87 research outputs found

    ビットマップインデックスに基づくデータ解析のためのハードウェアシステムに関する研究

    Get PDF
    Recent years have witnessed a massive growth of global data generated from web services, social media networks, and science experiments, as well as the  “tsunami" of Internet-of-Things devices. According to a Cisco forecast, total data center traffic is projected to hit 15.3 zettabytes (ZB) by the end of 2020. Gaining insight into a vast amount of data is highly important because valuable data are the driving force for business decisions and processes, as well as scientists\u27 exploration and discovery.To facilitate analytics, data are usually indexed in advance. Depending on the workloads, such as online transaction processing (OLTP) workloads and online analytics processing (OLAP) workloads, several indexing frameworks have been proposed. Specifically, B+-tree and hash are two common indexing methods in OLTP, where the number of querying and updating processes are nearly similar. Unlike OLTP, OLAP concentrates on querying in a huge historical storage, where updating processes are irregular. Most queries in OLAP are also highly complex and involve aggregations, while the execution time is often limited. To address these challenges, a bitmap index (BI) was proposed and has been proven as a promising candidate for OLAP-like workloads.A BI is a bit-level matrix, whose number of rows and columns are the length and cardinality of the datasets, respectively. With a BI, answering multi-dimensional queries becomes a series of bitwise operators, e.g. AND, OR, XOR, and NOT, on bit columns. As a result, a BI has proven profitable for solving complex queries in large enterprise databases and scientific databases. More significantly, because of the usage of low-hardware logical operators, a BI appears to be suitable for advanced parallel-processing platforms, such as multi-core CPUs, graphics processing units (GPUs), field-programmable logic arrays (FPGAs), and application-specific integrated circuits (ASIC).Modern FPGAs and ASICs have become increasingly important in data analytics because they can confront both data-intensive and computing-intensive tasks effectively. Furthermore, FPGAs and ASICs can provide higher energy efficiency, compared to CPUs and GPUs. As a result, since 2010, Microsoft has been working on the so-called Catapult project, where FPGAs were integrated into datacenter servers to accelerate their search engine as well as AI applications. In 2016, Oracle for the first time introduced SPARC S7 and M7 processors that are used for accelerating the OLTP databases. Nonetheless, a study on the feasibility of BI-based analytics systems using FPGAs and ASICs has not yet been developed.This dissertation, therefore, focuses on implementing the data analytics systems, in both FPGAs and ASICs, using BI. The advantages of the proposed systems include scalability, low data input/output cost, high processing throughput, and high energy efficiency. Three main modules are proposed: (1) a BI creator that indexes the given records by a list of keys and outputs the BI vectors to the external memory; (2) a BI-based query processor that employs the given BI vectors to answer users\u27 queries and outputs the results to the external memory; and (3) an BI encoder that returns the positions of one-bits of bitmap results to the external memory. Six hardware systems based on those three modules are implemented in an FPGA in advance for functional verification and then partially in two ASICs|180-nm bulk complementary metal-oxide-semiconductor (CMOS) and 65-nm Silicon-On-Thin-Buried-Oxide (SOTB) CMOS technology―for physical design verification. Based on the experimental results, these proposed systems outperform other CPU-based and GPU-based designs, especially in terms of energy efficiency.電気通信大学201

    AxleDB: A novel programmable query processing platform on FPGA

    Get PDF
    With the rise of Big Data, providing high-performance query processing capabilities through the acceleration of the database analytic has gained significant attention. Leveraging Field Programmable Gate Array (FPGA) technology, this approach can lead to clear benefits. In this work, we present the design and implementation of AxleDB: An FPGA-based platform that enables fast query processing for database systems by melding novel database-specific accelerators with commercial-off-the-shelf (COTS) storage using modern interfaces, in a novel, unified, and a programmable environment. AxleDB can perform a large subset of SQL queries through its set of instructions that can map compute-intensive database operations, such as filter, arithmetic, aggregate, group by, table join, or sort, on to the specialized high-throughput accelerators. To minimize the amount of SSD I/O operations required, AxleDB also supports hardware MinMax indexing for databases. We evaluated AxleDB with five decision support queries from the TPC-H benchmark suite and achieved a speedup from 1.8X to 34.2X and energy efficiency from 2.8X to 62.1X, in comparison to the state-of-the-art DBMS, i.e., PostgreSQL and MonetDB.The research leading to these results has received funding from the European Union Seventh Framework Program (FP7) (under the AXLE project GA number 318633), the Ministry of Economy and Competitiveness of Spain (under contract number TIN2015-65316-p), Turkish Ministry of Development TAM Project (number 2007K120610), and Bogazici University Scientific Projects (number 7060).Peer ReviewedPostprint (author's final draft

    Energy Efficient Hardware Accelerators for Packet Classification and String Matching

    Get PDF
    This thesis focuses on the design of new algorithms and energy efficient high throughput hardware accelerators that implement packet classification and fixed string matching. These computationally heavy and memory intensive tasks are used by networking equipment to inspect all packets at wire speed. The constant growth in Internet usage has made them increasingly difficult to implement at core network line speeds. Packet classification is used to sort packets into different flows by comparing their headers to a list of rules. A flow is used to decide a packet’s priority and the manner in which it is processed. Fixed string matching is used to inspect a packet’s payload to check if it contains any strings associated with known viruses, attacks or other harmful activities. The contributions of this thesis towards the area of packet classification are hardware accelerators that allow packet classification to be implemented at core network line speeds when classifying packets using rulesets containing tens of thousands of rules. The hardware accelerators use modified versions of the HyperCuts packet classification algorithm. An adaptive clocking unit is also presented that dynamically adjusts the clock speed of a packet classification hardware accelerator so that its processing capacity matches the processing needs of the network traffic. This keeps dynamic power consumption to a minimum. Contributions made towards the area of fixed string matching include a new algorithm that builds a state machine that is used to search for strings with the aid of default transition pointers. The use of default transition pointers keep memory consumption low, allowing state machines capable of searching for thousands of strings to be small enough to fit in the on-chip memory of devices such as FPGAs. A hardware accelerator is also presented that uses these state machines to search through the payloads of packets for strings at core network line speeds

    Implementing and evaluating graph algorithms for long vector architectures

    Get PDF
    High-Performance Computing can be accelerated using long-vector architectures. However, creating efficient coding implementations for these architectures can be challenging. This Master's thesis focuses on implementing four well-known and widely-used graph processing algorithms using the RISC-V Vector Extension, leveraging an experimental system in an FPGA. I present a graph storage format that benefits from long vectors and describe how these four algorithms can be rewritten to utilize it. This thesis also introduces an instrumentation tool for FPGA that I developed to link the output of electrical engineering software with performance analysis tools for HPC. This tool allows users to visualize information coming from the logic analyzer internal to the FPGA with powerful visualization tools, permitting fine-grain analysis of the FPGA signals correlated with the code running on it. This tool has been integrated into the experimental performance analysis tools of BSC. In this thesis I leverage this tool to analyze and improve my implementations of graph algorithms for long-vector architectures, collecting the process and thoughts behind each optimization. Finally, I compare the performance of my vector implementations with other machines, such as the NEC SX-Aurora, a commercial RISC-V board, and an Intel chip

    Fast Packet Processing on High Performance Architectures

    Get PDF
    The rapid growth of Internet and the fast emergence of new network applications have brought great challenges and complex issues in deploying high-speed and QoS guaranteed IP network. For this reason packet classication and network intrusion detection have assumed a key role in modern communication networks in order to provide Qos and security. In this thesis we describe a number of the most advanced solutions to these tasks. We introduce NetFPGA and Network Processors as reference platforms both for the design and the implementation of the solutions and algorithms described in this thesis. The rise in links capacity reduces the time available to network devices for packet processing. For this reason, we show different solutions which, either by heuristic and randomization or by smart construction of state machine, allow IP lookup, packet classification and deep packet inspection to be fast in real devices based on high speed platforms such as NetFPGA or Network Processors

    Advanced analytics through FPGA based query processing and deep reinforcement learning

    Get PDF
    Today, vast streams of structured and unstructured data have been incorporated in databases, and analytical processes are applied to discover patterns, correlations, trends and other useful relationships that help to take part in a broad range of decision-making processes. The amount of generated data has grown very large over the years, and conventional database processing methods from previous generations have not been sufficient to provide satisfactory results regarding analytics performance and prediction accuracy metrics. Thus, new methods are needed in a wide array of fields from computer architectures, storage systems, network design to statistics and physics. This thesis proposes two methods to address the current challenges and meet the future demands of advanced analytics. First, we present AxleDB, a Field Programmable Gate Array based query processing system which constitutes the frontend of an advanced analytics system. AxleDB melds highly-efficient accelerators with memory, storage and provides a unified programmable environment. AxleDB is capable of offloading complex Structured Query Language queries from host CPU. The experiments have shown that running a set of TPC-H queries, AxleDB can perform full queries between 1.8x and 34.2x faster and 2.8x to 62.1x more energy efficient compared to MonetDB, and PostgreSQL on a single workstation node. Second, we introduce TauRieL, a novel deep reinforcement learning (DRL) based method for combinatorial problems. The design idea behind combining DRL and combinatorial problems is to apply the prediction capabilities of deep reinforcement learning and to use the universality of combinatorial optimization problems to explore general purpose predictive methods. TauRieL utilizes an actor-critic inspired DRL architecture that adopts ordinary feedforward nets. Furthermore, TauRieL performs online training which unifies training and state space exploration. The experiments show that TauRieL can generate solutions two orders of magnitude faster and performs within 3% of accuracy compared to the state-of-the-art DRL on the Traveling Salesman Problem while searching for the shortest tour. Also, we present that TauRieL can be adapted to the Knapsack combinatorial problem. With a very minimal problem specific modification, TauRieL can outperform a Knapsack specific greedy heuristics.Hoy en día, se han incorporado grandes cantidades de datos estructurados y no estructurados en las bases de datos, y se les aplican procesos analíticos para descubrir patrones, correlaciones, tendencias y otras relaciones útiles que se utilizan mayormente para la toma de decisiones. La cantidad de datos generados ha crecido enormemente a lo largo de los años, y los métodos de procesamiento de bases de datos convencionales utilizados en las generaciones anteriores no son suficientes para proporcionar resultados satisfactorios respecto al rendimiento del análisis y respecto de la precisión de las predicciones. Por lo tanto, se necesitan nuevos métodos en una amplia gama de campos, desde arquitecturas de computadoras, sistemas de almacenamiento, diseño de redes hasta estadísticas y física. Esta tesis propone dos métodos para abordar los desafíos actuales y satisfacer las demandas futuras de análisis avanzado. Primero, presentamos AxleDB, un sistema de procesamiento de consultas basado en FPGAs (Field Programmable Gate Array) que constituye la interfaz de un sistema de análisis avanzado. AxleDB combina aceleradores altamente eficientes con memoria, almacenamiento y proporciona un entorno programable unificado. AxleDB es capaz de descargar consultas complejas de lenguaje de consulta estructurado desde la CPU del host. Los experimentos han demostrado que al ejecutar un conjunto de consultas TPC-H, AxleDB puede realizar consultas completas entre 1.8x y 34.2x más rápido y 2.8x a 62.1x más eficiente energéticamente que MonetDB, y PostgreSQL en un solo nodo de una estación de trabajo. En segundo lugar, presentamos TauRieL, un nuevo método basado en Deep Reinforcement Learning (DRL) para problemas combinatorios. La idea central que está detrás de la combinación de DRL y problemas combinatorios, es aplicar las capacidades de predicción del aprendizaje de refuerzo profundo y el uso de la universalidad de los problemas de optimización combinatoria para explorar métodos predictivos de propósito general. TauRieL utiliza una arquitectura DRL inspirada en el actor-crítico que se adapta a redes feedforward. Además, TauRieL realiza el entrenamieton en línea que unifica el entrenamiento y la exploración espacial de los estados. Los experimentos muestran que TauRieL puede generar soluciones dos órdenes de magnitud más rápido y funciona con un 3% de precisión en comparación con el estado del arte en DRL aplicado al problema del viajante mientras busca el recorrido más corto. Además, presentamos que TauRieL puede adaptarse al problema de la Mochila. Con una modificación específica muy mínima del problema, TauRieL puede superar a una heurística codiciosa de Knapsack Problem.Postprint (published version

    Exploring New Computing Paradigms for Data-Intensive Applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore