implemented in hardware. The

PC is used as a display, to control the system, to obtain camera calibration parameters and

to developed software based real-time applications. The resulting disparity images are

transferred to the PC using 1Gb raw Ethernet. A standard 2D TV is connected to the PC using

HDMI to offer a better display. A MicroBlaze softcore (CPU) is used to initialize cameras

through an I2C Serial Interface, to control Ethernet and to communicate with the PC. A

DDR3 memory is only used for Ethernet buffering. The presented block diagram in Fig. 6.2

includes three cameras. The embedded system for two cameras is almost identical to the

three camera version. The minor differences of the embedded system between two and

three camera systems are explained in this section. The same system architecture can be

also implemented using Virtex-5 FPGA. Virtex-7 FPGA is selected to prototype the proposed

complete system since it includes more hardware resources than Virtex-5, which helps placing

and routing the hardware components more efficiently.

6.2 Video Processing Hardware Cores and Circuits

As presented in Fig. 6.2, three Aptina image sensors are connected to the VC707 board

via an FMC1 connector, piggyback boards and VHDCI cables. The IO pins of the Virtex-7

FPGA operates at 1.8V, and the Aptina Cameras work at 3.3V. Piggyback boards are designed

to shift to the different voltage level, to increase the strength of the signals, and to route

the signals to VHDCI connectors. Each of the three cameras has its own piggyback

board (Camera-VHDCI) and one piggyback board is connected to the FMC1 connector

(FMC-VHDCI). The Camera-VHDCI boards that are connected to image sensors are identical.

The IOs of the image sensors are not powerful enough to successfully drive 40cm VHDCI

cables for single ended pixel data, hsync, vsync and pixel clock signals. Therefore, reflection,

voltage drop and noise problems are observed on the signals, and thus on the images.

In order to solve this noise issue, a buffer chip, NXP 74LVT16244BDGG, is placed on the

Camera-VHDCI board to increase the strength of the camera signals before transferring them

to the VHDCI cable.

The FMC-VHDCI board includes three VHDCI connectors and level-shifter chips. Three TI

PCA9306DCUR and four TI SN74AVC16T245DGGR chips are used to shift the signal voltage

levels between 1.8V and 3.3V. The bi-directional PCA9306DCUR chips are used for shifting

voltage levels of I2C signals. Three of the four SN74AVC16T245DGGR chips are used for

104

6.2. Video Processing Hardware Cores and Circuits

Figure 6.2: Block diagram of the full system setup.

shifting voltage levels of pixel data, hsync, vsync, pixel clock signals which are directed from

three Cameras to FPGA. One of the SN74AVC16T245DGGR chips is shared between three

cameras for shifting the voltage level of the camera clock and camera reset signals which are

directed from FPGA to Cameras.

The trinocular depth estimation system presented in Fig. 6.2 includes three Camera

Interface modules. The binocular depth estimation system includes two Camera Interface

modules. The Camera Interface module receives 10-bit Bayer format pixel data, hsync,

vsync and pixel clock signals, counts the row and column numbers and applies demosaicing

to convert Bayer images into YCbCr and RGB formats. The Camera Interface module

outputs pixels in 24-bit YCbCr and 24-bit RGB pixel formats, and their respective column

and row numbers. Moreover, the Camera Interface module computes average Red, Green

and Blue values in the images to be used in auto color-gain and auto shutter-width corrections.

The nearest neighbor interpolation method is used as a demosaicing algorithm. The nearest

neighbor interpolation requires to access at most 8 adjacent pixels of the processed pixel.

105

Chapter 6. Embedded System for Depth Map Estimation

Therefore, in addition to the processed row, its upper and below rows should be buffered.

The Camera Interface module utilizes 4 dual-port BRAMs to buffer 4 rows of the Bayer image.

Buffered pixels are read back from the 4 BRAMs in parallel. The read pixels are transferred

to the 4×3 pixels size systolic flip-flop array. The processed pixel and its 8 neighbors are

selected from the flip-flop array. Afterwards, the nearest neighbor interpolation operations

are processed to interpolate not-existing red, green or blue values of the processed pixel. The

YCbCr values of the pixels are computed upon the completion of Bayer to RGB conversion.

The RGB to YCbCr convertion operations that are given in eq. 6.1 are implemented with

10-bit precision fixed point precision. All the operations of the camera interface module

are implemented in pipeline. Camera Interface module receives stream-input and provides

stream-output. Therefore, it does not utilize external memory for the demosaicing operations.

The throughput of the camera interface module is one pixel per clock cycle. During the

demosaicing process, the camera interface module computes average red, green and blue

values in the image. These average values are computed for every image and transferred to

the softcore processor to be used for auto color-gain and shutter-width corrections of the

image sensors. The RGB outputs of the camera interface module are transfered to the Output

Selector module to be displayed as the original images of the cameras. YCbCr outputs of the

Camera Interface module are transferred to the rectification hardware to be used in depth

estimation computations.

Y = (0.257×R)+ (0.504×G)+ (0.098×B)+16

C b =−(0.148×R)− (0.291×G)+ (0.439×B)+128

Cr = (0.439×R)− (0.368×G)− (0.071×B)+128

(6.1)

The trinocular system includes three rectification hardware modules to solve the lens

distortions and camera misalignments of three cameras. The binocular depth estimation

system includes two Rectification hardware modules. In Chapter 5, CLUTR, E-CLUTR and

Caltech Rectification hardware modules are presented. The system can operate with any of

these rectification hardware modules since their inputs and outputs are compatible. The

rectification hardware receives the YCbCr value of an original image pixel and its respective

row and column coordinates from the Camera Interface module as an input, and provides

rectified pixel row and column coordinates and the YCbCr value as an output. The DT signal is

provided as an output of the CLUTR and E-CLUTR hardware. The proposed implementation

of Caltech rectification algorithm always transfers ’0’ as a DT value since it utilizes backward

rectification scheme and does not require the double-target process. The output pixels of the

rectification hardware are buffered into the BRAMs of the disparity estimation module.

The compressed look-up-table information of CLUTR hardware is dumped into the ROMs

during the synthesis of the complete hardware. The calibration parameters can be dynamically

transferred to the E-CLUTR and Caltech rectification hardware through the GUI for every

106

6.2. Video Processing Hardware Cores and Circuits

system initialization. The external and internal calibration parameters are automatically

computed by the system GUI using the multiple snapshots of the checkerboard. The

calibration process through the system GUI is explained in Section 6.4.

The BRAM controller of the disparity estimation hardware module receives the YCbCr rectified

pixel value, its respective column and row numbers and the DT value. The BRAM controller

maps the pixels to the input pixel buffer BRAMs of the DE hardware. The number of the

BRAMs for buffering the input pixels of the DE hardware module depends on the rectification

hardware and the usage of the external memory. The BRAM controller is blind to the type of

the rectification method or the existence of external memory for the video processing. The

number of BRAMs for buffering the input pixels of the DE hardware module, # DEinputBRAMs,

is provided as a parameter of the BRAM controller. When the BRAM controller receives a

row number between 0 and 767, it performs a mod operation using the # DEinputBRAMs to

compute the target BRAM. The column number is used as a write address of the BRAMs. If DT

is activated by the rectification hardware, the BRAM controller computes the DT location, and

maps the pixel to the BRAM in parallel as second target location. When the first 31 rows of the

all rectified images are mapped to the BRAMs, the BRAM Controller generates a ready signal

to inform the Controller of the DE module to start the DE process. Afterwards, the ready signal

is generated upon the transfer of every seven rows to inform the Controller of the DE module

to continue the DE process of the next 7 rows. In addition, when the last pixels of the rectified

image is mapped to the BRAMs, the BRAM controller informs the Controller module of the DE

module with a transmitted signal to prepare the DE module for finalizing the DE process of an

image and to place it in wait-state for the next ready signal. Extracting and sending ready and

transmitted signals to the Controller of DE module is important especially when the forward

mapping based compressed rectification hardware module is used, since in this case the first

and last transmitted pixels may not be the pixels at the corners of the rectified image.

The DE hardware module computes 8-bit disparity results in real-time. The hardware

presented in Chapter 4 is used for trinocular DE, and the hardware presented in Chapter 3 is

used for binocular DE. The DE hardware is configurable through the GUI to adapt to targetted

software application. The hardware is configurable by the user who can select the maximum

disparity range (a maximum of 255 is allowed), the disparity-start and disparity-end values to

provide best DE quality at a certain distance interval, the strengths of the Census and BW-SAD

metrics in the HC computation, and the resolution of depth images (maximum 1024×768 is

allowed) to allow faster frame rates at lower resolution video. The output 8-bit disparity values

and the 24-bit YCbCr pixels of cameras are buffered and synchronized using 16 BRAMs for

each channel. YCbCr pixels are converted back to the RGB pixels. Therefore the DE hardware

transfers 24-bit YCbCr and RGB pixels of the cameras and 8-bit disparity values to the Output

Selection and rendering modules. The synchronization of pixel color values is required for

rendering hardware. In addition, output synchronization is important to transmit RGB+D

pixel format to the PC to implement wide range of software applications.

107

Chapter 6. Embedded System for Depth Map Estimation

Figure 6.3: RGB component values in function of the multiplied disparity values, used for the
color representation.

The Depth Histogram module presented in Fig. 6.2 visually improves the display of the depth

results but does not refine the depth measurement. The system can be configured for a

disparity range between 0 and 255. Therefore, the resulting disparity maps are represented

as 8-bit gray scale images by default. However, if the searched disparity range is configured

between 0 and 128, visually recognizing the distance difference is not easy on monitor due to

a poor distributed histogram, since many pixels will seem close to the black color. Therefore,

if the searched disparity range is configured between 0 and 128, the microblaze informs the

Depth Histogram module to multiply the disparity values by 2 to obtain a visually better

histogram. Since the disparity values are all smaller than 128, their multiplied results will still

be 8-bits. The GUI is already informed about this multiplication since the disparity range can

be configured through the GUI. Therefore, it considers this multiplication operation while

computing the distances and realizing software applications. However, still all the pixels are in

gray values, and thus multiplying by two may not always provide a visually better histogram.

In order to improve the visual depth perception, RGB channels of the display should be

used. The format of the display can be selected as either RGB or Gray from the GUI. The

implemented Depth Histogram hardware maps the multiplied or original disparity values in

the range 0 to 255 to an RGB color gradient. In the resulting image, hotter colors i.e. colors

close to the red spectrum, represent objects that have a high disparity and cold colors i.e.

colors close to the blue spectrum represent objects that have a low disparity. Fig. 6.3 shows

the function that determines the RGB values of the different disparity values. The Depth

Histogram hardware includes multiplexers, multipliers and adders to realize conversion to the

RGB values. Figure 6.4 shows both a gray scale and a color version of a disparity map. The

differences between the orange, yellow and green portions of the image are much easier to

identify on the color version than the gray scale one.

The rendering hardware synthesizes free view images for any horizontally aligned arbitrary

camera positioned between the leftmost and rightmost physical cameras. The rendering

108

6.3. Peripherals of the Embedded System

(a) (b)

Figure 6.4: Snapshot of the DE result of binocular disparity estimation system. The hardware
is able to switch between to representations: (a) Gray scale disparity map (brighter color is
closer, darker color is further), (b) Color mapped disparity map (hotter color is closer, colder
color is further)

hardware utilizes the disparity values, RGB pixel values of the cameras and the arbitrary

camera location q to synthesize free view images. The arbitrary camera location q is

dynamically sent from the GUI. The details of the rendering hardware are presented in

Chapter 7.1.

6.3 Peripherals of the Embedded System

The embedded system is designed to transfer image data and disparity maps to the PC. In

this subsection, the system peripherals of the complete embedded system other than the

video processing cores presented in sub-section 6.2 are explained. The data transfer and

communication schemes of the system peripherals are detailed.

The AXI bus is the main connection path between the peripherals of the complete

system-on-chip. Two AXI buses are used in the system to speed up the processing of the

softcore by reducing the bus based bandwidth limitations. These two buses are named as

AXI4 and AXI4 Lite as presented in Fig. 6.2. The microblaze is the only master of AXI4 Lite. The

microblaze utilizes the AXI4 Lite to program the AXI DMA Engines, to communicate with the

Interrupt Controller (IRQ CTRL) module, to program the Cameras through the I2C module,

to receive time informations from the Timer module, and to communicate with the UART

module, and thus with the PC. In addition, the microblaze processor communicates with

all video processing cores through software-accessible registers which are connected to the

AXI4 Lite bus. Therefore, the AXI4 Lite is mainly used for control purposes of the Microblaze

processor. The AXI4 is the most busy bus of the system. There are three masters on the AXI4

109

Chapter 6. Embedded System for Depth Map Estimation

bus. These are the microblaze, the AXI DMA Engine of the AXI Stream FIFO and the AXI DMA

Engine of the Ethernet Controller (ETH Mac). The AXI4 bus is used by these three masters

to access the DDR3 memory through the DDR3 controller module. The microblaze utilizes

the AXI4 bus, since the program and data memory of the processor is stored in the DDR3

controller. The AXI DMA Engine of the AXI Stream FIFO writes the output images of the

selected video processing core to the DDR3. The AXI DMA Engine of the ETH MAC reads

images from the DDR3 to transfer them to the PC using a raw-ethernet communication

protocol.

The ChipScope module allows the user to observe internal signals in the FPGA system. This

module is used to verify the correct functionality of the video processing cores. It is a useful

module to debug hardware in real-time, without interrupting the software and the video

processing cores.

The internal PLL of the FPGA is used to generate clock signals of the processors and all the

peripherals. Additionally, the source clocks of the cameras are generated by the PLL module.

Three image sensors utilizes the same source clock generated by the PLL module. The image

sensors also have an oscillator on their board, so they can be used without sending a clock

signal from the FPGA. However, three osciallators in three cameras generates clocks with

different frequencies, which prevents camera synchronization. Therefore, a common camera

clock signal is sent to image sensors from the FPGA. The image sensors can operate with

a clock frequency upto 48MHz. In the proposed setup, the cameras are used at a 48MHz

clock frequency to obtain their fastest available performance. The perfect synchronization

of the three cameras also requires syncornization of I2C communication. The perfect

synchronization of I2C communication is obtained by sharing a single I2C module between

the cameras. The I2C multiplexing hardware module is explained Chapter 4.

The UART interface is used for transferring console outputs from the FPGA to the host PC

and to transmit control data from the host PC to the system. The UART interface is used for

debugging and providing information about the displaying the status of the system. The PC

transfers all the commands and system parameters to the video processing cores through

the UART Interface of the GUI. This interface is also used to manually adjust the camera

settings from the PC, such as the color-gain and shutter-width parameters of the image sensors.

The Timer module is used for realizing auto color-gain and auto shutter-width corrections for

the cameras. The auto color-gain and shutter-width corrections are iterative operations. While

the image sensor parameters are modified through the I2C, after a given time, the response of

the cameras to new parameters should be observed before applying new parameters. The

time between each iteration is controlled by the Timer module of the system.

110

6.3. Peripherals of the Embedded System

The Interrupt Controller is a hub for all interrupt request lines. The interrupt controller waits

for an interrupt signal and relays it to the microblaze. The two AXI DMA Engines, the UART

module, Timer module, the UART module and Ethernet MAC IP can send interrupts to the

processor. Then, the Microblaze contacts the interrupt controller via the AXI4 Lite interface to

find out which of the peripherals requested the interrupt, and applies the required task of the

interrupt.

The Ethernet MAC IP is used to transfer the outputs of video processing cores to the PC.

Although there are other communication protocol options, Raw Gigabit Ethernet is chosen for

the implementation. Since the system is implemented on a VC707 Virtex-7 Evaluation board,

the choice of high-speed interfaces was limited to USB 2.0, Gigabit Ethernet, PCI-e and HDMI.

HDMI is not suitable for RGB+D data transfer and to develop applications for a PC. PCI-e

would allow to reach a very fast data transfers, however the mobility of the system would

be drastically reduced since PCI-e requires direct attaching of FPGA to the desctop PC with

very short cables or boards. USB 2.0 offers very limited transmission speed to transfer raw

video without compression. Gigabit Ethernet allows high transmission speed even with long

cables, and only requires the proper setup of the PC’s Ethernet connection, which is suitable

for the targeted high-performance real-time depth map estimation system. The Ethernet IP

of the Xilinx supports the TCP, UDP and IP protocols. TCP and UDP are computationally

heavy protocols for the low frequency microblaze processor due to the error detection and

recovery scheme of these protocols. TCP and UDP are mainly useful if there are multiple

devices in the long distance network and if high-frequency processors are used at both sides

of the communication. Since the Microblaze and AXI bus do not operate at very high clock

frequencies of the PC, TCP and UDP communications do not provide high bandwidth using

FPGA. Raw-IP is selected for real-time verification of the system since the image transmission

is over a point-to-point connection from the FPGA to the PC through a relatively short

ethernet cable. Therefore, the chances of transmission errors are much lower than in a

regular network environment, and thus the recovery scheme on the network is not targeted.

Although Raw-Ethernet IP does not support error recovery, it supports checksum-based error

detection. The checksum scheme is utilized in the proposed system to detect the packets

with transmission errors. The PC controls checksum of all the packets, and the images that

include erroneous packet are skipped from the processing of applications and not displayed.

According to the tests, on the average, less than 2 images are dropped in a transmitted flow of

1000 images due to error detection with checksum verification.

On the average, a 435 Mb/s bandwidth is obtained using the Raw Ethernet IP. Although the DE

system can process 55 fps at a 768×1024 XGA video resolution and this speed performance

is functionally verified in real-time using Chipscope, the bandwidth of the implemented

Raw-Ethernet interface allows to transfer maximum 18 fps. The 55 fps performance of the

111

Chapter 6. Embedded System for Depth Map Estimation

hardware will be fully exploitable using USB3 in future versions.

In order to send the image data and disparity maps via Ethernet packets, the images have to

be written into a DDR3 memory. Xilinx provides an Ethernet MAC module for controlling

DDR3 memory. The DDR3 memory should be connected to the microblaze processor through

the AXI Bus in order to be used as an instruction and data memory. Therefore, an interface

between the video processing hardware modules and the AXI Bus is created. All the video

processing hardware modules of the system provide their video output in the same format

consisting of the pixel value, and its respective enable signal, row number and column

number. Since the video processing cores send data in the same format, the same interface

can be used for all kinds of transmissions.

The interface between the video processing cores and the DDR3 Memory Controller is

presented in Fig. 6.5. The interface is composed of an AXI4 Stream FIFO, an AXI DMA engine

and an Output Selector. Two image-sized ping-pong buffer scheme is used in the DDR3

memory. While an image in the memory is sent to the PC via Ethernet, the next image is

written into the other buffer. The Output Selector selects the target image format from the

outputs of the video processing cores according to user command provided through the

GUI, and fills the AXI4 Stream FIFO to transfer those images. The DMA Engine is always

programmed before the first pixel of an image arrives in the AXI4 Stream FIFO. As soon as the

first pixels arrive, DMA Engine starts copying pixels into the DDR3 memory until it encounters

the last pixel which is marked with a last bit flag. As soon as the last pixel is transferred, the

DMA Engine triggers an interrupt to inform the Microblaze that writing the image to the

DDR3 is completed. This interrupt causes Microblaze to switch the destination address of the

DMA transfer to the other buffer. The Microblaze re-programs the DMA Engine before the

next image starts. Since the camera itself provides blank time between sending every images,

this blank time exists for all the output images of the video processing cores. This blank time

is sufficiently long to re-program the DMA Engine before starting to send the first pixel of the

next image.

All the video processing cores have their own video outputs. Synchronously transferring all of

these videos to the PC or simultaneously writing all of them to the DDR3 is not feasible due to

bandwidth limitations. Therefore, the system is implemented to select the output of one of

the video processing cores to transfer to the PC. This multiplexing process is not trivial since

the output images of the video processing cores are not synchronized to each other in terms of

clock frequency and scheduling. All cameras are driven by the same 48MHz clock due to the

requirement of perfect synchronization, however there is no guarantee that the pixel clocks

that cameras send back to the FPGA have the same phase. Therefore three pixel clocks of the

cameras should be separately used for sampling and transferring pixels. The DE hardware

operates with a clock of 190MHz frequency but provides its outputs with the clock of center

112

6.3. Peripherals of the Embedded System

camera. The rendering hardware synthesizes images with the clock of the center camera. In

addition, the outputs of the Camera Interface, DE Hardware and the Rendering hardware

are not synchronized to each other since they work in pipeline manner, thus they provide

the first pixel of the images all in different times. Therefore, a multiplexing mechanism is

implemented to safely switch the data and clock between different possible outputs of the

video processing cores.

The embedded system presented in Fig. 6.2 is designed to transfer 1024×768 resolution

images to the PC in real-time and to allow different possible output combinations with 32-bit

pixel format. The format of the 32-bit pixel is determined by the user through GUI. The

Output Selection module receives the all possible images from the Camera Interfaces, DE

hardware and rendering hardware, and applies multiplexing to provide 32-bit output pixels

values. The selected 32-bit pixel format images are dumped to the AXI FIFO to be transferred

to the PC via Ethernet. The Output Selection module receives 24-bit RGB pixels of the Left,

Center and Right cameras from the Camera Interface, 24-bit RGB and 24-bit YCbCr pixels of

the Left, Center and Right cameras from DE hardware, 8-bit disparity value from DE hardware,

24-bit RGB depth representation value from the Depth Histogram hardware, and 24-bit RGB

synthesized image of the rendering hardware. The Output Selection module is configurable to

support different output formats. The most profitable format for many software-based video

processing application consists of combining the synchronized 24-bit RGB pixel of the Center

image and 8-bit disparity into 32-bits. Therefore, the system can provide an RGB+D output for

the center camera with this 32-bit format. The output selection hardware is able to transfer

RGB or YCbCr images of the any selected camera. In addition, transferring synchronized

snapshots of the Left, Center and Right cameras is important to compute high-quality external

camera calibration parameters. The Output Selection module is configurable to combine

8-bit Y values of the Left, Center and Right images and 8-bit disparity result in 32-bit format.

Therefore, the Output Selection module is able to send gray images of the three cameras in

parallel which are used in the calibration software of the GUI. Moreover, the Output Selection

module can be configured to display disparity images either in RGB or Gray. If the 24-bit

RGB depth display mode is selected to provide better visual histogram, the system does not

transfer the original image pixel together with the disparity value. Therefore, the Output

Selection module utilizes an 8-bit gray disparity value instead of a 24-bit RGB-based depth

representation, if the user selects a configuration to receive the image pixel and depth together

as in RGB+D format.

Figure 6.6 presents the processing scheme of the Output Selection module that allows to

switch between the outputs of the video processing cores. The Output Selection module

receives 12 videos as its inputs. In order to simplify the figure, the multiplexing scheme for 3

videos of video processing cores are presented. In the presented case, the Output Selection

module receives the original left image and original right image from the Camera Interface

modules and the disparity image from the DE module. The Output Selection module needs to

113

Chapter 6. Embedded System for Depth Map Estimation

Figure 6.5: Block-diagram of the interface between the disparity estimation hardware and the
DDR3 memory.

Figure 6.6: Block-diagram of the Output Selection circuit for three possible outputs.

114

6.3. Peripherals of the Embedded System

Figure 6.7: Flowchart representation of the logic block functionality.

multiplex not only data, but also the clock to fill the AXI FIFO. In addition, it should be able to

dynamically switch between the output image of different video processing cores. Immediate

switching between different videos is not trivial since the disparity video and original images

are not synchronous to each other. Two clock multiplexers select a clock of a logic block using

sel_c signal. On the left side of the figure, the three different clock inputs as well as the three

data buses are presented. These buses include the pixel data, the pixel coordinates with row

and column numbers, and the pixel valid signals. A hardware block named Last Pixel Detector

generates a signal that is ’1’ for 12 clock cycles after the last pixel of the image is on the bus.

These signals are named last_l, last_r and last_d in the figure. This information is used by the

Logic Block that generates the select signals for the data multiplexer (sel_d) and for the clock

multiplexers sel_c. The function of this block is to ensure safe switching between the different

clock and data sources, without interrupting image transfers. The logic block also has inputs

named button, which originate from the software accessible registers of the microblaze, to

switch between the depth results, the left camera or the right camera. The command signals

are named button since they transfer the selected functionality pressed on the PC by the

user. The microblaze processor applies the command given by the GUI by accessing software

accessible registers.

Figure 6.7 shows the functionality of the Logic Block. This block ensures that there is no

leftover data in the FIFO buffer while switching between sources. In addition, Logic Block

controls that the new selected source only starts writing data into the buffer when a new frame

starts. If one of the three source is selected, it first checks whether or not the values of sel _clk

and sel _d at a are equal. If this is true, the Logic Block should wait for the current frame to

finish, before changing the select signal of the clock multiplexer. If sel _clk and sel _d at a are

not equal, the block has to wait for current frame of the new source to finish, before changing

the select system of the data multiplexer. During this transition period, when sel _clk and

sel _d at a have different values, the output of the data multiplexer should not be stored in the

FIFO Buffer. This is achieved by forcing the valid signal of the multiplexer output to 0 using

the valid output of the block.

115

Chapter 6. Embedded System for Depth Map Estimation

6.4 Embedded Software

The program that is operating on the MicroBlaze processor has four main functions, the

system setup, controlling the video transfer operations from FPGA to PC, interfacing

between user commands and video processing cores, and operating auto color-gain and auto

shutter-width correction operations.

The first functionality of the microblaze processor is seting-up the hardware while the system

boots up. The microblaze configures the cameras using I2C with the initial parameters.

Then it sets up the networking interface and establishes a connection with the host PC. The

DMA that copies the image data from the FIFO buffer to the DDR3 memory is programmed

to copy the full image. The Output Selection module and the DMA of the Ethernet MAC

are configured. While the DMA of the FIFO buffer is waiting the first image to write to

the DDR3, the microblaze sends start command to the video processing cores through

software-accessible registers. The sampling of the pixels by the Camera Interface starts with

the start command, which completes the boot-up process.

The second functionality of the microblaze processor consists of operating the video transfer.

The program allocates two image sized buffers which are used alternately. The AXI DMA

recognizes when the FIFO buffer contains any data using the ready signal of the AXI4 Stream

interface. It automatically waits for more data to arrive and can therefore copy a full image

without needing any reprogramming, even with varying transmission speeds. As soon as the

DMA Engine transmits the last pixel of the image, it sends an interrupt request to the interrupt

controller. In the interrupt service routine, the DMA Engine is once again programmed to

transmit a full image, but this time to the other buffer. After the service routine has finished,

the program starts sending the complete picture via Ethernet to the host PC. A small header

message is sent to the PC to inform the PC that a new frame is starting. Packages of two rows

of pixels are assembled and sent. Two rows contain 2048 pixels which means a total package

size of 8192 Bytes. This packet size is close to the maximum of 9000 Bytes which facilitates

data handling when receiving images on the PC.

The third functionality of the microblaze processor is interfacing between user commands and

video processing cores. While the microblaze is operating the video transfer, it waits for the

interrupt from the UART to receive the user commands. Therefore, user is able to dynamically

write or read system parameters using GUI through the UART. The communication between

the microblaze processor and the GUI is implemented with 5 byte packets. The first byte of

the packet identifies the type of the request, the next 4 bytes are used to contain data. The

type of the request can be writing or reading the parameters of image sensor through I2C, or

accessing the parameters of video processing cores through software accessible registers, or

auto color-gain and auto shutter-width correction.

116

6.4. Embedded Software

Figure 6.8: Top-level schematic of software accessible registers.

The top-level schematic of the software-accessible registers is presented in Fig. 6.8. The AXI4

Lite bus is connected to 18 32-bit registers to communicate with video processing cores. Each

of these registers has a different address on the AXI4 Lite bus. The Camera Interface Modules

write the average red, green1, blue and green2 values of the images from the three cameras

to the 0th-11th registers to be used for the auto color-gain and shutter-width correction

operations. The registers 12th-16th can be only written by the microblaze processor. The 12th

register is used to control Output Selection module. The 13th register is used to provide the

artificial camera location q of the rendering hardware. The registers 14th-17th are used to

access any parameter register of the rectification hardware or DE hardware. The 2-bits of the

14th register are used as enable signals to identify whether the microblaze writes parameter

register of rectification hardware or DE hardware. The 1-bit of the 14th register is used as a

select module signal to identify whether the microblaze reads parameter register related to

the rectification hardware or DE hardware. The 15th register identifies the address of the

internal register-set of rectification or DE hardware. The 16th register identifies the data to be

written to the internal register-set of rectification or DE hardware modules. The 17th register

identifies the data to be read from the internal register-set of rectification or DE hardware

modules. Therefore using four 32-bit software accessible registers (14th-17th), the microblaze

is able to access any address of the register-set of rectification or DE hardware modules for

read or write purposes. The functionality of internal configuration register-set of the DE

hardware is presented in Chapter 8.

The fourth functionality of the microblaze processor consists of operating auto color-gain

and auto shutter-width correction operations. The auto color-gain and auto-shutter width

117

Chapter 6. Embedded System for Depth Map Estimation

corrections are useful to obtain almost identical color values for the same object from

different cameras, which is one of the important requirements of high-quality disparity

estimation. Additionally, these corrections are important to obtain better visual quality

from the images. Auto color-gain correction is useful for white balance since in this

case, the average of red, green and blue values should be expected to be equal. Auto

color-gain correction is also used to slightly increase or decrease the brightness of the

image. Auto shutter-width correction is useful to adjust the exposure time of the cameras

to adapt different light conditions. Hence, if the environment is dark or very bright, the

exposure time can be automatically adjusted to obtain satisfactory disparity estimation results.

The user provides the expected average red, green and blue values to the GUI. Then the

GUI transfers these expected color values to the microblaze. The microblaze compares the

average color values read from the Camera Interface modules with the user expectations,

then iteratively increases or decreases the analog color-gain and shutter-width parameters

of the image sensors through I2C depending on the comparison results. The microblaze

first arranges shutter-width to roughly reach the target values and subsequently changes

analog-color gains to make sensitive adjustment. Changing the shutter-width parameter, i.e.

exposure time, increases or decreases the frame rate of the camera if it is utilized out of a

certain range. The user is also able to provide a command from the GUI to fix or unfix the

frame rate using the Keep Current FPS button. If the fix frame rate option is selected from

the GUI, the shutter-width is adjusted until the limit of the certain range to keep the initial

frame-rate, then corrections are mainly made on analog color-gains.

118

7 Hardware and Software based
Applications of Disparity Estimation

Depth map estimation can be used in a wide range of image and video processing applications.

This thesis presents several real-time hardware and software based applications of disparity

estimation. The implemented applications conceptually prove that the high-quality and

high-performance RGB+D outputs of the proposed real-time disparity estimation hardware

can be used for enhanced 3D based video processing applications. Firstly, the free view

sythesis hardware that utilizes trinocular disparity estimation is presented. Secondly, the

real-time software applications of disparity estimation operating at PC are presented.

7.1 Free View Synthesis Hardware Using Trinocular Disparity

Estimation

The recent development of high-quality free viewpoint synthesis algorithms and their

implementations allows to realize glasses-free 3D perception. Although many algorithms

are developed for this application, the real-time hardware realization of a free viewpoint

synthesis for real-world images is challenging due to its high computational load and memory

bandwidth requirements. In this Chapter, the first real-time high-resolution free viewpoint

synthesis hardware utilizing the proposed three-camera disparity estimation is presented.

The proposed hardware generates high-quality free viewpoint video at 55 frames per second

using a Virtex-7 FPGA at a 1024 × 768 XGA video resolution for any horizontally aligned

arbitrary camera positioned between the leftmost and rightmost physical cameras.

7.1.1 Hardware-Oriented Three-Camera Free Viewpoint Synthesis Algorithm

The simplified classical concept of three-camera horizontally aligned free viewpoint synthesis

is illustrated in Fig. 7.1. Assuming that an object is viewed as a single pixel in the x coordinate

119

Chapter 7. Hardware and Software based Applications of Disparity Estimation

Figure 7.1: Definition of the three-camera free viewpoint synthesis setup.

pc of the center image, pl of the left image and pr of the right image, then the disparity of a

pixel at pc is d = pl - pc = pc - pr . If the free view image is generated for an arbitrary camera at

location q (-1 ≤ q ≤ 1, the normalized location of the left camera is at -1, and the right camera

is at 1), 3D trigonometry dictates that the view coordinate of the same object in the generated

image can be computed as pfv = pc - q × d. Hence, the pixel at pc of the center image can be

picked and mapped to coordinate pfv of the synthesized image. The free view synthesis is a

complex problem using real-world images considering that the computation of the correct d

for every pixel is very challenging especially for object boundaries, low textured regions and

occluded parts of the images. In addition, the real-time implementation of high-quality free

viewpoint synthesis algorithm causes significant challenges due to high computational load

and memory bandwidth requirements, especially for high-resolution video.

The proposed hardware-oriented three-camera adaptive weight free viewpoint synthesis

(TAW-FVS) algorithm generates the free viewpoint images of any single horizontally aligned

arbitrary camera positioned between the leftmost and rightmost cameras. The TAW-FVS

algorithm consists of three steps. First, lens distortions and camera misalignments are

corrected using camera calibration and rectification. Second, the disparity values of every

pixel of the center image are computed using the proposed trinocular adaptive weight

disparity estimation algorithm. Third, free views are synthesized by a low computational cost

rendering algorithm using the images of the three cameras, the disparity values of the center

image and the position of the arbitrary camera (q).

Internal and external calibration values of the cameras are computed off-line using the

Open-CV multiple camera calibration toolbox [70]. The Caltech rectification algorithm [50]

is used to horizontally align the images captured from the three cameras. The proposed

trinocular DE and rendering algorithms are developed to support efficient parallel operations,

to consume low hardware resources and to avoid the requirement of the external memory

while providing high quality free viewpoint synthesis results.

120

7.1. Free View Synthesis Hardware Using Trinocular Disparity Estimation

Figure 7.2: The illustration of free viewpoint synthesis algorithm that utilizes trinocular
disparity estimation. (Each square grid represents 4×4 pixels. Only one out of four column/row
grids are represented to improve the clarity of the representation).

The quality of the free viewpoint images essentially depends on the quality of the disparity

estimation. Two-camera DE causes wrong disparity estimation values for the occluded

regions. The three-camera DE solves most of the occlusion issues and provides much better

DE results thanks to its double-checking scheme, i.e., using DE results of center-left and

center right image pairs. Moreover, the three-camera system extends the horizontal range of

the arbitrary camera location compared to the two-camera version.

In order to obtain high-quality and real-time DE, the trinocular DE algorithm that is presented

in Chapter 4 is used. The proposed T-AWDE algorithm provides significantly better DE quality

than the binocular AWDE by exploiting the fusion of the DE results of the center-left and

center-right pairs. During the DE process of every pixel of the center image, the candidate

disparities on the right side are searched for the center-left pair, and the candidate disparities

on the left side are searched for the center-right pair. The T-AWDE compares the hybrid cost

values of the center-left and center-right pairs for every disparity to select the one that exhibits

a minimum cost as a disparity value. As an addition to the T-AWDE algorithm, an adaptive

penalty is used in the DE step of the TAW-FVS algorithm. An adaptive penalty is utilized

depending on the location of the free viewpoint while comparing the cost values computed

by center-right and center-left pairs. If q < 0, the disparity selection is conducted to select

the disparity value assigned by the center-left pair, and if q ≥ 0, the disparity selection is

conducted to select the disparity value computed by the center-right pair by adding | q | × 150

to the matching cost of one pair. Adverse effects of sensitive rectification errors and wrong

disparity selections are significantly removed using adaptive penalty. Subsequently, the

T-AWDE iteratively smoothens the computed disparity map using the brightness values of the

neighboring pixels following the refinement scheme prescribed by AWDE algorithm [9].

The rendering algorithm is applied upon completion of the DE process of the center image.

The rendering process involves two steps as presented in Fig. 7.2. First, the arbitrary disparity

maps of the arbitrary camera are synthesized by translating the disparity map of the center

camera to the location of the arbitrary camera. If q < 0, the arbitrary disparity maps of the

121

Chapter 7. Hardware and Software based Applications of Disparity Estimation

arbitrary-center and arbitrary-left pairs are generated. If q ≥ 0, the arbitrary disparity maps of

the arbitrary-center and arbitrary-right pairs are generated. In the next step, the free viewpoint

is synthesized using the arbitrary disparity maps and the existing camera pictures.

As presented in Fig. 7.2, more than one pixel of the center camera’s disparity image can map

to the same pixel of the translated disparity map image. In this case, the higher disparity

value belongs to a closer object, thus the higher disparity overwrites the lower disparity. Any

pixel that is not mapped during the translation process identifies an occlusion; this location is

marked as a not-validated pixel location. In order to obtain valid depth values for occluded

regions, those pixels are filled by an inpainting method. When the disparity of a pixel is not

validated, the disparity data from the last valid value is repeated. This inpainting process

is applied from left-to-right when q < 0, and right-to-left when q ≥ 0. The translated and

inpainted depth map is then multiplied by | q |, (1 - | q |) and again (1 - | q |) to create the

arbitrary-center, arbitrary-right and arbitrary-left disparity values, respectively. Those disparity

values and the validity information are used to reconstruct the arbitrary image. The pixels of

non-occluded, i.e. validated, areas are taken from the center image. The pixels of occluded, i.e.

not-validated, areas are taken from the left image if q < 0, or from the right image if q ≥ 0.

7.1.2 Real-Time Free Viewpoint Synthesis Hardware

The block diagram of the full system that implements the TAW-FVS algorithm is presented in

Fig. 7.3. A Virtex-7 FPGA included in the VC707 Evaluation Board is used to prototype the

developed hardware. The cameras are perfectly synchronized using the method explained in

Chapter 4. All the real time video processing computations are implemented in hardware. The

PC is used as a display, to control the system and to obtain camera calibration parameters.

The resulting free views are transferred to the PC using 1Gb raw Ethernet. A standard 2D

TV is connected to the PC using HDMI, which offers a better display and emulates a future

glass-free 3D TV. A MicroBlaze softcore is used to initialize cameras through I2C, to control

Ethernet and to communicate with the PC. A DDR3 memory is only used for Ethernet

buffering. The camera interface, rectification, disparity estimation and rendering hardware

blocks are designed to avoid utilizing DDR3 memory; thus they receive a stream input and

provide a stream output. Therefore, the video processing core can be easily converted to a

single ASIC. The system is able to send either the 32-bit pixel RGB+Depth video of the center

camera, or the RGB video of any physical camera, or the synthesized RGB video of a free view.

The implemented Caltech rectification hardware utilizes 64 on-chip BRAMs for each of the

cameras. Each BRAM is used to buffer one row of the image. The rectification hardware

processes the images of three cameras in parallel, and synchronously transfers rectified YCbCr

images to the disparity estimation module. The details of the Caltech rectification hardware is

presented in Chapter 5.

122

7.1. Free View Synthesis Hardware Using Trinocular Disparity Estimation

Figure 7.3: Block diagram of the free viewpoint synthesis system.

The DE hardware of the TAW-FVS system is based on the T-AWDE hardware presented in

Chapter 4. The T-AWDE hardware is composed of two high-performance and high-quality

binocular disparity estimators presented in Chapter 3. The outputs of the two estimators are

two maps, one associated to the center-left pair of cameras and the other associated to the

center-right pair. A fusion block selects which disparity value of these two maps will compose

the final three-camera disparity map by comparing the matching costs computed by the two

pairs. The fusion block of the DE hardware of TAW-FVS system adds adaptive penalties to

the matching costs depending on the position of the arbitrary camera. Finally, three-camera

DE hardware iteratively refines the DE values to smoothen the computed disparity map

using the brightness values of the neighboring pixels. The disparity estimation hardware

buffers the input pixel values using 39 BRAMs for each camera to realize a window based

matching scheme. The 8-bit disparity values and the 24-bit pixels of the left, center and right

cameras are additionally buffered and synchronized using 16 BRAMs for each channel before

transferring these data to the rendering hardware.

123

Chapter 7. Hardware and Software based Applications of Disparity Estimation

Figure 7.4: Rendering hardware (pipeline stages are not shown).

The rendering hardware is presented in Fig. 7.4. The rendering hardware is blind to the

DE process. It receives the synchronized left, center and right RGB camera images and the

disparity image of center camera as its inputs, row by row. The synthesized image is the

output. The arbitrary camera location q is dynamically sent from the GUI. q is defined as a

5-bit signed fixed-point value to allow 32 arbitrary locations where ‘00000’ represents the

center camera location.

4 BRAMs are used to buffer 4 rows of each input channel. The rendering process is handled

row by row. The least significant bits of the row number are used to select the BRAM. The

column number is used as an address. The translation state machine generates row numbers

and column numbers to read back the disparity map BRAMs pixel by pixel. Concurrently,

pfv values are computed using fixed-point multiplication and subtraction hardware, then

rounded to the closest integer. pfv is used as write address of the Translation BRAMs where

the shifted disparity values are buffered. A 2×1024 size flip-flop array is used to buffer the

validity bits. The validity array keeps track of the not-validated pixel locations which require

inpainting. Whenever a disparity value is written to the pfv address of the Translation BRAMs,

124

7.1. Free View Synthesis Hardware Using Trinocular Disparity Estimation

the column location pfv is marked as valid by comparing pfv with 1024 possible column

addresses using 1024 comparators. The pixels in a row that are not validated remains as

not-validated pixels since the validity array of a row is reset after the process of row synthesis.

The view synthesis state machine generates row numbers and column numbers to read back

the Translation BRAMs and validity array pixel by pixel. The reading scan direction of a

column is set from 1023 to 0 if q < 0, and 0 to 1023 if q ≥ 0 since the inpainting direction

changes according to the arbitrary camera location. The validity bit is used as a select

signal of a multiplexer. If the pixel is not validated, the disparity value previously stored in

the flip-flop replaces it, i.e. paints the read disparity value. The translated and inpainted

disparity value is multiplied by | q | and (1-| q |) to compute the arbitrary disparity values of

the arbitrary-center, arbitrary-left and arbitrary-right camera pairs. Arbitrary disparity values

are used as a read address for the input channel BRAMs. The selection of the source pixel is

handled by multiplexers. If the pixel is validated, the pixel of the center image is used as the

synthesized pixel. If q < 0 and the pixel is not validated, the pixel of the left image is used as the

synthesized pixel. If q ≥ 0 and the pixel is not validated, the pixel of the right image is used as

the synthesized image pixel. Synthesized image pixels are buffered in two output BRAMs. The

output handling state machine reads back the output BRAMs pixel by pixel, and sends outputs

of the rendering hardware as the final output of the free viewpoint synthesis hardware.

7.1.3 Implementation Results

The proposed real-time three-camera free viewpoint synthesis hardware is implemented

using Verilog HDL, and verified using Modelsim 10.1d. The Verilog RTL models are mapped to

a Virtex-7 XC7VX485T FPGA comprising 607k Look-Up-Tables (LUT), 303k DFFs and 1030

BRAMs. The rectification hardware consumes 13% of the LUTs, 6% of the DFF and 19% of the

BRAM resources of the FPGA. The trinocular DE hardware consumes 25% of the LUTs, 11% of

the DFF and 16% of the BRAM resources of the FPGA. The rendering hardware consumes 1%

of the LUTs, 1% of the DFF and 2% of the BRAM resources of the FPGA.

The system is functionally verified in real-time. The speed performance of the free viewpoint

synthesis hardware core is limited by the working frequency and parallelization of trinocular

DE hardware. The hardware core operates at 175 MHz after place & route. The trinocular DE

hardware and thus the complete TAW-FVS system can process up to 55 fps at a 1024 × 768

XGA video resolution for a 128 pixels disparity range. Although this speed performance is

verified using Chipscope, the current display output of the system is 18 fps due to bandwidth

limitation of raw Ethernet output. The 55 fps performance of the hardware will be fully

exploitable using USB3 or HDMI in the future.

125

Chapter 7. Hardware and Software based Applications of Disparity Estimation

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7.5: Real-time snapshots captured by the proposed system. (a) Left image (b) Center
image (c) Right image (d)IR-AWDE for center-left (e) T-AWDE (f)IR-AWDE for center-right (g)
synthesized free viewpoint image for an arbitrary camera located at q=(-0.5) (h) synthesized
free viewpoint image for an arbitrary camera located at q=(0.5) (images best viewed in high
resolution from the pdf files)

126

7.2. System GUI and Software Based Real-Time Applications

Real-time snapshots captured by the proposed system are presented in Fig. 7.5. While

capturing multiple consecutive snapshots, models stand stable in front of the system. The

horizontal locations of some specific locations are marked off-line with dashed lines in

original left, center and right images in Fig. 7.5a, Fig. 7.5b, and Fig. 7.5c, respectively. The

center-left, trinocular and center-right DE results provided for the center camera image

are presented in Fig. 7.5d, Fig. 7.5e, and Fig. 7.5f, respectively. The trinocular DE solves

most of the occlusion and wrong estimation errors by the fusion of the DE results of the two

pairs which is essential to synthesize high-quality free view images. The synthesized free

viewpoint images of two artificial viewpoints q=(-0.5) and q=0.5 are presented in Fig. 7.5g

and Fig. 7.5h, respectively. The efficiency of the presented system is evidenced by horizontal

pixel coordinates of the marked location in the synthesized image. Moreover, correct 3D

appearance and occlusion effects in the synthesized free viewpoint images can be identified

by observing the background objects near the models in Fig. 7.5.

7.2 System GUI and Software Based Real-Time Applications

In this section, the graphical user interface of the system running in PC is explained. The

software of the GUI delivers three fundamental tasks: the capture and display of the video

output of the FPGA, allowing user to send commands to the system, and developing software

based real-time applications. Several software applications are developed using the disparity

estimation hardware. The implemented software applications are: Speed and distance

measurement, depth based image thresholding, head-hands-shoulders tracking, virtual

mouse using hand tracking, face tracking integrated with free viewpoint synthesis, and

stereoscopic 3D display. The implementation details of these applications are presented

in this section. The GUI, the visual results of video processing cores and the software based

application running in PC are demonstrated in a video in Appendix A.

7.2.1 Capture and the display of the video

In order to capture and display the images on a PC platform, dedicated software is developed

using Qt. Qt is very suitable to make the GUI work on different operating systems such as

Windows, Mac OS and Linux. Since the data is sent to the PC using raw-ethernet, receiving the

packets would usually require low-level access in the TCP/IP stack. The packet capture (pcap)

library is used for Linux and Mac OS to access to packet data, and the winpcap library is used

for windows operating system. Following to the real-time tests, Linux provides the fastest data

transfer rate for raw-ethernet, thus the GUI is developed and verified mainly on Linux OS.

As described in the Chapter 6, the incoming image is sent by consecutively transferring of

packets that include two rows of the image. Each of the row includes 1024 32-bit pixels.

Therefore, 368 packets should be send to complete the transfer of a 768×1024 resolution

image. Additionally, at the beginning of every image, a pre-defined header packet is sent from

127

Chapter 7. Hardware and Software based Applications of Disparity Estimation

Figure 7.6: Screen shot of the stream viewer software running on Linux.

the FPGA. The GUI counts the number of the packets between two headers, to determine if

the full image is successfully transfered. If the transfer is successfully completed, the image is

displayed and processed, otherwise it is skipped. If the user prefers to display 8-bit disparity

results, the most significant 8-bits of the 32-bit pixels is equally used in the R, G and B channels

to visualize gray images. Otherwise, the 24-bit least significant bits of the 32-bit pixels are used

in the R, G and B channels to be displayed.

7.2.2 Front-end of the GUI

In this subsection, the user-friendly front-end, i.e. presentation, layer of the GUI is presented.

The front-end of the GUI is design to easily send the commands of the user to the system.

The snapshot of the GUI is presented in Fig. 7.6. The GUI include display monitor in its left

side, and the 4 control tabs in its right side. The four tabs are named as Main, FPGA Reg, Cam

Reg and Para Ctrl. The Main tab allows the user to switch between the output data format of

the FPGA and the implemented 3D-based video processing applications. In addition, auto

color-gain and shutter-width corrections are initialized from the Main tab. The FPGA Reg tab

allows the user to reach any software-accessible register of the microblaze processor. The

parameter registers of the video processing cores can be controlled by using the FPGA Reg

tab. The registers of the Aptina Cameras can be read or changed using the Cam Reg tab. The

Para Ctrl tab is used to define the expected approximate body sizes of the user to be used for

head-shoulders-hands tracking. The details of the front-end of the GUI are visually presented

in Appendix A.

128

7.2. System GUI and Software Based Real-Time Applications

7.2.3 Software based real-time applications

The user is able to select the display format and software application through the GUI. Several

software applications are developed using the disparity estimation system. The implemented

software applications are: Speed and distance measurement, depth based image thresholding,

head-hands-shoulders tracking, virtual mouse using hand tracking, face tracking integrated

with free viewpoint synthesis, and stereoscopic 3D display. The real-time performance of

the applications are presented in Appendix A. The software applications are implemented

to evidence that the high-quality RGB+D outputs of the proposed system can be used to

develop advanced 3D-based video processing applications in real-time, though improving the

theory of the software applications itself is not targeted. Future possible improvements of the

software applications and their prospective advanced utilizations are explained. 1

Distance and Speed Measurements

The system sends a disparity map to the PC. The depth of the pixel or the distance of the object

from the camera can be calculated by using this disparity value by the GUI. The eq. 2.2 that is

presented in Chapter 2 formulates the depth z as a function of the baseline, the focal length,

and the measured disparity. The baseline chosen for the initial setup is B = 10cm and the focal

length of the lenses is f = 6mm. Since the unit of the disparity is the number of the pixels, the

f value should be also represented using the number of pixels. The f value with the unit of

pixels is obtained as 941 from the camera calibration. The f and baseline values are written to

the GUI by the user, a single time at the system power-on. If different type of optics are used

or if the distance between the cameras are changed, the user is required to change the new

fixed values in the Main tab of the GUI. The GUI is able to convert the disparity d to a distance

z for every pixel using eq. 2.2. Since the computational load of eq. 2.2 is very low, and it can

easily run in real-time, the conversion from disparity to depth is not implemented in hardware.

Since the distance can be computed for every pixel, computing the speed of the pixel into

the direction z is also straightforward. The GUI computes the speed of the pixel in terms of

cm/s using the frame rate and the change of distance z of a pixel, from image to image. The

expression of the computation of speed (spd cm/s) is provided in eq. 7.1, where zn and zn+1

identify the distance of the pixel with the unit of cm in two consecutive images n and n+1,

respectively. fps represents the instantaneous frame rate of the camera. Currently, the speed

and distance value can be numerically visualized for every clicked pixel from the GUI. The

distance image is visualized in the monitor for all pixels. The high-resolution speed image

can be visualized in the future, which can be useful to measure and display the speed of the

vehicles and sportsmen.

1The software applications head-hands-shoulders tracking, virtual mouse using hand tracking, and face tracking
integrated with free viewpoint synthesis, are developed in EPFL, as a collaboration with Youngjoo Seo, a phd
candidate at KAIST, Korea.

129

Chapter 7. Hardware and Software based Applications of Disparity Estimation

spd = (zn+1 − zn)× f ps (7.1)

Depth Based Image Thresholding

A depth-based thresholding application is developed to be used as an alternative method of

the green-wall technique used in the cinematography. In cinematography, green walls are

used to replace the background with another image or video. Since the proposed system

provides high-quality RGB+D outputs for every pixel, a similar technique can be implemented

without using green walls.

In this application, first, the snapshot image of the static background is taken. The threshold

disparity value is provided by the GUI. If measured disparity (d) of any RGB pixel is higher

than the given threshold, it is regarded as the frontground and the RGB value is displayed.

Otherwise, the pixel of the background image that is captured at system initialization is

displayed. Therefore, if the object is far enough, it disappears from the display, and it is

displayed if it is close enough.

In the current application, the system operates with the background image of the same

environment. The background image can be changed with the picture of another environment

in the future. In addition, instead of static background, a video of the another environment

can be used as a background in the future. Thereby, any person or object can integrated in

a video of another environment in real-time, which can be useful for the journalists for the

presentation of live-tv news and sport events.

Head, Hands and Shoulders Tracking Using Skeltrack Software

The head-hands-shoulders tracking application is implemented using the open source

Skeltrack software [90]. Skeltrack is originally implemented to benefit from the depth

estimation results of Kinect. It utilizes a data-driven approach presented in [91] for real-time

human skeleton detection. It does not use any database of pre-recorded body positions. In

replacement of Kinect’s depth result, the input to the software is obtained from the depth

results of the proposed system. The Skeltrack software efficiently performs in real-time to

track the head, hands and shoulders. The skeleton detection can be used to play computer

games. In addition, the skeleton detection can be integrated with human pose estimation

and gesture recognition techniques in the future. Since the presented system can operate

outdoors, the human behavior can be detected outdoors which can be used in surveillance

130

7.2. System GUI and Software Based Real-Time Applications

applications or in sports events. Occlusion is an important problem in efficient human pose

estimation. Several proposed systems can be used to monitor the same environment without

interference. Therefore, the user can be surrounded by multiple of proposed depth estimation

systems to provide efficient real-time pose estimation results without occlusion problem.

Virtual Mouse Using Hand Tracking

The virtual mouse application is implemented by tracking hands and fingers using the

algorithm presented in [92]. Convex and concave points in the hand are found using the

depth image. The concave locations present the finger tips. Less than two concave points

on the hand are a sign of a closed palm, i.e. a fist pose. The fist pose of the hand is utilized

to identify clicking. If the hand is open, the user is able unclick and freely move the mouse.

The virtual mouse application can be used to play computer games or implement touch-less

device control. A similar finger tracking and identification technique can be used to implement

touch-less keyboard application in the future.

Face Tracking Integrated with Free Viewpoint Synthesis

The free viewpoint synthesis requires to receive an arbitrary camera location q from the GUI.

Two different methods are implemented to dynamically change the arbitrary camera location.

In the first method, the cursor on the GUI is utilized to switch between different viewpoints

in real-time. In the second method, the location of the user with respect to the monitor is

used to dynamically change the q values. The face tracking algorithm presented in [93] is

implemented in the GUI to detect the location of the user. The RGB camera of the PC is used

for the face tracking. The integration of the face tracking in to the GUI to interact with the free

viewpoint synthesis hardware allows the user to freely move its observation point between

the cameras. This implementation can be used to allow the users to watch sports events in

real-time from any viewpoint that they select, in the future.

Stereoscopic 3D Display

The system is able to switch to stereoscopic 3D Display mode to visualize Green and Blue

values obtained from one camera and the Red value obtained from the other camera.

Currently the system can be used to visualize 3D using color anaglyph-based 3D glasses.

The 3D visual quality can be increased using active-glasses based 3D display in the future. In

addition, since the system is able to provide a disparity result for every pixel, it can be used

for implementing advanced augmented-reality applications. Any 3D object can be artificially

placed at any distance, and the user can interact with these arbitrary objects.

131

8 ASIC Implementation of Binocular
Disparity Estimation

The ASIC implementation details of the binocular DE hardware is presented in this chapter.

The ASIC is designed to be used as an accelerator for any system that requires stereoscopic

depth computation. The ASIC solution for the developed hardware offers crucial advantages

to the system compared to its FPGA implementation, such as consuming less power, faster

performance and cost effectiveness. On the other hand, the ASIC implementation suffers

some additional constraints compared to the FPGA implementation. These restrictions are

mainly related with the pin count, area and the usage of multiple clock domains. Therefore,

several modifications are applied to the binocular DE hardware that is presented in Chapter 3.

In this chapter, first, the specifications of the ASIC implementation is presented. Secondly, the

modifications applied on the binocular DE hardware are presented. Lastly, the ASIC design

and its possible utilization scheme are presented.

8.1 Disparity Estimation ASIC Specifications

The binocular DE hardware core is implemented in an ASIC using TSMC 40nm bulk

CMOS technology. DE module is chosen for the ASIC implementation since it is the main

computationally intensive module of the complete two camera depth estimation system

presented in Fig. 8.1.

The DE ASIC is designed to receive a stream input of images, and to provide a stream output

of RGB+D or YCbCr+D data. It does not require external memory for the computation of

disparity results. The ASIC is configurable through SPI interface to support different features.

The binocular DE ASIC is designed to support trinocular DE by using two ASIC chips.

133

Chapter 8. ASIC Implementation of Binocular Disparity Estimation

Figure 8.1: Depth estimation system that is utilizing two cameras

The ASIC implementation of the DE hardware dictates some additional constraints to the

DE hardware verified on FPGA. DE hardware is an internal module in FPGA. The number

of the pins is not a constraint for the DE hardware core of FPGA implementation, since the

inputs and outputs of the DE module are internal signals of the complete system of the FPGA.

However, the IOs of the DE module are the main pins of ASIC implementation, and a very high

number of pin utilization can drastically increase the total chip area. The hardware resource

consumption is an important but not a limiting restriction for FPGA implementation, since a

Virtex-7 FPGA already provides a high amount of hardware resources. However, the low area

implementation of ASIC may significantly reduce the cost of the chip. Therefore, hardware

resources should be efficiently used for the ASIC implementation. The power consumption is

not a significant constraint for the FPGA implementation of the DE hardware since the FPGA

board already consumes high amount of static power due to the high amount of components

134

8.1. Disparity Estimation ASIC Specifications

on the board and the high static leakage of the LUT resources of the FPGA even in idle mode.

Therefore, FPGA boards are typically used with power plugs. On the contrary, the power

consumption of the ASIC can be significantly reduced by efficient utilization of the hardware

resources, and it can be used in portable vision systems for which power consumption can be

essentially important. Briefly, important design constraints have to be met for the ASIC design

such as the chip area, the pin number and the power.

Three different versions of the ASIC are implemented considering three different specifications.

The first one belongs to the ASIC design of the non-optimized FPGA implementation. The

second one belongs to the optimized version of the first design which can be used together

with any external forward mapping based rectification. The third one,i.e. final ASIC design,

do not support forward mapping based rectification, but it can support external backward

mapping based rectification and the implementation of trinocular DE using two chips. This

section presents the main characteristics of the final DE ASIC. The analyses of the different

design choices in order to obtain an efficient ASIC are presented.

The top-level block diagram of the final version of the ASIC is presented in Fig. 8.2. The

descriptions of Controller, RDA, RCM, ADS and IR modules are presented in Chapter

3. The modifications to the binocular DE hardware required for ASIC compatibility are

presented in Section 8.2. The top-level inputs and outputs of the ASIC are visualized in Fig. 8.3.

The ASIC is designed to receive the input images directly from cameras or an external device

that processes backward mapping based rectification. The ASIC includes its own camera

interface module, but does not include the rectification hardware. The rectification hardware

is not included in the ASIC implementation since it requires a high number of BRAMs (a

BRAM can be named SRAM in an ASIC). The inputs of the ASIC can be configured as either

a 10-bit Bayer or 24-bit RGB or 24-bit YCbCr format. The hsync and vsync synchronization

signals should be sent to ASIC for the capture of the pixels. The implementation details of the

configurability of input format selection are explained in Section 8.2.

24-bit synchronized RGB or YCbCr image pixel are provided as an output of the ASIC in

addition to 8-bit disparity values. Therefore, the final version of the ASIC is designed to act as

RGB+D or YCbCr+D camera. Usually, cameras provide their outputs as pixel data, pixel clock,

hsync, and vsync signals. The ASIC implementation provides its outputs in the signal format of

typical cameras to enable its straightforward integration to various already existing systems

and applications. The DE hardware is constrained to operate at 200 MHz clock frequency to

compute disparity results in real-time. The outputs of the ASIC are provided with the pixel

clock of the input camera (which is typically much lower than 200 MHz) to allow easy and

low-noise capture of its RGB+D or YCbCr+D results by the external device.

135

Chapter 8. ASIC Implementation of Binocular Disparity Estimation

Figure 8.2: Modules present in the Disparity Estimation ASIC

Figure 8.3: top level inputs and outputs of the disparity estimation final ASIC.

One of the most important constraints for the implementation of the ASIC relates to the

utilization of BRAMs. The BRAM of the Xilinx FPGA contains 1024 addresses. 36-bit data can be

stored in each address of these BRAMs. These BRAMs can be configured as a single-port BRAM

or dual-port BRAM. Therefore, the utilization amount of BRAMs does not change depending

on the selection of single-port or dual-port BRAM. The utilization of dual-port BRAMs is more

convenient for most of the video processing applications, since these BRAMs allow to read and

write concurrently. However, the selection of the dual-port or single-port BRAMs, significantly

affects the total area of the ASIC implementation. The ASIC area comparison of BRAMs for

the single and dual-port BRAMs is presented in Table 8.1. Dual-port BRAMs approximately

consume two times the area of single-port BRAM. Therefore, single-port BRAMs should be

136

8.1. Disparity Estimation ASIC Specifications

Table 8.1: ARM SRAMs Area Configuration Comparison (in µm2) .

Configuration Single-port True Dual-Port

Bitcel 0.299 0.589
24 bits × 1024 24239 62998
8 bits × 1024 10012 21846

Table 8.2: Approximate power consumption for the different SRAM types of the ASIC design
(in mW).

SRAM type Internal power Switching power Leakage power Total power

SP 24-bits × 1024 2.231 0.016 0.178 2.426
DP 8-bits × 1024 0.784 0.009 0.416 1.210
DP 24-bits × 1024 1.473 0.023 0.927 2.424

used as most as possible to reduce the area of the ASIC. An additional restriction about the

BRAMs utilization stems from high power consumptions of the SRAMs. The approximate

static power dissipated by one SRAM block for three different types are presented in Table 8.2.

The power analysis is made for a case where an activity factor is 0.4, clock frequency of the

DE module is 200 MHz, and the operating voltage is 0.8 V. A significant power consumption

difference between single-port and dual-port 24-bit × 1024 memories is not observed.

However both 2.426mW and 2.424mW are high power consumption values. Therefore, the

hardware should be designed to utilize a small number of BRAMs to reduce the power

consumption. The adaptation of the DE hardware to the ASIC implementation considering

the BRAM type selection and the reduction of the number of BRAMs is presented in Section 8.2.

The hardware includes a programmable register list to be configured by the user. These

registers allows user to configure the ASIC according to targeted applications. The ASIC chip

includes SPI-slave interface to be programmed by an external device. The parameters, their

default values and addresses are presented in Table 8.3. The description of the parameters are

presented in Table 9.4.

137

Chapter 8. ASIC Implementation of Binocular Disparity Estimation

Table 8.3: Register list and default values.
1 = always 1; 0 = always 0; d = programmable; – = read only

Register # Register Description Data Format (binary) Default Value (decimal)

0 Chip Version – 1
1 Row Size – 767
2 Column Size – 1023
3 Disparity Range 0000 0000 dddd dddd 255
4 Disparity Start 0000 0000 dddd dddd 0
5 Disparity End 0000 0000 dddd dddd 255
6 Disparity Estimation Start Column 0000 00dd dddd dddd 173
7 Disparity Estimation End Column 0000 00dd dddd dddd 949
8 Disparity Display Start Column 0000 00dd dddd dddd 173
9 Disparity Display End Column 0000 00dd dddd dddd 949

10 Disparity Refinement Level 0000 0000 0000 dddd 7
11 Parameter tr7×7 0000 0000 0000 0ddd 5
12 Parameter tr13×13 0000 0000 0000 0ddd 2
13 Parameter ap7×7 0000 0000 0000 0ddd 5
14 Parameter ap13×13 0000 0000 0000 0ddd 4
15 Parameter ap25×25 0000 0000 0000 0ddd 2
16 Threshold w 0000 0000 dddd dddd 8
17 YCbCr 0000 0000 0000 00dd 0
18 Total Block Cycles – 118
19 Input Pixel Format 0000 0000 0000 00dd 0
20 Output Pixel Format 0000 0000 0000 000d 0
21 Search Direction 0000 0000 0000 000d 0
22 Searched and Processed Images 0000 0000 0000 000d 0
23 System Pause 0000 0000 0000 000d 0
24 Reserved – 0
25 Reserved – 0
26 Reserved – 0
27 Reserved – 0
28 Reserved – 0
29 Reserved – 0
30 Reserved – 0
31 Reserved – 0

138

8.1. Disparity Estimation ASIC Specifications

Table 8.4: Core Registers descriptions

Regs. # Bits Default Name

R0
2:0 1 Chip Version (RO)

Version of the current hardware.

R1
9:0 767 Row Size (RO)

Number of rows

R2
9:0 1023 Column Size (RO)

Number of columns

R3

7:0 127 Disparity Range (RW)

Computed disparity range.

Must be in the interval [92;255].

R4

7:0 0 Disparity Start (RW)

The disparity estimation algorithm rejects disparity candidates found

below this value.

R5

7:0 127 Disparity End (RW)

The disparity estimation algorithm rejects disparity candidates found

above this value.

R6
9:0 173 Disparity Estimation Start Column (RW)

Column at which the DE starts to compute a disparity value.

R7
9:0 949 Disparity Estimation End Column (RW)

Column at which the DE ends to compute a disparity value.

R8

9:0 173 Disparity Display Start Column (RW)

Column at which the DE starts to display the computed disparity values.

Below it, returned values are zero.

R9
9:0 949 Disparity Display End Column (RW)

Column at which the DE ends to display the computed disparity values.

Above it, returned values are zero.

R10
2:0 3 Disparity Refinement Level (RW)

Disparity Refinement level, not yet implemented

R11

2:0 5 Parameter tr7×7 (RW)

Parameter tr7×7.

See Chapter 3, equation 3.2.

R12

2:0 2 Parameter tr13×13 (RW)

Parameter tr13×13.

See Chapter 3, equation 3.2.

R13

2:0 5 Parameter ap7×7 (RW)

Parameter ap7×7 = 2R13.

See Chapter 3, equation 3.6.

139

Chapter 8. ASIC Implementation of Binocular Disparity Estimation

R14

2:0 4 Parameter ap13×13 (RW)

Parameter ap13×13 = 2R14.

See Chapter 3, equation 3.6.

R15

2:0 2 Parameter ap25×25 (RW)

Parameter ap25×25 = 2R15.

See Chapter 3, equation 3.6.

R16

7:0 8 T hr esholdw (RW)

Parameter T hr esholdw .

See Chapter 3, equation 3.3.

R17

1:0 0 YCbCr (RW)

Select Y, Cb or Cr for DE computations.

Y = 0, C b = 1, Cr = 2.

R18

7:0 0 Total Block Cycles (RO)

The number of 7×7 blocks in a row that are used for disparity

estimation calculation

R19

1:0 0 Input Pixel Format (RW)

Controls the input pixel color format

Y C bCr = 0, RGB = 1, B ayer = 2.

R20

0:0 0 Output Pixel Format (RW)

Controls the output pixel color format

Y C bCr = 0, RGB = 1.

R21

0:0 0 Search Direction (RW)

The search direction of processed pixel

Search the left side = 0, Search the right side = 1.

R22

0:0 0 Searched and Processed Images (RW)

Determining Processed and Searched Images as either left or right images

Processed image is the left image=0, Processed image is the right image=1.

R23

0:0 0 System Pause (RW)

System run and pause

Run=0, Pause=1.

140

8.2. Adaptation of Disparity Estimation Hardware for ASIC

8.2 Adaptation of Disparity Estimation Hardware for ASIC

Several modifications are applied to the binocular DE hardware presented in Chapter 3

considering the ASIC design specification presented in Section 8.1. In this Section, the

modifications to the binocular DE hardware are presented.

DE hardware module implemented on FPGA receives row and column numbers together

with the pixel values. Row and column numbers require 10-bit for each of these signals.

Therefore 40-bits should be used for two cameras only to identify the location of the pixel.

Since these 40-bits were internal signals inside the FPGA hardware, this process does not

cause any additional cost for the FPGA implementation. However, this high number of pins

may unnecessarily increase the total area of the ASIC since the pitch of the PADs, i.e. distance

between the center of the two adjacent PADs, should be large enough to do not limit the

capacity of wire bonding technology.

The ASIC implementation is designed to receive inputs either directly from cameras or from

another device that realizes backward mapping based rectification. In both cases, input

pixels should be regularly provided to ASIC together with hsync and vsync signals. A camera

interface module is integrated with the DE hardware to allow utilization of hsync and vsync for

pixel addressing instead of row and column values. Thereby, the required pin count of the DE

module for pixel addressing is reduced from 40 to 4 pins for the ASIC implementation. The

same procedure is also applied to the outputs of the ASIC. The RGB+D or YCbCr+D outputs

of the ASIC are provided with hsync and vsync singals instead of row and column values to

reduce the number of pins.

The rectification hardware of the DE system that was provided between camera interface

and DE module is removed for the ASIC implementation. Removing rectification hardware

is important to reduce the on-chip memory area of the ASIC. As presented in Chapter 5,

the Caltech rectification hardware utilizes 128 BRAMs for the rectification of two camera

images in parallel. E-CLUTR hardware utilizes 111 BRAMs for storing the look-up-tables. This

amount of BRAM utilizations would significantly increase the total area of the chip. Therefore

rectification hardware is not integrated in the ASIC design, still using an external rectification

device is possible.

The camera interface module of the FPGA implementation only receives 10-bit Bayer pixels.

However, an external device operating rectification may provide its outputs as either 24-bit

YCbCr or 24-bit RGB. In order to support inputs from both a rectification device and a camera,

the input pixel data width is set to 24-bits. The multiplexing scheme is implemented for the

camera interface. If the cameras are carefully aligned, and thus, the rectification process is

not mandatory, the user can program the ASIC to receive its input in Bayer format. In this

141

Chapter 8. ASIC Implementation of Binocular Disparity Estimation

case, the camera interface captures the least significant 10-bits of the 24-bit data channel

as 10-bit Bayer pixels, counts row and column numbers using hsync and vsync signals, and

applies Bayer to RGB and YCbCr conversions. If the inputs of the ASIC are programmed for

RGB format, camera interface of ASIC applies necessary RGB to YCbCr conversion. This

multiplexing scheme not only allows the utilization of an external rectification device, but also

allows the utilization of a camera with RGB or YCbCr format.

After the capture of images by the camera interface, camera interface sends the YCbCr pixel

data to the BRAM controller together with its respective row and column numbers. The BRAM

controller module writes the pixels into the addresses of the target BRAMs. During the write

process, the DE module needs to read back the pixels from multiple BRAMs in parallel. The

DE module needs to read pixels from 31 BRAMs in parallel to achieve the high bandwidth

requirement of the DE process. Concurrent read and write processes could be handled using a

minimum of 31 dual-port BRAMs if an external memory is used with the system. However,

at least 7 additional dual-port BRAMs are needed since the pixels are captured row by row,

and the DE module processes 7 rows in parallel. Moreover, the number of dual-port BRAMs

should be more than 38.

The final ASIC design utilizes 39 single-port BRAMs for buffering each input image. The DE

module can work with 39 single-port BRAMs for each image, since it does not need to reach

the data of the next 7 rows while it reads pixels from 31 rows. Although the buffering of 38

rows is enough for the operation of DE hardware, buffering one additional row is allowed to

provide additional margin for a possible camera dis-synchronization problem.

The clock frequencies of the DE module and camera are different. Dual-port BRAMs can

be read and written by two clocks with different frequencies. However, utilizing the same

scheme is not possible for a single-port BRAM since it only includes one clock port. Two

different solutions are tested to solve multiple clock domain problem. The first solution

consists of using clock multiplexers at the clock port of the single-port BRAMs. During the

write process of a BRAM, reading is not required due to the utilization of additional 8 buffer

BRAMs. Therefore, the BRAM controller can multiplex the clock input of a BRAM during its

write process. This solution efficiently works for both FPGA realization and ASIC simulations.

However, driving 39×2=78 single-port BRAMs with two clocks and applying the dynamic

multiplexing method causes significant challenge to meet timing constraints. Therefore, an

alternate second solution is proposed.

In the second solution, the outputs of the Camera Interface are written in a FIFO using the

pixel clock. This data is read back by the BRAM controller using the fast clock of the DE

module. These FIFOs are visualized in Fig. 8.2. Since the clock of the DE module is much

142

8.2. Adaptation of Disparity Estimation Hardware for ASIC

faster than pixel clock, the FIFO can not be full. Therefore, the FIFO is designed to include

only 3 words.

Using the BRAMs of the ASIC instead of the BRAMs of the FPGA offers an additional advantage

in terms of on-chip memory size by removing redundant memory utilization. BRAM of the

FPGA has a fixed size of 1024 addresses and each address includes 36-bits. However, the size

of the BRAMs of the ASIC can be arranged by the designer. Since the pixels and disparities

are stored in the BRAMs of the FPGA with 24-bit or 8-bit formats, there were redundant

memory utilizations. This redundancy of on-chip memory utilization is removed for the ASIC

implementation by generating SRAMs only at required sizes.

The DE ASIC is designed to support trinocular DE using two ASICs. Binocular AWDE

implementation of FPGA searches the pixels of the left image in the right image. It is not

able to search the right image pixel in the left image, since this process needs to change the

searching direction. Trinocular DE hardware that is presented in Chapter 4 supports searching

center image pixels in opposite directions in the left and right images. However, its search

direction is fixed (right to left) in the left image and fixed (left to right) in the right image.

Instead, the DE ASIC is designed to switch between the images to be able to process DE for

the left image or right image. This process is handled by applying two modifications on the

binocular DE hardware. The address generation scheme of the controller is modified, and

image multiplexers are inserted between the input FIFOs and BRAM controllers.

The processed and searched images can be switched by image multiplexers. In Chapter

3, the input buffer BRAMs are named as Left Image BRAMs and Right Image BRAMs. In

Chapter 4, the input buffer BRAMs are named as Left Image BRAMs, Center Image BRAMs and

Right Image BRAMs. However, the input BRAMs of the ASIC implementation are named as

Processed Image BRAMs and Searched Image BRAMs, as presented in Fig. 8.2. The disparity

values are computed for processed image by searching their pixels in candidate disparities of

the search image. In the ASIC implementation, the target BRAMs of the input images can

be switched by input image multiplexers. The input image multiplexer is controlled by the

user using parameters of the ASIC. In addition, the search direction is also parameterized. If

the user programs the ASIC to process the left image, the Controller utilizes increasing order

of address for Searched BRAMs. If the user programs the ASIC to process right image, the

controller utilizes decreasing order of address for Searched BRAMs.

Since the DE can be processed in any of the right and left image, trinocular DE can be

implemented using two ASICs. In this case, the center image should be connected to two

ASICs. Two ASICs should be programmed for searching opposite directions and to use

opposite BRAM multiplexing behavior. The external device should be connected to two ASICs

143

Chapter 8. ASIC Implementation of Binocular Disparity Estimation

to obtain two disparity maps. For realizing efficient trinocular DE, not only two disparity

maps but also minimum matching cost (C) values are needed. Therefore, the ASIC design

also synchronizes 8-bit matching cost value together with the RGB+D values. Therefore, the

final ASIC design acts as a RGB+D+C camera. The hybrid cost value of the binocular AWDE

algorithm can be between 3072 to 0, for which 0 identies perfect match. Therefore, 12-bits are

needed to define the matching cost. In order to decrease the pin count, the 7 least significant

bit of the 12-bit cost are used as the 7 least significant of the 8-bit cost output. If the matching

cost is higher than 127, the most significant bit of 8-bit C output is assigned as 1. Therefore,

for the cost comparison, if the most significant bit of the 8-bit cost is 1, the pixel value can be

considered as not-trustable. Otherwise, the disparity with smaller value obtained from any

pair can be used in final trinocular disparity map. The switching ability of the input images is

not only important for allowing trinocular DE, but also binocular DE results can be enhanced

with a double-checking scheme using two ASICs. In this case, the left and right images should

be processed in parallel using two ASICs.

Another modification of the DE hardware relates to the write operation into the register

list of the parameters. In the FPGA implementation, the write operation into the register

list does not need any specific IO protocol since addresses and data can be generated by

internal parallel wires. However, parallel access to the 32-bit write data, 32-bit read data, 5-bit

address and 1-bit enable would consume 70 additional pins of the ASIC. Therefore, a slave SPI

interface is implemented in the ASIC. The SPI interface requires 4 pins for its Serial Clock

(SCLK), Slave Select (SS), Master Out Slave In (MOSI) and Master In Slave Out (MISO) signals.

The adaptations for the ASIC implementation are verified in real-time using FPGA emulation.

The possible utilization model of the ASIC in a complete system is presented in Section 8.4.

8.3 ASIC Design

This chapter covers the ASIC design of the DE hardware from the synthesis to the placement

and routing steps. A CMOS TSMC 40nm technology is used to design the ASIC. Three different

versions of the DE hardware are synthesized for the ASIC, each includes different capabilities.

Important results obtained from these syntheses are presented. Then, the place and route

process of these three synthesized hardwares are performed. Three different place and route

version of the DE hardware are presented and compared. Finally, the possible utilization

model of the ASIC in a complete system is presented.

144

8.3. ASIC Design

8.3.1 Synthesis

The synthesis of the DE hardware is performed with the Design Vision and Design Compiler

tools from Synopsis. The design constraints focus on the timings and area. The hardware is

synthesized for a DE system frequency of 250 MHz and camera clock frequency of 70 MHz

to provide sufficient margins enabling utilization with a wide range of systems and camera

sensors.

The synthesis results of the netlists corresponding to three different configurations are

reported on Table 8.5. As explained in Section 8.2, only dual-port memories were part of the

system at the beginning of the project. The synthesis results using only dual-port BRAM are

presented in 8.5 under the column Configuration-I. The Configuration-I utilizes 64 dual-port

BRAMs for buffering input pixels of each cameras. During the development, the second

configuration (Configuration-II) involving single-port memories has been implemented. The

Configuration-II utilizes 64 single-port BRAMs for buffering input pixels of each camera. The

Configuration-I and Configuration-II allow the ASIC to capture its inputs from backward

or forward mapping based rectification, but not directly from cameras. Configuration-I

support more challenging camera misalignment than Configuration-II for the forward

rectification since it utilizes dual-port BRAMs. The Configuration-I and Configuration-II

provide RGB+D outputs but they do not deliver synchronized matching costs. Moreover these

two configurations do not allow switching between the left and right images to change the

processed image for disparity computations.

The third configuration (Configuration-III) covers all the specifications that are presented in

Section 8.1. The Configuration-III utilizes 39 single-port BRAMs for buffering input pixels of

each camera. It allows to directly capture inputs from cameras or from backward mapping

based rectification. Reducing the number of BRAMs from 64 to 39 is not only important

to reduce the area of the ASIC, but also to reduce power consumption. Configuration-III

provides synchronized cost values together with RGB+D or YCbCr+D outputs. Moreover, it

allows switching between the left and right images to change the processed image for disparity

computations. Therefore, Configuration-III supports trinocular DE system if two ASICs are

used. As presented in Table 8.5, memory blocks consumes most of the area of the ASIC design.

Configuration-III is the most efficient solution in terms of area since it utilizes less BRAM than

the other configurations and benefits from single-port BRAMs.

These three configurations are implemented and synthesized. Their gate-level netlist and

Standard Delay Format (SDF) files containing the timing delays are generated. The ASIC

designs are verified with post-synthesis simulations using Modelsim. The place and route

results of these three configurations are presented in the next section.

145

Chapter 8. ASIC Implementation of Binocular Disparity Estimation

Table 8.5: Area report of the three synthesized hardware.

Configuration I Configuration II Configuration III

Number of 8×1024 DP SRAMs 16 16 32
Number of 24×1024 DP SRAMs 160 32 32
Number of 24×1024 SP SRAMs - 128 78

Number of ports 230 230 128
Number of nets 20989 20864 24919

Combinational area (mm2) 0.196155 0.357315 0.358311
Buf/Inv area (mm2) 0.019642 0.040513 0.030437

Noncombinational area (mm2) 0.237605 0.697702 0.654184
Memory blocks area (mm2) 10.429225 5.468099 4.605677

Total area (mm2) 10.882627 6.563631 5.618173

8.3.2 Placement and Routing

The Place & Route of the synthesized gate-level netlists are processed by using the Encounter

Digital Implementation (EDI) tool from Cadence Design Systems. TSMC 40nm CMOS

technology is used for the design. Three different place & route designs are implemented,

each includes one of the three configurations presented in Table 8.5. Post-P&R simulations

are performed with Modelsim to verify the ASIC designs.

The most important decision for the place and route process relates to the placement of the

SRAM blocks in the floorplan. SRAMs occupy the major area of the ASIC. Therefore, they must

be carefully placed without creating timing or geometry violations.

First Design

The first design utilizes Configuration-I. The core is placed in the center and is surrounded

by the SRAM blocks. This arrangement reduces the length of the wires that connect the

memories. The memory blocks are grouped according to their respective function. For

example, as can be see on Fig. 8.4, the 64 SRAMs that store the pixels from left image are

placed together on the left of the core, and the 64 SRAMs that store the pixels from right image

are placed together on the right of the core. This design scheme reduces the wire density since

some of the nets of the grouped SRAMs are shared. Fig. 8.7a presents the designed ASIC. The

dimensions of the floorplan of second design is 3804×3928 µm with a core size of 249×3542

µm with density of 50.045%. The total area is 14.94 mm2.

146

8.3. ASIC Design

Figure 8.4: Floorplan of the first design.

Second Design

The second design utilizes Configuration-II. It presents a smaller die area than the first design

since the 128 dual-port 24-bits SRAMs are replaced with two times smaller single-port SRAMs.

In addition, a second metal layer is added to the power rings of the second design to have a

better margin for the current flow. The floorplan arrangement is nearly the same as the first

design with a central core as presented in 8.5. The dimensions of the floorplan are 3304×2990

µm and the core is 399×2936 µm with a density of 90.876%. The total area of the second

design is 9.883 mm2. Therefore the total area is reduced by 33.8% compared to the first design.

Third Design

The third, i.e. final, design utilizes Configuration-III. The design realizes all the specifications

presented in Section 8.1. The dimensions of the floorplan are 3000×2659 µm and the core is

456×2605 µm with a density of 94.01%. The total area is 7.977 mm2. It presents a smaller

die area than the second design since 39 BRAMs are used instead 64 BRAMs for buffering

pixels of each camera. Therefore, the total area is reduced by 19.2% compared to the second

design, and by 46.6% compared to the first design. Further memory size reduction is possible

if the ASIC is designed to capture and store only Y data instead of YCbCr, and to output only

147

Chapter 8. ASIC Implementation of Binocular Disparity Estimation

Figure 8.5: Floorplan of the second design.

8-bit disparity results but not the synchronized RGB values. However, only providing disparity

value as an output may limit the ASIC to be used in RGB+D based applications.

This design supports a clock frequency up to 200 MHz clock. This clock frequency maintains

a 63 fps performance for 1024×768 resolution DE for a 128 pixels disparity range, which

is slightly higher than the maximum possible performance of the FPGA implementation.

Expectedly, ASIC implementations can target faster performances compared to FPGA

implementation, but it should be noted that the Virtex-7 FPGA utilizes a 28nm technology

whereas the ASIC is designed using a 40nm technology.

The total power dissipated by the ASIC chip of the second and third designs are compared in

Table 8.6. The power analysis is made using the Power Analysis tool of Encounter considering

an activity factor is 0.4 and an utilized clock frequency of the DE module at 200 MHz. 0.81 V

supply is used for the three power rings VDDCE, VDDPE and VDD.

As presented in Table 8.6, the second and third designs consume 647 mW and 557 mW of

power, respectively. The largest amount of power is consumed by the SRAM blocks. According

to the number of the utilized BRAMs given in Configuration II in Table 8.5 and the power

148

8.3. ASIC Design

Figure 8.6: Floorplan of the third design.

consumption of SRAM blocks in Table 8.2, the second design consumes 408 mW of power, only

for SRAMs. The third design utilizes Configuration III, therefore it approximately consumes

306 mW of power, only for SRAMs. Therefore, the power consumption of the second design is

reduced by decreasing the number of BRAMs, although some new functionalities are included

into the third design such as the support of configurable search directions and enabling direct

connection to the camera.

Table 8.6: Total power of the DE ASIC (in mW).

P&R
Total Internal

Power
Total Switching

Power
Total Leakage

Power
Total

Power

Second Design
463.8 112.1 70.8 646.5
71.7% 17.3% 19.9% 100%

Third Design
388.9 99.7 68.1 556.7
69.8% 17.9% 12.2% 100%

Figure 8.7 presents the three ASIC designs and Table 8.7 summarizes their respective sizes

and areas. The third design is more efficient in terms of area. Fig. 8.8 presents the ASIC after

placing the IO pads at the periphery of the floorplan. In addition, filler cells are added to

fill the remaining holes of the die. The dimensions of the final ASIC after placing pads are

3450×3080 µm. The total area is 10.626 mm2.

149

Chapter 8. ASIC Implementation of Binocular Disparity Estimation

Table 8.7: Dimensions of ASIC designs

First Design Second Design Third Design

Floorplan (µm) 3804×3928 3304×2990 3000×2659
Floorplan Area (mm2) 14.94 9.883 7.977
Core (µm) 249×3542 399×2936 406×2605

(a) First design (b) Second design

(c) Third design

Figure 8.7: The three disparity estimation ASIC designs after P&R. For visual comparison, the
proportions have been kept. (a)First design (b)Second design (c) Third design

150

8.4. Test System

Figure 8.8: The final ASIC design after P&R and placing the IO pads

8.4 Test System

After the manufacturing of the ASIC, post-fabrication verification should be performed. In

order to verify the behavior of the system, a test environment is proposed. This section

presents the functions of this system.

Figure 8.9 shows the proposed complete system for the verification of ASIC. The proposed test

system utilizes VC707 evaluation board. Another board with much less hardware resource can

be used for the test environment, but changing the FPGA type may require additional design

time. After the fabrication of the ASIC, it will be placed on a test-board. This board will be

connected to the FMC connector of the FPGA. The ASIC and FPGA will be communicated

through the FMC connector. The hardware on FPGA will transfer either the rectified image

pixels to the ASIC or it will by-pass the camera signals. The ASIC will be configured through

the SPI interface. The final RGB+D results of the ASIC will be captured by FPGA with a

ASIC Interface module. This module is similar to the camera interface module, since the

ASIC provides its outputs with the format of the camera. The outputs of the ASIC will be

transferred to the PC using ethernet. The high resolution disparity estimation ASIC will

remove the hardware complexity of DE from the FPGA based complete system. Consequently,

the implemented ASIC may allow the development of cheap depth estimation systems.

The emulation of the proposed system is presented in Fig. 8.10. In this setup, two FPGAs

are connected to each other using FMC to FMC cable. The FPGA above emulates the

ASIC implementation which involves DE hardware. The FPGA below involves microblaze

processor, and SPI master, Ethernet and DDR3 interfaces. The FPGA below is connected to the

cameras, which bypass the pixels to the ASIC emulator and controls the register set of DE

hardware using SPI interface. ASIC emulator provides RGB+D results to FPGA below. FPGA

below transmits the RGB+D results to PC using Ethernet. The emulation set-up verifies the

151

Chapter 8. ASIC Implementation of Binocular Disparity Estimation

standalone functionality of the DE hardware. The FPGA above will be replaced with the ASIC

implementation as presented in Fig. 8.9.

Figure 8.9: Top-level diagram of the test system of ASIC. One VC707 board is connected to the
test-board containing the ASIC package.

Figure 8.10: The emulation and verification set-up of the ASIC.

152

9 High-Quality Omnidirectional
Multi-Camera Systems

This chapter presents two implementations that are proposed to improve the existing real-time

360°×90° omnidirectional cameras. First, the equal area distribution method is presented [57].

This method provides homogeneous resolution over the entire reconstruction area. The equal

area distribution method is implemented in the real-time system presented in [19] to improve

the realistic aspects of its omnidirectional video outputs. Still, the omnidirectional video

quality of this system is limited by the 352×288 resolution of the image sensors. Therefore,

secondly, a new system is implemented using high-resolution cameras [58, 59]. An ultra high

resolution omnidirectional video record system called Giga-Eye is implemented to generate

very high quality 360° video with an off-line processing. In this system, 44 5MP Cameras are

used to generate 21.6 MP omnidirectional video at 30 fps and 81.3 MP omnidirectional video

at 9.5 fps.

9.1 Enhanced Omnidirectional Image Reconstruction Algorithm

and Its Real-Time Hardware Implementation

The equal area distribution method and its hardware implementation are proposed to enhance

realistic aspects of omnidirectional camera. In this section, the details of the proposed

enhanced omnidirectional image reconstruction algorithm (EOIR) that utilizes the equal

area distribution method, its flexible real-time hardware architecture, and its implementation

results are presented.

9.1.1 Equal Area Distribution Algorithm

The OIR algorithm [19] presented in Chapter 2 provides more importance to top view than the

side cameras in the constructed omnidirectional image. This unequal partitioning causes

slightly unrealistic omnidirectional images. The picture in Fig. 9.1a is captured from the

omnidirectional camera presented in [19] which utilizes OIR algorithm. In addition, images

153

Chapter 9. High-Quality Omnidirectional Multi-Camera Systems

captured by the top camera and one of the side cameras are shown in Fig. 9.2. As observed in

Fig. 9.1a where linear pixelization is applied as the pixelization method, the details on the

sides of the image, exemplified by desks located on the right side, occupy less area compared

to the contribution originating from the top camera, considering ceiling and lamps in this

case. Conversely, since the human eye naturally observes along the horizontal axis naturally

fallowed by the majority of conventional imaging applications, data located in the horizontal

plane is more important than data issued from the top plane.

The ‘On hemisphere’ line in Table 9.1 indicates the ratio of the covered surface area over total

hemispherical area for various θ angles, assuming that the surrounding space is observed

from the center of the hemisphere in Fig. 2.5a. The other entries in the table present an

elliptical distribution (an alternate way of pixelization method based on elliptical surface

area distribution), and the existing linear distribution method of OIR. As expected due to

the basic 3D geometry, the Equal Area Distribution of EOIR results completely match with

the On Hemisphere calculations, resulting in equal resolution distribution on the whole

hemispherical surface. In contrast, when the linear pixelization proposed in [19] (Linear

Distribution in Table 9.1) is applied, the resolution of the reconstructed image decreases

from the top to bottom, and the contribution from top cameras is overestimated, while data

from side cameras is undervalued. The picture taken from top cameras utilize more pixels on

the omnidirectional image than the side view cameras as observed in Fig. 9.1a and Fig. 9.2

which results in providing less resolution for side cameras than the top cameras. Therefore,

a novel pixelization method is proposed based on equal area distribution. The anticipated

method allocates Nθ latitude pixels with respect to the surface area of hemispheres covered

at particular θ angles. An example is presented in Fig. 9.3, where the total surface area

considered at θ = π/6 is shown by spherical cap S. The contribution at each θ angle is

calculated using equations (9.1) and (9.2), derived using 3D geometry. In contrast to linear

pixelization, this method results in varying latitude pixel steps, which produces a non-linear

relation between the Nθ and θ angles, which is presented in Fig. 9.4.

Table 9.1: Surface Area Coverage (%) with respect to θ angles (radians) for Possible Pixelization
Methods.

π/2 π/3 π/4 π/6 π/12
On hemisphere (reference) 100 50 29 13 3.4
Equal Area Distribution 100 50 29 13 3.4
Elliptical Distribution 100 25 13 6 2
Linear Distribution 100 66 50 33 17

∫ 2π
0

∫ θ
0 r 2 sinθdθdϕ

2πr 2 = Nθ

256 (9.1)

154

9.1. Enhanced Omnidirectional Image Reconstruction Algorithm and Its Real-Time
Hardware Implementation

(a)

(b)

Figure 9.1: 256 × 1024 resolution omnidirectional 2D reconstructions using a) Linear
pixelization b) Equal area distribution

(a) (b)

Figure 9.2: Captured images from two different cameras a) top camera b) side camera

155

Chapter 9. High-Quality Omnidirectional Multi-Camera Systems

Figure 9.3: Hemispheric structure for resolution calculation in terms of ppaa

Figure 9.4: Relationship between N and - angle for different methods of pixelization

arccos
(
1− Nθ

256

)
= θ (9.2)

The universally accepted unit of measurement of 2D image resolution is line pairs per

millimeter (lp). Since all the longitudes merge on the pole of hemisphere, this unit is not

an appropriate measurement for defining hemispherical image resolution. Therefore, we

provide a new suitable unit of measurement which is the Pixels Per unit Angular Area (ppaa)

metric. The unit angular area is defined in this context as the surface area of a spherical cap

with exactly 1° θ angle which provides constant surface area on hemisphere due to the fixed

radius for all possible θ and ϕ. Resolutions at different θ angles which are presented in Fig.

Table 9.2: Resolution values [ppaa] for different θ angles

θ Angle Corresponding Unit Angular Area Linear Equal Area Distribution
0° A 2913 39.92

10° B 146.3 39.92
39.6390° C 39.92 39.92

80° D 26.81 39.92
80° E 26.81 39.92

156

9.1. Enhanced Omnidirectional Image Reconstruction Algorithm and Its Real-Time
Hardware Implementation

9.3 are compared in Table 9.2 in terms of their ppaa. When the linear pixelization scheme is

adopted, small θ angles (top view) yield a very high resolution such as 2913 ppaa for θ = 0°,

gradually decreasing for higher θ angles. For instance, θ = 80° produces a ppaa value 26.81,

which is approximately 100 times smaller than ppaa of θ = 0°. Since the human eye captures

constant resolution while looking at different angles, linear pixelization does not provide

realistic enough hemispherical images. On the other hand, the equal area pixelization scheme

provides a homogeneous resolution distribution over the entire omnidirectional image by

distributing 39.92 ppaa. Hence, as shown in Fig. 9.1b, the equal area distribution scheme

realizes realistic pictures by homogenously distributing equal number of pixels to the top view

and side view cameras.

Equal Area Distribution is not only important for the visual quality but also it is significant for

interconnected network of multiple cameras and FPGAs while generating real-time panorama.

The EOIR algorithm equalizes the usage of the pixels of the cameras for the panorama

reconstruction. Therefore, it equally distributes the network traffic between multiple FPGAs.

This advantage of EOIR is proved by omnidirectional camera system presented in [83] which

utilizes 49 cameras and 7 FPGAs. [83] benefits from the EOIR algorithm to equalize network

traffic between 7 FPGAs. In this thesis, the hardware implementation details of EOIR is only

explained for the system presented in [19]. The benefit of EOIR for the interconnected network

of FPGAs for the panorama construction is detailed in [83].

The block-diagrams of the OIR and EOIR algorithms are shown in Fig. 9.5. The main

computationally intensive part of the OIR and EOIR algorithms is the projection computations,

i.e. pixel position generation. This module is same for both OIR and EOIR. Since the

algorithmic enhancements are on θ angle generation and interpolation, the proposed

enhancements are easily adapted to the hardware presented in [19]. The final implementation

allows user to switch between OIR and EOIR.

9.1.2 Hardware Implementation of Equal Area Distribution Algorithm

The hardware platform which has been presented in [19] is used to implement the EOIR

algorithm in real-time. Since the proposed EOIR algorithm is a hardware-oriented algorithm,

its adaptation into the system presented in [19] is straightforward. As shown in Fig. 2.3,

the platform consists of two concentrator FPGAs handling local image capturing with 20

imagers in parallel, a central FPGA to control concentrator FPGAs and to transmit final

omnidirectional images to the PC, and four 40MB SRAM memories buffering captured

images. Each single camera provides 352× 288 resolution images at 25 fps. As shown in

Fig. 9.6, the main processing of the algorithm is handled in the Concentrator FPGA and it

involves six sub-blocks. The details of the Cameras Control, Camera Input Channels, Data

Transmit Multiplexer, Data and Control Unit, Memory Controller modules and efficient

memory organization are presented in [19]. In this subsection, the hardware implementation

of the EOIR algorithm is presented for the Image Processing and Application Unit of the

157

Chapter 9. High-Quality Omnidirectional Multi-Camera Systems

Figure 9.5: Block diagram of omnidirectional image reconstruction algorithms

158

9.1. Enhanced Omnidirectional Image Reconstruction Algorithm and Its Real-Time
Hardware Implementation

Figure 9.6: Block diagram of the Concentrator FPGA

concentrator FPGA.

The proposed hardware implementation of the omnidirectional image reconstruction is

flexible to realize the OIR and EOIR algorithms with configurable resolutions, AOV and

camera selection options. Options are selectable by the embedded soft controller (microblaze

processor) and the GUI.

The system-level architecture of the EOIR algorithm consists of five sub-blocks depicted in

Fig. 9.7. The angle generation module shown in Fig. 9.8 creates the spherical coordinates of

pixel direction ω=(θω, ϕω) using two accumulators. To generate all possible combinations

of θω and ϕω, one accumulator is assigned to increment, while the other completes its

full-range cycle. Here, θ and ϕ have separate linear incrementing indexes Kθ and Kϕ as well as

minimum and maximum values defined for both angles, which are all parameters supplied to

the reconstruction system. Defining initial and final value parameters of θ and ϕ provides

flexibility to visualize either the whole reconstruction of 360°×90° image or some portion of

the vision of Panoptic camera. The parameterized incrementing indexes Kθ and Kϕ define the

step amount, thereby the size of omnidirectional image.

A 13-bit look-up-table in Fig. 9.8 is used for implementing equation (9.2) in order to add the

new pixelization scheme based on the equal resolution distribution. Arccos operation and

divisions for θ processing are pre-computed for all different values of Nθ and placed in a

lookup table (LUT) to save the hardware resources.

159

Chapter 9. High-Quality Omnidirectional Multi-Camera Systems

Figure 9.7: Block diagram of the omnidirectional vision reconstruction unit inside the image
processing and application block

Figure 9.8: θ and ϕ angle generation module architecture for the OIR and EOIR
implementations

Figure 9.9: Architecture of the camera select and distance generation sub-block for the EOIR
algorithm

160

9.1. Enhanced Omnidirectional Image Reconstruction Algorithm and Its Real-Time
Hardware Implementation

In order to supply the user with the ability to switch between the OIR and EOIR algorithms in

real-time processing, the output of the OIR algorithm is delayed by two clock cycles using two

pipelined registers as shown in Fig. 9.8. This additional pipelining has no adverse effect on the

throughput of the OIR algorithm.

Following the computation of θω and ϕω, the ω vector is generated in the next sub-block

named ω vector generation in Fig. 9.7. This sub-block is used as it is presented in [19]. The

camera select and distance generation module in Fig. 9.6 identifies cameras that contribute

into pixel direction ω. This block is also in charge of calculating weights for interpolation.

If the linear interpolation method is chosen, the weights of contributing cameras and their

corresponding indexes are sent to the interpolation sub-block. On the other hand, if the

nearest neighbor scheme is chosen, a maximum search of the weights of the contributing

cameras is carried out, and the index of the camera with the maximum weight is passed to the

pixel position generation sub-block, as depicted in Fig. 9.9.

The algorithmic studies in [84] presents that distances to objects can be processed from

omnidirectional images of the scene captured from distinct reference centers of panoptic

camera by processing the residual of these omnidirectional images. The farthest neighbor

interpolation method is proposed to provide significant amount of residual compared to

nearest neighbor interpolation for the possible 360° depth map estimation without changing

reference center. A maximum-distance search algorithm is supplied to the omnidirectional

image reconstruction hardware for the implementation of the farthest neighbor interpolation

method, in order to retrieve the light intensity value from the farthest camera. This operation

is handled as the exact inverse operation of the nearest neighbor method that is presented

above. The block-diagram of minimum-maximum search and bypass unit is also shown in

Fig. 9.9. Effective residual generation results obtained using this method is presented in [57],

but the depth map generation using this residual has not been studied. The algorithm and

hardware implementation of 360° depth map estimation using this method can be studied in

future.

After determining which cameras correspond to the projection of each ω vector, the pixel

position module retrieves the contributing pixel value on the image frame of the contributing

cameras from the SRAM. Subsequently, this retrieved value is sent to the interpolation

sub-block in order to implement linear interpolation using the pixels received from the

contributing cameras. Finally, this sub-block supplies the calculated intensity value to the

data link and control unit.

161

Chapter 9. High-Quality Omnidirectional Multi-Camera Systems

Figure 9.10: Reconstructed 360° views

9.1.3 Implementation Results

The proposed hardware architectures are implemented using VHDL. The VHDL RTL codes

are synthesized and mapped to Xilinx XC5VLX50-1FF1153 FPGAs using Xilinx ISE 11.5. The

hardware implementations are verified with post place and route simulations using Mentor

Graphics Modelsim 6.2b and the full verification is carried out on the Panoptic camera

platform.

Table 9.3: Implementation Results

Resources & Parameters Unit OIR EOIR
[19]

Occupied Slices
Occupied 4127 4105
Utilization 57% 57%

Slice LUTs
Occupied 9343 9351
Utilization 32% 32%

Slice registers
Occupied 10538 10621
Utilization 36% 36%

BRAM/FIFO
Occupied 22 24
Utilization 45% 50%

Maximum Clock Frequency MHz 212 212
Latency cycles 116 118

The resource allocation of omnidirectional image reconstruction hardware on the selected

platform is presented in Table 9.3, in which EOIR indicates the configurable hardware that is

able to implement both OIR and EOIR algorithms, providing a selection for the user to choose

either of them. The results given in Table 9.3 indicate the required hardware resources for a

single FPGA that performs operations for 40 cameras. The hardware resource consumption

is divided by two using two concentrator FPGAs each performs operations for 20 cameras.

Hardware resource consumption details about the central FPGA is provided in [19].

The total pipeline latency of the OIR implementation is equal to 116 clock cycles. This latency

162

9.2. Giga-Eye Camera

increases in the EOIR implementation to 118 clock cycles, without causing an effect on

the throughput of the pipelined system. Arithmetic operations are implemented in 16 bit

fixed-point precision format, which provides good tradeoff between image quality, hardware

area and clock frequency.

The post place and route maximum operating frequency is measured by the XILINX ISE

timing analyzer tool at 212 MHz, which is identical for both OIR and EOIR implementations.

As observed in Table 9.3, the hardware implementation of the EOIR algorithm does not cause

a significant increase of resources over the OIR’s implementation. The area and the memory

usages approximately match, while the resolution of the 3D reconstructed image and the

quality of the residual are visibly improved.

Finally, the 256×1024 resolution omnidirectional images that are reconstructed at 25 fps are

transmitted to the PC through a USB channel. Subsequently, 2D omnidirectional images are

converted to 3D using OpenGL C++ and the Qt library, as a real-time video display process. Fig.

9.10 shows two different views of a real-time 360°×90° image produced after the construction

of the real-time omnidirectional image on the computer. The EOIR implementation is used in

a system that utilizes Panoptic Camera and Oculus Rift [85] to artificially make the viewer feel

himself being at the place of the omnidirectional camera. In addition, the presented system

may be used with prospective future 360° hemispheric displays. Thereby, improvements

presented in this section of thesis participates in the effort of providing virtual reality.

9.2 Giga-Eye Camera

The quality of the real-time omnidirectional images obtained by the system presented in the

previous section is limited by the low resolution of the image sensors. Therefore, very high

quality omnidirectional video quality is targeted using high-resolution cameras. In order

to reach this goal, a high quality omnidirectional video recording system is implemented

using 5MP cameras. The target of the research presented in this section is not real-time

omnidirectional video reconstruction, but triggers research in real-time ultra-high resolution

omnidirectional video processing and its applications.

In this work, cameras are positioned in a way to guarantee that every target location in the

horizontal plane is covered by at least two cameras. Covering target locations by at least two

cameras enables a smooth transition between the images while constructing omnidirectional

images, and enables using the device in applications that requires depth map estimation [84].

In this system, the coverage analysis methodology presented in [86] is used to measure the

required angles between the camera layers and horizontal plane θ and the angles between the

horizontally neighboring cameras ϕ.

163

Chapter 9. High-Quality Omnidirectional Multi-Camera Systems

Very-high AOV lenses cause image distortion while low AOV lenses necessitate a large number

of cameras to guarantee a large effective AOV. A 5MP image sensor with a 6mm lens is selected

for the construction of the system since it offers an efficient trade-off between large AOV

and distortion. The selected camera provides 53° and 43° for the horizontal and vertical axis

AOVs respectively, and the full resolution of each camera is 2592×1926 pixels. Following

the methodology presented in [86], 44 cameras are positioned on four levels where level-4

represents top camera and level-1 represents cameras in bottom layer. From the top to

the bottom layers, 1, 6, 15 and 22 cameras are distributed, respectively. The top camera is

perpendicular to the ground plane. The θ angles of the four layers from top to bottom are 0°,

39.6°, 59.3° and 80.8°. The ϕ angles between the cameras for the layers 1, 2, 3 are 16.36°, 24°

and 60°, respectively. The resulting coverage analysis is given in sub-section 9.2.3.

Table 9.4: Properties of the omnidirectional imaging system.

Individual Camera Parameters Obtained Video Requirements

Option
Observed

Resolution

Skipping-

Binning

Bit/

Pixel

Clock

(MHz)

AOV

h×v

Output

Resolution

Frame

Rate

Record

duration

(min)

Memory

Size

(GB)

Bandwidth

(MB/s)

1 2592 × 1944 0-0 12 96 53º × 43º 2592 × 1944 14 30 177 101

2 2592 × 1944 0-0 12 66 53º × 43º 2592 × 1944 9.5 14 56 68

3 2592 × 1944 1-1 12 86 53º × 43º 1296 × 972 30 30 95 54

4 2592 × 1944 1-0 12 66 53º × 43º 1296 × 972 30 30 95 54

5 2592 × 1944 1-0 12 66 53º × 43º 1296 × 972 30 17 54 54

6 2592 × 1944 1-0 8 66 53º × 43º 1296 × 972 30 30 63 36

7 2592 × 1944 2-0 8 36 53º × 43º 864 × 648 30 30 28 16

8 1024 × 768 0-0 12 46 21º × 16º 1024 × 768 30 30 40 23

9.2.1 System Parameters and Requirements

After the type, number and positions of individual cameras are fixed, the main two aspects

that define the performance of the image recording system are the image resolution and

frame-rate of individual sensors. The image sensor chosen in the construction of this system

has programmable parameters which affect these two main aspects. Table 9.4 presents some

example configurations of camera parameters and their respective memory size, bandwidth

and operating frequency requirements with respect to the image capture duration.

The selected image sensor delivers 12-bit raw Bayer data output. The bit precision is not

reduced, in order to improve the histogram when the camera is used in extreme dark or

bright conditions. Moreover, most of the data compression techniques applied in consumer

electronic video recording cameras reduce the image quality and light field capturing

capability of the imaging system, thereby creating an incompatibility with high quality post

processing. Therefore, a 12 bit raw Bayer recording format is maintained, which considerably

impacts the memory requirement. Adjusting the frame-rate of the image sensor is possible by

164

9.2. Giga-Eye Camera

tuning the operating frequency of the sensor and frame size. At the fastest frame rate achieved

at 96 MHz, the memory requirement for a 30 minute video recording is equal to 177 GB and

the memory bandwidth requirement is 101 MB/s for a single camera. Considering 44 cameras,

the memory requirement increases to 5.2 TB for the first implementation option presented in

Table 9.4. Thus, the memory bandwidth and size requirements for the selected frame-rate and

frame size determine the constraints for the selection of the storage device.

The chosen image sensor offers two options for subsampling the frame prior to delivering it,

which are known as skipping mode and sub-window selection. The skipping mode allows

keeping the highest AOV while reducing the resolution of the sensor, whereas selecting

sub-window as exemplified in eighth implementation option of Table 9.4 reduces the AOV.

Overlapping the wide AOVs of individual image sensors is crucial for better sampling of the

light field and light field based image processing applications. As shown in the third and

fourth analysis cases of Table 9.4, operating in skipping mode reduces the image size to one

quarter of the original 5MP, 1296×972, while maintaining a constant angle of view (AOV).

The binning mode aggregates the Bayer data of the skipped pixels when it is combined with

skipping mode. Using the binning mode together with skipping requires a 86MHz clock to

provide 30fps video. Providing the same resolution without using the binning mode decreases

the required pixel clock frequency to 66 MHz. Recording 30 minutes using one of these

options requires 95 GB of memory and a 54 MB/s bandwidth for each camera.

The chosen image sensor does not provide differential output signals, and thus, additional

limitations pertaining to signal integrity arise for building the complete system. Constructing

a complete system on a dome that has a radius of 20 cm requires data cables with a minimum

length of 40 cm. Transmission of a 96 MHz clock over 40 cm cables is prone to noise due to

signal reflection, even using very-high-density cable interconnect (VHDCI). Nevertheless,

any noise in the image vanishes when the clock frequency is decreased below 80 MHz.

Consequently, selecting the appropriate camera operation frequency is a determinant

system-level constraint.

The system requires large-capacity and large-bandwidth storage devices. The three main

candidate storage devices are i) the Compact Flash, ii) the Hard Disk Drive (HDD) and iii) the

Solid State Drive (SSD). Compact Flash devices are very expensive compared to HDD and

SSDs, when their considered capacity is larger than 64 GB. HDDs are the most cost-efficient

storage devices. However, their mechanical structure has a crucial impact on their effective

recording bandwidth under environmental vibration conditions. Vibration robustness tests

carried out with several different HDDs have demonstrated that the effective data bandwidth

can be reduced down to 20MB/s. Storage devices are expected to support constant bandwidth

under vibration since the complete imaging system may not remain stationary, and move

during image recording. Yet, offering a constant recording bandwidth is an important

165

Chapter 9. High-Quality Omnidirectional Multi-Camera Systems

constraint of the system, which only SSD technology can provide in presence of external

vibrations. Therefore SSDs are selected as the primary, i.e., real-time, storage devices.

For SSD communication interface, Serial ATA (SATA) 2.0 standard is chosen, in order to fulfill

the BW requirements in burst write mode and due to their availability on the market. SSD

devices with SATA 2.0 usually sustain a bandwidth of approximately 150 MB/s, which is

higher than the 101 MB/s bandwidth requirement of a full resolution system operating at 14

fps. Constructing a system that supports a resolution of 1296×972 pixel require a 54 MB/s

bandwidth. Hence, one SSD can act as the storage device for two cameras simultaneously.

128 GB SSDs can continuously record for 17 minutes from two cameras that operate at 30

fps and with a 1296×972 pixel resolution. There is also need for intermediate buffer memory

in the architecture of the targeted embedded system in order to make the burst writes to

the SSD possible. Buffering a single frame in full resolution, and 1296×972 pixel resolution

approximately requires a memory size of 8 MB and 2 MB, respectively. DDR2 SDRAM

memories typically have a data size of 256 MB or more, and an approximate bandwidth of 5

GB/s. DDR2 are thus selected as the efficient devices to use in conjunction with the SATA

protocol for buffering images. Moreover, benefiting from the maximum resolution of the

cameras is possible, but in this case the frame rate of the cameras should be reduced due

to bandwidth limitations. 128 GB SSDs can continuously record for 14 minutes from two

2592×1944 pixel resolution cameras that operate at 9.5 fps.

The developed system is planned to sustain constraints and target features summarized

in Table 9.5 and Table 9.6. A maximum flexibility in terms of resolution and frame rate is

aimed. When the system is configured to utilize 1296×972 resolution settings of the cameras

with the system constraints presented in Table 9.5, the systems is able to provide 21.6 MP

omnidirectional video at 30 fps. When the system is configured to utilize 2592×1944 resolution

settings of the cameras with the system constraints presented in Table 9.6, the systems is able

to provide 82.3 MP omnidirectional video at 9.5 fps.

Table 9.5: System Constraints to generate 30 fps 21.6 MP Omnidirectional Video.

#Cameras 44 Pixel Clock 66 MHz
Resolution per Camera 1296×972 Record Duration 17 min
Skipping Mode 1 Buffer Memory DDR2
Binning Mode 0 Storage Device SSD
#Cameras/#SSDs 2 Back Up Device HDD
Pixel Resolution 12-bit Bayer Storage Protocol SATA II

166

9.2. Giga-Eye Camera

Table 9.6: System Constraints to generate 9.5 fps 82.3 MP Omnidirectional Video.

#Cameras 44 Pixel Clock 66 MHz
Resolution per Camera 2592×1944 Record Duration 14 min
Skipping Mode 0 Buffer Memory DDR2
Binning Mode 0 Storage Device SSD
#Cameras/#SSDs 2 Back Up Device HDD
Pixel Resolution 12-bit Bayer Storage Protocol SATA II

9.2.2 System Architecture

In order to support the constraints explained in sub-section 9.2.1, the hardware platform

should be flexible and configurable. Moreover, it should be expandable for future

developments in terms of handling critical parts of the image processing on the captured

light field. Thus, an FPGA based embedded system is the most suitable hardware platform for

the mentioned purposes. The choice for the hardware platform is the Xilinx XUPV5-LX110T

FPGA Board. The chosen FPGA board has 2 SATA connections, 64 available external pins for

connecting two cameras, 128 MB DDR2 memory, a UART, digital video interface (DVI) and

SubMiniature version A (SMA) interfaces. 128 GB Kingston SATA 2.0 SSDs are selected as

storage devices, each supporting two cameras. In summary, 22 FPGA boards and 22 SSDs are

used for recording 17 minutes video captured from 44 cameras at 1296×972 resolution or 14

minutes video captured from 44 cameras at 2592×1944 resolution.

One of the 22 FPGAs serves as Master FPGA (M-FPGA), which is responsible of receiving

commands from a host PC system. The commands are for covering the tasks such as start/stop,

snapshot, and changing the image sensor parameters by writing to their responsible registers.

The M-FPGA receives commands via RS232 interface and broadcasts to the slave FPGAs

(S-FPGA). A Graphical User Interface (GUI) designed to handle the communication between

user and imaging system. The system architecture of the M-FPGA is shown in Fig. 9.11. The

S-FPGA architecture is identical to the one in Fig. 9.11 except the clock scheme, which is

further detailed later in this sub-section. As presented in Fig. 9.11, the hardware architecture of

a single FPGA includes a Microblaze Soft Processor, Processor Local Bus (PLB), Image Capture

modules, DVI Displayer modules, SATA Interface modules, and System Interconnection

modules.

The Image Capture modules are used to capture images from two cameras and to buffer them

into a DDR2 Memory. Additionally, an automatic color gain controller (AGC) and automatic

shutter width controller (ASW) are implemented.

The Microblaze initializes the cameras through an I2C bus, and one single I2C bus controls two

cameras, consistently. The Camera Controller module samples the pixels using camera control

167

Chapter 9. High-Quality Omnidirectional Multi-Camera Systems

signals hsync and vsync. The Automatic Gain Control is an important feature pertaining to the

white balance. The Automatic Shutter Width enables to adjust the exposure time in extreme

dark and bright conditions. The AGC+ASW sub module in Fig. 9.11 computes the average red,

green, and blue values in the image, and transfers these values to the Microblaze processor

using software-accessible registers. Depending on the application or light conditions, the

software hosted by the Microblaze provides flexibility to the user for manual and automatic

adjustment of the color gains and shutter width. Two native port interface (NPI) of the multi

port memory controller (MPMC) module are used to simultaneously write two images into

the DDR2 memory. Row Buffers are placed as a FIFO between the Camera Controller, Burst

Converter and NPI Controller sub modules to correctly exchange data while they are operating

with different clock rates. These buffers provide flexibility to the user to capture and save

images with different resolutions and frame-rates.

The DVI Displayer module reads the images captured by one camera, converts the Bayer

images to RGB format, and displays the images on a DVI monitor. The Bayer to RGB hardware

is only implemented for display purposes. The NPI controller of the DVI module is able to

switch between the DDR2 memory pointers to display images of the selected camera. The

DVI connection is initialized by the I2C module for 1024×768 resolution at 60 fps to display

sub-window of the obtained images during the recording process. The DVI interface is

operated with a 216 MHz differential clock.

The Host SATA IP can be connected to two storage devices. Although the SATA IP is able

to switch between the SATA ports, it is not able to dump data into two storage devices,

consistently. Therefore, a 128 GB SDD is connected to one of its two SATA ports. The other

port of the IP is used for a backup purpose. Connecting one 2TB HDD for backup support

increases the record duration to more than 3.5 hours. After every continuous record of 14

minutes at a 2592×1944 video resolution or 17 minutes at a 1296×972 video resolution, the

system is able to make a data backup from the SSD to the HDD. Upon backup completion,

the system makes itself ready to record the next continuous video on the SSD. The SATA IP is

connected to the DDR2 through MPMC using two Direct Memory Access (DMA) controllers.

The System GUI includes start and stop options to enable the capture of short videos, and

enables capturing single and time-delayed repetitive shots for photographic applications.

Moreover, the last used memory address is also saved into the SSD. Consequently, the system

GUI provides options to resume from the last memory address or overwriting the previous

records, after a system power off-on cycle.

Camera Synchronization is one of the most important technical issues in multiple-camera

systems. For perfect synchronization, the number of images taken from different cameras

168

9.2. Giga-Eye Camera

Figure 9.11: Top-level block diagram of the system hardware architecture

should be identical during the capture of a video, and every image originating from the 44

cameras should be shot at the same moment.

In order to force all cameras to capture an identical number of frames, the frame-rates of

the cameras must exactly match. All cameras are programmed to the same resolution and

exposure time. In addition, the main factor guaranteeing setting the frame rate is the pixel

clock frequency. The clock crystal mounted on the XUPV5-LX110T board provides 25MHz

with a ±0.0004% tolerance, which means ±100 clock cycles. If each of the 22 separate crystal

oscillators is used as main clock source for each camera pair via the internal PLLs of FPGAs,

the ±0.0004% deviation causes different frame rates, and prevents synchronization. In order to

guarantee clock synchronization, a clock chain is built up that provides an identical clock rate

to all of the cameras in the system. This shared clock is generated from the crystal oscillator of

the M-FPGA. Each FPGA receives its clock from its neighbor, and transmits it to the FPGA

located next within the chain, using coaxial SMA cables and connectors. All the clock inputs

and outputs of the SMA connection are buffered to increase the clock drive strength.

In addition to generating an exact frame rate, an additional constraint for the camera

synchronization resides in the timing for the acquisition of the images. The image snapshots

169

Chapter 9. High-Quality Omnidirectional Multi-Camera Systems

should be acquired almost at the same moment for a successful synchronization. To this aim

and as shown in Fig. 9.11, one I2C module of the PLB bus is used for two cameras. Since the

camera chips have the same I2C address, two cameras connected to the same I2C module can

be configured at the same moment, which enables a perfect synchronization. The shutting

time difference between the cameras connected to the same FPGA is 0 or 1 clock cycle at a 66

MHz pixel clock.

Two serial communication chains are implemented in the system. The first serial

communication chain is implemented between the PC host system, M-FPGA and S-FPGAs.

This chain shares the user commands and system orders of the M-FPGA over all connected

FPGAs for starting and stopping the record on different FPGA boards synchronously. All FPGAs

initialize their own connected two cameras at the same time. The posing time difference

between the cameras connected to different FPGAs is measured to be less than 400 clock

cycles, i.e., less than 5 µs. While a single camera operates at 30 fps, the posing time delay

between two consecutive frames of the same camera is approximately 33 ms. Hence, the 5

µs delay is negligible. Thus, the synchronization of the cameras that are connected to the

different FPGAs can be considered almost perfect.

The second RS232 chain is implemented to provide information about the recording status of

the S-FPGAs to the M-FPGA. This feature is mainly important for the SSD to HDD backup

process since the backup process is not synchronized due to variable performance of HDD.

Each S-FPGA informs its neighboring board via second serial chain as soon as it finishes the

current backup process. When all the S-FPGAs finish their backup process, the M-FPGA

configures all the S-FPGAs for the next record to the SSD using the first serial chain.

9.2.3 Implementation Results

The hardware architecture of the proposed video recording system is implemented using ISE

12.4 and XPS. The presented system is constructed using 44 Aptina cameras, 22 XUPV5-LX110T

Virtex-5 FPGAs and 22 Kingston 128 GB SSDs. The backup process is verified using 2TB

Hitachi HDDs. The XUPV5-LX110T FPGA includes 69k Look-Up Tables (LUT), 69k DFFs and

148 Block RAMs (BRAM). The proposed hardware consumes 31% of the LUTs, 25% of the DFF

resources and 48% of the BRAM resources. The Microblaze microprocessor and the SATA IP

are operated at 100 MHz and 200 MHz, respectively. The system is able to record 17 minutes

of continuous video at a resolution of 1296×972 and a raw Bayer data format at 30 fps, or 14

minutes of continuous video at a resolution of 2592×1944 at 9.5 fps. The proposed backup

system enables increasing the record duration to more than 3.5 hours with discrete video

records of 14 min or 17 min using a 2TB HDD for each FPGA board. The system is perfectly

synchronized for the two cameras connected to the same FPGA, and the time delay between

170

9.2. Giga-Eye Camera

Figure 9.12: The complete omnidirectional imaging and recording system (Giga-Eye), overall
system dimensions are 56x48x78 cm

the cameras connected to different FPGAs is equal to 5 µs which is considered negligible.

The final constructed Giga-Eye system is shown in Fig. 9.12, which has a size of 56×48×73 cm

and a weight of 55kg without the carrier. The system is powered by a single power supply with

a 5V output voltage. Total system consumes 92A, and thus 460W of power.

The video frames captured by Giga-Eye are converted into omnidirectional video sequences

by offline processing using the Autopano-sift [71], which is a commercial stitching software.

Calibration parameters that are estimated by Autopano are used for the reconstruction.

Continuous omnidirectional video rendering is obtained by merging these stitched images in

time-domain using Matlab. High-resolution video results of the Giga-Eye are demonstrated in

the Appendix A. One of the 21.6MP omnidirectional picture obtained using the presented

Giga-Eye system is shown in Fig. 9.13. In addition, a 81.3 MP omnidirectional image result

of Giga-Eye is presented in Fig. 9.14. As presented in Fig. 9.13 and Fig. 9.14, although the

static and dynamic objects that are shown with sub-windows are quite far, Giga-Eye is able to

visualize these objects while providing 360° omnidirectional image.

The obtained coverage map after building the prototype and calibration of the cameras is

171

Chapter 9. High-Quality Omnidirectional Multi-Camera Systems

Figure 9.13: Omnidirectional image obtained with the Giga-Eye system at 21.6 MP resolution
showing the central campus square of EPFL, and two selected details (sub-regions) in this
image. This omnidirectional image corresponds to one single frame of the 30 fps video
obtained by the system.

Figure 9.14: Omnidirectional image obtained with the Giga-Eye system at 82.3 MP resolution.
This omnidirectional image corresponds to one single frame of the 9.5 fps video obtained by
the system. Flying plane and the moving car are shown in sub-windows

172

9.2. Giga-Eye Camera

Figure 9.15: Measured coverage map of the omnidirectional imaging system showing a high
pixel redundancy especially close to the equator. The color labels indicate the number of the
overlapping individual camera AOVs

presented in Fig. 9.15. At most 7 cameras, and at least 2 cameras are capable of capturing

every direction, provided that θ angle of the observed direction is below 60°. Therefore, the

proposed system does not only provide panorama, but also its efficient coverage enables

using the device in light field based image processing applications such as refocusing and 3D

rendering.

In Table 9.7, the proposed hemispherical video record system is compared with existing

large angle of view video capture systems. The frame rates below 25 fps are not typically

considered as video, but they are also compared with the presented work in the table. AOVs of

the compared systems and their final resolutions are provided in the comparison. Currently,

the proposed Giga-Eye system is the highest resolution 360° omnidirectional camera that

provides standard frame-rate video output by its 21.6 MP video output capability at 30 fps.

Moreover, Giga-Eye is the highest resolution 360° omnidirectional camera with its 82.3 MP

output capability at 9.5 fps. The resolution of the Giga-Eye system can be further increased

by omnidirectional image based super-resolution techniques [87] or using higher resolution

sensors.

173

Chapter 9. High-Quality Omnidirectional Multi-Camera Systems

Table 9.7: Comparison of the Giga-Eye with existing high-resolution omnidirectional camera
systems.

System

Total Sampling
Pixel Amount
(#Cameras×

Camera Resolution)

Record Frame
Rate (fps)

AOV Resolution

Ladybug3 [16] 11 MP 15 360°×150° 2048×4096
Google [17] 75 MP 0.4 360°×160° 4096×8192
Panoptic [86] 4 MP 25 360°×100° 256×1024
Giga-Eye 55 MP 30 360°×100° 2400×9000
Giga-Eye 220 MP 9.5 360°×100° 4650×17700

174

10 Conclusion

In this thesis, novel, efficient and high-performance multiple-camera systems for large AOV

image capture and depth map estimation are presented. The presented systems can be used

for the development of advanced virtual reality applications and 3D-based video processing

systems. In this chapter, the major results presented in this thesis are reviewed. In addition,

some prospective research fields related with the individual chapters are stated.

Binocular Adaptive Window Size Disparity Estimation Algorithm and Its Hardware

Implementation

A binocular hardware-oriented adaptive window size disparity estimation (AWDE) algorithm

and its real-time high-resolution reconfigurable hardware implementation are presented.

The algorithm is designed to be efficiently parallelized and to require minimal on-chip

memory size. The proposed hardware provides dynamic and static configurability to have

satisfactory disparity estimation quality for the images with different contents. It provides

dynamic reconfigurability to switch between window sizes of 7×7, 13×13 and 25×25 pixels

in run-time to adapt to the texture of the image. The proposed AWDE hardware combines

the strengths of the Census Transform and the Binary Window SAD (BW-SAD) methods. The

proposed AWDE implementation utilizes a pixel intensity based refinement step to remove

faulty disparity computations. The disparity estimation quality of the AWDE algorithm is

improved using an iterative disparity refinement process. The proposed enhanced AWDE

algorithm that utilizes Iterative Refinement (AWDE-IR) is implemented in hardware and

its implementation details are presented. The proposed hardware architectures for AWDE

and AWDE-IR provides 60 frames per second at a 1024×768 XGA video resolution for a 128

pixel disparity range. The proposed AWDE and AWDE-IR implementations provide better

DE results than existing real-time high-resolution DE hardware implementations [43–45] for

the tested HR Middleburry benchmarks. The proposed high-quality and high-resolution

real-time disparity estimation hardware can be used in advanced 3D-based video processing

175

Chapter 10. Conclusion

applications where the depth computation is required.

The cost aggregation method can be integrated into the proposed AWDE implementation

as a prospective research. The cost aggregation step is a computationally intensive process

and requires significant amount of hardware resources. Nevertheless, the adaptation of cost

aggregation method to the proposed AWDE hardware can remove most of the incorrect

estimations in the disparity map. In addition, the real-time disparity estimation for full HD

or 4K resolution video can be targetted in the future. The parallelization of the proposed

hardware should be increased to achieve real-time for full HD or 4K disparity map, which may

require a significant increase in hardware resource consumption. Higher resolution disparity

maps can provide better accuracy for depth measurement. In addition, increased object

definitions in disparity maps can be attractive to many advanced 3D based video processing

applications such as 3D reconstruction for 3D printers and finger tracking. Furthermore,

disparity estimation can be performed using stereo infrared sensors and infrared projection

instead of utilizing standard RGB cameras. In this case, very high resolution disparity

estimation may not be targeted since the resolution of the infrared sensors is currently limited

to VGA resolution. However, the prospective system would provide high quality results even if

it is used in a very dark environment.

Trinocular Adaptive Window Size Disparity Estimation Algorithm and Its Hardware

Implementation

A trinocular hardware-oriented adaptive window size disparity estimation (T-AWDE)

algorithm and its hardware implementation are proposed to improve the disparity estimation

quality of the binocular AWDE and AWDE-IR implementations. The T-AWDE hardware

generates a very high-quality depth map by merging two depth maps obtained from the

center-left and center-right camera pairs. The T-AWDE hardware enhances disparity results

by applying a double checking scheme which solves most of the occlusion problems existing

in the AWDE-IR implementation while providing correct disparity results even for objects

located in the left or right edge of the center image. The implemented T-AWDE hardware is

the first hardware implementation that succeeds to provide real-time trinocular DE for HR

video. The T-AWDE hardware can process 55 fps at a 768×1024 XGA video resolution for a

128 pixels disparity range. The proposed trinocular DE hardware can be used if removing

erroneous disparity estimation results in the occluded region is a significant necessity of a

3D-based video processing application.

A trinocular disparity estimation system which supports unequal distances for center-left

and center-right pairs can be studied as prospective research. If the distance between the

stereo cameras is large, the depth estimation accuracy for far objects is high. However, a large

distance between the cameras reduces the overlapping region between stereo images which

176

prohibits depth computation for close objects. Therefore, the distance between the cameras

should be low to measure the distance of close objects. A hybrid solution can be utilized in the

future that combines the strengths of large and small distances between cameras. A large

distance can be utilized for one pair of trinocular disparity estimation, and a small distance

can be utilized for another pair. Then the two disparity maps can be combined to obtain

accurate disparity map for both close and far objects.

Compressed Look-Up-Table Based Rectification Algorithms and Their Hardware

Implementations

A novel algorithm which compresses the rectification information to fit the look-up-table

into the on-chip memory of a Virtex-5 FPGA is presented. The proposed compressed

look-up-table based rectification algorithm (CLUTR) can be used to rectify stereo images

if the lens distortion is not extreme and the cameras are not excessively misaligned. In

addition, in order to solve difficult camera alignment and distortion issues while maintaining

the low complexity architecture, an enhanced version of the compressed look-up-table

based rectification algorithm (E-CLUTR) and its real-time hardware are presented. The

low-complexity de-compression processes of CLUTR and E-CLUTR require a negligible

amount of hardware resources to support their real-time implementation and do not require

the existence of external memory to store the look-up-tables. The capacity of CLUTR

and E-CLUTR to fit the look-up-tables into the on-chip memory of the Virtex-5 FPGA is

approximately six times and two times more efficient than [56], respectively, as a benefit of

their efficient compression scheme.

Furthermore, the Caltech rectification algorithm [50] which does not benefit from

look-up-tables is implemented in hardware, and its hardware resource consumption results

are presented to improve the hardware comparison and to evidence the efficiency of

CLUTR and E-CLUTR in an appropriate way. Hardware implementations of CLUTR and

E-CLUTR require much less hardware resource than the hardware implementation of Caltech

rectification while providing almost identical rectification results with very high PSNR results.

The CLUTR and E-CLUTR implementations utilize forward mapping based rectification.

Applying the similar compression scheme for backward mapping based rectification can be

studied as prospective research. Backward mapping based rectification increases the memory

requirement for input pixels buffering; however it can reduce the size of the compressed

tables since backward mapping does not cause voids in the rectified images, which avoids the

necessity of coding double-target locations. In addition, the compressed rectification method

can be verified using trinocular disparity estimation hardware in the future.

177

Chapter 10. Conclusion

Embedded System for Depth Map Estimation

Most of the disparity estimation hardware architectures in the state-of-the-art present

the main disparity estimation video processing cores but they do not reveal significant

information related to important peripherals of the complete embedded system such

as softcore processor, its data bus, camera interface, display interface, external memory

interface, DMA modules etc, and most of them claim verification only according to behavioral

simulations. In this thesis, the full depth estimation embedded system that verifies the

real-time functionality of the disparity estimation hardware is explained. The efficient

communication and data exchange scheme of the system peripherals to transfer RGB+D

output to a PC are presented. The proposed embedded system can be used to guide the

developers of state-of-the-art disparity estimation hardware implementations to allow

efficient real-time realization of their disparity estimation hardware.

Hardware and Software based Applications of Disparity Estimation

This thesis presents several real-time hardware and software based applications of disparity

estimation. The implemented applications conceptually prove that the high-quality and

high-performance RGB+D outputs of the proposed real-time disparity estimation hardware

can be used for enhanced 3D based video processing applications.

In this thesis, the first real-time high resolution free viewpoint synthesis system that utilizes

three-camera disparity estimation hardware is presented. The proposed hardware generates

high-quality free viewpoint video at 55 frames per second using a Virtex-7 FPGA at a 1024×768

XGA video resolution for any horizontally aligned arbitrary camera positioned between the

leftmost and rightmost physical cameras. The proposed hardware can be used in glass-free

3D TVs to synthesize free view images in real-time.

The implemented free viewpoint synthesis hardware supports the location of the arbitrary

camera only on the horizontal axis of the cameras. The arbitrary camera location can be

changed in the axis of depth (z) in the future. While the arbitrary camera is moving in z

locations, closer object should be re-sized considering a larger ratio than further object. The

autostereoscopic 3D-TV technology does not require to generate arbitrary veiwpoint for a

camera that is changing its position in z axis. However, this process is important to deceive

the human brain into perceiving 3D by utilizing standard 2D display. In order to obtain better

quality for this purpose, the arbitrary image should be also synthesized for a camera moving

in the z axis. The implementation of this type of real-time free viewpoint synthesis hardware

may require complex rendering hardware and large memory size and bandwidth.

178

In this thesis, the user-friendly graphical user interface (GUI) of the complete system and

the implemented depth estimation based real-time software applications executed in a

PC are presented. The implemented software applications consists of speed and distance

measurement, depth based image thresholding, head-hands-shoulders tracking, virtual

mouse using hand tracking, and face tracking integrated with free viewpoint synthesis. The

implemented software applications demonstrate that the proposed system can be used for

advanced video processing applications where the depth computation is required.

The proposed disparity estimation system can be utilized in many other 3D based video

processing applications in the future. The system can be used to implement touchless

10 fingers keyboard typing application for TVs and PCs. The system can be integrated to

smart watches and glasses to control these devices using only the hand gestures without

touching the devices. In addition, it can be used for augmented reality applications such as

generating cartoon character over existing objects or surfaces in the image. Indeed, most

of the applications and games that are implemented using Kinect can be integrated to the

proposed depth estimation system. The proposed system provides better resolution than

Kinect, but its most important advantage compared to Kinect is that it can operate outdoors

under sunlight. Therefore, integrating the applications to the proposed system which may also

need to operate outside environment can be very beneficial. For example, several interactive

3D video processing based games can be implemented and utilized in public places such as

bus stops, parks and squares.

ASIC Implementation of the Binocular Disparity Estimation

The proposed binocular disparity estimation hardware is implemented in an ASIC using

a CMOS TSMC 40nm technology. The ASIC implementation details of the binocular DE

hardware are presented. The dimensions of the final ASIC after placing pads are 3450×3080

µm. Its total area is 10.626 mm2. The ASIC is designed to be used as an accelerator for any

system that requires stereoscopic depth computation. The binocular DE ASIC supports

trinocular DE by using two ASIC chips. The DE ASIC is designed to receive a stream

input of images, and to provide a stream output of RGB+D or YCbCr+D data. It does not

require external memory for the computation of disparity results. The proposed ASIC

solution for the developed hardware offers crucial advantages to the system compared to its

FPGA implementation, such as smaller power consumption, faster performance and cost

effectiveness. These advantages are important if massive production of the depth estimation

system for consumer electronics is targetted.

A single ASIC which includes disparity estimation, rectification, USB3 interface and softcore

processor can be implemented in the future. This system-on-chip can result in a cheaper

and less power consuming depth estimation system than the system that utilizes presented

179

Chapter 10. Conclusion

ASIC as an accelerator. Therefore, the prospective ASIC can be more beneficial to be used in

consumer electronic products where depth estimation is required.

High-Quality Omnidirectional Multi-Camera Systems

Two implementations are proposed to improve the existing real-time 360°×90°

omnidirectional cameras. First, an enhanced version of the omnidirectional image

reconstruction algorithm (EOIR) and its real-time hardware implementation are presented.

The EOIR algorithm provides homogeneous resolution over the entire reconstruction area.

The proposed EOIR algorithm increases the realistic aspect of omnidirectional images

captured by the Panoptic camera. The entire system provides the high bandwidth required to

simultaneously process data originating from 40 cameras, and reconstruct omnidirectional

images of 256×1024 pixels at 25 frames per second.

A novel very high-resolution multiple-camera omnidirectional video recording system called

Giga-Eye is implemented using 5 MP cameras. Giga-Eye records high-resolution images to

reconstruct very-high resolution omnidirectional images in off-line processing. The proposed

Giga-Eye system is the highest resolution 360° omnidirectional camera that provides standard

frame-rate video output (more than 25 fps) by its 21.6 MP video output capability at 30 fps.

Moreover, Giga-Eye is the highest resolution 360° omnidirectional camera with its 82.3 MP

output capability at 9.5 fps. Giga-Eye is able to view the target locations close to horizontal

plane with more than two cameras, which enables using this device for ultra-high resolution

omnidirectional depth map estimation in the future.

A very high-resolution 360°×90° AOV disparity estimation algorithm and its hardware

implementation can be studied as a prospective research field. This process imposes

significant challenges for algorithm and hardware development. The 44 image sensors of the

Giga-Eye are not positioned in a parallel configuration due to the hemispherical structure;

thus the overlapping region of the images of two adjacent cameras is low compared to

the planar alignment. Sensitive calibration and rectification requirement of the disparity

estimation would be challenging for very high number of cameras on a hemispherical surface.

Moreover, high number of camera pairs should be processed to complete 360° disparity map,

which can require a significant amount of hardware resources. Utilization of multiple disparity

estimation ASICs presented in this thesis may significantly reduce the cost of this prospective

system. Alternative method to obtain very high-resolution 360° disparity map may consist of

simultaneously utilizing two horizontally aligned Giga-Eye cameras, and performing disparity

estimation directly from their potential real-time omnidirectional image outputs. In this case,

the disparity candidates of a processed pixel may not be in a vertical or horizontal epipolar

line, but in a curve or in a two-dimensional region of the omnidirectional image. Searching

disparity candidates in a curve or two-dimensional region may challenge the data-reuse and

180

parallel processing for real-time implementation. Although the implementation of very-high

resolution 360° disparity map is very challenging, this device can be very beneficial for the

vision system of self-driving cars and robots. In addition, very high quality stitching of the

omnidirectional multiple-camera images requires depth measurement to remove the parallax

errors that is caused by depth discontinuity. Combining depth estimation system together

with omnidirectional image reconstruction system can be used to implement very high quality

360°×90° AOV real-time visualization systems in the future. The 360°×90° AOV RGB+D

camera can be very useful for cinema industry, gaming and generation of street level maps.

Final Remarks

High-resolution and high-quality depth estimation and 360°×90° AOV hemispherical

multiple-camera systems are important requirements of advanced 3D-based video processing

and virtual reality applications. The high-performance systems and novel efficient ideas that

are presented in this thesis allow their utilization in a wide range of applications.

Developing the perfect quality omnidirectional image reconstruction system using multiple

cameras without any stitching error and obtaining perfect accuracy depth estimation are

ill-posed problems of video processing. Although there is not any perfect algorithmic answer

to these issues, the real-time hardware implementation of those prospective algorithms

appears as another complex problem. The achievements presented in this thesis may trigger

the development of new algorithms and digital hardware design perspectives to approach the

solutions of these severe problems.

181

A High-Resolution Visual Results of
Proposed Systems

High-resolution visual results of the depth estimation system and Giga-Eye multiple-camera

system are demonstrated in this Appendix. The videos and the pictures accesses from the

links below are best viewed in downloaded version. In addition, they are available in the

printed version of the thesis in an attached DVD. Watching some of the videos may require to

use VLC player.

https://zenodo.org/record/16544

http://dx.doi.org/10.5281/zenodo.16544

A.1 Visual Results of the Depth Estimation System

The GUI of the proposed depth estimation system, the visual results of video

processing cores and the software based application operated in PC are

demonstrated in the video files "DepthEstimationSystemVideoExample1.mov" and

"DepthEstimationSystemVideoExample2.mp4". The videos evidence that the proposed depth

estimation system provides accurate depth estimation results, and it can be used for a wide

range of 3D-based video processing applications.

A.2 Visual Results of the Giga-Eye Multiple-Camera System

17730×4654 (82.5 MP) resolution image results of GigaEye omnidirectional multiple

camera system are presented. The ultra-high resolution picture presented in

"GigaEyeImageExample1.jpg" allows zooming into any target location to see more

details. In addition, the video sequence of the presented image and two additional videos

are presented in the files "GigaEyeVideoExample1.asf", "GigaEyeVideoExample2.wmv" and

183

https://zenodo.org/record/16544
http://dx.doi.org/10.5281/zenodo.16544

Appendix A. High-Resolution Visual Results of Proposed Systems

"GigaEyeVideoExample3.wmv". The videos do not include ultra-high resolution images since

the video encoder does not support ultra-high resolution video. Ultra-high resolution video

encoder is supposed to be available in the future. The system can be used in advanced video

processing applications where large AOV, and ultra high resolution video capture are required.

184

Bibliography

[1] A Neil. Autostereoscopic 3d displays. Computer, 8:32–36, 2005.

[2] Johnny Chung Lee. Hacking the nintendo wii remote. Pervasive Computing, IEEE,

7(3):39–45, 2008.

[3] Joshua Gluckman, Shree K Nayar, and Keith J Thoresz. Real-time omnidirectional and

panoramic stereo. In Proc. of Image Understanding Workshop, volume 1, pages 299–303.

Citeseer, 1998.

[4] Lidong Chen, Maojun Zhang, Bin Wang, Zhihui Xiong, and Gang Cheng. Real-time

fpga-based panoramic unrolling of high-resolution catadioptric omnidirectional images.

In Measuring Technology and Mechatronics Automation, 2009. ICMTMA’09. International

Conference on, volume 1, pages 502–505. IEEE, 2009.

[5] Jacques W Duparre, Peter Schreiber, Peter Dannberg, Toralf Scharf, Petri Pelli, Reinhard

Völkel, Hans-Peter Herzig, and Andreas Bräuer. Artificial compound eyes: different

concepts and their application for ultraflat image acquisition sensors. In Micromachining

and Microfabrication, pages 89–100. International Society for Optics and Photonics, 2004.

[6] Els Moens, Youri Meuret, Heidi Ottevaere, Mukul Sarkar, David San Segundo Bello, Patrick

Merken, and Hugo Thienpont. An insect eye-based image sensor with very large field of

view. In SPIE Photonics Europe, pages 77162D–77162D. International Society for Optics

and Photonics, 2010.

[7] Shinsaku Hiura, Ankit Mohan, and Ramesh Raskar. Krill-eye: Superposition compound

eye for wide-angle imaging via grin lenses. In Computer Vision Workshops (ICCV

Workshops), 2009 IEEE 12th International Conference on, pages 2204–2211. IEEE, 2009.

[8] Kenjiro Hamanaka and Hiroshi Koshi. An artificial compound eye using a microlens array

and its application to scale-invariant processing. Optical Review, 3(4):264–268, 1996.

[9] Peter Rander, PJ Narayanan, and Takeo Kanade. Virtualized reality: constructing

time-varying virtual worlds from real world events. In Proceedings of the 8th conference

on Visualization’97, pages 277–ff. IEEE Computer Society Press, 1997.

185

Bibliography

[10] Shiloh L Dockstader and A Murat Tekalp. Multiple camera tracking of interacting and

occluded human motion. Proceedings of the IEEE, 89(10):1441–1455, 2001.

[11] Jong-Eun Ha and I-Sak Choi. Simple method for calibrating omnidirectional stereo with

multiple cameras. Optical Engineering, 50(4):043608–043608, 2011.

[12] Francois Fleuret, Jerome Berclaz, Richard Lengagne, and Pascal Fua. Multicamera people

tracking with a probabilistic occupancy map. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 30(2):267–282, 2008.

[13] Guilan Feng, Weijian Tian, Changqing Huang, Tao Liu, and Shuqin Zhang. Wide field of

view ccd camera based on multi-sensors image mosaics. In Image and Signal Processing,

2008. CISP’08. Congress on, volume 2, pages 432–435. IEEE, 2008.

[14] Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Talvala, Emilio Antunez, Adam

Barth, Andrew Adams, Mark Horowitz, and Marc Levoy. High performance imaging using

large camera arrays. In ACM Transactions on Graphics (TOG), volume 24, pages 765–776.

ACM, 2005.

[15] Wai-Kwan Tang, Tien-Tsin Wong, and Pheng-Ann Heng. A system for real-time panorama

generation and display in tele-immersive applications. Multimedia, IEEE Transactions

on, 7(2):280–292, 2005.

[16] Pointgrey. ladybug. [Online]. Available: http://www.ptgrey.com/products/spherical.asp.

[17] Dragomir Anguelov, Carole Dulong, Daniel Filip, Christian Frueh, Stéphane Lafon,

Richard Lyon, Abhijit Ogale, Luc Vincent, and Josh Weaver. Google street view: Capturing

the world at street level. Computer, 43(6):32–38, 2010.

[18] H. Afshari, L. Jacques, L. Bagnato, A. Schmid, P. Vandergheynst, and Y. Leblebici. Hardware

implementation of an omnidirectional camerawith real-time 3d imaging capability. In

3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video

(3DTV-CON), 2011, 2011.

[19] Hossein Afshari, Laurent Jacques, Luigi Bagnato, Alexandre Schmid, Pierre

Vandergheynst, and Yusuf Leblebici. The panoptic camera: A plenoptic sensor with

real-time omnidirectional capability. Journal of Signal Processing Systems, 70(3):305–328,

2013.

[20] Federico Tombari, Stefano Mattoccia, and Luigi Di Stefano. Stereo for robots: quantitative

evaluation of efficient and low-memory dense stereo algorithms. In Control Automation

Robotics & Vision (ICARCV), 2010 11th International Conference on, pages 1231–1238.

IEEE, 2010.

[21] Shucheng Yang, Guoman Huang, Zheng Zhao, and Ningna Wang. Extraction of

topographic map elements with sar stereoscopic measurement. In Image and Data

Fusion (ISIDF), 2011 International Symposium on, pages 1–4. IEEE, 2011.

186

Bibliography

[22] Tony KS Cheung and KT Woo. Human tracking in crowded environment with stereo

cameras. In Digital Signal Processing (DSP), 2011 17th International Conference on, pages

1–6. IEEE, 2011.

[23] Matthew Field, Duncan Clarke, Stephen Strup, and W Brent Seales. Stereo endoscopy

as a 3-d measurement tool. In Engineering in Medicine and Biology Society, 2009. EMBC

2009. Annual International Conference of the IEEE, pages 5748–5751. IEEE, 2009.

[24] G Yahav, GJ Iddan, and D Mandelboum. 3d imaging camera for gaming application.

In Consumer Electronics, 2007. ICCE 2007. Digest of Technical Papers. International

Conference on, pages 1–2. IEEE, 2007.

[25] Marcus Grosse, Johannes Buehl, Holger Babovsky, Armin Kiessling, and Richard

Kowarschik. 3d shape measurement of macroscopic objects in digital off-axis holography

using structured illumination. Optics letters, 35(8):1233–1235, 2010.

[26] Dongbo Min, Donghyun Kim, SangUn Yun, and Kwanghoon Sohn. 2d/3d freeview video

generation for 3dtv system. Signal Processing: Image Communication, 24(1):31–48, 2009.

[27] Philipp Merkle, Yannick Morvan, Aljoscha Smolic, Dirk Farin, Karsten Mueller, PHN

de With, and Thomas Wiegand. The effects of multiview depth video compression on

multiview rendering. Signal Processing: Image Communication, 24(1):73–88, 2009.

[28] Yuji Mori, Norishige Fukushima, Tomohiro Yendo, Toshiaki Fujii, and Masayuki Tanimoto.

View generation with 3d warping using depth information for ftv. Signal Processing:

Image Communication, 24(1):65–72, 2009.

[29] Cheon Lee, Hyok Song, Byeongho Choi, and Yo-Sung Ho. 3d scene capturing

using stereoscopic cameras and a time-of-flight camera. Consumer Electronics, IEEE

Transactions on, 57(3):1370–1376, 2011.

[30] Velodyne. Hdl-g4e. [Online]. Available: http://velodynelidar.com/lidar/hdlproducts/hdl64e.aspx.

[31] Merrill I Skolnik. Introduction to radar. Radar Handbook, page 2, 1962.

[32] Microsoft. Kinect. [Online]. Available: http://www.microsoft.com/en-us/kinectforwindows/.

[33] Occipital. Structure sensor. [Online]. Available: http://structure.io/.

[34] Ashutosh Saxena, Sung H Chung, and Andrew Y Ng. 3-d depth reconstruction from a

single still image. International Journal of Computer Vision, 76(1):53–69, 2008.

[35] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense two-frame

stereo correspondence algorithms. International journal of computer vision, 47(1-3):7–42,

2002.

187

Bibliography

[36] Xing Mei, Xun Sun, Mingcai Zhou, Shaohui Jiao, Haitao Wang, and Xiaopeng Zhang. On

building an accurate stereo matching system on graphics hardware. In Computer Vision

Workshops (ICCV Workshops), 2011 IEEE International Conference on, pages 467–474.

IEEE, 2011.

[37] Zeng-Fu Wang and Zhi-Gang Zheng. A region based stereo matching algorithm using

cooperative optimization. In Computer Vision and Pattern Recognition, 2008. CVPR 2008.

IEEE Conference on, pages 1–8. IEEE, 2008.

[38] Andreas Klaus, Mario Sormann, and Konrad Karner. Segment-based stereo matching

using belief propagation and a self-adapting dissimilarity measure. In Pattern

Recognition, 2006. ICPR 2006. 18th International Conference on, volume 3, pages 15–18.

IEEE, 2006.

[39] NY-C Chang, Tsung-Hsien Tsai, Bo-Hsiung Hsu, Yi-Chun Chen, and Tian-Sheuan Chang.

Algorithm and architecture of disparity estimation with mini-census adaptive support

weight. Circuits and Systems for Video Technology, IEEE Transactions on, 20(6):792–805,

2010.

[40] Yosuke Miyajima and Tsutomu Maruyama. A real-time stereo vision system with fpga. In

Peter Y. K. Cheung and GeorgeA. Constantinides, editors, Field Programmable Logic and

Application, volume 2778 of Lecture Notes in Computer Science, pages 448–457. Springer

Berlin Heidelberg, 2003.

[41] Seunghun Jin, Junguk Cho, Xuan Dai Pham, Kyoung Mu Lee, Sung-Kee Park, Munsang

Kim, and Jae Wook Jeon. Fpga design and implementation of a real-time stereo vision

system. Circuits and Systems for Video Technology, IEEE Transactions on, 20(1):15–26,

2010.

[42] Sang Hwa Lee and Siddharth Sharma. Real-time disparity estimation algorithm for stereo

camera systems. Consumer Electronics, IEEE Transactions on, 57(3):1018–1026, 2011.

[43] Christos Georgoulas and Ioannis Andreadis. A real-time occlusion aware hardware

structure for disparity map computation. In Image Analysis and Processing–ICIAP 2009,

pages 721–730. Springer, 2009.

[44] Christos Ttofis, Stavros Hadjitheophanous, A Georghiades, and Theocharis Theocharides.

Edge-directed hardware architecture for real-time disparity map computation. 2012.

[45] Pierre Greisen, Simon Heinzle, Markus Gross, and Andreas P Burg. An fpga-based

processing pipeline for high-definition stereo video. EURASIP Journal on Image and

Video Processing, 2011(1):1–13, 2011.

[46] Ramin Zabih and John Woodfill. Non-parametric local transforms for computing visual

correspondence. In Computer Vision—ECCV’94, pages 151–158. Springer, 1994.

188

Bibliography

[47] Mikhail Mozerov, Jordi Gonzàlez, Xavier Roca, and Juan José Villanueva. Trinocular stereo

matching with composite disparity space image. In Image Processing (ICIP), 2009 16th

IEEE International Conference on, pages 2089–2092. IEEE, 2009.

[48] Andy Motten, Luc Claesen, and Yun Pan. Trinocular disparity processor using a hierarchic

classification structure. In VLSI and System-on-Chip (VLSI-SoC), 2012 IEEE/IFIP 20th

International Conference on, pages 247–250. IEEE, 2012.

[49] Lei Chen, Yunde Jia, and Mingxiang Li. An fpga-based rgbd imager. Machine Vision and

Applications, 23(3):513–525, 2012.

[50] Jean-Yves Bouguet. Camera calibration toolbox for matlab, 2004. [Online] Available:

http://www.vision.caltech.edu/bouguetj/.

[51] Abdulkadir Akin, Ipek Baz, Baris Atakan, Irem Boybat, Alexandre Schmid, and Yusuf

Leblebici. A hardware-oriented dynamically adaptive disparity estimation algorithm and

its real-time hardware. In Proceedings of the 23rd ACM International Conference on Great

Lakes Symposium on VLSI, GLSVLSI ’13, pages 155–160, New York, NY, USA, 2013. ACM.

[52] D Scharstein and R Szeliski. Middlebury stereo evaluation-version 2, 2011.

[53] Hyeon-Sik Son, Kyeong-ryeol Bae, Seung-Ho Ok, Yong-Hwan Lee, and Byungin Moon. A

rectification hardware architecture for an adaptive multiple-baseline stereo vision system.

In Communication and Networking, pages 147–155. Springer, 2012.

[54] Cristian Vancea and Sergiu Nedevschi. Lut-based image rectification module

implemented in fpga. In Intelligent Computer Communication and Processing, 2007

IEEE International Conference on, pages 147–154. IEEE, 2007.

[55] KT Gribbon, CT Johnston, and DG Bailey. A real-time fpga implementation of a

barrel distortion correction algorithm with bilinear interpolation. In Image and Vision

Computing New Zealand, pages 408–413, 2003.

[56] Deuk Hyun Park, Hyoung Seok Ko, Jae Gon Kim, and Jun Dong Cho. Real time rectification

using differentially encoded lookup table. In Proceedings of the 5th International

Conference on Ubiquitous Information Management and Communication, page 47. ACM,

2011.

[57] Abdulkadir Akin, Elif Erdede, Hossein Afshari, Alexandre Schmid, and Yusuf Leblebici.

Enhanced omnidirectional image reconstruction algorithm and its real-time hardware.

In Digital System Design (DSD), 2012 15th Euromicro Conference on, pages 907–914. IEEE,

2012.

[58] Abdulkadir Akin, Omer Cogal, Kerem Seyid, Hossein Afshari, Alexandre Schmid,

and Yusuf Leblebici. Hemispherical multiple camera system for high resolution

omni-directional light field imaging. Emerging and Selected Topics in Circuits and Systems,

IEEE Journal on, 3(2):137–144, 2013.

189

Bibliography

[59] Omer Cogal, Abdulkadir Akin, Kerem Seyid, Vladan Popovic, Alexandre Schmid, Beat Ott,

Peter Wellig, and Yusuf Leblebici. A new omni-directional multi-camera system for high

resolution surveillance. In SPIE Sensing Technology+ Applications, pages 91200N–91200N.

International Society for Optics and Photonics, 2014.

[60] Andy Motten and Luc Claesen. A binary adaptable window soc architecture for a stereo

vision based depth field processor. In VLSI System on Chip Conference (VLSI-SoC), 2010

18th IEEE/IFIP, pages 25–30. IEEE, 2010.

[61] Abdulkadir Akin, Ipek Baz, Alexandre Schmid, and Yusuf Leblebici. Dynamically adaptive

real-time disparity estimation hardware using iterative refinement. Integration, the {VLSI}

Journal, 47(3):365 – 376, 2014. Special issue: {VLSI} for the new era.

[62] Abdulkadir Akin, Raffaele Capoccia, Jonathan Narinx, Ipek Baz, Alexandre Schmid, and

Yusuf Leblebici. Trinocular adaptive window size disparity estimation algorithm and its

real-time hardware. In VLSI-DAT, 2015. IEEE, 2015.

[63] Abdulkadir Akin, Ipek Baz, Luis Manuel, Alexandre Schmid, and Yusuf Leblebici.

Compressed look-up-table based real-time rectification algorithm and its hardware.

In Proceedings of the IFIP/IEEE International Conference on VLSI-SOC, 2013.

[64] Abdulkadir Akin, Luis Manuel Gaemperle, Halima Najibi, Alexandre Schmid, and Yusuf

Leblebici. Enhanced compressed look-up-table based real-time rectification hardware.

Springer book chapter, VLSI-SoC: At the Crossroads of Emerging Trends, April 2015.

[65] Jong Dae Oh, Siwei Ma, and C-CJ Kuo. Disparity estimation and virtual view synthesis

from stereo video. In Circuits and Systems, 2007. ISCAS 2007. IEEE International

Symposium on, pages 993–996. IEEE, 2007.

[66] Aljoscha Smolic, Karsten Mueller, Philipp Merkle, Christoph Fehn, Peter Kauff, Peter

Eisert, and Thomas Wiegand. 3d video and free viewpoint video-technologies,

applications and mpeg standards. In Multimedia and Expo, 2006 IEEE International

Conference on, pages 2161–2164. IEEE, 2006.

[67] Luat Do, Germán Bravo, Svitlana Zinger, and PHN de With. Real-time free-viewpoint dibr

on gpus for large base-line multi-view 3dtv videos. In Visual Communications and Image

Processing (VCIP), 2011 IEEE, pages 1–4. IEEE, 2011.

[68] Egor Bondarev, Sveta Zinger, and PHN De With. Performance-efficient architecture for

free-viewpoint 3dtv receiver. In Consumer Electronics (ICCE), 2010 Digest of Technical

Papers International Conference on, pages 65–66. IEEE, 2010.

[69] Abdulkadir Akin, Raffaele Capoccia, Jonathan Narinx, Jonathan Masur, Alexandre Schmid,

and Yusuf Leblebici. Real-time free viewpoint synthesis using three-camera disparity

estimation hardware. In Circuits and Systems, 2015. ISCAS 2015. IEEE International

Symposium on. IEEE, 2015.

190

Bibliography

[70] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the OpenCV

library. O’Reilly Media, Incorporated, 2008.

[71] Sebastian Nowozin. Autopano-sift, making panoramas fun, 2006. [Online] Available:

http://user.cs.tu-berlin.de/nowozin/autopano-sift/.

[72] Hachem HALAWANA. Partial demosaicing of cfa images for stereo matching.

[73] Gary R Bradski. Intel open source computer vision library overview. Intel Labs, Intel

Corporation, 2002.

[74] Andrea Fusiello, Emanuele Trucco, and Alessandro Verri. A compact algorithm for

rectification of stereo pairs. Machine Vision and Applications, 12(1):16–22, 2000.

[75] Xiaoyan Hu and Philippos Mordohai. Evaluation of stereo confidence indoors and

outdoors. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on,

pages 1466–1473. IEEE, 2010.

[76] Andy Motten, Luc Claesen, and Yun Pan. Binary confidence evaluation for a stereo

vision based depth field processor soc. In Pattern Recognition (ACPR), 2011 First Asian

Conference on, pages 456–460. IEEE, 2011.

[77] XU Zhen-Ying, LI Wen-Bin, WANG Yun, LUO Chun, GAO Shu-Yuan, and CAO Dan-Dan.

Trinocular calibration method based on binocular calibration. TELKOMNIKA Indonesian

Journal of Electrical Engineering, 10(6):1439–1444, 2012.

[78] Liuxin Zhang, Bin Li, and Yunde Jia. A practical calibration method for multiple cameras.

In Image and Graphics, 2007. ICIG 2007. Fourth International Conference on, pages 45–50.

IEEE, 2007.

[79] Gregorij Kurillo, Zeyu Li, and Ruzena Bajcsy. Framework for hierarchical calibration

of multi-camera systems for teleimmersion. In Proceedings of the 2nd International

Conference on Immersive Telecommunications, page 1. ICST (Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering), 2009.

[80] Robert Laganière and Florian Kangni. Projective rectification of image triplets. Signal,

image and video processing, 4(4):389–397, 2010.

[81] Vincent Nozick. Multiple view image rectification. In Access Spaces (ISAS), 2011 1st

International Symposium on, pages 277–282. IEEE, 2011.

[82] Young Ki Baik, Jonghyun Choi, and Kyoung Mu Lee. An efficient trinocular rectification

method for stereo vision. Proc. Frontiers of Computer Vision (FCV), 2007.

[83] K. Seyid, V. Popovic, O. Cogal, A. Akin, H. Afshari, A. Schmid, and Y. Leblebici. A real-time

multi-aperture omnidirectional visual sensor based on interconnected network of smart

cameras. Circuits and Systems for Video Technology, IEEE Transactions on, PP(99):1–1,

2014.

191

Bibliography

[84] Luigi Bagnato. Omnidirectional light field analysis and reconstruction. PhD thesis, École

Polytechnique Fédérale de Lausanne (EPFL), 2012.

[85] Luis Gaemperle, Kerem Seyid, Vladan Popovic, and Yusuf Leblebici. An immersive

telepresence system using a real-time omnidirectional camera and a virtual reality

head-mounted display. In will be published in Multimedia (ISM), 2013 IEEE International

Symposium on. IEEE, 2015.

[86] H. Afshari, V. Popovic, T. Tasci, A. Schmid, and Y. Leblebici. A spherical multi-camera

system with real-time omnidirectional video acquisition capability. Consumer Electronics,

IEEE Transactions on, 58(4):1110–1118, November 2012.

[87] Luigi Bagnato, Yannick Boursier, Pascal Frossard, and Pierre Vandergheynst. Plenoptic

based super-resolution for omnidirectional image sequences. In Image Processing (ICIP),

2010 17th IEEE International Conference on, pages 2829–2832. IEEE, 2010.

[88] Abdulkadir Akin, Raffaele Capoccia, Jonathan Narinx, Alexandre Schmid, and Yusuf

Leblebici. Trinocular adaptive window size disparity estimation algorithm and its

real-time hardware. In VLSI Design, Automation and Test (VLSI-DAT), International

Symposium on, pages 1–4. IEEE, 2015.

[89] Edward L Hauck. Data compression using run length encoding and statistical encoding,

December 2 1986. US Patent 4,626,829.

[90] Joaquim Jocha. Skeltrack : A free software library for skeleton tracking, 2012. [Online]

Available: https://github.com/joaquimrocha/Skeltrack.

[91] Andreas Baak, Meinard Müller, Gaurav Bharaj, Hans-Peter Seidel, and Christian Theobalt.

A data-driven approach for real-time full body pose reconstruction from a depth camera.

In Consumer Depth Cameras for Computer Vision, pages 71–98. Springer, 2013.

[92] Chan Wah Ng and Surendra Ranganath. Real-time gesture recognition system and

application. Image and Vision computing, 20(13):993–1007, 2002.

[93] Bongjin Jun and Daijin Kim. Robust face detection using local gradient patterns and

evidence accumulation. Pattern Recognition, 45(9):3304–3316, 2012.

192

Abbreviations

2D Two-Dimensional

3D Three-Dimensional

AD Absolute Difference

ADS Adaptive Disparity Selection

AGC Automatic Color Gain Controller

AOV Angle of View

ALUT Adaptive Look-Up-Table

AP Adaptive Penalty

APCO Artificial Apposition Compound Eyes

ASIC Application-Specific Integrated Circuit

ASW Automatic Shutter Width Controller

AWDE Adaptive Window Size Disparity Estimation

AWDE-HC High Computational Cost version of AWDE

AXI Advanced Extensible Interface

B-DT Below Double Target

BB-DT Below-Backward Double Target

BF-DT Below-Forward Double Target

BRAM Block Random-Access Memory

BW Binary Window

C&A Compare and Accumulate

C&S Compare and Select

CCD Charge Coupled Device

CIF Common Intermediate Format

CLUTR Compressed Loop-Up-Table based Rectification

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

193

Abbreviations

DB Desibel

DDR Double Data Rate

DE Disparity Estimation

DFF D Flip-Flop

DMA Direct Memory Access

DR Disparity Refinement

DSP Digital Signal Processor

DT Double Target

DVI Digital Visual Interface

E-CLUTR Enhanced Compressed Loop-Up-Table based Rectification

EOIR Enhanced Omnidirectional Image Reconstruction

ETH Ethernet

FIFO First In First Out

FMC FPGA Mezzanine Card

FPGA Field Programmable Gate Array

FPS Frames Per Second

FVT Free Viewpoint Television

GB Gigabyte

GPO General Purpose Output

GUI Graphical User Interface

HC Hybrid Cost

HD High Definition

HDD Hard Disk Drive

HDMI High Definition Multimedia Interface

HMD Head-Mounted Display

HR High Resolution

I2C Inter-Integrated Circuit

IO Input Output

IP Intellectual Property

IR Iterative Refinement

194

Abbreviations

LIDAR Light Detection And Ranging

LR Low Resolution

LUT Look-Up-Table

M-FPGA Master FPGA

MAC Media Access Control

MAD Mean Absolute Difference

MB Megabyte

MHZ Megahertz

MISO Master In Slave Out

MOSI Master Out Slave In

MP Megapixel

MPMC Multi-Port Memory Controller

NPI Native Port Interface

P&R Place And Route

PC Personal Computer

PE Processing Element

PLB Processor Local Bus

PLL Phase-Locked Loop

PPAA Pixels Per Unit Angular Area

PSNR Peak Signal to Noise Ratio

RAM Random-Access Memory

RCM Reconfigurable Computation of Metrics

RDA Reconfigurable Data Allocation

RGB Red Green Blue

RO Read Only

ROM Read-Only Memory

RTL Register Transfer Level

RW Read Write

S-FPGA Slave FPGA

SAD Sum of Absolute Difference

SATA Serial Advanced Technology Attachment

SCLK Serial Clock

SD Squared Differences

SMA Sub-Miniature Version A

195

Abbreviations

SRAM Static Random-Access Memory

SS Slave Select

SSD Sum of Square Differences, Solid State Drive

T-AWDE Trinocular Adaptive Window Size Disparity Estimation

TB Terabyte

TCP Transmission Control Protocol

TOF Time of Flight

TR Threshold

TSMC Taiwan Semiconductor Manufacturing Company

TV Television

OIR Omnidirectional Image Reconstruction

UART Universal Asynchronous Receiver/Transmitter

UB-DT Upper-Backward Double Target

UDP User Datagram Protocol

UF-DT Upper-Forward Double Target

USB Universal Serial Bus

XGA Extended Graphics Array

VGA Video Graphics Array

VHDCI Very High Density Cable Interconnect

VHDL Verilog Hardware Description Language

WTA Winner Take All

YCbCr Luminance Chrominance-Blue Chrominance-Red

ZBT Zero-Bus Turnaround

196

RESEARCH INTERESTS

Low-cost and low-power hardware design for real-time video processing applications using FPGA and ASIC.
Embedded system development for FPGA.
Developing video enhancement and video compression algorithms.
Hardware design for cryptographic algorithms.

EDUCATION

03/2011-present: Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne/Switzerland
 PhD, Electrical Engineering (EDEE)
 Expected Graduation: April 2015

09/2008-06/2010: Sabanci University, Istanbul/Turkey
 Master of Science, Electronics Engineering (MS-EE)

(I am rewarded with the Gursel Sonmez Research Award in the graduation ceremony
because of coming into prominence with outstanding research during my MS study)

09/2003-06/2008: Sabanci University
 Bachelor of Science, Electronics Engineering (BS-EE), and Mathematics Minor

WORK & INTERNSHIP

03/2011-present:

07/2010-03/2011: Internship student in ESL and LTS2 Labs of EPFL in the project titled as Accelerating the

Implementation of Chambolle Algorithm using FPGA.

09/2008-06/2010:

09/2007-09/2008: Part time (3 days in a week) work in the video enhancement department of VESTEK
(R&D Company of VESTEL) on Frame Rate Up Conversion Hardware project.

08/2007-09/2007: Summer internship at ETA-IC Design Center on Analog to Digital Converter project.

06/2007-08/2007: Summer internship at VESTEK on Sharpness Hardware project. The hardware is used in
the 2

nd
 version 1366*768 LCD PIXELLENCE televisions of VESTEL.

06/2006-11/2006: Internship at Sabanci University in the Cardiovascular Protein Sensor Design project
supported by TUBITAK.

ABDULKADIR AKIN

Date of Birth: 16.06.1985
Contact Address: Chemin du Bugnon 29 1024 Ecublens Vaud/Switzerland
GSM: +41787180560
E-Mail: abdulkadir.akin@epfl.ch
Website: http://people.epfl.ch/abdulkadir.akin

 Member of System-on-Chip Design & Test Laboratory in Sabanci University.

 Research assistant in Sabanci University in the Low Complexity Motion Estimation
Techniques and Their SoC Implementation project supported by TUBITAK (The Scientific
and Technological Research Council of Turkey) and KRF (Korea Research Foundation).

 Assistant of ENS 203 (Circuit I) and EL310 (Hardware Description Languages) courses.

 Supervising BS degree graduation projects of 8 students.

 Member of Microelectronic Systems Laboratory (LSM) in EPFL.

 Research assistant in the project titled as Real-Time High-Resolution Multiple-Camera
Depth Map Estimation Hardware and its Applications.

 Assistant of Test of VLSI Systems (EE-530) course.

 Supervising 5 master theses, 2 master level semester projects, 7 internship projects.

197

PATENT

A. Akin, Y. Leblebici, A. Schmid, I. Baz, I. Boybat, H. B. Atakan, "A hardware-oriented dynamically adaptive disparity
estimation algorithm and its real-time hardware", US Patent Application n° 14/267,140 filed May 1st, 2014.

PUBLICATIONS

Journal Papers:
[1] K. Seyid, V. Popovic, Ö. Cogal, A. Akin, H. Afshari, A. Schmid and Y. Leblebici, “A Real-time Multi-aperture
Omnidirectional Visual Sensor Based on Interconnected Network of Smart Cameras”, IEEE Transactions on Circuits
and Systems for Video Technology, Sept. 2014.
[2] A. Akin, I. Baz, A. Schmid and Y. Leblebici, “Dynamically adaptive real-time disparity estimation hardware using
iterative refinement”, Elsevier, Integration the VLSI Journal, June 2014.
[3] V. Popovic, K. Seyid, A. Akin, Ö. Cogal, H. Afshari, A. Schmid, and Y. Leblebici, “Image Blending in a High Frame
Rate FPGA-based Multi-Camera System”, Springer Journal of Signal Processing Systems for Signal, Image and Video
Technology, Nov. 2013.
[4] A. Akin, Ö. Cogal, K. Seyid, H. Afshari, A. Schmid, and Y. Leblebici, “Hemispherical Multiple Camera System for
High Resolution Omni-Directional Light Field Imaging”, IEEE Journal of Emerging and Selected Topics in Circuits and
Systems, April 2013.
[5] A. Akin, M. Cetin, Z. Ozcan, B. Erbagci, and I. Hamzaoglu, “An Adaptive Bilateral Motion Estimation Algorithm
and its Hardware Architecture”, IEEE Journal, Tran. on Consumer Electronics, May 2012.
[6] A. Akin, G. Sayilar, and I. Hamzaoglu, “High Performance Hardware Architecture for One Bit Transform Based
Single and Multiple Reference Frame Motion Estimation”, IEEE Journal, Tran. on Consumer Electronics, May 2010.
[7] O. Tasdizen, A. Akin, H. Kukner, and I. Hamzaoglu, “Dynamically Variable Step Search Motion Estimation
Algorithm and a Dynamically Reconfigurable Hardware for Its Implementation”, IEEE Journal, Tran. on Consumer
Electronics, Aug. 2009.
[8] A. Akin, Y. Dogan, and I. Hamzaoglu, “High Performance Hardware Architectures for One Bit Transform Based
Motion Estimation Algorithms”, IEEE Journal, Tran. on Consumer Electronics, May 2009.

Book Chapter:
[1] A. Akin, L. M. Gaemperle, H. Najibi, A. Schmid, and Y. Leblebici, “Enhanced Compressed Look-up-Table based
Real-Time Rectification Hardware”, Springer, VLSI-SoC: At the Crossroads of Emerging Trends, 2015. (accepted for
publication)

International Conference Papers:
[1] A. Akin, R. Capoccia, J. Narinx, J. Masur, A. Schmid, and Y. Leblebici, “Real-Time Free Viewpoint Synthesis Using
Three-Camera Disparity Estimation Hardware”, ISCAS Conference, Lisbon, Portugal, 2015. (accepted)
[2] A. Akin, R. Capoccia, J. Narinx, A. Schmid, and Y. Leblebici, “Trinocular Adaptive Window Size Disparity
Estimation Algorithm and Its Real-Time Hardware”, VLSI-DAT Conference, Hsinchu, Taiwan, 2015. (accepted)
[3] Ö. Cogal, A. Akin, K. Seyid, V. Popovic, A. Schmid, and Y. Leblebici, “A New Omni-Directional Multi-Camera
System for High Resolution Surveillance”, SPIE Defense and Security Symposium, Baltimore, United States, 2014.
[4] A. Akin, I. Baz, L. M. Gaemperle, A. Schmid, and Y. Leblebici, “Compressed Look-up-Table based Real-Time
rectification hardware”, VLSI-SoC Conference, Istanbul, Turkey, 2013. (Nominated for Best Paper Award)
[5] A. Akin, I. Baz, B. Atakan, I. Boybat, A. Schmid, and Y. Leblebici, “A Hardware-Oriented Dynamically Adaptive
Disparity Estimation Algorithm and its Real-Time Hardware”, International Great Lakes Symposium on VLSI
(GLSVLSI), Paris, France, 2013.
[6] H. Afshari, A. Akin, V. Popovic, A. Schmid, and Y. Leblebici, “Real-Time FPGA Implementation of Linear Blending
Vision Reconstruction Algorithm using a Spherical Light Field Camera”, SiP Symposium, Québec City, Canada, 2012.
(Received Best Paper Award)
[7] A. Akin, E. Erdede, H. Afshari, A. Schmid, and Y. Leblebici, “Enhanced Omnidirectional Image Reconstruction
Algorithm and its Real-Time Hardware”, Euromicro Conference on Digital System Design, Cesme, Turkey, 2012.
[8] A. Akin, I. Beretta, A. A. Nacci, V. Rana, M. D. Santambrogio, and D. Atienza, “A High-Performance Parallel
Implementation of Chambolle Algorithm”, DATE Conference, Grenoble, France, 2011.
[9] A. Akin, O. C. Ulusel, T. Z. Ozcan, G. Sayilar, and I. Hamzaoglu, “A Novel Power Reduction Technique for Block
Matching Motion Estimation Hardware”, FPL Conference, Crete, Greece, 2011.
[10] A. Akin, M. Cetin, B. Erbagci, O. Karakaya, and I. Hamzaoglu, An Adaptive Bilateral Motion Estimation
Algorithm and its Hardware Architecture, VLSI-SoC Conference, Madrid, Spain, 2010.

198

[11] A. Akin, A. Aysu, O. Ulusel, and E. Savas, “Efficient Hardware Implementations of High Throughput SHA-3
Candidates Keccak, Luffa and Blue Midnight Wish for Single- and Multi-Message Hashing”, SIN Conference,
Taganrog, Russia, 2010.
[12] A. Akin, G. Sayilar, and I. Hamzaoglu, “A Reconfigurable Hardware for One Bit Transform Based Multiple
Reference Frame Motion Estimation”, DATE Conference, Dresden, Germany, 2010.
[13] A. Akin, Y. Dogan, and I. Hamzaoglu, “A High Performance Hardware Architecture for One Bit Transform Based
Motion Estimation Algorithms”, Euromicro Conference on Digital System Design, Patras, Greece, 2009.
[14] O. Tasdizen, H. Kukner, A. Akin, and I. Hamzaoglu, “A High Performance Reconfigurable Motion Estimation
Hardware Architecture”, DATE Conference, Nice, France, 2009.
[15] O. Tasdizen, A. Akin, H. Kukner, I. Hamzaoglu, and H. F. Ugurdag, “High Performance Hardware Architectures
for a Hexagon-Based Motion Estimation Algorithm”, VLSI-SoC Conference, Rhodes Island, Greece, 2008.

Paper Review Experience:
IEEE Journals: Transactions on Circuits and Systems for Video Technology, Transactions on Very Large Scale

Integration Systems.
Elsevier Journal: Digital Signal Processing.
Conferences: FPL, VLSI-SoC, CHES, ICECS.

SKILLS

Languages: Turkish (native), English (advanced), French (intermediate)
Programming Skills: Verilog HDL, VHDL, MATLAB, C/C++, Assembly
Work Environment: Modelsim, Xilinx ISE XST EDK, MS Visual Studio, Cadence

SOCIAL PROJECTS, INTERESTS AND ACTIVITIES

Dance: Argentine Tango (advanced), Disco-Fox
Sports: Rollerblade, ice skating, skiing, swimming, boxing, tennis, squash, cycling, windsurf, football, basketball
Others: Playing Turkish Musical Instrument Baglama, Chess, Cooking
Social Projects: Helping children in orphanage for their lessons (Sabanci University civic involvement project)

REFERENCES

Yusuf Leblebici Prof. at EPFL yusuf.leblebici@epfl.ch
 Microsystems and Microelectronic Department
 Director of my PhD thesis

Alexandre Schmid Dr. MER at EPFL alexandre.schmid@epfl.ch
 Microsystems and Microelectronic Department
 Co-director of my PhD thesis

İlker Hamzaoğlu Assoc. Prof. at Sabanci University hamzaoglu@sabanciuniv.edu
 Electronics Engineering (EE) Department
 Director of my MS thesis

199

	Title page

	Acknowledgements
	Abstract (English/Français)
	List of figures
	List of tables
	Introduction
	Large Angle of View Image Capture Systems
	Depth Estimation Systems
	Contribution of the Thesis
	Proposed Depth Map Estimation Systems
	Proposed Large Angle of View Image Capture and Reconstruction Systems

	Thesis organization

	State of the Art
	Hemispherical Multiple Camera Image Reconstruction Systems
	Binocular Stereo Matching Algorithms and Their Hardware Implementations
	Camera Calibration
	Rectification
	Matching Cost Computation
	Cost Aggregation
	Disparity Selection and Optimization
	Disparity Refinement

	Trinocular Stereo Matching Algorithms and Their Hardware Implementations
	Thesis Goals

	Binocular Adaptive Window Size Disparity Estimation Algorithm and Its Hardware Implementation
	Binocular Hardware-Oriented Adaptive Window Size Disparity Estimation Algorithm
	Window Size Determination
	Disparity Voting
	Disparity Refinement

	Hardware Implementation of Proposed Binocular AWDE Algorithm
	Overview
	Data Allocation and Disparity Voting
	Disparity Refinement

	Iterative Refinement for the Enhanced AWDE implementation
	Implementation Results

	Trinocular Adaptive Window Size Disparity Estimation Algorithm and Its Hardware Implementation
	Trinocular Hardware-Oriented Adaptive Window Size Disparity Estimation Algorithm
	Trinocular Adaptive Window Size Disparity Estimation Hardware
	Implementation Results

	Compressed Look-Up-Table Based Rectification Algorithms and Their Hardware Implementations
	Compressed Look-Up-Table based Rectification Algorithm
	Real-Time De-Compression Hardware of CLUTR
	Limitations of the CLUTR
	Enhanced Compressed Look-Up-Table based Rectification Algorithm
	Real-Time De-Compression Hardware of E-CLUTR
	Real-Time Hardware of Caltech Rectification
	Implementation Results

	Embedded System for Depth Map Estimation
	The Overview of the Depth Map Estimation System
	Video Processing Hardware Cores and Circuits
	Peripherals of the Embedded System
	Embedded Software

	Hardware and Software based Applications of Disparity Estimation
	Free View Synthesis Hardware Using Trinocular Disparity Estimation
	Hardware-Oriented Three-Camera Free Viewpoint Synthesis Algorithm
	Real-Time Free Viewpoint Synthesis Hardware
	Implementation Results

	System GUI and Software Based Real-Time Applications
	Capture and the display of the video
	Front-end of the GUI
	Software based real-time applications

	ASIC Implementation of Binocular Disparity Estimation
	Disparity Estimation ASIC Specifications
	Adaptation of Disparity Estimation Hardware for ASIC
	ASIC Design
	Synthesis
	Placement and Routing

	Test System

	High-Quality Omnidirectional Multi-Camera Systems
	Enhanced Omnidirectional Image Reconstruction Algorithm and Its Real-Time Hardware Implementation
	Equal Area Distribution Algorithm
	Hardware Implementation of Equal Area Distribution Algorithm
	Implementation Results

	Giga-Eye Camera
	System Parameters and Requirements
	System Architecture
	Implementation Results

	Conclusion
	High-Resolution Visual Results of Proposed Systems
	Visual Results of the Depth Estimation System
	Visual Results of the Giga-Eye Multiple-Camera System

	Bibliography
	Abbreviations
	Curriculum Vitae

