
LEVERAGING DATA-FLOW
INFORMATION FOR EFFICIENT

SCHEDULING OF TASK-PARALLEL
PROGRAMS ON HETEROGENEOUS

SYSTEMS

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2020

Osman Seckin Simsek

School of Computer Science

Contents

Abstract 8

Declaration 9

Copyright 10

Acknowledgements 11

1 Introduction 12
1.1 Motivation . 13

1.2 Contributions . 14

1.2.1 Contributions in the GPU Context 14

1.2.2 Contributions in the FPGA Context 16

1.3 Practical Contributions . 17

1.4 Thesis Outline . 17

1.5 Publications . 18

2 Background 19
2.1 Parallel Architectures . 19

2.1.1 Architecture Models . 20

2.1.2 Memory Systems . 20

2.1.3 Multi-core CPUs . 21

2.1.4 Heterogeneous Many-core Systems 22

2.2 Parallel Programming Models for Many-core Architectures 24

2.2.1 Heterogeneous System Programming 24

2.2.2 GPU Programming Models 25

2.2.3 OpenCL Programming Model 25

2.2.4 FPGA Programming Models 29

2

2.2.5 Task-Based Programming Models 30

2.3 Related Work . 33

2.3.1 XKaapi . 33

2.3.2 OmpSs . 36

2.3.3 StarPU . 39

2.3.4 QUARK . 41

2.3.5 Discussion . 42

2.3.6 The Effect of Task Granularity 43

2.4 Summary . 44

3 OpenStream 46
3.1 Terminology . 46

3.2 Syntax and Semantics . 48

3.2.1 Declaring Streams . 48

3.2.2 Declaring Views . 49

3.2.3 Task Creation . 51

3.2.4 Tick Construct . 53

3.2.5 Taskwait Construct . 54

3.3 Execution Model . 54

3.3.1 The Workers and The Scheduler 54

3.3.2 Data Structures . 56

3.3.3 Memory Management . 58

3.3.4 Dependence Management 59

3.4 Compilation of OpenStream Programs 68

3.5 Summary . 70

4 Extending OpenStream for Heterogeneous Systems 71
4.1 Extension for GPUs . 72

4.1.1 Execution Model of OpenStream-GPU 72

4.1.2 Syntax of OpenStream Programs Employing GPUs 74

4.1.3 Run-time Implementation 77

4.2 Extension for FPGAs . 80

4.2.1 Execution Model of OpenStream-FPGA 80

4.2.2 Syntax of OpenStream Programs for FPGA Acceleration . . . 82

4.2.3 Run-time Implementation 84

4.3 Summary . 86

3

5 Dynamic Scheduling on GPUs 87
5.1 Dynamic Scheduling of Tasks on GPUs 88
5.2 Execution of Tasks on GPUs . 90

5.2.1 Accounting for Compute Unit Asymmetry 91
5.3 Experimental Setup . 92

5.3.1 Hardware Environment . 93
5.3.2 Experimental Baseline . 93
5.3.3 Benchmarks . 94

5.4 Results . 95
5.4.1 Data Locality: Bandwidth vs. Latency 95
5.4.2 Impact on Performance . 98
5.4.3 Execution Breakdown . 100
5.4.4 Comparison with XKaapi Run-time 102

5.5 Conclusion . 104

6 Dynamic Task Scheduling on FPGA-SoCs 105
6.1 Dynamic Scheduling on FPGAs . 106

6.1.1 Scheduling Tasks on FPGA Accelerators 107
6.1.2 Task Execution on FPGA Accelerators 108

6.2 Experimental Setup . 111
6.2.1 Hardware Environment . 111
6.2.2 Benchmarks . 111

6.3 Results . 112
6.3.1 Task Distribution Analysis 112
6.3.2 Impact on Performance . 116

6.4 Conclusion . 117

7 Conclusion and Perspectives 119
7.1 Summary . 119
7.2 Contributions . 120
7.3 Future Directions . 122

Bibliography 124

Word Count: 33036

4

List of Tables

5.1 Execution times of OpenStream and XKaapi run-times for different
matrix sizes for Matrix Multiplication and Cholesky 103

6.1 Different configurations of accelerators for different block sizes in Cholesky114

5

List of Figures

2.1 Architectural differences between CPU and GPU 23
2.2 OpenCL platform model . 26
2.3 OpenCL memory model . 28
2.4 HLS design flow . 29
2.5 Relationship of the run-time with the other components of a system . 32

3.1 Illustration of stream accesses with burst and horizon 50
3.2 Tasks accessing streams using views and the corresponding dynamic

task graph . 52
3.3 Persistent workers with their data structures and worker placement in

OpenStream . 55
3.4 Data structures of OpenStream run-time 56
3.5 Structure of the memory pool . 58
3.6 Dependence resolution of two producers and one consumer 62
3.6 Dependence resolution of two producers and one consumer contd. . . 63
3.7 Dependence resolution of one producer and two consumers using broad-

cast operation . 67
3.8 Compilation steps of OpenStream programs 69

4.1 Persistent workers extended for GPU support in OpenStream 73
4.2 Extended Frame data structure and cl data structure 78
4.3 Extended view data structure . 79
4.4 Persistent workers extended for FPGA accelerator support in Open-

Stream . 81
4.5 Extended Frame data structure for FPGA use 84
4.6 FPGA accelerator data structure to manage each accelerator 85

5.1 Total amount of data transferred (normalized to the baseline XKS) . . 96
5.2 Number of tasks executed on the GPU (normalized to the baseline XKS) 97

6

5.3 Number of transfers between the host and the device (normalized to
the baseline XKS) . 98

5.4 Execution time (lower is better, normalized to the baseline XKS) . . . 99
5.5 Breakdown of time spent in GPU execution, showing the amount of

overlap between computation and communication 101
5.6 Performance in GFLOPs . 103

6.1 Percentage of tasks offloaded to accelerators in Matrix Multiplication 113
6.2 Percentage of tasks offloaded to accelerators in Cholesky 114
6.3 Percentage of tasks obtained through work stealing, work pushing or

dependence satisfaction in Cholesky 115
6.4 Performance of Matrix Multiplication (normalized to the baseline CPU-

only) . 116
6.5 Performance of Cholesky (normalized to the baseline CPU-only) . . . 117

7

Abstract

LEVERAGING DATA-FLOW INFORMATION FOR EFFICIENT

SCHEDULING OF TASK-PARALLEL PROGRAMS ON

HETEROGENEOUS SYSTEMS

Osman Seckin Simsek
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2020

Writing efficient programs for heterogeneous platforms is challenging: program-
mers must deal with multiple programming models, partition work for CPUs and accel-
erators with different compute capabilities, requiring different amounts of parallelism,
and manage memory in multiple distinct address spaces. Consequently, programming
models which only require expressing parallelism and data dependences can not only
unburden the programmer from these technical decisions, but also increase code and
performance portability.

Past research has identified data-flow task parallel programming models are a good
fit for increasing the programmer productivity as well as unleashing the parallel pro-
cessing power of massively parallel heterogeneous architectures. Especially, the de-
pendence information readily available in the modern data-flow task parallel program-
ming models can be exploited for better task and data placement decisions to achieve
higher performance and portability.

This thesis focuses on the efficient scheduling of data-flow task parallel programs to
a wide range of heterogeneous architectures from multi-core CPUs combined with dis-
crete GPUs to multi-core CPUs with FPGA in system-on-chips. The proposed strate-
gies balance the workload across heterogeneous resources, while simultaneously lever-
aging the task dependence information available in OpenStream–a platform-neutral
and heterogeneity-agnostic data-flow programming model– to optimize the scheduling
of tasks and data transfers.

8

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

9

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=487), in any relevant Thesis restriction declarations deposited in the Uni-
versity Library, The University Library’s regulations (see http://www.manchester.
ac.uk/library/aboutus/regulations) and in The University’s policy on pre-
sentation of Theses

10

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations
http://www.manchester.ac.uk/library/aboutus/regulations

Acknowledgements

First of all, I would like to thank my principal supervisor Dr. Antoniu Pop for his
constant support and invaluable guidance through my PhD. At the same time, I would
like to thank my second supervisor Dr. Mikel Luján for his support and encouragement.

Next, I would like to thank all members of APT group here at the University of
Manchester for providing a friendly environment. I also would like to thank my family
for their unconditional love.

Finally, I would like to thank my wife Merve for supporting me through thick and
thin in this PhD.

11

Chapter 1

Introduction

In the mid-2000s, the microprocessor industry went through a paradigm shift from
aggressive single core processors, to more energy efficient multi-core designs due to
power and temperature limits. Until 2000s, microprocessor development went through
an era of sequential performance gains through aggressive clock frequency scaling
and micro-architectural improvements, pushing the power and temperature boundaries
to the point where increasing the clock frequency only lead to limited gains, forcing
the industry to find alternative solutions and thus, the era of multi-core processors
emerged.

However, the ever-increasing need for more computing power persists and the fo-
cus now lies on increasing parallel performance by using many-core accelerators in a
heterogeneous setup. The new architectural trend has multi-core processors in its heart,
combined with accelerators such as GPUs and FPGAs. Although multi-core chips try
to maintain the execution speed of sequential programs by architectural improvements,
accelerators favor the execution throughput.

The shift from homogeneous to heterogeneous architectures, in many cases, caused
widely used algorithms to be rethought and rewritten to take advantage of heteroge-
neous architectures containing multi-core and many-core devices. However, due to
the large number of available devices and short release cycles of systems with even
higher processing units, parallel applications are required to be portable across multiple
systems. Since parallel programming is more complex than sequential programming,
parallel programming models must provide improved productivity, reduced implemen-
tation overhead and efficient execution on a wide variety of architectures.

Task-based programming models respond to these challenges by abstracting from

12

1.1. MOTIVATION 13

the underlying architectural details, the operating system and system libraries. In ad-
dition to this abstraction, these programming models increase the productivity of the
programmer who only needs to focus on the specification of the program by defining
fine-grained tasks and task dependences. Generally, all the issues related to efficient
interaction with system software, efficient exploitation of all computing resources and
performance portability is handled by the run-time system. On heterogeneous archi-
tectures, this includes efficient delegation of work to multiple devices in conjunction
with efficient memory management in both discrete and shared memory architectures.
Providing efficient mechanisms for task and data placement is required for the imple-
mentation of task-parallel programming models to achieve high performance in het-
erogeneous architectures.

1.1 Motivation

The challenges in heterogeneous systems range from efficient delegation of work, to
efficient data placement and handling memory transfers between devices in discrete
memory platforms. Although there are a multitude of approaches for task and data
placement for task-parallel programs, the purpose of this thesis is to explore the chal-
lenges and opportunities for the exploitation of data-flow information for making better
scheduling decisions in heterogeneous architectures.

A major challenge in heterogeneous systems is the distribution of tasks to all avail-
able processing units efficiently since execution performance is highly affected by the
differences in the computational capability of each device. On heterogeneous plat-
forms, offloading a task to a device requires loading its compiled binary to the device
at run-time and the movement of data in case the devices do not share the same mem-
ory. In addition to this, the management of underlying device software such as drivers
and libraries create an overhead which can limit the execution performance.

Moreover, due to the differences in computational capabilities between devices
in heterogeneous systems, classical load balancing approaches such as work stealing
which do not account for the asymmetric compute capabilities are insufficient in ex-
ploiting full system resources. In a heterogeneous system where some of the compu-
tational units can provide higher throughput compared to the rest, better performing
computational units must be occupied in order to increase the system utilization and
overall performance.

14 CHAPTER 1. INTRODUCTION

The modern task-based run-time systems can cope with these challenges by pro-
viding transparency for heterogeneous architectures in addition to having fine-grained
control over the task and data assignment of task and data to devices. Hence, all deci-
sions regarding the data and task placement becomes the scheduler’s responsibility in
such run-time systems.

In order to deal with these challenges, the scheduler, which is the core of a run-time
system that manages task and data placement must deal with the following issues for
efficient execution of applications on heterogeneous systems:

• Resources that can be used independently, such as accelerators and the intercon-
nect between host and device memory, should be used in parallel;

• The scheduler should improve execution performance on accelerators by allow-
ing fully asynchronous operations;

• Assuming the throughput of an accelerator is substantially higher than a CPU,
accelerator idle time has a higher impact on performance, so any accelerator
present on the system should be prioritized when work is scarce, and unblocking
tasks that can be offloaded to accelerators takes precedence over CPU tasks;

• Assuming data and task placement is transparent to the programmer and only
the scheduler has fine-grained control over the assignment of task and data to
devices, scheduling overhead must not become a bottleneck.

1.2 Contributions

In this thesis, we address the issues above by proposing novel scheduling strategies
for heterogeneous systems made of; (1) multi-core CPUs with discrete GPUs and (2)
multi-core CPUs with on-chip FPGAs sharing system memory.

1.2.1 Contributions in the GPU Context

In the GPU context, we present a novel scheduling and memory allocation technique
for task-parallel data-flow programs executing on heterogeneous platforms composed
of CPUs and GPUs that addresses the above challenges through: (1) dynamic load bal-
ancing across the host system and its GPUs; (2) a dynamic scheduling mechanism
to decrease the number of task dependences crossing devices thus decreasing task

1.2. CONTRIBUTIONS 15

stalls on the GPUs; and (3) fully asynchronous task execution favoring overlapping
of data transfers and computations on GPUs. Scheduling and memory allocation de-
cisions are based solely on dynamic information about data accesses and data locality,
readily available at execution time within the run-time systems of modern data-flow
task-parallel languages. Our approach is fully automatic and thus unburdens the pro-
grammer of manual data partitioning and offloading to accelerators.

Our scheduling strategy uses run-time information about task dependences to make
dynamic decisions on task and data placement. The approach not only favors data lo-
cality by subsequently executing tasks that exchange large amounts of data on the
same device, but also keeps track of tasks with smaller dependences in order to prior-
itize them for offloading to the GPU, should it become idle. The scheduler takes into
account which data is still in host memory and which data has already been transferred
or will be transferred to device memory in order to identify and exploit opportunities
for overlapping data transfers with GPU execution.

Our approach is capable of executing work on both CPUs and GPUs concur-
rently, with load balancing that dynamically reacts to the available parallelism and load
throughout the execution. To this end, the proposed scheme employs work-stealing.
Existing scheduling approaches for heterogeneous systems rely only on work-stealing
for load balancing. Since work-stealing decreases the data locality, these approaches
employ locality-aware techniques to compensate. On the other hand, our approach pro-
actively places the data of future tasks before these become eligible by the scheduler
in addition to work-stealing. Furthermore, our approach explicitly manages transfers
between host and device memory, as data transfers between devices are the limiting
factor for communication intensive workloads.

This work makes the following contributions in the context of GPUs:

• A new dynamic task scheduling and data placement heuristic for GPUs, leverag-
ing task dependence information to enhance data locality.

• An integrated, joint scheduling of tasks and of data transfers between host and
device, allowing for overlapping communication and GPU execution.

• A memory management strategy that incorporates task private memory regions
in order to facilitate the memory allocation on the corresponding device.

• A dynamic load balancing technique that accounts for the computational capa-
bilities of each device.

16 CHAPTER 1. INTRODUCTION

1.2.2 Contributions in the FPGA Context

In the FPGA context, we present a novel scheduling technique for task-parallel data-
flow programs executing on heterogeneous platforms composed of multi-core CPUs
and FPGAs sharing system memory that addresses the aforementioned challenges
through: (1) task scheduling through work-pushing to increase the effective use of
FPGA accelerators; (2) a dynamic scheduling mechanism to actively schedule depen-
dent tasks on the FPGA accelerators, creating a pipelined execution on the FPGA;
and (3) fully asynchronous task execution infrastructure including the management of
accelerators for FPGA.

The proposed scheduler takes advantage of the data-flow information readily avail-
able in the modern data-flow task-parallel run-times to make scheduling decisions. Our
approach can execute tasks on FPGA accelerators transparently and automatically, un-
burdening the programmer of accelerator management difficulties. The approach pri-
oritizes the accelerators over execution of tasks on CPU cores to take advantage of the
higher throughput of the accelerators as well as to create a pipelined execution of tasks
on accelerators.

Our approach not only executes work on the FPGA accelerators, but also uses CPU
cores to employ of all available computational device on the system. To our knowl-
edge, there has not been any effort in the literature for dynamic task scheduling on
FPGA accelerators using a user-level run-time system. The only close approach is
OmpSs@Zynq [41] in which the main focus of the study is to generate FPGA accel-
erators during the compilation phase, combined with a static scheduling heuristic, not
a dynamic scheduling approach while we propose a dynamic scheduling technique for
heterogeneous systems containing CPU and FPGA on the same chip.

This work makes the following contributions in the context of FPGAs:

• A novel dynamic task scheduling heuristic targeting FPGA MPSoCs, leveraging
task dependence information to increase the effective use of FPGA accelerators.

• A dynamic scheduling technique that accounts for the differences in computa-
tional capabilities of accelerators by prioritizing the execution on the FPGA.

• A scheduling heuristic taking advantage of the data-flow information available
in the run-time to create pipelined execution on the FPGA accelerators.

1.3. PRACTICAL CONTRIBUTIONS 17

1.3 Practical Contributions

The implementation and evaluation of the proposed contributions in GPU and FPGA
contexts also led to several practical contributions. First, design and development of
GPU and FPGA extensions for OpenStream, a state-of-the-art framework for task-
parallel applications, have been undertaken. On top of the extended OpenStream, we
integrated the proposed scheduling heuristics. The main reasons OpenStream is chosen
is the proposed scheduling heuristics take advantage of decentralized memory man-
agement which OpenStream run-time provides through the use of task-private buffer
usage. However the original OpenStream run-time did not offer support for heteroge-
neous systems, thus we implemented the support for GPUs and FPGAs as a basis for
the proposed contributions of this thesis.

1.4 Thesis Outline

The outline of this thesis is as follows:

Chapter 2 provides background information for parallel architectures, especially
heterogeneous architectures made of multi-core CPUs and GPUs as well as multi-core
CPUs combined with FPGAs on the same system-on-chip. In addition to this, parallel
programming models are detailed starting from heterogeneous programming models to
task-based programming models since this study focuses on efficiently bridging these
models together. A presentation of related work is given on the scheduling techniques
proposed in the literature for efficient scheduling of task-based programs on hetero-
geneous architectures where we also discuss the advantages and disadvantages of the
proposed approaches and how these can be improved.

Chapter 3 presents OpenStream, a data-flow extension for OpenMP that enables
task parallel programming which we chose for the implementation of the concepts pro-
posed in this thesis. We present the syntax and semantics of the original OpenStream
run-time with simple examples and discuss its execution model before any changes are
made for the heterogeneous context for the purpose of this thesis.

Chapter 4 describes the practical contributions made in the context of this thesis.
GPU and FPGA extensions to the OpenStream run-time are implemented in order to
support heterogeneous execution. The extended run-times are then used to implement
the proposed scheduling techniques and the evaluation of the contributions. We show
how the syntax and execution model changes with these extensions providing example

18 CHAPTER 1. INTRODUCTION

codes.
Chapter 5 describes our novel dynamic scheduling heuristic for heterogeneous sys-

tems made of multi-core CPUs and GPUs. We give detailed information on how data-
flow information can be exploited for efficient scheduling of tasks on heterogeneous
systems. This chapter ends with the experimental evaluation of our proposed heuristic.

Chapter 6 describes our novel scheduling approach for employing FPGA acceler-
ators on a system-on-chip devices made of low power multi-core CPUs and FPGAs.
We take advantage of the data-flow information in OpenStream for creating software
pipelined tasks that are executed on FPGA accelerators, followed by the experimental
evaluation.

The conclusions on the work presented in this thesis and directions for future re-
search are given in Chapter 7.

1.5 Publications

Some of the material used in this thesis has been published in the following papers:
[100] Simsek, O.S., Drebes, A. and Pop, A., 2018, May. Leveraging Data-Flow

Task Parallelism for Locality-Aware Dynamic Scheduling on Heterogeneous Platforms.
In 2018 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW) (pp. 540-549). IEEE.

Chapter 2

Background

In this chapter, we introduce the scientific and technical background for this thesis. In
Section 2.1, we first explain the basic concepts on parallel architectures by classifying
architectural models and memory systems followed by a description of multi-core pro-
cessors and many-core accelerators with the emphasis on heterogeneous many-core
systems. Next, we introduce the concept of parallel programming models in Sec-
tion 2.2, specifically the ones targeting heterogeneous many-core architectures fol-
lowed by a general description of task-based programming models. The context of
task-based programming models is to deal with the difficulties of programming het-
erogeneous many-core architectures by abstracting the underlying architectural details
using a run-time system. Section 2.3 presents the solutions proposed in the literature
for efficient scheduling of task-based programs onto heterogeneous systems followed
by a discussion of how our approach differs from existing approaches. Finally, in
Section 2.4 we give a summary of this chapter.

2.1 Parallel Architectures

Modern high performance hardware architectures are comprised of multi-core and
many-core systems which integrate multiple processing units on a single chip and com-
bine multiple chips with potentially different processing powers into large and highly
parallel systems that provide large amounts of processing power. The emergence of
highly parallel processors such as GPUs and FPGAs lead to a heterogeneous trend in
high performance computing (HPC) systems that tightly couples processing units with
different processing capabilities. Heterogeneous systems exploit the large throughput
processors as accelerators which is controlled by multi-core CPUs. Such systems can

19

20 CHAPTER 2. BACKGROUND

take advantage of the sequential processing power of the CPUs and incorporate the
accelerators for parallel execution to achieve higher performance.

2.1.1 Architecture Models

Flynn taxonomy [42] provides a taxonomy that is generally used for the classifica-
tion of the parallel systems which classifies the systems according to the number of
instruction streams and number of data streams that can be utilized simultaneously.
The four classes are: Single instruction single data (SISD), single instruction multiple
data (SIMD), multiple instruction single data (MISD) and multiple instruction multiple
data (MIMD). SISD corresponds to a classic Von Neumann architecture while MISD
is only mentioned in theory, but an actual design of this architecture has never been
implemented.

SIMD architectures, or vector architectures are widely used in parallel comput-
ing and take advantage of data parallelism, applying the same instruction on multiple
data elements. SIMD architectures are often found in mainstream processors such
as Intel X86’s MMX [87], SSE and AVX [73] instructions, ARM’s NEON and SVE
extensions [103], AMD’s 3DNow! extension [82], Sparc’s VIS extension [109], and
PowerPC’s AltiVec [38]. GPUs also fall into this category, although with the recent
advances, GPUs are able to operate on multiple stream of instructions on multiple
different elements making them closer to a MIMD architecture.

MIMD systems support multiple simultaneous instruction streams operating on
multiple data streams, which generally consist of multiple processing units each in-
cluding their own control units. MIMD systems are generally asynchronous unlike
SIMD systems. Multi-core processors of today are MIMD architectures which include
SIMD units in each processing core.

2.1.2 Memory Systems

Parallel systems can be of either shared memory or distributed memory categories and
these classifications are based on how processors access memory.

In shared memory systems, all processor cores are connected to the memory system
through an interconnection network and each processor core can access each memory
location. There are two types of shared memory systems: (1) uniform memory access
(UMA) and (2) non-uniform memory access (NUMA). In UMA systems, the access

2.1. PARALLEL ARCHITECTURES 21

cost of any memory address is constant for all processor cores whereas in NUMA sys-
tems, each processor or a group of processors have its local memory block where local
accesses are faster than accessing a memory address that reside in a remote memory
unit.

In distributed memory systems, each processor has its own private memory and
the communication between processors are managed through a network subsystem by
sending and receiving messages. The most widely used distributed memory systems
are clusters which are composed of large number of nodes.

Aside from these two classifications, memory systems are evolving in a direction
which can be described as hierarchical where the system is composed of multiple nodes
in a distributed layout and each node consists of not only one type of processor, but
multiple different processors in a heterogeneous context. Accelerator type proces-
sors such as GPUs and FPGAs are included in each node where the accelerators are
connected to the node through a bus, mostly PCI-e, where every accelerator has its
own separate memory. Studies in the literature show that efficient memory manage-
ment is required in order to reach the performance potential of heterogeneous systems
[48, 71, 76, 61].

2.1.3 Multi-core CPUs

CPUs are the backbone of any processing system, designed as latency oriented pro-
cessors with large control units to decrease the latency of each instruction and focused
on maximizing the execution speed of sequential programs. The simplest approach to
increase the amount of work performed by a CPU is to increase the number of cores
available on the chip. Each core can execute independently, sharing data through the
memory sub-system.

The core counts of commercial and server-grade CPUs keep increasing as the tech-
nology sizes decrease, creating more possibilities to exploit parallelism and to increase
parallel performance of multi-core CPUs [36]. Aside from the sequential optimiza-
tions CPUs employ such as pipelining, out-of-order and superscalar execution, branch
prediction and speculative execution, today’s processors include SIMD instructions to
take advantage of data parallelism as well. However, the main bottleneck in these
systems remain to be the movement of data between the functional units and the mem-
ory [49, 35, 80, 21]. Although large caches are incorporated to tackle this problem,
scalability issues still persist.

The latest trend is to use the CPU cores for the sequential sections of a program

22 CHAPTER 2. BACKGROUND

while offloading the parallel sections to an accelerator that is designed as a throughput
processor which can take advantage of the available parallelism to its fullest [67, 105,
69, 77]. In such case, the CPUs are at the center, executing the sequential sections of
the program and orchestrating the accelerators in an efficient way to increase overall
system performance.

2.1.4 Heterogeneous Many-core Systems

As the processors are moving towards heterogeneous architectures where the emphasis
is on the execution throughput of parallel programs, the processors with higher core
numbers that can execute many threads simultaneously has seen a lot of attention.
The hardware takes advantage of the massive number of processing units that execute
the same instruction in a lock-step fashion, mapping the high amount of parallelism
a program can offer to the processing units while using techniques such as latency
hiding [112, 66] for memory accesses to achieve teraflops of throughput. An example
of such devices is GPUs. However, GPUs are not able to execute any program by itself,
thus a CPU is required to orchestrate the execution of a program while offloading parts
of the program to the GPU.

GPGPU Architecture

The modern GPUs are designed to support execution of general purpose programs as
well as graphics applications. Figure 2.1 shows the distinction between the designs
of CPUs and GPUs. GPUs have multiple large cores that in NVidia terminology are
called streaming multiprocessors (SM) which includes high number of execution units
called streaming processors (SP), control units to handle branch divergence and in-
struction and data cache. The GPU chip also includes a scratchpad memory named
shared memory. While multi-core CPUs have larger control units and larger caches
that take a lot of chip area in order to increase the sequential execution performance,
GPUs include larger number of small, simple execution units which include smaller
control units and caches that can execute large number of instructions simultaneously.
The control units in the GPU are mainly responsible for the mapping of threads that
are created by the GPU programming model to the execution units. The small, per
execution unit caches need not be very large [57, 54], since the memory bus widths of
the GPUs are quite large, thus can bring large amounts of data from the memory to the
execution units.

2.1. PARALLEL ARCHITECTURES 23

Shared Memory

Control Logic

LLC

GPU CPU

SM
Control

Cache

SP SP

SP SP

SP SP SP SP

SM
Control

Cache

SP SP

SP SP

SP SP SP SP

SM
Control

Cache

SP SP

SP SP

SP SP SP SP

SM
Control

Cache

SP SP

SP SP

SP SP SP SP

Core Core

Core Core

Cache Cache

Cache Cache

Figure 2.1: Architectural differences between CPU and GPU

The large number of execution units within a GPU are grouped together into blocks
and every block must execute the same instruction while different blocks can execute
different instructions of the same program [113, 85]. Aside from the large execution
units, GPUs have a memory subsystem that is separate from the CPU memory, result-
ing in a requirement of data transfers whenever the application needs to offload work
onto the GPU. The disjoint address spaces makes GPU acceleration non-trivial, but if
used efficiently, leads to performance benefits. The details of the GPU memory model
is discussed in Section 2.2.3.

FPGA Architecture

Field-programmable gate arrays (FPGAs) are reconfigurable integrated circuits. The
configuration of the FPGA is generally specified using a hardware description lan-
guage (HDL) which is also widely used to describe application-specific integrated cir-
cuits (ASIC). FPGAs contain an array of programmable logic blocks as well as config-
urable interconnects to connect the programmable blocks to create a hardware design
[68].FPGAs can be reprogrammed to implement different logic functions, allowing
flexible reconfigurable computing as performed in computer software.

In recent years, as the developments on the programmability of the FPGA devices
increased [8, 7, 88, 34, 32, 99, 115], the use of FPGAs as accelerators became common.
Although there are discrete FPGA boards that can be used in a system through PCI-e,
SoC type FPGAs [20] are widely used and are becoming more widespread even in high
performance computing systems [62, 90, 97].

24 CHAPTER 2. BACKGROUND

Although FPGAs provide potential to greatly accelerate a wide variety of appli-
cations, their use was limited due to the amount of effort and expertise it requires to
program these devices. Its key feature is the ability to perform computations in hard-
ware to increase performance, while retaining much of the flexibility of a software
solution [33]. However, the use of high-level programming languages such as C/C++
and especially OpenCL has made it easier to program an accelerator on FPGA fabric
and thus increase the possible use cases. Especially after Intel bought FPGA manufac-
turer Altera in 2015, the programmability of FPGAs are becoming easier and the use
of FPGA accelerators are becoming omnipresent [115, 11, 98].

2.2 Parallel Programming Models for Many-core Ar-
chitectures

2.2.1 Heterogeneous System Programming

The nature of heterogeneous architectures require different programming models to be
employed simultaneously. As mentioned in Section 2.1.4, heterogeneous system archi-
tecture generally include CPUs as the main processing unit that orchestrates the execu-
tion of applications which include the combination of multiple programming models
for the efficient use of system resources. CPU only parallel programming models are
omnipresent, but in recent years have been taken over by the heterogeneous models
which include multi-core CPUs and accelerators.

A heterogeneous programming model is required to provide the execution capa-
bility and the memory management on all the processing units of the heterogeneous
system. Firstly, the model is responsible for enabling the execution of parts of the pro-
gram in every processing unit which is generally achievable through dedicated APIs.
Secondly, the programming model is also responsible to provide a data view of the
abstracted architecture. Aside from the well-known memory models such as shared or
distributed memory models, heterogeneous systems provide a memory model that is
neither shared nor distributed, since the memory space of the accelerator is separate
from that of CPUs, but is only accessible by the host CPU. Therefore, the memory
management becomes the most important part of the model to avoid creating bottle-
necks in memory management and communication.

This section describes the programming models for heterogeneous systems, specif-
ically for GPUs and FPGAs. The details of both models are given from the execution

2.2. PARALLEL PROGRAMMING MODELS FOR MANY-CORE ARCHITECTURES25

and memory management perspectives.

2.2.2 GPU Programming Models

The programming model of modern GPUs follow a SIMD model with many processing
units in parallel executing the same instruction to multiple data elements. Each unit
operates on integer or floating-point data with a general-purpose instruction set, and
can read or write data from a shared global memory that has its own address space for
each GPU.

In the context of General-Purpose Computing on the GPU (GPGPU), programming
for GPUs were not trivial since applications still had to be programmed using graphics
APIs. General-purpose programming APIs has been conceived to express applications
in a familiar programming language. Examples of such APIs are NVidia’s CUDA [81]
and Khronos Group’s OpenCL [64].

CUDA programming model uses a single instruction multiple thread (SIMT) model
which is different than the well-known SIMD model. CUDA creates large number of
threads that are mapped to the processing units during execution. Each thread that
are mapped to the same work-group execute the same instruction on different data
in groups. The size of the group changes between different architectures. In CUDA
terminology, these groups of threads that execute in lock-step are called warps and the
warp size is generally 32 threads whereas the terminology for OpenCL is wavefront.

OpenCL is an industry standard that is developed for a larger vendor range, not just
NVidia and also wider device range, not only GPUs, but also FPGAs, DSPs and CPUs
which can execute OpenCL programs.

2.2.3 OpenCL Programming Model

OpenCL is a heterogeneous programming framework that is managed by the Khronos
Group [51] which is a non-profit technology consortium. OpenCL is a framework for
developing applications that execute across a range of device types made by different
vendors. It supports a wide range of levels of parallelism and efficiently maps to ho-
mogeneous or heterogeneous, single or multiple device systems consisting of CPUs,
GPUs, FPGAs and other types of devices. The OpenCL definition offers both a device-
side language and a host management layer for the devices in a system.

The device-side language is designed to efficiently map to a wide range of memory

26 CHAPTER 2. BACKGROUND

Host

PE PE PE...

Compute Unit

PE PE PE...

Compute Unit

PE PE PE...

Compute Unit

Device N

PE PE PE...

Compute Unit

PE PE PE...

Compute Unit

PE PE PE...

Compute Unit

Device 1

PE PE PE...

Compute Unit

PE PE PE...

Compute Unit

PE PE PE...

Compute Unit

Device 0

...

Figure 2.2: OpenCL platform model

systems while the host API aims to support efficient management of complex paral-
lel programs with low overhead. Together, these provide the programmer a path to
efficiently move from algorithm design to implementation. This section presents the
platform, execution and memory models for the OpenCL programming environment.

Platform Model

An OpenCL platform consists of a host connected to one or more OpenCL devices.
The platform model defines the roles of the host and devices and provides a common
interface for the OpenCL capable devices. Each device consists of one or more com-

pute units that are composed of one or more processing elements. Compute units of the
devices are functionally independent from each other. Figure 2.2 shows the OpenCL
platform model consisting of one host and multiple devices.

The platform model also offers an abstract device architecture which the program-
mer targets using OpenCL C device language and OpenCL API. The vendors on the
other hand, map this abstract architecture to the physical hardware to create an OpenCL
compatible device. The OpenCL platform model allows building a topology of a sys-
tem with a host processor coordinating the execution, and one or more devices that are
targeted to execute the OpenCL kernels.

2.2. PARALLEL PROGRAMMING MODELS FOR MANY-CORE ARCHITECTURES27

Execution Model

In OpenCL, the host request a kernel to be executed on a device using, a context which
is configured for a specific device and a command queue to pass the execution com-
mands to the device be it a kernel execution or a data transfer. The context must be
unique for a device since the kernel binary needs to be compiled for a specific device
architecture. Generally, GPU architectures support a variety of binaries for multiple
generations of devices from the same vendor. However, a different context must be
created for different devices from different vendors.

In OpenCL execution model, devices perform tasks based on commands that the
host issue to the device such as kernel execution, data transfer or synchronization. In
order to issue any command to a device, at least one command queue must be cre-
ated and used by the host. OpenCL command queues are essentially FIFO structures
which do not require any synchronization if the queue is created with in-order property.
Command queues also support out-of-order mode, but only some vendors support this
option in their driver implementations.

Although not supported by the driver, an out-of-order execution can be achieved
by employing multiple command queues for a device, but only for different types of
commands such as data transfers and kernel execution. Multiple commands that re-
quire the same resource whether it is computational units or PCI-e bus, cannot be used
concurrently unless out-of-order execution is supported. However, the use of multiple
command queues enable asynchronous execution of commands, creating opportunities
to overlap kernel execution and data transfers. The synchronization between command
queues can be ensured using OpenCL events. When a command is submitted to the
command queue, an OpenCL event can be attached to the command which can be
given to other command submissions as an input dependence. Therefore, using multi-
ple command queues and events enables synchronization at the device level which de-
creases overhead. Moreover, the execution model that uses multiple command queues
and events are compatible with data-flow model.

Memory Model

OpenCL classifies memory as either host memory or device memory. Host memory
is directly available to the host, and is defined outside OpenCL. Data moves between
the host and devices using functions within the OpenCL API or through a shared vir-
tual memory interface. Alternatively, device memory is memory which is available to

28 CHAPTER 2. BACKGROUND

Local memory

Work Group

Work Item

Private

Work Item

Private

Work Item

Private...

Local memory

Work Group

Work Item

Private

Work Item

Private

Work Item

Private...

Local memory

Work Group

Work Item

Private

Work Item

Private

Work Item

Private...

Constant Memory
Global Memory

Kernel space

Figure 2.3: OpenCL memory model

executing kernels.

OpenCL divides device memory into four memory regions as shown in Figure 2.3.
These memory regions are relevant within OpenCL kernels. Within a kernel, key-
words are associated with each region, and are used to specify where a variable should
be created. Memory regions are logically disjoint, and data movement between dif-
ferent memory regions is controlled by the programmer. Each memory region has its
own performance characteristics. Following these characteristics, accessing data for
computation from the right memory region can greatly affect performance.

The private memory corresponds to the registers of processing elements and access
to this memory region is the fastest. Private memory can only be accessed from a single
work item. Multiple work items within the same work group can access the same local
memory which corresponds to the scratch-pad cache, available on each processing
element. Global memory is the RAM that is available to all the work groups of a
kernel while constant memory is a part of global memory which can be written once,
read multiple times. Accessing the constant memory is slightly faster compared to the
global memory.

2.2. PARALLEL PROGRAMMING MODELS FOR MANY-CORE ARCHITECTURES29

C/C++, OpenCL

C Testbench

C
Simulation Synthesis RTL

Simulation
Packaged IP
Generation

IP

FPGA Design Phase

Other IP
Libraries

Synthesis Place/Route Bitstream

IP block generation using HLS

FPGA design using IP blocks

Figure 2.4: HLS design flow

2.2.4 FPGA Programming Models

Devices such as CPUs and GPUs are static architectures which they can only execute
specific instructions on hardware using software, whereas FPGAs consists of billions
of programmable gates that enable programming the hardware. Describing a hardware
design can be done using a hardware description language (HDL) such as Verilog or
VHDL in which a programmer can describe how the hardware must behave. However,
using HDLs for creating FPGA accelerators are difficult and requires expert knowl-
edge.

Another option is to use High Level Synthesis (HLS) which is a design process
that interprets an algorithmic description of a desired behavior, written in a high level
programming language such as C, that is used to create hardware that implements
that behavior. In recent years, the era of accelerators has started and HLS became
mature enough to allow widespread deployment of FPGAs for general purpose accel-
eration. Especially with the support of OpenCL language, the use of FPGAs became
widespread even though using HLS creates a trade-off between the programmability
and efficiency since HLS generated designs are generally not as efficient as HDL de-
sign cases.

The HLS design flow is illustrated in Figure 2.4 and the design flow includes the
following steps:

1. The source code written in a high-level programming language such as C/C++

30 CHAPTER 2. BACKGROUND

or OpenCL is provided to the HLS design suite as well as a testbench imple-
mentation. The C simulation phase is used to test the implemented accelerator
is functionally correct.

2. After the initial functionality tests, both source code and the testbench are used
as input to synthesize Register Transfer Level (RTL) design.

3. RTL designs are simulated in the next phase to ensure the functional consistency
between the high-level language and the RTL-level generated design.

4. Packaged IP generation step includes wrapping the design in HDL interfaces for
general use and the IP block is generated.

5. In the FPGA design phase, all the required IP blocks are added to the design to
create the final bitstream.

6. The design is then synthesized. Place/route step manages the placement of each
component on the FPGA blocks as well as the routing between the components.

7. The last step is the generation of the bitstream which then is used to program the
FPGA device.

Although the developments regarding high level synthesis opened a path for FPGA
acceleration, FPGA run-time management has not progressed at the same pace. De-
signing an efficient accelerator for FPGAs is itself a great challenge. Moreover, con-
trolling FPGA accelerators are generally not trivial since the control program must use
accelerator-specific interfaces and functions.

2.2.5 Task-Based Programming Models

Task-parallel programming has become a popular approach in recent years to address
the productivity, performance portability and scalability issues in high performance
computing systems. Many different approaches have been proposed, ranging from
general-purpose [91] and specialized libraries [27, 116] to language extensions [44,
19, 92, 95, 94, 30, 29, 24, 9, 25, 46, 111]. The key concept behind the task-parallel
programming models is to create small, fine-grained units of work called tasks, that
can be executed in parallel to expose large amounts of parallelism and to specify the
interaction between tasks to determine which tasks can run in parallel. The declaration
of tasks, the interaction of tasks and the methods of synchronization varies between the

2.2. PARALLEL PROGRAMMING MODELS FOR MANY-CORE ARCHITECTURES31

approaches of task-parallel programming. The tasks and the synchronization between
tasks do not have to be managed statically, and can be managed dynamically during
execution by a run-time system.

Productivity in task-based programming models is addressed by eliminating the
technical details in the specification of the program and focusing on the declaration of
the tasks and their interactions. This specification includes what each task does, rather
than where or when a task is executed, leaving these decisions to the run-time system.
Abstraction from such details removes the requirement of providing an application
code for a specific architecture or operating system, allowing the programmer to focus
on the algorithmic part of the implementation.

Performance portability is addressed similar to the productivity, by abstracting
from the platform-specific details, a program implementation can be reused on dif-
ferent platforms, given the run-time system and the programming model provides sup-
port. In this case, the run-time system is responsible for the adaptation and execution
of the application on a wide variety of target platforms in order to ensure the correct
execution of the programs as well as its efficient execution. The run-time systems can
achieve the correctness and efficiency by providing a well-defined and properly param-
eterized platform-independent interface, in addition to supporting multiple platforms,
exploiting the features of every platform.

In large many-core systems, parallelism is of paramount importance to provide
scalability which can be addressed mainly by encouraging the specification of fine-
grained tasks with fine-grained inter-task synchronization. Fine-grained task specifi-
cation inherently increases the parallelism, enabling the exploitation of large numbers
of processing units simultaneously. Not only the fine-grained tasks are required for
scalability, but also the efficient use of hardware resources, operating system functions
and other system libraries. These responsibilities are also managed by the run-time
system by mapping the parallelism to the platform and using all system resources effi-
ciently.

The Run-time System

The run-time system is the central component of a task-parallel programming model
and it is responsible for the correct and efficient execution of task-parallel applications.
Figure 2.5 shows the relationship of the run-time system with other components of an
execution environment. The run-time system consists of task manager, scheduling,
synchronization and memory allocation components and acts as a mediator between a

32 CHAPTER 2. BACKGROUND

Task-parallel application

System libraries

Operating system

Hardware

Run-time system
Task

manager Scheduler Synchronization Memory
manager

Figure 2.5: Relationship of the run-time with the other components of a system

task-parallel application and system libraries, operating system and even the hardware
of the platform. In many cases, the run-time is provided as a library which the appli-
cation uses the library provided function calls. The application is then linked against
the run-time library dynamically and each run-time function satisfies the calls by us-
ing appropriate system library functions. System libraries provide an interface to the
operating system which enables access to the underlying hardware.

The functionality provided by the run-time system can be grouped into multiple
components that depend of the specific programming model and its implementation.
For task-parallel programming models, the run-time manages the creation and destruc-
tion of tasks, implements task synchronization, contains a scheduler to distribute the
ready tasks to the hardware workers. In case the run-time is also responsible for the
memory management, a memory allocator is another component of the run-time. The
efficiency of a run-time depends on the implementation of these components:

• The algorithms and data structures of the run-time should not become the bot-
tleneck for performance. The overhead of task management and dependence
tracking is required to be sufficiently low in order to handle large amount of
tasks. Decentralized algorithms need to be preferred for achieving a scalable
run-time system implementation.

• The run-time interaction with the lower layers needs to be efficient. For example,
slow system calls should be avoided or if mandatory, should not be invoked
frequently.

• The execution of tasks need to be arranged in a way, such that the hardware

2.3. RELATED WORK 33

resources are used efficiently and effectively to increase performance benefits.
This requirement is difficult to achieve for all cases, since the efficient use of
hardware resources is platform-specific and requires knowledge about the target
architecture.

In a nutshell, the run-time system is the layer between the application and the
system libraries which implements a specific programming model. Additionally, an
efficient run-time system needs to use any system resource efficiently, be it hardware
or software resource, in order to provide performance benefits to the programmer.

2.3 Related Work

Efficient scheduling on heterogeneous platforms has seen a lot of attention in recent
years. Although the efforts mostly focus on workload division to exploit CPUs and
GPUs of the system simultaneously [74, 58, 70, 52, 3, 59, 114, 15], scheduling for
task based programming models have been proposed to tackle heterogeneous schedul-
ing problems. Since the novel techniques in this thesis focus on scheduling data-flow
task parallel programs on heterogeneous systems, we will not go into detail on work-
load partition and distribution, but rather give detailed literature review on task based
schedulers, specifically the ones that are proposed for run-times based on data-flow
models.

2.3.1 XKaapi

XKaapi [47] is a data-flow task parallel run-time system which specializes in multi-
CPU and multi-GPU heterogeneous systems. In Xkaapi’s programming model, the
parallelism is explicit and requires the programmer to describe the parallelism in the
code while the synchronization is implicit, meaning the dependences and memory
transfers are handled automatically by the run-time. XKaapi tasks are function calls
that do not return a value except through the list of function arguments. Each task
has a signature that includes its parameters and each parameter’s access mode. The
available access modes are read, write, reduction or exclusive which is provided by the
user to indicate if tasks share data. Tasks share data if they have access to the same
memory region which corresponds to data dependences between the tasks. The data
dependences are then used for the creation of data-flow graph of the program.

34 CHAPTER 2. BACKGROUND

XKaapi uses multi-versioning for the tasks, allowing multiple implementations for
the same task, preferably for different devices. Depending on the scheduling mecha-
nism, the version of the task that must execute is determined by the scheduler.

The execution model of XKaapi creates a system thread for each worker which is
generally a processor core. Each thread has a private work queue which is represented
as a stack. The tasks are created recursively and pushed to the work queue. When
a task finishes its execution, the thread pops another task from the work queue using
FIFO ordering and executes it.

XKaapi memory manager incorporates the use of different address spaces by keep-
ing track of the host memory and the memories of each GPU on the system through
a data structure called Kaapi Memory Data (kmd). Each instance of kmd associates
one memory address for each address space which may create replication of data for
different address spaces. kmd also keeps meta-data on each address space: a pointer
to the data, a bitmap to track which address space has a valid copy and a bitmap to
track which address space has a pointer allocated previously. The kmd manages GPU
memory through a software cache based on the least recently used (LRU) policy and
the consistency is guaranteed by a lazy strategy using a write-back policy. Data trans-
fers to or from GPU occur only when a task accesses data and when the data is in an
invalid state in the target address space.

XKaapi run-time employs scheduling by work stealing inspired by Cilk [19]. Work
stealing is a scheduling strategy for multi-threaded programs. In a work stealing sched-
uler, when a worker thread becomes idle, it looks at the queues of other workers to find
eligible work. When found, the idle thread steals the work item by copying the task
and leaving the original task marked as stolen. Work stealing distributes the work over
idle processors effectively and no scheduling overhead occurs as long as all processors
have work to do. During execution, if a worker finds a stolen task, it switches to the
work stealing scheduler mode which computes the data-flow dependences. Otherwise,
tasks are executed in FIFO order since the correct execution order is ensured by the
data-flow graph.

The classic work stealing is cache unfriendly and does not consider data locality
which is especially important in a heterogeneous context since the overhead of data
movement between different address spaces is far more expensive than cache misses
in multi-core CPUs. In order to tackle this inefficiency they propose two heuristics:
the H1 heuristic which is a data-aware strategy, and the H2 heuristic which is a locality
aware strategy. Note that both heuristics employ overlapping data transfers between

2.3. RELATED WORK 35

devices with computation on the GPU to increase the overall execution performance.

The goal of the H1 heuristic is to reduce the memory transfers between host and
devices using the meta-data information from the run-time. In this strategy, each ready
task to be pushed to a worker’s queue, the algorithm goes through the dependences of
the task to find out the dependence with the largest data in bytes and checks if the data
is valid. The worker that owns the largest dependence in valid state is then chosen as
the target to execute the task. The ready task will then be pushed to the target worker’s
mailbox which is another queue used for work pushing between workers.

Additionally, in the H2 heuristic, the goal is to reduce the invalidations of data
replicas which is a similar strategy to locality-guided work stealing presented by Acar
et al. [1] and Guo et al. [53]. The H2 heuristic searches a dependence that specifically
has a write or exclusive access mode. It pushes a ready task to the mailbox of a worker
that has a valid copy of the data by querying the memory manager. In case more
than one worker is available, the task is pushed to a randomly selected worker. This
selection of the target worker to reduce cache invalidations is performed when the
consumer task is activated during work pushing. This heuristic increases preformance
especially in multi-GPU platforms since data is replicated for transferring to multiple
devices from the centralized memory manager.

Aside from the aforementioned dynamic scheduling heuristics based on locality-
aware work stealing since the classic work stealing is cache-unfriendly and does not
consider data locality. However, the proposed heuristics do not consider the process-
ing power of different available computational resources. In order to fully exploit the
power of different devices, XKaapi run-time offers a profiling based scheduling heuris-
tic called Distributed Affinity Dual Approximation (DADA) [18]. This heuristic uses
a cost model for raw performance of CPU and GPU as well as including data transfer
costs between devices. The cost model aims to increase overall execution performance
even if it means decreasing locality. This comprise of locality comes from the GPU
throughput being higher than CPU, thus task execution on GPU may increase overall
performance even though the data is on the CPU and requires a transfer.

DADA heuristic consists of two successive phases: a first local phase targets the
reduction of the communications using affinity score, calculated for each task. The
score is computed using the run-time information using the amount of data updated in
software cache by each task. For instance, a task that writes or modifies a data stored
on a resource R has a higher affinity score and thus is more likely to be scheduled on the
resource R. Therefore, maximizing the affinity score results in increased data locality.

36 CHAPTER 2. BACKGROUND

The second phase of the heuristic uses basic dual-approximation [63] for optimizing
the make-span of the task graph. The additional α parameter (0 ≤ α ≤ 1) is calculated
for each task where a value of 0 denotes the affinity score is not taken into account
while 1 denotes affinity score has a higher impact on the overall scheduling.

2.3.2 OmpSs

Omp Superscalar (OmpSs) [26] [89] is an extension designed to incorporate data-flow
model into OpenMP using new directives. OmpSs is a continuation of StarSs [92]
programming model which exploits task-level parallelism using OpenMP-like pragmas
and directives. StarSs programming model evolved into SMPSs [12] for multi-core
CPUs and GPUSs [10] for heterogeneous platforms and the combination of SMPSs
and GPUSs resulted in the creation of OmpSs run-time.

The programming model of OmpSs is based on OpenMP pragmas and OpenMP
task construct with additional directives to handle task dependences. The additional
directives are in, out for input and output dependences respectively and inout the de-
pendences that are going to be reused by the run-time. Although false dependencies
may occur caused by data reuse, OmpSs run-time is capable of dynamically renaming
data objects to eliminate false dependencies. leaving out only true dependencies. This
technique is identical to register renaming used in current superscalar processors.

The OmpSs run-time consists of a source-to-source compiler called Mercurium
[13] and a run-time library called Nanos [26]. The Mercurium compiler is required
to transform the high-level directives into parallelized version of the application while
the Nanos run-time is responsible for managing task creation, synchronization, data
movement and scheduling. The programming model extension for heterogeneous plat-
forms also require a target directive which is used to pass information to the compiler
to generate binary for the tasks for the target platform. The target platforms include;
multi-core processors (smp directive), GPUs (cuda directive) and FPGAs (fpga direc-
tive). The run-time uses the generated binary in order to schedule tasks to the specified
devices while managing the data movements between devices as well as data object
renaming.

The execution model of OmpSs uses a thread-pool model where three types of
threads exist; master thread, helper threads and worker threads. The master thread is
responsible for the execution of the user program, intercepting calls to annotated tasks,
generating tasks and inserting them in a task dependence graph. Helper threads con-
sumer the created tasks as GPUs on the system become idle mapping the execution

2.3. RELATED WORK 37

on the most suitable device. Every GPU on the system is assigned one worker thread
which waits for available tasks, performs data transfers between devices and also re-
sponsible for invoking the low level GPU function calls to manage the execution on
the GPU. Since the GPUs are passive processing units, the management of GPUs are
handled by the worker thread, on CPUs. Once all the required functions are called,
execution on the GPU finished and optionally the results are transferred back to main
memory, the worker thread notifies the helper thread, which then can continue assign-
ing new tasks to the worker thread.

OmpSs memory model assumes multiple address spaces exist and the data of a
task may reside in a memory location that is not directly accessible from the compu-
tational resource. Tasks can safely access the private data and shared data through the
use of the directive extensions. The host device memory spaces portray a two-level
memory hierarchy. Before executing a task, the worker thread transfers the data to
the corresponding GPU and transfers the updated data back to the main memory when
the task execution finishes. In order to reduce the redundant data transfers, a software
cache of read-only blocks is stored in the memory of each GPU which uses an LRU
replacement policy. In addition to the software cache, two memory coherence policies
are in order to reduce the amount of data transferred; write-through and write-back.
In write-through policy, when the execution finishes, the worker thread invalidates the
read-only copies of the blocks on the remaining GPUs by notifying the corresponding
worker threads. In write-back policy on the other hand, data blocks written by a GPU
only need to be updated when another GPU needs to use the new data.

The OmpSs run-time library, Nanos++, offers two different dynamic scheduling
strategies: dependencies and locality-aware. The former strategy tries to schedule a
consumer task on the same device when the producer of that task finishes. The idea
behind this strategy is, the producers and the consumers are bound by data dependences
and share data and this strategy tries to take advantage of the shared data by reducing
the number of data transfers. The latter strategy is based on the work from Martinell
et al. [78] in which the scheduler calculates an affinity score for each location when
a task is submitted for execution. The affinity score is calculated considering where
the data resides as well as the size of the data. The task is then placed to the device
which has the highest affinity score. In case the affinity score is the same for multiple
devices, the task is placed in a global queue. The threads request work from their local
queue first, then into the global queue. If both queues do not have any available task,
the worker tries to steal work from other worker’s local queues using work stealing

38 CHAPTER 2. BACKGROUND

to avoid load imbalance between devices. However, the proposed strategies have the
limitation of working strictly on GPUs while the CPUs are only used for managing the
run-time routines.

The initial version of OmpSs run-time includes using target annotation to deter-
mine the device for the execution. However, the target annotation was limited to one
type of device which results in the task that uses target annotation is strictly executed
on the defined target device. Later versions of OmpSs [93] extend this usage, allow-
ing multiple versions of the same task to be described where the scheduler decides the
target device during the execution of the application. This extension includes an ex-
tension to the programming model as well as the scheduler. The programming model
includes implements annotation which enables multiple task implementations while
the versioning scheduler uses an online scheduler to decide which implementation is
going to be used.

The versioning scheduler uses profiling information for each task, recording the
average execution time of a task. Each task is run on each processing unit in a round-
robin scheme during the initial learning phase of the execution. The scheduler then
calculates the fastest executor of a task as well as keeping track of the workers to mea-
sure when a worker is going to be available by estimating the OmpSs worker estimated

busy time metric. The scheduler then makes the scheduling decisions based on the
average execution time, each worker’s busy time and determines the earliest executor

of a task which is the OmpSs worker that can finish the execution of a task version
at the earliest time. The scheduler keeps updating the execution information until the
execution of the application finishes.

Compared to dependencies and locality-aware scheduling strategies, the versioning
scheduler has little performance benefits due to the overhead of online profiling in
addition to the limited performance gains obtained from the CPU cores.

OmpSs-Zynq [41] is an effort to employ FPGAs using OmpSs run-time system by
extending its compiler to create and employ FPGA accelerators. The OmpSs code is
passed through the source-to-source compiler Mercurium [13] which includes a spe-
cialized FPGA compilation phase to process annotated FPGA tasks [22]. For each
task, the compiler generates two binaries; one for ARM processors and one is a Vi-
vado High Level Synthesis (HLS) annotated code for the bitstream generation. The
annotated code is then supplied to the Xilinx EDK tool to create a complete integrated
system consisting of the hardware accelerators as well as the interconnection between
the processing system and the accelerators. The run-time employs Xilinx DMA library

2.3. RELATED WORK 39

to manage the interconnect from the processing system.

The programming model and execution model is identical to the GPU version of
the OmpSs run-time, the only addition being the hardware accelerators are used as
devices to offload tasks.

In addition to the compiler infrastructure, Nanos++ task scheduling mechanism
has been modified for the FPGA device to allow the submission of several tasks to the
accelerators, only when the tasks are independent from each other, to exploit double
buffering and pipeline features of the accelerators. In this case, the scheduler is re-
quired to keep sending new tasks to the FPGA and cannot stall, waiting for accelerator
tasks to finish. Moreover, the number of helper threads dedicated to FPGA manage-
ment can be limited in order to better exploit the CPU resources by avoiding context
switches.

Additionally, OmpSs-Zynq is extended as OmpSs@FPGA [23] to provide an ecosys-
tem where the programmer is able to use FPGA accelerators generated directly from
the provided functions. This effort is further developed into an FPGA implementation
of task manager for OmpSs run-time called picos [106].

2.3.3 StarPU

StarPU [9] is a run-time system that provides an infrastructure for the implementation
of efficient scheduling algorithms on heterogeneous platforms. StarPU supports plug-
in based scheduling implementations in addition to a run-time API and C language
annotations. It is designed to be used as a back-end for parallel language compilation
environments and high performance libraries. The two main principles of StarPU are:
tasks can have multiple implementations and the most suitable implementation will be
chosen during execution, the data which is required by a task may reside on a different
processing unit and the transfer of the data is handled transparently by the run-time.
The former principle is generally used to make efficient scheduling decisions while
the latter principle is important to reduce the execution overhead of heterogeneous
platforms.

The StarPU programming model relies on the use of a codelet which is essentially
a task description. The codelet includes meta-data information about the task such
as pointers to the task implementations for different devices, input and output depen-
dences, arguments of the tasks and data access modes for the dependences. StarPU
tasks can be executed by as many processing units as possible as long as an imple-
mentation for a target device is provided by the programmer. All the input and output

40 CHAPTER 2. BACKGROUND

dependences are also need to be explicitly included in the codelet description, so the
run-time system can automatically handle data transfers before the execution happens
on an accelerator. Therefore, programmers are neither concerned by where the tasks
are executed, nor how valid data replicas are available to these tasks. They simply
need to register data and provide multiple implementations for tasks for the various
processing units.

In the execution model of StarPU, once all the input dependences of a task are satis-
fied, a task becomes ready and is submitted to the scheduler. StarPU uses a centralized
scheduler where all the ready tasks are submitted and each task is consumed by a pro-
cessing unit of the system depending on the scheduling algorithms decision. Since
the run-time is designed to provide an infrastructure for different scheduling methods,
the execution model is a generic and simple and different execution models and load
balancing mechanisms can be incorporated by implementing a new scheduler.

The StarPU memory model is based on a decentralized asynchronous data man-
agement policy. When a task is assigned to a processing unit, the corresponding data
is replicated to the processing unit. Data replicas are updated using a lazy replacement
policy when it is strictly required to avoid redundant data transfers. StarPU employs a
coherence protocol similar to MESI cache coherency protocol to keep all data up-to-
date on different processing units. They use the access mode parameter of the codelet
to determine which processing unit has the most up-to-date version. The memory
manager also uses asynchronous data transfers to keep the overhead of data movement
minimal.

Although StarPU provides an infrastructure, enabling the implementation of dif-
ferent scheduling strategies, a set of predefined scheduling policies are also included
in the run-time implementation such as a greedy policy with (greedy) and without pri-
ority support (no-ws), a greedy policy based on work stealing (ws), a policy based
on random weights of processor speeds (w-rand) and a policy based on HEFT (heft-
tm) [108]. The priorities can be defined in greedy policy using the StarPU program-
ming model by passing hints to the scheduler. In all greedy policies, whenever a task
becomes ready, it is pushed to an available processing unit. In case of the ws policy, the
scheduler uses work stealing for load balancing when a processing unit becomes idle.
In w-rand policy, each processing unit has a predetermined acceleration factor which
corresponds the performance capability of each processing unit. This ratio can be pro-
vided by the programmer, or can be measured by prior profiling of applications. The
acceleration factor is then used as a probability metric by the scheduler which means

2.3. RELATED WORK 41

a processing unit with the highest performance has a higher chance of receiving a task
for execution. Although these policies are easy to implement, the performance benefits
are limited. Therefore, they suggest an efficient scheduling policy not only has to con-
sider the heterogeneity and performance differences of the platform, but also requires
load balancing [9]. In accordance with this finding, they propose heft-tm scheduling
policy in which each time a task executes the run-time measures the amount of time
spent on the execution on each processing unit to create a performance model. The
performance model is then used to make scheduling decisions to achieve the shortest
amount of execution time. The model uses measurements for tasks executions, but for
data transfers, an off-line sampling of bandwidth between devices is employed. How-
ever, the scheduler is able to hide the data transfers by overlapping them with kernel
execution on the GPUs using the off-line calculation.

2.3.4 QUARK

There are also run-times that focus on specific subjects. PLASMA [27] is a dense
linear algebra library, designed to deliver high performance that targets multi-core pro-
cessors with multiple sockets. PLASMA relies on the scheduling of parallel tasks,
creating a task graph in a data-flow fashion and uses dynamic scheduling. Addition-
ally, MAGMA [107] is designed to work on multi-core CPUs and GPUs in a hetero-
geneous context. These components are combined to create QUARK [116] run-time
which is designed to enable dynamic task execution with data dependences and targets
heterogeneous environments.

The programming model of QUARK uses a centralized queue which is used for
inserting tasks into the run-time using a serial task-insertion API. The arguments for
the tasks are then used to make a DAG using the reads and writes on the data that are
queued. The DAG is created using dependence information using data access annota-
tions such as input, output and inout.

The execution model of QUARK consists of a master thread and multiple worker
threads. The master thread is responsible for determining the dependences between
tasks and inserting tasks to the ready queue. Worker threads then take tasks from the
ready queue, execute tasks and handle the descendant tasks.

Scheduling in QUARK is achieved using a data-aware scheduling technique. When
all dependences of a task are satisfied, the task is scheduled to the worker private
ready queue. The default scheduler assigns the task to the worker thread that has most
recently written its output data, attempting to reuse the data in the cache for the same

42 CHAPTER 2. BACKGROUND

thread. Additionally, the user can provide hints to the scheduler using task flags or
argument flags in order to increase the efficiency of the scheduler, replacing the default
scheduling policy. The scheduler uses work stealing in order to balance the workload
between workers.

2.3.5 Discussion

We have presented the past research on the scheduling methods proposed for the run-
time systems that are based on data-flow task parallel model targeting heterogeneous
platforms. Although the programming models and the execution models of these run-
times are similar, there are multiple approaches for efficient scheduling of data-flow
tasks. The programming models of these run-times require explicit information on the
data dependences between tasks to create a DAG of tasks. The consensus is that the
task descriptions take input, output and inout dependences and use this information for
making scheduling decisions.

The execution models can be divided into two: while StarPU, OmpSs and QUARK
use centralized schedulers with a master thread and multiple worker threads, XKaapi
uses decentralized workers to avoid possible bottlenecks. Although using a centralized
scheduler has the benefit of keeping the load balanced, as the number of workers in-
crease as well as the computational units, scalability becomes a limiting factor. There-
fore, using a decentralized scheduler with improved load balancing mechanisms can
avoid the scalability problem both in homogeneous and heterogeneous architectures.

In the perspective of memory models, all aforementioned run-times employ the
use of a software cache to keep track of where the data of each task reside. The dis-
advantage of the software cache is the possible false-sharing of data between devices
and the expensive cost of resolving invalid data regions. On the other hand, instead
of using a software cache for memory management, employing task-private buffers
had been shown to create more opportunities for more efficient task and data place-
ment [95, 39]. Especially in heterogeneous systems where there are multiple address
spaces, using task-private buffers is advantageous for making better scheduling deci-
sions as well as reducing memory management overhead.

In heterogeneous systems, the movement of data between host and device address
spaces is an expensive operation. Although GPUs can deliver immense amount of
throughput compared to CPUs, the movement of data impact the performance, dimin-
ishing the advantage of GPU usage if operations on the GPU require large amount of
data movements. The most common method to overcome this problem is to overlap

2.3. RELATED WORK 43

data transfers between devices with kernel executions on the GPU to hide the cost of
transfers. All the aforementioned run-times employ such methods to reduce the over-
head of data movement and overlapping data transfers with task execution is mandatory
for any efficient run-time system.

Work stealing is a technique, widely employed by task parallel programming mod-
els in order to reduce the idle time of the processing units as well as load balancing.
Although work stealing is an effective method for load balancing, it is known as cache-
unfriendly due to random stealing of tasks. Therefore, the studies in the literature use
work stealing combined with locality-aware schemes to overcome the reduced locality
of scheduling. However, work stealing can only passively react to the distribution of
tasks and memory transfers whereas a heuristic that can pro-actively make decisions
on task distribution increases the efficiency of the scheduler [100].

In related work, we also discussed different dynamic scheduling strategies in data-
flow task parallel run-times. The proposed strategies mainly focus on using the depen-
dence or locality information stored within the run-time to make dynamic scheduling
decisions. In addition to dynamic strategies, on-line scheduling methods based on cost
models are proposed as well. The drawback on the cost model strategies is that the
scheduling depends on regular computations and does not adapt to execution varia-
tions.

2.3.6 The Effect of Task Granularity

As mentioned in Section 2.1.4 the computational capability of devices on heteroge-
neous systems are different due to architectural differences. In order to take full ad-
vantage of the systems resources, the devices with higher throughput such as GPUs,
which can execute immense number of threads in parallel, require larger tasks com-
pared to CPU cores. Although there are efforts to partition the tasks and data to the
corresponding devices in a way to increase the effective utilization [43, 86, 114, 59],
these efforts are generally not applied to task-parallel run-time systems. The reason for
this is, the run-times that are presented in Section 2.3 all require programmer effort to
define the task sizes which do not change throughout the execution of the program. Al-
though in theory, it is possible to implement the applications using the aforementioned
run-times and partitioning the tasks in a way that coarse-grained tasks are executed on
the GPU and fine-grained tasks are executed on the CPU, such implementations are
not practical.

To overcome the granularity problem, the run-times can either support fine-grained

44 CHAPTER 2. BACKGROUND

tasks and compensate by assigning more tasks to the higher throughput devices, or
employ recursive decomposition of tasks such as in Cilk [44, 19]. Cilk is a multi-
threaded run-time system that extends the C language with simple keywords to create
and synchronize tasks. The programmer is responsible to expose parallelism and ex-
ploit locality, and the run-time system is in charge of scheduling tasks on the target
platform. Cilk is a recursive fork/join language where each spawned task can create
more tasks. Cilk language is not compatible with data-flow model with the exception
by Vandierendonck et al. in [111] where a unified scheduler is proposed combining
recursive and task data-flow parallelism. However, the assumption of a task spawn-
ing more tasks is incompatible with today’s heterogeneous architectures where a GPU
or FPGA is not able to create child tasks which can be executed on any device. This
shortcoming makes Cilk-like task creation incompatible with heterogeneous platforms.

Consequently, in task-parallel run-times targeting heterogeneous systems, choos-
ing the correct granularity for tasks is problematic. The state-of-the-art task-parallel
run-times solve this problem by assigning more tasks to the higher throughput devices
and trying to minimize the overhead of large data transfers by overlapping transfers
with execution. Additionally, GPU throughput highly exceeding CPU throughput, this
kind of mechanism provides high execution performance.

2.4 Summary

The ongoing shift in HPC from homogeneous to heterogeneous architectures, inte-
grating multi-core CPUs and accelerators such as GPUs and FPGAs require multiple
programming models to be used in conjunction. Programming models for hetero-
geneous systems give developers control over memory allocation and execution, but
burden them with technical decisions that require expert knowledge of the targeted
system in order to use resources efficiently. Ideally, programmers are only responsible
for expressing parallelism, which is then mapped efficiently to computing and memory
resources automatically considering the architectural differences between the host and
accelerator devices.

Task-parallel programming models allow programmers to specify fine-grained par-
allelism as a set of dynamically created dependent tasks whose execution is managed
by a runtime system. This enables exploitation of a wide variety of parallelism types,
such as loop, task and pipeline parallelism. Parallelism is expressed in an abstract and
portable way, as both tasks and dependences abstract from the actual computing and

2.4. SUMMARY 45

memory architecture of heterogeneous systems.
Combining task-parallel programming models with the heterogeneous program-

ming models reveal difficulties as integrating both is not trivial, but important for ef-
ficient execution of programs on heterogeneous systems. Related work in Section 2.3
presents efforts in the literature to combine data-flow task-parallel run-times targeting
heterogeneous platforms which focus on efficient scheduling of data-flow tasks onto
multiple devices with different capabilities.

As discussed in Section 2.3.5, heterogeneous run-time systems in the literature
use centralized schedulers aside from XKaapi as well as keeping track of the memory
regions in the application by using a software cache which is managed implicitly by the
run-time. XKaapi [47] demonstrates the advantages of a decentralized execution model
as well as proposing dynamic scheduling strategies. However, the management of a
software cache is cumbersome since the run-time needs to manage the coherency of the
memory regions on multiple address spaces. The use of task-private memory regions
such as the one proposed in OpenStream run-time[94] creates further opportunities
for efficient dependence management and can be leveraged for efficient scheduling
methods.

The next chapter provides an introduction to OpenStream presenting the basic con-
cepts of OpenStream, the syntax and semantics of streams, its execution model and the
compilation of OpenStream programs.

Chapter 3

OpenStream

This chapter provides an overview of OpenStream [94], which is a task parallel lan-
guage and a data-flow extension to OpenMP 3.0 [83]. This chapter covers the de-
tails of original version of OpenStream which is chosen as the data-flow task-parallel
run-time system to implement the contributions presented in this thesis between Chap-
ters 4-6. The original version of OpenStream only targets homogeneous multi-core
and multi-socket systems which this thesis extends the original OpenStream to target
heterogeneous platforms.

In this chapter, we first explain the terminology of OpenStream in Section 3.1 such
as streams, data-flow tasks, task dependences and the synchronization of tasks based
on streams before moving on to syntax and semantics, in which we discuss how the
aforementioned structures and their semantics come together with the syntax of Open-
Stream in Section 3.2. The execution model of OpenStream is presented in Section 3.3,
giving detailed information about scheduling mechanisms, memory management and
dependence management followed by the details on compilation of an OpenStream
program in Section 3.4.

3.1 Terminology

OpenStream [94] is a data-flow extension to OpenMP which supports fine-grained task
parallelism, data parallelism and pipeline parallelism concepts in the C programming
language. The implementation of OpenStream is based on OpenMP 3.0 [83] in which
the OpenMP task construct has been introduced.

Control Program The control program is the part the programmer describes the

46

3.1. TERMINOLOGY 47

tasks and the dependences between tasks. The control program can either be sequen-
tial or parallel. In the sequential case, the root task of the OpenStream program, which
corresponds to the main function, is responsible for creating future tasks. The sequen-
tial control program guarantees the deterministic behavior. Additionally, under certain
conditions the control program can be parallelized without losing the determinism of
an OpenStream application. In parallel control programs, the task creation can be del-
egated to other threads. However, in a heterogeneous context where not all the devices
present on the system can create tasks, implementing a parallel control program in
itself is a challenge and falls outside of the scope of this thesis.

Streams Streams are unbounded FIFO queues with theoretically infinite capacity
which holds elements of the same type. Each element of a stream has a unique index
and can be written once, but can be read many times. Elements that have not been
written are undefined and cannot be accessed for reading. Each stream has separate
read and write positions that are updated for each read and write access. A write
operation to a stream directly updates the write position index whereas a read operation
may or may not update the read position depending on the access type. The read
accesses that do not advance the read position can be used to broadcast data where the
data is written to a stream once and read multiple times, advancing the read position
once all readers finish accessing the data.

Views Streams are not accessible directly, but can only be accessed through views.
A view is a sliding window that allows the task to access a set of consecutive elements
from a single stream or from several streams. A view has three attributes: the access

type (read or write), the size of the sliding window called horizon and the burst which
corresponds to the number of elements the read or write position of the stream is ad-
vanced. The access type can be either a read or a write. The horizon attribute must
be a positive integer number since it corresponds to the size of the data that is actually
accessed in a stream. On the other hand, the burst size can be zero, allowing a set of
stream elements to be read multiple times. However, if the access type is write, the
burst size must match the horizon whereas if the access type is read, the burst size can
either be equal to horizon or zero. Another constraint is that the burst size cannot be
bigger than the corresponding horizon size which would result in an access outside the
allowed memory region of a task. Further details about the constraints on horizon and
burst sizes are explained in Section 3.3.4.

Data-flow Tasks Tasks in OpenStream are dynamic instances with short lifespan,
defined by a work-function and a set of views. Work-function corresponds to the body

48 CHAPTER 3. OPENSTREAM

of the task which is executed when the task is scheduled for execution. A task can only
be scheduled for execution when all of its dependences are satisfied. The input depen-
dences of a task are satisfied when all of their producer tasks finish their execution and
the output dependences are satisfied when the task allocates all of its output buffers.

3.2 Syntax and Semantics

OpenStream is built as an extension to OpenMP, OpenStream language also uses prag-
mas for the declaration of OpenStream specific constructs. The OpenStream compiler
translates these pragmas into data structures and code to be used by the OpenStream
run-time. All pragmas, similar to OpenMP, start with #pragma omp, followed by more
specific constructs and optionally, a set of clauses that can be passed as certain parame-
ters to the corresponding constructs. The constructs that are supported by OpenStream
are:

• task construct: Can be used to create tasks. Accepts additional clause specifica-
tion for accessing streams.

• taskwait construct: Can be used to define a barrier which blocks the execution
until all the tasks finish execution and reach the barrier.

• tick construct: Can be used to advance the read position of a stream. In order to
use this construct, the task needs to have a view with zero burst value, so that the
specific view’s read position can be advanced by the declared value using tick.

The aforementioned constructs can be declared in the control-flow of the Open-
Stream application. Streams can be created not by using pragmas, but by using the
special attribute stream that needs to be added to the definition of any variable.

3.2.1 Declaring Streams

The syntax of declaring a stream is straightforward since the streams are managed by
the run-time system. The programmer only needs to specify the type of the stream ele-
ments and an identifier, adding the special attribute stream at the end of the definition.
This allows the compiler to distinguish streams from regular variables as shown below:

1 e l e m e n t t y p e s t r e a m i d e n t i f i e r a t t r i b u t e ((s t r e a m)) ;

3.2. SYNTAX AND SEMANTICS 49

Streams in OpenStream are first class objects, therefore references to streams are
also supported using stream ref attribute as follows which allows creating arrays of
streams:

1 e l e m e n t t y p e s t r e a m r e f i d e n t i f i e r a t t r i b u t e ((s t r e a m r e f)) ;

Similar to other data types, it is possible to create arrays of streams or stream
references using a size expression as follows:

1 e l e m e n t t y p e s t r e a m i d e n t i f i e r [s i z e e x p r] a t t r i b u t e ((s t r e a m)) ;
2 e l e m e n t t y p e s t r e a m r e f i d e n t i f i e r [s i z e e x p r] a t t r i b u t e ((s t r e a m r e f)) ;

The following example shows different types of stream declarations, as scalar vari-
ables for float element type, arrays of streams for integer element type with size 10, a
stream reference with integer type, as well as an assignment of a stream reference:

1 / / A s c a l a r s t r e a m of f l o a t i n g p o i n t e l e m e n t s
2 f l o a t f l o a t s t r e a m a t t r i b u t e ((s t r e a m)) ;
3
4 / / Array o f 10 s t r e a m s of i n t e g e r e l e m e n t s
5 i n t i n t a r r a y s t r e a m [1 0] a t t r i b u t e ((s t r e a m)) ;
6
7 / / A s t r e a m r e f e r e n c e o f i n t e g e r e l e m e n t s
8 i n t i n t s t r e a m r e f a t t r i b u t e ((s t r e a m r e f)) ;
9

10 / / Ass ignment o f a s t r e a m r e f e r e n c e
11 i n t s t r e a m r e f = i n t a r r a y s t r e a m [0] ;

3.2.2 Declaring Views

The syntax of declaring views consists of two parts. The first part is similar to declaring
a scalar or an array variable that declares its type and horizon of the view. The second
part is a reference of the declaration as a clause inside a task construct. The clause
specifies the stream that is to be accessed as well as the access type, either a read or a
write. The view declaration is syntactically the same as a declaration of an array in the
C language where the size of the array corresponds to the horizon of the view.

1 e l e m e n t t y p e v i e w i d e n t i f i e r [s i z e e x p r] ;

The size expression can be specified as static or dynamic as in the C language. The
example below declares two views with static and dynamic sizes. The first declaration

50 CHAPTER 3. OPENSTREAM

i... ...i+1 i+3i+2

W
R

... ? ? ? ? ...

i+4 i+5

? ?

(a) Initial state of the stream

i... ...i+1 i+3i+2

W R

... ? ? ? ? ...

i+4 i+5

? ?

burst

(b) Consumer view of four elements
i... ...i+1 i+3i+2

W
R

... ? ? ? ? ...

i+4 i+5

? ?

burst

(c) Producer view of four elements

i... ...i+1 i+3i+2

W
R

... ...

i+4 i+5

? ?vi vi+1 vi+2 vi+3

(d) State after the execution of the producer

Figure 3.1: Illustration of stream accesses with burst and horizon

is a view on a stream of floating point elements with statically sized horizon of 5
elements. The second declaration is a dynamically sized view on a stream of type
integer:

1 f l o a t s t a t i c v i e w [5] ;
2 i n t dynamic view [5∗ x + 1 0] ;

Additionally, similar to multi-dimensional arrays in the C language, views can be
declared using multiple dimensions, enabling access to multiple streams at once:

1 d ou b l e view [num st reams] [h o r i z o n] ;

In case the expression which corresponds to the number of streams is not constant,
the view is called a variadic view.

Since the streams are not directly accessible, Figure 3.1 illustrates how stream ac-
cesses are handled using views of two tasks; one read view for a consumer task, and
one write view for a producer task. Figure 3.1a shows an initial state of a stream prior
to any access. The read and write positions are specified with R and W respectively
and point to the same starting index i. When the consumer task’s view accesses the
stream with horizon and burst of four elements, it enables the access to four elements
in read mode, advancing the read position to i+4 as shown in Figure 3.1b. The sub-
sequent read access to the same stream is set to start from index i+4. At this point,
the consumer task has access to the elements, but the task cannot yet execute since
the required data is still undefined. Figure 3.1c shows the write access to the stream
from the producer task’s view with horizon and burst of four elements, identical to the
read access. The write position is advanced to point to index i+4, enabling access to

3.2. SYNTAX AND SEMANTICS 51

the elements i, i+1, i+2, i+3. When the writing view’s elements to be accessed are
determined, the producer task becomes ready to execute. After the producer task is
scheduled to execute, execution happens and the output of the task is written to the
stream elements i, i+1, i+2, i+3. Figure 3.1d shows that the elements now have values
of vi, vi+1, vi+2, vi+3. When the producer task terminates, the consumer task becomes
ready, since its only input dependence is satisfied.

The read and write accesses to streams only start from the read and write positions
and are determined with horizon and burst values of a view. Therefore, arbitrary access
to stream elements is not possible in OpenStream. Although this example shows two
dependent tasks with one dependence, it is possible to create different dependence
patterns with variable horizon and burst sizes.

3.2.3 Task Creation

The task creation in OpenStream uses a modified version of the task construct in
OpenMP. The modifications allow OpenStream to use additional clauses in order to
match views and stream elements, enabling dynamic task creation. The clauses that
are used to specify views are input, output and peek. Input and output clauses provide
read and write access to stream elements. The peek clause is a special version of the
input clause where the burst value of the view is zero. In this case, the view can ac-
cess the stream elements to read, but does not advance the read position of the stream.
Therefore, multiple views can access the same stream elements using peek clause.

If the task construct is used without any clause, the task does not have access to
any stream. Therefore, the created task does not have any producer or consumer tasks,
making it an independent task which executes when the control program reaches the
task implementation during execution. Moreover, independent tasks do not belong to
the data-flow semantics. The syntax of the task construct in OpenStream is as follows:

1 #pragma omp task input (s t r e a m e x p r >> v iew expr , . . .) |
2 output (s t r e a m e x p r << v iew expr , . . .) |
3 peek (s t r e a m e x p r >> v i e w e x p r) |
4 s h a r i n g c l a u s e s
5 {
6 t a s k b o d y
7 }

The << and >> operators are used to provide access for the views to stream
elements. The direction of these operators are in conjunction with the access type.
Additionally, sharing clauses in the task construct allow the programmer to define how

52 CHAPTER 3. OPENSTREAM

stream1

t0 t1 t2 t3

stream0

(a) Tasks and views

t0 t3

t2

t1

3

2

4

m

(b) Resulting dynamic task graph

Figure 3.2: Tasks accessing streams using views and the corresponding dynamic task
graph

scalar variables declared outside the task are accessed inside the task body which is
identical to the sharing clauses in the OpenMP standard [83].

The stream and view expressions in the clauses define single or multiple stream
usage as well as the burst size of the views. A stream expression can either be: (1)
the name of the stream or stream reference where the view expression provides access
to a set of consecutive elements, (2) an array expression that consists of the name of
the stream and the index expression in brackets, (3) the name of an array of streams,
providing multi-dimensional access to the elements of a variable number of streams.

The view expression, on the other hand is either: (1) the name of the view which
provides access to only one element, (2) a view in an array form where the size of
the array corresponds to the burst size, (3) a multi-dimensional or variadic view which
references multiple streams with an explicit burst for all streams.

The task body consists of one or multiple statements and during compilation the
body is transformed into a work function. The run-time uses the outlined work function
to execute the task body when the task is scheduled to a processing unit. The task body
has access to the stream elements through its views as well as other shared variables if
the variables are included in OpenMP sharing clauses.

Task Creation Example

The following example code shows four tasks with varying number of input and output
dependences and Figure 3.2 illustrates the tasks accessing the streams using views and
the resulting task graph.

1 #pragma omp task output (s t r e a m 0 << v0 [3]) \
2 output (s t r e a m 1 << v1 [2])

3.2. SYNTAX AND SEMANTICS 53

3 {
4 t a s k b o d y 0
5 }
6
7 #pragma omp task output (s t r e a m 0 << v2 [4])
8 {
9 t a s k b o d y 1

10 }
11
12 #pragma omp task input (s t r e a m 1 >> v3 [2])
13 {
14 t a s k b o d y 2
15 }
16
17 #pragma omp task input (s t r e a m 0 >> v4 [3]) \
18 input (s t r e a m 0 >> v5 [4])
19 {
20 t a s k b o d y 3
21 }

The first task t0 has two output clauses with horizon sizes three and two, accessing
two separate streams stream0 and stream1 respectively. The task t1 has only one output
clause in the code which uses stream0 with the view horizon of four. These two tasks
are the producer tasks that produces the data which is going to be consumed by the
tasks t2 and t3. The tasks t2 and t3 have input clauses in their task description which
makes them consumers, where t2 has only one input clause for stream1 with horizon
of two and t3 has two input clauses for stream0 with horizons of three and four. Figure
3.2a illustrates all the tasks that are described in the code, their accesses to streams
using views with the defined horizons and how the producer-consumer relationship is
established. Figure 3.2b shows the resulting task graph where each node represents
a task and each edge represents a dependence, including the size of the dependence
in number of stream elements. The node named m in the figure represents the main
thread that is responsible for creating the tasks and the dashed lines are used to describe
that the main thread is creating each task in the main program of the OpenStream
application.

3.2.4 Tick Construct

The tick construct is used to advance the read position of a stream when the stream
elements are required to be read by multiple tasks in a broadcast. In a broadcast, the
producer task which is to broadcast the data uses output clauses in a regular manner.
However, the consumers cannot use regular input clauses since using the input clause
advances the read position of the stream, resulting in only one read access. For multiple

54 CHAPTER 3. OPENSTREAM

read accesses to the same stream elements, the peek clause must be used so that the read
position is not advanced. Once all the tasks read the required data, the read position
needs to advance to allow subsequent read operations to the stream. Therefore, in
order to advance the read position in case of a broadcast, the tick construct is used.
The syntax of the tick construct is as follows:

1 #pragma omp t i c k (s t r e a m e x p r >> s i z e e x p r)

The stream expression must either be a single stream reference, or an array ex-
pression addressing a single stream. The size expression defines how much the read
position is advanced which is required to match the producer’s burst size.

3.2.5 Taskwait Construct

The taskwait construct provides local barrier synchronization for OpenStream pro-
grams. Every task that encounter this barrier is suspended until all the tasks in the
context reaches the barrier. The syntax of the barrier is as follows:

1 #pragma omp t a s k w a i t

Employing such barriers during task execution is a disadvantage for data-flow task
parallel programs which causes over-synchronization. Since data-flow model supports
point-to-point synchronization, taskwait construct is generally used at the end of the
control program, in order to ensure all tasks terminate and the resources freed.

3.3 Execution Model

3.3.1 The Workers and The Scheduler

One of the main components of the run-time is the scheduler. OpenStream is intended
to run on massively parallel systems, hence the scheduling structures are distributed to
avoid creating any bottlenecks. The scheduler uses lock-free implementations for the
most important data structures to avoid synchronization overheads. In OpenStream,
each execution unit has a persistent worker thread based on POSIX threads, running a
scheduling loop which executes ready tasks on the dedicated core. All worker threads
are created at the beginning of the application and terminated when the execution of
the application finishes. By default, one persistent worker thread is dedicated for each

3.3. EXECUTION MODEL 55

CPU 0

Persistent
Worker

cache deque

CPU 1

Persistent
Worker

cache deque

CPU 2

Persistent
Worker

cache deque

CPU N-1

Persistent
Worker

cache deque

...

Figure 3.3: Persistent workers with their data structures and worker placement in
OpenStream

CPU core as shown in Figure 3.3. Although the workers can be placed in any order
on the cores of the CPU, the mapping of workers to cores are set at the beginning and
remains unchanged until the execution finishes.

Figure 3.3 also shows two main data structures that each persistent worker include;
work stealing queue and work cache. The work stealing queue is a double ended queue
that contains any number of ready tasks. The work cache on the other hand, can only
contain a single ready task. When a worker activates a task, it tries to add the task to
the work cache. In case the cache is empty, this operation is successful. If not, the task
in the cache is moved to the work stealing queue, followed by the activated task being
added to the work cache. Therefore, the work cache always contains the most recently
activated task.

When a worker finishes the execution of a task, it first checks the work cache,
removes the task if there is one, and executes it. In case the work cache is empty, the
worker then pops a task from the bottom of the work stealing queue. If both the work
cache and the work queue are empty, the worker randomly chooses a victim worker
and tries to steal a task from the top of victim’s work queue. The work cache is private
to each worker and is inaccessible to other workers, thus work stealing is only allowed
on work queues.

The advantages of the work cache is two-fold. First, since the work caches are
worker private data structures, adding or removing tasks does not produce any synchro-
nization overhead. Secondly, the task in the work cache, which is the last activated task
by the worker, cannot be stolen from other workers which not only increases locality,
but also avoids redundant work stealing.

The implementation of the work queue is based on the dynamic, circular, lock-free

56 CHAPTER 3. OPENSTREAM

prod_queue
cons_queue
elem_size
refcount

size_t
int

ptr
ptr

(a) Stream

horizon
burst
next
owner
reached_pos
data
cons_view

size_t
size_t
ptr
ptr

size_t
ptr
ptr

(b) View

synchronization_counter
input_view_chain
output_view_chain

size_t
view_ptr
view_ptr

(c) Frame

Figure 3.4: Data structures of OpenStream run-time

deque proposed by Chase and Lev [31]. Tasks are added to the work queue from the
bottom end and can only be stolen by other workers from the top end. A task can
only be removed from the bottom by the owner of the work queue to execute that task.
In each worker, tasks are executed in LIFO order which results in the most recently
activated task to be executed, favoring local execution of the tasks and increasing cache
locality. On the other hand, work stealing takes place in FIFO order, which indicates
the data of the stolen task is less likely to be found in the cache.

3.3.2 Data Structures

The OpenStream run-time has three main data structures that correspond to streams,
views and tasks as shown in Figure 3.4. The stream data structure consists of the
following as shown in Figure 3.4a:

• producer queue: a list of unmatched output views on the stream

• consumer queue: a list of unmatched or partially matched views of the stream

• elem size: the size of each element in bytes

• refcount: a reference counter for garbage collection

When a stream is created, its producer and consumer queues are empty, the element
size is set to the size of elements in the stream declaration, and the reference count
value is set to one. As stream elements are allocated, the producer and consumer
queues become accessible using views, and the refcount is incremented by one for
each stream reference is created.

The view data structure is illustrated in Figure 3.4b and includes the following
fields:

3.3. EXECUTION MODEL 57

• horizon: the horizon size of the view in bytes

• burst: the burst size of the view in bytes

• next: a pointer to the next view to create a chained linked list

• owner: a pointer to the owner task’s frame data structure, always the consumer
task

• reached position: a field used for indexing the data buffer to check if the view is
matched, unmatched or partially matched

• data: a pointer to the elements of the sliding window of the stream

• consumer view: if the view is an output view, this field points to the matched
input view of the consumer task. If the view is an input view, this pointer points
to itself. This field becomes useful when the task graph is dynamically traversed

When a view is created, the data location is not yet known, thus is set to NULL.
The reached position is set to zero which indicates the view is not matched to any
producer or consumer. Horizon and the burst fields are initialized as the horizon and
burst of the view. In case the view is created using a peek clause, the burst field is set to
zero. The consumer view field is also set to NULL at the initialization phase and is set
when dependence resolution happens. All the views are created without any indicator
of a read or write access, since this information is kept by the compiler and passed to
the run-time when views are matched with stream elements dynamically.

The last data structure is called data-flow frame or frame for short which corre-
sponds to a data-flow task as illustrated in Figure 3.4c:

• synchronization counter: a synchronization counter sc for short which indicates
if a task is ready for execution

• input view chain: a pointer to the first view in the linked list that holds all input
views of this frame

• output view chain: a pointer to the first view in the linked list that holds all
output views of this frame

The synchronization counter of a task is initialized as the sum of the horizons of its
input views and the number of its output views. Each output view contributes as 1 to the

58 CHAPTER 3. OPENSTREAM

...

...

...

...

2

...

2

2

2

smin

smin+1

smin+2

smax

Free list

O
bj

ec
t s

iz
e

Figure 3.5: Structure of the memory pool

synchronization counter which indicates the consumer of the output view has not yet
been created. When the output view is matched with a consumer task, synchronization
counter is decreased by 1.

3.3.3 Memory Management

As discussed in 3.3.2, OpenStream has multiple data structures within the run-time
that are allocated and freed dynamically throughout the execution. In general, these
data structures are allocated when a task is created and freed when a task terminates.
Since the tasks in OpenStream are fine-grained and short-lived, memory allocation
and deallocation calls are frequent. In addition to this, due to the parallelism within
the run-time, a centralized memory manager which handles high amounts of memory
operations with frequent invocations can easily become a bottleneck. To overcome
this issue, OpenStream uses a decentralized memory management approach based on
per-worker memory pools.

The basic concept of a memory pool is to allocate a large portion of memory for
the application, so that instead of a memory allocation request to the operating system,
the memory manager can return a chunk of previously allocated memory instead. The
memory pool assumes each object used by the run-time is between 2smin and 2smax ,
where s denotes the minimum and maximum sizes respectively. For each, size 2i where
smin ≤ i ≤ smax, a linked list of free blocks of size 2i bytes is maintained, as shown
in Figure 3.5. In case an allocation request with size bigger than 2smax takes place, the
request cannot be handled by the memory pool and thus is redirected to the standard
C memory allocator function malloc. If the size of the memory request is within the

3.3. EXECUTION MODEL 59

restricted limits, the allocator checks whether there is a free block in the free list. For
example, let’s assume the memory request has size Sreq. The corresponding block size,
i.e. 2j, from the memory pool is the next greatest power of two, at least of size 2smin

and 2j ≥ Sreq. If such block exists, the allocator removes the block from the free list
and returns it as the response to the memory request. If there is no free block available
in the free list, the allocator then performs a refill operation. Refill operation allocates
a contiguous chunk of memory of size Mrefill and divides it to d equal sized chunks
where each size is 2j bytes, since the refill operation is performed on this specific size.
The allocator then adds the d-1 chunks to the free list and returns the last chunk as a
response to the memory request. Deallocating a block works similarly. The allocator
finds the corresponding free list and adds the freed chunk as the head of the free list. If
the free request is larger than the size 2smax , the request is redirected to the standard C
memory allocator to call the function (free).

There are two main advantages of using memory pooling. First, per-worker mem-
ory pools guarantee that the free lists are private to each worker, meaning there is no
need for additional synchronization which eliminates synchronization overhead. Sec-
ondly, all allocation and deallocation requests can be handled in constant time. Al-
though, refill operations cause additional overhead, the frequency of refill operations
decrease as the maximum number of the used blocks increase during execution.

3.3.4 Dependence Management

In OpenStream, the producers and the consumers are matched dynamically in the run-
time using streams. This section describes how the dependences are matched by giving
examples for ordinary input and output views, followed by how the broadcasts are
handled using peek views.

Management of Ordinary Input and Output Views

The Listing 3.1 shows a simple OpenStream program where two producers and one
consumer are operating using a single stream. The example code calculates the square
of each index value within the producers, and the consumer uses the calculated values
to print the results.

1 i n t main{}
2 {
3 / / D e c l a r a t i o n o f t h e s t r e a m

60 CHAPTER 3. OPENSTREAM

4 f l o a t a s t r e a m a t t r i b u t e ((s t r e a m)) ;
5
6 / / D e c l a r a t i o n o f h o r i z o n s i z e s
7 i n t h o r i z o n o u t = 3 ;
8 i n t h o r i z o n i n = 6 ;
9

10 / / D e c l a r a t i o n o f v iews
11 f l o a t o u t v i e w [h o r i z o n o u t] ;
12 f l o a t i n v i e w [h o r i z o n i n] ;
13
14 / / P r o d u c e r p0
15 #pragma omp task output (a s t r e a m << o u t v i e w [h o r i z o n o u t])
16 {
17 f o r (i n t i = 0 ; i < h o r i z o n o u t ; i ++)
18 {
19 o u t v i e w [i] = i ∗ i ;
20 }
21 }
22
23 / / P r o d u c e r p1
24 #pragma omp task output (a s t r e a m << o u t v i e w [h o r i z o n o u t])
25 {
26 f o r (i n t i = h o r i z o n o u t ; i < 2∗ h o r i z o n o u t ; i ++)
27 {
28 o u t v i e w [i] = i ∗ i ;
29 }
30 }
31
32 / / Consumer c
33 #pragma omp task input (a s t r e a m >> i n v i e w [h o r i z o n i n])
34 {
35 f o r (i n t i = 0 ; i < h o r i z o n i n ; i ++)
36 {
37 p r i n t f (” R e s u l t [%d] = %.2 f \n ” , i , i n v i e w [i]) ;
38 }
39 }
40
41 #pragma omp t a s k w a i t
42
43 r e t u r n 0 ;
44 }

Listing 3.1: Two producers and one consumer operating on a single stream

In the example code, there are two producers, each produce three floating point type
elements and one consumer consumes the total of six floating point elements that are
matched using one stream a stream. The horizons are the same size for the producers
which is three, but the consumer’s horizon is different, thus there are two horizon
variables declared for the producers and the consumer. Although in the declaration of
both producers, the out view array is used in the output clauses, the producers, do not
access the same elements of the stream. The compiler only uses the declaration of a

3.3. EXECUTION MODEL 61

view to determine the element type and the horizon size of a view. Therefore, it is
syntactically allowed to use the same view which can be used to access different data
locations.

When a task is created, its frame is initialized, including all the data structures for
the task’s views. After the initialization, a run-time function resolve dependences is
called for each view in order to match the output views with consumers and input views
with producers. The process of dependence matching for Listing 3.1 is illustrated in
Figure 3.6.

Figure 3.6a shows the state of the run-time after the stream a stream is created.
The data structure for the stream is initialized, but still empty since there are no task
present at this point. The stream status in the figure only represents the read and write
positions of the stream, as well as the content. Furthermore, such data structure is not
present in the run-time, but only shown for illustration purpose.

Figure 3.6b shows the state of the run-time after the first producer task p0 is created.
The task and its frame is created and this task is added to the prod queue of the stream
since it has not been matched with a consumer view yet. Although the matching of
the output view is incomplete, the write position of the stream is advanced by the
burst of the view, allowing subsequent producers to access the same stream. In the
frame data structure, the horizon and burst values are set to 12 calculated by the size of
each element type which is a single precision floating point, multiplied by the number
of elements which is 3. The synchronization counter of the frame is also set to 12
since the task only has one view and the horizon of that view is 12. The next pointer
normally holds a pointer to the next unmatched view, but at this point, the lack of any
other unmatched views result in this field to be set to NULL. The field data is also
NULL due to incomplete matching.

The next step in the code is the creation of the second producer task p1. The
producer queue of the a stream already has a pointer to the first producer task, so the
second producer task is chained to the first one using the p0’s next pointer. The task p1

has identical characteristics for its burst, horizon and synchronization counter fields.
Task p1 has only one output clause with the same burst size, resulting in the advance
of three elements of the write position of the stream as shown in Figure 3.6c. The rpos

value is 0 for both producer tasks at the beginning since both tasks have unmatched
dependences.

The declaration of the consumer task follows the declaration of two producer tasks.
The creation of the consumer is illustrated in Figure 3.6d. The horizon and burst values

62 CHAPTER 3. OPENSTREAM

prod_queue
cons_queue
elem_size
refcount

a_stream

4
1

? ? ? ? ? ? ?

Stream Status

W
R

? ?

(a) Initial state of the stream

prod_queue
cons_queue
elem_size
refcount

a_stream

4
1

? ? ? ? ? ? ?

Stream Status

? ?

sc

ou
t_

vi
ew

12

p0

horizon
burst
next
rpos
data

12
12

0

WR

(b) Creation of the first producer

prod_queue
cons_queue
elem_size
refcount

a_stream

4
1

? ? ? ? ? ? ?

Stream Status

? ?

sc

ou
t_

vi
ew

12

p0

horizon
burst
next
rpos
data

12
12

0

WR

sc

ou
t_

vi
ew

12

p1

horizon
burst
next
rpos
data

12
12

0

(c) Creation of the second producer

prod_queue
cons_queue
elem_size
refcount

a_stream

4
1

? ? ? ? ? ? ?

Stream Status

? ?

sc

ou
t_

vi
ew

0

p0

horizon
burst
next
rpos
data

12
12

0

WR

sc

ou
t_

vi
ew

12

p1

horizon
burst
next
rpos
data

12
12

0

sc

in
_v

ie
w

24

c

horizon
burst
next
rpos
data

24
24

12

buf
? ? ? ? ? ?

(d) Creation of the consumer and matching
with the first producer

prod_queue
cons_queue
elem_size
refcount

a_stream

4
1

? ? ? ? ? ? ?

Stream Status

? ?

sc

ou
t_

vi
ew

0

p0

horizon
burst
next
rpos
data

12
12

0

WR

sc

ou
t_

vi
ew

0

p1

horizon
burst
next
rpos
data

12
12

0

sc

in
_v

ie
w

24

c

horizon
burst
next
rpos
data

24
24

12

buf
? ? ? ? ? ?

(e) Matching of the second producer and the
consumer

prod_queue
cons_queue
elem_size
refcount

a_stream

4
1

? 1 4 9 ? ? ?

Stream Status

? ?

sc

ou
t_

vi
ew

0

p0

horizon
burst
next
rpos
data

12
12

0

WR

sc

ou
t_

vi
ew

0

p1

horizon
burst
next
rpos
data

12
12

12

sc

in
_v

ie
w

24

c

horizon
burst
next
rpos
data

24
24

24

buf
1 4 9 ? ? ?

(f) Execution of the first producer

Figure 3.6: Dependence resolution of two producers and one consumer

3.3. EXECUTION MODEL 63

prod_queue
cons_queue
elem_size
refcount

a_stream

4
1

? 1 4 9 ? ? ?

Stream Status

? ?

WR

sc

ou
t_

vi
ew

0

p1

horizon
burst
next
rpos
data

12
12

12

sc

in
_v

ie
w

12

c

horizon
burst
next
rpos
data

24
24

24

buf
1 4 9 ? ? ?

(g) Synchronization counter of the consumer
is updated

prod_queue
cons_queue
elem_size
refcount

a_stream

4
1

? 1 4 9 16 25 36

Stream Status

? ?

WR

sc

ou
t_

vi
ew

0

p1

horizon
burst
next
rpos
data

12
12

12

sc

in
_v

ie
w

12

c

horizon
burst
next
rpos
data

24
24

24

buf
1 4 9 16 25 36

(h) Execution of the second producer

prod_queue
cons_queue
elem_size
refcount

a_stream

4
1

? 1 4 9 16 25 36

Stream Status

? ?

WR

sc

in
_v

ie
w

0

c

horizon
burst
next
rpos
data

24
24

24

buf
1 4 9 16 25 36

(i) Tasks and views

prod_queue
cons_queue
elem_size
refcount

a_stream

4
1

? 1 4 9 16 25 36

Stream Status

? ?

WR

(j) Execution is finished and the data struc-
tures freed

Figure 3.6: Dependence resolution of two producers and one consumer contd.

64 CHAPTER 3. OPENSTREAM

are 24 in the consumer and the synchronization counter is also 24 since the task dec-
laration has only one input clause. The consumer frame has a field called buf which
is the actual memory location that holds the data. Once the consumer is initialized,
the read position of the stream is advanced by 24 to allow subsequent stream accesses.
When the resolve dependences function is called within the run-time for the input view
of the consumer, the run-time first checks the unmatched producers in order to find a
match between the input and output views. If a match is not found, then the input view
is added to the cons queue of the stream. In this case, the output view of p0 matches the
input view of the c partially, in several steps. First, the data pointer of the output view
is set to the current write position of the input view, using rpos value of as an index
to access the data pointer of the input view. The rpos value is then updated according
to the horizon of the output view of p0, i.e. by 12 as shown in the figure. Secondly,
the output view of task p0 is removed from the prod queue of the stream. Lastly, the
synchronization counter of the producer is subtracted by the burst value, resulting in
the value 0, which indicates the dependence matching for task p0 is complete and the
task is ready for execution. However, the reached position for the task c has not yet
reached the horizon value, therefore resolve dependences is called once more to match
the remaining views. In addition to this, the data pointer for the task p0 now points to
the buf of the consumer, pointing to the actual memory address the producer is going
to write once its execution finishes.

Task p1 follows the same steps as p0 to match its output view with the partially
unmatched input view of c. Before the second matching, the rpos of the output view
of p1 is set to the rpos value of the input view at this point, which is 12. This is done
in order to provide the required offset when multiple producers are matched with a
single consumer. The result of this process is shown in Figure 3.6e. After the second
dependence matching is complete, both producer tasks are ready to execute. However,
the synchronization counter of the consumer task is still unchanged and its value is
24, due to the fact that its input data becomes available only after the execution of the
producers.

After the dependences are matched and the producers are ready to execute, each
producer task gets scheduled to a persistent worker. Assume the task p0 is executed
first and finishes its execution. Figure 3.6f shows the state of the data structures. After
the execution, the consumer has its synchronization counter reduced by the burst of
the output view of p0, resulting in an updated value of 12 in Figure 3.6g. After the

3.3. EXECUTION MODEL 65

execution of the second producer p1 as shown in the Figure 3.6h, the synchroniza-
tion counter of c becomes 0 and the consumer is now ready to execute. Consumer
is executed as shown in Figure 3.6i followed by the freeing of the data structures as
shown in Figure 3.6j.

Management of Broadcasts

The Listing 3.2 shows a simple OpenStream program where one producer and two
consumer are using broadcasts on a single stream.

1 i n t main{}
2 {
3 / / D e c l a r a t i o n o f t h e s t r e a m
4 f l o a t a s t r e a m a t t r i b u t e ((s t r e a m)) ;
5
6 / / D e c l a r a t i o n o f h o r i z o n
7 i n t h o r i z o n = 6 ;
8
9 / / D e c l a r a t i o n o f v iews

10 f l o a t o u t v i e w [h o r i z o n] ;
11 f l o a t i n v i e w [h o r i z o n] ;
12
13 / / P r o d u c e r p0
14 #pragma omp task output (a s t r e a m << o u t v i e w [h o r i z o n])
15 {
16 f o r (i n t i = 0 ; i < h o r i z o n ; i ++)
17 {
18 o u t v i e w [i] = i +1 ;
19 }
20 }
21
22 / / Consumer c0
23 #pragma omp task peek (a s t r e a m >> i n v i e w [h o r i z o n])
24 {
25 f l o a t sum = 0 . 0 ;
26 f o r (i n t i = 0 ; i < h o r i z o n ; i ++)
27 {
28 sum += i n v i e w [i] ;
29 }
30 p r i n t f (”Sum = %f \n ” , sum) ;
31 }
32
33 / / Consumer c1
34 #pragma omp task peek (a s t r e a m >> i n v i e w [h o r i z o n])
35 {
36 f l o a t sums = 0 . 0 ;
37 f o r (i n t i = 0 ; i < h o r i z o n ; i ++)
38 {
39 sums += i n v i e w [i]∗ i n v i e w [i] ;

66 CHAPTER 3. OPENSTREAM

40 }
41 p r i n t f (”Sum of s q u a r e s = %f \n ” , sums) ;
42 }
43
44 #pragma omp t i c k (a s t r e a m >> h o r i z o n)
45
46 #pragma omp t a s k w a i t
47
48 r e t u r n 0 ;
49 }

Listing 3.2: One producer and two consumers operating on a single stream using
broadcasts

The code for the broadcast is essentially similar to ordinary input and outputs, the
main difference being the usage of peek clause instead of input and the use of tick
construct in order to advance the stream when the consumers read the broadcast data.
The illustration of the broadcasts is shown in Figure 3.7.

The creation of the producer is identical to the one described in Section 3.3.4. Fig-
ure 3.7a shows the state when the producer is created. The two consumers are created
next as shown in Figure 3.7b where the unmatched input dependences are chained to
the cons queue of the stream. When the resolve dependences function is called by
the run-time with a peeking view (input view with a burst of 0), the run-time does
not match the dependences directly, but the matching is deferred until the execution
reaches the tick construct. At this point, neither the producer, nor the consumers are
ready to execute. Until the run-time reaches the tick construct, the created consumers
are chained to the cons queue of the stream. When the tick construct is reached, the
read position of the stream is advanced by the declared amount, and the dependence
resolution happens as shown in Figure 3.7c. The producer is then removed from the
list of unmatched views and the synchronization counter reaches zero. The producer
task then executes as shown in Figure 3.7d and all elements of the first consumer
view is written, but the task remains blocked until all consumers receive the broadcast
data. When all consumers receive the broadcast data by copying the corresponding
data from the first matched consumer as shown in Figure 3.7e, the consumers become
ready for execution and the producer task’s data structures can be freed as illustrated
in Figure 3.7f. When the execution finishes, the remaining data structures are freed.

Constraints

As shown in the previous sections, OpenStream does not store any data directly in
the streams, but in the input buffers of the associated views located in the data-flow

3.3. EXECUTION MODEL 67

prod_queue
cons_queue
elem_size
refcount

a_stream

4
1

? ? ? ? ? ? ?

Stream Status

? ?

sc

ou
t_

vi
ew

24

p

horizon
burst
next
rpos
data

24
24

0

WR

(a) Creation of the producer task

prod_queue
cons_queue
elem_size
refcount

a_stream

4
1

? ? ? ? ? ? ?

Stream Status

? ?

sc

ou
t_

vi
ew

24

p

horizon
burst
next
rpos
data

24
24

0

WR

sc

in
_v

ie
w

24

c0

horizon
burst
next
rpos
data

24
0

0

buf
? ? ? ? ? ?

sc

in
_v

ie
w

24

c1

horizon
burst
next
rpos
data

24
0

0

buf
? ? ? ? ? ?

(b) Creation of the consumers

prod_queue
cons_queue
elem_size
refcount

a_stream

4
1

? ? ? ? ? ? ?

Stream Status

? ?

sc

ou
t_

vi
ew

0

p

horizon
burst
next
rpos
data

24
24

0

WR

sc

in
_v

ie
w

24

c0

horizon
burst
next
rpos
data

24
0

0

buf
? ? ? ? ? ?

sc

in
_v

ie
w

24

c1

horizon
burst
next
rpos
data

24
0

0

buf
? ? ? ? ? ?

(c) Matching of the producer and two con-
sumers

prod_queue
cons_queue
elem_size
refcount

a_stream

4
1

? 1 2 3 4 5 6

Stream Status

? ?

sc

ou
t_

vi
ew

0

p

horizon
burst
next
rpos
data

24
24

0

WR

sc

in
_v

ie
w

24

c0

horizon
burst
next
rpos
data

24
0

0

buf
1 2 3 4 5 6

sc

in
_v

ie
w

24

c1

horizon
burst
next
rpos
data

24
0

0

buf
? ? ? ? ? ?

(d) Execution of the producer task

prod_queue
cons_queue
elem_size
refcount

a_stream

4
1

? 1 2 3 4 5 6

Stream Status

? ?

sc

ou
t_

vi
ew

0

p

horizon
burst
next
rpos
data

24
24

0

WR

sc

in
_v

ie
w

24

c0

horizon
burst
next
rpos
data

24
0

0

buf
1 2 3 4 5 6

sc

in
_v

ie
w

24

c1

horizon
burst
next
rpos
data

24
0

0

buf
? ? ? ? ? ?

copy

(e) Broadcast the data to the remaining con-
sumers

prod_queue
cons_queue
elem_size
refcount

a_stream

4
1

? 1 2 3 4 5 6

Stream Status

? ?

WR

sc

in
_v

ie
w

0

c0

horizon
burst
next
rpos
data

24
0

0

buf
1 2 3 4 5 6

sc

in
_v

ie
w

0

c1

horizon
burst
next
rpos
data

24
0

0

buf
1 2 3 4 5 6

(f) Consumers are ready for execution

Figure 3.7: Dependence resolution of one producer and two consumers using broadcast
operation

68 CHAPTER 3. OPENSTREAM

frames of each task. Each view has only one field, data, pointing to the elements
accessible through the view. The advantage of this layout is that the consecutive ele-
ments of a stream are stored at consecutive addresses which can be accessed by simply
dereferencing the corresponding pointer. However, in order to guarantee the correct
dependence information, some constraints need to be satisfied for a valid OpenStream
program.

Constraint 3.1: Burst of a reading view must either be equal to the horizon value

or must be zero.

This constraint prevents an arbitrary number of elements of an output view to be-
come copied to multiple input views. For ordinary input views, the burst is equal to
the value of horizon and for broadcasts the burst value is zero.

Constraint 3.2: The elements of an output view cannot be scattered across multiple

input views.

This constraint prevents different horizons of output and input views of producers
and consumers. For example, an output view with horizon 4 cannot be matched with
two input views whose horizons are 2, it can only be matched with one input view of
horizon 4. If there is a need for multiple consumers using partial data, a broadcast is
required and tasks can mask out the unnecessary elements. Additionally, this constraint
cannot be handled by the compiler due to the dynamic matching of producers and
consumers, thus is handled by the run-time.

Constraint 3.3: There must not be leftover stream elements.

All the stream elements that are written into a stream must be read. Since the
written elements are actually stored in input buffers of the reading views, unmatched
output views cannot store any data. Therefore, each element in a stream must be read
at least once.

Constraint 3.4: For broadcasts, the number of consumers must be finite.

The broadcast mechanism requires the tick construct in order to advance the reading
position of the stream. In practice, this mechanism limits the broadcasts to a finite
number of consumers.

3.4 Compilation of OpenStream Programs

There are two main steps in executing an OpenStream application: the compilation of
the OpenStream program, and the run-time library that is linked to the application in
order to dynamically execute the program.

3.4. COMPILATION OF OPENSTREAM PROGRAMS 69

1 2 3 4

Repeat for each task

5 6
Syntax

analysis Outlining Frame
Generation

Function
Generation Gimplification Optimization

.c .o Linker .so

Run-time
Library

exe

OpenStream GCC

Figure 3.8: Compilation steps of OpenStream programs

During the compilation of an OpenStream program, the constructs and clauses de-
scribed in Section 3.2 are translated into code that links with the OpenStream run-time
library. The OpenStream compiler used in this thesis is implemented on top of GNU
C Compiler version 5.4 [101], where the compiler retains its ability to compile valid C
programs with the addition of compiling OpenStream specific constructs and clauses.

Figure 3.8 shows the required steps for compiling an OpenStream application. The
steps can be ordered as follows:

1. Syntax analysis: The parser analyzes the input files and transforms the C state-
ments into a tree representation called GENERIC [79]. OpenStream-specific
clauses are translated into custom nodes of the tree and processed in later stages.

2. Outlining: The compiler creates the corresponding work-function for each task.

3. Frame generation: The compiler determines how much memory is required for
the data-flow frame and its views.

4. Function generation: After the required memory space for a task frame is de-
termined, this step generates the code for initialization of frame fields and the
appropriate run-time functions. For instance, the required memory for the data-
flow frame is allocated by calling the function of the memory pool as described
in Section 3.3.3. Additionally, resolve dependence function is added for each
view.

5. Gimplification: In this step, the generated code is translated into the GIMPLE
intermediate representation, widely used in GCC.

6. Optimization: Optimization steps are applied to the result of the Gimplification.
This step finishes with the generation of instructions for the target architecture.

After the compilation steps finish, the resulting object files are supplied to the
linker. The OpenStream run-time library is a separate shared library. Therefore, in
order to resolve the symbols of run-time calls, the object files are linked with the run-
time library after the compilation to create the final program executable.

70 CHAPTER 3. OPENSTREAM

3.5 Summary

In this chapter, we introduced OpenStream, a data-flow extension to OpenMP. We
briefly discussed the terminology used in OpenStream, followed by the presentation of
the syntax of OpenStream programs. Moreover, we presented the execution model of
OpenStream, explaining persistent workers and the main data structures of the run-time
as well as details on memory and dependence management during execution. Finally,
we gave an overview of the compilation steps.

OpenStream is a state-of-the-art extension enabling data-flow task-parallel pro-
grams that is mainly used in the development of high performance applications [95].
The general trend for task-parallel languages is to use point-to-point data dependences
between tasks in order to overcome the overhead created by barrier synchronization.
However, the concepts presented in this chapter regarding stream accesses using views
and dynamically matching producers and consumers are unique to OpenStream. These
OpenStream specific concepts enable opportunities for efficient scheduling and data
placement in NUMA systems [39] and can be applied to heterogeneous platforms as
well [100].

The introduction of GPUs and FPGAs in high performance computing created pro-
gramming difficulties for HPC applications due to the difference in programming mod-
els between different devices. If done efficiently, task-parallel run-times can handle the
device specific aspects of the application, unburdening the programmer from manually
coordinating the accelerators with potentially higher performance gains. To this end,
we propose efficient scheduling mechanisms that exploit the traits OpenStream pro-
vides in order to increase performance in heterogeneous platforms.

The next chapter presents changes to the original run-time and the execution model
in order to take advantage of the performance of heterogeneous systems. We have
extended the OpenStream language to support GPUs and FPGAs, so that, the run-time
has the necessary infrastructure to efficiently schedule tasks on heterogeneous systems.

Chapter 4

Extending OpenStream for
Heterogeneous Systems

In heterogeneous systems that include accelerators be it GPUs or FPGAs or any other
kind that may become mainstream in the future, it is essential for a run-time system
to abstract the hardware details as much as possible while providing a programming
model that requires few architectural details. It is the run-time’s responsibility to make
low level decisions on scheduling and memory management to unburden the program-
mer from such details.

In this chapter, we describe how the OpenStream run-time is extended in order
to support accelerators mainly used in HPC systems composed of multi-core CPUs,
GPUs and FPGAs. The extensions implement a programming model based on asyn-
chronous execution of tasks on the accelerators and abstracts memory management
details such as copying data from/to a device connected through PCI-express bus. Al-
though accelerators can be included in the system using PCI-e bus as in GPUs, for
FPGAs, we focused on next generation devices that are intended to be used in HPC
systems which include multi-core CPUs and FPGAs on the same die in an SoC fashion.

This chapter starts with the extension of OpenStream targeting CPU-GPU plat-
forms, describing how the programming model is extended to support task execution
on GPUs. Section 4.1.2 discusses how the syntax is extended, followed by the run-time
details Section 4.1.3. The extension for FPGAs are presented in Section 4.2 which in-
cludes the syntax additions as well as run-time implementation details.

71

72CHAPTER 4. EXTENDING OPENSTREAM FOR HETEROGENEOUS SYSTEMS

4.1 Extension for GPUs

4.1.1 Execution Model of OpenStream-GPU

OpenStream’s execution model is described in Section 3.3.4 that target homogeneous
multi-core systems. In the aforementioned execution model, each persistent worker

is mapped to one CPU core. However, in heterogeneous systems, there are multiple
devices present with different capabilities, in this case, GPUs. GPUs are throughput-
oriented devices that has thousands of execution units that can run thousands of thread
simultaneously. Although GPUs offer high throughput, the main difficulty in GPU pro-
gramming is the device memory being separate from the system memory. Therefore,
extending the homogeneous OpenStream execution model for heterogeneous platforms
bears three fundamental challenges for memory management arising from the exis-
tence of multiple memory resources with distinct address spaces:

• Since tasks can be executed either on CPUs using the host’s main memory or
on GPUs with dedicated memory and a distinct address space, data buffers must
be allocated according to the execution location of the accessing producers and
consumers.

• If a producer and its consumer do not execute on computing units sharing the
same address space, data must be transferred between memory resources before
execution of the consumer.

• Since GPUs cannot access host memory directly, run-time data structures, such
as work queues, remain inaccessible and scheduling for GPUs must be per-
formed by a core of the host.

Using task-private buffers, memory allocation and data transfers can be handled
transparently by the run-time, unburdening the programmer from memory manage-
ment. If data is handled explicitly, management must be performed either by the ap-
plication itself or through additional steps by the run-time or compiler to transparently
rewrite memory addresses. The last two challenges of the list above also involve in-
vocation of specialized APIs for GPUs. Dedicating one CPU core for each device
simplifies the coordination and scheduling of tasks and data transfers on GPUs. With
an increasing number of cores per accelerator in recent systems and the instruction
throughput of GPUs largely exceeding the throughput of CPUs, this sacrifice has only
very limited impact on performance. Therefore, our approach dedicates one core to

4.1. EXTENSION FOR GPUS 73

...

Queue

CPU 0

Persistent
worker

CPU 1

Persistent
worker

CPU 2

Persistent
worker

CPU N-1

GPU 0 GPU M

Exec.Trans. Exec.Trans.QueueQueue Queue

Persistent
worker

Figure 4.1: Persistent workers extended for GPU support in OpenStream

each GPU, named as GPU dedicated core, and uses the persistent worker thread of
that core as a proxy for offloading.

Figure 4.1 illustrates the extended execution model for GPUs. In the extended
model, the work cache is no longer present. The activated tasks are directly pushed to
the bottom of the work queue instead of being pushed to the work cache. The funda-
mental reason for removing the work cache is, the tasks within the work cache cannot
be stolen and are executed by the CPU workers. When there is not enough parallelism
in the program, the use of work cache limits the number of tasks that can be assigned
to the GPU, especially for systems with high number of CPU cores. Considering the
GPU has higher throughput compared to a CPU core, the use of work cache possibly
limits the performance whereas removing the work cache does not introduce additional
overhead for the CPU workers.

CPU 1 and CPU N-1 in the figure are used as GPU dedicated cores and include
additional queues for handling the task and memory management operations on the
GPUs, named transfer queue and execution queue respectively. The execution queue

is responsible for offloading tasks onto GPUs while transfer queue is responsible for
handling the data transfers between the host and the GPUs. The detailed usage of
these queues are given in Section 5.2 since these queues are mainly related with the
scheduling technique presented in this thesis.

74CHAPTER 4. EXTENDING OPENSTREAM FOR HETEROGENEOUS SYSTEMS

The fundamental functional challenges above must be addressed in order to be
capable of executing tasks on both CPUs and GPUs at all. In addition to these exist a
number of challenges for efficient execution that need to be addressed, for leveraging
the computational capabilities of every resource in the system to increase performance.

• Since the raw instruction throughput differs significantly between CPU cores
and GPUs, the amount of work required to fully utilize computing capabilities
also differs.

• In order to avoid round-trip delays between the host and GPUs, multiple tasks
should be offloaded at once.

• Resources that can be used independently, such as GPU cores and the intercon-
nect between host and device memory, should be used in parallel.

• Assuming the raw throughput of a GPU is higher than for a CPU, the GPU idle
time has a higher impact on performance. Hence, unblocking tasks as fast as
possible gains importance.

Control over the amount of work can be achieved by either breaking larger tasks
into smaller units of work or by aggregating very small tasks to the desired granularity.
The former approach might require sophisticated mechanisms to extract parallelism
from a sequence of instructions of a task, which forms a field of research on its own
[56, 16, 102, 104, 84]. The latter approach makes use of parallelism already made
available by the program and might be implemented as part of a strategy addressing
round-trip delays and data locality of GPU tasks. Finally, overlapping of transfers with
computation requires transfers to be scheduled for periods of GPU activity.

4.1.2 Syntax of OpenStream Programs Employing GPUs

As described in Section 3.2, OpenStream uses OpenMP task constructs with run-time
specific additional clauses. In order to offload tasks to the GPUs, the same task con-
struct is used with additional clauses to pass additional information related with the
GPU execution of the task. The clauses for the use of a GPU task is as follows:

1 #pragma omp task input (s t r e a m e x p r >> v iew expr , . . .) |
2 output (s t r e a m e x p r << v iew expr , . . .)
3 c l s o u r c e (k e r n e l f i l e n a m e s t r)
4 c l k e r n e l (k e r n e l n a m e)

4.1. EXTENSION FOR GPUS 75

5 c l a r g s (arg1 , arg2 , . . .)
6 c l d i m e n s i o n s (ND dimensions)
7 c l g l o b a l w o r k o f f s e t (s i z e d i m 0 , s i z e d i m 1 , . . .)
8 c l g l o b a l w o r k s i z e (s i z e d i m 0 , s i z e d i m 1 , . . .)
9 c l l o c a l w o r k s i z e (s i z e d i m 0 , s i z e d i m 1 , . . .)

10 {
11 task body CPU
12 }

The original task construct requires a task body that executes when the task is
scheduled to a persistent worker. The generation of the task body is done during the
compilation of OpenStream programs as discussed in Section 3.4. However, the GPU
binary for each kernel is not present during the compilation process, but is only avail-
able during run-time. Therefore, each GPU kernel needs to be compiled during run-
time after the environment and the context for the GPU is created. The cl source clause
is used to determine where the GPU kernel source code resides, and requires a string
literal as the filename. The cl kernel is the kernel name that corresponds to the GPU
implementation of the task. cl args clause is used to pass the necessary pointers to the
GPU kernel. The order of the arguments is the same as the order they are declared in
the kernel definition. Each argument must be a pointer which will be transferred to the
GPU memory space before the GPU task can execute.

The last three clauses are related with the kernel execution mechanisms of OpenCL.
OpenCL can execute the GPU binary in multiple data dimensions, hence called N-
dimensional execution. The programmer is required to define the number of dimen-
sions the kernel uses using cl dimensions clauses. The OpenCL API also requires the
work size for each dimension which can be declared using cl global work size clause
as well as offsets to be used in case the programmer aims to access only some specific
part of the data using cl global work offset clause. Although GPUs implicitly use pre-
defined local work sizes, the programmer is able to change the local sizes using the
cl local work size clause for tuning the kernel performance if required.

The declaration of a task body is a requirement in OpenStream. In case the pro-
grammer declares the additional clauses for the GPU, the task keeps both task bodies
to decide whether to use the CPU task body or the GPU task body during execution.
On the other hand, the tasks that has only CPU task bodies can only execute on the
CPU workers.

76CHAPTER 4. EXTENDING OPENSTREAM FOR HETEROGENEOUS SYSTEMS

Example of a GPU Task in OpenStream

Listing 4.1 shows a valid OpenStream program which has one task with a GPU imple-
mentation. The example code is simple and multiplies all the elements of a vector with
a constant value. The GPU tasks require two things: the kernel implementation of the
task in OpenCL, and the additional GPU clauses to be declared in the task construct of
the corresponding task.

1 i n t main ()
2 {
3 i n t a = 5 , N = 1 0 ;
4 i n t x a t t r i b u t e ((s t r e a m)) , y a t t r i b u t e ((s t r e a m)) ;
5 i n t vx [N] , vy [N] ;
6 i n t ∗ a p t r = &a ;
7
8 #pragma omp task output (y << vy [N])
9 {

10 f o r (i n t i = 0 ; i < N; i ++)
11 vy [i] = i ;
12 }
13
14 #pragma omp task output (x << vx [N]) \
15 input (y >> vy [N]) \
16 c l s o u r c e (” k e r n e l s . c l ”) \
17 c l k e r n e l (vadd) \
18 c l a r g s (vy , vx , a p t r) \
19 c l d i m e n s i o n s (1) \
20 c l g l o b a l w o r k o f f s e t (0) \
21 c l g l o b a l w o r k s i z e (N) \
22 c l l o c a l w o r k s i z e (1 6)
23 {
24 f o r (i n t i = 0 ; i < N; i ++)
25 vx [i] = a ∗ vy [i] ;
26 }
27
28 #pragma omp task input (x >> vx [N])
29 {
30 f o r (i n t i = 0 ; i < N; i ++)
31 p r i n t f (” vx[%d] = %d\n ” , i , vx [i]) ;
32 }
33
34 #pragma omp t a s k w a i t
35
36 r e t u r n 0 ;
37 }

Listing 4.1: A valid OpenStream program with a GPU task is declared.

The task declared in line 14 of the example code has one input and one output with
the additional GPU clauses. The clause cl source is set to the name of the file that has

4.1. EXTENSION FOR GPUS 77

the OpenCL kernel implementation for this task. During execution, the run-time reads
the kernels.cl file and compiles the OpenCL kernel into GPU specific binary. The run-
time queries the available devices on the system at the beginning of the execution and
uses on-line compilation to generate the kernel binary. The content of the kernels.cl

file is shown in Listing 4.2. The clause cl kernel is declared with the kernel name
that corresponds to the task which must be declared inside the specified file. The
arguments are passed in the order of the kernel function and specified in the cl args

clause. Although OpenCL API allows literal arguments to be passed, OpenStream
restricts the arguments to be pointers, thus a pointer is declared to the constant value of
a and this pointer is used within the clause. The dimensions and the work sizes are also
declared as required to execute any kernel on the GPU. Global work size corresponds
to the number of global work items that will execute the kernel. Local work size is the
number of work items that make up a work-group that will execute the kernel. The
breakdown of executing kernels to work-groups and work-items are described in detail
in Section 2.2.2. The programmer can also provide work offset vector if any offset
needs to be used for each work size in every dimension.

1 k e r n e l vo id vadd (g l o b a l c o n s t i n t ∗A,
2 g l o b a l i n t ∗B ,
3 g l o b a l c o n s t i n t ∗k)
4 {
5 i n t i d = g e t g l o b a l i d (0) ;
6
7 B[i d] = ∗k ∗ A[i d] ;
8 }

Listing 4.2: The content of kernels.cl file which includes the implementation of one
OpenCL kernel, vadd.

Listing 4.2 shows the kernel code implemented in OpenCL C language. The func-
tion is identical to the CPU implementation, but each GPU work-item calculates one
element of the output vector instead of a CPU worker calculating all the elements in
an iterative fashion.

4.1.3 Run-time Implementation

Extended Data Structures

OpenStream run-time for supporting GPU execution includes additional data structures
to hold the meta-data information on GPU tasks as shown in Figure 4.2. Each frame

78CHAPTER 4. EXTENDING OPENSTREAM FOR HETEROGENEOUS SYSTEMS

cl_source_file_name
cl_kernel_name
cl_args_count

size_t
view_ptr
view_ptr

cl_dimensions ptr
gpu_task
queue_no
cl_args

synchronization_counter
input_view_chain
output_view_chain

size_t
view_ptr
view_ptr

cl_data ptr cl_global_work_offsets
cl_global_work_sizes
cl_local_work_sizes
data

int
int
ptr
ptr
ptr
ptr
ptr

Frame

cl_data

size
cl_arg_direction
data

size_t
enum
ptr

cl_args

Figure 4.2: Extended Frame data structure and cl data structure

includes a pointer to a data structure named cl data which has the following fields:

• cl source file name: the name of the file where the kernel implementation re-
sides.

• cl kernel name: the name of the kernel that is to be executed on the GPU.

• gpu task: the initial value of this field is -1, meaning the task is a CPU task.
This field is updated when the task is decided to be executed on the GPU and
the value of the field is updated to the GPU id of the system which is assigned
by the OpenCL driver on the system. Using non-negative values are required in
order to support multiple devices.

• cl args: a pointer to each argument of the OpenCL kernel in data structure form.

• cl global work offsets: required parameter by the kernel execution in case the
user wants to offset the data pointer to be processed in the kernel.

• cl global work sizes: a vector that holds the global work size values passed by
the clause with the same name.

• cl local work sizes: a vector that holds the local work size values passed by the
clause with the same name.

The cl args data structure consists of the following fields:

• size: size of the argument in bytes

• cl arg direction: whether the argument corresponds to an input view, an output
view or a firstprivate scalar variable

4.1. EXTENSION FOR GPUS 79

horizon
burst
next
owner
reached_pos
data
cons_view

size_t
size_t
ptr
ptr

size_t
ptr
ptr

opencl_buffer ptr
opencl_event ptr

Figure 4.3: Extended view data structure

• data: the address of the data for a particular argument. Essentially used for
passing firstprivate arguments

The additional data structures are used to manage the execution in run-time. When
a data-flow frame is created and has the GPU clauses present, cl data is allocated
for each frame and its fields are declared using the information included in the GPU
clauses. The tasks are set to CPU task by default at creation time and the scheduler
decides where the task is going to be executed during run-time.

The additions on the data-flow frame data structure is required to determine the
target device of a task as well as used to offload a task to the GPU. However, as dis-
cussed in Chapter 3, dependences are satisfied using view data structures. Therefore,
in order to manage the dependences between different devices, the view data structure
is extended as shown in Figure 4.3. Each view has two additional fields as follows:

• opencl buffer: a pointer to the buffer object created for the data region that re-
sides on GPUs

• opencl event: a pointer to an OpenCL event to orchestrate the asynchronous data
transfers and kernel execution on the GPU

Once a task is decided to be executed on the GPU, the run-time first checks where
the input data of the task resides. If the input view data resides on the CPU address
space, the opencl buffer field of the view is used to create a data buffer on the GPU
address space and the data transfer between address spaces is issued. The data trans-
fer is asynchronously issued and it creates an OpenCL event which is saved in the
opencl event field. The saved event is then passed to the kernel execution API call for
synchronization between data transfers and kernel execution.

80CHAPTER 4. EXTENDING OPENSTREAM FOR HETEROGENEOUS SYSTEMS

OpenCL Environment Management

The OpenCL environment is created and managed dynamically inside the OpenStream
run-time. At the beginning of the execution of an OpenStream application, the run-time
queries the available OpenCL compliant platforms present in the system. Different
vendors have different platform identification, thus in order to use multiple devices
from different vendors, an OpenCL context must be created for each platform and
each device. After the creation of contexts, three command queues are created that
correspond to each device; one queue for task execution, and two queues for each
direction of data transfers. Having multiple command queues enable asynchronous
enqueuing of kernel execution and transfer operations.

After the creation of the context for each device, the next step is to create an exe-
cutable binary for each kernel for each device. Although a kernel implementation can
be executed in all supporting devices, the OpenCL code must be compiled for each de-
vice using the vendor provided OpenCL C compiler. Therefore, the run-time compiles
each kernel for each device and saves the compiled binary for future use to avoid the
compilation overhead.

When the program execution finishes, the OpenCL environment is destroyed by
freeing all program information, command queues and the OpenCL contexts. The
management of OpenCL environment is integrated with OpenStream run-time and
does not require any additional effort from the programmer.

4.2 Extension for FPGAs

4.2.1 Execution Model of OpenStream-FPGA

In order to employ FPGA accelerators in OpenStream, the execution model is updated
since the FPGA accelerators are not able to execute any task independently. Therefore
we have followed a similar path to that of GPU extension by assuming a host-device
model whereas FPGA is the device and multi-core CPU is the host.

Figure 4.4 illustrates the extended execution model for FPGAs. Similar to the GPU
execution model, one CPU core is dedicated for orchestrating the FPGA accelerators.
However, the difference between the GPU and FPGA extensions is that the FPGA
dedicated core uses only one work dequeue and additional accelerator buffers. While
GPU execution model uses three queues to manage data transfers and execution on
a discrete device, the FPGA execution model targets system-on-chip FPGA devices

4.2. EXTENSION FOR FPGAS 81

...

Queue

CPU 0

Persistent
worker

CPU 1

Persistent
worker

Queue

CPU 2

Persistent
worker

Queue

CPU N-1

Persistent
worker

...

Queue

Accel 1 Accel 2 Accel N-1

FPGA

Accel buffers

Figure 4.4: Persistent workers extended for FPGA accelerator support in OpenStream

which does not require data to be transferred over the PCI-e bus. Therefore, one local
work queue is sufficient to manage task execution and data placement on the FPGA.

In the FPGA case, our extended model assumes there is only one FPGA present
on the system with multiple accelerators with possibly different types where only one
CPU core is dedicated to manage all the accelerators. Aside from the local queue, the
FPGA dedicated core has a structure called accelerator buffers which keeps the ready
tasks that can be accelerated using the FPGA. The tasks in the accelerator buffers can-
not be stolen by other workers, similar to the work cache in the original OpenStream
run-time. The size of the accelerator buffers is determined at the beginning of the ex-
ecution of the program and set to the number of each accelerator type. For example,
if there are three different types of accelerators available on the FPGA three buffer
instances are created. In addition to this, the run-time counts how many accelerators
of each type is available on the FPGA to set the size of each accelerator buffer to the
corresponding number. Using the accelerator buffers, the run-time ensures the tasks
assigned for FPGA execution are not stolen by other workers and the FPGA acceler-
ators are kept occupied by task execution. The accelerator buffers are simple double

82CHAPTER 4. EXTENDING OPENSTREAM FOR HETEROGENEOUS SYSTEMS

ended queues, only accessible by the FPGA dedicated core which handles the enqueue-
dequeue operations to the buffers.

4.2.2 Syntax of OpenStream Programs for FPGA Acceleration

The OpenMP task construct is extended with additional FPGA specific clauses in order
to employ FPGA accelerators during execution. The clauses for the use of an FPGA
task is as follows:

1 #pragma omp task input (s t r e a m e x p r >> v iew expr , . . .) |
2 output (s t r e a m e x p r << v iew expr , . . .)
3 accel name (a c c e l e r a t o r n a m e)
4 args (arg1 , arg2 , . . .)
5 w o r k o f f s e t (s i z e d i m 0 , s i z e d i m 1 , . . .)
6 w o r k g r o u p s i z e (s i z e d i m 0 , s i z e d i m 1 , . . .)
7 {
8 task body CPU
9 }

The run-time assumes the FPGA is already programmed to include the accelerators
by the programmer. Therefore, the syntax extension for the FPGAs does not include
any accelerator specific clauses, but only includes a file name for a configuration file
whose content is the physical addresses of the accelerators.

The run-time reads the configuration file at the beginning of the execution and cre-
ates the corresponding data structures according to the accelerator and address spec-
ifications. Additionally, the FPGA clauses are used to determine the accelerator for
each task to be executed on the FPGA accelerators. The accel name clause is used to
match the task with the corresponding accelerator on the FPGA, requiring the accel-
erator name in string literal form that matches the one provided in the configuration
file. The args clause requires pointers to the arguments that is going to be passed to
the accelerator. The order of the arguments is the same as the order they are declared
in the accelerator design phase. When an accelerator is programmed using OpenCL
in HLS for FPGAs, the HLS compiler creates OpenCL specific control fields such as
work group size and work offset. In order to match these control variables, the Open-
Stream syntax requires additional clauses with the same names. Note that, different
from the GPU clauses, there is no requirement for a dimension clause since the HLS
compiler creates three dimensional work group and work offset sizes regardless of the
implementation and the OpenStream compiler by default sets the unused dimensions
to the default value of 1, indicated by the OpenCL specification [64].

4.2. EXTENSION FOR FPGAS 83

Example of an FPGA Task in OpenStream

Listing 4.3 shows a valid OpenStream program which has a task with additional FPGA
clauses. The example code is similar to the GPU example and calculates the multipli-
cation of two vectors.

1 i n t main ()
2 {
3 i n t N = 1 0 ;
4 i n t x a t t r i b u t e ((s t r e a m)) , y a t t r i b u t e ((s t r e a m)) ;
5 i n t vx [N] , vy [N] , vz [N] ;
6
7 #pragma omp task output (y << vy [N])
8 {
9 f o r (i n t i = 0 ; i < N; i ++)

10 vy [i] = i +1 ;
11 }
12
13 #pragma omp task output (z << vz [N])
14 {
15 f o r (i n t i = 0 ; i < N; i ++)
16 vz [i] = i +1 ;
17 }
18
19 #pragma omp task output (x << vx [N]) \
20 input (y >> vy [N]) \
21 input (z >> vz [N]) \
22 accel name (VectorAdd) \
23 args (vy , vz , vx) \
24 w o r k o f f s e t (0) \
25 w o r k g r o u p s i z e (N)
26
27 {
28 f o r (i n t i = 0 ; i < N; i ++)
29 vx [i] = vy [i] ∗ vz [i] ;
30 }
31
32 #pragma omp task input (x >> vx [N])
33 {
34 f o r (i n t i = 0 ; i < N; i ++)
35 p r i n t f (” vx[%d] = %d\n ” , i , vx [i]) ;
36 }
37
38 #pragma omp t a s k w a i t
39
40 r e t u r n 0 ;
41 }

Listing 4.3: A valid OpenStream program with one FPGA task.

The task declared in line 14 of the example code has two inputs and one output

84CHAPTER 4. EXTENDING OPENSTREAM FOR HETEROGENEOUS SYSTEMS

accel_name
args

synchronization_counter
input_view_chain
output_view_chain

size_t
view_ptr
view_ptr

accel_data ptr
data

ptr
ptr

Frame
accel_data

string

Figure 4.5: Extended Frame data structure for FPGA use

with the additional FPGA clauses. The clause accel name is set to the name of the
function, VectorAdd, that is declared in the configuration file. The content of the ac-

celerators.cfg file is shown in Listing 4.4. The clause args are set in same order the
accelerator requires. The clause work offset is set to zero since the calculation needs to
start at the beginning of the array and the clause work group size is set to the size of the
task which translates the FPGA accelerator executes one work group per accelerator.

1 VectorAdd 0xA0100000

Listing 4.4: accelerators.cfg file includes the accelerator names and their base
addresses defined during FPGA design

4.2.3 Run-time Implementation

Data Structures for FPGA Tasks

Similar to the GPU extension, in the FPGA case, we have extended the OpenStream
run-time with additional data structures to manage the task execution on FPGA accel-
erators. The extensions are applied to the public version of OpenStream, not to the
GPU extended version. Figure 4.5 shows the extended data-flow frame data structure
and the frame has the following fields:

• accel name: accelerator name that matches one of the accelerators defined in the
configuration file.

• args: a pointer to each argument of the accelerator

• work offsets: required parameter by the accelerator in case the user wants to
offset the data pointer to be processed in the kernel.

• work group sizes: a vector that holds the work group size values passed by the
clause with the same name.

4.2. EXTENSION FOR FPGAS 85

accel_name
base_address
state

string
uint
uint

fpga_accelerator

Figure 4.6: FPGA accelerator data structure to manage each accelerator

In addition to the extended data-flow frame, the run-time also requires additional
data structures to manage each accelerator. Figure 4.6 shows fpga accelerator data
structure that is declared at the beginning of the execution for each accelerator defined
in the configuration file and used for offloading tasks to the corresponding accelerators,
keeping track of the accelerator state. The fpga accelerator data structure consists of
the following fields:

• accel name: accelerator name that matches one of the accelerators defined in the
configuration file.

• base address: the base physical address of the accelerator on the FPGA fabric.

• state: the state of the accelerator that corresponds to the control bits of the accel-
erator.

Since the argument addresses are defined during the design phase of the accelerator,
the argument addresses are statically managed by the run-time. Although it is possible
to manage dynamic argument addresses, we chose static management since it does
not affect the scheduling strategy in any way except the requirement of additional
constraints during the design phase of the accelerator. Moreover, this study focuses
on the scheduling aspect rather than creating a fully automated infrastructure, thus we
have only implemented the basic requirements to show the effect of our novel dynamic
scheduling technique.

FPGA Accelerator Management

As the program execution starts, the configuration file is read from accelerator.cfg file
and the accelerator objects are created for each defined accelerator. All the accelerator
states are set to IDLE at this point by the FPGA upon programming and the control bits
are changed every time a task starts executing on the corresponding accelerator as well
as it finishes the execution. The state is then used to offload more tasks or wait until the

86CHAPTER 4. EXTENDING OPENSTREAM FOR HETEROGENEOUS SYSTEMS

execution finishes, while looking for available accelerators by pulling the state control
bits of the accelerators.

Aside from the accelerator setup, the run-time also requires additional memory
buffers to manage the FPGA context. At the beginning of the execution, a chunk of
memory is allocated for the FPGA use and mapped to the virtual address space of
the program. Since the streams are created for the CPU address space and due to the
virtual-to-physical address translation differences between CPU and FPGA, additional
memory buffers are necessary to pass data to the FPGA physical address space. The
size of the mapped memory region is dependent on the number of accelerators defined
in the configuration file. For our experiments, we have used 1024 pages of memory for
each accelerator, but this value may change depending on the size requirements of the
accelerator arguments.

When the program execution finishes, the accelerator data structures are destroyed
as well as all the mapped memory region used for the accelerator management are
freed.

4.3 Summary

In this chapter, we introduced GPU and FPGA extensions to OpenStream. These ex-
tensions were required to execute OpenStream programs on heterogeneous platforms.
We discussed how the syntax changes with additional compiler annotations and the
additional programmer effort in order to execute the tasks on GPU and FPGA acceler-
ators. We also explained how the additional run-time data structures are implemented
for heterogeneous execution.

All these run-time extensions are used for efficient scheduling of data-flow tasks
on heterogeneous platforms. In the next Chapters we explain the novel scheduling
techniques we propose for efficient scheduling of data-flow tasks, taking advantage
of the data-flow information provided by the OpenStream run-time. Chapter 5 intro-
duces our novel scheduling technique for GPUs and Chapter 6 introduces our dynamic
scheduling approach on heterogeneous systems that incorporate FPGAs.

Chapter 5

Dynamic Scheduling on GPUs

One of the main advantages of data-flow task-parallelism is that the relation between
tasks and data is explicit. As the working set of each task is known, as well as the
flow of data between each producer and consumer task, the run-time system can make
precise decisions about task and data placement. For example, it might decide to of-
fload a consumer task to the GPU if the producer has already been executing on the
GPU and the output data is already present in GPU memory. This choice might further
depend on the size of the data being potentially reused on the device. For example, if
a producer has several consumers that cannot all be offloaded to the GPU, it might de-
cide to offload the consumer with the highest amount of data reuse on the GPU. More
generally, information on data dependences enables reconstruction of the task graph
and allows the run-time to plan ahead and make decisions for entire groups of tasks.

The combination of data-flow information with implicit buffer management facil-
itates better memory management decisions. Since tasks do not access fixed memory
addresses, the run-time has full control over memory allocation and can decide whether
a buffer should be allocated in host or device memory. If needed, the run-time can
transparently change the location of buffers. This is not the case for run-times that use
explicit memory handling, such as OmpSs [26], which requires an intermediate mem-
ory copy operation in order to transfer data between devices. Furthermore, whenever a
producer and its consumer execute on different devices, and a lengthy memory transfer
is necessary, the run-time can transparently transfer data and schedule the transfer such
that it overlaps with task execution. As the run-time is able to plan the task schedule
ahead, it is also able to schedule the data transfers required to minimize the amount of
time wasted waiting for data to arrive.

In this chapter, a novel scheduling strategy for dynamically scheduling data-flow

87

88 CHAPTER 5. DYNAMIC SCHEDULING ON GPUS

tasks on heterogeneous platforms is presented. This description is divided into two
parts: a presentation of the scheduling algorithm selecting tasks for offloading to the
GPU and a description of the actions carried out when a task is about to execute.
After establishing our scheduling strategy for CPU-GPU heterogeneous platforms, the
experimental setup is presented in Section 5.3 followed by the results in Section 5.4.

5.1 Dynamic Scheduling of Tasks on GPUs

The aim of the proposed scheduling technique is twofold: (1) to improve data local-
ity, increasing on-device data reuse, which reduces the data transfers between host and
device as well as the GPU idle time while tasks wait for data; and (2) to balance the
load between devices, taking into account the different computational capabilities of
resources in heterogeneous systems. In contrast to existing work, where locality-aware
techniques focus on the amount of data transferred and use random work-stealing for
load balancing, our technique optimizes the scheduling at a finer resolution, addition-
ally taking into account the smaller dependences and the platform asymmetry for task
and data placement rather than randomly choosing a new task to execute when the
GPU becomes idle.

The scheduling algorithm starts by selecting a ready task that is GPU compatible,
which is called as an entry task. GPU compatibility in this case means the task has
additional GPU clauses in its description as well as a kernel implemented in OpenCL.
Once an entry task is found, this task is marked for offloading to the GPU and the
scheduler starts traversing the task graph by following the entry task’s output depen-
dences. The task graph is traversed in breadth-first fashion, looking for the consumer
task with the largest amount of dependence. Once the task with the largest dependence
is found, the consumer task is marked as a GPU task and the traversal continues fol-
lowing the largest dependence consumers ensures that the tasks offloaded to the GPU
will reuse the most data produced on the GPU, thus improving locality. This recur-
sive marking scheme ends when there are no more descendants of the of the entry task
eligible for GPU execution within the portion of the task graph that is dynamically
instantiated. Once the marking of the tasks finishes, a data transfer is initiated for each
input data dependence of the entry task that resides on the CPU. The pseudo-code for
the task marking is shown in Algorithm 1.

When a CPU task finishes and has an output dependence to a GPU task, the output
data needs to be transferred to the GPU. Upon completion of the CPU task, the data

5.1. DYNAMIC SCHEDULING OF TASKS ON GPUS 89

Algorithm 1 mark tasks(entry task)
1: entry task.gpu task← true
2: List.addLast(entry task)
3:
4: while !List.empty() do
5: T ← List.getFirst()
6: D← out deps(T)
7: LD← get largest dependent task(D)
8: if has gpu implementation(LD) then
9: LD.gpu task← true

10: List.addLast(LD)
11: end if
12: end while
13:
14: trans f er queue.enqueue(entry task)

transfer call is issued to the GPU dedicated core. Conversely, when a GPU task fin-
ishes execution and satisfies the last input dependence of a CPU task, the CPU task is
pushed to the local queue of the GPU dedicated core. This decision results in smaller
dependences of a GPU task being kept in the local queue of the GPU dedicated core.
When the GPU becomes idle, these tasks can be offloaded to the GPU. As their data is
already on the GPU, this increases data locality compared to randomly stealing work
from other CPU cores.

To obtain new tasks for GPU execution, the GPU dedicated core first checks its
local queue to identify a new entry task that has at least some input data on the GPU,
allowing for exploitation of smaller dependences. When the local queue is empty, a
new task is obtained through work-stealing from other CPU cores as a last resort.

Keeping tasks with GPU dependences locally improves efficiency in two ways.
First, the scheduler avoids data transfers between devices, even if the amount of data is
small. This helps not only to issue less transfers over the PCI-e bus, but also decreases
the amount of input data that needs to be transferred for next task. Secondly, acquiring
tasks from the local queue is faster than random work-stealing.

Finally, our scheduler avoids introducing communication latency on the critical
path by pro-actively scheduling tasks and data transfers to the GPU instead of waiting
for the GPU to become idle before seeking new work.

90 CHAPTER 5. DYNAMIC SCHEDULING ON GPUS

5.2 Execution of Tasks on GPUs

The novel scheduling technique proposed in this thesis uses three FIFO queues for the
management of data transfers and kernel execution on the GPUs. The first two queues
are used for data transfers from host to GPU, named hostToDevQueue, and GPU to
host devToHostQueue. The third queue, executionQueue, is used for executing tasks
on the GPU. Using different queues allows the run-time to issue data transfers and
tasks execution asynchronously, which enables overlapping of data transfers in both
directions with kernel execution. Although any CPU core can issue transfer requests
to the hostToDevQueue, the GPU dedicated core is responsible for starting the trans-
fers between devices using OpenCL API to avoid transfer initiation overhead on CPU
compute cores.

Asynchronous calls prevent the GPU dedicated core from being blocked when data
transfers and kernel executions are enqueued. By using OpenCL events for synchro-
nization between asynchronous data transfers and kernel executions, the responsibility
of keeping the consistency between transfers and execution can be delegated to the
GPU. This delegation not only moves the need for synchronization from CPU to the
GPU to prevent task stalls, but also allows future GPU tasks to be scheduled before
their dependences are satisfied.

When all the dependences of a task are satisfied and the data transfers are asyn-
chronously enqueued, the task is pushed to the executionQueue. Note that a kernel
execution can already be enqueued before the data transfer is completed—the only
requirement is that the transfer has been initiated. Finally, as the executionQueue is in-
order, it is sufficient to ensure that the total order of tasks enqueued on it is a compatible
restriction of the partial order defined by the task dependence graph. This guarantees
that all of the task dependences satisfied within the GPU are implicitly enforced by the
enqueuing order.

Once the execution of a GPU task is initiated, the scheduler initiates data transfers
from the device to the host for each task among the consumers that is to be executed
on a CPU. Although such transfers do not block the execution on the GPU, promptly
handling device to host transfers enables more CPU tasks that depend on any GPU
task to be executed. A callback mechanism is employed for handling the device to
host data transfers, which informs the CPU task that the transfer is finished and the
dependence satisfied. The event callback mechanism is supported since the OpenCL
1.1 [64] specification allowing notification from the GPU when the state of an OpenCL
event changes to a specified state. In this case, once the state of a data transfer call from

5.2. EXECUTION OF TASKS ON GPUS 91

the device to the host reaches CL COMPLETE state, the callback function is executed
in order to update the corresponding synchronization counters to keep the dependence
management up-to-date.

Algorithm 2 summarizes the algorithm executed by the GPU dedicated core, which
initiates the data transfers and kernel executions on the GPU. When there is no work
in neither transfer queues nor the execution queue, the GPU dedicated core obtains
work by first checking its own local queue. The tasks in the local queue of the GPU
dedicated core are the ones that are not yet defined as a GPU task. Failing to acquire a
task from the local queue results in random work-stealing from another CPU core.

Algorithm 2 execution loop of GPU dedicated core

1: if trans f er queue. f ront() then
2: T ← trans f er queue.dequeue()
3: trans f er data host device(T)
4: execution queue.enqueue(T)
5: end if
6: if execution queue. f ront() then
7: T ← execution queue.dequeue()
8: execute on gpu(T)
9: D← out deps(T)

10: for all d ∈ D do
11: if d.gpu task 6= true then
12: trans f er data device to host(d)
13: end if
14: end for
15: end if
16:
17: T ← obtain work()
18: mark tasks(T)

5.2.1 Accounting for Compute Unit Asymmetry

By definition, heterogeneous systems consist of processing units with different compu-
tational capabilities. In order to exploit the full performance of a system, a run-time is
required to account for the asymmetry of the system to increase scheduling efficiency.
The compute units with higher processing capabilities, in this case GPUs, are able to
execute tasks faster, hence they require higher number of tasks to saturate the proces-
sor. Although this is not always the case, we assume the programmer provides the GPU

92 CHAPTER 5. DYNAMIC SCHEDULING ON GPUS

implementations of tasks where the GPU task outperforms the same task executed on
a CPU core.

In order to account for the compute unit asymmetry, we introduce an artificial mea-
sure called compute ratio that represents the fraction of raw compute power of each
compute unit within the entire system which is used to determine how work is dis-
tributed when there is not enough work to saturate the machine. This artificial measure
ensures that less capable compute units (i.e., CPU cores) do not introduce delays by
acquiring more work than their compute ratio. For example, let’s assume there are two
ready tasks in the local queue of the GPU dedicated core and all the CPU cores as well
as GPU are idle, waiting for a task to execute. In this case, one of the tasks can be
offloaded to the GPU immediately and start executing as soon as its data is transferred
to the GPU memory. Normally, at this point, the second ready task may be stolen by a
CPU worker in order to execute the task since the CPU cores are still idle. However,
assuming the computational capability of the GPU exceeding one CPU core, execut-
ing the second task also on the GPU might result in a lower overall execution time.
Therefore, it is not ideal to steal the task from the local queue of the GPU dedicated
core.

Using a compute ratio is similar to schedulers that use profiling information such
as HEFT [108] and StarPU [9]. In these approaches the profiling information is used to
determine where a task is executed whereas we use the compute ratio only to decrease
the idle time of the processing units with higher computational capability.

Furthermore, increasing the amount of work that a more capable compute unit can
execute has a positive impact on performance due to Amdahl’s Law [55]: the tasks on
the critical path need to be executed in priority by the fastest compute units available.
The compute ratio is only evaluated once, at library installation on a given system, but
in the future could be biased, depending on whether tasks are compute or I/O bound.

5.3 Experimental Setup

The novel scheduling technique presented in this thesis is implemented on top of the
extended version of OpenStream [95] run-time. The OpenStream compiler and run-
time preserve the task dependence information, as specified by the programmer, and
implement implicit buffer management as described in Chapter 3. In order to support
GPUs, the run-time and compiler are extended to use the OpenCL [65] programming
interface with the execution model described in Section 4.1. The scheduling technique

5.3. EXPERIMENTAL SETUP 93

exploits the asynchronous features implemented in the extension for overlapping com-
putation and data transfers between disjoint memory address spaces.

5.3.1 Hardware Environment

Two systems are used for the experiments named Xeon-K20m and Volta. The first
experimental platform, Xeon-K20m, has 12 cores, two sockets with Intel Xeon E5-
2620, each with 6 CPU cores running at 2.00 GHz, 32 GiB RAM and runs CentOS 6.8
with kernel 2.6.32-573.3.1.el6.x86 64. Hyper-Threading was disabled in all experi-
ments. The GPU of the system is an NVidia K20m with 2496 GPU cores operating
at 706 MHz and 5 GiB of memory. The GPU driver version 361.42 with OpenCL 1.2
support is used. The GPU of the system supports PCI-e version 2.0 with a theoretical
bandwidth of 8 GiB/s.

The second system Volta has an AMD A10-7890K CPU with 4 cores running
at 4.10 GHz, 16 GiB RAM and runs Ubuntu 16.04.1 with kernel 4.15.0-42-generic.
The GPU of the system is an NVidia Titan V with 5120 GPU cores operating at
1455 MHz and 12 GiB of memory. The driver version for this GPU is version 396.37
with OpenCL 1.2 support.

5.3.2 Experimental Baseline

To demonstrate the effectiveness of the novel scheduling technique presented in this
thesis, the scheduling strategy implemented by the XKaapi run-time is used as the base-
line for comparison. XKaapi schedules tasks dynamically on CPUs and GPUs, using
random work-stealing for load balancing with locality-aware optimizations. XKaapi
uses CUDA instead of OpenCL for GPU acceleration and the scheduler does not at-
tempt to decrease the total number of data transfers between devices, nor to deal with
compute power asymmetry. To exclude bias arising from the difference in GPU pro-
gramming models and to focus only on the effectiveness of the different scheduling
techniques, the baseline and the proposed strategies are implemented in OpenStream
run-time.

The heuristic chosen as the baseline is XKaapi’s H1 scheduling strategy that uses
a locality-aware work-stealing heuristic which iterates over each input dependence of
a task and chooses the target device where the largest amount of the input data resides.
XKaapi also proposes a second heuristic, H2, which aims to reduce the data replicas
created due to the explicit data management in addition to the software cache to keep

94 CHAPTER 5. DYNAMIC SCHEDULING ON GPUS

track of the data buffers employed in the run-time. Since OpenStream does not have
a software cache and uses implicit task-private data buffers which already eliminates
data replicas, it is impossible to implement the H2 heuristic as a baseline.

5.3.3 Benchmarks

For the evaluation of the scheduling technique, three benchmarks are chosen react-
ing sensitively to task and data placement, data transfers and load balancing: matrix
multiplication, Cholesky Factorization and Jacobi-1D.

The matrix multiplication benchmark is an OpenStream implementation of tiled
matrix multiplication, calculating C = αA× B + βC, where A, B and C are square
matrices. Multiplication of tiles is carried out by an optimized version the dgemm

routine from BLAS [17] library.

Cholesky is a linear algebra kernel that calculates the lower triangular matrix L of a
dense, symmetric, positive definite matrix A, such that A = L×LT . The N×N-matrix
A is divided into SB× SB sub-matrices. In order to analyze how the approach reacts
for different task granularities, this block size is varied throughout the experiments.
To calculate the Cholesky Factorization of A, it is necessary to apply different oper-
ations to the sub-matrices and to propagate updated values accordingly. Each of the
operations is carried out by a highly optimized BLAS [17] and LAPACK [6] functions,
namely dgemm for the matrix multiplication, dsyrk for the symmetric rank k update,
dpotrf for the block-level Cholesky Factorization and dtrsm for solving the remaining
part of the equation.

Jacobi-1D is an OpenStream implementation of a Jacobi-style stencil operating on
a one-dimensional matrix of double precision floating point elements. This benchmark
is particularly interesting for the evaluation of the proposed approach, as it provides
a communication-intensive workload, reacting sensitively to data placement. At each
iteration of Jacobi-1D, each matrix element is updated by averaging the values from
the previous iteration for the elements in its Von Neumann Neighborhood. The bench-
mark implements spatial tiling by dividing the matrix into blocks. For each block and
each iteration, an OpenStream task with three input and three output dependences is
generated. The main input dependence is on the task’s assigned block of input data
from the previous iteration and the main output dependence is on the generated block
of output elements. The remaining auxiliary dependences are on single elements at the
border of the blocks.

Since the extended OpenStream run-time only requires the kernel implementation,

5.4. RESULTS 95

the GPU kernels are generated using AMD’s clBLAS library [5] and both CPU and
GPU implementations have the same functionality.

5.4 Results

In the following experimental evaluation, the proposed scheduling technique is com-
pared with the baseline scheduling technique of XKaapi’s H1 heuristic implemented
in OpenStream. Throughout the results section, OS denotes the scheduling technique
proposed in this thesis and XKS denotes the baseline technique.

Characterization of both approaches use five metrics: the total number of tasks exe-
cuted on the GPU, the total amount of data transferred between GPU and host memory
in both directions, the number of data transfers, execution time and a breakdown of the
time spent in different states showcasing the overlaps of execution and data transfers.
All results were obtained from 5 consecutive runs of each configuration.

In all experiments, the block sizes are varied to show the effects of different task
granularities. Labels on horizontal axes are of the form M = 2n B = 2m, where M

indicates the number of elements in each dimension of the matrix and B stands for the
number of elements per block (e.g., Cholesky’s matrix size is 2n×2n and the block size
is 2m× 2m). Since Jacobi-1D operates on a one dimensional array, M and B directly
stand for the total number elements and the number of elements in a block, respectively.
The number of iterations for Jacobi-1D was set to 60 in all experiments.

5.4.1 Data Locality: Bandwidth vs. Latency

The amount of data that needs to be transferred between the host and a device is one
of the key factors for efficient acceleration. If data transfers cannot be overlapped with
execution, this can constitute a substantial overhead on the critical path. Figure 5.1
presents the total amount of data transferred between host and device during the exe-
cution of each program configuration, normalized to the average value for XKS. These
results show that OS is transferring more data than XKS, especially for Jacobi-1D
benchmark, for which the amount of data increases by up to 60%.

An increased amount of data transfers can have a negative impact on performance
if the increase is due to decreased memory locality on the device and this results in
more time spent waiting for data. However, the amount of data also increases if a
higher number of tasks are offloaded to the GPU, and this does not need to incur a

96 CHAPTER 5. DYNAMIC SCHEDULING ON GPUS

M=212

B=210
M=212

B=29
M=212

B=28
M=212

B=27
M=212

B=210
M=212

B=29
M=212

B=28
M=212

B=27
M=226

B=220
M=226

B=219
M=226

B=218
M=226

B=217
M=226

B=216

 Matrix Multiplication Cholesky Jacobi-1D
M: Matrix size, B: Block size

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

To
ta

l d
at

a
tra

ns
fe

rre
d XKS

OS

(a) Xeon-K20m System

M=212

B=210
M=212

B=29
M=212

B=28
M=212

B=27
M=212

B=210
M=212

B=29
M=212

B=28
M=212

B=27
M=225

B=220
M=225

B=219
M=225

B=218
M=225

B=217

 Matrix Multiplication Cholesky Jacobi-1D
M: Matrix size, B: Block size

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

To
ta

l d
at

a
tra

ns
fe

rre
d

XKS
OS

(b) Volta System

Figure 5.1: Total amount of data transferred (normalized to the baseline XKS)

performance penalty if the transfers are done concurrently to execution. As shown in
Figure 5.2, OS is indeed offloading significantly more work to the GPU compared to
XKS As each task performs a similar amount of work, the number of tasks executed on
the GPU provides a good approximation of the amount of work effectively offloaded,
and there is a clear relation between the amount of work offloaded and the amount of
data transferred.

The difference between the Xeon-K20m system and the Volta system regarding the
data transfer sizes and the number of tasks executed on the device is due to the baseline
XKS technique performing more tasks on the GPU, thus the gains the OS technique
offers is not as substantial. Since the Volta system has only 3 CPU cores for task
execution, more tasks compared to the Xeon-K20m system is offloaded to the GPU.
Therefore the benefit of the OS scheduling strategy is not as great.

Beyond the ratio of data transferred to offloaded work, the OS scheduling strat-
egy has one key advantage: its objective is not only to increase the number of tasks

5.4. RESULTS 97

M=212

B=210
M=212

B=29
M=212

B=28
M=212

B=27
M=212

B=210
M=212

B=29
M=212

B=28
M=212

B=27
M=226

B=220
M=226

B=219
M=226

B=218
M=226

B=217
M=226

B=216

 Matrix Multiplication Cholesky Jacobi-1D
M: Matrix size, B: Block size

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

Ta
sk

s e
xe

cu
te

d
on

 th
e

GP
U XKS

OS

(a) Xeon-K20m System

M=212

B=210
M=212

B=29
M=212

B=28
M=212

B=27
M=212

B=210
M=212

B=29
M=212

B=28
M=212

B=27
M=225

B=220
M=225

B=219
M=225

B=218
M=225

B=217

 Matrix Multiplication Cholesky Jacobi-1D
M: Matrix size, B: Block size

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

Ta
sk

s e
xe

cu
te

d
on

 th
e

GP
U XKS

OS

(b) Volta System

Figure 5.2: Number of tasks executed on the GPU (normalized to the baseline XKS)

executed on the GPU while maintaining the load balanced, but also to minimize syn-
chronization between host and device. Figure 5.3 shows the number of transfers issued,
both from host to device and vice-versa. For matrix multiplication and Cholesky, the
number of data transfers correlates with the number of tasks executed on the GPU.
Since matrix multiplication is embarrassingly parallel, there are no inter-task depen-
dences, resulting in the same ratio of data transfers issued as the ratio between number
of tasks offloaded.

For Cholesky, the results for the proposed strategy are similar to the XKS baseline.
This is mainly due to the benchmark’s inter-task dependences, which are of the same
size. The baseline approach uses a locality-aware heuristic and yields similar sched-
ules with only minor differences due to a different load balancing heuristic. One could
argue that for a benchmark with static dependences, a static scheduling scheme of-
floading all tasks to the GPU should perform similarly well. However, such a strategy
is inherently limited: it only works for very regular benchmarks and does not account
for dynamic behavior at execution time, while the novel approach proposed in this

98 CHAPTER 5. DYNAMIC SCHEDULING ON GPUS

M=212

B=210
M=212

B=29
M=212

B=28
M=212

B=27
M=212

B=210
M=212

B=29
M=212

B=28
M=212

B=27
M=226

B=220
M=226

B=219
M=226

B=218
M=226

B=217
M=226

B=216

 Matrix Multiplication Cholesky Jacobi-1D
M: Matrix size, B: Block size

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

Nu
m

be
r o

f t
ra

ns
fe

rs

XKS
OS

(a) Xeon-K20m System

M=212

B=210
M=212

B=29
M=212

B=28
M=212

B=27
M=212

B=210
M=212

B=29
M=212

B=28
M=212

B=27
M=225

B=220
M=225

B=219
M=225

B=218
M=225

B=217

 Matrix Multiplication Cholesky Jacobi-1D
M: Matrix size, B: Block size

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

Nu
m

be
r o

f t
ra

ns
fe

rs

XKS
OS

(b) Volta System

Figure 5.3: Number of transfers between the host and the device (normalized to the
baseline XKS)

thesis covers both static and dynamic benchmarks.

Figure 5.3 also shows that, for Jacobi-1D, the number of data transfers issued by
OS is up to 60% less than for XKS, despite the fact that OS is executing more tasks on
the GPU than XKS. A large portion of the transfers that are avoided are transfers for
the many auxiliary dependences present in this benchmark. While the contribution of
these small transfers to the total amount of data exchanged between the host and device
is negligible, their latency adds up to a substantial delay with a significant impact on
performance. OS manages to ensure that all dependences are satisfied entirely within
the GPU for a subset of the tasks. This helps not only avoiding such delays, but also
reduces the time spent looking for work when the GPU is idle.

5.4.2 Impact on Performance

The reduced GPU idle time, either waiting for work or waiting for data, has a positive
overall impact on performance. This is illustrated by Figure 5.4, showing the execution

5.4. RESULTS 99

M=212

B=210
M=212

B=29
M=212

B=28
M=212

B=27
M=212

B=210
M=212

B=29
M=212

B=28
M=212

B=27
M=226

B=220
M=226

B=219
M=226

B=218
M=226

B=217
M=226

B=216

 Matrix Multiplication Cholesky Jacobi-1D
M: Matrix size, B: Block size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2
No

rm
al

ize
d

ex
ec

ut
io

n
tim

e XKS
OS

(a) Xeon-K20m System

M=212

B=210
M=212

B=29
M=212

B=28
M=212

B=27
M=212

B=210
M=212

B=29
M=212

B=28
M=212

B=27
M=225

B=220
M=225

B=219
M=225

B=218
M=225

B=217

 Matrix Multiplication Cholesky Jacobi-1D
M: Matrix size, B: Block size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

No
rm

al
ize

d
ex

ec
ut

io
n

tim
e XKS

OS

(b) Volta System

Figure 5.4: Execution time (lower is better, normalized to the baseline XKS)

time for both scheduling strategies, normalized to the average execution time for XKS.
OS is able to achieve higher performance with speedups of up to 1.2× for Jacobi-1D
(geometric mean of 1.11×) in Xeon-K20m and 1.03× in the Volta system (geometric
mean of 1.027×); up to 2.5× for matrix multiplication (geometric mean of 1.37×) in
Xeon-K20m and up to 2.38× in Volta system (geometric mean of 1.56×); up to 1.03×
for Cholesky (geometric mean of 1.02×) in Xeon-K20m and up to 1.044× in Volta
system (geometric mean of 1.03×).

Given that both implementations offload almost the same number of tasks to the
GPU for Cholesky, their performance is—as expected—similar. However, for matrix
multiplication, OS strategy improves performance significantly as it is able to offload
more tasks to the GPU, especially for larger block size configurations. For larger block
sizes, task execution on a CPU core takes a substantial amount of time, which can delay
termination if started too late—or at all. The OS scheduler is thus able to balance load
according to the respective computational capabilities of each resource.

For Jacobi-1D, the proposed scheduling technique increases the number of tasks

100 CHAPTER 5. DYNAMIC SCHEDULING ON GPUS

offloaded to the GPU while reducing the number of data transfers, achieving a signif-
icant performance increase on an I/O bound kernel. The most beneficial part of the
proposed scheduling technique in the Jacobi-1D case is the elimination of the small
auxiliary dependences which in return eliminates the task stalls due to the smaller de-
pendences, increasing the number of tasks executed on the GPU. The benefit is less
clear in the Volta system due to the smaller number of CPU cores available for task
execution which already increases the number of tasks offloaded to the GPU in the
baseline XKS heuristic, thus the OS scheduler can increase the performance slightly.

5.4.3 Execution Breakdown

To provide a better understanding of the impact of the technique presented in this the-
sis, Figure 5.5a shows a breakdown of GPU execution for each benchmark, indicating
the relative amount of time the GPU spent in each of seven possible states. The states
are: Idle (the GPU is neither executing a task nor transferring any data), Exec (exe-
cution without overlapping data transfers), D→H (data transfer from the device to the
host without execution), H→D (data transfer from the host to the device without ex-
ecution), Exec+D→H (execution while transferring data from the device to the host),
Exec+H→D (execution while transferring data from the host to the device), and All

overlap (execution while transferring data in both directions).

The upper part of each bar in Figure 5.5a is composed of all states in which the GPU
is executing a task (Exec, Exec+D→H, Exec+H→D, All overlap), while the lower part
of each bar shows the amount of time spent in states with inefficient use of the GPU,
in which no task is executed (Idle, D→H, H→D).

For each problem and block size, the time spent on kernel execution on the GPU is
significantly higher for OS compared to XKS, as indicated by the larger upper part of
the bars and the corresponding ratios. This is a consequence of the proposed scheduling
strategy, which selects follow-up GPU tasks from the local queues to reduce synchro-
nization between devices, in addition to the load balancing mechanism that keeps the
load balanced and GPU occupied. However, in Cholesky on the Xeon-K20m system
there is no significant difference since both techniques lead to similar schedules while
on the Volta system, the difference is larger as the corresponding performance benefits
as shown in Section 5.4.2.

In Jacobi-1D, the time spent in idle states, where no task execution occurs, is mini-
mal. For the larger block sizes, the idle time is mostly spent on data transfers. However,

5.4. RESULTS 101

XKS OS
M=226

B=220

XKS OS
M=226

B=219

XKS OS
M=226

B=218

XKS OS
M=226

B=217

XKS OS
M=226

B=216

M: Matrix size, B: Block size

26.20%

73.80%

41.08%

58.92%

19.42%

80.58%

32.44%

67.56%

19.48%

80.52%

44.78%

55.22%

10.60%

89.40%

30.05%

69.95%

4.91%

95.09%

15.03%

84.97%

All overlap

Exec+D->H

Exec+H->D

Exec

D->H

H->D

Idle

(a) Breakdown for Jacobi-1D of time spent on Xeon-K20m system Executing or communicat-
ing host-to-device H→D or device-to-host D→H.

XKS OS
M=212

B=210

XKS OS
M=212

B=29

XKS OS
M=212

B=28

XKS OS
M=212

B=27

M: Matrix size, B: Block size

44.28%

55.72%

87.89%

12.11%

36.28%

63.72%

58.48%

41.52%

15.34%

84.66%

21.16%

78.84%

2.75%

97.25%

18.38%

81.62%

XKS OS
M=212

B=210

XKS OS
M=212

B=29

XKS OS
M=212

B=28

XKS OS
M=212

B=27

M: Matrix size, B: Block size

35.08%

64.92%

34.48%

65.52%

33.05%

66.95%

33.42%

66.58%

22.25%

77.75%

25.67%

74.33%

14.21%

85.79%

16.32%

83.68%

(b) Breakdown of time spent for GPU execution on Xeon-K20m system for Matrix multiplica-
tion (left) and Cholesky (right).

XKS OS
M=225

B=220

XKS OS
M=225

B=219

XKS OS
M=225

B=218

XKS OS
M=225

B=217

M: Matrix size, B: Block size

26.01%

73.99%

46.30%

53.70%

17.14%

82.86%

38.66%

61.34%

11.11%

88.89%

32.88%

67.12%

13.58%

86.42%

29.88%

70.12%

All overlap

Exec+D->H

Exec+H->D

Exec

D->H

H->D

Idle

(c) Breakdown for Jacobi-1D on Volta system.

XKS OS
M=212

B=210

XKS OS
M=212

B=29

XKS OS
M=212

B=28

XKS OS
M=212

B=27

M: Matrix size, B: Block size

82.47%

17.53%

91.47%

8.53%

66.53%

33.47%

89.77%

10.22%

23.13%

76.87%

36.41%

63.59%

18.13%

81.87%

24.41%

75.59%

XKS OS
M=212

B=210

XKS OS
M=212

B=29

XKS OS
M=212

B=28

XKS OS
M=212

B=27

M: Matrix size, B: Block size

71.97%

28.02%

80.47%

19.52%

50.37%

49.63%

60.37%

39.63%

21.13%

78.87%

29.13%

70.87%

13.13%

86.87%

19.13%

80.87%

(d) Breakdown of time spent for GPU execution on Volta system for Matrix multiplication
(left) and Cholesky (right).

Figure 5.5: Breakdown of time spent in GPU execution, showing the amount of overlap
between computation and communication

102 CHAPTER 5. DYNAMIC SCHEDULING ON GPUS

for smaller block sizes, the OS scheduler is able to overlap more transfers with execu-
tion, as the time it takes to transfer the data to each direction decreases. Although this
is also the case for the XKS strategy, OS is able to decrease the idle time by decreasing
task stalls and task acquisition overhead.

On the other hand, in matrix multiplication, there are no inter-task dependences
since it is an embarrassingly parallel workload. For this case, the load balancing mech-
anism succeeds in dynamically balancing the load between CPU and GPU, decreasing
the time spent in the Idle state to under 1% on the Xeon-K20m system while on the
Volta system the idle time is caused by the tasks executed on the CPU cores which
take a lot longer compared to the GPU. However, the idle time for the OS strategy is
still significantly smaller than the XKS strategy since OS strategy executes more tasks
on the GPU. The time for data transfers is significant, but cannot be avoided unless a
smaller block size is used, leading to a finer-grained scheduling. In all cases, OS is
achieving a better overlap of computation and communication than XKS.

5.4.4 Comparison with XKaapi Run-time

In order to provide a better understanding of how the proposed scheduling heuristic
performs, we also present a comparative analysis to the XKaapi run-time using H1
and H2 heuristics for matrix multiplication and cholesky factorization benchmarks.
Table 5.1 shows the execution times of all heuristics where OS denotes the proposed
scheduling heuristic in this thesis while XKS denotes the implementation of H1 heuris-
tic using OpenStream run-time. On the other hand H1 and H2 heuristics are the original
implementations of XKaapi run-time. We have used three matrix sizes for both bench-
marks as 4096x4096, 8192x8192 and 16384x16384 to show how heuristics perform
using larger matrices while block size is statically selected as 1024. The experiments
are conducted in Xeon-K20m computer and 11 CPU cores as well as 1 GPU are used
as execution units while 1 CPU core is reserved for the handling of GPU operations
for both OpenStream and XKaapi.

The execution times show that the XKS implementation performs slightly worse
than XKaapi’s H1 implementation. Although two heuristics are semantically the same,
the difference between execution times are caused by different run-times as well as the
difference between OpenStream using OpenCL as the GPU language while XKaapi
uses CUDA. Between the XKaapi heuristics, H2 heuristic performs similarly with H1
heuristic using 1 GPU which is consistent with the evaluation of the XKaapi paper [47].
On the other hand, the heuristic proposed in this thesis denoted as OS performs better

5.4. RESULTS 103

Table 5.1: Execution times of OpenStream and XKaapi run-times for different matrix
sizes for Matrix Multiplication and Cholesky

Matrix Multiplication Cholesky
4096 8192 16384 4096 8192 16384

OS 0.41s 3.76s 25.52s 0.59s 4.21s 33.37s
XKS 0.73s 4.75s 32.67s 0.63s 4.51s 34.01s
H1 0.68s 4.58s 31.41s 0.61s 4.38s 33.76s
H2 0.65s 4.42s 30.88s 0.59s 4.27s 33.42s

for matrix multiplication benchmark while Cholesky benchmark results are similar.
This is due to the fact that OS heuristic can offload more tasks to the GPU for matrix
multiplication as discussed in Section 5.4.1.

Matrix size

G
FL

O
P

s

0

100

200

300

400

4096 8192 16384

OS XKS H1 H2

(a) Matrix Multiplication

Matrix Size

G
FL

O
P

s

0

10

20

30

40

50

4096 8192 16384

OS XKS H1 H2

(b) Cholesky

Figure 5.6: Performance in GFLOPs

In addition to the execution times, Figure 5.6 shows the execution performance in
GFLOPs for all heuristics of OpenStream and XKaapi. OS heuristic performs better in
all cases. In addition to this, the difference between the H1 heuristic and H2 heuristic of
XKaapi run-time is minimal. The main reason for both heuristics performing similarly
is, in single GPU platforms the data management for XKaapi does not take advantage
of the reduction of data invalidations, thus leading to similar results. Overall, our
experiments show that the our proposed heuristic is not only better than the state-of-
the-art heuristics in run-times where decentralized memory management is employed,
but also can compete with optimized heuristics such as H2 heuristic that are employed
for run-times with centralized memory management such as XKaapi.

104 CHAPTER 5. DYNAMIC SCHEDULING ON GPUS

5.5 Conclusion

In this chapter, we presented a new scheduling technique for load-balancing data-
flow tasks on heterogeneous systems, accounting for asymmetric compute capabilities,
while simultaneously increasing on-device data reuse and decreasing synchronization
between host and accelerators. We showed that our technique improves on-device data
reuse, minimizing inter-task communication across devices, and improves the overlap-
ping of task execution with inter-device communication, effectively hiding the cost of
communication between host and device memory.

We used OpenStream run-time for the implementation of our strategy and exploited
OpenStream-specific task-private buffers for the traversal of the task graph to provide
efficient task and data placement for multi-core CPUs and discrete GPUs. Additionally,
the proposed technique employs an artificial measure called compute ratio in order to
account for the asymmetric compute capabilities of different devices to ensure the tasks
on the critical path are executed by the fastest compute units.

The experimental evaluation shows that our approach effectively reduces the num-
ber of transfers required, reduces synchronization between CPU and GPU, increases
the overlap of computation and communication, reduces GPU idle time, and increases
the number of tasks offloaded to the GPU. Our technique transparently places data and
tasks on the host and accelerators without additional annotations by the programmer—
all task and data placement decisions are based on inter-task dependence information
readily available in modern task-parallel, data-flow run-time systems. We compared
our approach to the H1 dynamic scheduling heuristic of the XKaapi run-time on two
systems, showing a substantial performance improvement of up to 2.5× for matrix
multiplication, 1.2× for Jacobi-1D and 1.03× for Cholesky in Xeon-K20m system
and 2.38× for matrix multiplication, 1.03× for Jacobi-1D and 1.04× for Cholesky in
Volta system compared to the XKS scheduling heuristic baseline.

Although GPUs are widely used in heterogeneous systems for high performance
computing, FPGAs are also becoming mainstream. Therefore, in the next chapter
we present a novel scheduling strategy for data-flow task parallel programs targeting
low-power CPU-FPGA system-on-chips. In particular, we show how the OpenStream-
specific features can be used for efficient task and data placement in such systems, in
addition to providing an infrastructure for dynamically scheduling data-flow tasks onto
multi-core CPUs and FPGA accelerators.

Chapter 6

Dynamic Task Scheduling on
FPGA-SoCs

In the previous chapter, we introduced a novel scheduling heuristic for efficiently
scheduling task-parallel programs on heterogeneous systems that consist of multi-core
CPUs and discrete GPUs by using the additional data-flow information provided by
the OpenStream run-time. The use of task-private buffers in OpenStream enable the
dynamic traversal of the task graph in order to make better task and data placement
decisions. In addition to this, the proposed scheduling heuristic also uses a threshold
value that is calculated according to the differences in the computational capabilities
of each device in the system, ensuring the effective use of higher-throughput devices.

In this chapter, we introduce a novel scheduling strategy for heterogeneous sys-
tems that incorporate multi-core CPUs and FPGAs on the same chip. There are two
main reasons for a different scheduling strategy is required for CPU-FPGA systems;
(1) the target architecture is an SoC rather than a discrete device system and (2) the
architectural and programming model differences between GPUs and FPGAs. Firstly,
in an SoC system both the multi-core CPU and the FPGA share the system memory,
where in discrete systems it is a necessity to move data between devices through PCI-
e bus. Secondly, FPGAs can contain multiple accelerators that can execute different
tasks simultaneously while in the GPU case, multiple kernels can only be executed
concurrently, not simultaneously [113, 50, 85].

105

106 CHAPTER 6. DYNAMIC TASK SCHEDULING ON FPGA-SOCS

6.1 Dynamic Scheduling on FPGAs

The aim of the proposed scheduling technique for FPGAs is twofold: (1) to dynami-
cally select tasks to be offloaded to the FPGA accelerators while keeping the load bal-
anced between different accelerators and CPU execution cores; and (2) to provide an
asynchronous execution infrastructure for FPGA accelerators. To our knowledge, there
has not been any effort in the literature for dynamic task scheduling on FPGA accelera-
tors using a user-level run-time system. The only close approach is OmpSs@Zynq [41]
in which the main focus of the study is to generate FPGA accelerators during the com-
pilation phase, combined with a static scheduling heuristic, not a dynamic scheduling
approach while we propose a dynamic scheduling technique for heterogeneous systems
containing CPU-FPGA on the same chip.

Existing high-level synthesis (HLS) tools are successful in providing efficient ac-
celerators. However, the performance benefits can be increased in case the advanced
opportunities provided by FPGAs such as pipelined execution are exploited [40]. Al-
though the FPGA programming model proposed in this thesis is not able to fully ex-
ploit the pipelined execution, in case of multiple accelerators present on the FPGA, a
software pipelining approach [96, 28, 4] is still a useful technique for increasing the
efficiency of the schedule by incorporating the dependence information when making
scheduling decisions.

Reconfigurable architectures such as FPGAs excel in performance efficiency when
fine-grained pipelining is employed in the accelerator design. However, due to our pro-
gramming model which only considers using the accelerators, rather than generating
the accelerators, achieving a fine-grained pipelining is not possible. In a fine-grained
pipelined accelerators, every output data region can be fed into the dependent acceler-
ator for further operations with every clock cycle, but requires extensive design efforts
as well as expert knowledge of accelerator design.

In our model, we assume the accelerators are stand-alone blocks and the data de-
pendences between the accelerators are written or read through the system memory.
Moreover, creating a coarse-grained pipelined execution of dependent tasks require dy-
namic management of tasks and dependences. OpenStream provides dynamic traversal
of the task graph, allowing dependent tasks to be scheduled on the FPGA accelerators
dynamically. Therefore, in this study, we exploit the data-flow information on task
dependences in OpenStream as well as the ability to traverse the task graph in order to
create pipelined execution on FPGA accelerators.

6.1. DYNAMIC SCHEDULING ON FPGAS 107

6.1.1 Scheduling Tasks on FPGA Accelerators

The aim of the proposed scheduling technique is is twofold: (1) to keep the FPGA
accelerators occupied with task execution to increase performance; and (2) schedule
tasks on the FPGA accelerators in a pipelined manner when possible by following
a dependence-aware heuristic. While the first aim is to increase the effective use of
the FPGA accelerators while with the second aim not only trying to create pipelined
execution on FPGA accelerators, but also increasing data reuse in the FPGA address
space. The proposed scheduler uses dependence-aware heuristic instead of a locality-
aware approach because, although locality-aware approaches increase cache reuse on
CPU cores and can increase performance on homogeneous systems, the performance
benefits can be better realized executing tasks on a more powerful accelerator rather
than the tasks being executed on a less powerful device with increased data reuse. In
addition to that, we aim to take advantage of the pipelining ability of FPGA accelera-
tors in a coarse-grained manner by task pipelining. Although FPGA accelerators can
be designed to take advantage of more fine-grained pipelining, optimized accelerator
design is outside the scope of this thesis.

To keep the accelerators occupied, the proposed scheduler uses a structure called
request mode that has as many variables as there are different types of accelerators
to determine when a type of accelerator on the FPGA is idle. When an accelerator
becomes idle and there are no ready tasks available in its corresponding accelerator
buffer, our scheduler attempts to push a task to the local work queue of the FPGA
dedicated core which then is offloaded to the accelerator by prioritizing the accelerators
instead of executing the task on the CPU. The aim of this part of the scheduling strategy
is to increase the effective use of the accelerators, enabling higher number of task
execution on the accelerators and increasing performance gains in return.

In addition to increasing the effective use of FPGA accelerators, the scheduler also
tries to execute dependent tasks on the accelerators, creating a pipelined execution of
tasks. When a task executes on an accelerator, the consumers of the task are traversed.
The traversal is possible since OpenStream run-time uses task-private buffers. For
each consumer, two conditions are checked: (1) if it has FPGA clauses to offload
the task to an accelerator; and (2) if the executing producer is the last remaining input
dependence. When these conditions are met, the consumer task is pushed to the bottom
of the corresponding accelerator buffer upon completion of the producer task. Finally,
when an accelerator of the same type as the consumer task becomes available, the
consumer is offloaded to the accelerator for execution.

108 CHAPTER 6. DYNAMIC TASK SCHEDULING ON FPGA-SOCS

Creating pipelined execution using dependent tasks increases the efficiency by
reusing the data pointers that reside in the FPGA address space, decreasing the over-
head of memory movement.

6.1.2 Task Execution on FPGA Accelerators

Similar to the GPU extension of OpenStream, in the extended FPGA version, only
the tasks that have the special FPGA clauses that are detailed in Section 4.2.2 can be
executed on the accelerators. However, different from the GPU case, the management
of the FPGA accelerators is the responsibility of the FPGA dedicated core instead of a
combined effort of GPU dedicated core and the OpenCL driver which is able to handle
the execution on the GPU. For example, the GPU dedicated core is able to traverse
the task graph to find tasks that have all of the input data dependences on the GPU
and make a decision to offload the task by enqueuing them on the OpenCL command
queue where the tasks are in FIFO order. This decision allows tasks to be scheduled
preemptively and results in reduction of task offload overhead. However, the absence
of such driver for the FPGA devices puts more responsibility on the FPGA dedicated
core for task scheduling.

Essentially, the FPGA dedicated core has three responsibilities for task execution:
(1) management of the accelerator buffers; (2) distribution of tasks from the local work
queue to the accelerators and in case the local work queue is empty, retrieval of tasks
using random work stealing; and (3) the management of the accelerators, checking the
availability of the accelerators of multiple types and offloading tasks to the available
accelerators.

The accelerator buffers are the data structures used to orchestrate the efficient map-
ping of data-flow tasks to the FPGA accelerators. The first responsibility of the FPGA
dedicated core is to manage the accelerator buffers by assigning tasks from the local
work queue and to offload tasks to the available accelerators that reside in the buffers.
The FPGA dedicated core constantly checks all the accelerator buffers to see if the
buffers have any room for a task. In this case, the task at the bottom of the local
work queue is checked to determine its accelerator type to assign the task to the corre-
sponding accelerator buffer. The tasks are distributed from the local work queue to the
accelerator buffers only if the corresponding buffer is not full.

On the other hand, if the local work queue is empty, the FPGA dedicated core
obtains a task using random work stealing. The restriction in work stealing in our
scheduler is that only the tasks with FPGA implementations can be stolen to avoid

6.1. DYNAMIC SCHEDULING ON FPGAS 109

obtaining a task that the FPGA accelerators cannot execute. Once a task is stolen and
pushed to the local work queue, the FPGA dedicated core attempts to assign the task to
the corresponding accelerator buffer. The tasks are pushed to the local work queue in
two ways; by work stealing from a random victim, or if a task finishes its execution on
an FPGA accelerator and satisfies the last remaining data dependence to its consumer,
the consumer task is pushed to the consumer task’s accelerator buffer and if the buffer
is full, the task at the top of the buffer is pushed to the local work queue. If the task is
obtained through work stealing, it is pushed to the top of the queue while if the task is
pushed due to dependence satisfaction, it is pushed to the bottom of the queue making
it the first task to be offloaded to the accelerator in order to increase the locality.

The third duty of the FPGA dedicated core is the management of the accelerators
by polling the control bits of each accelerator to determine the state of the accelerators
on the FPGA. Whenever an accelerator becomes IDLE, the FPGA dedicated core tries
to obtain a task from the corresponding accelerator buffer to offload the task to the
available accelerator. If a task is found in the buffer, the task is offloaded to the avail-
able accelerator. The execution of tasks on the FPGA buffers is done asynchronously
by the FPGA dedicated core. Once a task is offloaded to an accelerator, the FPGA
dedicated core does not wait for its execution to finish, but uses polling to determine
which accelerators are idle to offload remaining ready tasks.

Algorithm 3 summarizes the algorithm executed by the FPGA dedicated core. The
first loop iterates all the accelerator buffers and checks if there are ready tasks waiting
to be executed in the buffers. If there is a ready task in the accelerator buffer, the
accelerator availability is checked, meaning the accelerator state is IDLE. In this case
a function call is made to select the available accelerator followed by the retrieval of
the task from the buffer. The obtain task from buffer function requires the type of the
task to obtain a task from its accelerator buffer. Once the task is obtained from the
buffer, this function checks the local work queue to see if the task at the bottom of
the queue has the same type as the buffer. In case it is a match, the task is dequeued
from the local work queue and put to the buffer to keep the accelerator buffers full.
The scheduler then offloads the task to the available accelerator using the index of the
accelerator returned by the select available accelerator function.

On the other hand, if there are no ready tasks in the accelerator buffer, the avail-
ability of the accelerators is checked, similar to the previous case. However, in this
case, the accelerator is waiting idly for a task. In order to decrease the idle time of the

110 CHAPTER 6. DYNAMIC TASK SCHEDULING ON FPGA-SOCS

Algorithm 3 Execution loop of FPGA dedicated core
1: for all t ∈ Types do
2: if bu f f er has task(t) then
3: if is accelerator available(t) then
4: index← select available accelerator(t)
5: task← obtain task f rom bu f f er(t)
6: execute task on accel(task, index)
7: end if
8: else
9: if is accelerator available(t) then

10: request task(t)
11: end if
12: end if
13: end for
14:
15: if type← work queue has task() then
16: if is bu f f er available(type) then
17: T ← obtain work local()
18: push task to bu f f er(T)
19: end if
20: else
21: obtain work steal()
22: end if

accelerator as well as increase the effective use of the accelerator, request task func-
tion is called. This function updates the request mode variable of the corresponding
accelerator type to notify the CPU workers that an accelerator of type t is idle. The
request mode variable is updated using atomic compare and swap operation to avoid
possible deadlocks. During task execution on CPU workers, the type of each ready
task is identified and the request mode of that type of accelerator is checked if the task
should be scheduled to the CPU worker or it can be offloaded to the accelerator. If the
accelerator is in request mode, the CPU worker uses work-pushing to push the task to
the FPGA dedicated core followed by an update to the request mode variable, setting
it to 0. The work-pushing pushes the ready task to the bottom of the local queue of the
FPGA dedicated core, which then can be scheduled to the idle accelerator.

In case the condition is not met, this means either there are no available tasks in
the buffer, or all the accelerators on the FPGA are busy, executing tasks. Rather than
waiting idly, the FPGA dedicated core handles the task distribution to the accelerator
buffers to avoid local work queue becoming empty. For this, it first checks if the local

6.2. EXPERIMENTAL SETUP 111

work queue has any tasks by calling work queue has task function. This function
returns the type of the task if the local work queue has any task. The type information
is then used to check if the accelerator buffer has any room to put the task that resides
at the bottom of the local work queue. This step is followed by the retrieval of the task
from the local work queue and put at the top of the corresponding accelerator buffer if
the condition is met. In case the work queue is empty, a task is obtained through work
stealing from a random victim using obtain work steal function.

6.2 Experimental Setup

The novel scheduling technique for heterogeneous systems that incorporate FPGA ac-
celerators is implemented on top of the extended version of OpenStream [95] run-time.
In order to support FPGA accelerators, the run-time and compiler are extended to use
the execution model described in Section 4.2.

6.2.1 Hardware Environment

For the experimental evaluation, Xilinx Zynq UltraScale+ MPSoC platform has been
used, featuring 64-bit quad-core ARM Cortex-A53 CPU cores running at 1.20 GHz
and XCZU9EG-FFVC900-2I-ES1 FPGA on the same chip. The system incorporates
4 GiB RAM and runs Petalinux with kernel version 4.14.0-xilinx-v2018.2.

6.2.2 Benchmarks

For the evaluation of the FPGA scheduling technique, two benchmarks are chosen and
evaluated using differing number of tasks, task granularities and number of acceler-
ators: Cholesky factorization and matrix multiplication. Cholesky factorization and
matrix multiplication workloads are similar to the ones used in the GPU experiments
explained in Section5.3.3. The CPU versions of the tasks are identical while the GPU
clauses are replaced with corresponding FPGA clauses for using FPGA accelerators.
For the experiment on FPGAs, the benchmark implementations use single-precision
floating point elements.

Moreover, for accelerating matrix multiplication, namely gemm function, we have
used the implementation from the Spector benchmark suite [45]. The benchmarks in
the Spector suite contains OpenCL implementations that can be used with Xilinx HLS

112 CHAPTER 6. DYNAMIC TASK SCHEDULING ON FPGA-SOCS

tools in order to generate the accelerator designs. Although the implementations origi-
nally target Altera based FPGAs, we were able to reuse the implementations in Xilinx
tools without any modification. For the trsm function in Cholesky, the implementation
from the FBLAS library [37] is used which is also designed for Altera FPGAs. The
implementation of syrk and gemm functions in FBLAS library use some Intel-Altera
specific functions which do not exist in our Xilinx based target system, thus we were
not able to use these implementations in our experiments.

Furthermore, the scope of this study does not include well tuned accelerator imple-
mentations, hence we have used publicly available implementations of the accelerators
that are implemented in OpenCL. The disadvantage of such choice is that the acceler-
ator performance is limited, but can be improved with better tuned implementations.

6.3 Results

In the following experimental evaluation, the proposed scheduling technique is com-
pared with the baseline where only all the CPU cores on the system are used for ex-
ecution of tasks. Characterization of our approach is done by varying the number of
accelerators on the FPGA and we measure the execution times as well as the total num-
ber of tasks executed on the accelerators in the evaluation. All results were obtained
from 5 consecutive runs of each configuration.

In all experiments, the matrix size of 1024× 1024 is used and the block sizes are
varied to show the effects of different task granularities. Changing the task granularity
affects the size of each accelerator, thus in smaller task granularities it is possible to
use larger number of accelerators on the FPGA.

6.3.1 Task Distribution Analysis

Our approach aims to keep FPGA accelerators effectively utilized by increasing the
amount of work that can be offloaded to the accelerators. Figure 6.1 shows the per-
centage of tasks that are offloaded to the accelerators in different number of accelerator
configurations for matrix multiplication benchmark. As shown in the figure, even with
using 1 accelerator, more than half of the tasks can be offloaded to the accelerator tak-
ing advantage of the higher throughput of the accelerators. Using different block size
for execution has a small effect on the percentage of the tasks offloaded to the accel-
erators, since with the decreasing block size, the amount of tasks in the application

6.3. RESULTS 113

increases.

128x128 64x64
Matrix Multiplication

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f T
as

ks
 (%

) 1 Acc
2 Acc
3 Acc
4 Acc

Figure 6.1: Percentage of tasks offloaded to accelerators in Matrix Multiplication

Using the proposed scheduling strategy the percentage of the tasks offloaded to ac-
celerators are; 55% and 57% using 1 accelerator, 65% and 68% using 2 accelerators,
73% and 74% using 3 accelerators with block sizes of 128×128 and 64×64 respec-
tively. Using 4 accelerators with block size 64× 64 results in offloading 82% of the
tasks to the accelerators.

In Cholesky benchmark, there are multiple types of accelerators whereas in matrix
multiplication there is only one. Therefore throughout the rest of the results section,
we show different configurations of accelerator types. Table 6.1 shows different accel-
erator configurations. We used different configurations in order to evaluate the effect
of accelerator buffers. For 128×128 block size, configuration 1 includes one of each
accelerator type while for configuration 2, we have used one additional gemm acceler-
ator due to the higher number of gemm tasks available in Cholesky. Using larger block
sizes create larger accelerators and the resources on the FPGA only allowed four ac-
celerators for 128×128 block size to be programmed. However, in 64×64 block size
case, the accelerators are smaller and we were able to fit more accelerators, allowing
more configurations. Note that, these configurations are not tuned for performance nor
the accelerator implementations. Moreover, the adjustment of different configurations
of accelerators using partial reconfiguration is an interesting use case [110] and our
run-time infrastructure can be used as a complementary tool to pursue such studies.

In the first configuration for each block size, the same number of accelerators for
different type of tasks has been used. In configuration 1, for 128× 128 block size,

114 CHAPTER 6. DYNAMIC TASK SCHEDULING ON FPGA-SOCS

Table 6.1: Different configurations of accelerators for different block sizes in Cholesky

Configuration 1 Configuration 2 Configuration 3

128x128
1 gemm
1 syrk
1 trsm

2 gemm
1 syrk
1 trsm

N/A

64x64
1 gemm
1 syrk
1 trsm

2 gemm
2 syrk
2 trsm

3 gemm
2 syrk
2 trsm

we were able to fit only 1 accelerators of each type, while for 64× 64 block size, 2
accelerators of each type is used. However, in configuration 2, we increase the number
of gemm accelerators by one due to the higher number of gemm tasks present in the
Cholesky benchmark.

128x128 64x64
Cholesky

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f T
as

ks
 (%

) Conf 1
Conf 2
Conf 3

Figure 6.2: Percentage of tasks offloaded to accelerators in Cholesky

In addition to the amount of tasks offloaded to the accelerators we also measure
how the tasks obtained for FPGA execution. In our approach, there are three ways that
the FPGA dedicated core can offload tasks to the accelerators. Firstly, a task can be
obtained through work pushing from another CPU worker. Work pushing is only avail-
able when an accelerator is idle and another CPU worker has a ready task on its local
queue as the same type in which the accelerators are prioritized due to the assumption
of having better performance. Secondly, the FPGA dedicated core can assign a con-
sumer work where it satisfies the last input dependence by executing the last producer

6.3. RESULTS 115

task on an accelerator. In this case, the consumer task is assigned to the correspond-
ing accelerator buffer for execution, creating a pipelined execution of tasks on FPGA
accelerators. The third way is through work stealing. When there are no available
tasks in any of the accelerator buffers an the local queue of the FPGA dedicated core,
work stealing is used to find work to offload to the accelerators. Figure 6.3 shows the
percentage of methods used for obtaining work for execution on the FPGA for both
benchmarks using different configurations and number of accelerators in addition to
varying the block size of the tasks.

Figure 6.3: Percentage of tasks obtained through work stealing, work pushing or de-
pendence satisfaction in Cholesky

In all configurations, the percentage of tasks obtained through work stealing is
smaller than 3% which indicates our scheduler is actively keeping the FPGA accelera-
tors occupied by pushing tasks to the FPGA dedicated core. Moreover, as the number
of accelerators increase, the proposed scheduler can schedule more tasks in a pipelined
manner, following the task dependences of the tasks executed on the FPGA and of-
floading the consumers to the FPGA accelerators as well.

For block size of 128× 128, the percentage of tasks offloaded to the FPGA using
work pushing is 62.44% and 57.73% on average, for configuration 1 and configu-
ration 2 respectively. On the other hand, the percentage of tasks scheduled through
dependence satisfaction reaches 34.06% and 39.77%. For block size of 64× 64, the
percentage of tasks offloaded to the FPGA using work pushing is 71.33%, 56.15% and
48.31% on average, for configuration 1, 2 and 3 respectively while the percentage of
tasks for dependence is 27.3%, 42.6% and 50.44%.

116 CHAPTER 6. DYNAMIC TASK SCHEDULING ON FPGA-SOCS

Using smaller block sizes enable larger number of accelerators to be programmed
on the FPGA which can take advantage of the pipelined behavior of the proposed
scheduling approach. Furthermore, the proposed scheduling approach can offload
larger number of tasks to the FPGA accelerators, increases the occupancy of the accel-
erators by actively scheduling tasks and in return provides performance gains.

6.3.2 Impact on Performance

Increased number of tasks executing on the FPGA accelerators has a positive overall
impact on performance. This is illustrated by Figure 6.4, showing the speedup of
matrix multiplication benchmark using variable number of accelerators, normalized to
the average execution time of the CPU-only version of OpenStream. The proposed
scheduling strategy is able to achieve higher performance with speedups of 1.38× and
1.3× using 1 accelerator, 1.72× and 1.79× using 2 accelerators, 2.25× and 2.15×
using 3 accelerators with block sizes of 128× 128 and 64× 64 respectively. Using
block size of 128×128 creates larger accelerators, we were only able to fit maximum
of three accelerators due to the BRAM constraints of the target FPGA. On the other
hand, using block size 64× 64, the number of accelerators that can be used on the
FPGA fabric increase due to the smaller space requirements. Using 4 accelerators
with block size of 64×64 can achieve 2.76× over the baseline CPU-only execution.

128x128 64x64
Matrix Multiplication

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

- n
or

m
al

ize
d CPU

1 Acc
2 Acc
3 Acc
4 Acc

Figure 6.4: Performance of Matrix Multiplication (normalized to the baseline CPU-
only)

6.4. CONCLUSION 117

Increased number of tasks also improve the performance in Cholesky benchmark.
This is illustrated in Figure 6.5, showing the speedup of Cholesky benchmark using
variable number of accelerators, normalized to the average execution time of the CPU-
only version of OpenStream. The proposed scheduling strategy is able to achieve
speedups of 1.86× and 1.74× using configuration 1, 2.38× and 2.25× using configu-
ration 2 with block sizes of 128×128 and 64×64 respectively. The third configuration
is only available in block size of 64×64 which can achieve 2.66× over the baseline.

128x128 64x64
Cholesky Factorization

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

- n
or

m
al

ize
d CPU

Conf 1
Conf 2
Conf 3

Figure 6.5: Performance of Cholesky (normalized to the baseline CPU-only)

Using different block sizes also has an effect to performance gains. In Cholesky,
while the block size of 128 can achieve up to 1.86× speedup, using block size of
64 achieves a smaller increase in performance of 1.74× speedup. This difference
is caused by the increased number of tasks with smaller block sizes where schedul-
ing overhead increases and thus decreases the performance gains. This comparison is
plausable in configuration 1, because both 128 and 64 block sizes have the same type
and same number of accelerators on the FPGA fabric.

6.4 Conclusion

In this chapter, we presented our novel scheduling strategy for incorporating FPGA
accelerators into a data-flow task parallel run-time targeting system-on-chip devices
that contain multi-core CPUs and FPGAs. Our approach aims the effective use of

118 CHAPTER 6. DYNAMIC TASK SCHEDULING ON FPGA-SOCS

FPGA accelerators by actively scheduling tasks to the accelerators using work pushing
to increase the occupancy of the accelerators. In addition to this, our strategy aims to
offload dependent tasks to the FPGA in case there are multiple types of accelerators
present on the FPGA, executing tasks in a coarse-grained pipelined fashion by taking
advantage of the data-flow information provided by the OpenStream run-time.

Our technique transparently handles the data and tasks placement as well as the
accelerator management without additional annotation by the programmer.The task
and data placement decisions are based on inter-task dependence information readily
available in modern task-parallel, data-flow run-time systems.

The experimental evaluation shows that our approach can offload up to 82% of the
tasks in an application to the FPGA accelerators and shows up to 50.44% of the tasks
can be scheduled to the FPGA in a pipelined fashion. We compared our approach to
the CPU only execution of the same benchmarks, showing a substantial performance
improvement of up to 2.76× for matrix multiplication and 2.66× for Cholesky bench-
marks.

Chapter 7

Conclusion and Perspectives

This chapter summarizes the work presented in this thesis and discusses the conclusion
on the findings followed by a discussion of directions for future research.

7.1 Summary

The ongoing shift in high performance computing from homogeneous to heteroge-
neous architectures, integrating multi-core CPUs and accelerators, exacerbates the re-
quirements on data locality and load balancing at execution time for the efficient ex-
ploitation of all computing resources. Programming models for heterogeneous systems
(e.g., OpenCL [65]) give developers control over memory allocation and execution, but
burden them with technical decisions that require expert knowledge of the targeted sys-
tem in order to use resources efficiently. Moreover, while such models generally pro-
vide portability across different accelerators, such low-level decisions and hard-coded
optimizations make performance portability an issue. Ideally, programmers should
only be responsible for expressing parallelism and data dependences, which are then
mapped to hardware resources automatically.

As shown in Chapter 2, there exists multitude of approaches for efficient schedul-
ing of task-parallel programs on heterogeneous systems that contain multi-core CPUs
and GPUs. The scheduling approaches in the literature are mainly divided into three;
locality-aware, data-aware and dependence-aware where each approach uses the infor-
mation provided by a run-time system to make scheduling decisions using a centralized
scheduler except the XKaapi [47] run-time system. However, none of the run-time sys-
tems use task-private buffers to handle data dependences between tasks except Open-
Stream [95] run-time which includes more information compared to other run-times as

119

120 CHAPTER 7. CONCLUSION AND PERSPECTIVES

well as provides more control over task and data for efficient placement.

Chapter 3 discusses the details of OpenStream run-time, a data-flow extension to
OpenMP based on the concepts of short-lived, fine-grained tasks and streams. Through
the use of streams, the communication and synchronization between tasks can be
achieved in this model. The stream elements are only accessible to a task through
views that reside in the task body. The synchronization is managed solely by the
run-time by matching output views with input views through the same stream. The
programming and execution model of OpenStream is discussed, as well as its syntax
which forms the basis of the work in this thesis.

Although OpenStream provides better control for task and data placement through
task-private buffers compared to similar run-times, in order to target heterogeneous
architectures, we have extended OpenStream run-time with GPU and FPGA support.
These extensions are detailed in Chapter 4 explaining which run-time structures are
changed for employment of accelerators. A combined compiler and run-time support
is detailed in addition to example programs that can execute tasks on heterogeneous
platforms.

The main contributions of this thesis are presented in Chapter 5 and Chapter 6
where we explain how the additional data-flow information provided by OpenStream
is exploited for efficient scheduling of task-parallel programs on heterogeneous sys-
tems. In Chapter 5 we present our novel scheduling strategy for efficiently scheduling
tasks on the GPUs by reducing the synchronization between the host and the device by
leveraging the data-flow information for task and data placement. In Chapter 6 we give
detailed information on our novel scheduling strategy, targeting MPSoCs consisting of
multi-core CPUs and FPGAs on the same chip. We propose a scheduling strategy
prioritizing the FPGA accelerators over CPU workers to increase the effective use of
the accelerators. In addition to this, our scheduler exploits the dependence informa-
tion between tasks to execute dependent tasks on the available accelerators, creating a
pipelined execution on the FPGA.

7.2 Contributions

Throughout this thesis, we have shown that data-flow task-parallel programming mod-
els can be used to increase the efficiency of the heterogeneous systems. In task-parallel
models, the parallelism is explicit and favors fine-grained tasks which is essential in

7.2. CONTRIBUTIONS 121

modern heterogeneous architectures. Moreover, data-flow dependences provide an ex-
plicit memory view of the underlying architecture and abstract the details of memory
management from the programmer. Using task-private buffers for the management of
data in this model creates more opportunities for better task and data placement that
can be exploited to increase efficiency and to decrease the idle time of the accelerators
on heterogeneous systems.

We proposed two novel scheduling strategies for heterogeneous systems target-
ing multi-core CPUs and discrete GPUs as well as multi-core CPUs and FPGAs on
the same chip. We proposed a strategy for GPUs for load-balancing data-flow tasks
on heterogeneous systems, accounting for asymmetric compute capabilities, while si-
multaneously increasing on-device data reuse and decreasing synchronization between
host and accelerators. The experimental evaluation shows that our approach effectively
reduces the number of transfers required, reduces synchronization between CPU and
GPU, increases the overlap of computation and communication, reduces GPU idle
time, and increases the number of tasks offloaded to the GPU. All of these results
are achieved while transparently placing data and tasks on the host and accelerators
without annotation by the programmer.

In addition to the novel scheduling strategy for GPUs, we also propose a novel
scheduling strategy targeting FPGA SoCs. Assuming the FPGA can be programmed
to contain multiple accelerators with possible different types, we presented a novel
scheduling strategy, taking advantage of the flexibility of the FPGA. While GPUs can
only execute different kernels concurrently, FPGA accelerators can execute multiple
tasks simultaneously decreasing the overhead of task management and providing better
flexibility for heterogeneous execution. To this end, we take advantage of the data-flow
information provided by the OpenStream run-time to create pipelined execution on the
FPGA accelerators in addition to prioritizing FPGA accelerators rather than executing
tasks on CPU workers.

Aside from the above contributions, the study presented in this thesis led to an
integration and implementation of the contributions to the OpenStream run-time. This
practical contributions also opens a way for future research for better analysis of data-
flow task-parallel programming models as well as heterogeneous architectures.

122 CHAPTER 7. CONCLUSION AND PERSPECTIVES

7.3 Future Directions

The work on this thesis lead to multiple opportunities for future research. In this sec-
tion, we detail some of the possible research opportunities for better exploitation of
heterogeneous systems.

Dynamic adjustment of task granularity How much data is processed by each
task has a strong influence on the amount of available parallelism and the scheduling
overhead of task assignment and data transfers between devices. The optimal gran-
ularity not only vary between different applications, but also different systems. Al-
though currently it is the programmers responsibility to decide the task granularity, the
dynamic adjustment of different granularities can increase the performance benefits,
especially in the heterogeneous system context. Achieving an optimal task granular-
ity is itself a challenge in the context of graph optimizations. However, the data-flow
information in addition to task graph traversal can be used for techniques such as task
fusion, creating larger tasks for executing on compute units with higher capabilities.
This not only reduces the run-time overhead of managing tasks, but also increases the
efficiency of execution, leading to overall performance increase. Although using static
methods for task fusion, or requiring programmer to provide hints to the run-time for
fusing tasks is an option, leveraging data-flow information to achieve transparent and
dynamic fusion is an interesting research opportunity.

Using machine learning for efficient task graph partitioning Although dynamic
scheduling techniques try to compensate the inefficiencies of the program execution
by using techniques such as load balancing, it is difficult to achieve highly efficient
schedules. Since machine learning techniques are becoming omnipresent for every
aspect of computer science, applying machine learning techniques that automatically
learn a highly efficient workload-specific scheduling policies have been proposed [75,
2]. Applying machine learning for the optimization of task graphs in data-flow task
parallel programs can be achieved with the use of data-flow information leading to
optimal schedules in task parallel programs.

Using dynamic partial reconfiguration for FPGA accelerators Dynamic partial
reconfiguration is the ability to reconfigure select areas of an FPGA anytime after its
initial configuration. The benefits of the dynamic partial reconfiguration are: (1) it
allows the adaptation of the accelerators to different parts of a program by replacing
the unused accelerators with necessary ones, (2) provides wider range of accelerator
support for programs that require multiple different accelerators to be used in differ-
ent stages of execution, (3) increases resource utilization by allowing larger areas for

7.3. FUTURE DIRECTIONS 123

accelerators when required [14, 72, 60]. Employing dynamic partial reconfiguration
within a run-time where the scheduler has full control over the task and data placement
can increase the performance benefits of the accelerators, increases resource utiliza-
tion on FPGA while accounting for the overhead of dynamic partial reconfiguration.
Since the scheduler can dynamically traverse the future tasks, the partial reconfigura-
tion overhead can be avoided using the data-flow information.

Integration with FPGA tool-sets to generate accelerators for creating fine-
grained pipelines In this thesis, we only focused on the execution of tasks on FPGA
accelerators, assuming the FPGA is already programmed and the required information
is provided by the programmer. However, using HLS tools to also create the FPGA
accelerators can increase the pipelining benefits. As discussed in Section 2.3.2, OmpSs
run-time can create the FPGA accelerators using HLS tools provided by Xilinx. Inte-
gration of HLS tools to our run-time is also possible, but the more interesting approach
is to use the execution information for the optimization of the accelerators in order to
create a fine-grained pipeline behavior. Although achieving a highly optimized accel-
erator set is challenging, adjustment of task granularities can also be employed as a
supplementary technique for the generation of accelerators.

Bibliography

[1] Umut A Acar, Guy E Blelloch, and Robert D Blumofe. The data locality of
work stealing. In Proceedings of the twelfth annual ACM symposium on Parallel

algorithms and architectures, pages 1–12. ACM, 2000.

[2] Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta,
Hongzi Mao, and Mohammad Alizadeh. Placeto: Efficient progressive de-
vice placement optimization. In NIPS Machine Learning for Systems Workshop,
2018.

[3] Omer Erdil Albayrak, Ismail Akturk, and Ozcan Ozturk. Effective kernel map-
ping for opencl applications in heterogeneous platforms. In 2012 41st Interna-

tional Conference on Parallel Processing Workshops, pages 81–88. IEEE, 2012.

[4] Vicki H Allan, Reese B Jones, Randall M Lee, and Stephen J Allan. Software
pipelining. ACM Computing Surveys (CSUR), 27(3):367–432, 1995.

[5] AMD. clblas: Opencl-based blas library. https://github.com/

clMathLibraries/clBLAS, 2017.

[6] Edward Anderson, Zhaojun Bai, Christian Bischof, L Susan Blackford, James
Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammar-
ling, Alan McKenney, et al. LAPACK Users’ guide. SIAM, 1999.

[7] David Andrews, Douglas Niehaus, and Peter Ashenden. Programming models
for hybrid cpu/fpga chips. Computer, 37(1):118–120, 2004.

[8] David Andrews, Douglas Niehaus, Razali Jidin, Michael Finley, Wesley Peck,
Michael Frisbie, Jorge Ortiz, Ed Komp, and Peter Ashenden. Programming
models for hybrid fpga-cpu computational components: a missing link. IEEE

micro, 24(4):42–53, 2004.

124

https://github.com/clMathLibraries/clBLAS
https://github.com/clMathLibraries/clBLAS

BIBLIOGRAPHY 125

[9] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André
Wacrenier. Starpu: a unified platform for task scheduling on heterogeneous
multicore architectures. Concurrency and Computation: Practice and Experi-

ence, 23(2):187–198, 2011.

[10] Eduard Ayguadé, Rosa M Badia, Francisco D Igual, Jesús Labarta, Rafael
Mayo, and Enrique S Quintana-Ortı́. An extension of the starss programming
model for platforms with multiple gpus. In European Conference on Parallel

Processing, pages 851–862. Springer, 2009.

[11] David F Bacon, Rodric M Rabbah, Sunil Shukla, et al. Fpga programming for
the masses. Commun. ACM, 56(4):56–63, 2013.

[12] Rosa M. Badia, José R. Herrero, Jesús Labarta, Josep M. Pérez, Enrique S.
Quintana-Ortı́, and Gregorio Quintana-Ortı́. Parallelizing dense and banded lin-
ear algebra libraries using SMPSs. Concurrency and Computation: Practice

and Experience, 21(18):2438–2456, dec 2009.

[13] Jairo Balart, Alejandro Duran, Marc Gonzàlez, Xavier Martorell, Eduard
Ayguadé, and Jesús Labarta. Nanos mercurium: a research compiler for
openmp. In Proceedings of the European Workshop on OpenMP, volume 8,
page 56, 2004.

[14] Christian Beckhoff, Dirk Koch, and Jim Torresen. Go ahead: A partial recon-
figuration framework. In 2012 IEEE 20th International Symposium on Field-

Programmable Custom Computing Machines, pages 37–44. IEEE, 2012.

[15] Mehmet E. Belviranli, Laxmi N. Bhuyan, and Rajiv Gupta. A dynamic self-
scheduling scheme for heterogeneous multiprocessor architectures. ACM Trans-

actions on Architecture and Code Optimization, 9(4):1–20, jan 2013.

[16] Markus Billeter, Ola Olsson, and Ulf Assarsson. Efficient stream compaction on
wide simd many-core architectures. In Proceedings of the conference on high

performance graphics 2009, pages 159–166. ACM, 2009.

[17] L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R Clint
Whaley, James Demmel, Jack Dongarra, Iain Duff, Sven Hammarling, Greg
Henry, et al. An updated set of basic linear algebra subprograms (blas). ACM

Transactions on Mathematical Software, 28(2):135–151, 2002.

126 BIBLIOGRAPHY

[18] Raphaël Bleuse, Thierry Gautier, João VF Lima, Grégory Mounié, and Denis
Trystram. Scheduling data flow program in xkaapi: a new affinity based al-
gorithm for heterogeneous architectures. In European Conference on Parallel

Processing, pages 560–571. Springer, 2014.

[19] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leis-
erson, Keith H Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime
system. Journal of parallel and distributed computing, 37(1):55–69, 1996.

[20] Vamsi Boppana, Sagheer Ahmad, Ilya Ganusov, Vinod Kathail, Vidya Ra-
jagopalan, and Ralph Wittig. Ultrascale+ mpsoc and fpga families. In 2015

IEEE Hot Chips 27 Symposium (HCS), pages 1–37. IEEE, 2015.

[21] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarung-
nirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies,
Parthasarathy Ranganathan, et al. Google workloads for consumer devices:
Mitigating data movement bottlenecks. In ACM SIGPLAN Notices, volume 53,
pages 316–331. ACM, 2018.

[22] Jaume Bosch, Antonio Filgueras, Miquel Vidal, Daniel Jimenez-Gonzalez, Car-
los Alvarez, and Xavier Martorell. Exploiting parallelism on gpus and fpgas
with ompss. In Proceedings of the 1st Workshop on AutotuniNg and aDaptivity

AppRoaches for Energy efficient HPC Systems, pages 1–5, 2017.

[23] Jaume Bosch, Xubin Tan, Antonio Filgueras, Miquel Vidal, Marc Mateu, Daniel
Jiménez-González, Carlos Álvarez, Xavier Martorell, Eduard Ayguadé, and Je-
sus Labarta. Application acceleration on fpgas with ompss fpga. In 2018 Inter-

national Conference on Field-Programmable Technology (FPT), pages 70–77.
IEEE, 2018.

[24] François Broquedis, Thierry Gautier, and Vincent Danjean. Libkomp, an effi-
cient openmp runtime system for both fork-join and data flow paradigms. In
International Workshop on OpenMP, pages 102–115. Springer, 2012.

[25] Zoran Budimlić, Michael Burke, Vincent Cavé, Kathleen Knobe, Geoff
Lowney, Ryan Newton, Jens Palsberg, David Peixotto, Vivek Sarkar, Frank
Schlimbach, et al. Concurrent collections. Scientific Programming, 18(3-
4):203–217, 2010.

BIBLIOGRAPHY 127

[26] Javier Bueno, Judit Planas, Alejandro Duran, Rosa M Badia, Xavier Martorell,
Eduard Ayguade, and Jesus Labarta. Productive programming of gpu clusters
with ompss. In 2012 IEEE 26th International Parallel and Distributed Process-

ing Symposium, pages 557–568. IEEE, 2012.

[27] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A class
of parallel tiled linear algebra algorithms for multicore architectures. Parallel

Computing, 35(1):38–53, 2009.

[28] Timothy J Callahan and John Wawrzynek. Adapting software pipelining for
reconfigurable computing. In CASES, pages 57–64. Citeseer, 2000.

[29] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. Habanero-java: the
new adventures of old x10. In Proceedings of the 9th International Conference

on Principles and Practice of Programming in Java, pages 51–61. ACM, 2011.

[30] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Al-
lan Kielstra, Kemal Ebcioglu, Christoph Von Praun, and Vivek Sarkar. X10:
an object-oriented approach to non-uniform cluster computing. In Acm Sigplan

Notices, volume 40, pages 519–538. ACM, 2005.

[31] David Chase and Yossi Lev. Dynamic circular work-stealing deque. In Proceed-

ings of the seventeenth annual ACM symposium on Parallelism in algorithms

and architectures, pages 21–28. ACM, 2005.

[32] Shuai Che, Jie Li, Jeremy W Sheaffer, Kevin Skadron, and John Lach. Acceler-
ating compute-intensive applications with gpus and fpgas. In 2008 Symposium

on Application Specific Processors, pages 101–107. IEEE, 2008.

[33] Katherine Compton and Scott Hauck. Reconfigurable computing: a survey of
systems and software. ACM Computing Surveys (csuR), 34(2):171–210, 2002.

[34] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and
Zhiru Zhang. High-level synthesis for fpgas: From prototyping to deployment.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, 30(4):473–491, 2011.

[35] Bill Dally. Power, programmability, and granularity: The challenges of exascale
computing. In 2011 IEEE International Test Conference, pages 12–12. IEEE,
2011.

128 BIBLIOGRAPHY

[36] Andrew Danowitz, Kyle Kelley, James Mao, John P Stevenson, and Mark
Horowitz. Cpu db: recording microprocessor history. Communications of the

ACM, 55(4):55–63, 2012.

[37] Tiziano De Matteis, Johannes de Fine Licht, and Torsten Hoefler. Fblas: Stream-
ing linear algebra on fpga. arXiv preprint arXiv:1907.07929, 2019.

[38] Keith Diefendorff, Pradeep K Dubey, Ron Hochsprung, and HASH Scale.
Altivec extension to powerpc accelerates media processing. IEEE Micro,
20(2):85–95, 2000.

[39] Andi Drebes, Antoniu Pop, Karine Heydemann, Albert Cohen, and Nathalie
Drach. Scalable task parallelism for NUMA: A uniform abstraction for coordi-
nated scheduling and memory management. In Parallel Architecture and Com-

pilation Techniques (PACT), 2016 International Conference on, pages 125–137,
-, 2016. IEEE.

[40] Feng Liu, S. Ghosh, N. P. Johnson, and D. I. August. Cgpa: Coarse-grained
pipelined accelerators. In 2014 51st ACM/EDAC/IEEE Design Automation Con-

ference (DAC), pages 1–6, June 2014.

[41] Antonio Filgueras, Eduard Gil, Daniel Jimenez-Gonzalez, Carlos Alvarez,
Xavier Martorell, Jan Langer, Juanjo Noguera, and Kees Vissers. Ompss@
zynq all-programmable soc ecosystem. In Proceedings of the 2014 ACM/SIGDA

international symposium on Field-programmable gate arrays, pages 137–146.
ACM, 2014.

[42] Michael J Flynn. Some computer organizations and their effectiveness. IEEE

transactions on computers, 100(9):948–960, 1972.

[43] Gabriel Freytag, Matheus S Serpa, João Vicente Ferreira Lima, Paolo Rech,
and Philippe OA Navaux. Non-uniform partitioning for collaborative execu-
tion on heterogeneous architectures. In 2019 31st International Symposium on

Computer Architecture and High Performance Computing (SBAC-PAD), pages
128–135. IEEE, 2019.

[44] Matteo Frigo, Charles E Leiserson, and Keith H Randall. The implementation
of the cilk-5 multithreaded language. ACM Sigplan Notices, 33(5):212–223,
1998.

BIBLIOGRAPHY 129

[45] Quentin Gautier, Alric Althoff, Pingfan Meng, and Ryan Kastner. Spector:
An opencl fpga benchmark suite. In 2016 International Conference on Field-

Programmable Technology (FPT), pages 141–148. IEEE, 2016.

[46] Thierry Gautier, Xavier Besseron, and Laurent Pigeon. Kaapi: A thread
scheduling runtime system for data flow computations on cluster of multi-
processors. In Proceedings of the 2007 international workshop on Parallel sym-

bolic computation, pages 15–23. ACM, 2007.

[47] Thierry Gautier, Joao VF Lima, Nicolas Maillard, and Bruno Raffin. Xkaapi:
A runtime system for data-flow task programming on heterogeneous architec-
tures. In 2013 IEEE 27th International Symposium on Parallel and Distributed

Processing, pages 1299–1308. IEEE, 2013.

[48] Isaac Gelado, John E. Stone, Javier Cabezas, Sanjay Patel, Nacho Navarro, and
Wen-mei W. Hwu. An asymmetric distributed shared memory model for het-
erogeneous parallel systems. In Proceedings of the Fifteenth International Con-

ference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS XV, pages 347–358. ACM, 2010.

[49] Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun,
and Onur Mutlu. The processing-in-memory paradigm: Mechanisms to enable
adoption. In Beyond-CMOS Technologies for Next Generation Computer De-

sign, pages 133–194. Springer, 2019.

[50] Chris Gregg, Jonathan Dorn, Kim Hazelwood, and Kevin Skadron. Fine-grained
resource sharing for concurrent gpgpu kernels. In Presented as part of the 4th

USENIX Workshop on Hot Topics in Parallelism, 2012.

[51] Khronos Group. Opencl specification. https://www.khronos.org/

registry/cl/specs/opencl-2.0.pdf, 2015.

[52] Jayanth Gummaraju, Ben Sander, Laurent Morichetti, Benedict R Gaster,
Michael Houston, and Bixia Zheng. Twin peaks: a software platform for hetero-
geneous computing on general-purpose and graphics processors. In 2010 19th

International Conference on Parallel Architectures and Compilation Techniques

(PACT), pages 205–215. IEEE, 2010.

https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf

130 BIBLIOGRAPHY

[53] Yi Guo, Rajkishore Barik, Raghavan Raman, and Vivek Sarkar. Work-first and
help-first scheduling policies for async-finish task parallelism. In 2009 IEEE

International Symposium on Parallel & Distributed Processing, pages 1–12.
IEEE, 2009.

[54] Joel Hestness, Stephen W Keckler, and David A Wood. A comparative analysis
of microarchitecture effects on cpu and gpu memory system behavior. In 2014

IEEE International Symposium on Workload Characterization (IISWC), pages
150–160. IEEE, 2014.

[55] Mark D Hill and Michael R Marty. Amdahl’s law in the multicore era. Com-

puter, 41(7):33–38, 2008.

[56] Jared Hoberock, Victor Lu, Yuntao Jia, and John C Hart. Stream compaction
for deferred shading. In Proceedings of the Conference on High Performance

Graphics 2009, pages 173–180. ACM, 2009.

[57] Wenhao Jia, Kelly A Shaw, and Margaret Martonosi. Characterizing and im-
proving the use of demand-fetched caches in gpus. In Proceedings of the 26th

ACM international conference on Supercomputing, pages 15–24. ACM, 2012.

[58] Mark Joselli, Marcelo Zamith, Esteban Clua, Anselmo Montenegro, Aura
Conci, Regina Leal-Toledo, Luis Valente, Bruno Feijó, Marcos d’Ornellas, and
Cesar Pozzer. Automatic dynamic task distribution between cpu and gpu for
real-time systems. In 2008 11th IEEE International Conference on Computa-

tional Science and Engineering, pages 48–55. IEEE, 2008.

[59] Rashid Kaleem, Rajkishore Barik, Tatiana Shpeisman, Chunling Hu, Brian T
Lewis, and Keshav Pingali. Adaptive heterogeneous scheduling for integrated
gpus. In 2014 23rd International Conference on Parallel Architecture and Com-

pilation Techniques (PACT), pages 151–162. IEEE, 2014.

[60] Cindy Kao. Benefits of partial reconfiguration. Xcell journal, 55:65–67, 2005.

[61] K. I. Karantasis and E. D. Polychronopoulos. Programming gpu clusters with
shared memory abstraction in software. In 2011 19th International Euromicro

Conference on Parallel, Distributed and Network-Based Processing, pages 223–
230, Feb 2011.

BIBLIOGRAPHY 131

[62] Vinod Kathail, James Hwang, Welson Sun, Yogesh Chobe, Tom Shui, and Jorge
Carrillo. Sdsoc: A higher-level programming environment for zynq soc and ul-
trascale+ mpsoc. In Proceedings of the 2016 ACM/SIGDA International Sym-

posium on Field-Programmable Gate Arrays, pages 4–4. ACM, 2016.

[63] Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié, and Denis Trystram.
Scheduling independent tasks on multi-cores with gpu accelerators. In Euro-

pean Conference on Parallel Processing, pages 228–237. Springer, 2013.

[64] Khronos Group. Opencl specification 1.1. https://www.khronos.org/

registry/cl/specs/opencl-1.1.pdf, 2011.

[65] Khronos Group. Opencl specification 1.2. https://www.khronos.org/

registry/cl/specs/opencl-1.2.pdf, 2012.

[66] Keunsoo Kim, Sangpil Lee, Myung Kuk Yoon, Gunjae Koo, Won Woo Ro,
and Murali Annavaram. Warped-preexecution: A gpu pre-execution approach
for improving latency hiding. In 2016 IEEE International Symposium on High

Performance Computer Architecture (HPCA), pages 163–175. IEEE, 2016.

[67] Rakesh Kumar, Dean M Tullsen, Norman P Jouppi, and Parthasarathy Ran-
ganathan. Heterogeneous chip multiprocessors. Computer, 38(11):32–38, 2005.

[68] Ian Kuon, Russell Tessier, Jonathan Rose, et al. Fpga architecture: Survey
and challenges. Foundations and Trends R© in Electronic Design Automation,
2(2):135–253, 2008.

[69] Changmin Lee, Won Woo Ro, and Jean-Luc Gaudiot. Boosting cuda applica-
tions with cpu–gpu hybrid computing. International Journal of Parallel Pro-

gramming, 42(2):384–404, 2014.

[70] Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke. Transparent
cpu-gpu collaboration for data-parallel kernels on heterogeneous systems. In
Proceedings of the 22nd international conference on Parallel architectures and

compilation techniques, pages 245–256. IEEE Press, 2013.

[71] W. Li, G. Jin, X. Cui, and S. See. An evaluation of unified memory technology
on nvidia gpus. In 2015 15th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, pages 1092–1098, May 2015.

https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

132 BIBLIOGRAPHY

[72] Wang Lie and Wu Feng-Yan. Dynamic partial reconfiguration in fpgas. In 2009

Third International Symposium on Intelligent Information Technology Applica-

tion, volume 2, pages 445–448. IEEE, 2009.

[73] Chris Lomont. Introduction to intel advanced vector extensions. Intel White

Paper, pages 1–21, 2011.

[74] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: exploiting parallelism
on heterogeneous multiprocessors with adaptive mapping. In 2009 42nd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 45–
55. IEEE, 2009.

[75] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,
and Mohammad Alizadeh. Learning scheduling algorithms for data processing
clusters. In Proceedings of the ACM Special Interest Group on Data Communi-

cation, pages 270–288. ACM, 2019.

[76] Christos Margiolas and Michael F. P. O’Boyle. Portable and transparent host-
device communication optimization for gpgpu environments. In Proceedings

of Annual IEEE/ACM International Symposium on Code Generation and Opti-

mization, CGO ’14, pages 55:55–55:65. ACM, 2014.

[77] Ami Marowka. Extending amdahl’s law for heterogeneous computing. In 2012

IEEE 10th International Symposium on Parallel and Distributed Processing

with Applications, pages 309–316. IEEE, 2012.

[78] L Martinell. “Memory usage improvements for the SMPSs runtime. PhD thesis,
Master’s thesis, Computer Architecture Department, Universitat Politècnica . . . ,
2010.

[79] Jason Merrill. Generic and gimple: A new tree representation for entire func-
tions. In Proceedings of the 2003 GCC Developers’ Summit, pages 171–179.
Citeseer, 2003.

[80] Onur Mutlu, Saugata Ghose, and Rachata Ausavarungnirun. Recent advances
in overcoming bottlenecks in memory systems and managing memory resources
in gpu systems. arXiv preprint arXiv:1805.06407, 2018.

[81] CUDA Nvidia. Programming guide 1.1. Introduction to CUDA, 2007.

BIBLIOGRAPHY 133

[82] Stuart Oberman, Greg Favor, and Fred Weber. Amd 3dnow! technology: Ar-
chitecture and implementations. IEEE Micro, 19(2):37–48, 1999.

[83] OpenMP Architecture Review Board. OpenMP application program interface
version 3.0, 2008.

[84] Marc S Orr, Bradford M Beckmann, Steven K Reinhardt, and David A Wood.
Fine-grain task aggregation and coordination on gpus. ACM SIGARCH Com-

puter Architecture News, 42(3):181–192, 2014.

[85] Sreepathi Pai, Matthew J Thazhuthaveetil, and Ramaswamy Govindarajan. Im-
proving gpgpu concurrency with elastic kernels. In ACM SIGPLAN Notices,
volume 48, pages 407–418. ACM, 2013.

[86] Prasanna Pandit and R Govindarajan. Fluidic kernels: Cooperative execution of
opencl programs on multiple heterogeneous devices. In Proceedings of Annual

IEEE/ACM International Symposium on Code Generation and Optimization,
pages 273–283, 2014.

[87] Alex Peleg, Sam Wilkie, and Uri Weiser. Intel mmx for multimedia pcs. Com-

munications of the ACM, 40(1):24–38, 1997.

[88] David Pellerin and Scott Thibault. Practical FPGA programming in C. Prentice
Hall Press, 2005.

[89] Borja Pérez, Esteban Stafford, Jose Luis Bosque, Ramon Beivide, Sergi Mateo,
Xavier Teruel, Xavier Martorell, and Eduard Ayguadé. Extending ompss for
opencl kernel co-execution in heterogeneous systems. In 2017 29th Interna-

tional Symposium on Computer Architecture and High Performance Computing

(SBAC-PAD), pages 1–8. IEEE, 2017.

[90] Khoa Dang Pham, Anuj Vaishnav, Malte Vesper, and Dirk Koch. Zucl: A zynq
ultrascale+ framework for opencl hls applications. In FSP Workshop 2018; Fifth

International Workshop on FPGAs for Software Programmers, pages 1–9. VDE,
2018.

[91] Chuck Pheatt. Intel threading building blocks. Journal of Computing Sciences

in Colleges, 23(4):298–298, 2008.

134 BIBLIOGRAPHY

[92] Judit Planas, Rosa M Badia, Eduard Ayguadé, and Jesus Labarta. Hierarchical
task-based programming with starss. The International Journal of High Perfor-

mance Computing Applications, 23(3):284–299, 2009.

[93] Judit Planas, Rosa M Badia, Eduard Ayguade, and Jesus Labarta. Self-adaptive
ompss tasks in heterogeneous environments. In 2013 IEEE 27th International

Symposium on Parallel and Distributed Processing, pages 138–149. IEEE,
2013.

[94] Antoniu Pop and Albert Cohen. A stream-computing extension to openmp.
In Proceedings of the 6th International Conference on High Performance and

Embedded Architectures and Compilers, pages 5–14. ACM, 2011.

[95] Antoniu Pop and Albert Cohen. OpenStream: Expressiveness and data-flow
compilation of OpenMP streaming programs. ACM Transactions on Architec-

ture and Code Optimization (TACO), 9(4):53, 2013.

[96] B Ramakrishna Rau. Iterative module scheduling: An algorithm for software
pipelining loops. In Proceedings of MICRO-27. The 27th Annual IEEE/ACM

International Symposium on Microarchitecture, pages 63–74. IEEE, 1994.

[97] Alvise Rigo, Christian Pinto, Kevin Pouget, Daniel Raho, Denis Dutoit, Pierre-
Yves Martinez, Chris Doran, Luca Benini, Iakovos Mavroidis, Manolis Maraza-
kis, et al. Paving the way towards a highly energy-efficient and highly integrated
compute node for the exascale revolution: the exanode approach. In 2017 Eu-

romicro Conference on Digital System Design (DSD), pages 486–493. IEEE,
2017.

[98] Oren Segal, Martin Margala, Sai Rahul Chalamalasetti, and Mitch Wright. High
level programming framework for fpgas in the data center. In 2014 24th Interna-

tional Conference on Field Programmable Logic and Applications (FPL), pages
1–4. IEEE, 2014.

[99] Sean O Settle et al. High-performance dynamic programming on fpgas with
opencl. In Proc. IEEE High Perform. Extreme Comput. Conf.(HPEC), pages
1–6, 2013.

[100] O. S. Simsek, A. Drebes, and A. Pop. Leveraging data-flow task parallelism
for locality-aware dynamic scheduling on heterogeneous platforms. In 2018

BIBLIOGRAPHY 135

IEEE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), pages 540–549, May 2018.

[101] Richard M Stallman and the GCC Developer Community. Gnu compiler collec-
tion internals. 2014.

[102] Michael Steffen and Joseph Zambreno. Improving simt efficiency of global
rendering algorithms with architectural support for dynamic micro-kernels. In
2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture,
pages 237–248. IEEE, 2010.

[103] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole,
Giacomo Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro Martinez,
Nathanael Premillieu, et al. The arm scalable vector extension. IEEE Micro,
37(2):26–39, 2017.

[104] Jeremy Sugerman, Kayvon Fatahalian, Solomon Boulos, Kurt Akeley, and Pat
Hanrahan. Gramps: A programming model for graphics pipelines. ACM Trans-

actions on Graphics (TOG), 28(1):4, 2009.

[105] M Aater Suleman, Onur Mutlu, Moinuddin K Qureshi, and Yale N Patt. Ac-
celerating critical section execution with asymmetric multi-core architectures.
ACM SIGARCH Computer Architecture News, 37(1):253–264, 2009.

[106] Xubin Tan, Jaume Bosch, Carlos Álvarez, Daniel Jiménez-González, Eduard
Ayguadé, and Mateo Valero. A hardware runtime for task-based programming
models. IEEE Transactions on Parallel and Distributed Systems, 30(9):1932–
1946, 2019.

[107] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towards dense linear al-
gebra for hybrid gpu accelerated manycore systems. Parallel Computing, 36(5-
6):232–240, 2010.

[108] Haluk Topcuoglu, Salim Hariri, and Min-you Wu. Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE transac-

tions on parallel and distributed systems, 13(3):260–274, 2002.

[109] Marc Tremblay, J Michael O’Connor, Venkatesh Narayanan, and Liang He. Vis
speeds new media processing. IEEE micro, 16(4):10–20, 1996.

136 BIBLIOGRAPHY

[110] A. Vaishnav, K. D. Pham, D. Koch, and J. Garside. Resource elastic virtual-
ization for fpgas using opencl. In 2018 28th International Conference on Field

Programmable Logic and Applications (FPL), pages 111–1117, Aug 2018.

[111] Hans Vandierendonck, George Tzenakis, and Dimitrios S Nikolopoulos. A uni-
fied scheduler for recursive and task dataflow parallelism. In 2011 International

Conference on Parallel Architectures and Compilation Techniques, pages 1–11.
IEEE, 2011.

[112] Vasily Volkov. Understanding latency hiding on gpus. PhD thesis, UC Berkeley,
2016.

[113] Lingyuan Wang, Miaoqing Huang, and Tarek El-Ghazawi. Exploiting concur-
rent kernel execution on graphic processing units. In 2011 International Con-

ference on High Performance Computing & Simulation, pages 24–32. IEEE,
2011.

[114] Yuan Wen, Zheng Wang, and Michael FP O’boyle. Smart multi-task scheduling
for opencl programs on cpu/gpu heterogeneous platforms. In 2014 21st Interna-

tional Conference on High Performance Computing (HiPC), pages 1–10. IEEE,
2014.

[115] Skyler Windh, Xiaoyin Ma, Robert J Halstead, Prerna Budhkar, Zabdiel Luna,
Omar Hussaini, and Walid A Najjar. High-level language tools for reconfig-
urable computing. Proceedings of the IEEE, 103(3):390–408, 2015.

[116] Asim Yarkhan, Jakub Kurzak, and Jack Dongarra. Quark users’ guide. Elec-

trical Engineering and Computer Science, Innovative Computing Laboratory,

University of Tennessee, 268, 2011.

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Motivation
	Contributions
	Contributions in the GPU Context
	Contributions in the FPGA Context

	Practical Contributions
	Thesis Outline
	Publications

	Background
	Parallel Architectures
	Architecture Models
	Memory Systems
	Multi-core CPUs
	Heterogeneous Many-core Systems

	Parallel Programming Models for Many-core Architectures
	Heterogeneous System Programming
	GPU Programming Models
	OpenCL Programming Model
	FPGA Programming Models
	Task-Based Programming Models

	Related Work
	XKaapi
	OmpSs
	StarPU
	QUARK
	Discussion
	The Effect of Task Granularity

	Summary

	OpenStream
	Terminology
	Syntax and Semantics
	Declaring Streams
	Declaring Views
	Task Creation
	Tick Construct
	Taskwait Construct

	Execution Model
	The Workers and The Scheduler
	Data Structures
	Memory Management
	Dependence Management

	Compilation of OpenStream Programs
	Summary

	Extending OpenStream for Heterogeneous Systems
	Extension for GPUs
	Execution Model of OpenStream-GPU
	Syntax of OpenStream Programs Employing GPUs
	Run-time Implementation

	Extension for FPGAs
	Execution Model of OpenStream-FPGA
	Syntax of OpenStream Programs for FPGA Acceleration
	Run-time Implementation

	Summary

	Dynamic Scheduling on GPUs
	Dynamic Scheduling of Tasks on GPUs
	Execution of Tasks on GPUs
	Accounting for Compute Unit Asymmetry

	Experimental Setup
	Hardware Environment
	Experimental Baseline
	Benchmarks

	Results
	Data Locality: Bandwidth vs. Latency
	Impact on Performance
	Execution Breakdown
	Comparison with XKaapi Run-time

	Conclusion

	Dynamic Task Scheduling on FPGA-SoCs
	Dynamic Scheduling on FPGAs
	Scheduling Tasks on FPGA Accelerators
	Task Execution on FPGA Accelerators

	Experimental Setup
	Hardware Environment
	Benchmarks

	Results
	Task Distribution Analysis
	Impact on Performance

	Conclusion

	Conclusion and Perspectives
	Summary
	Contributions
	Future Directions

	Bibliography

