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Abstract

Recent years have witnessed a massive growth of global data generated

from web services, social media networks, and science experiments,

as well as the “tsunami” of Internet-of-Things devices. According

to a Cisco forecast, total data center traffic is projected to hit 15.3

zettabytes (ZB) by the end of 2020. Gaining insight into a vast amount

of data is highly important because valuable data are the driving force

for business decisions and processes, as well as scientists’ exploration

and discovery.

To facilitate analytics, data are usually indexed in advance. Depend-

ing on the workloads, such as online transaction processing (OLTP)

workloads and online analytics processing (OLAP) workloads, several

indexing frameworks have been proposed. Specifically, B+-tree and

hash are two common indexing methods in OLTP, where the number

of querying and updating processes are nearly similar. Unlike OLTP,

OLAP concentrates on querying in a huge historical storage, where up-

dating processes are irregular. Most queries in OLAP are also highly

complex and involve aggregations, while the execution time is often

limited. To address these challenges, a bitmap index (BI) was pro-

posed and has been proven as a promising candidate for OLAP-like

workloads.

A BI is a bit-level matrix, whose number of rows and columns are

the length and cardinality of the datasets, respectively. With a BI,

answering multi-dimensional queries becomes a series of bitwise oper-

ators, e.g. AND, OR, XOR, and NOT , on bit columns. As a result,

a BI has proven profitable for solving complex queries in large enter-

prise databases and scientific databases. More significantly, because of

x



the usage of low-hardware logical operators, a BI appears to be suit-

able for advanced parallel-processing platforms, such as multi-core

CPUs, graphics processing units (GPUs), field-programmable logic

arrays (FPGAs), and application-specific integrated circuits (ASIC).

Modern FPGAs and ASICs have become increasingly important in

data analytics because they can confront both data-intensive and

computing-intensive tasks effectively. Furthermore, FPGAs and ASICs

can provide higher energy efficiency, compared to CPUs and GPUs.

As a result, since 2010, Microsoft has been working on the so-called

Catapult project, where FPGAs were integrated into datacenter servers

to accelerate their search engine as well as AI applications. In 2016,

Oracle for the first time introduced SPARC S7 and M7 processors

that are used for accelerating the OLTP databases. Nonetheless, a

study on the feasibility of BI-based analytics systems using FPGAs

and ASICs has not yet been developed.

This dissertation, therefore, focuses on implementing the data analyt-

ics systems, in both FPGAs and ASICs, using BI. The advantages of

the proposed systems include scalability, low data input/output cost,

high processing throughput, and high energy efficiency. Three main

modules are proposed: (1) a BI creator that indexes the given records

by a list of keys and outputs the BI vectors to the external memory;

(2) a BI-based query processor that employs the given BI vectors to

answer users’ queries and outputs the results to the external memory;

and (3) an BI encoder that returns the positions of one-bits of bitmap

results to the external memory. Six hardware systems based on those

three modules are implemented in an FPGA in advance for functional

verification and then partially in two ASICs—180-nm bulk comple-

mentary metal-oxide-semiconductor (CMOS) and 65-nm Silicon-On-

Thin-Buried-Oxide (SOTB) CMOS technology—for physical design

verification. Based on the experimental results, these proposed sys-

tems outperform other CPU-based and GPU-based designs, especially

in terms of energy efficiency.
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Chapter 1

Introduction

The purpose of this chapter is to establish a general understanding of data ana-

lytics and the general approaches to a high-performance analytics system. Three

index/query methods and three platforms for data analytics are briefly men-

tioned. The motivation and key contributions of this research are then stated.

Finally, the layout of the dissertation is presented at the end.

1.1 What Is Data Analytics?

It is well-known that the amount of global data is exponentially increasing be-

cause of the rapid expansion of scientific observations and experiments, social

networking services, mobile devices, and the Internet-of-Things (IoT). For exam-

ple, Facebook, which was launched in 2004, is now the third most popular website

on the Internet with 1.86 billion daily active users (as of February 2017). Corre-

sponding to this large number of users, an enormous amount of data, including

a vast stockpile of new messages, photos, videos, and more recently, 360-degree

video, is generated every day. The total data size of Facebook, therefore, currently

reaches several exabytes (1 EB = 109 GB).

Analyzing a huge amount of data to discover hidden patterns, unknown corre-

lations, or valuable information for business decisions and scientific experiments

is undoubtedly a crucial and time-consuming task. For example, powerful data

analytics can precisely predict the emerging market trends so that businesses can

1



Chapter 1 – Introduction

Figure 1.1: The process of data analytics.

respond more quickly and gain a competitive edge over their rivals. However, the

input data are mostly highly complex because they encompass a mix of struc-

tured, semi-structured, and unstructured data, such as social media contents, text

from customer emails and survey responses, and more recently, data captured by

sensors connected to the IoT [1].

As a result of this complexity, the process of data analytics is composed of

many stages, as illustrated in Figure 1.1. To begin, data from different sources

are collected, cleansed, and transformed into a defined format, so that they can

then be stored and loaded into an analytics system, such as a Hadoop cluster,

a NoSQL database, or a data warehouse. The data index and data query stage

are performed whenever users want to query information in the database. These

are considered to be the two most important stages in an analytics system. Data

indexing is completed in advance to greatly reduce the execution time of the

data query stage. Finally, the query results are visualized in a proper way to

aid business executives or end users in their decision making. Machine learning

algorithms can also be applied with those data to construct an analytical model,

from which several alarms can be automatically triggered, whenever something

unexpected is uncovered.

Most studies on the efficient analytics system focus on data index and query

2
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Figure 1.2: The CUSTOMER relation.

based on tree, hash, and bitmap structure, as well as their implementation in the

central processing units (CPUs), graphics processing units (GPUs), and field-

programmable gate arrays (FPGAs). Section 1.2 and 1.3 give some common

understanding of those studies.

1.2 Approach to Data Analytics: Index and Query

Efficient approaches to index and query are indispensable to constructing a high-

performance data-analytics system. Specifically, an efficient index method aims

to look any data up in the database as fast as possible, while an efficient query

method aims to use the index results to answer all queries as fast as possible.

The concept of indexes in a database management system (DBMS) is similar to

book catalogs in a library or even like an index in a book. In this system, a list of

(key, pointer) tuples is organized in such a way that, given a specific key Ki or a

range of keys {Ki – Kj}, the index search will return the corresponding pointers,

from which the corresponding records can be accessed. Tree index, hash index,

and bitmap index (BI) are the most widely used approaches in current DBMSs.

The following contents will sequentially describe each approach, with and

without index, using a CUSTOMER relation, also called table, as an example.

CUSTOMER is comprised of eight records, also called rows, each of which stores

seven attributes, or the information of each record, as seen in Figure 1.2. The
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example query is given as “find all customers whose ages are between 10 and 19,

is living in Tokyo, and bought product A001”.

1.2.1 Full Table Scan

Full table scan, or sequential scan, is a scan made on a database where each

row of the table under the scan is read in a sequential order and the columns

encountered are checked for the validity of a condition. In order to solve the

example query above, we check each record from the beginning to the end. In

every check, we have to confirm whether the values of Age is between 10 and 19,

Address is “Tokyo”, and Product is “A001”. If all of them are matched, that

customer satisfies the example query. A full table scan is usually the slowest

method of scanning a table, due to the large number of input/output (I/O) reads

required from the disk which consists of multiple seeks as well as costly disk to

memory transfers.

1.2.2 Tree Index and Query

A tree index stores a list of (key, pointer) tuples in a tree-like structure [2, 3].

B+-tree is the most widely used tree index. To solve a query above, one option

is to create a B+-tree of attribute Age of CUSTOMER, as shown in Figure 1.3.

This tree contains one root node, two internal nodes, and four leaf nodes. The

“B” in B+-tree stands for “balanced”, because every path from the root to any

leaf of the tree is of the same length. A typical node contains several pairs of

keys and pointers. The key values within a node are kept in sorted order, where

the left-most node and right-most node contain the smallest value and largest

value, respectively. The pointer values within the leaf nodes also point to the

corresponding rows of CUSTOMER, or the record location in a database.

Suppose that we wish to find a record with Age of 15, or the search key value

Ki = 15. The function intuitively starts at the root of the tree and traverses

down the tree until it reaches a leaf node that would contain the specified key, if

it exists in the tree. From the root, the first internal node is selected because 15

< 20. Likewise, from the first internal node, the first leaf node is selected because

15 < 17. DBMS will then perform a sequential search in this node to find the
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Figure 1.3: The B+-tree index on key Age of CUSTOMER relation.

key value Ki = 15, from which the corresponding record can be located. If there

is no key value Ki = 15 in the leaf node, i.e. no record exits in the relation, null

will be returned to indicate failure.

B+-tree can also be used to find all records with search key values in a specified

range {Ki – Kj}. Such queries are called range queries. For example, to find all

customer records with age in a specified range above, i.e. {10 – 19}, we first

look for the leaf that contains a search key value Ki = 10. We then step through

records with the stopping condition being that Kj > 19. Furthermore, to solve

the example query above, in each found record, we have to check whether the

values of Address and Product are “Tokyo” and “A001”, respectively. If all of

them are also matched, that customer satisfies the example query.

1.2.3 Hash Index and Query

The hash-based approach allows us to avoid accessing an index structure to locate

records [4]. In hashing, the term bucket denotes a unit of storage that can point
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Figure 1.4: The hash index on key Age of CUSTOMER relation.

to one or more records. A hash function is applied on a search key to identify a

bucket, and then store the key and its associated pointers in the bucket.

Suppose that K denotes a set of key values, B denotes a set of all bucket

addresses, and h denotes a hash function from K to B, i.e. B = h(K). To insert

a record with a search key Ki, we first compute h(Ki), which gives the address

of the bucket Bi for that record. The record i is then stored in that bucket Bi.

To perform a lookup on a key value Ki, we simply compute h(Ki), then access

the bucket with that address. Suppose that two keys, Ki and Kj, have the same

hash value, i.e. h(Ki) = h(Kj). If we perform a lookup on Ki, the bucket h(Ki)

points to both record with key Ki and record with key Kj. Hence, the key values

in the bucket must be verified to obtain the correct record.

An example of a hash index on Age that consists of eight buckets is depicted

in Figure 1.4. The hash function h computes the sum of all digits of every Age

modulo eight. Take an example of Age = 29, or the search key value Ki = 29,

bucket 3 is used to store record with this Ki, because the sum of all digits is 11 and

11 modulo 8 = 3. In the case of Ki = 27 and Kj = 10 that shares the same bucket,
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post-processing must be performed to obtain the correct record. Although each

search key has only one associated pointer in this example, multiple pointers can

be associated with each key in the real applications. To solve the example query

above, we find all records with Age from 10 to 19, and in every match, we then

check whether the values of the Address attribute and the Product attribute are

“Tokyo” and “A001”, respectively. If all of them are also matched, that customer

satisfies the example query.

1.2.4 Bitmap Index and Query

BI is a specialized type of index designed for easy querying on multiple keys,

although each BI is built on a single key. The term BI was originally described

by Wong et al. [5] in 1985 and later popularized by O’Neil et al. [6] in 1997.

As a result of solving multi-key queries effectively, BI is widely applied in large

enterprise databases and scientific databases.

A BI is simply an array of bits. Figure 1.5(a) illustrates all BIs of three

attributes Age, Address, and Product. To begin, all records in a relation must be

numbered sequentially. Attribute Age is split into four smaller ranges, from L1

to L4, to simplify the data analysis. Four bitmaps corresponding to all ranges

is then created. It is noted that the studies on selecting optimum range, such

as encoding and binning, can be found in detail in [7, 8]. Because Age of record

0th record and 1th record is within a range of {10 – 19}, the first two bits of L2

turn into one. Likewise, because there is no Age smaller than 10, all bits of L1

become zero. Attributes Address and Product take five values corresponding to

the location name and product, respectively.

Figure 1.5(b) indicates how powerfully BI can cope with the multi-key query

given above, i.e. “find all customers whose ages are between 10 and 19, is living

in Tokyo, and bought product A001”. To answer this query, we fetch the bitmaps

for Age value L2, Address value “Tokyo”, and Product value “A001”, and then

perform an intersection, or bitwise logical AND, of three bitmaps. In other words,

we compute a new bitmap where ith bit has a value one, if the ith bit of the three

bitmaps are both one, and has a value zero otherwise. In the example in Figure

1.5(b), the intersection of three bitmaps Age = L2 (11000010), Address = “Tokyo”
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(a) The bitmaps for Age, Address, and Product.

(b) The BI-based query processing.

Figure 1.5: The BIs on multiple keys of CUSTOMER relation.

(01011010), and Product = “A001” (11000010) gives the bitmap 01000010. Based

on the value of bitmap result, i.e. the 1st-bit and 6th-bit are ones, the 1st and 6th

record contain the result for the query.

The summary of the three approaches regarding data index and query is shown

in Table 1.1. Depending on the specific applications, a suitable index method is

selected. For example, in the e-commerce databases where millions of products

are bought (inserted to the store) and sold (removed from the store) every single

minute, using B+-tree index or hash index can obtain a high benefit. However,

in the OLAP-like workload, most queries are highly complex and involve aggre-

gations, not to mention the limited execution time. Therefore, BI is considered

as a prominent solution [9].
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Advantages Disadvantages

B+-tree index

– Good performance for
lookup due to the balance
property
– Range queries support

– Memory access and parallel
processing
– Multi-key queries unsup-
ported

Hash index
– Very good performance for
lookup, due to the elimina-
tion of index structure access

– Bucket overflows
– Range queries and multi-
key queries unsupported

Bitmap index

– Very good performance for
lookup, due to the bitwise
logical operations usage
– Range queries and multi-
key queries support
– Efficient memory access
and parallel processing capa-
bility

– Strategy of selecting opti-
mum range [7, 8]

Table 1.1: The summary of index and query approaches.

1.3 Approach to Data Analytics: Platforms

Efficient platforms for data index and query are indispensable for a high-performance

analytics system. CPUs, GPUs, and FPGAs are the most commonly used plat-

forms applied in such a system. The following contents will briefly describe their

architectures and advantages.

1.3.1 CPU-Based Platform

Moore’s Law has dominated the computer industry since it was firstly defined in

1965 by Gordon E. Moore. According to Moore’s Law, the number of transistors

on a CPU chip is predicted to double every two years, which has generally meant

that the chip’s frequency will also increase. Since 2005, more parallelism via

multiple cores, with multiple levels of cache memory and arithmetic logic units

(ALUs) per chip, has remarkably enhanced the computing capability, while keep-

ing the power consumption steady. Because of these benefits, multi-core CPUs, as

shown in Figure 1.6, are currently exploited to solve compute-intensive problems,

instead of using the single-core high-frequency ones.
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Figure 1.6: The illustration of CPU architecture.

Figure 1.7: The illustration of GPU architecture.

Besides a stand-alone computer, a distributed system containing a large num-

ber of connecting computers has also been designed to cope with the heavy com-

puting workloads of big data analytics. For example, in the worldwide Large

Hadron Collider (LHC) computing grid project [12], measurement data are stored,

distributed, and analyzed by more than 170 computing centers in 42 countries

linked by the high-speed network infrastructure. Another example is the NERSC

Edison supercomputer that contains 5,586 computer nodes, each of which is com-

prised of a Intel Ivy Bridge 24-core 2.4-GHz CPU and 64-GB DDR3 SDRAM [13].

In other words, distributed computing is currently indispensable to resolving the

problem of big data.

1.3.2 GPU-Based Platform

GPU is a specialized microprocessor that was first designed for rapidly manip-

ulating intensive graphics processing tasks for output to a display device. Its

architecture is similar to that of a CPU, as depicted in Figure 1.7. Modern GPUs
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Figure 1.8: The illustration of FPGA architecture.

have taken the multi-core trend to the extreme, by integrating thousands of cores

into a single chip. For example, the Geforce GTX 1080 contains 2,560 cores

with a base clock of 1.6 GHz [14]. Moreover, the large amounts of integrated

ALU resources inside all cores makes GPUs more efficient than CPUs for algo-

rithms, where the processing of large blocks of data is done in parallel. The use of

GPUs for accelerated computing has already been explored and applied in many

advanced applications.

1.3.3 FPGA-Based Platform

FPGA is a reconfigurable chip that allows users to rewire it to implement a

specific functionality by using a hardware description language (HDL) language,

such as Verilog or VHDL. Its architecture is completely different from a CPU and

a GPU, as illustrated in Figure 1.8. Modern FPGAs contain not only hundred

thousands of configurable logic fabrics, thousands of digital signal processing

blocks and embedded memory blocks, but also a wide variety of high-speed I/Os

and peripherals, such as DDR3 SDRAM controllers and PCI Express 3.0 [15].

For those reasons, users can exploit FPGAs to construct various massive parallel

processing systems for compute-intensive tasks, namely big data analytics and

artificial intelligence [16, 17, 18, 19].

In addition to FPGA, application specific integrated circuits (ASIC) are also

designed for increasing the computing efficiency, such as an Oracle SPARC M7

processor [20]. ASIC is a custom designed integrated circuit used for a particular

application, rather than intended for general-purpose application. The architec-
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Advantages Disadvantages

CPU

– Software implementation,
wide range of tools for pro-
gramming/debugging
– No special interface is re-
quired

– Sequential processing, non-
deterministic execution time
due to the variation of many
dependencies
– High I/O cost
– High power consumption

GPU

– Software implementation,
some tools for program-
ming/debugging
– Parallel processing, fast ex-
ecution time
– No special interface is re-
quired

– Medium I/O cost
– Very high power consump-
tion

FPGA

– Massive parallel and
pipeline processing, ex-
tremely fast execution time
– Low data I/O cost
– Low power consumption

– Hardware implementation
(circuit-level), limited tools
for programming/debugging
– Special interface to high-
level software is required

Table 1.2: The summary of platform approaches.

ture of an ASIC is similar in function to an FPGA, except for the ability of

reconfiguration. The program is actually wired onto a piece of silicon and is

packaged into a chip. For instance, at 90-nm technology, the ASIC designs can

operate as fast as threefold to fourfold, whereas the dynamic power consumption

ratio is approximately 14 fold as small as the FPGA designs [21]. However, be-

cause of high startup costs, ASICs are only considered when large volumes are

needed.

The summary of the three platform approaches regarding performance and

implementation is shown in Table 1.2. Despite the difficulty in implementation,

FPGA is capable of delivering higher performance, while consuming much lower

power than CPU and GPU [22].
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1.4 Motivation and Key Contributions

Based on the background above, there are two major findings:

• BI allows multi-key queries to be effectively answered by using simple bit-

wise logical operations. BI also supports parallel processing and efficient

memory access, thereby reducing both computation and I/O cost. Figure

1.9 shows the performance of a BI-based data-analytics software called Fast-

bit, compared to a DBMS using B-tree. It is noted that B-tree is similar

to B+-tree, except that not only leaf nodes but also root node and inter-

nal nodes can point to the records. Various experiments in a high-energy

physics dataset proved that the BI-based Fastbit could operate at least 8×
faster than a B-tree-based DBMS.

• FPGAs and ASICs are considered to be prominent candidates for an ana-

lytics system because they can not only achieve higher computing efficiency

but also consume less energy than both CPUs and GPUs. Figure 1.10

depicts an example of the performance/power advantage of FPGA in cer-

tain classes of server applications, as compared to a CPU and GPU [23].

The authors compared the search algorithm acceleration capabilities of a

Xilinx Kintex-7 FPGA, an Intel Xeon E5620 2.4-GHz 16-core CPU, and a

NVIDIA K10 GPU across a range of parallel-thread scenarios. The authors

found that a mid-range Kintex-7 FPGA could process around 3.5× and

2.5× faster than CPU and GPU, respectively. More significantly, FPGA

consumed less than 20 W, which is about 4× and 22× lower than that of

the 80-W CPU and 225-W GPU, respectively.

Although many studies exploited the parallel processing capability of CPU

[32, 33, 34, 35] and GPU [39, 40] for fast BI-based index and query tasks, research

on the feasibility of a BI-based analytics system using FPGAs and ASICs has not

been developed yet. This dissertation, therefore, aims to bridge this gap by

originally proposing such system in an FPGA, and later in an ASIC for power

reduction.

Three components named bitmap index creator (BIC), bitmap-index-based

query processor (BIQP), and bitmap index encoder (BIE) are first proposed, as
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Figure 1.9: The performance of BI-based Fastbit versus a DBMS [10, 11].

Figure 1.10: The performance/power benefit of predictive search algorithms on a
FPGA versus on a CPU and GPU [23, 24].
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(a) Bitmap index creator.(b) Bitmap-index-based
query processor.

(c) Bitmap index en-
coder.

Figure 1.11: The architecture of BIC, BIQP, and BIE.

shown in Figure 1.11. The overview of each component is summarized as follows:

• BIC: indexes input data by given keys. It is composed of an operation/key

memory, a content-addressable memory, and a set of logic gates used for

range indexing, as illustrated in Figure 1.11(a). Two different BICs are

designed to be able to index 8-bit and 16-bit input words. With each given

key, BIC produces a N -bit BI vector, where N corresponds to the number

of input words. Both of them are fully operational at 100 MHz in an

Arria V FPGA and surpassed other CPU-based and GPU-based designs.

Furthermore, a set of equations is introduced to be able to quickly predict

the indexing throughput.

• BIQP: answers the given queries by using the given BI vectors. It consists

of an operation memory, a BI memory, and a set of logic gates used for

query solving, as depicted in Figure 1.11(b). The outcome of BIQP is a N -

bit bitmap result, whose length is the same as the input BI vectors. BIQP

is also fully operational at 100 MHz in an Arria V FPGA and surpassed

other CPU-based designs. A set of equations is also discussed to be able to

quickly estimate the query time. The simulation and measurement results

of BIQP in 180-nm bulk CMOS and 65-nm Silicon On Thin Buried Oxide

(SOTB) CMOS [25, 26, 27, 28] also confirm the ASIC feasibility.

• BIE: encodes the bitmap results into matching positions. For example,

if the result is 110101002, the output will become zero, one, three, and
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five, which corresponds to the position of all bit ones. BIE is mainly built

by a special multi-match priority encoder and a multiplexer, as illustrated

in Figure 1.11(c). This encoder employs a so-called one-dimensional-array

to two-dimensional-array conversion and a look-ahead signal to cope with

large-sized input data effectively. The experimental results on various FP-

GAs and an 180-nm bulk CMOS proves the advantage of this work over

other state-of-the-art studies.

Each of three components can function independently or can be put together

to form an index creation system, query processing system, and data-analytics

system, as shown in Figure 1.12. Those systems are verified in an Intel Arria V

development kit, which includes a mid-range Arria V System-on-Chip FPGA and

high-speed external DDR3 memory. The overview of three systems is summarized

as follows:

• BI creation system: employs a BIC to index a large amount of data of

each relation in parallel, as shown in Figure 1.12(a). Two systems are then

proposed: (1) BI creation system without an encoder: BIE is not connected

to BIC, so all generated BIs are saved directly to the external memory for

further processing by either BIQP or other DBMSs; (2) BI creation system

with an encoder: BIE is connected to BIC, so only the matching positions

of BI vectors, or encoded values, are stored in the memory.

• BI-based query processing system: necessary BI vectors are sent to

BIQP for query processing, as shown in Figure 1.12(b). Those indexes can

be generated in advance, either by BIC or other DBMSs. Two systems

are then proposed: (1) Query processing system without an encoder: BIE

is not connected to BIQP, so all bitmap results are saved directly to the

external memory for further processing; (2) Query processing system with

an encoder: BIE is connected to BIQP, so only matching positions of the

bitmap results, or encoded results, are stored in the memory.

• BI-based analytics system: index and query are performed sequentially

by BIC and BIQP, respectively, as shown in Figure 1.12(c). Two systems

are then proposed: (1) BI-based analytics system without an encoder: BIE
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is not connected to BIQP, so all query results are saved directly to the

external memory for further processing; (2) BI-based analytics system with

an encoder: BIE is connected to BIQP, so only matching positions of the

query results are stored in the memory.

The architecture of BIC, BIQP, and BIE will meet the criteria of scalability

and parallel processing capability. Meanwhile, the performance of BIC, BIQP,

and BIE will be evaluated by data I/O cost, processing throughput, and energy

efficiency.

• Scalability: is defined as the ability of the system to handle a growing

workload in a capable manner or its ability to be enlarged to accommodate

that growth. In other words, scalability is considered to be the ability to

add more hardware—scale up or scale out—to improve the capacity and

performance of a system. For example, two BICs that can index 65,536 8-

bit words and 32,768 16-bit words are made by simply changing the memory

size and the number of logic gates. Likewise, BIQP depth and width are

also adjusted by using additional memory blocks and logic circuits. Finally,

BIE architecture can deal with a wide range of input data effectively, from

32 bits to 4 Kbits.

• Parallel processing: is defined as the ability of the system to perform

several tasks in parallel, thereby helping to improve the entire processing

throughput as well as reduce the whole latency. For example, all three com-

ponents can process data in parallel at the speed of clock cycle: BIC indexes

as many as 32,768 16-bit words at the rate of one key/32,768 words/cycle;

BIQP processes each 32-Kbit BI in parallel at the rate of one operation/32-

Kbit BI/cycle; BIE detects and encodes the matching positions in a 4-Kbit

bitmap data at the rate of one match/4-Kbit data/cycle.

• Data I/O cost: is defined as the rate at which data is transferred from

and to a peripheral device. Data I/O cost can be viewed as the rate at

which the data is read and written to the memory (or disk) or the data

transfer rate between the nodes in a cluster. For example, both BIC and

BIQP can access the data and operations directly from the external memory
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(a) The demonstration of a BI creation system.

(b) The demonstration of a BI-based query processing system.

(c) The demonstration of a BI-based analytics system.

Figure 1.12: The utilization of BIC, BIQP, and BIE.
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using direct memory access mechanism. Therefore, the I/O performance is

likely to reach as high as the memory bandwidth. In other words, both

components can fully exploit the 25.6-Gbps DDR3 memory integrated in

the FPGA development board.

• Processing throughput: is defined as the number of data that can be pro-

cessed in a time unit. Throughput is particularly important in the systems

whose results must be strictly answered within certain time constraints.

The throughputs of all three components at 100-MHz operating frequency

are listed as follows. BIC indexes 16-bit data in parallel at the throughput

of 1.48 GB/s; BIQP processes 32-Kbit BI vectors in parallel at the through-

put of 2.45 GB/s; BIE encodes 2,048-bit data in parallel at the maximum

and minimum throughput of 66.34 Gb/s and 95.23 Mb/s, respectively.

• Energy efficiency: is defined as the ability to deliver the same process-

ing throughput, but consume less power. For instance, the conventional

processors like CPUs consume a large amount of energy and cannot be op-

timized to suit the target applications. On the other hand, GPUs are pro-

grammable, but consume an even higher amount of energy. FPGAs offer a

middle ground among the platforms with high energy efficiency without sac-

rificing the throughput of the application. Therefore, BIC, BIQP, and BIE

implemented in an FPGA will be proven to achieve better energy efficiency

than those implemented in CPUs and GPUs.

1.5 Dissertation Layout

The dissertation is divided into seven chapters, whose layout is depicted in Figure

1.13.

• Chapter 2 presents the literature review of data-analytics systems and en-

coding methods.

• Chapter 3 describes in detail the architecture of a BIC that is mainly based

on an enhanced content-addressable memory and a set of logic gates.
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Figure 1.13: The dissertation layout.

• Chapter 4 focuses on the architecture of a BIQP that is primarily based on

a cascade BI memory and a set of logic gates.

• Chapter 5 provides a detailed description of a BIE using the proposed 1D-

array to 2D-array conversion method and a look-ahead signal.

• Chapter 6 evaluates the performance of each component and their integra-

tion in a data-analytics system.

• Chapter 7 summarizes the primary results and identifies a list of open topics

for the future research.
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Literature Review

The purpose of this chapter is to review the motivation, methodologies, and

achievements of several recent works. The first section focuses on CPU-based,

GPU-based, and FPGA-based approaches to the data index and query process.

The last section focuses on FPGA-based approaches to bitmap encoding, which

are mainly based on a priority encoder and a multi-match priority encoder.

2.1 Approaches to Index and Query

Most studies on efficient data analytics focus on tree index, hash index, and BI,

as well as their implementations in the CPUs, GPUs, and FPGAs. Figure 2.1

illustrates some recent works, whose descriptions are shown below.

2.1.1 CPU-Based Approaches

Several CPU-based data analytics systems were reviewed as described below.

[1]: Z. Li et al. [29] proposed an efficient index called IR-Tree for geographic

document search, such as “Boston’s hotels and bars reviews” query. The pro-

posed search algorithm can filter both spatial and textual information, perform

relevance computation, and rank the results. All functions were written by C++

and implemented in Microsoft Windows Server 2003 operating on a Intel Xeon

2.0-GHz CPU with 8-GB memory. Compared to two previous works, i.e. KR∗-

tree and HybridR, the search time of IR-tree in two real document sets was
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Figure 2.1: The summary of approaches to data analytics.

approximately 20% and 50% faster, respectively.

[2]: H. Wang et al. [30] presented a new framework that could effectively

process queries in a big data warehouse. The framework is called TAMP, which

stands for transform, aggregate, merge, and post-process. It was then deployed

on Hadoop distributed on a cluster of 14 Linux computer nodes, each of which

contains a Intel Core2Duo 1.87-GHz CPU with 2-GB memory, to evaluate the

scalability and performance. The Star Schema Benchmark proved that the per-

formance of Hadoop-based TAMP was 8× and 13× as fast as that of the original

Hadoop and HadoopDB, respectively.

[3]: Y. Hua et al. [31] introduced a novel near-real-time semantic search

called FAST for analyzing massive datasets. This methodology exploited the

correlation property within and among datasets using improved correlation-aware

hashing and flat-structured addressing to significantly reduce the query latency,

while incurring an acceptably small loss of accuracy. The proposed design was

written by C in the Linux environment. All experiments were then conducted in a

cluster of 256 computer nodes, each of which contained 32-core CPU and 64-GB

memory. The 200-TB real datasets including 60 million images were collected

from the cloud. Compared to the previous work, FAST was more than 300×
faster, whereas the accuracy was only 0.0033% lower.

[4]: J. Chou et al. [32] proposed a novel BI-based software framework called
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FastQuery that indexes and queries massive datasets using modern supercom-

puting platforms. Due to the BI usage, data indexing and query processing

procedures could be effectively distributed in a large numbers of many-core pro-

cessors. All of the experiments were then conducted in a Hopper supercomputer,

which consists of 6,500 computer nodes. In each node, an AMD 12-core 2.1-GHz

CPU and 2-GB memory were employed. The results showed that the indexing

throughput of a 50-TB dataset reached as high as 6.1 GB/s and 15.7 GB/s when

using 2,304 cores inside 192 CPUs and 11,520 inside 960 CPUs, respectively. Since

the power consumption of each CPU is 80 W, 192 CPUs and 960 CPUs usage

required 15,360 W and 76,800 W, respectively. As a result, the corresponding

energy efficiencies were 2,477 J/GB and 4,891 J/GB. With the calculated BIs,

FastQuery was able to process all queries in 12 seconds using 2,880 cores. The

overall throughput and power of index and query tasks, therefore, were similar

to that of the index task itself.

[5]: T. Zhong et al. [33] presented a BI creation method called ParaSAIL

that focused on maximizing the speedup from parallel execution by avoiding

write-write and write-read cacheline conflicts among CPUs. As a result, Para-

SAIL is claimed to be well-suited to systems with high numbers of cores, such as

mainstream multi-core processors and many-core coprocessors (Co-CPU). All ex-

periments were conducted in two Intel Xeon E5-2680 2.7-GHz 8-core CPU and in

a Intel Xeon Phi 60-core 1-GHz Co-CPU card. An evaluation using data from an

oceanographic dataset showed that ParaSAIL indexed 108 MB/s and 473 MB/s

using CPU and Co-CPU, respectively. Due to the power consumption of 130 W

and 225 W, the corresponding energy efficiencies of CPU and Co-CPU were 1,232

J/GB and 487 J/GB, respectively.

[6]: Y. Liu et al. [34] employed NIQF—a word-aligned hybrid bitmaps

framework—to index and query massive data collected from the New Vacuum

Solar Telescope. In addition to the framework, several simple and useful ap-

plication programming interfaces were also designed for data manipulation and

system integration. All experiments were then conducted in a Intel E7200 2.53-

GHz CPU with 4-GB memory. Using the 1.6-GB synthetic data, NIQF could

process all multi-conditional AND queries at a throughput of 107.5 MB/s, which

surpassed MySQL operations. Since the CPU power consumption is 65 W, the
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corresponding energy efficiency was 619 J/GB.

[7]: C. H.-Te et al. [35] presented an in-memory query system (IMS) that

combined bitmap indexing, spatial data layout reorganization, distributed shared

memory, and location-aware parallel execution. The real datasets were obtained

from a 750-GB plasma physics simulation. All experiments were conducted in a

Edison supercomputer containing 5,576 compute nodes. In each node, two Intel

Ivy Bridge 12-core 2.4-GHz CPUs and 2-GB memory are utilized. The indexing

tasks employed 1,250 cores and 20,000 cores to generate 150-GB indexes at the

throughput of 28 GB/s and 510 GB/s, respectively. Since each CPU consumes

115 W, the corresponding energy efficiencies were 213 J/GB and 188 J/GB, re-

spectively. The query throughput on 150-GB indexes reached 10.1 GB/s and 42.5

GB/s using 5,000 cores and 20,000 cores, or the energy efficiencies reached 2,368

J/GB and 2,254 J/GB, respectively.

2.1.2 GPU-Based Approaches

Several GPU-based data analytics systems were reviewed as described below.

[8]: J. Kim et al. [36] proposed a novel traversal algorithm called Massively

Parallel Restart Scanning (MPRS) for multi-dimentional queries on the GPU.

This algorithm effectively addressed two primary drawbacks of R-tree indexing

structure including irregular memory access patterns and recursive back-tracking

function calls. All experiments were then conducted on a NVIDIA Tesla M2090

GPU and an AMD 8-core 2.0-GHz CPU with 64-GB memory. The real datasets

were obtained from the national climate data center. Using the GPU, MPRS

could process 56,000 queries per second, which reached 364× higher throughput

than the multi-threaded R-tree implemented in the CPU.

[9]: M. Alam et al. [37] introduced a GPU-based Adaptive Radix Tree (GRT)

for high-performance data search in an in-memory database. GRT, together with

the state-of-the-art Adaptive Radix Tree (ART) and Fast Architecture Sensitive

Tree (FAST), were conducted in a NVIDIA Tesla K80 GPU for the performance

comparison. The sparse keys and dense keys were correspondingly extracted from

the music and book datasets. For the lookup throughput of the sparse keys, GRT

was 10.6× and 2.1× higher than ART and FAST, respectively. Moreover, when
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testing with the dense keys, GRT throughput was 8.3× and 1.6× higher than

ART and FAST, respectively.

[10]: H. Pirk et al. [38] provided a generic strategy for efficient CPU/GPU

cooperation. This strategy calculates an approximate result based on lossy com-

pressed, GPU-resident data and refines the results using residuals on the CPU. To

achieve this goal, a set of approximate and refine (A&R) operators using the hash

technique was designed. All experiments were then conducted in two NVIDIA

Geforce GTX 680 GPUs. Compared to the standard MonetDB implemented in

a Intel Xeon E5-2650 16-core 2.0-GHz CPU, the GPU-based A&R could achieve

up to 8× performance improvement, even for datasets larger than the available

GPU memory.

[11]: W. Andrzejewski et al. [39] utilized GPU to enhance the BI compression

algorithm called Position List Word Aligned Hybrid (PLWAH). Although the

BI size is relatively smaller than other indexing methods, it becomes too large

for wide domains. A BI compression algorithm, such as PLWAH, therefore, is

proposed to reduce not only the BI size but also the I/O transfer time. To

parallelize compressing and decompressing steps of PLWAH as well as to perform

bitwise operations on the compressed bitmaps, GPU was exploited instead of

CPU. All experiments were then conducted in a NVIDIA Geforce 285 GTX GPU

and a Intel Core i7 2.8-GHz CPU for the performance comparison. GPU-based

PLWAH were approximately 17.5× and 6.1× faster than CPU-based PLWAH

in the BI compression and decompression task, respectively. The experimental

results also proved that the query throughput on the two 120-MB BIs reached

0.1 GB/s and 0.65 GB/s. Because the power consumption of CPU and GPU are

95 W and 204 W, the corresponding energy efficiencies were 950 J/GB and 313

J/GB, respectively.

[12]: F. Fusco et al. [40] presented the algorithms for building compressed BI

in real time on GPUs, which targets the multi-10-Gbps network traffic recorders.

Word Aligned Hybrid (WAH) and PLWAH algorithms were applied to compress

the BIs. To evaluate the performance, the authors used a Intel Core i7-2600K

3.4-GHz CPU and a NVIDIA Geforce GTX 670 GPU. Regarding the indexing

throughput, GPU-based WAH reached a 20× speedup over CPU-based WAH.

Furthermore, GPU-based PLWAH could achieve the indexing throughput of up to
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336 MB/s, which was well suited for multi-10-Gbps packet indexing requirement.

Due to the power consumption of 170 W, the corresponding energy efficiency was

518 J/GB, respectively.

2.1.3 FPGA-Based Approaches

Several FPGA-based data analytics systems were reviewed as described below.

[13]: D. Heinrich et al. [41] proposed a hybrid B+-tree index structure in

a semantic web database system. In the proposed structure, the lower levels

of the B+-tree, especially the leaves where the values are stored, are located

on the host system, while the root and the most of the upper levels with the

interior nodes are stored on the FPGA. The search in the upper levels of the

hybrid index was processed in parallel by applying an FPGA. All experiments

were conducted in a Xilinx Virtex-6 FPGA and a Intel Xeon E5-1600 3.0-GHz

CPU for the performance comparison. Depending on the configurations, the

computation time of the FPGA-based system was up to 2.3× faster than that of

the CPU-based system.

[14]: K. Agarwal et al. [42] introduced a high performance and scalable

hardware accelerator of dictionary matching on very large dictionaries for text

analytics applications. This accelerator employed a novel hashing-based approach

in order to process a string token per clock cycle. The experimental results

on an Altera Stratix IV FPGA proved that the proposed design could process

typical document streams at a processing rate of approximately 12 Gbps, while

simultaneously allowing support for large dictionary sizes containing up to 100K

patterns. As a result, the information extraction workload could be significantly

accelerated.

[15]: D.-H. Le et al. [43] presented a content-addressable memory based in-

formation detection system (IDS) in an FPGA for fast, exact, and approximate

image matching on two-dimensional data. The proposed system can be poten-

tially applied to fast image matching with various search patterns, without using

search principles. Because the content-addressable memory was constructed by

dual-port memories, IDS architecture was partially similar to BIC. Nonetheless,

IDS did not effectively solve the problem of loading data to a content-addressable
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Platforms
Throughput (GB/s) Energy (J/GB)

Index Query Index Query

[4] FastQuery [32]
11,520 cores/960 CPUs 15.66 – 4,891 –
2,304 cores/192 CPUs 6.20 (sum) 2,477 (sum)

[5] ParaSAIL [33]
8 cores/1 CPU 0.105 – 1,232 –

60 cores/1 Co-CPU 0.46 – 487 –
[6] NIQF [34] 4 cores/1 CPU 0.105 (sum) 619 (sum)

[7] IMS [35]
20,000 cores/834 CPUs 510 – 188 –
20,000 cores/834 CPUs – 42.5 – 2,254

[11] GPU11 [39]
4 cores/1 CPU – 0.10 – 950

240 cores/1 GPU – 0.65 – 313

[12] GPU13 [40] 1,344 cores/1 GPU 0.33 – 518 –

Table 2.1: The summary of state-of-the-art works.

memory and encoding the bitmap result. IDS was also not suitable for multi-

dimensional analytics targets. The experimental results on an Stratix III showed

that querying a 32×32 gray image in a 128×128 gray image required 0.122 ms at

frequency of 50 MHz.

In summary, several recent studies on information detection using a content-

addressable memory and data analytics using tree index, hash index, or BI that

implemented in CPU, GPU, or FPGA have been surveyed. Although CPU-based

data analytics approaches are very common, there has been an increasing number

of GPU-based and FPGA-based approaches recently, because of their benefit of

parallel processing [36, 38, 39, 40, 41]. For BI, there is a lack of study of a

BI-based analytics system in FPGA so far. Therefore, the achievements of the

BI-based analytics systems in CPUs and GPUs, as summarized in Table 2.1, will

be considered as the state-of-the-art works in this dissertation. The quotient

of power consumption (J/s) and processing throughput (GB/s), which is called

as the energy efficiency, is used to evaluate the performance. The small value

of energy efficiency of a certain system means that this system delivers high

throughput but only consumes low power. In other words, if a system possesses

high value of energy efficiency, such system possibly requires high power in order

to deliver the certain throughput.
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Figure 2.2: The block diagram of PE8.

2.2 Approaches to Bitmap Index Encoder

One prominent solution for the BIE is to employ a multi-match priority encoder.

A multi-match priority encoder is a special encoder that can output all positions

of all match bits inside the bitmap input. It is usually composed of two primary

components, including a preprocessing module and a priority encoder. A priority

encoder is used to resolve the highest priority match and output the matching

location into binary format, from which corresponding data inside memory are

retrieved accurately.

2.2.1 FPGA-based Approaches

Most previous works considered a priority encoder as the combination of two

primary modules, which are called PRIORITIZER (PRI) and ENCODER (ENC).

Figure 2.2 depicts an 8-bit priority encoder (PE8) with the input d of 0100110.

Since d1 is the highest priority bit, the output ep and q would become 01000000

and 001, respectively.

In order to handle larger input data, several PE8s are connected together.

Figure 2.3(a) illustrates a conventional architecture of a 64-bit priority encoder

(PE64) containing a set of 8-bit PRIs and 64-bit ENC. PRI0 to PRI7 are connected

in serial, and each of them is controlled by the input enable C from the former

PRI. Initially, 64-bit input data is split into eight 8-bit groups. Each PRI resolves

the highest priority bit of each group, while ENC outputs a matching location

into binary format. For instance, if D0 is 01001110, EP0 and Q become 0100000
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(a) Based on serial architecture. (b) Based on parallel architecture.

Figure 2.3: The block diagram of PE64s.

and 000010, respectively. Because all PRI modules are connected in series, the

worst latency of PE64 is about eight times as high as that of one PRI.

To reduce such latency, C.-H. Huang et al. [44] presented multi-level looka-

head and multi-level folding techniques. By remapping all control signals, the

performance was improved up to ten times. However, this mapping strategy be-

came increasingly complicated as priority encoder size went up. Figure 2.3(b)

depicts a parallel priority look-ahead architecture, which was initially introduced

by C. Kun et al. [45] and then was applied in ternary content-addressable mem-

ory [46]. With this architecture, PRI0 to PRI7 can return their priority matches

in parallel due to the control signal provided by PRI8. Despite decreasing the la-

tency, the resource utilization increases because of the additional PRI8 and logic

gates. Another improvement from D. Balobas et al. [47] exploited a new design

of a 4-bit priority encoder (PE4) and a static-dynamic parallel priority lookahead

architecture to boost the performance of PE64. However, the architectures of

large-sized priority encoders were not mentioned. Furthermore, S. Abdel-Hafeez

et al. [48] presented a special prefix scheme for priority encoders whose size rises

to 256-bit. Nevertheless, the performance declines sharply with increased priority

encoder size.

Figure 2.4(a) shows the architecture of a PE64 based on four one-hot encoders,

which was designed by D.-H. Le et al. [49]. Each ENC converts a corresponding

16-bit group into 4-bit position and a control signal C decides whether the results

are passed to the next multiplexers. If it is assumed that the priority encoder
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(a) Based on the one-hot encoders. (b) Based on the comparison and sort circuits.

Figure 2.4: The block diagram of PE64s.

size is 2,048 bits, then up to 128 ENCs connected in series would be required.

A 2,048-bit multi-match priority encoder based on this priority encoder was also

found in [49].

Figure 2.4(b) depicts another approach proposed by S. K. Maurya et al. [50],

where a set of comparator and sort circuits are deployed to check each pair of

bits of input data, so the highest priority bit is selected. If the priority encoder

size is 2,048 bits, as many as 2,047 comparator and sort circuits connecting in 11

pipeline stages are demanded. In other words, those architectures are likely to

result in large-scale resource consumption.

A novel architecture of an L-bit priority encoder using the one-dimensional-

array to two-dimensional-array (1D-to-2D) conversion method was originally pro-

posed in [51]. Figure 2.5(a) illustrates this method, where L-bit input data is

converted into a M ×N -bit matrix, where M and N are the numbers of columns

and rows, respectively. All bits of row status are obtained by performing the

bitwise OR to all bits in the corresponding row. Subsequently, an N -bit priority

encoder finds the highest priority bit i (row index) in the N -bit row status, and

an M -bit priority encoder seeks the highest priority bit j (column index) in this

row i. The matching position k of an 1D-array input is retrieved as k = i×M +

j. More significantly, if M is a power of two, the multiplier and adder are simply

replaced by the fixed wirings that function as left-shift and OR operators. Sim-

ilarly, a large-sized priority encoder such as a 4,096-bit priority encoder (PE4K)

was built by 64 PE64s connecting in parallel and one central PE64, as depicted
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(a) PE64. (b) PE4K.

Figure 2.5: The block diagram of PE64 and PE4K using 1D-to-2D conversion.

Platform (FREQ×L) (Gbps) Resource (LE/Gbps)

8-bit 64-bit
2,048-

bit
8-bit 64-bit

2,048-
bit

[46] Stratix FPGA 1.9 3.5 – 17.5 59.5 –

[49] Cyclone IV FPGA – – 102.4 – – 191.2

[51]
Stratix FPGA 2.9 6.1 – 7.9 34.9 –

Cyclone IV FPGA – – 145.4 – – 30.7

Table 2.2: The summary of state-of-the-art works.

in Figure 2.5(b). The detailed of this methodology can be found in Chapter 5.

In summary, several recent studies on priority encoder and multi-match pri-

ority encoder in FPGAs have been surveyed. These encoders are the primary

component of a BIE. The achievements of related studies are summarized in

Table 2.1 and will be considered as the state-of-the-art works in this disserta-

tion. Suppose that FREQ and L are the operating frequency and the number of

bits of MPE, respectively. The resource efficiency is the quotient of (FREQ×L)

and logic elements (LEs) utilization of corresponding designs. The smaller the

resource efficiency is, the more energy efficient a design becomes.
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Chapter 3

Bitmap Index Creator

The purpose of this chapter is to propose a scalable hardware architecture of a

BI creation accelerator that can index a large number of data in parallel. The

output of this design is a set of BI vectors, which are used to answer the multi-

dimensional queries by a query processor in the subsequent stage.

3.1 Introduction

In order to accelerate the query process, data are commonly indexed in advance.

Because this dissertation addresses the problems of multi-dimensional queries,

which are mainly used in analytics workloads, a BI is employed, instead of a tree

index or a hash index. Furthermore, FPGA-based approach is targeted, instead

of a CPU-based or a GPU-based approach, due to its computing efficiency. This

chapter, therefore, focuses on a scalable hardware architecture of a BI creation

accelerator, also called BI creator (BIC). The contributions are listed as follows.

• This chapter points out the relationship between the random-access-memory-

based content-addressable memory (RAM-based CAM) and the BI. Using

the concept of RAM-based CAM, a methodology to index data in parallel

is then proposed.

• This chapter presents an enhanced cascade architecture of RAM-based

CAM that significantly reduces both the reset time and load time of the
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Figure 3.1: The block diagram of BIC.

original RAM-based CAM. Specifically, the reset time and load time go

down 32×, if the external memory bus width becomes 256 bits.

• This chapter proposes a full design of BIC that can directly access the

external memory to lower the I/O cost and produce the range indexes of up

to 65,536 words in parallel. Moreover, BIC size is simply adjusted by adding

or removing corresponding logic and memory resources. The content of this

chapter was partially presented in some previous works [52, 53, 54, 55].

The remainder of this chapter is organized as follows. Section 3.2 describes in

detail the hardware architecture of BIC. Section 3.3 concludes this chapter. The

performance analysis of BIC is discussed in detail in Chapter 6.
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3.2 Architecture

3.2.1 Overview

Figure 3.1 illustrates the block diagram of a BIC used to index three given at-

tributes (columns), namely Age, Address, and Product, of a relation (table). All

of the operations/keys are extracted from the queries and initially stored in an

external memory together with all attributes. BIC is composed of four modules

operating in parallel, namely direct memory access (DMA) module, RAM-based

CAM module, operation memory (OPM) module, and query logic array (QLA)

module.

To begin, all operations/keys are transferred to the OPM. Subsequently, CAM

continuously receives the values of attribute Age until it becomes full. CAM then

starts using the operations and keys from OPM to produce the correspondent BI

vectors. Each separate vector is dispatched to QLA in turn, where an array of

logic gates and an internal register are employed to calculate the range index.

Lastly, the register values or range indexes are orderly stored in the external

memory. This process repeats until all values of the current attribute are indexed.

The next two attributes also follow the same process.

3.2.2 Direct Memory Access (DMA) Module

The three-channel DMA allows BIC to directly access to DDR3 through a mem-

ory controller. The current used FPGA provides two high-throughput memory

controllers so that users can exploit the huge space of external memory. Because

we are using DDR3 and its theoretical bandwidth is 25.6 Gbps, we configure the

bus data width of 256 bits wide and operating frequency of 100 MHz. The DMA

is properly designed so that BIC can input and output data at the rate of DDR3

theoretical bandwidth.
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Figure 3.2: Bitmap index of an attribute Address.

Figure 3.3: The block diagram of RAM-based CAM of Address.

3.2.3 Random-Access-Memory-Based Content-Addressable

Memory (RAM-Based CAM) Module

3.2.3.1 Relationship between Bitmap Index and RAM-Based CAM

As mentioned earlier in Section 1.2.4, BI of an attribute Address is a bit-level

matrix, as shown in Figure 3.2. The number of rows is four (the cardinality of

attribute values) and the number of columns is eight (the number of records).

The row j and column i of BI turns into one if Addressi=j and vice versa. In

addition, row j of the BI is also called a BI vector of value i of attribute Address.

CAM is a special type of computer memory that is applied in various search-

intensive applications, such as multimedia processing, data analytics, and data
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mining [56]. In contrast to RAM, each input and output of CAM are the con-

tent of data and address of matching data, respectively. Depending on different

applications, either binary CAM or ternary CAM is used. The former only sup-

ports storage and searching binary bits (zero or one) while the latter allows a

third matching state, so-called “don’t care”, in its storage. From now on, as only

binary CAM is employed to construct BI, the term CAM represents binary CAM.

Although modern FPGAs provide a large number of embedded RAM blocks,

dedicated registers, and lookup tables, they exclude dedicated CAM blocks pre-

sumably because of their disadvantages of area and power. Instead, FPGA ven-

dors propose the methodology to construct a scalable CAM from the available

embedded RAM blocks of FPGA by performing several mapping techniques to

input data and address [57, 58]. Using those techniques, a RAM-based CAM of

attribute Address is built as in Figure 3.3. Each row in the RAM represents one

possible mapping of the input data bits to the CAM contents. Concretely, the

value of each cell is set to one if the data is stored at that address, and vice versa.

Intuitively, RAM-based CAM is a transpose of the BI. In fact, RAM value

at address j is equivalent to a BI vector j, or column j of BI matrix depicted in

Figure 3.2. For this reason, the concepts from RAM-based CAM is borrowed to

construct a BIC. To keep it short, the term CAM refers RAM-based CAM from

now on.

3.2.3.2 Simplified Cascade Architecture of CAM

Although the architecture of embedded memory integrated in an FPGA varies

with the FPGA vendors, a CAM is usually built from the dual-port memory

(DPM). Concretely, the Intel Arria V FPGA exploits a DPM, where port A is an

8,192×1-bit memory and port B is 256×32-bit memory, to construct a 32×8-bit

CAM, also named as a CAM unit (CU). One CAM bit, therefore, costs 32 RAM

bits. We select these settings because 32×8-bit CAM is the most efficient CAM

primitive that can be built from an M10K—a basic memory block unit of Arria

V FPGA.

Figure 3.4(a) describes the architecture of a CU, whose input data data and

addresses addr enter at port A while search data (key) and matching address
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(index) leave at port B. Firstly, input data combines with input address as ((data

<< 5) OR addr, << is a shift left operation) to form the address of port A

addr a. Secondly, set is used as data a of port A. If set turns into one, input

data is indexed; otherwise, the available index is cleared. Because CAM must be

fully reset before receiving new inputs, it takes two clock cycles for writing one

value.

Several CUs are connected to increase the CAM size. An (32×N)×8-bit CAM

is shown in Figure 3.4(b), where input data are put into each CU in turn from CU0

to CUN−1. As soon as CU0 is full, CU1 starts receiving data. The process repeats

until all CUs are filled up. Another illustration of an 32×(8×M)-bit CAM is seen

in Figure 3.4(c). Unlike the previous architecture, input data are divided into M

segments and each of them enters each correspondent CU simultaneously. The

output can be seen as 32 M-bit groups and each connects to an M-bit AND gate.

This is because a match here is defined as all group bits matching the read input

on the same address. With this configuration, high-cardinality values can be

handled rapidly because of an array of AND gates, which obviously costs much

time in software implementation. Additionally, a scalable (32×N)×(8×M)-bit

CAM is obtained by combining two architectures above.

With the rich logic elements and M10K memory blocks, an Arria V FPGA

can afford as large as 65,536×8-bit CAM (CAM64K8) or 32,768×16-bit CAM

(CAM32K16). As a result of 8-bit word and 16-bit word, CAM64K8 and CAM32K16

can support cardinality of 256 and 65,536, respectively. Besides, write operations

cost two clock cycles/word, whereas read operations cost one clock cycle/BI vec-

tor. A drawback of this architecture is the proportional increase in loading time

and CAM size, e.g. 65,536×2 clock cycles is required to fill up CAM64K8. To

reduce such waste time, we propose a new mapping way so that as much data

can enter CAM in every clock cycle.

3.2.3.3 Enhanced Cascade Architecture of CAM

As mentioned earlier, the data bus between DMA and CAM is 256 bits wide. If

each value of the attribute is eight bits long, DMA can transfer 256
8

= 32 values

to CAM64K8 simultaneously in every cycle. Accordingly, CAM64K8 is capable
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(a) 32×8-bit CAM.

(b) (32×N)×8-bit CAM.

(c) 32×(8×M)-bit CAM.

Figure 3.4: The block diagram of cascade CAM.
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Figure 3.5: The enhanced architecture of a 65,536×8-bit CAM.

of loading all values within 65,536
32

= 2,048 cycles. The achievement is done by

an enhanced architecture of CAM64K8, where all inputs and outputs of CUs

are grouped in a specific order. Figure 3.5 illustrates the architecture, where

CAM64K8 is formed by 64 CU blocks (CBs) and each block consists of 32 CUs.

The number of CUs in each CB is the quotient of data bus width and value size.

The outputs are also arranged by a specific order. All zeroth bits of CB00 is

formed by the first bit of BI vectors of {CU00, ..., CU31}. Likewise, all first bits

of CB00 match the second bits of BI vectors of {CU00, ..., CU31} and so on. The

1-Kbit index vector of CB00 is obtained by those 32 small index vectors. As a

result of this strategy, CAM64K8 can receive many characters simultaneously,

while the order of its 64-Kbit BI vector is unchanged.
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The loading process is summarized as follows. To begin, the first 32 values are

put into the first 32 consecutive CUs of CB00 concurrently. As soon as CB00 is full,

the incoming values are sent to the next group of CB01. This process continues

until all data are properly stored. Accordingly, the loading time is reduced up to

32 times as compared to the traditional structure. However, similar to simplified

architecture, CAM64K8 has to be cleared before receiving new value. Hence, the

write operation costs two clock cycles for loading 32 values to CAM64K8, or 2,048

clock cycles for filling entire CAM64K8. Additionally, the number of CUs in each

group varies with the width of the data bus and the value size. For instance, in

the case of CAM32K16, each CB only contains 16 16-bit CUs.

3.2.4 Operation Memory (OPM) Module

OPM stores the operations/keys extracted from the user’s query. It is built from

embedded RAM blocks and can contain as many as 2,048 32-bit operations, or

OPM’s size is 64 Kbit. Larger OPM is also easily constructed by adding more

RAM blocks. Each operation is composed of two parts, as seen in Figure 3.6(a).

The first part is a 16-bit key value that supports the highest cardinality of 65,536.

The second part is a 3-bit instruction value that supports three operations, namely

OR, NO, and EQ. Additional operations can be inserted easily by using the

reserved bits. Except for OR and NO are logical operations, EQ is only asserted

whenever we transfer BI vector to the external memory. Due to the data width of

256 bits, up to eight 32-bit operations are loaded into OPM at every clock cycle.

Figure 3.6(b) gives an example of translation from a list of four queries to

the correspondent operations/keys. Due to the light workload, the translation is

performed in advance, such as by a computer, and the final binary configuration

will be transferred to the external memory. Concretely, four key lists are obtained

from those queries promptly. Afterward, each key list is combined with a set of

relating operations, i.e. OR, NO, or EQ. Finally, all binary opcodes are copied to

the external memory. Taking the first operation as an example, the index vector

of key = 19 is combined with the result by OR operation. After two executions,

the range index vector of the first query is sent out by the EQ operation. It is

noted that the result is automatically cleared as soon as BIC is powered up or
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(a) The word structure of OPM.

(b) The example of query-to-operation/key conversion.

Figure 3.6: The illustration of OPM.

the EQ operation is completed.

3.2.5 Query Logic Array (QLA) Module

QLA is the most compute-intensive module where the range indexes are calcu-

lated. Figure 3.7 depicts the scalable architecture of QLA collaborating with

CAM64K8 that contains a 64-Kbit result register and an array of the set of logic

gates, including an inverter gate, an OR gate, and a multiplexer. Each bit of

CAM output is connected with each logic set numbered from zero to 65,535. Ad-

ditionally, the output of each logic set enters the result register for temporary
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Figure 3.7: The block diagram of QLA.

storage. Taking OPM(i) as an example, the 16-bit key value selects the proper

BI vector in CAM64K8, while the 3-bit operation configures the multiplexers and

DMA. As a result of the simplicity of logic sets, each logical operation can be

solved within one clock cycle. However, the execution time of the EQ operation

varies with the register size. For example, in the case of CAM64K8, it takes at

least 256 cycles to transfer a 64-Kbit result to the external memory, whereas in

the case of CAM32K16, the size of the register and logic gates are halved. Thus,

only 128 cycles are needed.

The main advantage of QLA is that the range index of many values can be

indexed at the latency of the clock cycle. For instance, we can index as many

as 65,536 values by the key list of {19, 20} only within two clock cycles or 20 ns

in the case of 100-MHz operating frequency. Moreover, FIFO is used to enhance

the parallelism between the indexing and transfer process. If EQ is asserted,

the range index result enters FIFO. When the result register is fully stored in
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FIFO, the next indexing process is started immediately. Unless FIFO is empty,

DMA transfers data from FIFO to external memory. As a result, the indexing

and transfer process can be operated in parallel to save the whole indexing time.

Through those achievements, BIC is likely to be far better than that implemented

in software.

3.3 Summary

This chapter has proposed two scalable high-performance BIC64K8 and BIC32K16,

which can index as many as 65,536 8-bit words and 32,768 16-bit words in parallel,

respectively. Each BIC is constructed by three primary modules, i.e. a RAM-

based CAM, an OPM, and a QLA. An enhanced architecture of RAM-based

CAM is introduced to significantly improve the loading time. The performance

analysis of BIC will be described in detail in Chapter 6.
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Bitmap-Index-Based Query

Processor

The purpose of this chapter is to propose a scalable hardware architecture of a

bitmap-index-based query processor that can answer multi-dimensional queries

by given BI vectors in parallel. The output of this design is the bitmap vectors,

where all one-bits point to the addresses of matching records.

4.1 Introduction

In the analytics-like workloads, most queries are highly complex and involve ag-

gregations. Because BI copes with such queries effectively, research on BI has

gained extensive interest. In the previous chapter, we have introduced a BIC

that can index up to 64-KB data in parallel. In this chapter, a BI-based query

processor (BIQP) that can deliver the query results from the given BI vectors is

proposed. The contributions are listed as follows.

• This chapter presents an enhanced cascade architecture of a BI memory

that stores all necessary BIs for query response. This BI memory stores up

to 512 32-Kbit BI vectors. When being requested, each 32-Kbit vector is

employed for bitwise logical operation calculation.

• This chapter proposes a full design of BIQP that can directly access the

external memory to lower the I/O cost and produce the query results of up
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Figure 4.1: The block diagram of BIQP.

to 512 32-Kbit BI vectors. Additionally, BIQP size is simply adjusted by

adding or removing correspondent logic and memory resources. The content

of this chapter was partially presented in some previous works [59, 60, 61].

The remainder of this chapter is organized as follows. Section 4.2 describes

the hardware architecture of BIQP in detail. Section 4.3 concludes this study.

The performance analysis of BIQP is discussed in detail in Chapter 6.

4.2 Architecture

4.2.1 Overview

Figure 4.1 illustrates the block diagram of a BIQP used to response to multi-

dimensional queries. BIQP is a combination of four main modules including a

direct memory access (DMA) module, a BI memory (BIM) module, an operation

memory (OPM) module, and a query logic array (QLA) module. The external

memory stores all of the operations that are extracted from users’ queries, all
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BI vectors previously produced by BIC or other DBMS, and all query results

delivered by BIQP. Furthermore, to fit in BIM, BI vectors are distributed into a

set of batches, each of which can contain up to 512 32-Kbit vectors, depending

on the number of dimensions in a query.

To begin, all operations are transferred to the OPM. Subsequently, the first

batch of BI vectors is copied into BIM. QLA then uses OPM and BIM to produce

the query results and return them to the external memory. Afterwards, the second

batch is copied into BIM to begin a new process. This procedure repeats until

the final batch is completely executed.

4.2.2 Direct Memory Access (DMA) Module

The custom designed DMA guarantees the high-efficiency transfer between BIQP

and the memory controller provided by Intel FPGA. Since the theoretical band-

width of DDR3 memory is 25.6 Gbps, we set the data width of 256 bits and

operating frequency of 100 MHz for the memory controller, in order to fully ex-

ploit this bandwidth. Inside the DMA, three channels are also designed to allow

BIQP to access the memory independently.

4.2.3 Bitmap Index Memory (BIM) Module

BIM temporarily stores a M ×N -bit BIs received from the DDR3 memory. The

basic component of BIM is a dual-port memory (DPM), whose architecture is

shown in Figure 4.2(a). Roughly speaking, DPM is a special type of RAM that

supports two distinct ports—port A and port B. At port A, data can be read and

written using the data output qa, data input da, address aa and write enable wa.

If wa turns into one, DPM[aa] = da; otherwise, qa = DPM[aa]. Likewise, at port

B, qb, db, ab and wb are used to control the read and write processes. Two ports

can manage the access requests simultaneously. Since Arria V SX FPGA deploys

M10K as a basic memory block, every DPM is configured as a 512×16-bit RAM

to gain the best resource utilization.

As mentioned earlier, DMA is connected with the memory controller by 256-

bit bus width. For this reason, 16 DPMs are connected in parallel to form a

so-called BIM unit (BIMU), as depicted in Figure 4.2(b). The BIMU receives
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Figure 4.2: The block diagram of BIM.
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Table 4.1: The loading process of BIM.

Cycle wen
addr[15:0]

wa[127:0]
addr a[8:0] select[6:0]

1 1 0 0000 0000 000 0000 wa[0] = 1
2 1 0 0000 0000 000 0001 wa[1] = 1
... ... ... ... ...

127 1 0 0000 0000 111 1111 wa[127] = 1
128 1 0 0000 0001 000 0000 wa[0] = 1
... ... ... ... ...

65,536 1 1 1111 1111 111 1111 wa[127] = 1

256-bit inputs data a from DMA and delivers 256-bit outputs index unit to QLA.

Since data enter BIMU in parallel, its loading throughput presumably reaches as

high as that of DMA—25.6 Gbps. Hence, every BIMU can be filled up within 512

clock cycles corresponding to the DPM size. In addition to index unit, BIMU

can also receive a 256-bit update unit from QLA.

Figure 4.2(c) illustrates the scalable architecture of a 512×32-Kbit BIM con-

structed with eight BIM blocks (BIMB) that employs 16 BIMUs inside of it. As a

result, the number of DPMs, BIMUs, and BIMBs are 2,048, 64 and eight, respec-

tively. The address signal addr is divided into addr a and select. Both addr a

and data signal data a are connected to all of the individual BIMUs. The address

decoder ADDR DEC combines write enable signal wen and select to allow a cer-

tain BIMU to receive new data a. Concretely, at the beginning, BIMU00[0] saves

data a at the first cycle. BIMU01[0] then saves data a at the second cycle, and

after 125 clock cycles, BIMU127[0] can store data a. Hence, each row requires

128 clock cycles to be filled up. Following this, BIMU00[1] updates data a at

the next cycle. This process repeats until Nb rows of BIMU are filled properly.

At that moment, each row of BIMU stores each correspondent BI vector of the

current batch. The loading process above is briefly summarized in Table 4.1.

Apparently, it takes 65,536 clock cycles to fully fill BIM.

The advantage of BIM is that every 32-Kbit BIM row can be requested at

each clock cycle. Accordingly, BIQP is capable of handling one operand per

32,768 indexes in every single cycle, which potentially enhances the total query

processing throughput.
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(a) The structure of an operation

(b) The description of all operations.

(c) The block diagram of OPM.

Figure 4.3: The description of OPM.
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4.2.4 Operation Memory (OPM) Module

OPM is built by the FPGA embedded memories, which store the operations

extracted from the users’ queries. Each 16-bit operation is composed of two main

parts: BIM row and operation content, as shown in Figure 4.3(a). The first part–

BIM row–has nine bits to manage current 512-row BIM. However, this part can

expand up to 4,096 because of three reserved bits. The second part has three

bits to support nine distinct operations. Those operations are divided into two

groups, i.e. {NI, AN , OR, XO} and {CR, NO, LD, EQ}, which are encoded

by the most significant bit. The exact operation is then selected by the last three

bits.

Figure 4.3(b) gives a brief description of each operation. Generally speaking,

XO, OR, AN , and NI/NO indicate the bitwise logical operators XOR, OR,

AND, and NOT , respectively, between input data and the result register (RR).

The difference between NI and NO will be clearly stated in Section 4.2.5. In

addition to those five logical operations, CR, LD, and EQ are used to control

QLA and DMA. First, RR is cleared by setting CR to one. Second, RR is copied

to a specific row of BIM by turning LD into one. Third, RR is sent to memory

by setting EQ to one.

Figure 4.3(c) depicts the general block diagram of OPM. Similar to BIM,

OPM is constructed by a set of 512×16-bit DPMs. However, the loading process

of OPM is completely different from that of BIM. Concretely, 256-bit input data

enters to every row of all DPMs simultaneously, or 16 operations are loaded at

every clock cycle. On the other hand, each operation is retrieved in turn by

MUX16TO1. The order to this process is from the first row of DPM00 to the

first row of DPM15, then from the second row of DPM00 to the second row

of DPM15, and so on. The process repeats until all operations are pushed out

properly. Due to this architecture, OPM is capable of containing up to 512×16
2

=

4,096 operations.

Figure 4.4 gives an example of query-to-operation conversion. Since four at-

tributes, namely Product, Y ear, Occupation, and Address, are involved in this

query, four correspondent BI vectors are generated by BIC in advance. Those

BI vectors may be stored in several batches, if their lengths are larger than BIM
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Figure 4.4: The example of query-to-operation conversion.

length. Each batch is then dispatched to four available rows inside BIM, e.g. from

the zeroth row to the third row. Subsequently, six operations are executed. First,

RR is cleared by CR = 1. Second, bitwise AND and OR operations are per-

formed between four correspondent BIM rows and RR. Finally, RR is returned to

the DDR3 memory by EQ = 1. Due to the light workload, the query-to-operation

conversion is conducted by computer software.

4.2.5 Query Logic Array (QLA) Module

QLA is the most important module of BIQP, where the queries will be executed.

Figure 4.5 depicts the scalable architecture of QLA collaborating with BIM that

contains 32,768 sets of query logic and a 32-Kbit RR. Moreover, the output of

each set is connected with each bit of the RR. Hence, the number of query logic

sets is proportional to the length of RR or BIM row. For instance, in case the

BIM row only has 16 Kbits, 16,384 query sets and 16-Kbit RR are designed

instead. Each query set is composed of two NOT gates, one AND gate, one OR

gate, one XOR gate and three multiplexers. As mentioned above, although both
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Figure 4.5: The block diagram of QLA module.

NI and NO perform the bitwise NOT operators, their functions are completely

difference. In fact, NI = 1 reverses the BI vector coming from BIM, whereas NO

= 1 reverses either the intermediate value a2 or RR.

Taking OPMj as an example, the last nine bits select a correspondent BIM’s

row, while the first three bits control the multiplexers and DMA. As a result of

the simplicity of logic sets, each logical operation can be solved within one clock

cycle. Besides, it takes at least 128 clock cycles to transfer a 32-Kbit result to

the external memory because of the 256-bit data width.

Furthermore, CR = 1 will reset RR instantly. LD is connected to write enable

wen of BIM to allow RR to be copied into BIM. More significantly, CR and LD

are combined to be able to clear the entire BIM. To achieve it, RR is first reseted

by CR. Second, RR is transfered to BIM sequentially–from the first row to the

last row. With this method, BIM are cleared properly after 512 clock cycles.

The main advantages of QLA is that as many as 32-Kbit BI vector can be
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processed concurrently at the latency of the clock cycle. Moreover, the hardware

parallelism allows QLA and BIM to operate independently. Concretely, when

all operations are fully executed, a new batch enters to BIM in parallel with

the result transfer from QLA to DMA. Therefore, the entire processing time is

significantly reduced.

4.3 Summary

This chapter has proposed a BIQP that can process the queries using given BI

vectors. The BIQP is constructed by three primary modules, i.e. a BIM, an

OPM, and a QLA. The BIM architecture allows as high as 32-Kbit BI vector to

be calculated in parallel in each clock cycle. The performance analysis of BIQP

will be clearly described in detail in Chapter 6.
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Bitmap Index Encoder

The purpose of this chapter is to propose a scalable hardware architecture of

a bitmap index encoder accelerator that can output all matching bits of input

bitmap data in parallel. Those matching bits are then used to locate the corre-

sponding match records in a database.

5.1 Introduction

In previous chapter, a BI-based query processor that delivers the bitmap results,

where one-bits indicate the location of matching records in a database, has been

presented. Encoding those one-bits without severely affecting the whole analytics

time also plays an important role in the design of a BI-based analytics systems.

This chapter, therefore, focuses on a scalable hardware architecture of a bitmap

index encoder (BIE) that is mainly constructed on a multi-match priority encoder

(MPE). The contributions are listed as follows.

• This chapter introduces an efficient architecture of a priority encoder (PE)

based on a novel approach called a one-dimensional-array to two-dimensional-

array (1D-to-2D) conversion method. This method converts an L-bit input

data into an M ×N -bit matrix, from which an N -bit PE and an M -bit PE

are employed to obtain the highest priority bit of L-bit input data.

• This chapter presents an efficient architecture of a MPE built from a PE

and a preprocessing logic circuit. After PE detects a matching bit, this bit
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Figure 5.1: The block diagram of BIE.

will cleared by the preprocessing circuit so that the next priority bit can be

look up in the next clock cycle.

• This chapter proposes a full BIE design that receives the 32-Kbit bitmap

results and outputs the matching bits. BIE is composed of a MPE and a

multiplexer that controls which input segment can enter into a MPE at the

specific time. Moreover, BIE size is simply adjusted by adding or removing

correspondent logic resources. The content of this chapter was partially

presented in our previous works [51, 63, 64].

The remainder of this chapter is organized as follows. Section 5.2 clearly

describes a hardware architecture of large-sized PEs. Section 5.3 presents the

conclusion. The performance analysis of BIE is discussed in detail in Chapter 6.

5.2 Architecture

5.2.1 Overview

Figure 5.1 illustrates the block diagram of a BIE that is used to encode a bitmap

vector. As mentioned earlier, BIE consists of a multiplexer and a MPE, which

is made by a preprocessing circuit and a PE. To begin, the multiplexer selects

the which segment of input that enters into MPE, in case the input size exceeds

the MPE size. Subsequently, MPE outputs each encoded position at the rate of
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Figure 5.2: The conversion from L-bit input to M ×N -bit input.

one clock cycle per match. Such performance is achieved by using an efficient PE

based on an original 1D-to-2D conversion method.

Figure 5.2 illustrates this method, where L-bit input data is converted into

a M × N -bit matrix, where M and N are the numbers of columns and rows,

respectively. All bits of row status are obtained by performing the bitwise OR to

all bits in the corresponding row. Subsequently, an N -bit PE finds the highest

priority bit i (row index) in the N -bit row status, and an M -bit PE seeks the

highest priority bit j (column index) in this row i. The matching position k of

an 1D-array input is retrieved as k = i ×M + j. More significantly, if M is a

power of two, the multiplier and adder are simply replaced by the fixed wirings

that function as left-shift and OR operators.

Taking an example of PE64, only two small-sized PEs, e.g. (M , N) = (2, 32),

(32, 2), (8, 8), (4, 16), and (16, 4), are required to attain the highest priority
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position of a PE64. Furthermore, a scalable structure of a large-sized PE can be

simply developed in a similar vein by using the results of PE64s. Finally, MPE

is formed by combining PRE with PE. The next section will present a detailed

systematic approach to the scalable high-performance large-sized PEs. We also

propose a methodology to select an optimum pair of (M , N) because the correct

choice of (M , N) also plays an important role in constructing high-performance

PEs.

5.2.2 Priority Encoder (PE) Module

Figure 5.3(a) describes the truth table and optimized boolean expression of a

PE4. Apparently, this circuit only employs basic operations, i.e. AND, OR,

and NOT , which is processed very quickly by hardware logic units. Similarly,

the expressions of a PE8 and 16-bit PE (PE16) are correspondingly given in

Figure 5.3(b) and Figure 5.3(c). We observe that the complexity of expressions

increases drastically, as PE size varies from 4-bit to 16-bit, which possibly causes

an implementation of a 32-bit PE to become impracticable. Thus, only PE4,

PE8, and PE16 are employed to construct large-sized PEs. Concretely, at L of

64-bit, we examine (M , N) as (8, 8), (4, 16), and (16, 4).

Figure 5.4(a) shows PE64 formed by two PE8s connecting in a series, namely

PE64(8n). To begin with, the input data D is separated into eight 8-bit signals

that are put into eight 8-bit OR gates (OR8s) in order together with the 8-to-1

multiplexer (MUX8N). The output of MUX8N, called DMUX, is determined by

MR8 - the position of the highest priority bit of DOR. Following this, MC8,

the location of the highest priority bit of DMUX, is obtained. The output Q

is derived from the bitwise OR between MC8 and MR8 that was shifted left by

three bits. Additionally, if D contains any bit one, M turns into one.

Because PE64(8n) follows the formula stated in Figure 5.2, the longest delay of

PE64(8n) is approximately the sum of four individual components’ delay. In fact,

MUX8N has to wait until MR8 is ready before allocating a proper column index

to DMUX. To reduce this delay, we employ DOR as a look-ahead signal, which

is illustrated in Figure 5.4(b). As can be easily seen, DOR cuts the longest data

path, from the input of PE8 0 to the output Q, in two shorter paths operating
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(a) PE4.

(b) PE8.

(c) PE16.

Figure 5.3: The truth table and Boolean expression.
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(a) Without look-ahead signal.

(b) With look-ahead signal.

Figure 5.4: The architecture of PE64.
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(a) (M , N) = (4, 16).

(b) (M , N) = (16, 4).

Figure 5.5: The architecture of PE64.

in parallel. Therefore, the entire latency of PE64(8) is likely to be lowered, as

compared to that of PE64(8n). Moreover, the select signals inside MUX8 reas-

signed because of the difference in the number of bits between MR8 and DOR.

The resource utilization of PE64(8), therefore, increases because MUX8 requires

several additional OR gates.

To quickly estimate PE performance, we synthesize all OR gates, PEs, and

multiplexers to observe the path delay (in terms of ps), from the input to the

output of each circuit. The synthesis tool is configured to generate the gate-level

logic under an aggressive timing constraint. Table 5.1 summarizes the synthe-

sized results in 180-nm CMOS technology. Suppose that S0, S1, S2, and S3
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Figure 5.6: The scalable architecture of PE4K(4).

are the path delays of four primary circuits in PE64(8n) and PE64(8). As seen

in Figure 5.4(a), without a look-ahead signal, the delay of PE64(8n) is S(8n) =

Σ(S0, S1, S2, S3) = 2,970 ps. On the other hand, the latency PE64(8) is lessened

as S(8) = Σ(S0,max(S1, S2 + S3)) = 2,203 ps. The preliminary analysis suggests

that the look-ahead signal enhances the circuit performance.

As briefly mentioned before, in case of PE64, there are three possible pairs of

(M , N), i.e. (8, 8), (16, 4), and (4, 16). The architecture of PE with (M , N) of

(4, 16) and (16, 4), so-called PE64(4) and PE64(16), are defined in Figure 5.5(a)

and Figure 5.5(b), respectively. It is noted that PEN and PEM also represent the

top PE and bottom PE. In both architectures, the highest priority bit of input

data D is discovered in a similar manner with PE64(8), except for the different

use of OR gates, multiplexers, and the organization of PEN and PEM . Using

the preliminary analysis above, the path delay of PE64(4) is S(4) = 2,086 ps,

whereas that of PE64(16) is S(16) = 2,444 ps. Altogether, the performance of four

alternative PE64s are sorted as PE64(4) > PE64(8) > PE64(16) > PE64(8n). In

other words, if PE4 is used to generate the column index (M = 4), the overall

performance is likely to be optimized.

This preliminary analysis also implies the scalable architecture of a large-sized

PE such as PE4K(4) that can be developed by PE4, PE16, PE64(4), 256-bit PE

(PE256(4)), and 1,024-bit PE (PE1K(4)), as seen in Figure 5.6. Initially, the

4,096-bit input is considered as a 1,024×4-bit array. Subsequently, PE1K(4) and
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Table 5.1: The number of logic stages.

Circuit
Delay
(ps)

OR4 336

OR8 399

OR16 550

Circuit
Delay
(ps)

PE4 680

PE8 780

PE16 980

Circuit Delay (ps)

16-bit MUX4 914

8-bit MUX8N 1,011

8-bit MUX8 1,024

4-bit MUX16 1,070

PE4 are employed to calculate the corresponding indexes of row and column.

Similarly, inside PE1K(4), the 1,024-bit is converted into a 256×4-bit array for

the next processing from PE256(4) and PE4. Dividing the input repeats until

PEN is either PE16 or PE8. Finally, the highest priority bit is achieved from all

PE outputs, based on the formula described in Figure 5.2.

5.2.3 Multi-match Priority Encoder (MPE) Module

Figure 5.7(a) depicts a 4,096-bit MPE (MPE4K) built up from a PE4K(4) and a

PRE circuit containing a set of multiplexers and register arrays (REG). In the

beginning, EN is set to one and input data E is kept in REG. In the subsequent

cycles, D - the output of REG, is sent to PE4K(4). Upon receiving the matching

position Q4K, the demultiplexer (DEMUX) converts this value into a 4096-bit

clear signal CLR. If CLR[i] is equal to one, REG[i] is set to zero instantly, so that

PE4K(4) will look for the next priority bit in the following cycles. This procedure

repeats until REG turns into zeros completely.

If E contains five matching bits, the simulation waveform of MPE4K is shown

in Figure 5.7(b). At the first clock, EN is asserted, and D captures the value of

E. During the next five clocks, M4K becomes one and each matching position,

i.e. {1, 2, 4, 6, and 4, 095}, is returned in turn. Afterwards, M4K changes to

zero, which means that all matches are captured completely.

5.2.4 Bitmap Index Encoder (BIE) Module

Figure 5.8(a) illustrates a BIE using an MPE4K to find all the matching bits of a

32-Kbit bitmap input. This bitmap can be given by either a BIQP mentioned in

Chapter 4 or a software DBMS. To begin, the 32-Kbit bitmap is divided into eight

4-Kbit segments, and each of them is put into MPE4K sequentially, as depicted
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(a) The block diagram of MPE4K.

(b) The example waveform of MPE4K.

Figure 5.7: The illustration of MPE4K.

in Figure 5.8(b). With each segment processing, BIE requires one initial cycle

tint to load a new 4-Kbit segment and K cycles tseg to obtain K matching bits in

this segment. Moreover, it takes two additional cycles twait to be ready for next

4-Kbit segment. Equation (5.1) shows the encoding time in clock cycles in the

worst case tworst—all bits are ones, and in the best case tbest—all bits are zeros.

The worst and best latencies are 32,790 cycles and 22 cycles, respectively.

t = (
32, 768

4, 096
)× (tint + tseg) + (

32, 768

4, 096
− 1)× twait (cycles) (5.1)

tworst = 8× (1 + 4, 096) + 7× 2 = 32, 790 (cycles)

tbest = 8× (1 + 0) + 7× 2 = 22 (cycles)
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(a) The block diagram of BIE.

(b) The example waveform of BIE.

Figure 5.8: The illustration of BIE.

5.3 Summary

This chapter has proposed a method to develop a scalable high-performance BIE

from a PE and a MPE. The BIE is mainly constructed by a PE which is enhanced

by an original 1D-to-2D conversion method. The performance analysis of BIE

will be clearly described in detail in Chapter 6.

64



Chapter 6

Performance Analysis and

System Integration

The purpose of this chapter is to evaluate the performance of a bitmap index

creator, a bitmap-index-based query processor, a bitmap index encoder, and their

combinations in an FPGA and an ASIC. The performance analysis primarily

focuses on data I/O cost, processing throughput, and energy efficiency. A bitmap-

index-based analytics system based on those components is then proposed. By

using those dedicated hardware accelerators, the system performance is proven

to outperform other CPU-based and GPU-based approaches.

6.1 Introduction

The performance of a BIC, a BIQP, and a BIE are evaluated by data I/O cost,

processing throughput, and energy consumption. First, data I/O cost is viewed

as the rate at which the data are read and written to the external memory. Low

data I/O cost allows user designs to be able to almost exploit the full external

memory bandwidth. Second, processing throughput is defined as the amount of

data that can be processed within a given time unit. High throughput achieve-

ment is generally the result of hardware parallelism. Third, energy efficiency is

defined as a ratio of power consumption and processing throughput. Low energy

consumption is widely recognized as one of the current primary targets of big
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Figure 6.1: The Intel Arria V development kit [65].

data and analytics systems.

The BIC, BIQP, BIE, and their corresponding systems are implemented in

an Intel Arria V development kit [65]. This kit contains a mid-range Intel Arria

V 5ASTFD5K3F40I3 FPGA, a 1-Gbps Ethernet port, and two separate 1-GB

533-MHz DDR3 external memories, as shown in Figure 6.1. This FPGA is em-

ployed because it consists of not only the FPGA portion, but also an ARM-based

System-on-Chip portion [66] that allows users to control all of the I/O peripherals

above effectively. Because the theoretical bandwidth of DDR3 is 25.6 Gbps, all

components need to manage the 256-bit I/O interfaces as well as operate at a

minimum 100 MHz to avoid the timing violation. In other words, the operating

frequency of BIC, BIQP, and BIE must exceed 100 MHz in slow-corner timing

analysis.

After being verified in an FPGA, the combination of BIQP and BIE are im-

plemented in the 180-nm bulk CMOS and 65-nm SOTB CMOS process using

the Synopsys and Cadence design tools. The layout verification steps including

design rule check, layout versus schematic, antenna rule check, and formal veri-

fication are strictly followed. Both post-place-and-route simulation using SPICE
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simulators and chip measurement results indicate the feasibility of ASIC imple-

mentation.

The remainder of this chapter is organized as follows. Sections 6.2, 6.3, 6.4

evaluate the performance in an Arria V FPGA of a BI creation system based on

BIC, a BI-based query processing system based on BIQP, and a BI-based analyt-

ics system based on both BIC and BIQP, respectively. Section 6.5 presents the

experimental results in an Arria V FPGA of BIE. Sections 6.6, 6.7, 6.8 discusses

the FPGA results when connecting BIE to the BI creation system, the BI-based

query processing system, and the BI-based analytics system, respectively. More-

over, the implementation of query processing system with BIE in both 180-nm

bulk CMOS and 65-nm SOTB CMOS technology is also mentioned in Section

6.7. Finally, Section 6.9 concludes this chapter.

6.2 Bitmap Index Creation System Without An

Encoder

6.2.1 Experimental Setup

In Chapter 3, we have proposed a BIC32K16 that can index 32,768 16-bit data

using a three-channel direct memory access (DMA) module, an operation memory

(OPM) module, a content addressable memory (CAM) module, and a query

logic array (QLA) module. In this chapter, BIC32K16 is implemented in an

Arria V FPGA and its performance is evaluated by the data I/O cost, indexing

throughput, and energy efficiency in comparison with other CPU-based and GPU-

based designs. The notation that will be used is defined in Table 6.1.

Figure 6.2 illustrates the block diagram of hardware system testing. Each ex-

periment follows three main steps: (1) all test operations/keys and data are trans-

ferred from a host computer and temporarily stored in DDR3; (2) BIC32K16’s

DMA copies all data and all operations/keys from DDR3 to CAM and OPM, re-

spectively. Subsequently, BIC32K16 indexes data by given operations/keys and

sends all generated BI vectors to DDR3; (3) those vectors will be returned to

the host computer for verification. Because (1) is for initialization and (3) is for
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Table 6.1: The notation of proposed design.

Notation Description
Nc The number of words in CAM: Nc = 32,768
Sc The size of each word: Sc = 2 bytes
Nk The number of operations in OPM: maximum Nk = 2,048
Sk The size of each operation: Sk = 32 bits
B The number of batches
h The number of generated BI vectors
w The data bus width: w = 256 bits

Figure 6.2: The block diagram of hardware system testing.

verification, the indexing time only counts (2), whose execution time is calculated

by several internal counters integrated into BIC32K16.

Table 6.2 describes a group of five synthesis data sets, called DB, used to

verify BIC32K16. Since the CAM size is 64 KB (32,768×16 bits = 512 Kbits =

64 KB), we assign the size of each batch to 64 KB length. The number of batches

B in each test data varies from one to 8,192, which is equivalent to 64-KB and

512-MB data in total. Likewise, Table 6.3 shows the synthesis key sets, called

KB. Each set may contain a few to several hundred operations. The number of

operations Nk and the number of generated BI vectors h are extracted from a list

of given queries, which is demonstrated in Section 3.2.
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Table 6.2: The synthesis data sets of BIC32K16.

Test data # of batches (B) Size (KB)
DB1 1 64
DB2 4 256
DB3 128 2,048
DB4 1,024 65,536
DB5 8,192 524,288

Table 6.3: The synthesis operation/key sets of BIC32K16.

Test opera-
tions/keys

# of operations/keys
(Nk)

# of BIs (h)

KB1 2 1
KB2 5 1
KB3 129 1
KB4 14 4
KB5 300 11
KB6 528 16

6.2.2 Experimental Results

6.2.2.1 Hardware Utilization

Table 6.4 clearly states the hardware consumption of BIC32K16 synthesized by

Quartus II 16.0 design software. Adaptive logic modules (ALMs)—a basic build-

ing block of Arria V FPGA—together with memory bits are used to evaluate

the resource utilization. Each ALM is composed of one 8-input combinational

look-up table with four dedicated registers. Because one CAM bit costs 32 em-

bedded memory bits, as large as 16-Mbit memory is required to build an entire

64-KB CAM. The other modules, such as OPM and QLA, utilize the remaining

0.14-Mbit memory. The operating frequency of BIC32K16 is approximately 129.5

MHz, which surpasses the required frequency of 100 MHz of mentioned in Section

6.1.
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Table 6.4: The hardware utilization of BIC32K16.

Device Arria V 5ASTFD5K3F40I3
CAM size 32,768×16-bit
ALMs 43,868 (25%)
– Lookup tables 76,361
– Registers 43,101
Memory (Mbits) 16.14 (73%)
Frequency (MHz) 129.5

Figure 6.3: The indexing throughput.

6.2.2.2 Indexing Throughput

BIC32K16 produces each 32-Kbit BI vector of a 64-KB data set at every clock

cycle. Figure 6.3 illustrates the measurement indexing throughput THRmeas of

each index vector of BIC32K16 at 100-MHz frequency. THRmeas is defined in

Equation (6.1), where (Nc × Sc) = 64 KB is the CAM size, h is the number of

generated BI vectors, and Tmeas is the measurement index time directly obtained

from the counters inside BIC32K16. As seen in Figure 6.3, at each operation/key

set, the achieved throughput is almost unchanged, regardless of the variety of

data size from DB1 (64 KB) to DB5 (512 MB).

Furthermore, THRmeas is more affected by h than Nk. Taking DB1 as an

example, despite the sharp rises in the number of operations between KB3 (Nk =

129, h = 1) and KB1 (Nk = 2, h = 1), the difference of THRmeas changes as little
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Table 6.5: The execution time of each BIC module.

Time (clock cycle) Description

tOPM =
Nk × Sk

w
Time to load operation/key sets to OPM

tCAM = (
Nc × Sc

w
)× 2 Time to reset CAM and load new batch data

to CAM
tQLA = Nk Time to process all operations/keys

tOUT = (
Nc

w
)× h Time to output all BI vectors

Ttheo = tOPM + (tCAM +
tQLA + tOUT )×B

Total theoretical index time

as 2.9%. However, in the case of KB4 (Nk = 14, h = 4), where four index vectors

are created, THRmeas increases around 3.6× as compared to that of KB1. This

is because at DB1 and KB1, only one BI vector is generated within Tmeas = 44.4

µs. Thus, the corresponding THRmeas is around 1.48 GB/s. However, at KB4,

four index vectors are produced within Tmeas = 48.3 µs, so the corresponding

THRmeas is 1.36 GB/s for 4 vectors, or approximately 5.44 GB/s for one vector.

Similarly, when h becomes 16, the THRmeas reaches as high as 15.04 GB/s.

THRmeas = (
1

Tmeas

)× (Nc × Sc)× h (GB/s) (6.1)

6.2.2.3 Data I/O Cost

To evaluate the I/O cost whenever BIC32K16 accesses DDR3 memory, the exe-

cution time of all individual modules of BIC32K16 is built up, as shown in Table

6.5. Specifically, tOPM is the time to load all test operations/keys from DDR3 to

OPM, tCAM is the time to reset and load all test data from DDR3 to CAM, tQLA

is the time to process all operations, tOUT is the time to return the BI vectors to

DDR3, and Ttheo is the theoretical index time. Because we have to eliminate the

old values in CAM before loading new data, tCAM is the sum of reset and load

time. Moreover, the reset and load time are identical, thereby tCAM is twice the

load time.

Figure 6.4 illustrates the share of input time (tCAM + tOPM), process time
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Figure 6.4: The timing distribution of each state at DB1.

Figure 6.5: The difference between theoretical and measurement index time.
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tQLA, and output time tOUT in the theoretical index time Ttheo when test data

is DB1 and test operations/keys vary from KB1 to KB6. It is easy to see that

the input time and output time dominate the whole Ttheo. Additionally, the

I/O time relies on the system bus width w, or the DDR3 memory bandwidth,

whereas tQLA only depends on the FPGA frequency itself. In other words, the

index performance of BIC32K16 depends largely on the DDR3 memory access

time.

Figure 6.5 shows the difference of measurement index time Tmeas and theo-

retical index time Ttheo at various test data and operations/keys. In fact, Tmeas

is slightly (3.5% to 4.7%) larger than Ttheo. This occurs because access to DDR3

requires several redundant cycles. In fact, DDR3 is constructed with several

memory banks, each containing many columns and rows. To read or write data

in DDR3, the memory controller firstly opens a certain row in a particular bank.

The entire row of the memory array is then transferred into the corresponding

row buffer. Upon completion, a column access command is performed to read

or write data from or to the row buffer. Lastly, the row buffer must be written

back to the memory array by a precharge command so that this bank is available

for a subsequent row activation. The difference of 4.7% between Tmeas and Ttheo

suggests that BIC32K16 achieves low data I/O cost [67, 68, 69, 70]. More sig-

nificantly, using the formula of Ttheo, we can relatively estimate Tmeas with the

maximum error of 4.7%.

6.2.2.4 Energy Efficiency

Figure 6.6 shows the comparison of energy efficiency between BIC32K16 and four

platforms, including FastQuery [32], ParaSAIL [33], IMS [35], and GPU13 [40],

which were implemented in CPU and GPU, respectively. The energy efficiency

(J/GB) is calculated as a quotient of power dissipation (J/s) and measured index

throughput (GB/s). The small value of energy efficiency of a certain system

means that this system delivers high throughput but only consumes low power.

In other words, if one system possesses higher value of energy efficiency than

another, such system definitely requires high power in order to deliver the same

throughput. The power dissipation parameters of CPU and GPU are extracted
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Figure 6.6: The comparison of energy efficiency.

from the product specifications provided by corresponding vendors, while the

power dissipation of BIC32K16 was estimated by the PowerPlay Power Analyzer

tool. The hardware specification of each platform is summarized in Table 6.6,

while their details can be found in Section 2.1. As seen in Figure 6.6, FPGA-

based BIC32K16 requires 15.3× and 43.1× lower energy than IMS and GPU13,

respectively, to index 1-GB data.
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Table 6.6: The platform description.

Platform Description

FastQuery [32]
Hardware: 11,520 cores/960 AMD CPUs
Throughput: 15.7 GB/s
Power: 80 W/1 CPU or 76.8 KW/960 CPUs

ParaSAIL [33]
Hardware: 60 cores/1 Intel Co-CPU
Throughput: 0.46 GB/s
Power: 225 W/1 Co-CPU

IMS [35]
Hardware: 20,000 cores/834 Intel CPUs
Throughput: 510 GB/s
Power: 115 W/1 CPU or 95.9 KW/834 CPUs

GPU13 [40]
Hardware: 1,344 cores/ 1 NVIDIA GPU
Throughput: 0.33 GB/s
Power: 170 W/1 GPU

BIC32K16
Hardware: 1 Arria V FPGA
Throughput: 1.48 GB/s
Power: 18.2 W/1 FPGA

6.3 Bitmap-Index-Based Query Processing Sys-

tem Without An Encoder

6.3.1 Experimental Setup

In Chapter 4, we presented a BIQP that can answer all queries by using 32-

Kbit BI vectors received from either BIC32K16 or other software DBMSs. BIQP

is also composed of a three-channel DMA module, an OPM module, a bitmap

index memory (BIM) module, and a QLA module. In this chapter, BIQP is

implemented in an Arria V FPGA and its performance is evaluated by the data

I/O cost, query processing throughput, and energy efficiency, as compared to

other CPU-based and GPU-based designs. Table 6.7 summarizes the notation

that is now used.

The block diagram of hardware system testing is illustrated in Figure 6.7.

Each experiment follows three main steps: (1) all test operations and BI vectors

are transferred from a host computer to DDR3; (2) BIQP’s DMA copies all BI

vectors and all operations from DDR3 to BIM and OPM, respectively. Upon
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Table 6.7: The notation of proposed design.

Notation Description
Nb The number of BI vectors in each batch, maximum Nb = 512
Sb The size of each BI vector, Sb = 32,768 bits
Nq The number of operations inside OPM, maximum Nq = 4,096
Sq The size of each operation, Sq = 16 bits
B The number of batches
h The number of query results, h = 1
w The data bus width, w = 256 bits

Figure 6.7: The block diagram of hardware system testing.

completing, BIQP processes all operations and returns all results to DDR3; (3)

the bitmap results are sent back to the host computer for verification. Because

(1) is for initialization and (3) is for verification, the processing time only counts

(2) that is calculated by several internal counters integrated into BIQP.

To prepare for the verification, seven experiments including synthesis BI vec-

tors and operation sets are created, as stated in Table 6.8. The experiments are

numbered from EXP1 to EXP7. The number of batches (B), the number of BI

vectors in each batch (Nb), and the number of operations (Nq), vary according

to the particular test case. At the maximum setting, BIQP processes 1,822 op-

eration with 512-MB indexes. It is reminded that Nq and h are extracted from a

list of given queries, which is demonstrated in Section 4.2.
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Table 6.8: The test cases of BIQP.

Test
case

# of operations
(Nq)

# of BIs/
batch (Nb)

# of batches
(B)

Batch size

EXP1 6 4 1, 4, 16,
32, 128,
256

64 KB -
16 MB

EXP2 29 16
EXP3 74 256
EXP4 314 512

1, 4, 16,
32, 128,
256

2 MB -
512 MB

EXP5 633 512
EXP6 1,186 512
EXP7 1,822 512

Table 6.9: The hardware utilization of BIQP.

Device Arria V 5ASTFD5K3F40I3
BIM size 512×32,768-bit
ALMs 51,744 (29%)
– Lookup tables 91,273
– Registers 69,602
Memory (Mbits) 17.1 (80%)
Frequency (MHz) 109.3

6.3.2 Experimental Results

6.3.2.1 Hardware Utilization

Table 6.9 clearly states the hardware utilization of BIQP synthesized by Quartus

II 16.0 design software. The synthesis results show that BIQP utilizes approxi-

mately 29% of ALM and 80% of the memory bits. Concretely, 16-Mbit memory

are needed to construct a 32,768×512-bit BIM, whereas the remaining 1.1-Mbit

memory are employed by other modules, such as OPM and QLA. The timing

analysis also suggested that BIQP is capable of operating at 109.3 MHz, which

is adequate for the minimum 100 MHz required by the hardware testing system.

6.3.2.2 Query Processing Throughput

Figure 6.8 illustrates the measurement processing throughput (THRmeas) of BIQP,

including memory access time, at 100-MHz operating frequency. THRmeas is cal-
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Figure 6.8: The query processing throughput.

culated as the number of BI vectors that can be solved in every second, as il-

lustrated in Equation (6.2). The maximum number of BI vectors/batch is 512,

or the batch size can reach up to 2 MB. Roughly speaking, THRmeas mainly de-

pends on the total size of incoming BI vectors and the number of operations Nq.

For example, from EXP1 to EXP3, because Nb varies from 4 to 256, THRmeas

correspondingly increases. However, from EXP4 to EXP7, Nb is unchanged and

THRmeas gradually decreases due to the increase of Nq—from 314 to 1,822 op-

erations. Depending on the specific experiments, different throughputs can be

achieved, i.e. the minimum and maximum throughputs in our experiments are

2.45 GB/s and 3.04 GB/s, respectively.

THRmeas = (
1

Tmeas

)× (Nb × Sb) (GB/s) (6.2)

6.3.2.3 Data I/O Cost

Table 6.10 shows the theoretical execution time, in clock cycles, of all the individ-

ual modules of BIQP. Suppose that tOPM is the time to load all test operations

from DDR3 to OPM, tBIM is the time to load all BI vectors from DDR3 to BIM,

tQLA is the time to process operations, tOUT is the time to return the results to
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Table 6.10: The execution time of each BIQP module.

Time (clock cycle) Description

tOPM =
Nq × Sq

w
Time to load test operations to OPM

tBIM =
Nb × Sb

w
Time to load a test batch to BIM

tQLA = Nq Time to process Nq operations

tOUT =
Sb

w
Time to output all bitmap results

Ttheo =tOPM + (tBIM +
tQLA + tOUT )×B

Total theoretical query processing time

DDR3, and Ttheo is the theoretical processing time. The definition of all param-

eters, e.g. Nq and Sq, can be found in Table 6.7. Apparently, tOPM , tBIM , and

tOUT depend solely on the system bus width w, or the bandwidth of the DDR3

memory, whereas tQLA only depends on the FPGA frequency itself.

Figure 6.9 illustrates the share of input time (tBIM + tOPM), process time

tQLA, and output time tOUT in Ttheo in different experiments when B = 1. It

is easy to see that the input time and output time dominate the entire Ttheo.

Furthermore, tQLA linearly increases only according to Nq. Nonetheless, that

time plays an insignificant role in Ttheo. Reducing the I/O time, therefore, has a

beneficial effect on the overall processing time.

Figure 6.10 shows the increase of measurement time Tmeas, from 3.2% to 3.4%,

as compared to Ttheo for various test data and keys. The reason is that access to

DDR3 requires several redundant cycles. However, the slight difference between

both execution times proves that BIQP achieves low data I/O cost, as compared

to other works [67, 68, 69, 70]. Furthermore, using the formula of Ttheo, we can

relatively estimate Tmeas with the maximum error of 3.4%.

6.3.2.4 Energy Efficiency

Figure 6.11 draws the comparison of energy efficiency between BIQP and two plat-

forms, including CPU-based IMS [35] and GPU-based GPU11 [39]. It is reminded

that a small value of energy efficiency of a certain system means that such system
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Figure 6.9: The timing distribution of each state B = 1.

Figure 6.10: The difference between theoretical and measurement time of BIQP.

delivers high throughput but only consumes low power. The power dissipation

parameters of CPU and GPU were extracted from the product specifications pro-

vided by corresponding vendors, while the power dissipation of BIC32K16 was

estimated by the PowerPlay Power Analyzer tool. The hardware specification of

each platform is summarized in Table 6.11, while their details can be found in

Section 2.1. As seen in Figure 6.11, an FPGA-based BIQP consumes 223× and

31× less energy than CPU-based IMS and GPU-based GPU11, respectively, to

process 1-GB BI vectors.
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Figure 6.11: The comparison of energy efficiency.

Table 6.11: The platform description.

Platform Description

IMS [35]
Hardware: 20,000 cores/834 Intel CPUs
Throughput: 42.5 GB/s
Power: 115 W/1 CPU or 95.9 KW/834 CPUs

GPU11 [39]
Hardware: 240 cores/ 1 NVIDIA GPU
Throughput: 0.65 GB/s
Power: 204 W/1 GPU

BIQP
Hardware: 1 Arria V FPGA
Throughput: 2.45 GB/s
Power: 25.2 W/1 FPGA

6.4 Bitmap-Index-Based Analytics System With-

out An Encoder

6.4.1 Experimental Setup

Figure 6.12 proposes a BI-based data-analytics system built from a BIC32K16

and a BIQP. The system can be implemented in two separate Arria V SoC devel-

opment boards, where the first one indexes data given by a host computer and

the second one processes the queries with those generated BI vectors. It then

also returns the results to the host computer. In other words, an indexing system

81



Chapter 6 – Performance Analysis and System Integration

Figure 6.12: The BI-based data-analytics system.

using BIC32K16 is deployed on the first board, whereas a query processing sys-

tem using BIQP is deployed on the second board. The bus width and operating

system of both designs are 256 bits and 100 MHz, respectively. The procedure

of each subsystem is summarized as follows. Because (1), (3), (4), and (6) can

be improved according to communication means, such as 10-Gbps Ethernet or

PCI-Express, the total analytics time is only counted (2) and (5).

• In the first board: (1) all test operations/keys and test data are transferred

from a host computer and temporarily stored in DDR3; (2) BIC32K16 loads

all test keys and data to its OPM and CAM using the DMA mechanism;

BIC32K16 generates the BI vectors and then stores all of them in DDR3

memory; (3) all BI vectors are sent to a host computer for storage.

• In the second board: (4) all test operations and BI vectors are transferred

from a host computer and temporarily stored in DDR3; (5) BIQP loads all

test operations and indexes to its OPM and BIM using the DMA mecha-

nism; BIQP processes the queries and returns the results to DDR3 memory;

(6) all bitmap results are sent to a host computer for storage.

In order to evaluate the index and query performance of a BI-based analyt-

ics system, a synthesis dataset includes four 32,768×16-bit attributes and five

random operations/keys are generated for indexing. Four generated BI vectors,

corresponding to four attributes, are then put into BIQP for answering the query

with six given operations.
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Figure 6.13: The comparison of energy efficiency.

6.4.2 Experimental Results

Suppose that TI , TQ, and TA are the index time, the query process time, and the

total analytics time, respectively. The experimental results show that TI = 177.5

µs and TQ = 2.7 µs. Therefore, the total analytics time TA = TI + TQ = 180.2

µs. It is easy to see that TI mainly contributes to TA, since indexing is the most

expensive task in the analytics system. The analytics throughput is defined as

the total data analyzed in a time unit, and is approximately 1.35 GB/s. Figure

6.13 draws the comparison of energy efficiency between the proposed analytics

system and two other CPU-based platforms. The platform description of each

one is summarized in Table 6.12 and their details can be found in Section 2.1.

Apparently, the FPGA-based design attains lower energy consumption, 77× and

19× compared to FastQuery and NIQF, respectively.

83



Chapter 6 – Performance Analysis and System Integration

Table 6.12: The platform description.

Platform Description

FastQuery [32]
Hardware: 2,304 cores/192 Intel CPUs
Throughput: 6.2 GB/s
Power: 80 W/1 CPU or 15.36 KW/834 CPUs

NIQF [34]
Hardware: 240 cores/ 1 NVIDIA GPU
Throughput: 0.105 GB/s
Power: 65 W/1 GPU

BIC32K16 and BIQP
Hardware: 2 Arria V FPGAs
Throughput: 1.35 GB/s
Power: 43.4 W/2 FPGAs

6.5 Bitmap Index Encoder

6.5.1 Experimental Setup

The performance of BIE is evaluated by the performance of both PE and MPE

in an ASIC and an FPGA, respectively. Specifically, various PEs whose sizes

L range from 4-bit to 4-Kbit were implemented in 180-nm CMOS technology

for the evaluation of resource utilization and operating frequency. Corresponding

MPEs were then implemented in an Intel Arria V FPGA to measure the encoding

throughput, as well as prepare for the integration in a BI-based analytics system.

6.5.2 Experimental Results

6.5.2.1 Priority Encoder

The post-place-and-route simulation results at 1.8 V of various PEs can be seen

in Table 6.13. The three main findings based on these results are listed below:

• Firstly, 1D-to-2D conversion usage evidently improves the deterioration of

performance at large PE sizes. In fact, assume that DECL is the percentage

decrease of operating frequency (FREQ) between PEL and PEL/2. It is easy to

see the major difference between DEC8 and DEC16, whose circuits are directly

built from the truth tables. On the contrary, from DEC64(4) to DEC4K(4)
, the

mean value is approximately 11%, whenever the PE size is doubled.

• Secondly, the look-ahead signal usage contributes to FREQ enhancement.
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Using as an example of PE64(8n) and PE64(8), the FREQ of the latter increases

approximately 5.2%. The improvement is not as much as the preliminary analysis,

because in the real implementation, we applied flat-design synthesis in each PE

instead of hierarchy-design. The difference between the two types of designs is

that in hierarchy-design, each hierarchical unit is placed separately, and then the

units are combined to form the circuit. By contrast, in flat-design, the borders

between some or all logical hierarchies are dissolved, and the flattened logic is

placed together. Flattening a design allows a significantly better optimization of

performance and power during placement and subsequent design steps. In the

preliminary analysis, we assumed that PE was synthesized in hierarchy-design,

so that the total delay of PE64 was the sum of all the individual component

delays. However, in the real implementation, we configured the synthesis tool in

flat-design (with an aggressive timing constraint) in order to achieve the optimum

results. For those reasons, the performance between the preliminary analysis and

those in Table II is different.

• Thirdly, the organization of PEN and PEM clearly affects the outcome of a

large-sized PE. For example, PE64(4) achieves the highest FREQ, while PE64(16)

obtains the lowest FREQ, which is identical to the preliminary analysis above.

Therefore, only large-sized PEs with M = 4 are compared with other previous

works.

In comparison with RefA [48], which was simulated in 150-nm CMOS technol-

ogy, the current designs gradually become better when PE sizes vary from 32-bit

to 256-bit. As seen in Figure 6.14(a), FREQ of PE32(4) is only 1.3 times as high

as that of RefA [48], whereas at a PE size of 256-bit, the difference of FREQ in-

creases to 4.7 times. Moreover, according to Figure 6.14(b), the transistor count

of PE32(4) and PE256(4) are only 0.94 times and 0.73 times, as compared to those

in RefA [48].

In addition, Figure 6.15 depicts the comparison of FREQ and transistor count

between two works in 180-nm CMOS technology, when PE sizes vary from 64-

bit to 2,048-bit. Because the architecture of PE4, PE8, and PE16 are identical

in both works, their FREQs and transistor count are unchanged. In RefB [51],

PE64 shares the same architecture with PE64(8n), where (M , N) = (8, 8) is a

non-optimal configuration and the look-ahead signal is unused. In a similar vein,
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Table 6.13: The simulation results of proposed PEs.

Design PEN / PEM
FREQ
(MHz)

DECL

(%)
Transistors

PE4 –/– 1,470 – 48
PE8 –/– 1,282 -12.7 202

PE16(4) PE4 / PE4 909 – 406
PE16 –/– 1,020 -20.4 396

PE32(8) PE4 / PE8 645 – 626
PE32(4) PE8 / PE4 757 -25.2 1,046
PE64(16) PE4 / PE16 520 – 1,702
PE64(8n) PE8 / PE8 526 – 2,128
PE64(8) PE8 / PE8 555 – 2,464
PE64(4) PE16 / PE4 649 -14.2 1,768

PE128(16) PE8 / PE16 480 – 3,804
PE128(8) PE16 / PE8 510 – 3,536
PE128(4) PE32(4) / PE4 595 -8.3 2,292
PE256(4) PE64(4) / PE4 520 -12.6 9,448
PE512(4) PE128(4) / PE4 462 -11.1 13,256
PE1K(4) PE256(4) / PE4 434 -6.1 18,960
PE2K(4) PE512(4) / PE4 416 -4.1 42,722
PE4K(4) PE1K(4) / PE4 370 -11.1 70,502

PE256 is constructed by two PE16s. PE2K, however, is formed by 32 PE64s

operating in parallel, together with one central PE32.

As seen in Figure 6.15(a), the FREQs of PE64(4), PE256(4), and PE2K(4)

are 1.2 times, 1.5 times, and 1.4 times as high as those in RefB [51]. When

it comes to logic utilization, PE64(4) and PE2K(4) cost fewer transistors than

PE64 and PE2K, respectively, as depicted in Figure 6.15(b). However, the power

consumption of PE64(4) and PE2K(4) are 20.6% and 29.9% as high as those in

RefB [51]. Nevertheless, the resource and power consumption will be considered

for future work, since this work mainly concentrates on the high-performance

architecture.
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(a) Size vs frequency. (b) Size vs transistor count.

Figure 6.14: The comparison with RefA [48].

(a) Size vs frequency. (b) Size vs transistor count.

Figure 6.15: The comparison with RefB [51].
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Table 6.14: The comparison of several MPEs.

Design RefC RefB MPE8 RefC RefB MPE64 RefD RefB MPE2K

Device Stratix FPGA Stratix FPGA Cyclone IV FPGA
L (bits) 8 64 2,048

LEs 33 23 23 208 213 237 19,579 4,464 5,354
FREQ (MHz) 236 369 369 55 95 113.4 50 71 83.9

FREQ×L (Gbps) 1.9 2.9 2.9 3.5 6.1 7.3 102.4 145.4 171.8

6.5.2.2 Multi-match Priority Encoder

Table 6.14 shows three experiments of MPE, between our designs and three pre-

vious ones–RefB [51], RefC [46], RefD [49]. Since RefB, RefC, and RefD were

verified in an Altera Stratix EP1S10F780C6 and Cyclone IV EP4CE115F29C7,

we synthesized our 8-bit MPE (MPE8), 64-bit MPE (MPE64), and 2,048-bit

MPE (MPE2K) in the same FPGA devices, in order to draw a fair comparison.

All of them are based on PE8, PE64(4), and PE2K(4), respectively. The results

of logic elements (LEs) and FREQ are also correspondingly estimated by Altera

Quartus II 13.0 and TimeQuest Timing Analyzer.

As seen in Table 6.14, our designs considerably surpass the others in terms of

(FREQ×L), where L is the number of bits of MPE. Apparently, MPE8, MPE64,

and MPE2K produce (FREQ×L) of 1.5 times (2.9/1.9), 1.7 times (6.1/3.5), and

2.5 times (252.9/102.4) as high as that of RefC and RefD, respectively. In terms

of resource allocation, although RefC did not include the ENC circuit, they still

consume as much as LEs in comparison with MPE8 and MPE64, respectively.

RefD also requires the number of LEs to be 3.6 times larger than MPE2K, which

is likely to cause severe problems of resource utilization and power consump-

tion, since N keeps increasing. In comparison with our previous work RefB,

which excluded the utilization of a look-ahead signal and optimum (M , N) selec-

tion, (FREQ×L) of MPE64 and MPE2K are 1.19 times (7.3/6.1) and 1.18 times

(171.8/145.4) as high as those of RefB.

The resource efficiency of this work and three others are illustrated in Figure

6.16. The resource efficiency (LE/Gbps) is calculated as the quotient of the re-

source consumption (LE) and the parameter of (FREQ×L) (Gbps). The smaller
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Figure 6.16: The comparison of resource efficiency.

the resource efficiency is, the lower the energy efficiency becomes. As seen in

Figure 6.16, the proposed MPE requires fewer resources to encode the same bit

data in comparison with other state-of-the-art works.

MPE2K is used to construct 32-Kbit BIE. According to the analysis in Sec-

tion 5.2, BIE requires one initial cycle tint to get the 2-Kbit segment and K

cycles tseg to obtain K matching bits in this segment. Moreover, it takes two

additional cycles twait to receive a new 2-Kbit segment. Assume that TENC is

the execution time of BIE. Because TENC only relies on the FPGA clock cycle

itself, the measurement time is identical to the theoretical time. As a result, the

best and worst encoding time are tENCb = 46 and tENCw = 32,814 clock cycles,

respectively, as calculated in Equation (6.3). In other words, the maximum and

minimum throughputs at 100-MHz operating frequency become 66.34 Gbps and

95.23 Mbps, respectively.

tENC = (
32, 768

2, 048
)× (tint + tseg) + (

32, 768

2, 048
− 1)× twait (cycles) (6.3)

tENCw = 16× (1 + 2, 048) + 15× 2 = 32, 814 (cycles)

tENCb = 16× (1 + 0) + 15× 2 = 46 (cycles)
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Figure 6.17: The block diagram of hardware system testing.

6.6 Bitmap Index Creation System With An

Encoder

6.6.1 Experimental Setup

BIE is connected to BIC32K16 to output the matching positions of the BI vectors,

as shown in Figure 6.17. The primary component of this BIE is a 2,048-bit multi-

match priority encoder (MPE2K), whose detailed architecture is described in

Section 5.2. Because the length of BI vector is larger than 2,048 bits, a multiplexer

is added to divide the BI vectors into 16 2-Kbit segments. Each segment is

encoded by BIE in turn, then all encoded results are returned to DDR3 memory

using DMA mechanism for low I/O cost. An Arria V FPGA is employed to verify

the performance of the combination of BIC32K16 and BIE.

6.6.2 Experimental Results

Table 6.15 draws the comparison of hardware consumption between a combination

of BIC32K16 and BIE and a CAM-based information detection system (IDS) [43].

It is easy to see that in this combination system, the ALM utilization increases

around 6% and the operating frequency is reduced around 8%, compared to those

of the indexing system mentioned in Section 6.2. Nonetheless, this achieved
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Table 6.15: The comparison of hardware utilization.

IDS [43] BIC32K16 + BIE

Device
Cyclone IV

EP4CE115F29C7
Arria V

5ASTFD5K3F40I3
CAM size 2,048×8-bit 32,768×16-bit
ALMs — 55,288 (31%)
– Lookup tables 77,205 87,940
– Registers 31,094 43,822
Memory (Mbits) 3.00 16.14
Frequency (MHz) 50 120.1

Table 6.16: The execution time of BI creation system with BIE.

Time (clock cycle) Description

tOUT = tENC × h Time to output all encoded results

Ttheo = tOPM + (tCAM +
tQLA + tOUT )×B

Total theoretical index time

frequency is still adequate for the current 100-MHz testing system. In comparison

with IDS, despite the difference of FPGAs, we could design a CAM that was

32× larger, but only employed an additional 14% of lookup tables and 40% of

registers, respectively. This is due to the enhanced structure of the BIC32K16

component, especially the QLA module, as well as the 1D-to-2D-conversion-based

BIE component.

Because BIE returns the encoded positions at the rate of one match per clock

cycle, the time to output all matches is proportional to the number of matches

in a BI vector. Suppose that tOUT is the encoding time, tOUT is a product of h

and tENC that are mentioned in Equation (6.3) of Section 6.5. Following this, the

best and worst encoding time become (46×h) and (32,814×h), respectively. The

output time tOUT and theoretical index time Ttheo, in clock cycles, are summarized

in Table 6.16.
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Figure 6.18: The block diagram of hardware system testing.

6.7 Bitmap-Index-Based Query Processing Sys-

tem With An Encoder

6.7.1 Experimental Setup

The combination of BIQP and BIE have been successfully implemented in an

Arria V FPGA and then in two ASICs using 180-nm bulk CMOS and 65-nm

SOTB CMOS technology. A 2-Kbit BIE is connected to BIQP to output the

matching positions of the query results, as shown in Figure 6.18. The detailed

architecture of this BIE is described in Section 5.2. Because of the 32-Kbit query

result, a multiplexer is added to select each of 16 2-Kbit segments in the result. All

encoded results are then returned to DDR3 memory, using the DMA mechanism

for low I/O cost.

The ASIC implementation followed the digital circuit design flow using the

Synopsys and Cadence design tools. Since BIQP contains up to 512 32-Kbit BI

vectors, or a BIM size of 16 Mbits, ASIC implementation of such a design is very

challenging. For this reason, only two small-sized BQPs, containing a 256×16-bit

BIM and 256×32-bit BIM, are implemented in 180-nm bulk CMOS and 65-nm

SOTB CMOS technologies, respectively. It is noted that the BIM size in 65-

nm CMOS is double of that in 180-nm CMOS. The number of operations/keys
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Figure 6.19: The illustration of the chip testing method.

Table 6.17: The hardware utilization.

Device Arria V 5ASTFD5K3F40I3
ALMs 62,527 (35%)
– Lookup tables 102,856
– Registers 70,322
Memory (Mbits) 17.1 (80%)
Frequency (MHz) 106.8

of both designs are also reduced to 32, instead of 4,096 as implemented in an

FPGA.

Figure 6.19 describes our testing method of the chip using a source meter

and an FPGA board. First, a source meter is employed to supply the necessary

voltages to the chip. The active current and power consumption can also be

observed in the source meter. Second, an FPGA board provides the chip with

several test benches that contains synthesis operations/keys and BI vectors. The

results returned from the chip are directly compared with the expected results

initialized in the FPGA. If any mismatch occurs, an alarm will be triggered

instantly. Moreover, the operating frequency is adjusted by the FPGA’s phase-

lock loop to determine the maximum value. Each experiment was repeated ten

million times to guarantee the stability.

6.7.2 Experimental Results

Table 6.17 draws the hardware utilization of the combination of BIQP and BIE.

In this combination, the number of ALMs increases approximately 6% and the
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Table 6.18: The execution time of BI-based query processing system with BIE.

Time (clock cycle) Description

tOUT = tENC × h Time to output all encoded results

Ttheo = tOPM + (tBIM +
tQLA + tOUT )×B

Total theoretical processing time

operating frequency is slightly reduced by 3%, compared to those of a BIQP-based

query processing presented in Section 6.3. Nonetheless, the achieved frequency

of this combination is still adequate for the current 100-MHz testing system.

Table 6.18 shows the theoretical execution time, in the clock cycles, of tOUT and

Ttheo, where tOUT is the encoding time of BIE and Ttheo is the total theoretical

processing time. Because BIE returns the encoded positions at the rate of one

match per clock cycle, the time to output all matches is proportional to the

number of matches in a BI vector. Suppose that tOUT is the encoding time, since

h = 1, tOUT is equal to tENC that are mentioned in Equation (6.3) of Section 6.5.

Specifically, the best and worst processing time are 46 and 32,814 clock cycles,

respectively.

Two proof-of-concept chips of the combination of BIQP and BIE are shown

in Figure 6.20 and the their measurement results are stated in Table 6.19. The

180-nm chip was fully operational at 40 MHz and consumed 26.14 mW with a

supply voltage of 1.8 V. The 65-nm chip that contains the double-sized-BIM was

fully operational at 45 MHz and consumed only 8.29 mW with a supply voltage

of 1.2 V. More significantly, the performance of the 65-nm chip can be improved

by applying appropriate bias voltages.
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(a) In 180-nm bulk CMOS technology.

(b) In 65-nm SOTB CMOS technology.

Figure 6.20: The proof-of-concept chips.
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Table 6.19: The measurement results.

180-nm bulk CMOS 65-nm SOTB CMOS

Data width w (bits) 16 8
BIM size 16×256-bit 32×256-bit
OPM size 32×16-bit 32×16-bit

# of transistors (×103) 345 654
Area (mm2) 1.4×1.1 0.5×0.5

Supply voltage (V) 1.8 1.2
Frequency (MHz) 40 45

Power (mW) 26.14 8.29

Figure 6.21: The block diagram of hardware system testing.

6.8 Bitmap-Index-Based Analytics System With

An Encoder

As mentioned earlier in Section 6.4, a BI-based data-analytics system is built from

a BIC32K16 and a BIQP. To output the matching positions of the result register,

BIE is connected to BIQP. Figure 6.21 depicts the architecture of this system.

Each bitmap resulting from BIQP is encoded by BIE, before being returned to

DDR3 memory using the DMA mechanism. Because the operating frequency of

a BIC32K16 and a combination of BIQP and BIE are 129.5 MHz and 106.8 MHz,

respectively, those systems can be well-suited to the 100-MHz requirement of the

testing system. The performance of each system, therefore, is similar to those of

BIC32K16 and the combination of BIQP and BIE.
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6.9 Summary

This chapter has evaluated the performance including data I/O cost, process-

ing throughput, and energy efficiency of BIC, BIQP, and BIE in an Intel Arria V

FPGA. A BI-based analytics system is then proposed by combining a 32,768×16-

bit BIC with a BIQP. The combination of BIC with BIE and BIQP with BIE

are also verified in an Arria V FPGA and in two ASICs using a 180-nm bulk

CMOS and a 65-nm SOTB CMOS process. More significantly, the experimental

results prove that the FPGA-based design always requires low energy consump-

tion, compared to other CPU-based and GPU-based designs.
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Conclusion and Future Work

7.1 Conclusion

As big data continues to develop, the ability to process large amounts of data and

distill valuable information from it has become increasingly important for both

enterprise businesses as well as research scientists. Traditional computing plat-

forms, mainly based on CPUs, can no longer catch up with the massive growth of

data. Hybrid computing platforms that combine CPUs with either GPUs or FP-

GAs to boost the parallel processing, has attracted great interest. Despite being

extremely powerful, GPUs consume a considerable amount of power. Therefore,

its computing efficiency is much lower than that of FPGAs. As a result of this

drawback, FPGAs have become more popular in many huge data centers, such

as those of IBM [71] and Microsoft [72].

Data indexing plays a major role in data analytics because an efficient in-

dexing method is capable of minimizing the entire query time. Depending on

the database system, data model, and workloads, different indexing methods are

employed, such as B+-tree and hash that are the two most common approaches in

OLTP databases. However, in OLAP databases, most queries are highly complex

and involve aggregations, in addition to the limited execution time. Therefore,

BI is applied instead. BI has attracted a variety of studies, because it can solve

those expensive queries effectively by using only basic logical operators, such as

AND, OR, and NOT . Moreover, BI is amenable to efficient in-memory and

distributed processing [32, 35].
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7.1.1 Achievements

This dissertation originally proposes a BI-based data analytics system, which

is implemented in an FPGA and ASIC. First, BI is confirmed to be perfect

for hardware implementation because it supports parallel processing and only

requires basic bitwise logic operators to answer the complex queries. Second,

three components – BIC, BIQP, and BIE – are designed from scratch to index

data, process queries, and encode bitmap values, respectively. Each component

can operate independently or combine to form a BI creation system, a BI-based

query processing system, and a BI-based data-analytics system. In the analytics

system, BIC mainly constructed by a RAM-based CAM indexes all data received

from the host computer. All of the BI vectors are then sent to BIQP to resolving

the queries. Finally, the BIQP outputs are encoded by BIE before returning to

the host computer.

The architectures of the proposed designs meet the criteria of scalability and

parallel processing capability, while their performance is evaluated by data I/O

cost, processing throughput, and energy efficiency.

• Scalability: the size of BIC, BIQP, and BIE can be easily adjusted by

adding or removing correspondent logic circuits. For example, BIC64K8

and BIC32K16, which index 65,536 8-bit words and 32,768 16-bit words,

are created by slightly modifying the CAM and QLA size. Likewise, BIQP

depth and width are varied by inserting additional memory blocks and

logic circuits into BIM and QLA, respectively. The 1D-array to 2D-array

conversion is also used to construct a BIE that can deal with different input

size effectively.

• Parallel processing: BIC, BIQP, and BIE can process data in parallel

at the speed of a clock cycle. For example, BIC64K8 and BIC32K16 can

index as many as 65,536 8-bit words or 32,768 16-bit words simultaneously

at every cycle, BIQP can process 32-Kbit BI vectors at the rate of one

operation/cycle, and BIE can detect and encode the matching positions in

a bitmap result at the rate of one match/cycle.

• Data I/O cost: BIC, BIQP, and BIE can retrieve the test data and test
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operations directly from the external memory using the DMA mechanism.

Therefore, the I/O cost is likely to reach as high as the memory bandwidth.

In fact, the experimental results in an Intel Arria SoC FPGA kit show

that more than 95% of the DDR3 memory bandwidth are utilized. More

significantly, those components can also work easier with higher bus width

systems, e.g. 512 bits, by adjusting the DMA configuration.

• Processing throughput: BIC, BIQP, and BIE are fully operational at

100 MHz. At this frequency, BIC indexes 16-bit data in parallel at the

throughput of 1.48 GB/s, BIQP processes 32-Kbit BI vectors in parallel at

the throughput of 2.45 GB/s, and BIE encodes 2,048-bit data in parallel

at the maximum and minimum throughput of 66.34 Gb/s and 95.23 Mb/s,

respectively.

• Energy efficiency: BIC, BIQP, and BIE requires less energy to process

the same data unit, compared to CPU-based and GPU-based designs. For

example, BIC32K16 requires 15.3× and 43.1 × lower energy than IMS and

GPU13 to index 1-GB data, respectively. BIQP consumes 223× and 31×
less energy than CPU-based IMS and GPU-based GPU11, respectively, to

process 1-GB BI vectors.

The simulation and measurement results of the combination of BIQP and BIE

in the 180-nm bulk CMOS and 65-nm SOTB CMOS process have proven their

capability for ASIC implementation. The 180-nm chip was fully operational at 40

MHz and consumed 26.14 mW with a supply voltage of 1.8 V. The 65-nm chip,

containing the double-sized-BIM, was fully operational at 45 MHz and consumed

only 8.29 mW with a supply voltage of 1.2 V. More significantly, the performance

of the 65-nm chip can be improved by applying appropriate bias voltages [25].

7.1.2 Limitations

In this dissertation, the proposed hardware systems still contain several limita-

tions as shown below.

• In an Arria V FPGA, the embedded memory blocks are used to construct

RAM-based CAM and BI memory, which are the primary modules of BIC
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and BIQP, respectively. As much as 20-Mbit memory is employed in BIC

and BIQP. Although those memory blocks are simply used in an FPGA,

their implementation in an ASIC is very challenging. This is because those

blocks are built from the flip-flop-based registers, instead of the memory

cells themselves. A one-bit register requires much more transistors than a

one-bit memory cell, thereby significantly increasing the circuit size as well

as power consumption. As a consequence, only a small portion of the BI

memory was verified in both the 180-nm bulk CMOS and the 65-nm SOTB

CMOS process.

• Data from the FPGA development kit are transferred from a host computer

through a 1-Gbps Ethernet, which is likely to become a bottleneck in a

real data analytics system. Fortunately, current FPGAs support many

other high-speed communication means, such as a 10/100-Gbps fiber optical

transceiver, 32-Gbps PCI-Express 3.0, and 6-Gbps SATA. The utilization

of those means can reduce the transfer time between a host computer and

an FPGA kit. However, since this research mainly focuses on the efficient

hardware architectures, the study on effective communication will be left in

future work.

7.2 Future Work

Although the performance of each component outperforms other designs in multi-

core CPUs and GPUs, the impact of an entire system when being integrated into

a DBMS has still not been studied. For this reason, future work will focus on: (1)

examining a suitable open DBMS that supports the OLAP workload and column-

oriented model, (2) studying the highly efficient means of communication between

the data analytics system and the host computer (i.e. employ PCI Express bus

or 10/100-Gbps fiber optical connection), and (3) developing necessary software

libraries and frameworks, so that open DBMS can fully exploit this system.

Furthermore, in this dissertation, BIC only generates raw BI vectors. In some

cases, BI vectors must be stored in the external memory or hard disk for future

use. To save the I/O cost, compression is almost inevitable. Therefore, future

work will focus on: (1) reviewing all BI compression algorithms [73], such as BBC
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(1995), WAH (2006), PLWAH (2010), CONCISE (2010), and SPLWAH (2015),

(2) studying the feasibility of implementing those compression algorithms in hard-

ware (a so-called custom instruction set framework, first introduced in 2016, is

able to speed up the compression process in WAH, PLWAH, and COMPAX [74]),

and (3) proposing a hardware-friendly algorithm that balances the compression

ratio with resource utilization and operating frequency.

The capability of solving aggregation queries is a strong advantage of BI over

other indexing methods. The iceberg query, which was originally introduced in

1988 by F. Min et al. [75], is a special type of aggregation query that computes

aggregate values above a user-provided threshold. The number of above threshold

results is often very small (the tip of an iceberg), relative to a large amount of

input data (the iceberg). Nonetheless, the results often carry critical and valuable

business insights. As a result, future research will focus on: (1) hardware-based

frequent item counting and (2) the iceberg query with the help of BI and the

frequent item counting circuit.
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Appendix A

Full-Chip Layout Micrograph
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APPENDIX A – FULL-CHIP LAYOUT MICROGRAPH

Figure A.1: The layout of the combination of BIQP and BIE in 180-nm bulk
CMOS technology.
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Figure A.2: The layout of the combination of BIQP and BIE in 65-nm SOTB
CMOS technology.
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