

Autore:

Gianni Antichi _______________

Relatori:

Prof. Stefano Giordano ___________________

Prof. Franco Russo ___________________

Fast Packet Processing on High
Performance Architectures

Anno 2011
SSD ING-INF/03

UNIVERSITÀ DI PISA

Scuola di Dottorato in Ingegneria “Leonardo da Vinci”

Corso di Dottorato di Ricerca in
Ingegneria dell’Informazione

Tesi di Dottorato di Ricerca

To my parents Renzo & Graziella & to my grandparents Ernesto, Piera,
Lido & Fedora. Thanks for all you have done.

Acknowledgements

First of all, I want to say thanks to my friends. I shared with you many
wonderful moments during these years. Thanks Lorenzo, Matteo, Alessio,
Stefano, Sabina, Daniele, Alessandra, Laura, Frangé, Francesco, Paolo,
Gioia and Alfredo. I also want to thank all the people in my research
group. Thanks Christian, Gregorio, Andrea et al. I spent with you a lot
of good moments and a lot of good meals. I would like to acknowledge
Fabio and Domenico. Thanks guys. We were an incredible team. Hope to
work another time with you in the future. I want to thank my tutors prof.
Stefano Giordano and prof. Franco Russo. I am grateful to Dr.Andrew
Moore for giving me the opportunity of interning in the Computer Lab at
University of Cambridge where i met a lot a good people and learn a lot
of things.

Sommario

La rapida crescita di Internet e la nascita sempre piú veloce di nuove ap-
plicazioni di rete hanno portato ad una difficoltá sempre maggiore nello
sviluppo di reti IP ad alta velocitá con supporto anche per la qualitá del
servizio (QoS). Per tale motivo la classificazione dei pacchetti e la intru-
sion detection hanno assunto un ruolo chiave nelle reti di comunicazione
moderne al fine di fornire QoS e sicurezza. In questa tesi mostriamo al-
cune fra le piú avanzate soluzioni per lo svolgimento efficiente di queste
operazioni. Cominciamo introducendo il NetFPGA e i Network Proces-
sors come piattaforme di riferimento sia per la progettazione e lo studio
che per l’imple-mentazione degli algoritmi e, in generale, delle tecniche che
sono descritte in questa tesi. L’aumento della capacitá dei link ha ridotto
il tempo a disposizione dei dispositivi di rete per l’elaborazione dei pac-
chetti. Per questo motivo, mostriamo in questo lavoro differenti soluzioni
che, o attraverso operazioni di “randomizzazione” ed euristiche o con la
costruzione intelligente ed efficace di macchine a stati finiti, permettono
ai nodi di rete di effetturare operazioni di IP lookup, classificazione e deep
packet inspection in modo veloce su piattaforme ad alta velocitá come i
Network Processor o il NetFPGA.

Abstract

The rapid growth of Internet and the fast emergence of new network ap-
plications have brought great challenges and complex issues in deploy-
ing high-speed and QoS guaranteed IP network. For this reason packet
classification and network intrusion detection have assumed a key role in
modern communication networks in order to provide Qos and security. In
this thesis we describe a number of the most advanced solutions to these
tasks. We introduce NetFPGA and Network Processors as reference plat-
forms both for the design and the implementation of the solutions and
algorithms described in this thesis. The rise in links capacity reduces the
time available to network devices for packet processing. For this reason,
we show different solutions which, either by heuristic and randomization
or by smart construction of state machine, allow IP lookup, packet clas-
sification and deep packet inspection to be fast in real devices based on
high speed platforms such as NetFPGA or Network Processors.

Contents

Introduction 1

1 Introduction to FPGA-based Networking Boards and Network Pro-
cessors 3
1.1 FPGA-Based Networking Boards . 3

1.1.1 What is an FPGA? . 4
1.1.2 FPGA Design and Programming 4
1.1.3 The Combo6 . 5
1.1.4 The NetFPGA . 6

1.1.4.1 Architecture . 6
1.1.4.2 Reference Pipeline Details 7
1.1.4.3 Life of the Packet . 8
1.1.4.4 Register Pipeline . 9

1.2 Comparison among Network Processor Platforms 10
1.2.1 Multi-chip Pipeline (Agere) . 10

1.2.1.1 Architecture . 10
1.2.1.2 Processors and functional units 11
1.2.1.3 Memory . 12
1.2.1.4 Programming support 12

1.2.2 Augmented RISC Processor (Alchemy) 14
1.2.2.1 Architecture . 14
1.2.2.2 Processors and functional units 14
1.2.2.3 Memory . 15
1.2.2.4 Programming support 15

1.2.3 Embedded Processor Plus Coprocessors (AMCC) 15
1.2.3.1 Architecture . 15
1.2.3.2 Processors and functional units 16
1.2.3.3 Memory . 16
1.2.3.4 Programming support 16

1.2.4 Pipeline of Homogeneous Processors (Cisco) 16
1.2.4.1 Architecture . 16
1.2.4.2 Processors and functional units 17
1.2.4.3 Memory . 18
1.2.4.4 Programming support 18

1.2.5 Configurable Instruction Set (Cognigine) 18

v

CONTENTS

1.2.5.1 Architecture . 18
1.2.5.2 Memory . 19
1.2.5.3 Programming support 20

1.2.6 Pipeline of heterogeneous processors (EZchip) 20
1.2.6.1 Architecture . 20

1.2.7 Extensive and Diverse Processors (IBM) 21
1.2.7.1 Architecture . 21
1.2.7.2 Memory . 23
1.2.7.3 Programming support 23

1.2.8 Flexible RISC Plus Coprocessors (Motorola) 23
1.2.8.1 Architecture . 23
1.2.8.2 Programming support 25

1.3 Intel IXP2XXX Network Processors 25
1.3.1 General Structure . 25
1.3.2 The Intel XScale . 26
1.3.3 Microengines . 26

1.3.3.1 Threads . 27
1.3.3.2 Registers . 27
1.3.3.3 Signaling . 28
1.3.3.4 Local Memory . 29
1.3.3.5 Content-Addressable Memory and CRC 29

1.3.4 Memories . 29
1.3.5 Media Switch Fabric . 30
1.3.6 SHaC . 30
1.3.7 Intel IXA Portability Framework 31

1.3.7.1 Microblocks and Core Components 31
1.3.7.2 XScale/microengines interactions 31

1.3.8 IXA SDK . 32
1.3.8.1 Assembly for microengines 32
1.3.8.2 Constructs . 33
1.3.8.3 Virtual registers . 33
1.3.8.4 Microengine-C . 34

1.3.9 Developer’s Workbench . 34
1.3.9.1 Scripting . 34

1.3.10 ENP-2611 . 35

2 Deep Packet Inspection 37
2.1 δFA: An Improved DFA construction for fast and efficient regular ex-

pression matching . 38
2.1.1 Related Work . 39
2.1.2 Delta Finite Automaton . 40

2.1.2.1 Motivation through an example 42
2.1.2.2 Definition of δFA . 42
2.1.2.3 Construction . 43
2.1.2.4 Lookup . 44

2.1.3 Application to H-cFA and XFA 45
2.1.4 Compressing char-state pairs 47

vi

CONTENTS

2.1.4.1 Indirection Table Compression 48

2.1.5 δFA with C-S . 49

2.1.6 Implementation . 50

2.1.7 Experimental Results . 51

2.2 Second order delta enconding to improve DFA efficiency 54

2.2.1 The Main idea of δ2FA . 54

2.2.1.1 Lookup . 56

2.2.1.2 Construction . 56

2.2.2 Experimental Results . 58

2.3 Homomorphic encoding of DFAs . 60

2.3.1 Related works . 60

2.3.2 An efficient representation for DFAs 61

2.3.3 The look for an effective Homomorphism 62

2.3.4 Optimizations . 64

2.3.4.1 Permutation for LPM 64

2.3.4.2 Bitmap trees . 65

2.3.4.3 The overall algorithm 66

2.3.5 The k-step DFA . 67

2.3.6 Results . 67

2.4 Sampling techniques to accelerate regular expression matching 68

2.4.1 Sampling DFAs . 70

2.4.1.1 Motivation . 70

2.4.1.2 A Motivating Example 71

2.4.1.3 Taxonomy of DFA Sampling 71

2.4.2 Regex sampling rules . 72

2.4.2.1 Regex rewriting . 72

2.4.3 Constant Period Sampling . 73

2.4.3.1 First stage: Sampled DFA 73

2.4.3.2 Second stage: Reverse DFA 75

2.4.3.3 Possible implementations 79

2.4.3.4 Dealing with DoS attacks 79

2.4.4 Experimental Results . 79

2.5 Counting Bloom Filters for pattern matching and anti-evasion at the
wire speed . 84

2.5.1 Related works . 84

2.5.2 CBFs for pattern matching and anti-evasion 86

2.5.3 The anti-evasion system . 86

2.5.3.1 Motivations and Ideas 86

2.5.3.2 System Architecture 87

2.5.3.3 Small packets . 88

2.5.4 System Optimization . 89

2.5.5 Experimental Results . 90

vii

CONTENTS

3 Perfect Hashing Schemes for Data Indexing 93
3.1 Minimal Perfect Hashing through Bloom Filters 94

3.1.1 Related works . 94
3.1.2 What is a Blooming Tree? . 95
3.1.3 The MPHF construction . 96

3.1.3.1 Using the Naive Blooming Trees 96
3.1.3.2 Using the Optimized Blooming Tree and the HSBF . 96
3.1.3.3 Using a more efficient version 98

3.1.4 Complexity and properties . 99
3.1.4.1 Memory requirements 99
3.1.4.2 Hash evaluation cost 101

3.1.5 Experimental Results . 101
3.2 iBF: Indexed Bloom Filter . 102

3.2.1 The main idea . 103
3.2.2 iBF Construction . 104

3.2.2.1 First step: determine bits to mark 104
3.2.2.2 Second step: build the index 106
3.2.2.3 Check and restart . 107

3.2.3 Considerations on iBF . 108
3.2.4 Experimental Evaluation . 110

4 IP-Lookup and Packet Classification 111
4.1 RLA: Routing Lookup Accelerator . 112

4.1.1 Related Work . 112
4.1.1.1 Content Addressable Memories 113
4.1.1.2 Trie-based Schemes 113
4.1.1.3 Hardware-based Algorithms 114
4.1.1.4 Bloom Filters . 114

4.1.2 Motivations . 114
4.1.3 The Algorithm . 116

4.1.3.1 First Step: Range Sub-division 116
4.1.3.2 Second Step: Table Construction 119
4.1.3.3 Updates . 121

4.1.4 Measurements . 121
4.2 H-Cube: Heuristic and Hybrid Hash-based Approach to Fast Lookup . 122

4.2.1 Motivations and Main Idea . 122
4.2.1.1 Data Structures . 123

4.2.2 The Algorithm . 125
4.2.3 Theoretical Analysis . 125

4.2.3.1 Memory Consumption 126
4.2.3.2 Lookup Time . 126

4.2.4 Simulation Results . 128
4.3 A Randomized Scheme for IP Lookup at Wire Speed on NetFPGA . . 130
4.4 The algorithm . 130

4.4.1 Implementation . 131
4.4.1.1 MPHF Module . 131
4.4.1.2 Managing false positives 132

viii

CONTENTS

4.4.2 Results . 132
4.5 On the Use of Compressed DFAs for Packet Classification 135

4.5.1 Related Works . 135
4.5.2 Packet Classification as Pattern Matching Problem 136
4.5.3 Our Solution: Software . 136
4.5.4 Our Solution: Hardware . 137

4.5.4.1 Optimized Classifier 140
4.5.5 Experimental Results . 140

5 Network Monitoring and IP Traffic Generation 143
5.1 An Open-Source Solution for High-Speed Network Monitoring 144

5.1.1 Related Work . 144
5.1.2 Architecture . 145
5.1.3 Hardware Plane . 146

5.1.3.1 Timestamping module: a naive solution 147
5.1.3.2 Obtaining an Accurate Timestamp: DUCK implemen-

tation . 147
5.1.3.3 Core Monitoring . 148

5.1.4 Software . 149
5.1.5 Device Utilization . 150
5.1.6 Results . 150

5.2 BRUNO: High Performance Traffic Generator 151
5.2.1 Related Works . 152

5.2.1.1 BRUTE . 153
5.2.1.2 Hardware architectures for generation 154

5.2.2 BRUNO . 155
5.2.2.1 Design of BRUNO . 155
5.2.2.2 Load Balancer . 156
5.2.2.3 Traffic Generators . 157
5.2.2.4 Transmitter . 158
5.2.2.5 System Initialization 158

5.2.3 BRUTE-NP communication . 158
5.2.3.1 Synchronization . 159

5.2.4 Performance Evaluation . 161
5.2.4.1 System delays . 161
5.2.4.2 Timing correction . 162

5.2.5 Experimental results . 165
5.2.5.1 Traffic models . 166
5.2.5.2 Playback capability 167
5.2.5.3 Timing Correction Effect 169

Conclusions 173

A Hash Functions and Bloom Filters 175
A.1 Hash Functions . 175
A.2 Bloom Filters . 175

References 185

ix

CONTENTS

x

List of Figures

1.1 The NetFPGA main core: a Xilinx Virtex II Pro FPGA. 4
1.2 FPGA design flow. 5
1.3 Combo6 upright view. 5
1.4 NetFPGA upright view. 6
1.5 NetFPGA Block Diagram. 7
1.6 The Reference Pipeline. 8
1.7 Format of the packet passing on the packet bus. 9
1.8 Register access system. 9
1.9 Architecture of NP Agere. 10
1.10 Internal structure of FPP unit. 11
1.11 Internal structure of RSP. 13
1.12 The Alchemy chip. 14
1.13 AMCC nP7510. 15
1.14 A possible configuration of CISCO XPF. 17
1.15 Standard path of a packet in a PRE. 18
1.16 Internal structure of Cognigine network processor. 19
1.17 The scheme of NP-1 chip. 20
1.18 Internal architecture of IBM network processor. 21
1.19 The EPC chip in the IBM NP. 22
1.20 Architecture of C-Port. 24
1.21 Internal architecture of a Channel Processor. 25
1.22 Scheme of the IXP2400. 26
1.23 Compilation process. 33

2.1 Automata recognizing (a+),(b+c) and (c∗d+). 41
2.2 δFA internals: a lookup example. 45
2.3 Automata recognizing .*ab[ˆa]*c and .*def 46
2.4 Distribution of the number of bits used for a relative identifier with our

compression scheme for standard rule sets. 48
2.5 Mean number of memory accesses for δFA, BEC-CRO and D2FA for

different datasets. 52
2.6 Comparison of speed performance and space requirements for the dif-

ferent algorithms. 53
2.7 Automata recognizing (a+), (b+c) and (c∗d+). 55
2.8 δ2FA internals: a lookup example. 56

xi

LIST OF FIGURES

2.9 Schematic view of the problem. Same color means same properties. If
the properties of S3 are set temporary, the ones in S1 can be avoided. 57

2.10 Mean number of memory accesses. 60

2.11 A very simple DFA . 62

2.12 An example of Co-occurrence Permutation for 3-bit characters 65

2.13 Ratio of transitions stored when Co-occurrence Permutation is used
compared with the minimum number of transitions. The ratio is com-
puted with respect to the case when no permutation is adopted. . . . 66

2.14 An example of state construction in h-DFA for 3-bit characters. The
numbers on the leaves are pointers to next states 66

2.15 Mean number of memory accesses per character. 69

2.16 Examples of sampling with θ = 2. The regex to match is ab. ∗ cd, the
sampled one is [ab].∗[cd] and the text consists of 16 bytes. Arrows point
to observed chars. Sampling performs 12 memory accesses in case of a
real match(b) or false alarm(c) or even 8 in the average non-matching
case(a). In (c) the striked arrow point to the non-matching char. . . . 71

2.17 Example of the finite automata needed for sampling (only the forward
transitions are shown for readability): (a) is the standard DFA, (b) is
the sampled one (with θ = 2) and (c) is the reverse DFA. 76

2.18 Example of a sampled DFA for regular expression: abc ∗ d. Only some
edges are shown. 78

2.19 Using an overall reverse DFA (one) or one DFA per regex subset (all). 80

2.20 Bit rate with a standard DFA (θ = 1) and sampled DFAs (θ = 2, 3, 4). 82

2.21 Bit rate with k-DFA and our DFAs. 82

2.22 False alarms, length and range for each signature. 83

2.23 Addition of a new string in a CBF. 86

2.24 The scheme of our system. 88

2.25 The string is SIGNATURE. The piece SI is not outright detected, and
when the piece GNA generates an alert, it has already been processed. 90

2.26 Detection percentage and false positives by varying α. 92

3.1 Example of hash retrieval by using OBT and HSBF. 98

3.2 Example of hash retrieval in the optimized structure. 99

3.3 The desired data structure . 104

3.4 Probability of good BFs as a function of α and k. 105

3.5 Overall scheme. Here the parameters ε = 2 and m = 16 are quite
over-dimensioned in order to better illustrate the idea. 106

3.6 The bipartite matching problem. 107

3.7 Minimal m for the construction of iBF 109

3.8 Ratio of m over minimal m for the construction of iBF 109

3.9 Number of bits per element m/n. 109

3.10 False positives in a iBF for n = 100, 400, 1000, 2000. 110

4.1 Distribution of prefix values belonging to different forwarding tables. . 115

4.2 Example of lookup by using RLA and then Lulea or Tree Bitmap. . . 117

4.3 First step: the choice of the parameter b. 118

xii

LIST OF FIGURES

4.4 Variation of memory consumption and mean number of memory ac-
cesses of the RLA algorithm with respect to α for the database of 2006. 120

4.5 A picture of the different structures used in our lookup scheme. 124
4.6 Flow diagram of H-cube lookup process. 126
4.7 Memory consumption for the different lookup schemes. 129
4.8 Memory occupancy versus number of accesses. 129
4.9 The overall IP lookup scheme. 131
4.10 BT-array schematic. 131
4.11 Mean bit-rate achieved with different forwarding tables. 134
4.12 Structure of the classifier. 138
4.13 Structure of the classifier. 138
4.14 Structure of the classifier. 139
4.15 Throughtput of the classifier with constant-rate traffic of interest and

different rates of the background traffic (ρ stands for link utilization). 140
4.16 Throughtput of the classifier with growing rates of the traffic of interest.141

5.1 The overall monitoring scheme. 145
5.2 The Timestamp and Packet data streaming are passed in parallel. . . 146
5.3 Flow Diagram of the Core Monitoring. 148
5.4 Format of the Packet sent to the CPU. 149
5.5 System setup. 150
5.6 Comparison of the two absolute drift with the naive timestamping mod-

ule. 151
5.7 Comparison between the two oscillator with the naive timestamping

module. 151
5.8 Architecture of BRUTE. 153
5.9 Architecture of BRUNO. 155
5.10 Structure of a packet request (PR). 156
5.11 A flow structure. 157
5.12 Address Translation. 159
5.13 DRAM window circular buffer. 160
5.14 Schematic view of BRUNO as a system 163
5.15 Energy of the impulse response of G(z). 164
5.16 Estimated Power Spectral Density of ω(n). 165
5.17 Square absolute frequency response of G(z). 165
5.18 CBR traffic: Brute vs Bruno. 166
5.19 Bar chart of interarrival times of a Poisson traffic (λ = 0.03). 168
5.20 PAB traffic profile. 169
5.21 Variance time of generated PAB traffic. 169
5.22 Interarrival times of a 40s SIP call. 170

xiii

LIST OF FIGURES

xiv

List of Tables

1.1 Units and functionalities of Agere system. 12
1.2 Processors and functionalities of RSP unit. 12
1.3 Processors of NP-1. 21
1.4 Co-processors of IBM NP. 22
1.5 Properties of IXP2400 memories. 29

2.1 Percentage of states reached by edges with the same one label (p1char),
C-S compression (rcomp), average number of scratchpad accesses per
lookup (ηacc) and indirection-table size (TS). 47

2.2 Characteristics of the rule sets used for evaluation. 49
2.3 Compression of the different algorithms in terms of transitions and

memory. 51
2.4 Number of transitions and memory compression by applying δFA+C-S

to XFA. 53
2.5 Simple vs. Optimal approach: ratio of deleted and temporary transitions. 59
2.6 Compression of the different algorithms. In (b) the results for δFA and

δ2FA include char-state compression. 59
2.7 Compression of the different 1-step algorithms in terms of transitions

and memory. 68
2.8 Memory and transition compression (%) for 2 and 3-step h-DFA +

Char-State compression . 69
2.9 Performance of the standard system in terms of detected attacks and

false positives. 91
2.10 The effects of deleting the most frequent substrings. 92

3.1 Memory requirements in bits/key. 100
3.2 Algorithm comparison. 101
3.3 Terms and notation used through the work 103

4.1 Average prefix length distribution for IPv4 BGP table. 115
4.2 Performance of RLA and memory gain with respect to multibit trie

and direct addressing. 118
4.3 Performance of RLA compared to Lulea and Tree Bitmap. 121
4.4 Construction time and memory consumption for our scheme. 127
4.5 The cost of H-cube lookup in terms of memory accesses. 128
4.6 Resource utilization for the original lookup algorithm. 133

xv

LIST OF TABLES

4.7 Utilization for our algorithm. 133
4.8 Utilization for our overall project. 133

5.1 Device utilization for the Passive Monitoring System. 149
5.2 Mean times for each operation in clock cycles. 162
5.3 Interdeparture time variation reduction achieved by the correction mech-

anism. 171

xvi

Introduction

The amount of Internet traffic and link bandwidth increase day by day, and this forces
network devices to meet harder and harder requirements.
The growth of users and applications pushes researchers towards the development of
novel and audacious ideas and modern and fast devices. The rise in links capacity
reduces the time available to network devices for packet processing (for instance, on
a gigabit link a packet has to be processed within about 0.7 µs). A simple solution
is, of course, the adoption of massive parallelism. However, increasing the number
of processing engines is an expensive approach and increases the memory bandwidth
requirements. For these reasons, tasks like Packet Classification and Deep Packet In-
spection are still a critical processing for network devices, thus permanently requiring
improvements and new algorithmic solutions. Several solutions for these problems are
described in this work; all of them take into account real applications and development
in high performance platforms such as NetFPGA and Network Processors. The first
chapter of the thesis introduces NetFPGA and Network Processors with greater at-
tention to Intel ones which have been adopted in many of the works described herein.
With chapter 2, we move into Deep Packet Inspection, by discussing solutions based
on DFA and Bloom Filters. Then, chapter 3 introduces two novel perfect hashing
schemes, which are useful in devices provided by a limited amount of memory. They
are based on randomized techniques and show remarkable results. Chapter 4 de-
scribes IP-lookup and Packet Classification techniques based on heuristic, hash tables
and DFA (Deterministic Finite Automata). Finally chapter 5 describes two ideas for
low-cost IP Traffic Generation ad Monitoring at high-speed.

1

2

Chapter 1

Introduction to FPGA-based
Networking Boards and
Network Processors

In this chapter we introduce FPGA-based networking boards and Network Processors.
The most popular of the former, NetFPGA [1] and Combo series [2], are presented
with greater attention to the NetFPGA which have been adopted in many of the
works described herein. Only a brief introduction of Combo6, for the Combo series
is inserted. We introduce also a comparison among Network Processor Platforms
with greater interest in Intel ones, used extensively in the works presented herein.
NetFPGA and Intel Network Processor have always been taken as reference in the
design and development of the proposed algorithms in this thesis.

1.1 FPGA-Based Networking Boards

The main idea of the FPGA-based cards like NetFPGA and Combo6 is to give de-
velopers a possibility to work with “open hardware” and use it in the same way as
open-source software. The heart of these cards consists of one or more FPGA (Field
Programmable Gate Array) chips, memories and other necessary components (power
supply, IO chips, connectors etc.). Due to the flexibility of FPGA chips, the func-
tionality of these cards can be easily (and quickly - within just several milliseconds)
changed by loading a new design into the FPGA. This approach can be used for many
different research and development projects.

3

1. INTRODUCTION TO FPGA-BASED NETWORKING BOARDS
AND NETWORK PROCESSORS

Figure 1.1: The NetFPGA main core: a Xilinx Virtex II Pro FPGA.

1.1.1 What is an FPGA?

An FPGA (Field Programmable Gate Array) is a software programmable digital de-
vice. Field–Programmable means that the customer can configure it after manifac-
turing. FPGAs are usually a good trade-off between ASICs (Application Specific In-
tegrated Circuit) and PAL (Programmable Array LOgic). FPGA offer the advantage
of obtaining the same functions that an ASIC could perform while being amenable to
modifications even after the chip is deployed in a product.
FPGAs are used in a great variety of applications like communications, automotive,
consumer, etc. The designer can program them directly, achieving:

• a reduction of the project time

• a direct verify making use of simulations

• trails on the application field

A functionality error can be simply corrected by re–programming the device and the
design environments are largely user–friendly. These are the reasons why FPGAs
are usually preferred to ASICs in the project phase, while their high price and large
power consumption are unconvenient for large–scale prodution. So this is the formula
which is rapidly growing: FPGAs for experimentations and designing, and ASICs for
productions.

1.1.2 FPGA Design and Programming

FPGAs are programmed with Hardware Description Languages (HDL) like Verilog
or VHDL, or making use of a “schematic–entry” mode that can offer a fast and sim-
plified approach with the same performances. Leader companies such as Xilinx and
Altera give a complete development environment to support their entire product-line,
so customer can just create their own application, simulate it and then download it
to the FPGA platform to verify its functionality. Using an electronic design automa-
tion tool, a technology-mapped netlist is generated. The netlist can then be fitted
to the actual FPGA architecture using a process called place–and–route, usually per-
formed by the FPGA company proprietary place-and-route software. The user will
validate the map, place and route results via timing analysis, simulation, and other
verification methodologies. Once the design and validation process is complete, the

4

1.1 FPGA-Based Networking Boards

binary file generated (also using the FPGA company’s proprietary software) is used
to (re)configure the FPGA.

Figure 1.2: FPGA design flow.

The most common HDLs are VHDL and Verilog, although in an attempt to reduce
the complexity of designing in HDLs, which have been compared to the equivalent
of assembly languages, there are attempts to raise the abstraction level through the
introduction of alternative languages. In a typical design flow, an FPGA application
developer simulates the design in multiple stages throughout the design process. Ini-
tially the RTL description in VHDL or Verilog is simulated by creating test benches
to simulate the system and observe results. Then, after the synthesis engine maps the
design to a netlist, the netlist is translated to a gate level description where simulation
is repeated to confirm the synthesis reports no errors. Finally the design is laid out
in the FPGA at which point propagation delays can be added and the simulation run
again with these values back-annotated onto the netlist. As it can be seen, design
verification, which includes both functional verification and timing verification, takes
places at different stages during the design flow, giving the designer the chance to
verify step by step his project without wasting time.

1.1.3 The Combo6

Figure 1.3: Combo6 upright view.

Combo6 developed in the Liberouter project [3] by CESNET in cooperation with
the Faculty of Information Technology in Brno is a PCI card primarily dedicated
for a dual-stack (IPv4 and IPv6) router hardware accelerator. It can be used in

5

1. INTRODUCTION TO FPGA-BASED NETWORKING BOARDS
AND NETWORK PROCESSORS

applications either alone (as a hardware coprocessor) or with add-on cards as an
accelerated interface PCI card. It consists of Xilinx Virtex II FPGA, 2Mb TCAM,
256MB DRAM and 6Mb SSRAM. Various add-on cards can be used with Combo6
card. Add-on SFP card with 4 GE interfaces and 2 Virtex II FPGAs is an example
of one of the Combo6 interface cards. The communication between interface and
Combo6 card is realized via 100-bits wide 3-state bus with maximal clock frequency
of 153MHz (maximal DDR transfer rate is approx. 3,8GB/s). Unfortunately the
interconnection connector between Combo6 and its interface card is often source of
reliability problems.

1.1.4 The NetFPGA

The NetFPGA platform has been developed in Stanford University by the High Per-
formance Networking Group as an open platform available to developers worldwide.
It is a reusable networking hardware with a simple modular design based on a low–
cost FPGA platform. Its primary goal is to give students, teachers and researchers a
fast and powerful tool to experiment new ways to process packets at line–rate. A set
of reference designs is provided with the NetFPGA board, such as an IPv4 Router or
a simple Network Interface Card. Several developers all over the world are using the
platform to build advanced network flow processing systems.

Figure 1.4: NetFPGA upright view.

1.1.4.1 Architecture

NetFPGA is a PCI card that plugs into a standard PC. As main components, the card
contains an FPGA, four 1GigE ports and some buffer memory (SRAM and DRAM).
A block diagram that presents the major components of NetFPGA platform is shown
in figure 1.5. This platform contains one Xilinx Virtex2–Pro 50 FPGA which is pro-
grammed with user–defined logic and has a core clock that runs at 125Mhz. The
NetFPGA platform also contains one small Spartan II FPGA holding the control
logic for the PCI interface to the host processor.
Two 18MBit external Cypress SRAMs are arranged in a configuration of 512k words
of 36bits (4.5Mbytes total) and operate synchronously with the FPGA logic at 125MHz.
One bank of external Micron DDR2 SDRAM is arranged in a configuration of 16M
words of 32bits (64MBytes total). Using both edges of a separate 200MHz clock, the
memory has a bandwidth of 400MWords/second (1, 600MBytes/s= 12, 800Mbits/s).

6

1.1 FPGA-Based Networking Boards

Figure 1.5: NetFPGA Block Diagram.

The Broadcom Gigabit/second external physical-layer transceiver (PHY) sends pack-
ets over standard category 5, 5e, or 6 twisted-pair cables. The quad PHY inter-
faces with four Gigabit Ethernet Media Access Controllers (MACs) instantiated as a
soft core on the FPGA. The NetFPGA also includes two interfaces with Serial ATA
(SATA) connectors that enable multiple NetFPGA boards in a system to exchange
traffic directly without use of the PCI bus.

1.1.4.2 Reference Pipeline Details

Figure 1.6 shows the reference pipeline. The NetFPGA adopts the common approach
of networking hardware which is generally arranged as a pipeline through which pack-
ets flow and are processed at each stage. Stages are interconnected using two point–
to–point buses: the packet bus and the register bus.
The packet bus transfers packets from one stage to the next using a synchronous FIFO
packet-based push interface, over a 64–bit wide bus running at 125Mhz (an aggregate
rate of 8Gps). In this scenario, stage i pushes data forward when the next stage
has space for a packet word (i.e.: the FIFO is not full). The FIFO interface has the
advantage of hiding all the internals of the module behind a few signals and allows
modules to be concatenated in any order. It is the simplest interface can be used to
transfer information and provide flow control while still being sufficiently efficient to
run designs at full line–rate.
The first stage in the pipeline consists of several queues (Rx queues). These queues
receive packets from IO ports such as the Ethernet ports and the PCI over DMA and
provide a unified interface to the rest of the system. These ports are connected into
a wrapper called the User Data Path which contains the processing stages. The cur-
rent design has 4 Ethernet Rx queues and 4 CPU DMA queues. Packets that arrive
into CPU DMA Rx Queue X are packets that have been sent by the software out of
interface nf2cX. In the User Data Path, the first module a packet passes through is
the Input Arbiter. The input arbiter decides which Rx queue to service next, and
pulls the packet from that Rx queue and hands it to the next module in the pipeline:
The output port lookup module. The output port lookup module is responsible for

7

1. INTRODUCTION TO FPGA-BASED NETWORKING BOARDS
AND NETWORK PROCESSORS

Figure 1.6: The Reference Pipeline.

deciding which port a packet goes out of. After that decision is made, the packet
is then handed to the output queues module which stores the packet in the output
queues corresponding to the output port until the Tx queue is ready to accept the
packet for transmission. The Tx queues are analogous to the Rx queues and they
send packets out of the IO ports instead of receiving. Packets that are handed to
DMA Tx queue X pop out of interface nf2cX.

1.1.4.3 Life of the Packet

Packets enters and exit the pipeline through various Receive and Transmit Queue
modules respectively. To keep things simple, the interface is packet–based. Modules
are not required to process multiple packets at a time, and they are not required
to split the packet header from its data (altough a module is free to chose to do so
internally). As the packet moves from one stage to the next, a stage can modify the
packet itself and/or parse the packet to obtain information that is needed by a later
stage for additional processing on the packet. This extracted information is prepended
to the beginning of the packet as a 64–bit word which is called module header and is
uniquely identified by its ctrl word from other module headers. Subsequent stages in
the pipeline can identify this module header from its ctrl word and use the header to
perform additional processing on the packet. The ctrl world is non-zero for module
headers and distinguishes module headers from each other when there are multiple
module headers. When the actual packet received starts after the module headers,
the ctrl word is reset to 0, and then at the last word of the packet, the ctrl lines will
indicate which byte is the last byte in the last word. The Rx Queues create a module
header when they receive a packet and prepend it to the beginning of the packet.
The Rx queues store the length of the packet in bytes at the lowest 16bits of the
module header, the source port and the packet length. The Input Arbiter selects an
Rx queue to service and pushes a packet into the Output Port Lookup module. The
Output Port Lookup module decides which output port(s) a packet goes out of and
writes the output ports selection into the module header. The Output Queues module

8

1.1 FPGA-Based Networking Boards

Figure 1.7: Format of the packet passing on the packet bus.

Figure 1.8: Register access system.

looks at the module header to decide which output queue to store the packet in and
uses the lengths from the module header to store the packet efficiently. After the
packet is removed from its output queue and pushed into its destination Tx Queue,
the module header is finally removed before sending the packet out of the appropriate
port. Packets on the packet bus are formatted as shown in figure 1.7.

1.1.4.4 Register Pipeline

The register bus provides another channel of communication that does not consume
Packet Bus bandwidth. It allows information to travel in both directions through the
pipeline, but has a much lower bandwidth. A common register interface, done by
memory–mapping, make the hardware registers, counters and tables visible and con-
trollable by software. The memory–mapped registers, in turn, appear as I/O registers
to the user software that can access them using ioctl calls.
The register bus strings togheter register modules in each stage in a pipeline daisy–
chain that is looped back in a ring. One module in the chain initiates and responds to
requests that arrive as PCI register requests on behalf of the software. However, any
stage of the chain is allowed to issue register access requests, allowing information
to trickle backwards in the pipeline, and allowing stage i to get information from
stage i + k. This daisy–chain architecture is preferable to a centralized arbiter ap-

9

1. INTRODUCTION TO FPGA-BASED NETWORKING BOARDS
AND NETWORK PROCESSORS

Figure 1.9: Architecture of NP Agere.

proach because it facilitates the interconnection of stages while limiting inter–stage
dependencies. Figure 1.8 shows this register bus architecture.

1.2 Comparison among Network Processor Platforms

Nowadays no official standard for network processors yet exists. Each vendor has
proposed its specific solution. The common features of all proposals are a hierarchy
of processors, a series of memory devices with different sizes and latencies, a low-
level programmability. The target is a platform for networking applications with
low time to market and high time in market, thanks to a high flexibility and a easy
programmability. In this section, we first present a comparison among the available
network processor platforms and then a detailed description of the hardware reference
of our activity, the Intel IXP2XXX family.

1.2.1 Multi-chip Pipeline (Agere)

Agere System Incorporated (i.e. the microelectronics branch of Lucent Technologies)
presents a NP family called Payload Plus [4]. It has three interesting features: a
multichip architecture, a programmable classifier, a flexible management of input
data.

1.2.1.1 Architecture

The Agere system is composed by three different units. Fig. 1.9 shows the intercon-
nections among the different chips and the data flow through the consequent pipeline.
The Fast Pattern Processor (FPP) and the Routing Switch Processor (RSP) establish
the basic pipeline for fast data path processing. The ingress packets are forwarded to
the FPP, which sends them, along with an instruction set, to the RSP. The packets

10

1.2 Comparison among Network Processor Platforms

Figure 1.10: Internal structure of FPP unit.

are then forwarded toward the switching fabric. A third chip, the Agere System In-
terface (ASI) is a co-processor that introduces new functionalities to improve general
performance. The ASI gathers statistical information on packets, which are then used
for traffic management. Moreover the ASI provides a connection toward a distinct
processor (not shown in figure), which is used to manage the overall system and the
exception packets.
The system offers other connections: for instance, the configuration bus connects also
the ingress hardware interfaces in order to coordinate the data flow toward the FPP.
Fig. 1.10 shows the internal architecture of the FPP.

1.2.1.2 Processors and functional units

Each chip in the Agere system contains several processors and provides different func-
tionalities. Tab 1.1 shows the features of each component. The Functional Bus Inter-
face (FBI) implements an interesting form of Remote Procedure Call (RPC), which
allows for calling functions which are external to the FPP unit. This way it is possible
to extend the FPP functionalities by adding ASIC hardware.
Moreover, the FPP contains the interfaces for each external connection. For instance,
the pattern processing engine can interface to an external control memory by means
of a program memory and a queue engine. To handle packets, the FPP has an
ingress interface, a framer that divides packets in 64 bit long blocks and an output
interface for the configuration bus. The FPP contains also an external interface for
the configuration bus. The central part is given by a functional bus, which all the
processors can connect to. There is also an external interface for the functional bus

11

1. INTRODUCTION TO FPGA-BASED NETWORKING BOARDS
AND NETWORK PROCESSORS

Table 1.1: Units and functionalities of Agere system.

Unit Functionality
Pattern processing engine Pattern matching

Queue engine Manage packet queuing
Checksum/CRC engine Compute checksum or CRC

ALU Classical operations
Input interface and framer Divide ingress packets in 64-byte long blocks

Data buffer controller Check access to external data buffer
Configuration bus interface Connect to external configuration

Functional bus interface Connect to external functional bus
Output interface Connect to external RSP chip

Table 1.2: Processors and functionalities of RSP unit.

Unit Functionality
Stream editor engine Packet modification

Traffic manager engine Regulate traffic and hold statistics
Traffic shaper engine Check QoS parameters

Input interface Receive packets to FPP
Packet assembler Store arriving packets

Queue manager logic Interface to external traffic scheduler
Output interface External connection for output packets

Configuration bus interface Connect to external configuration bus

which is used by the ASI for checking the processing. The RSP unit, whom internal
structure is shown in 1.11, has a set of processors and functionalities listed in tab.
1.2. The stream editor, the traffic manager and the traffic shaper have been built
with Very Long Instruction Word (VLIW) processors.

1.2.1.3 Memory

In the Agere architecture, both external and internal memory are provided. The FPP
divides packets in blocks and stores them in an external data-buffer (by means of an
interface on the chip). It uses the internal memory for packets in the processing stage,
while the external memory is used to store programs and instructions. The RSP stores
packets in an external SDRAM and uses a Synchronous Static RAM (SSRAM) for
high priority queues.

1.2.1.4 Programming support

Ease programming is an appealing feature of Agere chip. The FPP is a pipelined
multithreaded processor and provides 64 independent contexts. However the paral-
lelism is hidden to the programmer, who is able this way to use high-level languages.

12

1.2 Comparison among Network Processor Platforms

Figure 1.11: Internal structure of RSP.

13

1. INTRODUCTION TO FPGA-BASED NETWORKING BOARDS
AND NETWORK PROCESSORS

Figure 1.12: The Alchemy chip.

Agere offers also a specific language for the classification, a Functional Programming
Language (FLP), and a scripting language, the ASL (Agere Scripting Language).
Moreover, Agere offer a substantive support for traffic management. The logic of
RSP allows for using multiple queues, applying external scheduling rules and han-
dling traffic shaping.

1.2.2 Augmented RISC Processor (Alchemy)

Alchemy semiconductors Inc. (acquired by Advanced Micro Devices) offers different
versions of Network Processors with different speeds [5]. These solutions are based on
a RISC processor which is enriched by instructions specialized on packets processing.

1.2.2.1 Architecture

This architecture is characterized by an embedded RISC processor along with a series
of co-processors. The core, a CPU MIPS-32, uses a 5-stages pipeline, the pipelined
register file access and the zero penalty branching to improve the performance. Many
instructions have been added to the set, such as a “multiply and accumulate” to aid
in CRC or checksum computing. Other added instructions are those for memory
prefetch, for conditional move operations, count leading of 0s and 1s. Fig. 1.12 shows
the internal organization of Alchemy chip.

1.2.2.2 Processors and functional units

As shown in fig. 1.12, the embedded RISC processor can access to a certain number
of I/O controllers and functional units. The chip contains also an RTC (Real Time
Clock) unit.

14

1.2 Comparison among Network Processor Platforms

1.2.2.3 Memory

On the chip there are two caches of 26KB, one for instructions and one for data, and
connections for external SDRAM e SSRAM. The bus which connects the SSRAM
provides also access to a Flash Memory, a ROM and a PCMCIA unit.

1.2.2.4 Programming support

Given that the Alchemy chip uses a MIPS processor, it can be programmed in C
language.

1.2.3 Embedded Processor Plus Coprocessors (AMCC)

Applied Micro Circuit Corporation (AMCC) offers a series of NPs with different
performance [6]. The AMCC architecture allows for efficiently using parallelism in
order to obtain high data-rates.

1.2.3.1 Architecture

The version nP7510 includes 6 embedded processors (called nP cores), which work in
parallel (e.g., a packet transform engine, a policy engine, a metering engine) and other
functional units which provide external interfaces. An external co-processor handles
address lookups based on a Longest Prefix Match algorithm. Fig. 1.13 shows the
scheme of AMCC chip.

Figure 1.13: AMCC nP7510.

15

1. INTRODUCTION TO FPGA-BASED NETWORKING BOARDS
AND NETWORK PROCESSORS

1.2.3.2 Processors and functional units

Each processor provides hardware threads at zero context switch. This way, the
nP7510 can simultaneously process more packets or cells. The programming model
of AMCC allows for hiding the parallelism to programmer, who can write code as for
a single processor. Moreover, each packet or cell is processed by a single thread, this
way avoiding to partition the code and implement complex balancing algorithms. The
Packet Transform Engine, which is optimized for packets or cells, allows for operations
on frames in parallel with the nP cores; several operations can be made in a single
instruction: insert or delete data, compute and add the CRC or change values in
packet header. The Special Purpose Engine enables the elimination of mutexes or
other software threats for synchronizing access of thread to shared resources. The
Policy Engine is dedicated to search and classification operations. Many lookups (up
to 512 with compound keys) can be simultaneously made with a fixed latency. A
key feature of Policy Engine is the “Network-Aware CASE Statement”: the use of
multiple and concurrent classifications allows for the elimination of nested “if-then-
else” instructions, this way reducing code and improving performance. The metering
engine enables the collection of information for the remote monitoring of SNMP, while
the Statistic Engine enables the automated collection of statistics based on RMON
protocol. The nP7510 has been designed to support a speed of 10 Gbps. It can be
interfaced with the traffic management chipset nPX5710/20. The configuration can
be doubled in order to handle a full duplex traffic of 10 Gbps. The nPX5710/20
contains also a virtual SAR unit (Segmentation And Reassembly).

1.2.3.3 Memory

As for many NPs, the AMCC chip offers external and internal memories. Moreover, a
controller manages the two types of memory and hides this double nature to processor.
An external TCAM is used for packet classification processes.

1.2.3.4 Programming support

These processors can be programmed in C or C++; AMCC provides a compiler, an
assembler and a debugger.

1.2.4 Pipeline of Homogeneous Processors (Cisco)

The Parallel eXpress Forwarding (PXF) network processor has been designed by Cisco
to be used in Cisco routers [7].

1.2.4.1 Architecture

The PXF adopts a parallel architecture that can be configured in order to create a
series of pipelines. A single chip contains 16 embedded processors that can be put to
work on 4 parallel pipelines. Figure 1.14 shows a possible organization of processors.

16

1.2 Comparison among Network Processor Platforms

Figure 1.14: A possible configuration of CISCO XPF.

1.2.4.2 Processors and functional units

The PXF architecture counts a separation between control plane and forwarding
plane. A route processor cares of routing protocols, network configuration, errors
handling, and packets which are destined to the router. Instead, the forwarding plane
is controlled by the PXF technology. In the PXF, each processor is optimized for
packet processing at high speed and it is completely independent of the other ones;
these units are called Express Micro Controllers (XMCs) and contain a complex dou-
ble execution unit, provided with several specific instructions for an efficient packet
processing. Moreover the XMCs can access to different resources on the chip, as reg-
ister files and timers. They have also a shared access to an external memory in order
to store state information, such as routing tables and packet queues. Finally, some
micro-controllers guarantee that processing results can be passed among subsequent
XMCs on the same pipeline. Figure 1.15 illustrates the path of a packet through
this architecture. In this configuration, 2 PXF network processors are used for each
Performance Routing Engine (PRE), this way obtaining 4 pipelines of 8 processors.
Whenever a packet goes to a PRE from the ingress interface, it enters the ASIC back-
plane interface and is bufferized in the input packet memory. The header is extracted
and sent to PXF for packet classification, header modification and, if needed, data
modification. The processing comprehends also the selection of the port on which
packet forwarding is performed. By means of simple routine algorithms, the PXF
instructs ASIC backplane interface to store packet in its packet-buffer memory, in one
of the possible queues which are associated to corresponding output queues. Then,
the scheduling function of PXF processes this queue in order to determine what is the
next packet to be forwarded. After this decision, the PXF instructs ASIC backplane
interface to copy this packet in the hardware queue associated to corresponding egress
interface.

17

1. INTRODUCTION TO FPGA-BASED NETWORKING BOARDS
AND NETWORK PROCESSORS

Figure 1.15: Standard path of a packet in a PRE.

1.2.4.3 Memory

There is an independent memory for each processor and one for each column of pro-
cessors, in order to optimize accesses.

1.2.4.4 Programming support

This network processor is realized for internal use, and not as general-purpose product,
thus it uses private software. Microcode and Cisco IOS are combined to provide
processing functions. The association of these functions to the processors pipeline is
very flexible and can be updated when new functions are available to be added.

1.2.5 Configurable Instruction Set (Cognigine)

The network processor of Cognigine Corporation is an example of reconfigurable logic:
the adopted processor has not a prefixed set of instructions.

1.2.5.1 Architecture

This architecture allows for using up to 16 processors, which can be interconnected to
form a pipeline. Each processor is called Reconfigurable Communication Unit (RCU)
and has a connector that links it to RSF (Routing Switch Fabric), this way allowing
for communications arbitrage and planning. The RCUs are connected in a hierarchical
manner: a crossbar is used to connect a group of 4 RCUs and another one to connect
groups of RCUs. This solution allows for scaling the architecture for a big number
of RCUs. The RSF permits to divide a transaction in order to hide latencies; it is
accessed by a RCU through a memory mapping. Each RCU contains 4 execution

18

1.2 Comparison among Network Processor Platforms

Figure 1.16: Internal structure of Cognigine network processor.

units which can be dynamically reconfigured. Each unit uses an instruction set called
Variable Instruction Set Communications (VISC). As for a standard processor, a VISC
instruction performs an easy operation, but details of operation are not determined
a priori. In fact, the chip contains a dictionary which defines the interpretation
of each instruction: operands’ size, how they can be employed, the basic operation
and the predicate. The dictionary is in turn configurable, elements can be added or
dynamically changed. This way, programmer can define a personal instruction set,
insert the interpretation of these instructions and develop a program based on them.
For instance, a programmer could define an instruction set optimized for peculiar
processings or specific protocols. VISC instructions are decoded during the first stage
of the pipeline. Each RCU provides a five-stage pipeline and hardware support for
4 threads. The interconnections among processors are again configurable. For each
RCU there are 4 64-bit data buses and 4 buses at 32-bit addresses, which allows for
connecting RCUs in pipeline.

1.2.5.2 Memory

RCUs access to different types of memory, such as the internal SSRAM or the Double
Data Rate SDRAM (DDR-SDRAM). Dictionary for VISC instructions is allotted
in a distinct memory. Memories compose a hierarchy where the fastest ones are
internal registers and scratchpad memory, then the cache for instructions and memory
dedicated to data, while the slowest ones is the external memory, which is designed
to store packets.

19

1. INTRODUCTION TO FPGA-BASED NETWORKING BOARDS
AND NETWORK PROCESSORS

Figure 1.17: The scheme of NP-1 chip.

1.2.5.3 Programming support

In order to maximize the parallelism, the RCUs provide hardware support for multi-
threading. Moreover, there are connections to external buses, as the PCI bus. Finally,
along with C compiler and assembler, Cognigine offers a support for a classification
language.

1.2.6 Pipeline of heterogeneous processors (EZchip)

EZchip Corporation produces the network processor NP-1 [8]. This architecture shows
as heterogeneous processors, each of them dedicated to specific functions, can work
together in a pipeline manner. The NP-1 has been designed for a big target: processing
of layers 2-7 at 10 Gbps. This chip contains also a very fast SRAM, which is used for
storing packets and lookup tables. There is an interface to access an external DRAM
(external SRAMs and CAMs are not necessary). The chip includes also an interface
for an external processor for management and control functions (the interface is not
shown in figure). Moreover, EZchip claims to use patented algorithms which allows
embedded memory for searching in external memories, in order to support a line-rate
of 10 Gbps. These algorithms and the associated data structures allow for searches
with strings of variable length. Further details are not publicly available.

1.2.6.1 Architecture

In this chip there are the Task Optimized Processors (TOPs). Each TOP has a
personal set of instructions and connections which is specific for the functionalities
that it must provide. Figure 1.17 illustrates chip architecture.

The NP-1 contains 4 types of processors, which are describer in tab. 1.3.

20

1.2 Comparison among Network Processor Platforms

Table 1.3: Processors of NP-1.

Processor type Optimized for
TOPparse Header field extraction and classification
TOPsearch Table lookup
TOPresolve Queue management and forwarding
TOPmodify Header and payload modification

Figure 1.18: Internal architecture of IBM network processor.

1.2.7 Extensive and Diverse Processors (IBM)

IBM produces a family of network processors called PowerNP [9]. This solution is very
complex and comprehends a wide gamma of processors, co-processors and functional
units.

1.2.7.1 Architecture

This network processor contains programmable processors and several co-processors
which handle searches, frame forwarding, filtering and frame modification. The ar-
chitecture is composed by a set of central embedded processors, along with many
supporting units. Fig. 1.18 shows the overall architecture, while fig. 1.19 accurately
illustrates the area called Embedded Processor Complex (EPC).

In addition to the embedded PowerPC, the EPC contains 16 programmable processors,
which are called picoengines. Each picoengine is multithreaded, thus improving again
performance. In order to speed up processing, frames are processed before being
passed to the protocol processor in the EPC. The ingress physical MAC multiplexor

21

1. INTRODUCTION TO FPGA-BASED NETWORKING BOARDS
AND NETWORK PROCESSORS

Figure 1.19: The EPC chip in the IBM NP.

Table 1.4: Co-processors of IBM NP.

Co-processor Function
Data Store Frame buffer DMA
Checksum Compute and check header checksums
Enqueue Forward frames arriving from switch or target queues
Interface Provide access to internal registers and memory

String Copy Transfer big amounts of data at high speed
Counter Update counters used in protocol processing
Policy Handle traffic

Semaphore Coordinate and synchronize threads

22

1.2 Comparison among Network Processor Platforms

takes frames arriving from physical interface, checks CRC and passes frames to ingress
data store. The first part of frame, which contains headers up to layer 4, is passed to
the protocol processors, while the remaining part is stored in memory. Once frame
has been elaborated, the ingress switch interface forwards it toward the proper output
processor through the switching fabric. The external hardware of the EPC takes care
also of the output of frames. The egress switch interface receives data from the
switching fabric and stores them in the egress data store. The egress physical MAC
multiplexor handles frame transmission, by extracting them from egress data store
and sending them to physical interface. In addition to picoengines, the chip of IBM
contains several co-processors specialized for particular functions. Some examples are
presented in table 1.4.

1.2.7.2 Memory

The PowerNP provides access to an external DDR-SDRAM and presents many in-
ternal memories, with an arbiter which coordinates accesses to them. The internal
SRAM provides fast access, which allows for temporarily storing packets to be pro-
cessed. Moreover, programmable processors have a dedicated instruction memory; for
instance, each picoengine has 128 KB of private memory which is dedicated to this
purpose.

1.2.7.3 Programming support

In addition to standard programming tool (such as compilers, assemblers, etc.), the
IBM chip provides a software package for simulation and debugging. This package
is available for several operative systems, such as Solaris, Linux and Windows. The
co-processor that cares about traffic management works at wire speed, this way the
IBM chip is able to analyze each packet in order to verify that traffic is complying to
predetermined parameters.

1.2.8 Flexible RISC Plus Coprocessors (Motorola)

The Motorola Corporation brands its network processors C-Port. Models C-5, C-5e
and C-3 represent a tradeoff between performance and power consumption.

1.2.8.1 Architecture

The Motorola chip is very appealing; it is an example of internal processors which can
be configured to work in a parallel or pipeline manner. The capability of selecting
a configuration model for each processor provides a high flexibility to C-Port. Fig.
1.20 shows as C-Ports can connect more physical interfaces to a switching fabric.
Each network processor includes 16 blocks of processors, which are called Channel
Processors and care for packet processing. Each CP can be configured in different
ways. The most direct approach is the dedicated configuration, which establishes a
one-to-one relation between the CP and the physical interface. In this configuration
the Channel Processor must manage both the input and the output, and is suitable
for interfaces at medium or low speed (100Base-T Ethernet or OC-3), for which the
processor has enough power. In order to handle higher speeds, the Channel Processors

23

1. INTRODUCTION TO FPGA-BASED NETWORKING BOARDS
AND NETWORK PROCESSORS

Figure 1.20: Architecture of C-Port.

can be organized in a cluster in a parallel way. This way, whenever a packet arrives,
any CP in idle state can handle such a packet. The number of CPs in each cluster can
be modified, thus the designer can select the proper sizes according to the interface
speeds and the amount of required processing. Figure 1.20 shows chip C-Port C-5
architecture, where CPs are configured in cluster. The diagram illustrates the 16
Channel Processors (CP − 0 . . . CP − 15) configured in parallel clusters of 4 CPs per
cluster. In addition to CPs, the Motorola chip contains many other co-processors.
The Executive Processor provides a configuration and management service of the
overall Network Processor; it communicates with a potential host PC via bus PCI or
through serial lines. The Fabric processor allows for a fast connection between the
internal buses and an external switching fabric. The lookup unit allows for speeding
up searches in lookup tables. The buffer management and queue management units
handle and check respectively buffers for packets and queues. However, the name
Channel Processor is misleading: the chip does not contains an only processor, but
is a complex structure with a RISC processor and several functional units which
aid in handling packets at high speed. Fig. 1.21 shows CP components and their
interconnections. As we see, the CP has a parallel structure for ingress and egress
side. The Serial Data Processor (SDP) is programmable and on the ingress side cares
for checking checksum or CRC, decoding, analyzing headers, while on the egress side
is used for modifying frames, computing checksum or CRC, coding, and framing. The
RISC processor deals with classification processes, traffic handle and traffic shaping.

24

1.3 Intel IXP2XXX Network Processors

Figure 1.21: Internal architecture of a Channel Processor.

1.2.8.2 Programming support

The network processor C-Port can be programmed in C o C++. Motorola provides a
compiler, a simulator, APIs and libraries to be used for managing physical interfaces,
lookup tables, buffers, and queues.

1.3 Intel IXP2XXX Network Processors

In this section, the architecture and the functionalities of Intel IXP2XXX Network
Processors will be shown. The characters XXX indicate the ciphers which specifies a
particular model. We will refer to the overall family; the differences among models are
related to the number of processing units, or the availability of specific functionalities
(for instance, units which allow for encryption algorithms). Therefore, we try to
explain the main features of IXP2XXX family, its advanced functions, programming
languages, and develop environment. Finally the card Radisys ENP-2611 we have
used will be described, which contains the Intel chip.

1.3.1 General Structure

Fig. 1.22 shows a scheme of the IXP2400, in which functional units and connections
are presented. Often we refer to IXP2400 for specific features and data we give.
The network processor contains 9 programmable processors: an Intel XScale and 8
units called microengine, which are divided in 2 cluster of 4 microengines (ME 0:0
. . . ME 1:3). The general purpose processor XScale is a RISC (Reduced Instruction
Set Computer) ARM V5STE compliant, while the microengines are RISCs optimized
for packet processing. From the scheme in fig. 1.22 is clear the use of memories
with different sizes and features (e.g., SRAM, DRAM, Scratchpad), as well as the

25

1. INTRODUCTION TO FPGA-BASED NETWORKING BOARDS
AND NETWORK PROCESSORS

Figure 1.22: Scheme of the IXP2400.

availability of shared functional units with specific purposes (e.g., MSF or the unit
for hash computing). In the following, all these features will be analyzed.

1.3.2 The Intel XScale

The Intel XScale processor which is installed on network processor of Intel family
IXP2XXX is compliant with the ARMv5STE architecture, as defined by ARM Lim-
ited. The “T” indicates the support to thumb instructions, i.e. specific instructions
which allow for passing from the 32bit modality to the 16bit one, and vice versa. This
capability is useful for memory utilization purposes. Instead, the “E” indicates the
support to advanced instructions of Digital Signal Processing. The processor uses an
advanced internal pipeline, which improves the capability of hiding memory latencies.
The support to floating point operations is not available.
Regarding the programming, the XScale processor supports real time operative sys-
tems for embedded systems as VxWorks or Linux. Therefore, it can take advantage
of C/C++ compilers available in this environments. In addition, it can use several
development tools, as IDE (Integrated Development Environment), and debuggers.
In the IXP2400 NP, the XScale runs at 600 Mhz, while in the IXP2350 it runs at 1.2
Ghz.

1.3.3 Microengines

Microengines has a specific instruction set for processing packets. There are 50 dif-
ferent instructions, including the operations concerning the ALU (Aritmetic Logical
Unit) which work on bits, bytes and longwords and can introduce shift or rotations

26

1.3 Intel IXP2XXX Network Processors

in a single operation. The support to divisions or floating point operations is not
available. The microengines of IXP2400 work at 600 Mhz, instead those of IXP2350
work at 900 Mhz or 1.2 Ghz. The memory which stores the code to be executed in
a microengine is the instruction store and can contains up to 4K of 40bit instruc-
tions. The code is loaded on microengines by XScale processor in the startup phase.
Once microengines runs, the instructions are executed in a 6-stage pipeline, requiring
a clock cycle with full pipeline. Clearly, whenever jumps or context swaps happen,
the pipeline must be cleared out and then filled again with instructions, thus way
requiring more clock cycles.

1.3.3.1 Threads

Each microengine allows for the use of 8 thread with hardware support to context
switch. This way of context switch is called “zero-overhead”, because microengines
hold a series of registers for each thread; thus, whenever the context switch occurs,
registers copy is not required, therefore the overhead is related only to the pipeline
emptying (i.e., very few clock cycles). Processors can be configured to use 8 threads, or
only 4 threads. In the latter case, only the threads with even index are activated and
they have a higher number of registers. All the threads execute the same instructions,
which have been read from the internal memory of microengines, by starting from the
first instruction. However, it is possible to differentiate the operations for each thread
by using some conditional instructions:

if (ctx==1) {
. . .

}
else if (ctx==2) {
. . .

}
Each thread runs and then releases the controller to allows the other ones to run.
The scheduling is not preemptive: until a threads works and does not release the
controller, the other threads can not execute their code. The context switch is invoked
by means of proper instructions (ctx arb) and is typically used as mechanism for
hiding access latency to resources. For instance, whenever an external memory must
be read, the thread release the controller before it accessing to the memory. The not
preemptive approach allows for reducing issues in critical sections, i.e. parts of code
in which resources which are global for threads are used and modified. If two threads
access to the same register at the same time, the data in the register can become
insubstantial. Therefore, the not preemptive model aid in this purpose. However,
the not preemptive scheduling does not solve the issue of critical sections for threads
accessing contemporaneously to the same resource and belonging to different threads.
Techniques of synchronization are therefore needed. To handle the threads execution
for each microengine there is a thread arbiter, i.e. a scheduler which selects the thread
to run by using a round-robin policy among the active threads.

1.3.3.2 Registers

There are four types of registers for each microengine:

27

1. INTRODUCTION TO FPGA-BASED NETWORKING BOARDS
AND NETWORK PROCESSORS

• general purpose;

• SRAM transfer;

• DRAM transfer;

• next-neighbor.

As said above, each context has a private set of registers, therefore each bank of
registers is divided in the same way among threads. In addition, there are some
control Status Registers (CSRs) which allows for different operations or for configuring
microengines’ functioning. General Purpose Registers (GPRs) - Each microengine
have 256 32-bit registers for general purpose, which are allotted in two banks of 128
registers (called bank A and bank B). Each instruction which has as operands GPRs,
requires that they belong to different register banks. Registers can be accessed in local
manner for the thread (i.e., each thread accesses 32 GPRs), or in absolute manner,
or in global manner (i.e., registers are accessed by all the threads as global variables).
In the code, name of GPRs can follow some rules [10]. Transfer Registers - SRAM
transfer registers (256 per microengine) are 32-bit registers which are used for writing
and reading from SRAM memory or from the other memories or functional units in
the Network Processor, such as Scratchpad memory, SHaC unit, Media Switch Fabric,
and PCI (Peripheral Component Interconnects) interfaces. DRAM transfer registers
are suitable for writing ad reading from DRAM and can be used in replacement
of SRAM registers only for reading. Transfer registers are the main mechanism to
make asynchronous operations on the memories; on a transfer register a thread writes
data to be then written in memory, or from a transfer register a thread reads data
which has just been read from memory. Registers’ bank is divided into two parts,
one of them for writing and the other one for reading. This does not allow a wrong
use of transfer registers (for instance, as GPRs). More precisely, when a transfer
register is used, typically a couple of registers is available, with the same name, but
writing on this register means writing on the “writing” part, while reading it means
accessing the “reading” part. Also these registers can be accessed in local or global
manner respecting to thread. Next-Neighbor Registers - Each microengine has 128 32-
bit registers called next-neighbors. They can be used in two ways: as other general
purpose registers, or as “microengine communication” registers. In the first case, if
the standard general purpose registers are finished, for instance, the next-neighbor
registers can be used in replacement. In the second one, they make available to the
microengine with the next index the data which has just been written by the current
microengine. This way, the first microengine can communicate with the second one,
the second one with the third one and so on. The communication can occur through
a simple writing in the registers or through the set up on the registers of a data
structure called ring, which is a FIFO queue and which is accessed by means two
CSRs, NN PUT ans NN GET.

1.3.3.3 Signaling

Each microengine has on tap 15 numbered signals. They are useful for the execution of
asynchronous operations which concern memories and functional unit. For instance,
whenever a reading in SRAM is required by a thread, the end of the operation can be

28

1.3 Intel IXP2XXX Network Processors

Table 1.5: Properties of IXP2400 memories.

Memory Logical Width (bytes) Size (bytes) Latency (clock cycles)
Local Memory 4 2560 ∼ 3

Scratchpad 4 16k ∼ 60
SRAM 4 128M ∼ 90
DRAM 8 1G ∼ 120

communicated through a signal to the thread which have required the reading. Once
the signal from the SRAM has been received, we can be sure to have the data. Some
functional units, for instance DRAM, require the use of a couple of signal for the
signaling. Specific instructions allows for making context-switch and waiting for the
arrival of one or more signals. This way the mechanism of hiding memory latency is
obtained. Finally, signals can be used as synchronization mechanism among threads,
in order to solve potential collisions on the same resources.

1.3.3.4 Local Memory

The local memory of a microengine consists of 640 longwords (i.e., words of 32 bits)
which can be accessed very fast, with a maximum latency of 3 clock cycles. Moreover,
this delay has to be taken in account only a specific CSR is used to select the position
where we must work; if we use consecutive locations of local memory, we do not need
to set again the CSR and then to wait for 3 other cycles. The access occurs through the
special registers *l$index0 and *l$index1, which refer two different locations in local
memory. Such registers, which are replicated for each thread, can be incremented or
decremented (e.g., *l$index++) or used with indexes (e.g., *l$index[4] indicates the
fourth longword after that indicated by *l$index[0]).

1.3.3.5 Content-Addressable Memory and CRC

The Content Addressable Memory (CAM) is a special memory which is addressable
according to the content. Each microengine has a CAM with 16 entry. Specific
instructions (CAM LOOKUP) allow for search of a particular content on the memory.
If the content is found, the CAM position is returned, otherwise the least recently
used (LRU) element. The CAM is very useful to implement little cache or to handle
arrays of queues. Finally, computing CRC (Cyclic Redundancy Check) is possible
through proper registers.

1.3.4 Memories

IXP2XXX network processors can access 4 different types of memory: local memory,
scratchpad, SRAM, and DRAM. The local memory can be accessed only by the single
microengine that contains it, while the other memories are shared. Tab. 1.5 shows the
different characteristics and tradeoff in terms of size, latency and minimum accessible
unit (logical width).

29

1. INTRODUCTION TO FPGA-BASED NETWORKING BOARDS
AND NETWORK PROCESSORS

Each type of memory allows for special operations. We have already said about local
memory. The scratchpad is a SRAM memory on the chip, which is contained in
the SHaC block. It allows for atomic operations on data, such as increase, decrease,
test&set. An atomic operation in an operation that can not be divided. For instance,
incrementing a variable requires reading, incrementing and writing it. If the overall
operation is atomic, the three operations can be split. This way, the collision issues
in the use of shared resources are solved. Moreover, the scratchpad enables creation
and management of FIFO queues (which are called Rings, because they use a part
of memory as it was circular). These “ScratchRings” are often utilized in order to
permit the communication among microengines through simple and fast operations
(the scratchpad is the fastest memory shared among microengines). The SRAM is an
external memory which supports the same operations of the scratchpad; in additions,
it allows for creating and handling FIFO queue by means of element pointers, therefore
with no need to transfer them. no need to transfer them. The DRAM is the biggest
and slowest memory. It allows for a direct path from and toward Media Switch Fabric
with no need of transfer through microengines. The logical width has to be taken
in account in programming phase, because mechanisms to hide it to the programmer
are not available. This way, for example, to access two consecutive longwords in
SRAM, we need to indicate the second one with an offset of 4 in respect to the first
one. Finally, it is useful to know the management of asynchronous commands on the
shared memories which arrive from different threads. Each interface of the memories
has a queue of command to be executed, from which draw on in a sequential manner.
A thread can have more command on different queues or on the same queue.

1.3.5 Media Switch Fabric

The Media Switch Fabric (MSF) unit is the interface designed to data transfer from
and toward network processors of IXP2XXX family. Packet reception and transmis-
sion on network processors is a complex process of reassembly and segmentation of
little parts of packets called mpackets. Through MSF, programmer has an interface
for transmission and reception which is universal and independent of packet format.
The mpacket size is defined by the reception buffer (RBUF) and by the transmission
buffer (TBUF), which are configurable in 64, 128 and 256 bytes through specific CSRs
of MSF.

1.3.6 SHaC

SHaC (Scratchpad, Hash and CAP) is the multifunction unit which contains the
scratchpad memory, an unit for generation of hash codes and the CAP (Control
Status Register Access Proxy) unit. The hash unit is capable of computing hash
codes of 48, 64 and 128 bits from keys of the same size. Moreover, with an only
request, 3 keys to be worked on can be inserted. The algorithm to be used can be
configured through CAP. The CAP unit provides the interface for using many CSRs
for the overall chip. In addition, it allows for the inter-threads and inter-microengines
signaling and the management of interrupts to be sent to XScale processor. Another
functionality of CAP is the handling of register reflector, which is a mechanism used
by a thread in a microengine in order to write on the SRAM transfer registers of

30

1.3 Intel IXP2XXX Network Processors

any other thread in any microengine. Finally, the SHaC contains also the logic for
interfacing the peripherals of XScale processor as memories and external timers.

1.3.7 Intel IXA Portability Framework

Intel Internet Exchange Architecture (IXA) takes care of providing hardware which is
programmable via software and open APIs. Practically, it is the hardware and soft-
ware architecture of Intel network processor family. The IXA Portability Framework
is the modular architecture which is based on building blocks and allows for the reuse
of the code written for a IXP2XXX NP on any NP of the same family. Therefore, the
software structure is based on the modular modality of code for XScale and micro-
engines which is supported by an Hardware Abstraction Layer with standard APIs.
The flexibility is guaranteed through the full programmability of the two architecture
layers and the different low-level functions which are provided in hardware. Moreover,
it is possible to select the model of multithreaded programming (parallel way, pipeline
or hybrid) according to the needs. In addition, hardware which is expressly designed
for the IXA architecture permits to solve the issues of memory latencies, which raise
when the rate grows.

1.3.7.1 Microblocks and Core Components

The modular structure of the software, which enables the code portability, is based
on two types of building blocks. They are called core components at XScale level and
microblocks at microengines level. Each building block represents a functionality of
packet processing, e.g. NAT, forwarding, Ethernet bridging, etc. Programmer can
use these elements or build new ones or combine them to create an application. Some
blocks are called driver-blocks and care about the operations more dependent by the
underlying hardware architecture, such as reception, transmission or queue handling.
They are blocks optimized for their purposes, therefore it is not opportune to modify
them.

1.3.7.2 XScale/microengines interactions

The network processors of IXP2XXX family present two hierarchical layers:

• an upper layer, with the XScale processor (programmable in C language), which
hosts an embedded operative system and deals with control plane and manage-
ment of the overall NP;

• a lower layer, which takes care of fast data path and is composed of microengine
(programmable in microcode assembly), which provide a short set of instructions
optimize for packet processing.

The core components operate as intermediate between these two layers. They are
modules which allows for the interface between the processor and all the other units
of NP, for defining symbols and for handling exceptions of fast data path. The use
of symbols is useful for the definition of resources. Indeed, some modules care about
resource management in an integrated manner, i.e. each use of any memory part
requires a direct request to a module called resource manager. The resource manager,

31

1. INTRODUCTION TO FPGA-BASED NETWORKING BOARDS
AND NETWORK PROCESSORS

in the process of microcode loading on the microengines, will allocate the required
resources and will set the proper parameters for the application functioning (this
phase is called symbol patching). Each block of code written for a microengine can be
handled also by a core component at XScale level. Therefore there is a core component
for the reception code, another one for the transmission code, and so on.

1.3.8 IXA SDK

In addition to the IXA Portability Framework, the Intel IXA SDK (Software Devel-
opment Kit) provides several tools to develop applications for IXP2XXX NPs. These
tools include a compiler for a microengine-oriented C-like language, an assembler for
the assembly language for microengines [11] and a Integrated Development Environ-
ment (IDE) called Developer’s Workbench.

1.3.8.1 Assembly for microengines

The instruction for the assembly language for microengine [12] assume this general
form:

opcode [param1, param2, ...], opt1, opt2, ...

With opcode we indicate the name of instruction, the parameters to be passed are
param1, param2, etc., and there are also the optional parameters opt1, opt2, etc. These
options attend to change the behavior of the instruction or to add optimizations. For
instance, a common option is ctx swap[signal]: it allows, in instructions which access
memory, for executing a context switch by waiting for a signal from memory controller,
which points that data have been read or written. Other common options allows for
code optimization, by reducing penalty in case of jump. These options are defer[n],
which point to the assembler to execute the first n next instructions in the pipeline
before a jump or a context switch. The assembly language for microengine gives the
possibility of conditioned or not-conditioned jumps, as well as any other programming
language. The points on the code to which jump are indicated through labels followed
by the character #. For instance

label1#

. . .

. . .

br[label1#]

In the instruction set, the opcodes point typically the hardware unit to be used. For
example, if two registers have to be summed, the instructions is:

alu[z,x,+,y]

because for the arithmetical logical operations the ALU (Arithmetic Logic Unit) is
used. Instead, if a reading in SRAM is required, the following instruction is used:

sram[read,x,position,0,1],ctx swap[sig sram]

32

1.3 Intel IXP2XXX Network Processors

Figure 1.23: Compilation process.

1.3.8.2 Constructs

The assembler provides some user-friendly constructs, which replicate the basic con-
structs of the most widespread programming languages. Thus, if endif, while, repeat
until, can be used. This way, code is more readable and less prone to wrongs. More-
over, it is possible to create subroutines to be called, but commonly they are not
utilized because the stack lacks. Instead, macros are preferred, i.e. code which is
exploded for each occurrence. Macros, along with conditional compilation and other
functions, are made possible by a preprocessor, very similar to the preprocessor of C
language, which is a very useful tool for programming in assembly.

The overall compilation process is shown in fig. 1.23: we start from the .uc file to
arrive to the .list file, which contains the actual code to be executed by a microengine.

1.3.8.3 Virtual registers

The assembler provides the capability to handle the available registers through some
names, although a name of a register does not point always the same location in the
registers banks. These are the virtual registers, which allows for defining different
scopes for registers. For instance, let us suppose that a macro for the debug utilizes
a couple of registers, which are then never used in the remaining part of the code.
It should be a wastage to statically allocate two locations in the banks for these two
registers. Therefore, the key-words .begin and .end are used, this way defining a scope
for the registers: out of this scope, the registers do not exist and the corresponding
memory locations can be reused. The mechanism of dynamical mapping of registers
on physical locations is not only related to the functions in order to define the scope.

33

1. INTRODUCTION TO FPGA-BASED NETWORKING BOARDS
AND NETWORK PROCESSORS

In fact, if the number of declared registers raises so much that they can not be all
statically allocated, some physical locations used by a certain register (with a scope
still active) are reused and then assigned again to the original register when it needs
them. This mechanism can be dangerous if used on transfer registers which are
currently used for accessing memories. For this case, there is the key word volatile
which guarantees the statical allocation of registers.

1.3.8.4 Microengine-C

The microengine-C language allows for programming microengines with the ease and
the typical features of C language, i.e. types check, memory pointers and functions.
Since a memory stack can not be used, functions defined in microengine-C can not be
recursively called and functions’ pointers can be used. The syntax of microengine-C
is compliant to ANSI-C, except these limitations concerning functions. The sup-
ported types are signed and unsigned and go from char (8 bits) to longlong (64 bits).
Moreover, structs and enum types are supported. According to the optimizations of
compiler, functions can be compiled as online (i.e., they are exploded as they are
macros) or as subroutines. Given the different type of memory and registers, decla-
rations of variables must be accompanied by indications regarding their allocation.
Moreover, some specific functions allowed by the NP, such as atomic operations, have
not a corresponding one in ANSI-C. Therefore, “intrinsics” are used, which are con-
structs expressly introduced, which look as functions but in actuality correspond to
well know sequences in assembly. These differences from the common C make the use
of microengine-C less easy and perceptual. In addition, the compilation process does
not allow for obtaining optimized code, so it pass through an assembly version. For
these reasons, often the assembly is preferred to microengine-C.

1.3.9 Developer’s Workbench

The Integrated Development Environment provided with IXA SDK is the Developer’s
Workbench. This development tool allows for writing code and debugging of assembly
or microengine-C in a visual envornment in Windows Microsoft. Moreover, it is
possible to debug the code in hardware, by connecting the Network Processor to the
PC with the IXA SDK. Finally, an accurate simulator of Network Processor (based
on clock cycles and not event-driven) is provided as part of IDE. It precisely recreates
system behavior and is an optimum tool for testing applications’ prototypes with
no need to port the code on the hardware and for the accurate measurements, for
example, of latencies of single processing stages in the network processor.

1.3.9.1 Scripting

The simulator of Developer’s Workbench (called Transactor) supports a C-like script-
ing language. It provides several commands which permit to accurately observe ap-
plications behavior. Indeed instructions to add a watch on memories and registers are
available, with the capability to execute specific sequences of instructions when certain
values change. For example, each time a register changes its value, the content can
be written on a file. The values of registers or memory locations can be initialized or
modified, the RBUF and TBUF buffers can be obseved, as well as CSRs of any block

34

1.3 Intel IXP2XXX Network Processors

of network processor. The definition and the use of functions is supported, as well
as the the use of classical constructs of programming languages, such as if(), while(),
etc. Finally, there are further commands for the simulation control, i.e. model reset,
simulation stop or restart, and so on.

1.3.10 ENP-2611

Laboratories which have placed this research have on tap Radisys ENP-2611 cards,
on which is integrated the Network Processor Intel IXP2400. These medium-low
profile cards allow for obtaining nominal line rates of 2.5 Gbps and have 3 optical
multimodal gigabit ethernet ports. A further gigabit port at 10/100 Mbps is available
in order to handle traffic of control plane or for debugging services. These cards are
mounted on PC through a PCI bus compliant with the specifications 2.2 at 32 or 64
bits. The use of PCI bus permits to connect more ENP-2611 cards in order to build
a single network node. These cards provide 8 Mbytes of SRAM and 256 Mbytes of
DRAM. The development on ENP-2611 cards is based on IXA SDK, but Radisys has
introduced an own add-on to SDK Intel, which is called ENP-SDK.

35

1. INTRODUCTION TO FPGA-BASED NETWORKING BOARDS
AND NETWORK PROCESSORS

36

Chapter 2

Deep Packet Inspection

Many modern network devices need to perform Deep Packet Inspection (DPI) at high
speed, in order to improve network security and provide application-specific services.
The deep packet inspection problem is basically the inspection of traffic in order to
look for the occurrence of particular strings of “patterns” of bytes into packet payloads.
This is very useful to classify traffic up to the top layer of the network protocol stack.
Instead of standard strings to represent the data set to be matched, state-of-the-
art systems use regular expressions, due to their high expressive power and flexibility.
Typically, finite automata (FAs) are employed to implement regular expression search,
but for the current string sets they need a memory amount which turns out to be too
large for practical implementation. Many recent works have proposed improvements
to address this issue. They are adopted by well known IDS tools, such as Snort [13] and
Bro [14], and in firewalls and devices by different vendors such as Cisco[15]. However,
Finite Automata suffer from either speed issues (if they are non deterministic) or
size ones (if, on the contrary, they allow deterministic lookups). In this chapter we
describe a number of solutions for both problems. Unfortunately, standard pattern
matching methods used for deep packet inspection and network security can be evaded
by means of TCP and IP fragmentation. In order to detect such attacks, Intrusion
Detection Systems must reassemble packets before applying matching algorithms,
thus requiring huge memory and a large amount of time to respond to the threat.
For this reason, we introduce also an efficient system for anti-evasion, which can be
implemented in real devices. It is based on Counting Bloom Filters and exploits their
capabilities to quickly update the string set and deal with partial signatures. In this
way, almost all the traffic processing is performed in the fast data path, as well as the
attacks detection, thus improving the scalability of Intrusion Detection Systems. A
brief introduction to Hash and Bloom Filters could be found in appendix A.1 and in
appendix A.2.

37

2. DEEP PACKET INSPECTION

2.1 δFA: An Improved DFA construction for fast
and efficient regular expression matching

Many important services in current networks are based on payload inspection, in
addition to headers processing. Intrusion Detection/Prevention Systems as well as
traffic monitoring and layer-7 filtering require an accurate analysis of packet content in
search of matching with a predefined data set of patterns. Such patterns characterize
specific classes of applications, viruses or protocol definitions, and are continuously
updated. Traditionally, the data sets were constituted of a number of signatures to be
searched with string matching algorithms, but nowadays regular expressions are used,
due to their increased expressiveness and ability to describe a wide variety of payload
signatures [16]. They are adopted by well known tools, such as Snort [13] and Bro [14],
and in firewalls and devices by different vendors such as Cisco[15]. Typically, finite
automata are employed to implement regular expression matching. Nondeterministic
FAs (NFAs) are representations which require more state transitions per character,
thus having a time complexity for lookup of O(m), where m is the number of states
in the NFA; on the other hand, they are very space-efficient structures. Instead,
Deterministic FAs (DFAs) require only one state traversal per character, but for the
current regular expression sets they need an excessive amount of memory. For these
reasons, such solutions do not seem to be proper for implementation in real deep
packet inspection devices, which require to perform on line packet processing at high
speeds. Therefore, many works have been recently presented with the goal of memory
reduction for DFAs, by exploiting the intrinsic redundancy in regular expression sets
[17][18][19][20]. This work focuses in memory savings for DFAs, by introducing a
novel compact representation scheme (named δFA) which is based on the observation
that, since most adjacent states share several common transitions, it is possible to
delete most of them by taking into account the different ones only. The δ in δFA just
emphasizes that it focuses on the differences between adjacent states. Reducing the
redundancy of transitions appears to be very appealing, since the recent general trend
in the proposals for compact and fast DFAs construction (see sec.2.1.1) suggests that
the information should be moved towards edges rather than states. Our idea comes
from D2FA [17], which introduces default transitions (and a “path delay”) for this
purpose. Unlike the other proposed algorithms, this scheme examines one state per
character only, thus reducing the number of memory accesses and speeding up the
overall lookup process. Moreover, it is ortoghonal to several previous algorithms
(even the most recent XFAs [20][21][22] and H-cFA [18]), thus allowing for higher
compression rates. Finally, a new encoding scheme for states is proposed (which we
will refer to as Char-State compression), which exploits the association of many states
with a few input characters. Such a compression scheme can be efficiently integrated
into the δFA algorithm, allowing a further memory reduction with a negligible increase
in the state lookup time. In summary, the main contributions of this work are:

• a novel compact representation of DFA states (δFA) which allows for iterative
reduction of the number of states and for faster string matching;

• a new state encoding scheme (Char-State compression) based on input charac-
ters;

38

2.1 δFA: An Improved DFA construction for fast and efficient regular
expression matching

The remainder of the section is organized as follows. In section 2.1.1 related works
about pattern matching and DFAs are discussed. Sec.2.1.2 describes our algorithm,
by starting from a motivating example and sec.2.1.3 proves the integration of our
scheme with the previous ones. Then in sec.2.1.4 the encoding scheme for states is
illustrated and in the subsequent section the integration with δFA is shown. Finally,
sec.2.1.7 presents the experimental results.

2.1.1 Related Work

Deep packet inspection consists of processing the entire packet payload and identi-
fying a set of predefined patterns. Many algorithms of standard pattern matching
have been proposed [23][24][25], and also several improvements to them. In [26] the
authors apply two techniques to Aho-Corasick algorithm to reduce its memory con-
sumption. In details, by borrowing an idea from Eatherton’s Tree Bitmap [27], they
use a bitmap to compress the space near the root of the state machine, where the
nodes are very dense, while path compressed nodes and failure pointers are exploited
for the remaining space, where the nodes become long sequential strings with only one
next state each. Nowadays, state-of-the-art systems replace string sets with regular
expressions, due to their superior expressive power and flexibility, as first shown in
[16]. Typically, regular expressions are searched through DFAs, which have appealing
features, such as one transition for each character, which means a fixed number of
memory accesses. However, it has been proved that DFAs corresponding to a large
set of regular expressions can blow up in space, and many recent works have been
presented with the aim of reducing their memory footprint. In [28] the authors de-
velop a grouping scheme that can strategically compile a set of regular expressions
into several DFAs evaluated by different engines, resulting in a space decrease, while
the required memory bandwidth linearly increases with the number of active engines.
In [17], Kumar et al. introduce the Delayed Input DFA (D2FA), a new representa-
tion which reduces space requirements, by retrieving an idea illustrated in [29]. Since
many states have similar sets of outgoing transitions, redundant transitions can be
replaced with a single default one, this way obtaining a reduction of more than 95%.
The drawback of this approach is the traversal of multiple states when processing a
single input character, which entails a memory bandwidth increase to evaluate regular
expressions. To address this issue, Becchi and Crowley [30] introduce an improved
yet simplified algorithm (we will call it BEC-CRO) which results in at most 2N state
traversals when processing a string of length N . This work is based on the observa-
tion that all regular expression evaluations begin at a single starting state, and the
vast majority of transitions among states lead back either to the starting state or its
near neighbors. From this consideration and by leveraging, during automaton con-
struction, the concept of state distance from the starting state, the algorithm achieves
comparable levels of compression with respect to D2FA, with lower provable bounds
on memory bandwidth and greater simplicity. Also, the work presented in [31] focuses
on the memory problem of DFAs, by proposing a technique that allows non-equivalent
states to be merged, thanks to a scheme where the transitions in the DFA are labeled.
In particular, the authors merge states with common destinations regardless of the
characters which lead those transitions (unlike D2FA), creating opportunities for more
merging and thus achieving higher memory reduction. Moreover the authors regain

39

2. DEEP PACKET INSPECTION

the idea of bitmaps for compression purposes. Run-Length-Encoding is used in [32]
to compress the transition table of DFAs. The authors show how to increase the
characters processed per state traversal and present heuristics to reduce the number
of memory accesses. Their work is specifically focused on an FPGA implementation.
The work in [19] is based on the usual observation that DFAs are infeasible with large
sets of regular expressions (especially for those which present wildcards) and that, as
an alternative, NFAs alleviate the memory storage problem but lead to a potentially
large memory bandwidth requirement. The reason is that multiple NFA states can be
active in parallel and each input character can trigger multiple transitions. Therefore
the authors propose a hybrid DFA-NFA solution bringing together the strengths of
both automata: when constructing the automaton, any nodes that would contribute
to state explosion retain an NFA encoding, while the others are transformed into
DFA nodes. As shown by the experimental evaluation, the data structure presents a
size nearly that of an NFA, but with the predictable and small memory bandwidth
requirements of a DFA. Kumar et al. [33] also showed how to increase the speed of
D2FAs by storing more information on the edges. This appears to be a general trend
in the literature even if it has been proposed in different ways: in [33] transitions carry
data on the next reachable nodes, in [31] edges have different labels, and even in [18]
and [20][21] transitions are no more simple pointers but a sort of “instructions”. In a
further comprehensive work [18], Kumar et al. analyze three main limitations of the
traditional DFAs. First, DFAs do not take advantage of the fact that normal data
streams rarely match more than a few initial symbols of any signature; the authors
propose to split signatures such that only one portion needs to remain active, while
the remaining portions can be “put to sleep” (in an external memory) under normal
conditions. Second, the DFAs are extremely inefficient in following multiple partially
matching signatures and this yields the so-called state blow-up: a new improved Finite
State Machine is proposed by the authors in order to solve this problem. The idea
is to construct a machine which remembers more information, such as encountering
a closure, by storing them in a small and fast cache which represents a sort of his-
tory buffer. This class of machines is called History-based Finite Automaton (H-FA)
and shows a space reduction close to 95%. Third, DFAs are incapable of keeping
track of the occurrencies of certain sub-expressions, thus resulting in a blow-up in
the number of state: the authors introduce some extensions to address this issue in
the History-based counting Finite Automata (H-cFA). The idea of adding some in-
formation to keep the transition history and, consequently, reduced the number of
states, has been retrieved also in [20][21], where another scheme, named extended FA
(XFA), is proposed. In more details, XFA augments traditional finite automata with
a finite scratch memory used to remember various types of information relevant to
the progress of signature matching (e.g., counters of characters and other instructions
attached to edges and states). The experimental tests performed with a large class
of NIDS signatures showed time complexity similar to DFAs and space complexity
similar to or better than NFAs.

2.1.2 Delta Finite Automaton

In this section we introduce δFA, a D2FA-inspired automaton that preserves the
advantages of D2FA and requires a single memory access per input char.

40

2.1 δFA: An Improved DFA construction for fast and efficient regular
expression matching

1

2

5

3

4

a

b

d

c

a

b

c

d
b

a

c

d

d

b

a

c

c

a

b

d

(a) The DFA

1

2

5

3

4

a

b

d

c

c

(b) The D2FA

1

2

5

3

4

a

b

d

c

c

c

c

c

(c) The δFA

Figure 2.1: Automata recognizing (a+),(b+c) and (c∗d+).

41

2. DEEP PACKET INSPECTION

2.1.2.1 Motivation through an example

In order to make clearer the rationale behind δFA construction and the differences
with D2FA, we start by analyzing the same example brought by Kumar et al. in
[17]: the figure 2.1(a) represents a DFA on the alphabet {a, b, c, d} that recognizes the
regular expressions (a+),(b+c) and (c∗d+). In figure 2.1(b) the D2FA for the same
set of regular expressions is shown. The main idea is to reduce the memory footprint
of states by storing only a limited number of transitions for each state and a default
transition to be taken for all input char for which a transition is not defined. When,
for example, in figure 2.1(b) the state machine is in state 3 and the input is d, the
default transition to state 1 is taken. State 1 “knows” which state to go to upon
input d, therefore we jump to state 4. In this example, taking a default transition
costs 1 more hop (1 more memory access) for a single input char. However, it may
happen that also after taking a default transition, the destination state for the input
char is not specified and another default transition must be taken, and so on. The
works in [17] and [30] show how we can limit the number of hops in default paths
and propose refined algorithms to define the best choice for default paths. In the
example, the total number of transitions was reduced to 9 in the D2FA (less than half
of the equivalent DFA which has 20 edges), thus achieving a remarkable compression.
However, observing the graph in fig.2.1(a), it is evident that most transitions for a
given input lead to the same state, regardless of the starting state; in particular,
adjacent states share the majority of the next-hop states associated with the same
input chars. Then if we jump from state 1 to state 2 and we “remember” (in a local
memory) the entire transition set of 1, we will already know all the transitions defined
in 2 (because for each character they lead to the same set of states as 1). This means
that state 2 can be described with a very small amount of bits. Instead, if we jump
from state 1 to 3, and the next input char is c, the transition will not be the same as
the one that c produces starting from 1; then state 3 will have to specify its transition
for c. The result of what we have just described is depicted in fig.2.1(c) (except for
the local transition set), which is the δFA equivalent to the DFA in fig.2.1(a). We
have 8 edges in the graph (as opposed to the 20 of a full DFA) and every input char
requires a single state traversal (unlike D2FA).

2.1.2.2 Definition of δFA

As shown above, the target of δFA is to obtain a similar compression as D2FA without
giving up the single state traversal per character of DFA. The idea of δFA comes from
the following observations:

• as shown in [30], most default transitions are directed to states closer to the
initial state;

• a state is defined by its transition set and by a small value that represents the
accepted rule (if it is an accepting state);

• in a DFA, most transitions for a given input char are directed to the same state.

By elaborating on the last observation, it becomes evident that most adjacent states
share a large part of the same transitions. Therefore we can store only the differences

42

2.1 δFA: An Improved DFA construction for fast and efficient regular
expression matching

between adjacent (or, better, “parent-child”1) states. This requires, however, the
introduction of a supplementary structure that locally stores the transition set of the
current state. The main idea is to let this local transition set evolve as a new state
is reached: if there is no difference with the previous state for a given character, then
the corresponding transition defined in the local memory is taken. Otherwise, the
transition stored in the state is chosen. In all cases, as a new state is read, the local
transition set is updated with all the stored transitions of the state. The δFA shown in
fig.2.1(c) only stores the transitions that must be defined for each state in the original
DFA.

2.1.2.3 Construction

In alg.1 the pseudo-code for creating a δFA from a N -states DFA (for a character set
of C elements) is shown. The algorithm works with the transition table t[s, c] of the
input DFA (i.e.: a N × C matrix that has a row per state and where the i-th item
in a given row stores the state number to reach upon the reading of input char i).
The final result is a “compressible” transition table tc[s, c] that stores, for each state,
the transitions required by the δFA only. All the other cells of the tc[s, c] matrix are
filled with the special LOCAL TX symbol and can be simply eliminated by using a
bitmap, as suggested in [26] and [31]. The details of our suggested implementation
can be found in section 2.1.6.

Algorithm 1 Pseudo-code for the creation of the transition table tc of a δFA from
the transition table t of a DFA.

1: for c← 1, C do
2: tc[1, c]← t[1, c]
3: end for
4: for s← 2, N do
5: for c← 1, C do
6: tc[s, c]← EMPTY
7: end for
8: end for
9: for sparent ← 1, N do

10: for c← 1, C do
11: schild ← t[sparent, c]
12: for y ← 1, C do
13: if t[sparent, y] 6= t[schild, y] then
14: tc[schild, y]← t[schild, y])
15: else
16: if tc[schild, y] == EMPTY then
17: tc[schild, y]← LOCAL TX
18: end if
19: end if
20: end for
21: end for
22: end for

The construction requires a step for each transition (C) of each pair of adjacent states
(N ×C) in the input DFA, thus it costs O(N ×C2) in terms of time complexity. The
space complexity is O(N ×C) because the structure upon which the algorithm works
is another N ×C matrix. In details, the construction algorithms first initializes the tc

1here the terms parent and child refer to the depth of adjacent states

43

2. DEEP PACKET INSPECTION

matrix with EMPTY symbols and then copies the first (root) state of the original DFA
in the tc. It acts as base for subsequently storing the differences between consecutive
states.

Then, the algorithm observes the states in the original DFA one at a time. It refers to
the observed state as parent. Then it checks the child states (i.e.: the states reached
in 1 transition from parent state). If, for an input char c, the child state stores a
different transition than the one associated with any of its parent nodes, we cannot
exploit the knowledge we have from the previous state and this transition must be
stored in the tc table. On the other hand, when all of the states that lead to the child
state for a given character share the same transition, then we can omit to store that
transition. In alg.1 this is done by using the special symbol LOCAL TX.

Equivalent states After the construction procedure shown in alg.1, since the num-
ber of transitions per state is significantly reduced, it may happen that some of the
states have the same identical transition set. If we find j identical states, we can sim-
ply store one of them, delete the other j− 1 and substitute all the references to those
with the single state we left. Notice that this operation creates again the opportunity
for a new state-number reduction, because the substitution of state references makes
it more probable for two or more states to share the same transition set. Hence we
iterate the process until the number of duplicate states found is 0.

2.1.2.4 Lookup

Algorithm 2 Pseudo-code for the lookup in a δFA. The current state is s and the
input char is c.

procedure Lookup(s, c)
1: read(s)
2: for i← 1, C do
3: if tc[s, i] 6= LOCAL TX then
4: tloc[i]← tc[s, i]
5: end if
6: end for
7: snext ← tloc[c]
8: return snext

The lookup in a δFA is computed as shown in alg.2. First, the current state must
be read with its whole transition set (step 1). Then it is used to update the local
transition set tloc: for each transition defined in the set read from the state, we update
the corresponding entry in the local storage. Finally the next state snext is computed
by simply observing the proper entry in the local storage tloc. While the need to read
the whole transition set may imply more than 1 memory access, we show in sec.2.1.5
how to solve this issue by means of a compression technique we propose. The lookup
algorithm requires a maximum of C elementary operations (such as shifts and logic
AND or popcounts), one for each entry to update. However, in our experiments, the
number of updates per state is around 10. Even if the actual processing delay strictly
depends on many factors (such as clock speed and instruction set), in most cases, the
computational delay is negligible with respect to the memory access latency.

44

2.1 δFA: An Improved DFA construction for fast and efficient regular
expression matching

In fig.2.2 we show the transitions taken by the δFA in fig.2.1(c) on the input string
abc: a circle represents a state and its internals include a bitmap (as in [26] to indicate
which transitions are specified) and the transition set. The bitmap and the transition
set have been defined during construction. It is worth noticing that the “duplicate”
definition of transitions for character c. We have to specify the c-transition for state 2
even if it is the same as the one defined in state 1, because state 2 can be reached also
from state 3 which has a different next state for c. We start (t = 0) in state 1 that
has a fully-specified transition set. This is copied into the local transition set (below).
Then we read the input char a and move (t = 1) to state 2 that specifies a single
transition toward state 1 on input char c. This is also an accepting state (underlined
in figure). Then we read b and move to state 3. Note that the transition to be taken
now is not specified within state 2 but it is in our local transition set. Again state 3
has a single transition specified, that this time changes the corresponding one in the
local transition set. As we read c we move to state 5 which is again accepting.

Local
transition set

1

d
c
b
a

1
1
1
1

4
1
3
2

4
1
3
2

t = 0

a

2

0
1
0
0

1

4
1
3
2

t = 1

b

3

0
1
0
0

5

4
5
3
2

t = 2

c

5

0
1
0
0

1

4
1
3
2

t = 3

Figure 2.2: δFA internals: a lookup example.

2.1.3 Application to H-cFA and XFA

One of the main advantage of our δFA is that it is orthogonal to many other schemes.
Indeed, very recently, two major DFA compressed techniques have been proposed,
namely H-cFA [18] and XFA [20][21]. Both these schemes address, in a very similar
way, the issue of state blow-up in DFA for multiple regular expressions, thus can-
didating to be adopted in platforms which provide a limited amount of memory, as
network processors, FPGAs or ASICs. The idea behind XFAs and H-cFA is to trace
the traversal of some certain states that corresponds to closures by means of a small
scratch-memory. Normally those states would lead to state blow-up; in XFAs and
H-cFA flags and counters are shown to significantly reduce the number of states.
The application of δFA to H-cFA and XFA (which is tested in sec.2.1.7) is obtained by
storing the “instructions” specified in the edge labels only once per state. Moreover
edges are considered different also when their specified “instructions” are different.
To better clarify the idea, an example of the application to H-cFA (again taken from
a previous paper [18]) is reported in fig.2.3(a). The aim is to recognize the regular
expressions .*ab[ˆa]*c and .*def, and labels include also conditions and operations
that operate on a flag (set/reset with +/-1) and a counter n (for more details refer to
[18]). A DFA would need 20 states and a total of 120 transitions, the corresponding

45

2. DEEP PACKET INSPECTION

0

1

2 3 4

5
c|(0 or n = 0)

d

a

b,+1, n = 4

d

a

d

d

e

c,−1|(1 and n = 0)

d

a,−1

f

d

e

(a) The H-cFA. Dashed and dotted edges have same labels, respec-
tively c,−1|(1 and n = 0) and a,−1. Not all edges are shown to keep
the figure readable. The real number of transitions is 38.

0

1

2 3 4

5

a,−1

c,−1|(1 and n = 0)

b,e,f ,c|(0 or n = 0)

d

e,c,f ,b,+1, n = 4

e,f

e

f

f

e,c f

(b) The δH-cFA. Here all the 18 transitions are shown.

Figure 2.3: Automata recognizing .*ab[ˆa]*c and .*def

46

2.1 δFA: An Improved DFA construction for fast and efficient regular
expression matching

H-cFA (fig.2.3(a)) uses 6 states and 38 transitions, while the δFA representation of
the H-cFA (fig.2.3(b)) requires only 18 transitions.

2.1.4 Compressing char-state pairs

In a δFA, the size of each state is not fixed because an arbitrary number of transitions
can be present, and therefore state pointers are required, which generally are standard
memory addresses. They constitute a significant part of the memory occupation
associated with the DFA data structure, so we propose here a compression technique
which remarkably reduces the number of bits required for each pointer. Such an
algorithm is fully compatible with δFA and most of the other solutions for DFA
compression already shown in section 2.1.1. Our algorithm (hereafter referred to as
char-state compression or simply C-S) is based on a heuristic which is verified by
several standard rule sets: in most cases, the edges reaching a given state are labelled
with the same character. Table 2.1 shows, for different available data sets (see section
2.1.7 for more details on sets) the percentage of nodes which are reached only by
transitions corresponding to a single character over the total number of nodes.

Data set p1char (%) rcomp (%) ηacc TS (KB)
Snort34 96 59 1.52 27
Cisco30 89 67 1.62 7
Cisco50 83 61 1.52 13
Cisco100 78 59 1.58 36
Bro217 96 80 1.13 11

Table 2.1: Percentage of states reached by edges with the same one label (p1char),
C-S compression (rcomp), average number of scratchpad accesses per lookup (ηacc)
and indirection-table size (TS).

As a consequence, a consistent number of states in the DFA can be associated with a
single character and can be referred to by using a “relative” address. More precisely,
all the states reached by a transition labelled with character c will be given a “relative”
identifier (hereafter simply relative-id); since the number of such states will be smaller
than the number of total states, a relative-id will require a lower number of bits than
an absolute address. In addition, as the next state is selected on the basis of the
next input char, only its relative-id has to be included in the state transition set, thus
requiring less memory space.

In a D2FA, where a default transition accounts for several characters, we can simply
store it as a relative-id with respect to the first character associated with it. The
absolute address of the next state will be retrieved by using a small indirection table,
which, as far as our experimental results show, will be small enough to be kept in
local (or in a scratchpad) memory, thus allowing for fast lookup. It is clear that such
a table will suffer from a certain degree of redundancy: some states will be associated
with several relative-ids and their absolute address will be reported more than once.
In the next subsection we then propose a method to cope with such a redundancy, in
the case it leads to an excessive memory occupation.

47

2. DEEP PACKET INSPECTION

Figure 2.4: Distribution of the number of bits used for a relative identifier with our
compression scheme for standard rule sets.

Figure 2.4 shows the distribution of the number of bits that may be used for a relative-
id when applying our compression scheme to standard rule sets. As it can be noticed,
next state pointers are represented in most cases with very few bits (less than five);
even in the worst case, the number of bits is always below ten. In the second column
of table 2.1, we show the compression rate achieved by C-S with respect to a naive
implementation of DFA for the available data sets. As it appears from the table, the
average compression is between 60% and 80%.

2.1.4.1 Indirection Table Compression

As claimed above, the implementation of Char-State compression requires a lookup
in an indirection table which should be small enough to be kept in local memory. If
several states with multiple relative-ids are present in such a table, this might be an
issue. For this reason we present a lookup scheme which offers an adaptive trade-off
between the average number of memory accesses and the overall memory occupation
of the table.
The table that we use in our scheme encompasses two kinds of pointers: absolute
pointers and local ones. When a state has a unique relative-id, its absolute address
is written in the table; otherwise, if it has multiple relative-ids, for each one of them
the table reports a pointer to a list of absolute addresses; such a pointer will require
a consistently smaller number of bytes than the address itself. An absolute address is
then never repeated in the table, thus preventing from excessive memory occupation.
Such a scheme is somewhat self-adapting since, if few states have multiple identifiers,
most of the translations will require only one memory access, while, if a consistent
amount of redundancy is present, the translation will likely require a double indi-
rection, but the memory occupation will be consistently reduced. Notice that the
presence of different length elements in the table poses no severe issues: since the
relative address is arbitrary, it is sufficient to assign lower addresses to nodes which
are accessible with only one lookup and higher addresses to nodes requiring double
indirection, and to keep a threshold value in the local memory. The results in terms

48

2.1 δFA: An Improved DFA construction for fast and efficient regular
expression matching

of memory accesses and size of such a scheme applied to the available data sets are
reported in tab.2.1.

2.1.5 δFA with C-S

The C-S can be easily integrated within the δFA scheme and both algorithms can be
cross-optimized. Indeed, C-S helps δFA by reducing the state size thus allowing the
read of a whole transition set in a single memory access on average. On the other hand,
C-S can take advantage of the same heuristic of δFA: successive states often present
the same set of transitions. As a consequence, it is possible to parallelize the retrieval
of the data structure corresponding to the next state and the translation of the relative
address of the corresponding next-state in a sort of “speculative” approach. More
precisely, let s and s+ 1 be two consecutive states and let us define Acs as the relative
address of the next hop of the transition departing from state s and associated with
the character c. According to the previously mentioned heuristic it is likely that
Acs = Acs+1; since, according to our experimental data (see sec.2.1.7), 90% of the
transitions do not change between two consecutive states, we can consider such an
assumption to be verified with a probability of roughly 0.9. As a consequence, when
character c is processed, it is possible to parallelize two memory accesses:

• retrieve the data structure corresponding to state s+ 1;

• retrieve the absolute address corresponding to Acs+1 in the local indirection
table.

In order to roughly evaluate the efficiency of our implementation in terms of the state
lookup time, we refer to a common underlying hardware architecture (described in
section 2.1.6). It is pretty common [34] that the access to a local memory block to be
than twice as faster than that of to an off-chip memory bank: as a consequence, even
if a double indirection is required, the address translation will be ready when the data
associated with the next state will be available. If, as it is likely, Acs = Acs+1, it will be
possible to directly access the next state (say s+2) through the absolute pointer that
has just been retrieved. Otherwise, a further lookup to the local indirection table will
be necessary.

Dataset
of regex ASCII % Regex w/ Original DFA

length range wildcards (*,+,?) # of states # of transitions
Snort24 24 6-70 83.33 13886 3554816
Cisco30 30 4-37 10 1574 402944
Cisco50 50 2-60 10 2828 723968
Cisco100 100 2-60 7 11040 2826240
Bro217 217 5-76 3.08 6533 1672448

Table 2.2: Characteristics of the rule sets used for evaluation.

Such a parallelization can remarkably reduce the mean time needed to examine a new
character. As an approximate estimation of the performance improvement, let us
suppose that our assumption (i.e. Acs = Acs+1) is verified with probability p = 0.9, that
one access to on-chip memory takes ton = 4T and to an external memory toff = 10T
[34], and that an address translations requires ntrans = 1.5 memory accesses (which

49

2. DEEP PACKET INSPECTION

is reasonable according to the fourth column of table 2.1). The mean delay will be
then:

tpar = (1− p)(toff + ntrans × ton) + p× toff = 10.6T

This means that even with respect to the implementation of δFA the C-S scheme
increases the lookup time by a limited 6%. On the contrary, the execution of the two
tasks serially would required:

tser = (toff + ntrans × ton) = 16T

The parallelization of tasks results then in a rough 50% speed up gain.

2.1.6 Implementation

The implementation of δFA and C-S should be adapted to the particular architecture
of the hardware platform. However, some general guidelines for an optimal deploy-
ment can be outlined. In the following we will make some general assumptions on
the system architecture; such assumptions are satisfied by many network processing
devices (e.g. the Intel IXP Network Processors [35]). In particular, we assume our
system to be composed by:

• a standard 32 bit processor provided with a fairly small local memory (let us
suppose a few KBs); we consider the access time to such a memory block to be
of the same order of the execution time of an assembly level instruction (less
than ten clock cycles);

• an on-chip fast access memory block (which we will refer to as scratchpad) with
higher storage capacity (in the order of 100 KB) and with an access time of a
few dozens of clock cycles;

• an off-chip large memory bank (which we will refer to as external memory) with
a storage capacity of dozens of MBs and with an access time in the order of
hundreds of clock cycles.

We consider both δFA and Char-State compression algorithms. As for the former, two
main kinds of data structures are needed: a unique local transition set and a set of data
structures representing each state (kept in the external memory). The local transition
set is an array of 256 pointers (one per character) which refer to the external memory
location of the data structure associated with the next state for that input char; since,
as reported in table 2.3(b) , the memory occupation of a δFA is generally smaller than
1 MB, it is possible to use a 20 bit-long offset with respect to a given memory address
instead of an actual pointer, thus achieving a consistent compression. A δFA state
is, on the contrary, stored as a variable-length structure. In its most general form, it
is composed by a 256 bit-long bitmap (specifying which valid transition are already
stored in the local transition set and which ones are instead stored within the state)
and a list of the pointers for the specified transitions, which, again, can be considered
as 20 bit offset values. If the number of specified transitions within a state is small
enough, the use of a fixed size bitmap is not optimal: in these cases, it is possible to
use a more compact structure, composed by a plain list of character-pointer couples.
Note that this solution allows for memory saving when less than 32 transitions have

50

2.1 δFA: An Improved DFA construction for fast and efficient regular
expression matching

to be updated in the local table. Since in a state data structure a pointer is associated
with a unique character, in order to integrate Char-State compression in this scheme it
is sufficient to substitute each absolute pointer with a relative-id. The only additional
structure consists of a character-length correspondence list, where the length of the
relative-ids associated with each character is stored; such an information is necessary
to parse the pointer lists in the node and in the local transition set. However, since
the maximum length for the identifiers is generally lower than 16 bits (as it is evident
from figure 2.4), 4 bits for each character are sufficient. The memory footprint of the
character-length table is well compensated by the corresponding compression of the
local transition set, composed by short relative identifiers (our experimental results
show a compression of more than 50%). Furthermore, if a double indirection scheme
for the translation of relative-ids is adopted, a table indicating the number of unique
identifiers for each character (the threshold value we mentioned in section 2.1.4.1) will
be necessary, in order to parse the indirection table. This last table (that will be at
most as big as the compressed local transition table) can be kept in local memory,
thus not affecting the performance of the algorithm.

(a) Transitions reduction (%). For δFA also the percentage of duplicate states is reported.

Dataset
D2FA BEC- δFA

DB =∞ DB = 14 DB = 10 DB = 6 DB = 2 CRO trans. dup.states
Snort24 98.92 98.92 98.91 98.48 89.59 98.71 96.33 0
Cisco30 98.84 98.84 98.83 97.81 79.35 98.79 90.84 7.12
Cisco50 98.76 98.76 98.76 97.39 76.26 98.67 84.11 1.1
Cisco100 99.11 99.11 98.93 97.67 74.65 98.96 85.66 11.75
Bro217 99.41 99.40 99.07 97.90 76.49 99.33 93.82 11.99

(b) Memory compression (%).

Dataset
D2FA

BEC-CRO δFA + C-S
DB =∞ DB = 14 DB = 10 DB = 6 DB = 2

Snort24 95.97 95.97 95.94 94.70 67.17 95.36 95.02
Cisco30 97.20 97.20 97.18 95.21 55.50 97.11 91.07
Cisco50 97.18 97.18 97.18 94.23 51.06 97.01 87.23
Cisco100 97.93 97.93 97.63 95.46 51.38 97.58 89.05
Bro217 98.37 98.34 95.88 95.69 53 98.23 92.79

Table 2.3: Compression of the different algorithms in terms of transitions and memory.

2.1.7 Experimental Results

This subsection shows a performance comparison among our algorithm and the orig-
inal DFA, D2FA and BEC-CRO. The experimental evaluation has been performed
on some data sets of the Snort and Bro intrusion detection systems and Cisco secu-
rity appliances [15]. In details, such data sets, presenting up to hundreds of regular
expressions, have been randomly reduced in order to obtain a reasonable amount of
memory for DFAs and to observe different statistical properties. Such characteristics
are summarized in table 2.2, where we list, for each data set, the number of rules,
the ascii length range and the percentage of rules including “wildcards symbols” (i.e.
*, +, ?). Moreover, the table shows the number of states and transitions and the

51

2. DEEP PACKET INSPECTION

amount of memory for a standard DFA which recognizes such data sets, as well as
the percentage of duplicated states. The choice of such data sets aims to mimic the
size (in terms of DFA states and regular expressions) of other sets used in literature
[31][17][19],[30] in order to obtain fair comparisons.

Tables 2.3 illustrate the memory compression achieved by the different algorithms.
We have implemented the code for our algorithm, while the code for D2FA and BEC-
CRO is the regex-tool [36] from Michela Becchi (for the D2FA the code runs with
different values of the diameter bound, namely the diameter of the equivalent max-
imum weight spanning tree found in the space reduction graph [17]; this parameter
affects the structure size and the average number of state-traversals per character).
By means of these tools, we build a standard DFA and then reduce states and tran-
sitions through the different algorithms. The compression in tab. 2.3(a) is simply
expressed as the ratio between the number of deleted transitions and the original
ones (previously reported in tab.2.2) , while in 2.3(b) it is expressed considering the
overall memory saving, therefore taking into account the different state sizes and the
additional structures as well. Note also, in the last column of tab.2.3(a) , the limited
but effective state-reduction due to the increased similarity of states obtained by the
δFA (as described in sec.2.1.2.3). Although the main purpose of our work is to re-
duce the time complexity of regular expression matching, our algorithm achieves also
a degree of compression comparable to that of D2FA and BEC-CRO, as shown by
tab.2.3. Moreover, we remark that our solution is orthogonal to these algorithms (see
sec.2.1.3), thus allowing further reduction by combining them.

Figure 2.5: Mean number of memory accesses for δFA, BEC-CRO and D2FA for
different datasets.

Figure 2.5 shows the average number of memory accesses (ηacc) required to perform
pattern matching through the compared algorithms. It is worth noticing that, while
the integration of C-S into δFA (as described in sec.2.1.5) reduces the average state
size, thus allowing for reading a whole state in slightly more than 1(< 1.05) memory
accesses, the other algorithms require more accesses, thus increasing the lookup time.
We point out that the mean number of accesses for the integration of δFA and C-S is
not included in the graph in that C-S requires accesses to a local scratchpad memory,

52

2.1 δFA: An Improved DFA construction for fast and efficient regular
expression matching

while the accesses the figure refers to are generally directed to an external, slower
memory block; therefore it is difficult to quantify the additional delay introduced by
C-S. However, as already underlined in section 2.1.5, if an appropriate parallelization
scheme is adopted, the mean delay contribution of C-S can be considered nearly
negligible on most architectures.

Dataset
of # of trans. # of trans. Compr.
states XFA δXFA %

c2663-2 14 3584 318 92
s2442-6 12 3061 345 74.5
s820-10 23 5888 344 94.88
s9620-1 19 4869 366 92.70

Table 2.4: Number of transitions and memory compression by applying δFA+C-S to
XFA.

Finally, table 2.4 reports the results we obtained by applying δFA and C-S to one
of the most promising approach for regular expression matching: XFAs [20][21] (thus
obtaining a δXFA). The data set (courtesy of Randy Smith) is composed of single
regular expressions with a number of closures that would lead to a state blow-up.
The XFA representation limits the number of states (as shown in the table).

speed

size
DFA

D2FA

BEC-CRO
δFA

+C-S

XFA/
H-cFA

δXFA/

δH-cFA

Figure 2.6: Comparison of speed performance and space requirements for the different
algorithms.

By adopting δFA and C-S we can also reduce the number of transitions with respect to
XFAs and hence achieve a further size reduction. In details, the reduction achieved is
more than 90% (except for a single case) in terms of number of transitions, that corre-
sponds to a rough 90% memory compression (last column in the table). The memory
requirements, both for XFAs and δXFAs, are obtained by storing the “instructions”
specified in the edge labels only once per state. Figure 2.6 resumes all the evaluations
by mixing speed performance (in terms of memory accesses) and space requirements
in a qualitative graph (proportions are not to be considered real). It is evident that
our solution almost achieves the compression of D2FA and BEC-CRO, while it proves

53

2. DEEP PACKET INSPECTION

higher speed (as that of DFA). Moreover, by combining our scheme with other ones,
a general performance increase is obtained, as shown by the integration with XFA or
H-cFA.

2.2 Second order delta enconding to improve DFA
efficiency

In the previous section, we have introduced a compact representation scheme (named
δFA) which is based on the observation that, since most adjacent states share several
common transitions, it is possible to delete most of them by taking into account
the different ones only. This requires, however, the introduction of a supplementary
structure that locally stores the transition set of the current state. The main idea
is to let this local transition set evolve as a new state is reached: if there is no
difference with the previous state in terms of the next state for a given character,
then the corresponding transition defined in the local memory is taken. Otherwise,
the transition stored in the state is chosen. This idea was inspired by D2FA [17],
which introduces default transitions (and a “path delay”) for reducing transitions,
but, unlike the previous algorithms, δFA examines one state per character only, thus
reducing the number of memory accesses and speeding up the overall lookup process.
In this work, we present a novel automaton which takes advantage of the ideas of δFA
and adds the concept of “temporary transition”. It extends the δFA main assumption
some step further: while δFA specifies the transition set of a state with respect to its
direct parents, the adoption of 2-step “ancestors” (in this definition a direct parent
is a 1-step ancestor) increases the chances of compression. As we will show in the
following, the best approach to exploit this second order dependence is to define the
transitions of the states between the ancestors and the child as “temporary”. This,
however, introduces a new problem during the construction process: the optimal
construction (in terms of memory or transition reduction) appears to be an NP-
complete problem. Therefore, a direct and oblivious approach is chosen for simplicity.
Results (on real rule-sets from Snort, Bro and Cisco devices) show that our simple
approach do not differ significantly from the optimal (if ever reachable) construction.
Since the technique we propose is an extension to δFA that exploits second order
dependence, we name this scheme δ2FA.

2.2.1 The Main idea of δ2FA

Consider again the DFA in 2.7(a). Although the δFA in fig. 2.7(b) shows a remarkable
saving in terms of transitions with respect to the standard DFA, its main assumption
(all parents must share the same transition for a given character) somewhat limits
the effectiveness of the compression. In the example, all the transitions for character
c are specified (and hence stored) for all the 5 states, because of a single state 3 that
defines a different transition (the transition for c is directed to state 1 for states 1, 2, 4
and 5, while 3 defines an edge to 5). Notice that this is due to the strict definition of
δFA rules that do not “see” further than a single-hop: the transition set of a state is
stored as the difference with respect to all its direct parents.

Intuitively, just as a D2FA with long default-transitions paths compresses better than

54

2.2 Second order delta enconding to improve DFA efficiency

1

2

5

3

4

a

b

d

c

a

b

c

db

a

c

d

d

b

a

c

c

a

b

d

(a) The DFA

1

2

5

3

4

a

b

d

c

c

c

c

c

(b) The δFA

1

2

5

3

4

a

b

d

c

ĉ

(c) The δ2FA

Figure 2.7: Automata recognizing (a+), (b+c) and (c∗d+).

55

2. DEEP PACKET INSPECTION

a bounded D2FA with B=2 [17], by relaxing the definition of “parents” to “grand-
parents” (i.e., 2-step neighbor nodes) the effectiveness of the δFA approach increases
because of the larger number of possibilities.
However, a blind adoption of this concept does not provide better results in δFA: for
instance, in fig. 2.7(b) defining the transitions for c as difference with respect to all
the “grandparents” still would not allow to eliminate any new transition. Moreover
this scheme would require to store 2 local transition sets (doubling the local memory
needed).
A better approach is, instead, to define the transition for c in state 3 as “temporary”,
in the sense that it does not get stored in the local transition set. In this way, we
force the transition to be defined uniquely within state 3 and not to affect its children.
This means that, whenever we read state 3, the transition for c in the local transition
set is not updated, but it remains as it was in its parents. Then, we can avoid storing
the transitions for c in states 2, 4 and 5, as shown in fig. 2.7(c) where the temporary
transition is signaled with ĉ.
By defining temporary transitions, we effectively exploit 2-nd order relationships
among states in a simple way, without incurring in the need for 2-times larger lo-
cal memories.

2.2.1.1 Lookup

Local
transition set

1

d
c
b
a

1
1
1
1

4
1
3
2

4
1
3
2

t = 0

a

2

0
0
0
0

4
1
3
2

t = 1

b

3

0
1
0
0

5

4
1
3
2

t = 2

c

5

0
0
0
0

4
1
3
2

t = 3

Figure 2.8: δ2FA internals: a lookup example.

The lookup in a δ2FA differs very slightly from that of δFA. The only difference
concerns the way we handle temporary transitions: temporary transitions are valid
within their state but they are not stored in the local transition set. Fig. 2.8 shows
also an example of the lookup process for a δ2FA: the whole transition set of state
1 (where we start at time t = 0) is copied into the local transition set. Then by
char a, we move (t = 1) to state 2 which does not specify any transition. When we
read b (t = 2), we move to state 3, where a temporary transition (dashed box) is
specified: this transition is valid only within state 3. Finally (t = 3) we read c, take
the temporary transition, and end up in state 5.

2.2.1.2 Construction

The construction process of the δ2FA requires the corresponding δFA to be constructed
beforehand and used as input. Then, the process works by recognizing subsets of

56

2.2 Second order delta enconding to improve DFA efficiency

S1

S2 S3

S4

temporary

Figure 2.9: Schematic view of the problem. Same color means same properties. If the
properties of S3 are set temporary, the ones in S1 can be avoided.

nodes where a transition for a given character can be defined as temporary. In fig.
2.9, nodes are shown as divided into sets according to their parent-child relationships
(highlighted by the bold arrows) and their transitions (for a given character). In
particular, all nodes with the same transition for a given char x share the same color:
sets S1, S2 and S4 all provide the same transition for char x, while S3 defines a
different next state for x. If we set all the transitions for x in S3 as temporary, we
can avoid storing the transition for x in S1.
In a real implementation, in order to recognize the nodes where a transition for a
given character can be defined as temporary, for each char x of each state s, if the
corresponding transition t[s, x] in the δFA is stored (i.e., it is different from that t[p, x]
of all its parents) the following steps are required:

• a search is performed in all the children of s: whenever at least a child has the
same transition t[p, x] of its “grandparents”, the second step follows;

• check all the other parents (except for s) of such a subset of children in order
to check if they have the same transition t[p, x];

• in this case, the transition t[s, x] in s can be set as temporary and the process
ends.

The process is also described in alg. 3 where, for the sake of readability, we adopt the
same notation of fig. 2.9.
A few remarks (which ultimately result in constraints in the construction process)
can be explained by referring to fig. 2.9 (where the transitions for x in S3 are set
temporary):

1. no state in S4 can have a temporary transition for x. The reason is simple:
a temporary transition for x in the parents S4 means that such a transition
does not modify the local transition table and therefore we have no way to
“remember” the next-state when (after some hops) we reach the children S1;

2. all children states in S1 must have specified transitions for x, because if the
transitions in S3 are temporary and an un-specified transition exists in a state
sj ∈ S1, the ultimate result is that t[sj , x] = t[S4, x] while sj was meant to
inherit t[S3, x].

Hence, this process introduces some constraints and, as usual when dealing with
constraints on graphs, this creates new problems: as described above, when setting

57

2. DEEP PACKET INSPECTION

Algorithm 3 Pseudo-code for the creation of the transition table t2 of a δ2FA from
the transition table t of a δFA.

1: t2 ← t
2: for all state s in δFA do
3: for all char c do
4: if t[s, c] 6= LOCAL TX then
5: S4 ← { parents of s}
6: if t[sj , c] ∀sj ∈ S4 are equal and specified then
7: S1 ← { children of s}
8: if ∃ sj ∈ S1 s.t t[sj , c] == LOCAL TX then
9: break

10: end if
11: if ∃ sj ∈ S1 s.t t[sj , c] == t[S4, c] then
12: S2 ← { parents of sj} \ s
13: if t[S2, c] == t[sj , c] == t[S4, c] 6= t[s, c] then
14: t2[s, c]← TEMP TX
15: delete t2[sj , c]
16: end if
17: end if
18: end if
19: end if
20: end for
21: end for

a subset y of transitions as temporary, we must rely on some other transitions (the
granparents of y) to be non-temporary. This can be classified as a graph-coloring
problem which is known to be NP-hard.
Because of this severe problem, we adopt a straight and oblivious construction: we
construct the δ2FA in a single run by observing all the transitions and setting all the
transitions that satisfy the above-mentioned constraints as temporary. This solution
is very fast because it does not explore the whole solution domain and simply gives
up the idea of optimality. While this may appear unusual and is certainly non-
optimal, it is however motivated by a number of experimental results (reported in the
following section), where this approach does not differ significantly from the optimal
setting (if ever reachable) in terms of transitions reduction. Moreover, notice that the
optimal construction would require an exhaustive search of all the solution domain,
thus questioning the advantages of the optimal setting.

2.2.2 Experimental Results

In this subsection we report the experimental results of our proposed technique (δ2FA)
applied to real-world regular expression-set from IDS/IPSs such as Snort and BRO
and from Cisco security devices [15]. As a first set of results, in order to motivate
the simplistic approach to the construction of δ2FA, we compare the best (if ever
reachable) construction and the simple approach we adopt. Since the ultimate goal
of this work is to come up with an efficient way to further reduce the number of tran-
sitions to store in a δFA, the comparison is expressed in terms of deleted transitions.
The results in tab. 2.5 show the ratio between the number of deleted (and tempo-
rary) transitions of our simple approach and the maximum number of deleted (and
temporary) transitions we may have in the optimal setting. The latter is computed
by accepting the violation of the two constraints described in the previous section.

58

2.2 Second order delta enconding to improve DFA efficiency

Dataset Cisco30 Cisco50 Snort24 Snort31 Bro217
Del. ratio 97% 89% 100% 99% 99%

Temp. ratio 84% 76% 100% 98% 99%

Table 2.5: Simple vs. Optimal approach: ratio of deleted and temporary transitions.

Hence, in this sense, this optimal value is actually a bound. The values in the table
suggest the simple approach is effective and provides very good results, reaching the
maximum number of deleted transitions in almost all the cases.

(a) Transitions reduction (%).

Dataset
D2FA

BEC-CRO δFA δ2FA
DB =∞ DB = 2

Snort24 98.92 89.59 98.71 96.33 96.82
Cisco30 98.84 79.35 98.79 90.84 92.01
Cisco50 98.76 76.26 98.67 84.11 86.11
Cisco100 99.11 74.65 98.96 85.66 86.90
Bro217 99.41 76.49 99.33 93.82 94.30

(b) Memory compression (%).

Dataset
D2FA

BEC-CRO δFA δ2FA
DB =∞ DB = 2

Snort24 95.97 67.17 95.36 95.02 95.90
Cisco30 97.20 55.50 97.11 91.07 92.65
Cisco50 97.18 51.06 97.01 87.23 89.03
Cisco100 97.93 51.38 97.58 89.05 90.3
Bro217 98.37 53 98.23 92.79 93.4

Table 2.6: Compression of the different algorithms. In (b) the results for δFA and
δ2FA include char-state compression.

Tab. 2.6 shows a performance comparison among δFA and δ2FA (which include also
the Char-State encoding scheme for further memory compression, as explained in
2.1.4) and the most efficient previous solutions. For D2FA and BEC-CRO, we use
the code of regex-tool [36], which builds a standard DFA and then reduces states and
transitions through the different algorithms. In particular, for the D2FA the code runs
with two different values of the bound B (i.e., 2 and ∞), which is a parameter that
affects the structure size and the average number of state-traversals per character
[17]. The compression in tab. II(a) is simply expressed as the ratio between the
number of deleted transitions and the original ones, while in tab. II(b) it is expressed
by considering the overall memory consumption, therefore taking into account the
different state sizes and the additional structures as well. Our algorithms achieve a
degree of compression comparable to that of D2FA and BEC-CRO, while allowing
for a higher lookup speed by preserving one transition per character. This is the
main strength of our scheme, which allows for reducing lookup time by exploiting the

59

2. DEEP PACKET INSPECTION

A
ve

ra
g
e

n
u

m
b

er
o
f

m
em

o
ry

ac
ce

ss

Dataset

S
n

or
t2

4

C
is

co
3
0

C
is

co
5
0

C
is

co
10

0

B
ro

21
7

1

2

3

4

5

6

δ2FA

D2FA(DB = 2)

D2FA(DB =∞)

BEC − CRO

Figure 2.10: Mean number of memory accesses.

adoption of wide memory accesses which are very common in DRAMs. As shown by
results, δ2FA provides an improvement with respect to δFA at practically no cose, since
it requires a minimal change in the lookup algorithm. Finally since our solutions are
orthogonal to previous algorithms, a further reduction is possible by combining them.
Fig. 2.10 shows the average number of memory accesses required to perform pattern
matching through the compared algorithms. It is worth noticing that, while δ2FA (just
as δFA) needs about < 1.05 accesses (more than 1 because of the integration with the
Char-State scheme), the other algorithms require more accesses, thus increasing the
lookup time.

2.3 Homomorphic encoding of DFAs

In this section we propose a solution to increase the speed of regular expression search-
ing techniques by multiplying the amount of bytes processed per cycle while also re-
ducing memory requirements. Indeed, very few works have explored this possibility.
The main reason is that, when processing k bytes per step, 256k transitions per state
are needed, so even observing only 2 bytes per cycle would require each DFA state to
define 65536 transitions. Of course, the amount of states reachable in one-hop from
a given state is not that large, on the contrary it is limited and concentrated on its
average. Such fact is exploited in this work in order to define a simple and effective
way to build small-sized and fast DFAs that process k bytes per step. This involves
the definition and application of an homomorphism [37], hence we name our DFA
representation Homomorphic-DFA (h-DFA).

2.3.1 Related works

The current trend in research and industry is to use DFAs to represent regular ex-
pressions, in order to obtain higher performance, while trying to solve their problems

60

2.3 Homomorphic encoding of DFAs

in terms of memory requirements. Many recent works have been presented with the
aim of reducing their memory footprint. For a complete survey of these works, please
refer to section 2.1.1. This work focuses on speed as main issue for current regu-
lar expression searching techniques. Very few works have explored the possibility to
increase searching–speed in DFAs. Basically, the idea of these previous works is to
multiply the amount of bytes processed per cycle, thus working with 2, 3 or 4-byte
strides. However, even observing only 2 bytes per cycle would require each DFA state
to include 216 transitions. To solve this problem, the authors of [32] suggest a solu-
tion by observing that in actual FAs the number of different transitions (even when k
bytes are processed) is more limited. In particular, they propose the use of Equivalent
Character Identifiers defining the set of input words (strides of k bytes) which pro-
duce transitions to the same next state. Moreover, Run Length Encoding is used to
encode the transition table. Such an approach is not general and presents some limi-
tations, as highlighted by [38]. Indeed, it is not feasible in contexts where big DFAs
(more than 100 states) and/or large compressed alphabets are involved. Therefore,
the authors of [38] try to make a k-DFA feasible by taking advantage of alphabet-
reduction and default transition compression. The use of alphabet-reduction, as well
as in [32], is justified by the fact that, when the number of processed bytes increases,
the automaton actually uses only a small subset of the entire alphabet. Instead, the
default transition compression acts by removing the transitions redundancy present in
a DFA. Indeed, if the stride doubles, the number of transitions in the DFA increases
quadratically, but the number of states does not; therefore, intuitively, the fraction of
distinct transitions decreases and the transition redundancy tends to increase.

2.3.2 An efficient representation for DFAs

In the following we introduce the basics of our scheme. We want to succintly describe
the outgoing transitions for each state, so that, when computing the corresponding
k-step DFA, we have to combine a small amount of one-step transitions.
Our main idea is to group all the symbols that produce a transition to a given node
into a subset and find a series of functions that, only when applied to such a subset,
provides a specific result or a set of results. When applied to all the other symbols,
the result must be different. More formally, in each state, for each subset of symbols
Sj that produces a transition to a node nj , we look for a function hj(c) such that

hj(c) = xj ∈
{

Xj ∀c ∈ Sj
U \Xj ∀c /∈ Sj

(2.1)

where U is the image of hj(c) and Xj is the subset of the image of hj(c) for c ∈ Sj .
By means of this series of functions hj , we can describe the transition set of each node
as an array of tuples:

(h1 : x1,1, . . . , x1,N1 : n1) . . . (hd : xd,1, . . . , xd,Nd : nd) (2.2)

where d is the state outdegree, n1 . . . nd are the reachable states, xk,1 . . . xk,Nk are the
different values that hk takes in Sk or, in other words, a representation of Xk and Nk
is the cardinality of Xk.
Such a representation helps reducing the redundancy of DFAs as regular Alphabet

61

2. DEEP PACKET INSPECTION

0 1
b

a,c,d,e

a,c,d,e

b

Figure 2.11: A very simple DFA

Compression Tables: it requires to store
∑
kNk values, d functions and d pointers to

next states. As an example of the compactness of such representation, let us observe
the transition set of the DFA state 1 in fig.2.11. In this case, the characters a,c,d and
e all belong to a subset S0 that produces a transition to state 0. Therefore we can
describe the transition set with two tuples only:

{h0:X0:0}, {h1:X1:1}

where h0 and h1 are defined as in (2.1): when h0 is applied to a,c,d and e, the result
is in X0, while h1(b) ∈ X1.
By defining a set of functions to a DFA, we exploit the properties of inverse homomor-
phisms applied to DFAs. An homomorphism [37] is an application that maps symbols
to strings belonging to a language L. An inverse homomorphisms translate strings of
a language L into symbols belonging to a given alphabet. From our point of view, by
grouping all our functions hj into a function H−1 such that

H−1(c) = hj(c) ∀c ∈ Xj

we define an inverse homomorphism (the exponent emphasizes it is an inverse homo-
morphism). On the other hand, by means of the representation in tuples we apply an
homomorphism H to a DFA. The composition of the two is, of course, the original
DFA.

2.3.3 The look for an effective Homomorphism

In order to find a description for H−1(c), we test the following possible “bit-friendly”
definition for hj(x):

1. hj(x) = (pj × x+ qj) mod mj

2. hj(x) = (pj AND x) mod mj

3. hj(x) = popcount(x mod mj)

These possible definitions are applied (with parameters pj , qj ,mj varying from 1 to
256 because x itself is a byte) to DFAs that recognize real data-sets (the ones shown
in sec.2.3.6).
In each test, we start by looking for a function that provides a single result in a given
subdomain Sj ; if none is found, we look for 2 results and so on. Once we find such
a function, we follow the “definition” of hj(x): we check if it outputs the same value
inside and outside a subset Sj , that is we check for the following condition:

{xi = hj(ci) : ∀ci /∈ Sj}
⋂
{xj = hj(cj) : ∀cj ∈ Sj}

?
= ∅ (2.3)

62

2.3 Homomorphic encoding of DFAs

If the condition is not verified (the intersection is not empty), we drop the function
and change the parameter again, as described by the pseudocode in algorithm 4. The
algorithm can either finish the computation because it finds a good function (i.e.:
the return value is FOUND) or fail. The failure happens if no combination of the
parameters {pj , qj ,mj} produces a function hj whose image set Xj has less than
Cmax elements.

Algorithm 4 Pseudocode for the search of function hj(x)

1: for {pj , qj ,mj} ← {0, 0, 0}, {255, 255, 255} do
2: for a← 1, Cmax do
3: for all cj ∈ Sj do
4: Compute the set Xj = {xj = hj(cj)}.
5: end for
6: if Card(Xj) > a then
7: Try with a larger Cardinality a, goto 2
8: end if
9: for all ci /∈ Sj do

10: if hj(ci) ∈ Xj then
11: Try another function, goto 2
12: end if
13: end for
14: return FOUND with parameters {pj , qj ,mj}.
15: end for
16: end for
17: return FAIL.

The results show that, for practical values of the parameter Cmax (i.e.: max ≤ 64),
only hj(x) = (pj AND x) mod mj does not cause the algorithm to fail. Moreover, it
turns out that mj = 255 in all the tests. Therefore we can define hj(x) as a simple
AND operation with a bitmask:

hj(x) = x AND pj (2.4)

Such an outcome has a number of advantages: the number of parameters is limited
to 1 (i.e.: small memory footprint), the operation is one of the most basic logic op-
eration (i.e.: it costs a simple logic gate in an hardware implementation and it is
very fast and parallelizable if our aim is a software engine) and the definition of hj(x)
is amenable to be described by means of a tree, which means we can redefine each
state transition set in a Longest-Prefix-Matching (LPM) description. Finally such
a description is always achievable: even in the worst case (all characters produce a
different transition and have a different tuple) the correctness of the scheme is not
affected. In the following sections , we walk through the properties of such a repre-
sentation and provide optimizations for our scheme. However, the main advantage is
the possibility to concatenate two or more hj(x), such that we easily obtain a k-step
DFA. As an example, if {h0 : X0 : n1} describes a transition from state n0 to n1
and {h1 : X1 : n2} is a transition from n1 to n2, then it it straightforward to verify
that we the transition from n0 to n2 of the corresponding 2-step DFA is as simply as
: {h0||h1 : X0||X1 : n2}, where h0||h1 indicates the concatenation of h0 and h1 and
X1||X2 is defined as:

X1||X2 = {a1||a2 : ∀a1 ∈ X1,∀a2 ∈ X2} (2.5)

63

2. DEEP PACKET INSPECTION

Therefore all we have to take care of is the cardinality of the image sets Xj , that
determines the memory requirements for this representation.

2.3.4 Optimizations

In the following we describe the advantages and the properties of the bitmask defini-
tion for hj(x) and elaborate upon the problem of minimizing the cardinalities of the
image sets.

2.3.4.1 Permutation for LPM

A first observation on subsets Sj is that, in some cases, they may not be contiguous,
i.e.: they may be the union of two or more non-contiguous subsets of symbols. Of
course this is detrimental to our mission to minimize the cardinality of Xj . We solve
this problem by introducing a permutation of symbols: we define a translation table
(since we are dealing with bytes, it is a small 256 bytes table that does not increase the
cost in terms of external memory accesses) that moves symbols in order to make non-
contiguous subsets as contiguous as possible. Finding the optimal translation table
is a complex issue since we can define a single translation table for the whole DFA,
while subsets may vary from state to state. The good news is that in practical DFAs
the number of different subsets is very limited. The bad news is that, as subsets
vary from state to state, it may happen that a certain symbol occurs in different
subsets. Therefore finding the optimal translation table is an NP-complete problem
as it is equivalent to the weighted maximum set packing problem[39]: we want to find
a set-packing (a collection of disjoint subsets) that maximize the total weight of its
subsets.
Such weight (w) must take into account the memory impact of the subsets (a large
and frequent subset has high utility because, once we put it in the translation table,
it is likely to be described by a single bitmask). Therefore w is defined as the product
of the cardinalities of subsets and the number of times those subsets appear in the
whole DFA.
We attack the problem with the Co-occurrence Permutation algorithm, which is based
on the co-occurrence of symbols in subsets. First, it computes the character co-

occurrence matrix A(0), where an element a
(0)
i,j represent the number of times charac-

ters i and j appears in the same subset multiplied by the cardinalities of the subsets
they appear into (such that we replicate our weight metric). Then, the algorithm ag-
gregates all 256 characters in 128 pairs, by grouping characters that present the largest
co-occurrence, as depicted in the example of fig.2.12. After that, a new co-occurrence
matrix A(1) is computed for all the 128 pairs. Again, pairs are aggregated thus form-
ing 4-characters groups, another A(2) matrix is computed and so on. Therefore the
algorithm recursively aggregates characters in a tree and the last matrix A(8) actually
collapse into a scalar. Of course we have to define the co-occurrence of groups: for
instance, given two symbols pairs i, j and l,m, we can define the pairs co-occurrence
as:

• 1
4 (ai,m + ai,l + aj,l + aj,m)

• max(ai,m, ai,l, aj,l, aj,m)

64

2.3 Homomorphic encoding of DFAs

a b c d e f g h

Step 1.

a c b e d h f g

Step 2.

a c d h b e f g

Step 3.

Figure 2.12: An example of Co-occurrence Permutation for 3-bit characters

• min(ai,m, ai,l, aj,l, aj,m)

In our tests, we used the last option (min(.)) as it showed best results on all datasets.
Finally we put the symbols in the leaves of the tree into a table and the translation ta-
ble is simply the inverse permutation of such a table. Now, by means of Co-occurrence
Permutation, subsets Sj can be described with single bitmasks. Then we can use a
Longest-Prefix-Matching description of state transition-set and enlarge the number
of ideas we can exploit for efficient implementation of DFAs, either taken from the
widely studied field of IP lookup or newly proposed.
The effectiveness of the proposed schemes is measured by the total number of hj(x)
we find for all states, once we permute the characters, as such a value represents the
“cost” of our h-DFAin terms of transitions. The closer this number gets to the volume
of the DFA graph (the cardinality of the edge set), the better the permutation scheme
works. The results are shown in fig.2.13: Co-occurrence Permutation always gave
good results, reaching, for many datasets, the minimum number of transitions or a
value very close to it.

2.3.4.2 Bitmap trees

As described above, thanks to the permutation, we can define each state by means
of LPM structures, such as trees. The adoption of trees is twofold useful: it reduces
the memory footprint of the bitmask description and it provides us with another
faster way to compute the bitmask parameter in (2.4). As for the latter issue, it is
straightforward to see that computing pj and Xj (the result of hj on subset Sj) can
be now simply demanded to the creation of a tree of all the 256 possible values of
the symbol (where last level leaves point to next state) and its subsequent pruning.
Therefore, to store our tuples representation (2.2), we can simply use a bitmap tree.
However, this does not preclude permutation; on the contrary, it takes advantages
from the use of a permutation algorithm, because if the characters of same subsets
are close to each other, they most likely produce short branches in the tree.
In order to construct a bitmap tree representation of a state, for each character c we
get the next state snext and add c in a tree, such that the leaf points to snext as shown
in fig.2.14 (where next states are 1, 2 and 3). Once we observed all the symbols, we

65

2. DEEP PACKET INSPECTION

T
ra

n
si

ti
o
n

s
R

at
io

Dataset

S
n

or
t2

4

C
is

co
30

C
is

co
50

C
is

co
10

0

B
ro

2
17

0.5

0.6

0.7

0.8

0.9

1

Minimum

Permutation

Figure 2.13: Ratio of transitions stored when Co-occurrence Permutation is used
compared with the minimum number of transitions. The ratio is computed with
respect to the case when no permutation is adopted.

prune the tree: if both children of a node x point to the same next state, x inherits
children’s pointer and children are removed. Finally, we can also remove from the
tree the subset described with the largest number of leaves, as it can be stored as
a “default transition” to be taken when no match is obtained. In the example of
fig.2.14, we remove the leaves pointing to state 1 as they are the most frequent.

1 1 1 1 1 3 2 2

(a) Filling

1

1 3

2

(b) Pruning

3

2

(c) Largest
subset re-
moved

Figure 2.14: An example of state construction in h-DFA for 3-bit characters. The
numbers on the leaves are pointers to next states

2.3.4.3 The overall algorithm

Here we retrieve the pieces decribed in the previous paragraphs and finally compose
our algorithm for the creation of bitmask-based (or LPM) DFAs. The first step of

66

2.3 Homomorphic encoding of DFAs

the algorithm is the computation of subsets and of a series of functions hj(x) that
can define an inverse homomorphism. Then we add a translation table by adopting
Co-occurrence Permutation, and then we can simply compute an LPM description of
each state of our DFA. Notice that an LPM description requires rules be stored in
order in (2.2) or in a bitmap tree.

2.3.5 The k-step DFA

As described earlier in sec.2.3.3, the homomorphic (or LPM) description allows for
a simple yet memory-efficient computation of k-step DFAs. The algorithm for the
creation of a k-step h-DFA is shown in alg.5: it is based on a recursive procedure
compute 1-step that takes a k-step h-DFA D′ and a 1-step h-DFA D and computes
the (k + 1)-step h-DFA D′′. As shown in the pseudocode, we add transitions defined
by the concatenation of functions h1||h2 as defined in 2.3.3. Such a concatenation of
functions may as well be seen as a concatenation of trees.

Algorithm 5 Pseudocode for the creation of a k-step DFA

procedure compute 1-step(D,D′)

1: for all state s ∈ DFA D do
2: for all next state s1 of s do
3: for all next state s2 of s1 in D′ do
4: Add transition(D′′,s,s2, h1||h2);
5: end for
6: end for
7: end for
8: return D′′

procedure compute k-step(D)

1: for i← 1, k do
2: D′ ← compute 1-step(D,D′)
3: end for
4: return D′

2.3.6 Results

The experimental runs have been performed on data sets of the Snort and Bro intru-
sion detection systems and Cisco security applications [15]. Such data sets, presenting
up to hundreds of regular expressions, have been randomly reduced in order to mimic
the size (in terms of DFA states and regular expressions) of other sets used in liter-
ature [31][17][19][30], as a fair comparison. The characteristics of the data sets are
summarized in table 2.2, since we adopt the same datasets of previous sections. As
for a construction timing evaluation, our preliminary code always required less than 2
minutes for each DFA to compute the corresponding h-DFA on a Pentium 4 machine
and always achieved a successful construction. The regular expessions in the data sets
are given as input to the regex-tool [36], that produces the corresponding standard
DFAs. Such DFAs are, in turn, used as start-point for our algorithms.
Tables 2.7 display the percentage of transitions (and memory) reduction for the dif-
ferent 1-step algorithms with respect to data sets representations through a standard
DFA. h-DFA achieves a compression degree which is comparable to the other algo-
rithms while requiring a single memory access per state. Because of its orthogonality

67

2. DEEP PACKET INSPECTION

(a) Transitions reduction (%). For δFA also the percentage of duplicate states is reported.

Dataset
D2FA

BEC-CRO
δFA h-DFA

DB =∞ DB = 2 trans. dup. states No Perm. PCo−Occ

Snort24 98.92 89.59 98.71 96.33 0 94.05 96.52
Cisco30 98.84 79.35 98.79 90.84 7.12 91.28 91.96
Cisco50 98.76 76.26 98.67 84.11 1.1 90.47 90.75
Cisco100 99.11 74.65 98.96 85.66 11.75 87.81 87.93
Bro217 99.41 76.49 99.33 93.82 11.99 78.48 78.48

(b) Memory compression (%).

Dataset
D2FA

BEC-CRO δFA + C-S
h-DFA + C-S

DB =∞ DB = 2 No Perm. PCo−Occ

Snort24 95.97 67.17 95.36 95.02 84.16 90.73
Cisco30 97.20 55.50 97.11 91.07 87.91 88.87
Cisco50 97.18 51.06 97.01 87.23 83.82 84.31
Cisco100 97.93 51.38 97.58 89.05 81.63 81.82
Bro217 98.37 53.00 98.23 92.79 69.02 69.02

Table 2.7: Compression of the different 1-step algorithms in terms of transitions and
memory.

with other schemes, this is a very appealing result. By using Co-occurrence Permu-
tation, we are able to obtain good transitions and memory savings.

Fig.2.15 completes the comparison among 1-step algorithms by showing the mean
number of memory accesses per character. D2FA always requires the largest amount
of memory accesses, while h-DFA requires always a single access (as D2FA).

However, the main results are shown in tab.2.8, where the memory reduction obtained
by computing 2 and 3-step h-DFA according to sec.2.3.5 are reported. In those results,
h-DFAis combined with Char-State compression 2.1.4 to reduce the number of bits
required to store transitions (notice that those techniques 2.1.4 do not add memory
accesses). The memory reduction is computed with respect to a standard represen-
tation of 2 and 3-step DFA (respectively with 2562 and 2563 transitions per state).
The compression percentages are very high. Certainly, 3-step h-DFAs still require
too large amounts of memory (in the order of tens or even hundreds of megabytes).
However, considering the consumptions of standard 2 and 3-step DFAs, which reach
even hundreds of gigabytes, our solution is still appealing for DRAM storage. In fact,
h-DFArequires at most 10 megabytes to represent 2-step DFA and (in some cases)
less than 100MB for a 3-step, thus offering a great speed-up without the unfeasible
memory requirements of standard DFAs. Moreover, as our technique is orthogonal
to other schemes, we believe that a combination of different compression schemes can
reach higher speed-ups requiring less amount of memory.

2.4 Sampling techniques to accelerate regular ex-
pression matching

The previous works which propose acceleration techniques 2.3.1 multiply the amount
of bytes (strides) processed per cycle. The obvious problems which arise is memory

68

2.4 Sampling techniques to accelerate regular expression matching

A
ve

ra
ge

n
u

m
b

er
of

m
em

or
y

ac
ce

ss

Dataset

S
n

or
t2

4

C
is

co
30

C
is

co
50

C
is

co
10

0

B
ro

21
7

1

2

3

4

5

6

D2FA(DB = 2)

D2FA(DB =∞)

δFA

H −DFA
BEC − CRO

Figure 2.15: Mean number of memory accesses per character.

Dataset
2-step h-DFA + C-S 3-step h-DFA + C-S
mem. trans. mem. trans.

Snort24 88.48 98.35 99.34 99.69
Cisco30 98.73 99.50 99.87 99.99
Cisco50 97.84 99.07 99.81 99.92
Cisco100 95.67 98.06 99.42 99.56
Bro217 96.97 95.57 97.98 99.08

Table 2.8: Memory and transition compression (%) for 2 and 3-step h-DFA + Char-
State compression

69

2. DEEP PACKET INSPECTION

blow-up (essentially due to the exponential growth of edge numbers with the stride
size) and can be partially mitigated through smart coding for the transition table,
alphabet-reduction and default transition compression.
Our approach to the finite automata speed-up is completely innovative: sampling the
text, thus having less symbols to be processed. Clearly, sampling introduces some
issues; in details, particular automata for the processing are required and a certain
probability of false alarms is introduced. We address these issues by the combination
of a “sampled” and a “reverse” DFA, two different versions of the original automaton.
We perform a first fast search on the traffic through the sampled DFA, which is able to
exclude most part of non–malicious traffic, and, if necessary, a more accurate process-
ing through the reverse DFA is triggered, in order to confirm a match. While other
works [40] in the area of intrusion detection already show how to sample messages to
reduce the amount of messages to be processed in a distributed system, the applica-
tion of sampling to regex-matching is a novelty and one of the main contributions of
this work.

2.4.1 Sampling DFAs

In this section we introduce the motivation for DFA sampling and describe the main
concepts by means of an example. Moreover, we provide a taxonomy to distinguish
the different ways we can sample a regular-expression set or the corresponding DFA.

2.4.1.1 Motivation

The motivation for this work relies on the following assumptions:

• IDS regex data sets are well-written;

• Regular internet traffic does not match properly written IDS regexes.

Indeed, if regex sets are not poorly written (in our tests we use real and effective IDS
signatures from Bro and Cisco security applications) a signature match will occur
with malicious traffic only. The main assumption is that the majority of traffic is not
malicious. Therefore we can take advantage of the fact that a match is a rare event
and speed up the average case (regular traffic).
The idea of DFA sampling is to speed up the regex matching by simply “sampling”
the traffic stream: we extract a byte every θ bytes from the stream, where θ is the
sampling period. The sampled bytes are then used as input to a proper sampled DFA.
The outcome is that all regular traffic is processed θ times faster. The price to pay
is that this process may introduce false alarms: strings that would not match the
original non-sampled regex could match the sampled one. Therefore whenever we
have a match in the sampled DFA, we have to process the suspect packet through a
regular non-sampled DFA.
It is worth noticing that we aim at reducing the number of memory accesses to the
main memory that stores the state-machine, while we cannot reduce the number of
accesses to the memory where the packet is stored. The reason is that even if we
were interested in, say, a byte every two, memories would allow accesses in minimum
sizes of k bytes long words. However, in cached-systems, this is an advantage when
performing the second stage to check for false alarms: all the memory accesses for
this second stage will result in cache-hits, thus reducing the cost of false alarms.

70

2.4 Sampling techniques to accelerate regular expression matching

a) Average case

text: × × × × × × × × × × a b × × × ×

1st stage: Sample ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

b) Matching case

text: × × × × × × × × × × a b c d© × ×

1st stage: Sample ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2nd stage: Confirm ↑ ↑ ↑ ↑

c) False alarm

text: × × × × × × × × × × b b c d© × ×

1st stage: Sample ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2nd stage: Confirm ↑ ↑ ↑ ↑

Figure 2.16: Examples of sampling with θ = 2. The regex to match is ab. ∗ cd, the
sampled one is [ab]. ∗ [cd] and the text consists of 16 bytes. Arrows point to observed
chars. Sampling performs 12 memory accesses in case of a real match(b) or false
alarm(c) or even 8 in the average non-matching case(a). In (c) the striked arrow
point to the non-matching char.

2.4.1.2 A Motivating Example

Fig. 2.16 shows the principles of our scheme, with the example regex ab. ∗ cd. We use
a sampled DFA (that matches [ab].∗ [cd]) and a regular non-sampled one. We perform
a first check on the text by using the sampled DFA; if we find a match, we move to
the second stage.

Fig. 2.16(a) represents the common scenario with traffic that does not match signa-
tures. It is evident, in this case, that the number of memory accesses and operations
to be performed is divided by the sampling period.

Whenever the sampled regex is matched (lower two cases in figure 2.16, where the
circled letter indicates the sample where we find the match), the non-sampled text has
to be checked to confirm the match. To address this issue, the simplest and fastest
way (see section 2.4.3.2) is to adopt DFAs that match reversed signatures (in our
example, dc.∗ba). Any regular language is closed with respect to reversing operations
[37], therefore we can always reverse a regular expression and match it inside a text
by observing the text backwards from the end to the beginning. Then, if a match
occurs in the second stage, because of the equivalence of reversed and forward DFAs,
we have a confirmed match (fig. 2.16(b)). Otherwise, we can claim that a false alarm
occurred (fig. 2.16(c)).

2.4.1.3 Taxonomy of DFA Sampling

Sampling can be performed in a number of different ways. In the following we give a
brief description of these techniques and of the models that we use. From the point
of view of the sampling period θ, we can have:

1. Fixed Period Sampling (CPS) : θ is constant;

71

2. DEEP PACKET INSPECTION

2. Variable Period Sampling (VPS) : θ = θ(s, c) is a function of the DFA state s
and/or the input character c.

The construction of a sampled DFA can be classified as:

1. Static : θ(s, c) is decided during construction;

2. Adapting/Evolving : θ(s, c) evolves adapting to traffic features, reducing false
alarms and maximizing speed-up.

However, in this first work on sampling we focus on static constant period sampling.

2.4.2 Regex sampling rules

Here we introduce basic theoretical results on DFA sampling. As in signal sampling
theory Nyquist condition is the only one rule to satisfy, also when dealing with regular
expressions matching a simple unique condition has to be satisfied to perform a correct
sampling:

Lemma 1. Let DFA A describe a single regular expression R1 and let a text T match
R. The corresponding sampled DFA AS will match the sampled text ST if the sampling
period θ satisfies the following:

θ ≤ min |r| ∀r ∈ R

Proof. The proof is straightforward. In order to match the sampled text, we have to
extract (by sampling) at least a character from the substring of T that matched A.
Thus the condition follows.

Lemma 1 limits the sampling period that can be used when matching a single regular
expression. However when working with DFAs that match a set of regular expressions,
it still applies, as long as the limit is moved to the minimum length of any string that
match any regular expression in the set. Moreover the lemma states that, if the
condition is satisfied, we may have false positives but we cannot have false negatives.
This important result is the basis of the research presented in the rest of this research.

2.4.2.1 Regex rewriting

The application of sampling can be performed by rewriting regular expressions ac-
cording to few simple rules. In the following we use the notation:

SX0

{θ}a

to refer to the application of sampling to the regular language a. In particular,
the symbol S represents the sampling operator, {θ} is the series of sampling periods
θ0, θ1, . . . , θN , and X0 is the position of the first sampled character. In the rest of
this section, the sampling operator S will be adopted also as an exponent (i.e.: AS)
to denote the sampled version of a DFA.
Basically, we show the application of the S operator to four main cases:

1Throughout the whole section, bold letters represent regular expression, while non-bold stand
for single letters.

72

2.4 Sampling techniques to accelerate regular expression matching

1. simple string str

2. concatenation of regular expressions a and b : ab

3. union of regular expressions a and b: a|b

4. star closure of a character a followed by a regular expression b: a∗b

The sampling of a string is straightforward, and it simply consists of extracting char-
acters at the positions defined by {θ} with offset X0:

SX0

{θ}str = {str(X0 + {θ})}

The offset X0 is critical also when sampling the concatenation and union of regular
expressions, it is immediate to show that:

SX0

{θ}ab = (SX0

{θ}a)(SX0

{θ}b)

and
SX0

{θ}a|b = (SX0

{θ}a)|(SX0

{θ}b)

Finally, a star closure of a character a followed by a regular expression is simply :

SX0

{θ}a ∗ b = a ∗
θ−1
|
i=0

i

S{θ}b = a ∗ S{θ}b

We can easily verify the sampling of a∗ is again a∗. Then, since a∗ consists of all the
possible n-repetitions of a (where n ∈ N), the sampling offset we apply to b can be
any, hence the big OR operator |.
Now, although the last case follows from the first three (concatenation and union), it
is worth describing it because of its frequent occurrence in real regular expression sets.
Indeed, many regular expressions in real IDS/IPS data-sets adopt star closures and
most of the times they are unanchored rules (because security signatures may occur
everywhere in the text) of the form: .∗a. Therefore sampling produces a union of the
regex a sampled with all different possible offsets. As an example, let us suppose we
have . ∗ abcde ∗ fgh and we are sampling with fixed period θ = 2. By applying the
previous rules, it follows that:

S2[. ∗ abcde ∗ fgh] = . ∗ (ac|bd)e ∗ (fh|g)

2.4.3 Constant Period Sampling

2.4.3.1 First stage: Sampled DFA

As above mentioned, the idea of DFA sampling is to speed up the string matching by
extracting a byte every θ bytes from the stream and giving such characters as input
to a “sampled DFA” for a first approximate search (to be subsequently confirmed).
Regarding the Constant Period Sampling (CPS) case, such sampled DFA can be
simply obtained by properly rewriting the regexes and building the DFA according to
the new rule-set.

73

2. DEEP PACKET INSPECTION

In details, for the process of regex rewriting, we can apply the results of section 2.4.2.1
by selecting a single value θ for all the sampling periods θi. Instead, concerning the
offset X0, which is the position of the first character to be sampled in the regex, we
have to take into account all the possible starting values. This way, the resulting
complete automaton can be used for string searching regardless of the point in which
we start to sample the traffic.

The pseudocode 6 just shows the overall procedure for rewriting a regex by using
a constant period θ and by adopting all the possible values for the starting offset:
we split the regular expressions into sub-elements that can be processed directly by
adopting the rules in sec. 2.4.2.1. In order to simplify the code, a pre-processing (not
shown here) is adopted to convert “+” closures in “*” (i.e., a+ becomes aa∗) and
to take care of the cases when the sampling period is higher than the length of the
minimum string between two closures or the presence of unions (“|”). By repeating
such a process for all the regexes belonging to the set, we obtain the “sampled” rules
on which the “sampled DFA” has to be built. Such a resulting automaton is a simple
DFA and does not require additional information on the states or on the transitions.
From this observation and as suggested by the results of section 2.4.2, we can claim
that a regular language is closed with respect to the fixed sampling operator.

However, even after pre-processing, some regular expressions may still be so short
to make sampling unconvenient. For instance S3abc = [abc]: although the sampled
regular expression is valid, it is only 1-character long, thus potentially yielding a
large number of false alarms. The good news is that these extremely short regular
expressions are not very frequent. Therefore a good and effective solution is to hard-
code them, moving the matching problem from data to code and adopting a function
regex match(c) which is basically composed of switch() – case and if – then state-
ments. This is a well-investigated idea [41][42][43] that is shown to be very useful
with a small number of regular expressions. It is also compatible to our sampling
approach: the regex match(c) function can still access all the bytes of the un-sampled
text (which are available to the code, as discussed in section 2.4.3.3) thus keeping
the processing engine busy between two successive memory accesses to the sampled
DFA. Since the number of regular expressions to be matched by such a code is small
(as already pointed out, short regular expressions are fairly rare), the whole data set
which is necessary for such a code can be kept in the local cache, thus requiring no
further accesses to the external memory blocks.

Algorithm 6 FPS of a regex a with period θ.

procedure sample regex(a, θ)
1: pnext ← first pos(a,“*”) −1
2: l← a[pnext]
3: while pnext 6= NULL do
4: b← ε
5: for all offset x do
6: b← b| sample str(a(pprev + x . . . pnext))
7: end for
8: a′ ← bl ∗ a′

9: a← a << pnext

10: pnext ← first pos(a,“*”) −1
11: end while

74

2.4 Sampling techniques to accelerate regular expression matching

2.4.3.2 Second stage: Reverse DFA

Whenever in the “sampled DFA” a matching happens (i.e., an accepting state is
reached), we have to process the text again, by means of the original non-sampled
DFA, in order to obtain a confirmation of the match. As already mentioned, the
reason is that sampling a DFA introduces a false alarm probability, since we check
only a subset of the characters of the string.
Let us suppose the matching has been detected at the k − th sample in the text. By
using the original DFA for such a further search, a problem arises: which byte of the
packet has to be the starting point for the matching confirmation processing?
The simplest solution could be processing again the overall packet (i.e., starting from
the first byte of packet), but this heightens the processing and yields an excessive
delay. Therefore, a more efficient technique could be to “remember” the last time the
process has been in the root state (hereafter simply called state 0) and start from
the corresponding character. However, even this solution could be too expensive,
requiring the processing of a big number of characters, as shown in the following
example.
Let us assume our DFA (shown in figure 2.17(a)) matches the two regular expressions:

. ∗ ab. ∗ fgh

. ∗ cded

The sampled DFA (fig. 2.17(b)) is built on the sample regexes:

. ∗ (a|b). ∗ (fh|g)

. ∗ (ce|dd)

Suppose we read the text: T = xxabxxxxxxxcdedxxx and we sample the text with
θ = 2, obtaining the sequence: T ′ = xbxxxcexx. By triggering the sampled DFA with
such a sequence, the processing of the character e reports a match in state 8, which
has to be confirmed with the standard 1-step DFA (fig. 2.17(a)). The last sampled
character for which the sampled DFA was in state 0 is the second x of T . Therefore,
if we use a forward DFA to confirm the match, we need to process all the characters
from a (position 3) to the last d (position 16): we read 13 characters to confirm a
match of a 4-bytes string (cded). This is due to the presence of a closure (.∗) within
one of the regex matched by the DFA. Indeed, for each closure, the DFA replicates
the states corresponding to some regular expressions (as happens in state 2 in fig.
2.17(a)). This means that we can start matching a whole signature starting from a
state which is not the root state 0. This requires the processing of a much larger
number of characters than strictly needed.
For these reasons, in order to improve the performance of the second stage, we propose
a novel scheme where a reverse DFA has to be built. Such a technique requires a
slightly larger amount of off-line processing: all the regexes have to be independently
reversed and a new DFA has to be built according to such new rules. However, this
approach has the advantages that we can start the second stage reverse-matching
from the last sample. More precisely, in order to take into account all the characters
belonging to the string, the correct starting point for the reverse DFA is the (k+1)-th
sampled char in the text. The reason is that the sampled DFA may report a match for

75

2. DEEP PACKET INSPECTION

0 1 2 3 4 5

6

7

8

9

10

11

12

13

a

c

[ˆ ac]

b f

[ˆ fc]

c

g h

d

e

d

d

e

d

(a) The DFA

0 1 2 3

4

5

6 7

8

9

a|b

d c

[ˆ abcd]

f

[ˆ cdfg]

g

d

c

h

d e

d

e

(b) The Sampled DFA

0 1 2 3 4 5

6

7

8

9

10

11

12

13

h

d

[ˆ hd]

g f b

d

[ˆ b]

a

e

d

c

e

d

c

(c) The Reverse DFA

Figure 2.17: Example of the finite automata needed for sampling (only the forward
transitions are shown for readability): (a) is the standard DFA, (b) is the sampled
one (with θ = 2) and (c) is the reverse DFA.

76

2.4 Sampling techniques to accelerate regular expression matching

a signature that ends between the actual and the next sample. Therefore, we process
some useless characters too (the first ones in the text after the matched string), but
this does not affect the detection of the string by the reverse DFA. On the contrary,
since the match in the sampled DFA may occur some character before the real match
of the non-sampled string, by moving one sample further we ensure the correctness
of the scheme at the cost of processing a few more (less than θ) characters than the
strictly needed.

Thus, if we adopt a reverse DFA (fig. 2.17(c)) in the previous example, and we have a
match in the k-th sample, we start the reverse DFA from the next sample (the (k+1)-
th) and go backwards, processing the substring T ′′ = xdedc (i.e., the reverse of the
substring cdedx from T). As easily verifiable, the reverse DFA correctly confirms
the match by processing 5 characters only, while the forward DFA needed 13 bytes.
Notice that, in this example, if we started the reverse DFA from the matching sample
(character e) we would wrongly miss the match.

In the confirmation stage performed through a reverse DFA, we confirm a match
whenever an accepting state is reached (notice that an accepting state in such a
DFA represents the beginning of an original non-reversed regex). Instead, we can
immediately detect a false alarm and stop our search whenever we return to the state
0 with any character belonging to the subset of positions 0 . . . k × θ. Indeed, the
characters not belonging to the string, which are between the (k× θ+ 1)− th and the
((k + 1)× θ)− th char, could trigger a return to the state 0, but this does not imply
a false alarm. Instead, if the return to the state 0 is forced by any character from the
(k× θ)− th to the first one (which certainly belong to the probable matching string),
then a false alarm is detected.

Further performance refinement However, in some cases, locating the (k + 1)-
th sampled char in the text is not a good choice for the performance of the correct
matching search. An example is shown in fig. 3 where the sampled DFA (with θ = 2)
for the regular expression abc ∗ d is depicted. With such a DFA, when we process
the text T = xxxabccccccccdx we trigger a reverse DFA confirmation for each of the
sampled character c inside the text, always reporting a false alarm. When, at last, we
read the character d, we restart the final and conclusive confirmation stage with the
reverse DFA (with a right positive result). Notice that this problem occurs because
of the closure on the accepting state of the DFA and affects the performance of the
technique solely, while the correctness is not invalidated. A simple solution to this
problem is to start the confirmation process when leaving a matching state only (i.e.,
state 2 in the example). In this way, we make sure that the reverse DFA has really
started matching a regular expression.

The pseudocode for the lookup is shown in alg.7. In the listing, s represents the
actual state, snext is the next state and i and j are the text position we currently
read respectively for the sampled DFA AS and the reverse DFA AR (this convenient
exponent–notation will be adopted hereafter). In the pseudocode, lines 1-3 and 22-24
are part of the regular sampled DFA walk. Line 4 represents the condition we discussed
above: we start a confirmation match only when we leave an accepting state (s.acc is
the accepted rule) and move to a state that does not match the previous rule. This
takes care of the cases where the accepting state has a loop. In lines 5-8 we initialize
and start the first part of the reverse DFA walk and do not care about the occurrence

77

2. DEEP PACKET INSPECTION

Algorithm 7 Pseudo-code for the lookup procedure.

procedure lookup (T ,AS,AR,θ)
1: s← 0
2: while i < length(T) do
3: snext ← AS[s, T [i]]
4: if s.acc > 0 AND snext.acc 6= s.acc then
5: s′ ← 0
6: for j ← i, i− θ(s) do
7: s′ ← AR[s′, T [j]]
8: end for
9: while s′ == 0 do

10: s′ ← AR[s′, T [j]]
11: j ← j − 1
12: end while
13: while s′ 6= 0 do
14: s′ ← AR[s′, T [j]]
15: if s′.acc > 0 then
16: Confirm Match of s′.acc
17: return to outer loop
18: end if
19: j ← j − 1
20: end while
21: claim False Alarm
22: end if
23: i← i+ θ(snext)
24: snext ← s
25: end while

0 1 2

34

a

b

c

d

d

c

d

Figure 2.18: Example of a sampled DFA for regular expression: abc ∗ d. Only some
edges are shown.

of state 0. Then the first while loop (lines 9-12) is in charge of cases where the first
state of the reverse DFA has a closure (for instance: (abcde∗)R = e ∗dcb). Finally the
next while loop performs the reverse DFA walk.

Splitting the reverse DFA As a final comment, we consider splitting the reverse
DFA into several smaller DFAs, one for each subset of regular expressions correspond-
ing to a matching state in the sampled DFA. In details, for each accepting state sj in

the sampled DFA AS, we observe the subset of regular expressions Xj = (r1, r2, . . . rk)
that sj accepts. For each different subset Xj we create a reverse DFA ARj . This way,
whenever the sampled DFA reaches a matching state sj , we start the reverse match

with the corresponding ARj . This approach reduces the number of steps to perform

in the reverse match when a false alarm occurs. Indeed, on a large DFA AR a piece
of text that does not match a given regular expression may match a part of any other

78

2.4 Sampling techniques to accelerate regular expression matching

regular expression in the set hence keeping the walk away from state 0 and preventing
us to claim the false alarm. This does not happen when adopting several small DFAs
ARj . Moreover this scheme remarkably reduces memory wastage, since, as shown in
[28], n DFAs are less expensive than a single DFA for n signatures in terms of num-
ber of states and size. However, using n reverse DFAs requires in the sampled DFA
additional information which link each accepting state to its own reverse DFA. In the
final experiments we will discuss about the performance of both schemes.

2.4.3.3 Possible implementations

The discussion above shows that the basic idea of our approach is to divide the
problem into common cases (no matches) and “exceptional” events (a match). To
deal with these two cases, we perform two different processing stages. It is worth
mentioning that the second stage does not have to be performed necessarily by the
same processing engine that executes the first stage. For instance, k2 processing
engines can be allocated for this job, dealing with all the alarms produced by k1 > k2
first-stage engines. However, while this possible implementation can increase the
speed of our solution, in this work we describe our approach as performed by single
entities (first and second stages in the same engine), as we are interested in showing
a proof of concept rather than the best possible implementation.

2.4.3.4 Dealing with DoS attacks

Generally, when dealing with security applications, every approach that tries to op-
timize a frequent case by relying on the assumptions that certain events (for us, a
signature match) are relatively uncommon, is subject to be affected by aimed attacks
that try to increase the probability of the rare events, thus invalidating the purpose of
the method. However, as proposed in [18], such Denial Of Service (DoS) attacks can
be taken care of by observing the “behavior” of the incoming flows and distributing
them into different queues (with different service rates) accordingly. In our scheme,
the “good” or “bad” behavior of a flow is measured by the number of false alarms
it generates within a time frame, since false alarms represent the largest portion of
the processing cost. Therefore, according to this mechanism, flows that generate a
large number of false alarms are sent to the queue with lowest service rate, while
“good” flows (i.e.: with few false alarms) are queued and serviced with high rates.
However, in this work we do not deal with the details of such an approach, inviting
the interested readers to find more details in [18].

2.4.4 Experimental Results

In order to understand the advantages and costs of our approach, in the following we
present the results of a number of experimental tests on real traffic. In details, the
purpose of these tests is to show the behavior of the sampling approach in real cases
and as the parameters of the problem vary.
To propose verifiable and valid tests, we use:

• the datasets of regexes of real Bro and Snort intrusion detection systems and
Cisco security appliances [15];

79

2. DEEP PACKET INSPECTION

(a) Required steps in the reverse walk.

(b) Overall speedup.

Figure 2.19: Using an overall reverse DFA (one) or one DFA per regex subset (all).

80

2.4 Sampling techniques to accelerate regular expression matching

• the Michela Becchi’s regex tool (which is freely available [36] and proven very
stable and powerful) to create the DFAs from the “sampled” regexes.

More precisely, we processed the real regex datasets (where the number in the name
indicates the number of regexes) with our tools for creating the new regexes (i.e.
sampled and reverse), which are then parsed by the Michela Becchi’s regex tool to
create the DFAs (which therefore result to be the sampled and reverse DFAs).
We dumped several traffic traces from our department network. Such traces were
composed by several flows, associated with different kinds of applications (peer-to-
peer, web browsing, multimedia, ftp), therefore they encompass a realistic mix of
both mainly textual streams and binary streams. The different TCP connections
have been reassembled by using TCPflows [44] and the resulting streams have been
concatenated in order to obtain the overall traces. The first runs aim at comparing the
efficiency of using an overall reverse DFA for all the regexes (one in figure 2.19) or a
single reverse DFA for each subset of regular expressions corresponding to a matching
state in the sampled DFA (all in figure 2.19). The graph in figure 2.19(a) shows the
number of steps required in the reverse walk by using the two different techniques
when processing three real traces (of length 52MB, 48MB and 66MB respectively)
with Cisco100 as regex databases. Instead, figure 2.19(b) illustrates the speedup
(computed as ratio between the trace length and number of accesses required) when
processing the firs trace (52MB) for different regexes datasets. As foreseen in section
2.4.3.2, using one reverse DFA for each subset of regex reduces the number of steps
to perform in the reverse walk when a false alarm occurs and allows higher speedups,
along with a memory saving.
To compare our sampling scheme with a classical DFA which processes all bytes,
we took as reference hardware platform the Network Processor Intel IXP2800 [45].
Network Processors offer very high packet processing capabilities (e.g. for gigabit
networks) and combine the programmability of general-purpose processors with the
high performance typical of hardware-based solutions. In particular the IXP2800 is
designed to perform a wide range of functionalities, including multi-service switches,
routers, and broadband access devices. It is a fully programmable network processor,
characterized by a hierarchy of processing units (a XScale core and 16 32-bit micro-
engines MEv2, running at 1.4GHz) and memory devices (4KB of local memory, 16KB
of scratchpad memory, 256MB of external SRAM and 2GB of external DRAM). The
bigger the memory, the slower the access to it.
We simulated the functioning of our algorithm by putting the automata in DRAM,
given the large memory required by standard DFAs, and reserving for pattern match-
ing 4 microengines with zero-overhead full threading support (i.e., 8 threads per mi-
croengine with no penalty for context switch). Consider that each state traversal
requires a DRAM access, as well as the readings of packets, and that, in turn, each
DRAM access costs on the average 1270 clock cycles. Fig. 2.20 reports the results
in terms of bit rate when processing a real trace of 20MB with a common DFA (i.e.
θ = 1) or with our sampling scheme (with θ = 2, 3, 4). It is evident the speedup of
sampling DFA, which allows to multiply the bit rate. The payment due to the check
in the reverse DFA is very slight because of the low occurrencies of false positives in
real traffic. Therefore, the sampling DFA enables a big saving of processing, according
to the sampling period, which results in a higher sustainable bit rate.
In order to perform comparisons between our solution and the more efficient schemes

81

2. DEEP PACKET INSPECTION

Figure 2.20: Bit rate with a standard DFA (θ = 1) and sampled DFAs (θ = 2, 3, 4).

for speeding up the matching search in DFAs, we implemented the techniques proposed
in [38]. In details, we apply alphabet-reduction and default transition compression to
k-DFAs introduced in [38], which in turns are based on D2FAs.

The graph in figure 2.21 shows the data rates achieved when processing real traces of
52MB (trace1) and 48MB (trace2) and by adopting Cisco100 as dataset. In particular,
we compared our scheme and the one implemented according to the directions in [38]
by setting θ = k, where the former represents the sampling period and the latter
the stride length (i.e., the amount of bytes which are processed at each step in [38]).
Notice that the runs pointed out that both the schemes detect the overall number of
attacks in each case (i.e. for each mix of traces and databases). The 1st and 3rd bars
of the histogram represent the bit rates for our sampling scheme, while the other two
bars report the values for the multi-stride scheme. The advantages of our schemes are
clear.

Figure 2.21: Bit rate with k-DFA and our DFAs.

82

2.4 Sampling techniques to accelerate regular expression matching

As for the memory size requirements, we do not report the results because, since
our technique produces regular DFAs, it can actually be coupled with many of the
compression schemes proposed in literature (and cited in the previous introductory
sections) thus avoiding memory blowup. However, it is important to point out that the
sampling operation does not overly increase the size of the DFAs. Another experiment
aims at describing the effect of the features of regular expressions on the number of
false alarms (and hence speed) in the sampling approach.

Figure 2.22: False alarms, length and range for each signature.

In fig. 2.22 we report three aligned graphs that correlate the measured probability
of false alarms (PFA, top graph) generated by each signature to the signature length
(graph in the center) and the signature range (bottom graph). The signatures are
labeled by the numbers on the x-axis and the graphs represents the results of a
sampled match of the Cisco200 regular expressions with θ = 4. The length of a
signature is defined as the length of the shortest string that matches the signature,
while we define the range as the cardinality of the set of all strings matching that
signature. Of course, closures (* or +) would cause the range of a signature to be
infinite (remember closures represent the unlimited repetition of a character). For
this reason, in order to properly represent ranges in the graph, we set the range of a
closure to a large number (10000). The figure shows that a few short signatures are
responsible for the majority of the false alarms. In the following, from the inspection
of a few distinct cases, we show how to extrapolate the general behaviour. Signature
99 contributes to more than 25% of all false alarms, this is mainly due to its short
length and to its fairly regular range. On the other hand, signature 110 does not
produce any false alarm because, even if it has a large range, it has a remarkable

83

2. DEEP PACKET INSPECTION

length. Signature 115, instead, is quite short (the shortest length bar in the middle
graph), but it does not contribute to false alarms because of its very limited range.
These examples justify the intuitive idea that short signatures with large range are
the most likely to provoke false alarms. Another comment is that the length of a
regular expression has a larger effect on false alarms than its range.

2.5 Counting Bloom Filters for pattern matching
and anti-evasion at the wire speed

Standard pattern matching methods used for deep packet inspection and network se-
curity can be evaded by means of TCP and IP fragmentation. In order to detect such
attacks, Intrusion Detection Systems must reassemble packets before applying match-
ing algorithms, thus requiring huge memory and a large amount of time to respond to
the threat. To reach very high speeds, finite automata in FPGAs (Field Programmable
Gate Arrays) are used; however, for adding and deleting strings, a hardware recon-
figuration is required, which is too expensive. The simplest approach is a TCAM
(Ternary-Content Addressable Memory), which stores all the strings: searches can be
very fast (a single clock cycle) but the high cost makes TCAM infeasible for large
signature sets.

2.5.1 Related works

Recently, Bloom Filters (BFs) have also been used for pattern matching [46] [47].
They are hash-based structures which trade a certain degree of accuracy for consid-
erable memory savings. BFs were born to represent a set of elements and to perform
membership queries, so they can be adopted for pattern matching by simply con-
structing filters according to a set of signatures. The advantages are the compact
representation typical of BFs and a remarkable reduction of the amount of traffic
handled by the slow path, which result in a general performance improvement and
scalability of IDSs. The work in [46] adopts parallel BFs: each of them represents the
strings of a specific length, in this way allowing for a fast search. The work in [47] in-
stead combines BFs and parallel hashing: packets are first passed through a BF which
detects some strings by acting as accelerator. Such strings are then dispatched to the
parallel hashing engine, which performs a hash comparison, and, in case of a hash
hit, compares the input string to the actual string to eliminate any false positives. A
brief introduction to Hash and Bloom Filters could be found in appendix.

Moreover, while the set of signatures to be detected changes very frequently (due to
the continuous creation of new viruses and attacks), Bloom Filters do not address
the issues of changing items in a set, hence Counting Bloom Filters (CBFs) have
been designed. They are based on the same principles of BFs but use counters to
take into account the occurrences of items, in this way allowing for quickly updating
the string set and candidating to be used in pattern matching. The work in [48]
proposes the use of a bit vector in which each bit corresponds to a counter of the
CBF representing the string set. Whenever a member is added to or deleted from
the CBF, the corresponding counters are incremented or decremented, respectively.
If a counter changes from zero to one, the corresponding bit in the bit-vector is set,

84

2.5 Counting Bloom Filters for pattern matching and anti-evasion at the
wire speed

while it is cleared if the counter changes from one to zero. Since the counters are
changed only during addition and deletion of strings in the set, and these updates are
relatively less frequent than the actual query process itself, the authors suggest the
CBF should be maintained in software and the corresponding bit vector in hardware,
thus saving memory resources. However, several research efforts [49] [50] show how
to evade standard pattern matching techniques by splitting into several packets or
by slightly changing (e.g., by UTF-8 synonyms) the malicious strings, thus making
useless the pattern matching on single packets. Many software tools (e.g., FTester,
FragRoute or Nikto) even implement such evasion attacks. This work focuses on the
“fragmentation” evasion (and through all the section we simply use the term evasion
to refer to it). Currently, the only way to deal with this problem is to reassemble
the overall packet flows and afterwards apply standard pattern matching algorithms.
This dramatically increases requirements for security systems in terms of both memory
and processing power, especially for securing traffic at wire speed. Moreover, to face
few malicious flows, an IDS must reassemble all passing flows. In [49] is shown that
the processing for TCP reassembly can be remarkably reduced by optimizing for the
expected case when most TCP segments are in order. However, the costs for both
memory and processing remain too high.

Some work tries to avoid the need for flow reassembly to detect evasion attacks. The
authors of [51] propose an architecture composed of a Flow Processor and a Payload
Processor. The former maintains per flow state information for multi-packet signature
detection, while the latter uses a combination of parallel BFs. More precisely, the
Payload Processor adopts, for each length, a BF which represents all the strings of
that length, as well as a BF which represents all the string pieces of that length.
When a packet arrives, a complete check is performed on all the filters (which is an
expensive process). If a match is detected, the flow database is updated and the state
becomes malicious (if a whole signature is found) or suspicious (if a simple piece is
found). Whenever the flow state is malicious, the flow is passed to an analyzer for
a further deterministic check. This scheme assumes that packets are not ambiguous,
in order and not overlapped, thus neglecting many real issues. Moreover, the use of
filters for prefixes of 1 or 2 bytes appears too expensive for memory requirements,
processing power and alert rate, thus making such a system not efficient.

The basic idea of [52] is to split the signatures to be searched by pattern matching
algorithms into small substrings. In this way, if a sufficiently large piece is completely
inserted in a packet, it is easily detected. Otherwise, the attacker is forced to use
several very small or out-of-order packets, and such abnormal behaviors are revealed
by adopting proper heuristics. Both techniques are performed in the fast data path,
thus guaranteeing a big saving in terms of both time and memory with respect to the
overall flow reassembly. This solution, though, presents some weaknesses: when the
counter of small or out-of-order packets of a specific flow exceeds a threshold, such
a flow is diverted to the slow data path. The paper claims that this threshold is set
according to the signature length which the small packets belong to. Unfortunately,
it is not possible to know such a parameter before the flow has been reassembled and
the entire signature has been detected, hence this heuristic appears difficult to be
used.

Anti-evasion is a hard problem and to find a conclusive solution is very difficult.
Hence, our work is an attempt to address the problem in an alternative and effective

85

2. DEEP PACKET INSPECTION

Figure 2.23: Addition of a new string in a CBF.

way, thus creating new opportunities for future research on this topic. The main
target is the same of [51] and [52]: avoid flow reassembly for detecting an evasion
attack. We will first show how CBFs can be used for anti-evasion techniques, thanks
to their appealing features in terms of compactness and speed, update capability and
emptying feasibility. Then, a comprehensive CBF-based solution for anti-evasion will
be illustrated.

2.5.2 CBFs for pattern matching and anti-evasion

BFs do not allow changes in the item set. In fact, deletion cannot be done by simply
changing ones into zeros, as a single bit may correspond to multiple elements. There-
fore, CBFs have been introduced, which are based on the same idea of BFs, but use
fixed size counters (also called bins) instead of single bits of presence. When an item
is inserted, the corresponding counters are incremented; deletions can now be safely
done by decrementing the counters.
CBFs are used in representing elements for their well-known compactness and speed.
Our idea is to use them also for pattern matching and anti-evasion, due to their
innovative capabilities of quickly updating the set they represent and counting the
occurrences of elements. The first property can be used to rapidly take into account
each new virus definition, with no need to rebuild the overall structure: in order to
add a new string to be matched, it is sufficient to apply the hash functions to such
a string and increment the proper CBF bins (as shown in figure 2.23, where the new
string SIGNATURE is added and hi are the hash functions). The same principles can
be used for removing an obsolete string.
Counting the occurrences of elements makes CBFs appealing just for anti-evasion.
Indeed, a CBF can be set to represent the different substrings composing a string:
the arrival of any pieces belonging to the string triggers a decrease of the proper bins
and when the filter is completely reset to zero, the overall match is detected. In this
way, in order to reveal an evasion attack, it is no longer necessary to divert a flow to a
slow data path engine, which must reassemble the flow and perform pattern matching.
The detection, unlike using BFs, can be completely performed in the fast data path,
thus speeding up the overall performance of IDSs.

2.5.3 The anti-evasion system

2.5.3.1 Motivations and Ideas

The main idea of our system is to split a priori the strings to be searched in 3-byte long
substrings and create a CBF representing them (hereafter called “substring CBF” or

86

2.5 Counting Bloom Filters for pattern matching and anti-evasion at the
wire speed

simply SubCBF) for a preliminary pattern matching. When a substring is detected
through the SubCBF, a bank of further filters (called “string CBFs”, StriCBFs) is
properly set for the specific flow: more precisely, a filter is initialized for each string
which the detected substring belongs to. In this way, all the next packets of that
flow are processed in search of the remaining characters of the strings: whenever a
StriCBF is completely reset to zero, the attack is detected and the flow is blocked.
However, not all the attacks can be detected in this way; for instance, a string split
in several very small packets (less than 3 bytes) is not revealed, because the substring
detectors search only for substrings of 3 bytes. Therefore we plan to divert such
packets (very infrequent in real traffic) to the slow data path, for flow reassembly and
pattern matching. Moreover we set a threshold on the maximum number of flow to
be diverted, thus avoiding denial of service attacks.
The only assumption we make is that packets entering our anti-evasion system are not
ambiguous, that is packets do not overlap. To force this condition, we assume to have
a traffic normalizer (like the one described in [53]) before our system, which keeps
traffic flows consistent and solves any ambiguities. Instead, the arrival of out-of-order
packets does not affect the correct functioning of the system and the proper detection
of attacks.

2.5.3.2 System Architecture

Our architecture, shown in figure 2.24, is composed of several modules. At first, traffic
flows are divided by a classifier according to transport protocols, and forwarded to
different engines, named substring detectors (SDs). Such a first division allows to
balance the load among the SDs and decrease the size of their relative filters. Each
SD performs a pattern matching on the overall content of packets by using its specific
SubCBF, which represents the set of strings that identifies the valid attacks for that
protocol. More precisely, a SubCBF represents substrings of 3 bytes; such a specific
length has been selected to reveal also the shortest strings, which are 6-byte long, as
pointed out from the analysis of SNORT data sets.
Consequently, a substring detector processes all the ingoing traffic of a specific trans-
port protocol, by moving along an inspection window of 3 bytes. When all the hash
functions applied to a group of 3 bytes point to full bins of the SubCBF, the SD
determines that the substring has been detected. As previously mentioned, the use
of CBFs in this phase allows for a fast update of string set. In particular, we choose
MultiLayered Compressed Counting Bloom Filters [54] to implement SubCBFs: the
first layer, which is used for the frequent lookups, can be placed in a fast and small
memory, while the other layers, useful for string set updates, can be stored in a slower
memory.
After a malicious substring is detected by one of the SDs, a block of StriCBFs are
set, in order to determine if such an alert actually corresponds to a complete attack.
These filters are built a priori and stored in memory: they are addressed by simple
hash tables, which in turn are efficiently indexed by the bins of the SubCBFs (as
suggested in [55]). The StriCBFs are then handled by other modules, the so-called
pattern matching engines (PMEs), which take care of processing the specific traffic
flow that the classification stage forwards to it (by means of a classification rule set by
the SD after the substring detection). The target of each PME is to perform an overall
pattern matching on the flow to determine if the detected substring is actually a piece

87

2. DEEP PACKET INSPECTION

Figure 2.24: The scheme of our system.

of a string or simply a false positive. For this purpose, the PME sets a StriCBF for
each string which the detected substring belongs to. Such a CBF represents all the
remaining characters of the string in the format (char, pos), where pos is, for example,
the TCP sequence number of the character char. More precisely, the sequence number
of the byte which gets off the string is associated to the filter, so pos is actually the
relative position with respect to such a value. Whenever a StriCBF is completely
reset to zero, it is assumed that the string has been detected and the packets must be
dropped in order to nullify the attack.

Furthermore, also the string length is associated to the filter; from such a value and
from the beginning point of the string, the engine is able to understand which bytes
of the flow it must process and which bytes cannot belong to the string. In addition,
by processing the proper fields of the TCP header, the engine can determine when
the filter must be removed because it “has expired”.

Clearly, the bins corresponding to the characters of the detected substring which
has started the filter are decremented in the initialization phase. In this way, the
functioning of PMEs is independent of the arrival order of packets: also a “middle”
substring which arrives as first leads off the StriCBF setting and this does not affect
the correct functioning of the system.

2.5.3.3 Small packets

If an attacker splits the signature in several 1 or 2-byte long packets (hereafter we
call them “small packets”), the system is not able to detect the attack, because the

88

2.5 Counting Bloom Filters for pattern matching and anti-evasion at the
wire speed

substring detectors search for substrings of 3 bytes. Fortunately, packets of 1-2 bytes
are very rare in real traffic1, except for certain application such as telnet and ssh,
therefore we can use their presence as an alert and adopt proper expedients.

In previous work on anti-evasion systems, this type of attack has been only partially
faced. In [51], a Prefix Bloom Filter is set for each substring length, but filters
representing pieces of 1 or 2 bytes require an excessive amount of memory; moreover
they trigger a hard processing for each packet and an intolerable alert rate (each time
a character belonging to a string is found, an alert is generated). Instead, the authors
of [52] propose a heuristic very hard to be applied in practice, as illustrated in section
2.5.1.

Our idea to thwart such type of attacks is to divert all the small packets to a slow
path engine; this policy is based on the consideration that they are very infrequent
in real traffic. The slow path engine has to reassemble such flows and perform a
deterministic pattern matching on them, to verify the actual presence of an attack.
In order to face denial of service attacks, we also select a threshold on the maximum
number of flows to be diverted. Otherwise, attackers could inject a small packet for
each flow and force the system to divert and reassemble all the flows.

2.5.4 System Optimization

Our system can be improved, in terms of both functioning and performance, by adopt-
ing a series of refinements.

Analyzing real data sets of malicious signatures, we noticed the presence of a few
substrings which are very frequent, both in the malicious strings and in normal traffic.
We plan to delete such substrings from the filters, thus saving memory (smaller filters)
and processing load (less substring which generate an alert). What are the potential
drawbacks? Deleting such frequent strings from the SubCBFs could result in a lower
detection capability, since less substrings signal an attack. Furthermore, the deletion
from the StriCBFs could increase false positives, since filters can be more easily reset
to zero. However, the experimental results in section 2.5.5 show just a slight increase
of detection capability and decrease of false positives, hence the adoption of such an
expedient turns out to be convenient.

Our standard system does not detect all possible patterns of attacks. For example, in
some cases the beginning of a signature is missed, because it is too short to be revealed
by the substring detectors, while it belongs to a packet which is too long to be classified
as “small” (as SI in figure 2.25). Therefore the packet is identified as normal, and
whenever another fragment (GNATU in figure) triggers a StriCBF setting, this piece
has already been processed. In this way, some bins will continue to be full and the
filter will never be completely reset to zero. Moreover, in order to speed up processing,
one might consider not waiting for the overall emptying of filters. Therefore, for the
efficiency of our system, it seems advisable to set an “emptying threshold” α for the
StriCBFs: when α is exceeded, the attack is considered as detected. Such a threshold
is computed as the ratio between the number of bin decrements and the sum of all the
bin counters, where α equal to 1 means that the overall filter has to be depleted, while
lowering the threshold results in a faster detection. It is necessary to find the correct

1as shown for example by data at http://netflow.internet2.edu/.

89

2. DEEP PACKET INSPECTION

Figure 2.25: The string is SIGNATURE. The piece SI is not outright detected, and
when the piece GNA generates an alert, it has already been processed.

trade-off between a higher speed and a larger number of potential false positives (as
shown in section 2.5.5).

With respect to the memory efficiency, while CBFs (or their improved versions ML-
CCBF [54], Blooming Trees [56] or dl-CBF [57]) are the best choices for SubCBFs,
StriCBFs may not require the minimum amount of memory for their function, which
is to recognize simple characters. Thus, StriCBFs can be replaced by the actual
signature string and a bitmap (1 bit per signature byte) that indicates whether each
character has been found or not; by pursuing this approach, we use 9 bits per signature
byte. Instead, with a plain CBF, we would need a number of bits per character equal
to 4k/ ln 2 (k = log2 f where f is the false positive probability), which falls down
approximately to k/ ln 2 bits if a Blooming Tree (BT) is used. Of course when k is
large, this amount can be larger than 9 bits.

Therefore, the choice of either using the string itself or a CBF (or, better, a BT) is
related to the parameter f , which is, in turn, computed according to the total number
of times nq we query that particular filter. In fact, the mean number of false positives
is given by the product of f and nq; as we do not have overlapping packets (because of
the normalizer), the number of times nq we check a given StriCBF that represents a n-
bytes string is exactly n. Then, by simply selecting f ×n = 2−k×n� 1, we can cope
with false positives by largely limiting their mean number. In practice, we have found
that when n < 10 (remember that StriCBFs do not include the 3-byte substrings
found by SubCBFs, thus further reducing n), we can achieve to use less than 9 bits
per character without increasing the amount of false positives. In the experiments
shown in section 2.5.5, we used the combinations of BTs and strings+bitmaps that
minimize the amount of memory used.

2.5.5 Experimental Results

For the experimental runs, a cluster of PCs which generate traffic towards a LAN is
used: one of them runs FTester, which is a software tool designed for testing IDSs
capabilities, while the other ones generate background traffic. A general purpose PC
running our anti-evasion system is placed before the LAN to protect it. We do not
need to use a normalizer (however included by our system), because we set FTester
to generate attacks with no ambiguities.

FTester is able to create evasion attacks, by splitting signatures among several packets
and with different lengths and number of signatures, order of pieces, and so on. In
particular, we use the following options of FTester (let us suppose the malicious string
is ATTACK):

• -e stream (simple splitting of the tcp stream): packet = [packet1(ATT) +
packet2(ACK)]

90

2.5 Counting Bloom Filters for pattern matching and anti-evasion at the
wire speed

• -e frag1 (out of order packets): packet = [fragment3(C) + fragment2(TA) +
fragment1(AT) + fragment4(K)]

• -e frag2 (like frag1 but send the last fragment first): packet = [fragment4(K) +
fragment3(C) + fragment2(TA) + fragment1(AT)]

The lengths of substrings in our runs are alternated in order to have both “normal”
evasion attacks (with substrings of almost 3 bytes) and attacks with “small packets”
(less than 2 bytes).

Table 2.9: Performance of the standard system in terms of detected attacks and false
positives.

Trace Size (MB)
Normal attacks Small attacks

gen. detect. false pos. gen. detect. false pos.
Tr1 224 4240 99.8% 0.23% 312 100% 4.8%
Tr2 190 3800 98.9% 0.1% 310 100% 4.8%
Tr3 160 1418 99.9% 0.35% 200 100% 3.5%
Tr4 100 1213 100% 0.32% 185 100% 4.3%
Tr5 50 789 99.2% 0.25% 108 100% 6.4%

In table 2.9, for traces of different sizes and by distinguishing between “normal” and
“small” attacks, the following data are reported:

• The number of attacks which are generated.

• The percentage of real attacks we detect.

• The percentage of false positives.

The last three columns enumerate the total values. Such measurements refer to the
standard functioning of the system; the effects of the optimizations listed in section
2.5.4 are shown later.
These results exhibit high percentages of detection, while the number of false positives
remains small. As foreseen, the technique used against the attacks performed with
“small packets” generates the largest number of false alerts, since each small packet
is signaled as potential attack.
In table 2.10, the potential drawbacks of deleting off-line the most frequent substrings
from the filters are shown. The traces under test are the same of table 2.9 and we refer
only to the “normal attacks” (i.e., column 3-5 in table 2.9), since the “small attacks”
are not affected by such a modification. The number of detected attacks by deleting
such substrings (“No Frequent Substrings”, NFS, in the table) is practically equal
to those revealed by the standard system (ST), while the number of false positives
slightly increases. These results justify the adoption of such a refinement, which,
without remarkable additional costs, improves the efficiency of the system in terms of
both memory and speed. Specifically, by adopting such an expedient, we observe a
mean reduction of memory footprint by a factor of 4 in the experiments, thus requiring
less than 100 bytes for each flow processed by the PMEs.

91

2. DEEP PACKET INSPECTION

Table 2.10: The effects of deleting the most frequent substrings.

Trace
Detected att. (%) False pos. (%)
NFS ST NFS ST

Tr1 99.7 99.8 0.26 0.23
Tr2 98.9 98.9 0.13 0.1
Tr3 99.8 99.8 0.35 0.35
Tr4 99.8 100 0.41 0.32
Tr5 99.2 99.2 0.5 0.25

99.5

99.6

99.7

99.8

99.9

100

0.4

0.6

0.8

1

1.2

1.4

0.5 0.6 0.7 0.8 0.9 1

D
et

ec
ti

on
s

(%
)

F
al

se
P

os
it

iv
es

(%
)

α

False positives (%)

Detections (%)

Figure 2.26: Detection percentage and false positives by varying α.

Finally, figure 2.26 shows, for the processing of the trace Tr1, the effects of the “empty-
ing threshold” α, which allows us to detect a string even though the relative StriCBF
has not been completely reset to zero. It is clear that choosing low values of α results
in a higher percentage of detection but, also, in a larger number of false positives,
while, for high values, the opposite happens. In any case, the number of detected
attacks is sufficiently high (i.e., beyond 99%).

92

Chapter 3

Perfect Hashing Schemes for
Data Indexing

Hash tables are used in many networking applications, such as lookup and packet
classification. But the issue of collisions resolution makes their use slow and not suit-
able for fast operations. Therefore, perfect hash functions have been introduced to
make the hashing mechanism more efficient. In particular, a minimal perfect hash
function is a function that maps a set of n keys into a set of n integer numbers with-
out collisions. This chapter illustrates two perfect hashing schemes, which are useful
in devices provided by a limited amount of memory, such as Network Processors or
FPGA-based networking boards. Memory saving, which is a paramount issue in net-
working applications in hardware, lead us towards the design of different schemes and
algorithms with many appealing properties. All these solutions are based on princi-
ples of Bloom Filters, which are efficient randomized data structures for membership
queries on a set with a certain known false positive probability. A brief introduction
to Hash Functions and Bloom Filters could be found in appendix A.1 and in appendix
A.2.

93

3. PERFECT HASHING SCHEMES FOR DATA INDEXING

3.1 Minimal Perfect Hashing through Bloom Filters

Hash tables are frequently used in networking applications. They can be found in
compilers, language translation systems, and information retrieval. But the issue of
collisions resolution makes their use slow and not proper for fast operations. Therefore,
perfect hash functions have been introduced to alleviate these limitations and to
improve performance. A perfect hash function maps a static set of n keys into a set
of m integers without collisions, where m is greater than or equal to n. If m is equal
to n, the function is called minimal.

Minimal perfect hash functions (MPHFs) are widely used for memory efficient storage
and fast retrieval of items. They can be used also for security purposes: the capability
of efficiently revealing the presence of certain strings allows for a fast detection of
attacks or for determining which data have to be anonymized in privacy-preserving
approaches [58]. Given the high operating speeds of current links, item retrieval must
be very fast. Moreover, item sets can be very large (e.g., search engines are nowadays
indexing tens of billions of pages), thus these algorithms must be very space-efficient.
To summarize, the goodness of a MPHF scheme depends on the time and the space
needed for its construction, on the time required by the MPHF for each retrieval
of an element and on the number of bits needed to represent the element. While
CAM/TCAM hardware is a fast (yet energy-greedy) alternative to implement the
same functions, the recent general trend for energy savings and the need for cheap
and general implementation contribute to keep MPHFs important and attractive in
network devices.

This work presents a new technique to construct a minimal perfect hash function by
using specific data structures based on Blooming Trees [56]. The main objectives are:

• simple construction process;

• fast retrievals;

• memory savings;

The target platforms are network processors (NPs) or general purposes processors
(GPPs) that provide the “popcount” instruction to compute the number of “1” bits
in a word (for instance Intel R© Itanium [59], the future Nehalem [60] and the IXP2800
[61], AMD R© Phenom [62] and IBM R© Power6 [63]).

3.1.1 Related works

In the following, we present the major results about the construction of MPHF.
For further details, [64] gives a comprehensive survey on perfect hashing. Fredman,
Komlós and Szemerédi [65] present a space efficient structure to construct MPHFs,
which uses a space of the order of n + o(n). The construction time of this model,
based on hashing properties, is O(n), and the same result is also obtained in [66, 67].
Mehlhorn [68] shows that at least 1.44 bits per key are needed to represent a MPHF.
Fox et. al. [69] illustrate an algorithm whose encoding size is very close to such a the-
oretical bound (i.e., around 2.5 bits per key) and which uses the well-known mapping-
ordering-searching scheme. However, [64] proves that such a scheme has exponential

94

3.1 Minimal Perfect Hashing through Bloom Filters

running times. Pagh [67] proposes a new way of constructing MPHFs through random-
ized algorithms. The form of the resulting function is h(x) = f(x) + d[g(x)]mod(n),
where f and g are hash functions and d is a set of values to resolve collisions. The hash
function description occupies O(n) words and can be constructed in O(n) expected
time. Czech et al. [66] introduce a new algorithm for MPHF which preserves the
elements order. It involves the generation of random graphs; the time complexity is
O(n) and the space required to store the function is O(n log n), which is optimal for
order preserving MPHFs [64]. This algorithm takes 32.9s to construct a MPHF for
524288 keys on a Sequent machine. Botelho et al. [70] propose a solution based on the
classic divide and conquer technique, which is capable of generating MPHFs for sets
of billion of keys. The construction time is O(n log n), the evaluation of h(x) requires
3 memory accesses for any key x and the description of h takes a number of up to 9
bits for each key, which is optimal for huge sets. To the best of our knowledge, the
solution which offers the best tradeoff between construction time and storage space
is illustrated in [71]. It uses r-uniform random hypergraphs given by function values
of r hash functions on the keys to be processed. Such an algorithm will be the refer-
ence for the performance evaluation of our solution. Finally, [72] introduces a novel
scheme for MPHF which requires about 8.6 bits per key. The construction is several
orders of magnitude faster than existing perfect hashing schemes based on mapping-
partitioning-searching model, because searching is avoided. Bloom Filters (BFs) are
employed, which are known for simplicity and speed. This schemes, running on a
Pentium IV, needs 7.73s to construct a MPHF for 3.8 millions of keys and 125ms
for 110 thousands of keys. It inspires this work in the use of BF-like structures for
MPHFs. Instead of standard BFs, a composed data structure is used: a first level
is given by a Huffman Spectral Bloom Filter (HSBF) [54] while the remaining part
is based on a novel filter, the so–called Blooming Tree (BT) [56]. This way, a novel
method is proposed, which allows for an easy MPHF construction and fast retrieval,
with low memory requirements.

3.1.2 What is a Blooming Tree?

The idea of Blooming Trees [56] is constructing a binary tree upon each element of a
plain BF, thus creating a multilayered structure where each layer represents a different
depth-level of tree nodes. The aim is to achieve both low false positive probability
and low memory requirements, while the drawback is the increased cost in lookup
operation. The latter can be mitigated by the low memory consumption, that enables
the deployment of the structure in faster on-chip memories.
To build a Naive Blooming Tree (NBT) for n elements, L+ 2 layers are defined:

• a plain BF (B0) with k0 hash functions hj (j = 1 . . . k0) and m bins such that
m = nk0/ ln 2;

• L layers (B1 . . . BL), each composed of mi (i = 1 . . . L) blocks of 2b bits;

• a final layer (BL+1) composed of c-bits counters.

The j-th hash function hj provides a log2m+ L× b bit long output: the first group
(s0,j) of log2m bits is used to address the BF at layer 0, the other L × b bits are
divided into L substrings (s1,j . . . sL,j) of b bits, one for each layer. The lookup for an

95

3. PERFECT HASHING SCHEMES FOR DATA INDEXING

element σ consists of a check on k0 elements in the BF (layer 0) and an exploration
of the corresponding k0 “branches” of the Blooming Tree. The overall process of
lookup is accurately explained in [56]. An optimized version of BT [56] follows from
some observations about NBTs. In particular, the “zero-blocks” are used to stop
the “branch” from growing as soon as the absence of a collision is detected in a
layer (which entails for construction the absence of collisions in all the upper layer of
the branch). However, to keep construction and lookup possible, the Optimized BT
(OBT) employs a bitmap and an array of hash substrings for each layer. The array
of substrings for a certain layer is composed of all the hash substrings that complete
the hash of the “branches” that stop at that layer, while the bitmap addresses such
substring array.

3.1.3 The MPHF construction

Our algorithm is based on the statement that, given an ordering algorithm g and a
set S, a MPHF of an element x ∈ S is simply the position of x in the given ordering
scheme:

MPHF(x) = position
S,g

(x) (3.1)

3.1.3.1 Using the Naive Blooming Trees

The basic idea of our algorithm is to use a BT as ordering algorithm for the set of
elements S we have:

MPHF(x) = position
S,BT

(x) (3.2)

In particular, the NBT can be used for this purpose with no modifications. The
construction is exactly the same as the one introduced in section 3.1.2, using a single
hash function. All we need to care is to make sure that the counters at layer L + 1
are all equal to 1, which means that all the elements have been separated. In this
situation, in order to evaluate MPHF(x), a single lookup operation is required: once
the corresponding (say, the j-th) counter of x in layer BL+1 is found, we return j
(obtained through a simple popcount) as the result. We need to design the structure
to have very low probability of collisions in the last layer (BL+1). This, in turn, results
in a high probability of obtaining a successful MPHF construction in a few attempts.
If the construction is successful, we achieve our ordering scheme: the element that
falls into the first counter is hashed to 0, the element falling into the second one is
hashed to 1, and so on. Therefore, our hash function is perfect and also minimal, in
that we assign the first n integers as the results of hash retrieval for n elements.

3.1.3.2 Using the Optimized Blooming Tree and the HSBF

The OBT is an elaborated version of the NBT that improves memory efficiency, thus
being attractive for our purposes. The idea is blocking branch from growing, as soon
as an element does not experience any collision, by using the zero-blocks as leaves of
the trees. However, this expedient removes the last layer, which till now provided a
simple way to compute a MPHF by means of popcounts. Recall that the problem lies

96

3.1 Minimal Perfect Hashing through Bloom Filters

in how to compute the number of elements at the left of a given element x. Our idea
to solve this problem is to divide the procedure into two steps:

• find the tree which x belongs to (we shall call it Tx) and compute the number
of elements at the Tx’s left;

• compute the number of leaves at the left of x within Tx.

In order to do so, we propose the HSBF [54] as the first level of the BT, instead of
the standard BF [56]. The HSBF is composed of a series of bins encoded by Huffman
coding so that a value j translates into j “1s” and a trailing “0”. Therefore, the first
step (i.e.: computing the number of elements in the trees at Tx’s left) is obtained by
a popcount in the HSBF of all the bins at the left of x’s bin. As for the second step,
we have to explore (from left to right) the tree Tx until we find x, thus obtaining its
position within the tree. The sum of these two components gives the hash value to
be assigned:

MPHF(x) = popcount(HSBF[x]) + position
Tx

(x) (3.3)

Notice that, in a standard BT, the popcount in the first layer gives the block to be
read at the next layer. To achieve the same functionality in an HSBF, it suffices to
count the number of bins greater than 0 (i.e.: the number of “10” bit-sequences). The
HSBF is divided into B sections of D bins, which are addressed through a lookup
table. Each entry of this table keeps all the necessary information for a section: the
starting address in memory, the number of elements that fall in the previous sections
(which are computed by means of popcounts, as stated above), and the number of
“10” bit-sequences found in the previous sections. The OBT has a maximum of L
layers (B1 . . . BL), each composed of blocks of 2b bits.
A hash function h(·) is used. Its output is log2B + log2D + Lb long bits: the first
log2B bits indicate the section and address the lookup table, the subsequent log2D
bits index the bin within the section in the HSBF, while the last ones are divided into
substrings of b bits, one for each BT layer.
A simple example (see fig.3.1) clarifies the procedure. Let us assume B = 2, D = 3,
and b = 1: hence, the hash output is 6-bits long. Let us suppose h(x) = 101110. The
first bit is used to address the lookup table: it points to the second entry. We read
the starting address of section D2 and that 3 elements are in the previous sections.
Now we use the next two bits of h(x) to address the proper bin in section D2: “01”
means the second bin. The popcount of the previous bins in the section indicates
that another element is present (so far the total of elements at Tx’s left is 4). Then
we care about Tx: to move up to the next layer, we both use the third information
in the table and count the number of “10”s in the previous bins of this section. The
sum shows that, before our bin, 3 bins are not equal to 0, so we move to the fourth
block in layer B1.
Here, the fourth bit of h(x) allows to select the bit to be processed: the second one.
But we want to know all the Tx’s leaves at x’s left. Hence, we must explore all the
branches starting from the first bit of the block and count the number of zero-blocks
we find: it is 2 (now, the counter reads 6). Regarding the second bit, a popcount in
layer B1 indicates the third block in layer B2: it is a zero-block, so we have found the
block representing our element: x is the 7-th element in our ordering scheme. Then
MPHF(x) = 6.

97

3. PERFECT HASHING SCHEMES FOR DATA INDEXING

h(x) =

B0

B1

B2

B3

0 10 110 10 1110 0
Y1 Y2

0 0 1 0 0 0 1 1

1 1 1 1 0 0

0 0 0 0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

1 1 0 1

D1 D2

1 01 1 1 0

log2B
(bits)

log2D
(bits)

L × b
(bits)

Lookup Table

Start addr. Prev. elements Prev. “10”s

Y1 0 0
Y2 3 2

Figure 3.1: Example of hash retrieval by using OBT and HSBF.

An obvious objection is that a lookup may require many jumps and be expensive since
we need to explore, on average, half a tree to find our element. However, this is not a
big issue because all the nodes of a tree at the same layer are contiguous in memory
and can be accessed (and cached) in a single memory reference. Hence, the number
of accesses for an element is simply the depth of the tree it belongs to. Finally notice
that, in the evaluation process, bitmaps and hash substrings tables have not been
used; therefore, after the MPHF construction, they can be removed from memory.

3.1.3.3 Using a more efficient version

Another potential improvement becomes clear as we make the following remark on
the above described structure: whenever a bin in the HSBF is equal to 1 (i.e.: it
reads “10”), it is a waste of memory to allocate its zero-block at the next layer,
because only a single element falls into it. Since the probability of having a bin
equal to 1 is larger than the probability of large bin values in a CBF (see eq. (3.4)
in the next section), this improvement notably reduces the average cost in terms of
lookup time and memory size. The construction process does not change but, after
the construction, the structure can be reduced according to the previous discussion.
Also, the lookup table must be modified: the third element of each entry must now
indicates the number of “110” bit-sequences in the previous sections of the HSBF,
because only bins strictly greater than 1 have a corresponding block at layer 1 under
this new scheme. The example in fig. 3.2 shows the reduction of the structure of fig.
3.1: we observe the deletion of the first and the third blocks in B1, which were related
to the second and the fourth bins in the HSBF (the “10” bins), and the change of the
lookup table.

98

3.1 Minimal Perfect Hashing through Bloom Filters

B0

B1

B2

B3

0 10 110 10 1110 0
Y1 Y2

1 0 1 1

1 1 1 1 0 0

0 0 0 0 0 0 0 0

0 0 1

0 1 0 1 1

1 1 0 1

D1 D2

Lookup Table

Start addr. Prev. elements Prev. “110”s

Y1 0 0
Y2 3 1

Figure 3.2: Example of hash retrieval in the optimized structure.

3.1.4 Complexity and properties

In order to simplify the rest of the analysis, it is useful to remind one of the main
results of [56]:

Pi(ϕ) ' e−αiαϕi
ϕ!

= Poisson(αi, ϕ) with αi = 2−i ln 2 (3.4)

Eq. (3.4) claims that the number of elements ϕ colliding in any block of layer i can be
well-approximated by a Poisson pmf with parameter αi. This result provides a tool
to design our MPHF. In particular, we can compute the number of layers needed to
guarantee a fast construction (“fast”, here, means “within one or few trials”) of our
BT by simply setting:

n× PL+1(2) ' q (3.5)

where q ≤ 1 is the probability of having at least a bin greater than 1 at layer L+ 1; in
addition, q corresponds to the probability of the unlucky event that we need to retry
the construction (it is also called the failure probability [72]).

In that event, a different approach can be pursued by just adding extra layers until
the collisions disappear. This requires, of course, the output of the hash function h(·)
to be wider than log2B+log2D+Lb bits, but it can be less expensive than restarting
the entire construction from scratch.

3.1.4.1 Memory requirements

The average size of our MPHF can be computed as the sum of its components. As for
the OBT, since we do not need all its complementary structures such as bitmaps and
hash substrings, we compute its size as the sum of leaves and non-leaves nodes. In
the structure described in section 3.1.3.2 the number of leaves is simply the number
of elements n. However, in the optimized structure described in section 3.1.3.3, we
delete the layer 1 leaves, thus obtaining n−m0P0(1) = n(1− P0(1)/ ln 2) leaves. On
the other hand, the number of non-leaves nodes can be computed as m0Pi(ϕ > 1).

99

3. PERFECT HASHING SCHEMES FOR DATA INDEXING

Table 3.1: Memory requirements in bits/key.

b WHSBF WOBT ∆SHSBF ∆SOBT S′ Stot

1 512 512 0.45 0.10 3.63 4.18
1 1024 1024 0.23 0.06 3.63 3.92
1 2048 2048 0.11 0.03 3.63 3.77
2 512 512 0.45 0.10 4.82 5.37
2 1024 1024 0.23 0.06 4.82 5.11
2 2048 2048 0.11 0.03 4.82 4.96

Thus the average memory size of our OBT is:

SOBT = 2b

(
n(1− P0(1)/ ln 2) +m0

Nl∑
i=1

Pi(ϕ > 1)

)
(3.6)

where Nl is the number of required layers and Pi(ϕ > 1) = 1− Pi(0)− Pi(1) can be
computed by means of (3.4).

When dealing with perfect hash functions, it is common to express the memory re-
quirements in terms of bits per key:

S/n = 2b

(
1/2 +

1

ln 2

Nl∑
i=1

Pi(ϕ > 1)

)
+ 1 +

1

ln 2
(3.7)

A first comment is that b = 1 is the less expensive choice in terms of memory con-
sumption. Larger values of b reduce the depth of the blooming tree (that is the
number of non-leaves nodes) but its contribution to S/n in (3.7) is negligible. There-
fore, b = 1 shall be the preferred setting hereafter. Moreover, we notice that the
optimization process discussed in 3.1.3.3 reduces the number of bits-per-key metric of
0.5 bits. However a number of tables are needed in order to make the lookup phase
faster and more manageable. In fact, both the HSBF and the upper layers can be
divided in sections so that accessing them or computing a popcount requires less time.
We already discussed in section 3.1.3.2 about the tables for the HSBF. Now, we also
consider dividing each layer of the OBT into sections and adding, for each layer, a
table whose j-th entry reports the popcount of all bits before section j.

Naturally, the increment in memory requirements introduced by these tables depends
on B and D. If we focus on the bits/key metric, we can compute the table cost in
memory through b and W only (i.e., the bit size of sections). Tab. 3.1 reports the
consumption in bits/key for the total structure (Stot) along with the contributions
of lookup tables for the HSBF (∆SHSBF) and the OBT (∆SOBT), which are added
to the main structure S′. A good choice is W = 1024 bits: all the tables cost only
0.29 bits per key, thus bringing the final memory requirement to 3.92 bits per key.
Moreover, in modern 64-bits processors, 1024 bits represent 16 words only, and can
be read in a single memory access. However, other values of W do not significantly
change the final memory budget.

100

3.1 Minimal Perfect Hashing through Bloom Filters

Table 3.2: Algorithm comparison.

Algorithm
Evaluation Construction Time

bits/key
time(s) mem.ref. mean(s) std.dev

Our
m = 222 1.21 3.1 12.78 0.11 4.02
m = 223 0.98 2.53 13.37 0.14 4.75

BPZ 1.35 - 18.37 4.41 3.60
BL - 2.38 7.73 - 9.1

3.1.4.2 Hash evaluation cost

In the following study on the average cost of a lookup, we focus on the number
of memory accesses. Indeed a memory access commonly requires hundreds of clock
cycles, thus accounting for almost the totality of the hash evaluation cost.
During a lookup, we have to compute a hash function and use its output to address
the lookup table and the HSBF. Moreover, if the bin we read reports a collision (i.e.:
more than 1 element falls into it), we need to explore a certain number of layers
according to the depth of the resulting tree. Eq. (3.4) comes in handy also in this
computation. It expresses the pmf of m bins, but we do not care about empty bins.
Therefore we need to normalize the pmf in (3.4) by dividing it by (1−P0(0)) = 1/2:

P ′i (ϕ) =

{
Pi(ϕ)

1−P0(0)
= 2× Pi(ϕ) ϕ ≥ 1

0 ϕ = 0
(3.8)

Of course, P ′i (0) = 0 because we will not lookup empty bins. Then n×P ′0(1) times we
will access only the lookup table and the HSBF. This costs two memory accesses (if
a HSBF section is read in a single access). In all other cases (n× (1− P ′0(1)) times),
we have a tree to explore.
As previously mentioned, in our construction all nodes of a tree at the same layer are
contiguous in memory. This means that, as a matter of fact, when accessing a given
node we read (and cache) all the other nodes at the same layer. Therefore the average
number of memory accesses for the tree exploration is simply the average tree depth
d =

∑L+1
i=1 i× P ′i (1) ' 2.4. Finally, the average number of memory accesses is:

w = 2 + (1− P ′0(1))d ' 2.73 (3.9)

It does not depend in any way on the number of elements, hence the lookup cost is
O(1).

3.1.5 Experimental Results

We compare our algorithm to the one proposed by Bonomi and Lu [72] (hereafter
called BL) and to the fastest and least memory-requiring algorithm that we found
[71] (BPZ). We are aware that, because of the processor evolution and the limited
availability of the code of other algorithms, it is always difficult to present fair com-
parisons for algorithms. We tested an implementation of our algorithm (developed in

101

3. PERFECT HASHING SCHEMES FOR DATA INDEXING

C) on an Intel 2.4 Ghz Pentium 4 Core 2 Duo processor (4 MB L2-Cache), equipped
with 4 GB of RAM and running Linux OS 2.6, while BPZ employed a 3.2 Ghz XEON
(2 MB L2-Cache), with 1 GB of RAM running Linux 2.6 and BL describes its test
platform simply as Pentium 4. Even if the processor we used is dual-core, this does
not give us any advantage because our implementation is sequential and runs on a
single core. This means also that, even if the L2-cache is 4 MB, only half of it is
available (on average) to our algorithm. Both papers (on BPZ and BL) present their
results for a similar number of keys (3.541.615 for BPZ and 3.8 million for BL) thus
we set n = 3.8× 106 in our algorithm.
In tab. 3.2 we show a comparison of BPZ, BL and our algorithm in terms of construc-
tion and lookup time, as well as memory requirements. The lookup time is obtained
by querying the MPHF for all the 3.8× 106 keys in random order.
Since in our algorithm we would like to have m ' n/ ln 2, we have two choices for the
first layer: m = 222 or m = 223. We tested both. In the first case, we measured 3.1
memory accesses (on average) and 4.02 bits per key, while in the second case we had
a faster lookup, but an increment of about 0.7 bits per key in the size and of more
than 0.5s in the construction time. Such values confirm the theoretical results of the
previous section. As for the failure probability, by limiting the number of layers to 10,
it turned out to be less than 5× 10−4 in all cases. However, on processors such as the
ones cited in sec. 3.1, both construction and lookup times will decrease because of the
high frequency of popcount calls. Results clearly show an improvement in terms of
construction and lookup time as compared to BPZ, at the cost of a slight increase in
memory requirement. Instead, compared to BL, our solution halves the bits-per-key
metrics, while slowing down lookup and construction processes.

3.2 iBF: Indexed Bloom Filter

Since BFs are randomized structures that rely on hash functions, they allow a certain
amount of false positives; however, the advantage of the space savings often outweighs
such a drawback.
In order to minimize false positives, the parameter k can be set according to a well-
known result: k = m/n ln 2, where n is the number of elements represented in the BF.
In such a condition, false positive probability reaches the minimum value of f = 2−k.
Although BFs have many features that make them attractive for fast and simple
applications, their adoption in more sophisticated schemes is prevented by their lack
of functionalities and (in some cases) poor performance. As a motivational example,
let us suppose we need to classify traffic according to fixed-size substrings of packet
payloads at high speed. Let us assume that we are looking for a set of particular
strings. We can train a BF with the set of pre-determined strings we are searching, so
that the (hopefully large) part of traffic that does not match them can pass through
with no additional computation required. However, if the BF returns a match, we
need then to check whether it is a false positive and which string has been matched.
This requires an additional exact filtering stage, which could be implemented as an
hash-table. Moreover, while the first stage may help the second hash-table lookup
(as, for instance, shown in [55] where a Counting Bloom Filter reduces the number
of accesses to the following hash table), the whole lookup remains non-deterministic
thus jeopardizing performance if implemented in parallel systems. In order to achieve

102

3.2 iBF: Indexed Bloom Filter

Term Description
singleton bit j CBF[j]=1

marked bit a singleton bit cleared to 0. One per element.
index(x) b bits at the marked bit’s left
good BF BF where each element has at least an singleton bit

well-constructed BF BF with minimum false positive probability

Table 3.3: Terms and notation used through the work

deterministic lookup times, a perfect hashing scheme ,as shown by Kumar et al. in
([73][33][74]), is very effective. These works propose the adoption of a small fast
table of “discriminator” values which, together with the key, are fed to a regular
hash function thus removing collisions and achieving perfect hashing. In such a way,
in [73] and [33], finite automata are succintly stored and in [74] perfect hashing is
achieved with as low as 1 additional bit per key in a double hashing scheme. A
BF-like structure is also adopted in the previous section where a Blooming Tree is
the basis for the construction of a minimal perfect hashing scheme. However, all
these results come at the cost of a quite expensive construction and, unlike the iBF,
cannot be adopted in existing applications with minimal effort, as they require major
code rewriting of even hardware modifications in order to be effective. Indeed, there
solutions require more than a single memory block to be effective as they rely on a
number of tables to be accessed at the same time. This implies that, in an existing
application, more than just code rewriting is needed: new fast memory blocks and
corresponding bus bandwidth must be allocated. The purpose of this work is to show
we can use a BF to obtain a perfect hashing scheme by exploiting a certain number
of degrees of freedom and relaxing the false probability requirements. In details, we
show a quite succinct data-structure, which is a direct modification of a BF that can
be implemented in existing applications adopting BF at a negligible cost in terms
of code rewriting. The modified BF we construct returns an index for each element
of the working set, hence the name indexed BF or iBF. The data structure requires
O(log(n)) bits per key and k memory accesses per lookup, where k is O(log(n)). A
closely related work is the one by Chazelle et al. in [75], introducing Bloomier Filters.
Bloomier Filters augment Bloom Filters with the capability of storing any function of
the input set. They are therefore more general than our iBF but may require a larger
amount of memory.
In short, the main contribution of this work is its novel approach, which exploits
a couple of interesting degrees of freedom in BFs, to a widely discussed problem:
achieving deterministic perfect hashing in network applications. We believe such
degrees of freedom may also be useful for other purposes and the algorithm we propose
can be adopted with minor changes in existing applications based on BFs.

3.2.1 The main idea

The purpose of iBF is to create a perfect hash by simple bit-flipping operations on an
already-constructed BF.
As a motivational example, the structure in fig.3.3 shows our desired result: a BF
and 2 elements (x and y) are depicted. For each element, one of the 3 hash functions

103

3. PERFECT HASHING SCHEMES FOR DATA INDEXING

0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0

y x

h0h1

h2h3

h0h1 h2 h3

index(x) index(y)

Figure 3.3: The desired data structure

points to a marked bit which, in turn, defines an index at its left. These indexes serve
as perfect hash for elements x and y.
The idea of iBF builds upon the following considerations:

1. In a well-constructed BF, if k is large enough (we will show that it must not
be larger than O(log(n))) there is at least a hash-function hi for each item x of
the set S that addresses a bit with no collisions (i.e.: where no other hj(y) falls,
∀y ∈ S, y 6= x). We hereafter refer to BFs with such property as “good” BFs.

2. Bits equal to “zeros” in the BF can be flipped to 1 by only paying a small price
in terms of false positives.

These observations basically lead the construction which is, in turn, performed in
two steps. The first step marks a bit for each item in the set by focusing on non-
colliding bits as suggested by the first observation. The other step exploits the second
consideration and flips a number of bits at the left of each marked bit in order to
obtain, for each element, a different return value. In the following we describe these
operations in greater details.

3.2.2 iBF Construction

3.2.2.1 First step: determine bits to mark

We want to have an univocal index to be returned from the BF for each element x in
the set S. To this aim, we take advantage of the first consideration and focus on the
“non-colliding” bits in the BF (i.e., bits which have been set by a single element only).
In the following we refer to those bits simply as “singleton” (see legend in tab.3.3).
A simple way to describe such property is that if we expand the BF to a Counting
BF (CBF), singleton bits are those corresponding to counters equal to 1. The first
degree of freedom we exploit in this work is used here. By definition, in a good BF,
for each element we have at least one of the singleton bits that we can flip to zero,
thus marking it. This way, we relax the BF requirements, accepting that an element
x belongs to the set if the k hash functions point to k-1 ones and 1 zero. Hence, the
false positive probability grows by a factor of 2 (as if we were using a BF with k-1
hash functions), but we earn a way to “mark”, for each element x, one of the bits
representing it. This is crucial in order to proceed in our construction.
Let us now discuss about the likelihood of the first consideration; in other terms, how
probable are good BFs? And what choice of parameters m and k makes a BF good?

104

3.2 iBF: Indexed Bloom Filter

The probability for an element x to have at least a singleton bit is simply:

π = 1−
(
1− e−α

)k
where k is the number of hash functions and α is defined as nk/m. Then, the prob-
ability that this property holds for all the n elements (i.e., the probability of a good
BF) is:

P = πn ' e−n(1−e
−α)k (3.10)

It can be easily demonstrated that the value of k which maximizes P is the same that
minimizes false positives: k = m/n ln 2. The reason is simple: let us assume we have
n − 1 items stored in our BF and we add the n-th item. Computing the probability
that all the k hash functions point to already-set bits is basically computing the
probability of a false positive f . Since we try to avoid this event, maximizing P is the
same as minimizing f .

α

P (α)

k = 2 k = 4 k = 6 k = 8

δ

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.4: Probability of good BFs as a function of α and k.

Naturally, we are interested in making P as close to 1 as possible. In this sense, for
δ → 0, we observe that P ≥ 1− δ if:

k ≥ log n− log δ

− log(1− e−α)

The main comment is that k must grow like log n which is quite intuitive, as it makes
the structure size behave as Bloomier Filters: O(n log n). The effect of this inequality
is shown in fig. 3.4 where P is reported for different k and as a function of α = nk/ ln 2.

Once we assessed the conditions that make well-constructed BFs probable, we can
proceed to determine which singleton bit to mark among the ones belonging to each
item. The choice may be driven according to different metrics which can be combined
in order to facilitate the second step. In our experimental tests, we found that a good
metric is, for a singleton bit j, the number of zeros at j’s left minus the minimum
distance between j and other singleton marked bits.

105

3. PERFECT HASHING SCHEMES FOR DATA INDEXING

0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0

y x

h0h1

h2h3

h0h1 h2 h3

index(x) index(y)

0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0
index(x) index(y)

Figure 3.5: Overall scheme. Here the parameters ε = 2 and m = 16 are quite
over-dimensioned in order to better illustrate the idea.

3.2.2.2 Second step: build the index

As a second step, we need to get an index out of the BF for each element x ∈ S. In
order to do that, we use the marked bits, and simply choose the index to be defined by
a number of b = log2 n+ ε bits at the left1 of them (as shown in fig.3.5 where marked
bits are circled). In the following, we will refer to those b bits simply as “indexes”. As
we have an index for each of the n elements of the set, we can then determine them
referring to their corresponding element: for instance, index(x) refers to the b bits at
the left of the marked bit for x.
The next step is to make the indexes report different numbers so that we can return
them as the result of the perfect hash of the elements we are looking up. This is where
the second consideration comes handy: we can exploit the second degree of freedom
given by the zeros inside the indexes so that all the elements return a different number.
Indeed, by flipping a subset of the zeros within the indexes, each index can provide
up to 2z (where z = b − popcnt(index) = no. of zeros) different numbers2. This
problem is an instance of the bipartite graph matching problem (see fig.3.6) which
can be easily solved because of the 2z choices per element that help satisfy the Hall
marriage’s theorem[76].
We will come back to the theorem after a short discussion on an example describing
the idea. In fig.3.6, we present an example of the bipartite matching problem given by
the iBF in fig.3.5: the index of the element x is 010, thus we have 2 zeros to flip at will
and, in the bipartite graph, we have 4 possible matches (namely 010, 011, 110, 111);
the same goes for y whose possible matches are 001, 011, 101, 111.
Generally, if p0 represents the probability of a zero, the mean number of choices per
index is:

d = E[2z] =

b∑
z=0

(
b

z

)
pz0(1− p0)b−z2z = (1 + p0)b (3.11)

1Naturally we could have chosen the right as well
2Note that, in a real implementation, we take advantage of the popcnt instruction that computes

the number of ones in a register and is available on most architectures.

106

3.2 iBF: Indexed Bloom Filter

elements indexes

x

y

000

001

010

011

100

101

110

111

Figure 3.6: The bipartite matching problem.

Of course, for a well-constructed BF, where the number of zeros is the same as the
number of ones, the probability p0 is practically 0.5 and d = 1.5b. Since b ≥ log2 n,
the mean number of total choices n× d is O(n2). Therefore the average outdegree of
nodes in the bipartite graph is around n. This means we have more links per node
than what is needed (log n) to satisfy Hall’s theorem with high probability, as shown
by Motwani et al. in [77]. Therefore, by means of the Hopcroft-Karp[78] algorithm
the bipartite graph matching problem can be easily solved.
In the previous discussion, we have discarded the possibility that two or more indexes
could share some bits. For this reason the problem, in real cases, can be highly
correlated and NP-hard. Indeed, having always more than b bits between two marked
bits is an highly unlikely event, and we are definitely going to have super-positions
of indexes: two marked bits closer than b bits imply that their corresponding indexes
share at list one bit. This means that if we flip those “colliding1” bits, then we are
actually affecting the match of two or more elements in the bipartite graph, which
leads to large difficulties in the construction.

3.2.2.3 Check and restart

It may happen that the Hopcroft-Karp algorithm may not find any bipartite perfect
match. This is mainly due to the choices made in the first step. Because of the
complexity of the problem, a totally random choice of the singleton bits in step 1
is not a good idea. In our tests, we experimented that genetic algorithms are quite
useful in this problem. Because of lack of space we do not include all the details of
the genetic algorithm we adopted and do not describe the basics of genetic algorithms
(interested readers may look at [79]). However, the main step when adopting genetic
algorithm for such kind of problems is the definition of fitness. In our scheme, we
associated to each iBF a “DNA” of genes defined by a vector of bits of size m. Such
a vector D is such that

D ⊕BF = iBF (3.12)

(where ⊕ is the symbol of a XOR operation) and is adopted by the genetic algorithm
as starting point for creating a solution. Basically, we start with a vector D which

1Please notice the different meaning of “collision” here that refers to bits shared by more than 1
indexes

107

3. PERFECT HASHING SCHEMES FOR DATA INDEXING

is empty (all zeros). Then we create an “individual1” by choosing random singleton
bits and setting them in D. Note that, setting a bit in D implies clearing a bit in the
iBF (as stated by (3.12)). The individual then passes through step 2 and we compute
its fitness and store it. Its fitness is basically defined by the number of matched
elements. We repeat this procedure for a number of random individuals which form
an initial “generation”. For each generation, we adopt a roulette-wheel scheme [79],
select individuals according to their fitness and couple them, creating new individuals
by means of “cross-over” and “mutation” which, in turn, form a new generation. This
means we have other choices of singleton bits to be checked and construct the iBF.
The procedure is repeated until an individual with maximum fitness (i.e. a perfect
match) is found.

Although the algorithm we adopt is quite general, it provides good results in relatively
short time. All experimental tests (with n ≤ 2000 elements) produced a perfect match
in less than 5 seconds on a recent Pentium 4 machine. However this procedure is to
be performed off-line and its timing requirements are not strict.

3.2.3 Considerations on iBF

Here we introduce a few considerations on iBFs both regarding their size and their
speed.

A first observation can be made on the values of parameters m and k: as discussed
above in 3.2.2, k must grow like log n in order to have a good BF w.h.p. This means
that m grows like O(n log n), which resembles the occupancy of Bloomier Filters[75]
but with a lower multiplicative factor. Comparing structure sizes (per item) we have:

• a BF requires m/n = k/ ln 2 bits;

• a Bloomier filters needs k log2 n/ ln 2 bits;

• an iBF needs m/n = log2 n/ ln 2 bits.

Therefore an iBF requires k times less memory than the corresponding (i.e. same
number of items) Bloomier Filter , at the cost of a double false positive rate. Indeed,
an iBF behaves as a BF with k-1 hash functions in terms of false positives.

On the other hand, an iBF requires a logarithmical amount of memory accesses for
each lookup, which is not optimal but effective in many situations, especially when
BFs are implemented in network devices and only few changes may be acceptable to
the running code or to the hardware description.

Finally, from the point of view of the overall balance of ones and zeros in the structure,
we can say that the two construction stages (first mark some bits by clearing them
and then add some zeros to the indexes) somewhat compensate each other. Especially
if ε is small and b is hence close to log2 n, the n indexes are going to provide all the
combinations of b bits, which means that, within them, a one is as probable as a zero.
This is quite important in order to preserve the false positive probability of a BF with
k-1 hash functions, as we see in the experimental results.

108

3.2 iBF: Indexed Bloom Filter

Figure 3.7: Minimal m for the construction of iBF

Figure 3.8: Ratio of m over minimal m for the construction of iBF

Figure 3.9: Number of bits per element m/n.

109

3. PERFECT HASHING SCHEMES FOR DATA INDEXING

Figure 3.10: False positives in a iBF for n = 100, 400, 1000, 2000.

3.2.4 Experimental Evaluation

In the following we show the results of the experimental evaluation of iBFs. We first
show in fig.3.7 the effect of the number of output bits b on the size m of the iBF.
Enlarging b facilitates the construction of the iBF by allowing smaller structures.
Indeed, as b increases, the iBF output grows as 2b, increasing also the number of
links in the bipartite match, which makes the perfect match more probable for small
structures. In the graph, values of b are limited as it does not make sense to increase
b to value larger than log2m. Indeed, if we simple define the output of the iBF as the
hash function that points to the singleton bit, we have a fast and simple perfect hash
with output domain equal to m = 2log2m.
In fig.3.8 we show the behavior of m as k increases. Here the effect of a larger number
of choices for a singleton bit is evident as k grows. In the figure, mMIN represents
nk/ ln 2 which is the value of m that minimizes false positives. As shown in figure,
that value of m is also the minimal size of the iBF and it is reachable for values of k
that are proportional to log n, as described in sec.3.2.3.
Then figure 3.9 shows the ratio m/n which is the number of bits per element in an
iBF. Such a value can be considered as a “cost per unit” for our approach and, again,
it reaches its minimal values for values of k which are proportional to log n. This is
well justified by the results in the previous figure.
Finally, fig.3.10 shows the amount of false positives we registered by testing the iBF
(for n = 100, 400, 1000, 2000) with 10 million random queries in 5 different tests. In
the graph, the dotted black line represents the theoretical false positive probability
(2k−1) and the blue stars are the measured false positive probability value. Measured
and theoretical false positive probability overlap for all tested number of elements,
confirming our previously stated considerations.

1the individual is the genetic term for a possible solution of the problem

110

Chapter 4

IP-Lookup and Packet
Classification

In this chapter, we discuss the results obtained in IP-Lookup and Packet Classifica-
tion through the use of NetFPGA and Network Processors. IP address lookup is a
fundamental task for Internet routers. Because of the rapid growth of both traffic and
links capacity, the time budget to process a packet continues to decrease and lookup
tables unceasingly grow; therefore, new algorithms are required to improve lookup
performance. The process of categorizing packets into flows in an Internet router,
on the other hand, is called packet classification. All packets belonging to the same
flow obey a predefined rule and are processed in a similar manner by the router itself.
For example, all packets with the same destination IP address and protocol may be
defined as a flow. Packet classification is the foundation of many Internet functions
such as Quality of Service enforcement, monitoring applications, security, and so on.
We start introducing three IP-Lookup algorithms based on heuristics to speed up the
lookup process in order to be capable of full gigabit linerate. Finally it is shown a
novel classification scheme designed for NetFPGA boards which takes advantage of a
very compressed version of Deterministic Finite Automata (DFA) in order to process
packets at line rate.

111

4. IP-LOOKUP AND PACKET CLASSIFICATION

4.1 RLA: Routing Lookup Accelerator

Nowadays, on the Internet, the amount of traffic and the speed of links increase day
by day. This introduces harder and harder requirements to network routers which
have to handle user traffic. In particular, the primary task for routers is IP address
lookup, i.e. finding the next hop for packets in the path towards the destination. It
requires that a router looks, among its forwarding rules, for the best (i.e., the longest)
match with the IP destination address of the packet.

The growth of users and applications, and subsequently of traffic flows, causes an
increase of current forwarding tables in size and, in turn, a higher complexity of
matching process. On the other hand, the rise in links capacity reduces the time
available to process a packet (for instance, on a gigabit link a packet has to be pro-
cessed within about 0.7µs). For these reasons, IP address lookup is still a bottleneck
for networks, thus permanently requiring improvements and new solutions.

Many algorithms have been proposed to obtain high performance in address lookup
([27], [80], [81], [82], [83], [84]). All of them implement Longest Prefix Matching
(LPM) schemes, which further exploit several expedients (rules explosion, tracking
any rule matched during a search by means of bitmaps) to handle wildcards and
partially specified rules.

In this work, we analyze many forwarding tables of real devices: the analysis reveals
that the first 16 bits of rules are almost always completely specified and do not present
wildcards, i.e. the prefix lengths are greater than 16. Therefore we propose to treat
the first 16 bits by means of non-LPM techniques which exploit the complete definition
of rules. The target is to accelerate the first phase of lookup, irrespective of the LPM
algorithm which is subsequently used.

Moreover, we try to take advantage of the memory hierarchy which characterizes the
hardware platforms used for next generation network devices (e.g., network proces-
sors). Indeed, such systems provide small on-chip memories with low access latency,
therefore reducing memory consumption is a first goal of our approach, in order to
use these fast memories only and speed up the overall lookup process. In particular, if
we consider only the first 16 bits of IP addresses in the forwarding tables, their values
taken as integers present a distribution with large empty spaces, while most of the
addresses are grouped around some remarkable peaks. Thus, we propose to divide
the address space into different ranges and build a decision data structure for each
of them. Then, we encode each address in every range only with the difference with
respect to the reference address of that range, thus saving many bits for its represen-
tation. Finally, for the lookup in each range, we adopt an adaptive scheme which can
provide both direct-addressing and multibit trie search and allows to choose the most
efficient data structures.

4.1.1 Related Work

Due to its essential role in Internet routers, IP lookup is a well investigated topic. IP
lookup mechanisms encompass trie-based schemes as well as T-CAM (Ternary Content
Addressable Memories) solutions and hashing techniques. In the following we report
the most important ones, divided in categories, along with a brief description.

112

4.1 RLA: Routing Lookup Accelerator

4.1.1.1 Content Addressable Memories

Given an input key, a Content Addressable Memory (CAM) compares it against
all memory words in parallel; hence, a lookup effectively requires one clock cycle.
While binary CAMs perform well for exact match operations, the widespread use of
CIDR requires storing and searching entries with arbitrary prefix lengths. Hence,
Ternary CAMs were developed with the ability to store an additional “Don’t Care”
state thereby enabling them to retain single clock cycle lookups for arbitrary prefix
lengths. This high degree of parallelism comes at the cost of storage density, access
time, and power consumption.

4.1.1.2 Trie-based Schemes

To the best of our knowledge, the most efficient trie-based algorithms for IP lookup
are Lulea and Tree Bitmap. For this reason we will take them as references to compare
our solution. However, it is important to underline that RLA and the other algorithms
can work together: the first 16 bits may be searched with RLA and the remaining
ones by using Lulea or Tree Bitmap.
Lulea [80] is based on a data structure that can represent large forwarding tables in
a very compact form, which is small enough to fit entirely in the L1/L2 cache of a
PC Host or in a small memory of a network processor. It requires the prefix trie
to be complete, which means that a node with a single child must be expanded to
have two children; the children added in this way are always leaf nodes, and they
inherit the next-hop information of the closest ancestor with a specified next-hop,
or the undefined next hop if no such ancestor exists. In the Lulea algorithm, the
expanded unibit prefix trie denoting the IP forwarding table is split into three levels
in a 16-8-8 pattern. The first level consists of a single trie with a depth of 16(notice
that it can be completely replaced by our RLA structure) while the second and the
third ones consist of a set of smart and compact subtries with a maximum depth of
8. The Lulea algorithm needs only 4-5 bytes per entry for large forwarding tables
and allows for performing several millions full IP routing lookups per second with
standard general purpose processors. Tree Bitmap [27], which is amenable to both
software and hardware implementations, is based on four key ideas:

• all children nodes of a given node are stored contiguously, thus allowing for using
just one pointer for all of them;

• there are two bitmaps per node, one for all the internally stored prefixes and
one for the external pointers;

• the nodes are kept as small as possible to reduce the required memory access size
for a given stride; thus, each node has fixed size and only contains an external
pointer bitmap, an internal next hop info bitmap, and a single pointer to the
block of children nodes;

• the next hops associated with the internal prefixes kept within each node are
stored in a separate array corresponding to such a node.

The advantages of Tree Bitmap over Lulea are the single memory reference per node
(Lulea requires two accesses) and the guaranteed fast update time (an update of the

113

4. IP-LOOKUP AND PACKET CLASSIFICATION

Lulea table may require the entire table to be almost rewritten). Tree Bitmap only
requires about 3 bytes per entry and may require a maximum of 4-7 memory references
which, if performed in pipeline, allows wire speed forwarding at OC-192 (10 Gbps)
rates.

4.1.1.3 Hardware-based Algorithms

Gupta et al. [85] presented lookup schemes (mainly specific for hardware implemen-
tations) which require a maximum of two memory accesses for tables of several dozens
of MBs that are stored in DRAM (DIR24−8). By adding an intermediate-length ta-
ble (DIR21−3−8), the structures can be reduced to a dozen of MBs, at the cost of an
additional memory access. When implemented in a hardware pipeline, the proposed
schemes can achieve one route lookup every memory access. This yields about 20
million lookups per second.
Huang and Zhao [86], instead, introduced a scheme with a segmentation table of 216

entries which is addressed by the first 16 bits of IP addresses. Each entry contains
the next hop or, if it “hides” more specified prefixes, a pointer to another structure
(called Next Hop Array) that stores the next hops. The overall structure is small
enough to easily fit into SRAM memories. The lookup process needs from one to
three memory accesses; on a 10-ns SRAM, this mechanism allows approximately 108

packets per second.

4.1.1.4 Bloom Filters

BFs are used for LPM in [87]: each BF represents a set of prefixes of a certain length,
and the algorithm performs parallel queries on such filters. However, BFs return a
yes/no match result (with false positives), thus leaving the lookup job to a priority
encoder and a subsequent search in off-chip hash tables.

4.1.2 Motivations

As already mentioned, the aim of RLA is to speed up the lookup of the first 16 bits of
the IP destination addresses. An analysis of many forwarding tables of BGP routers,
which are available thanks to the Route Views Project of the University of Oregon
[88], has highlighted interesting statistical properties, which have led this work. In
particular, RLA exploits the following features of the forwarding tables:

• the presence of very few prefixes which have a length less than 16 bits;

• the distribution of the first 16 bits values characterized by empty spaces and
spurious peaks.

Tab. 4.1 reports the average prefix lengths obtained through the analysis of the
databases from 2001 to 2006. As it is evident, only a very small fraction of prefixes
are shorter than 16 bits. This suggests to address the lookup problem for the first
16 bits as an exact lookup instead of a longest prefix matching. Clearly, the lookup
rules with prefixes shorter than 16 bits have to be normalized through a process of
expansion; however, considering their small number, this does not lead to a significant
increase of memory footprint.

114

4.1 RLA: Routing Lookup Accelerator

Prefix length
Percentage of prefix (%)

2001 2002 2003 2004 2005 2006
1-15 0.72 0.71 0.72 0.65 0.7 0.72
16-24 97.86 98.35 97.66 97.43 97.49 97.68
25-32 1.42 0.94 1.62 1.92 1.41 1.6

Table 4.1: Average prefix length distribution for IPv4 BGP table.

Moreover, as shown by the graphs in figure 4.1, which represent forwarding data-bases
of different years, the distribution of the first 16 bits presents different areas of con-
centration over the various ranges of values, thus inspiring our second idea: dividing
the address space into several ranges and encoding each address as its difference with
respect to the reference address chosen for the range it belongs to. The objectives are:
(i) to minimize as much as possible the size of the data-structure and (ii) to speed
up the lookup operation by reducing the number of memory accesses. In details, the
figure shows the distribution of addresses by dividing the address space in blocks of
8192 values (i.e., the first space represents the value from 0 to 8191, the second one
from 8192 to 16383, and so on).

Figure 4.1: Distribution of prefix values belonging to different forwarding tables.

115

4. IP-LOOKUP AND PACKET CLASSIFICATION

4.1.3 The Algorithm

4.1.3.1 First Step: Range Sub-division

In the first step of our algorithm, the overall address range is split into different
smaller ranges. This phase aims only at lowering the memory consumption of the
overall structure, while the fine tuning between memory and speed is then committed
to the second step (see sec. 4.1.3.2).
In order to perform such a splitting, the first action is to select the maximum number
of bits b adopted to encode each address. This parameter affects the range sizes
and the number of addresses in each range, thus balancing the tradeoff between the
number of structures and their size. Regarding such a tradeoff, it is not obvious that
splitting a range in more sub-ranges allows to obtain a memory reduction. Indeed, a
single tree on a large range could be more convenient than a set of trees of the different
sub-ranges. Therefore, the convenience of a certain value of b cannot be determined
a priori, since it strictly depends on the address distribution.
Further, the range subdivision takes into account the empty spaces in the overall
address range, in order to use as few ranges as possible and save memory. The
pseudocode 8 shows the overall process of range splitting, once the value of b has been
fixed. We treat the addresses as integer values and start from the smallest. For each
address, we compute the difference with the current reference address: if the number
of bits it takes to encode the difference overcomes b, the current address becomes the
reference address for a new range. In this way we pursue both the above mentioned
objectives: use at most b bits and take advantage of the empty spaces. Notice that
the subsequent address encoding could require for a range less than b bits (if the
difference between the biggest address and the reference one is less than 2b).
This process has to be performed for each possible value of b, from 1 to 15 (however
the following experimental analysis show that the convenient values are few, thus
restricting such a range). After splitting up, for each value of b the overall amount
of memory for the all data structures has to be computed and compared to the other
ones in order to choose the most convenient value. The selection of the best value
for b is an a priori off-line processing, therefore its computational cost is not an issue.
However, the experimental runs have shown a non-remarkable amount of processing.

Algorithm 8 Pseudo-code for the range subdivision. N is the total number of ad-
dresses Xi and t[k] are the reference addresses.

1: k = 0
2: t[k] = X0

3: for i← 1, N do
4: δ ← Xi − t[k]
5: if δ > 2b − 1 then
6: k ← k + 1
7: t[k] = Xi

8: end if
9: end for

All the reference addresses, which univocally identify the ranges, are stored in a small
and fast memory. Then, when a packet arrives, it is possible to quickly locate its
sub-range Gi through a simple binary search. Then, the packet address is encoded in
bi bits according to the difference with the reference address; such a new value leads

116

4.1 RLA: Routing Lookup Accelerator

r1 r2 r3 rN

16-bit Prefixes

Trie 1 Trie N

DA 2 DA 3

Lulea / TB

Figure 4.2: Example of lookup by using RLA and then Lulea or Tree Bitmap.

the search in the data structure representing that range. After this first step, the data
structure for each range has to be chosen by considering the operational requirements
in terms of memory consumption and lookup speed. This is the aim of the second
step (sec. 4.1.3.2).

However, in order to show the preliminary advantages of the phase of range splitting
and address encoding only, we first perform a gamma of simple experimental runs
where we determine the data structures to be used by assuming memory consumption
only as the reference metric.

Regarding the data structures, the methods of lookup can be coarsely divided into
two techniques: direct addressing (DA) and tree-based. The first requires a single
memory access, thus speeding up the lookup operation, but consumes a large amount
of memory, while tree-based algorithms obtain memory saving at the cost of more
accesses. In particular, in our work we use the multibit trie algorithm as tree-based
technique, which performs the lookup by dividing the address in several stride of
different lengths, according to an optimization algorithm [89]. By following such an
optimization, for ranges with addresses longer than 8 bits, we consider a first stride
of 8 bits and a second stride with the remaining ones.

Therefore, in our scheme, multibit trie or DA have to be chosen for the lookup in each
range, depending on the specific user requirements (see fig.4.2 where ranges are labeled
as r1, r2, . . . , rN). As above mentioned, now we take the memory consumption as the
only metric, thus the solution which consumes less memory in the range is simply
chosen. Notice that DA may require less memory than multibit tree for particular
address distributions.

The graph in figure 4.3 shows the memory required as a function of b in the first step
of RLA. The reference forwarding tables are those of the Route Views Project. As
evident from the graph, the most convenient choice for b varies between 11 and 13
bits for all the adopted data-sets.

Table 4.2, instead, reports the results of our solution (specifically, the first stage of
RLA) in terms of both table construction and lookup process. The forwarding tables
are again those of the BGP routers belonging to the Route Views Project and the
optimum value of b has been selected from the results of figure 4.3; the number of
ranges and memory consumption of table construction have been listed.

The input traffic (i.e., 1 million of 16 bit-long integers per run) has been created
by generating 80% of traffic matching the forwarding rules and the remaining 20%

117

4. IP-LOOKUP AND PACKET CLASSIFICATION

Figure 4.3: First step: the choice of the parameter b.

randomly (which represents a possible distribution of the traffic arriving at a router
[90]).

The mean number of accesses have been reported, along with the memory compression
with respect to a single multibit trie (which, in the worst case, requires two accesses)
and a direct addressing scheme (which requires one access only). The data show that
the first step of our algorithm allows for a consistent compression of the lookup data
structure. Moreover, the results highlight a further slight improvement in the case of
more recent lookup tables and this is a major observation: since our heuristic takes
advantage of the properties of the prefixes distribution, these results suggest that our
approach is likely to be valuable even in the future. However, the reduction in terms
of mean number of memory accesses is quite small; since such a reduction can be
achieved when the direct addressing scheme is adaptively chosen for very “crowded”
ranges, this suggests that a better strategy for choosing the lookup scheme for each
range has to be devised. This motivates the second step.

Year Entries Ranges
Memory Memory Compression (%)

(KB) Accesses Trie DA
2001 107597 11 43.68 1.97 21.01 66.67
2002 116308 11 45.56 1.98 20.55 65.24
2003 133938 12 47.68 1.99 19.72 63.62
2004 148910 12 49.18 1.99 19.95 62.48
2005 181752 15 60.24 1.85 41.75 64.04
2006 203182 15 63.80 2.00 30.38 61.32

Table 4.2: Performance of RLA and memory gain with respect to multibit trie and
direct addressing.

118

4.1 RLA: Routing Lookup Accelerator

4.1.3.2 Second Step: Table Construction

Preliminary results show the first step of our solution to significantly decrease the
memory consumption with respect to a classical single tree approach. However, an
intuitive tradeoff between lookup speed and memory consumption exists: the more
lookup ranges will adopt direct addressing, the smaller the mean lookup time, at
the expenses of an increased memory consumption. Therefore, in the second step the
algorithm can be further tuned to meet its operational requirements. In the following,
we perform an accurate analysis of this tuning. Let us assume that:

• the size of the lookup ranges (i.e., the parameter b) is fixed, as established in
the first phase;

• the address space is divided into R ranges;

• each range requires a different number bi (never greater than b) to encode the
addresses;

• within the i-th range, only Ki different upper byte values are present (that is,
some addresses share their most significant byte, which is associated to the first
stride of the multibit trie).

A trivial rule to make the decision concerning the lookup scheme to be associated to
such a range can be expressed as

16× 2bi ≶ 16×Ki(2
8 − 2bi−8) (4.1)

where the left hand term quantifies the memory consumption in case of a direct ad-
dressing scheme, while the right hand term expresses the amount of memory required
by an equivalent multibit trie data structure. Since, as already stated, the param-
eter bi is fixed, the only variable upon which the decision is based is Ki, for which
a threshold value can be easily computed. We point out that, since such a decision
rule does not take into account the mean lookup time, the algorithm tradeoff is fairly
unbalanced. Furthermore, by taking into examination different lookup tables (associ-
ated with different routers and different years) and by computing the value of Ki for
different real lookup ranges, we find out that the rule (4.1) leads, in a vast majority
of cases, to choose the multibit trie approach, thus limiting the lookup time reduction
involved with the opportunistic adoption of direct addressing. In order to increase
the possibility of tuning the algorithm, we introduce in (4.1) a penalization parameter
α, whose value is set between 0 and 1, to make the adoption of a direct addressing
approach more likely:

α
(
16× 2bi

)
≶ 16×Ki(2

8 − 2bi−8) (4.2)

By adopting such an approach, our algorithm becomes largely tunable, since both
memory consumption and mean lookup time can be expressed as a function of the
α parameter and, therefore, they can be chosen according to specific requirements.
In particular, by indicating with M the memory occupation and with S the lookup
speed (expressed in terms of memory accesses) and by defining the parameter hi =
[28−bi +Ki/2

8], the following equations hold:

119

4. IP-LOOKUP AND PACKET CLASSIFICATION

50

75

100

125

150

1

1.25

1.5

1.75

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
iz

e
(K

B
)

M
em

or
y

A
cc

es
se

s

α

Size (KB)

Memory Accesses

Figure 4.4: Variation of memory consumption and mean number of memory accesses
of the RLA algorithm with respect to α for the database of 2006.

M = 16

R∑
i=1

2bi
[
hi + (1− hi) rect

(
2α

hi

)]
(4.3)

S = 2−
R∑
i=1

pi rect

(
2α

hi

)
(4.4)

where rect(x) is the common normalized rectangular function (which is equal to 1
for −0.5 ≤ x ≤ 0.5 and 0 elsewhere) and pi is the probability that an address falls
in range i. Figure 4.4 shows, for the database of 2006 and for its optimum value
b = 13, the variation of the two quantities with respect to the penalization parameter
α; by examining such a plot, it is possible to tune the algorithm to achieve the desired
tradeoff.

It is worth noticing that our algorithm degenerates into several direct addressing
structures only, if the value of α falls below the threshold:

α <
28

2b
+
Kmin

28

where Kmin represents the minimum number of different upper bytes among the
ranges. Instead, a multibit trie approach is used within all lookup ranges in case α
exceeds the upper threshold value:

α >
28

2bmin
+
Kmax

28

where bmin is the smallest number of bits used among the ranges and Kmax is the
biggest Ki.

120

4.1 RLA: Routing Lookup Accelerator

4.1.3.3 Updates

Performing fast insertions or deletions of forwarding entries is not as important as fast
lookup, but it is clearly desirable. The analysis in [91] shows that the mean number of
updates per minute in a BGP table is equal to 56. If the only way to handle an update
is to rebuild the overall data structure (as in Lulea algorithm), then the router must
keep two copies of its routing database at the same time to preserve data consistency.
Instead, our algorithm allows for fast insertions or deletions with no need for rebuilding
the whole structure. Indeed, since RLA maintains a lookup structure for each range,
an update can potentially modify a small database only, thus requiring less time
for rebuilding and less memory for data consistency. Unfortunately, a large number
of insertions or deletions could change the prefix distribution, and this requires to
rebuild more small structures, but simple statistic considerations can confirm that
such a condition is very unlikely.

4.1.4 Measurements

Datab. 2004 Datab. 2005 Datab. 2006
Mem.(KB) Acces. Mem.(KB) Acces. Mem.(KB) Acces.

Lulea 40 2.99 40 2.98 42 2.98
Tree Bitmap 40 3.98 41 3.95 44 3.89
RLA (α = 1) 49 1.99 60 1.85 63 2.00

RLA (α = 0.9) 50 1.45 60 1.58 64 1.60
RLA (α = 0.8) 50 1.45 61 1.47 65 1.47
RLA (α = 0.7) 53 1.34 64 1.29 69 1.26
RLA (α = 0.5) 58 1.06 67 1.22 69 1.26

Table 4.3: Performance of RLA compared to Lulea and Tree Bitmap.

This section shows a performance comparison between our complete algorithm and
the most efficient solutions for IP lookup: Lulea and Tree Bitmap. The data sets
are those of the Route View Project, and consist of hundreds of thousands of rules;
the input traffic is generated as explained in section 4.1.3.1. Table 4.3 illustrates the
results achieved by the different algorithms in processing the first 16 bits for lookup:
the code for Lulea and Tree Bitmap has been derived by analyzing [80] and [27],
while for RLA the code runs with different values of α. The results confirm that
the parameter α allows to tune the tradeoff between memory occupancy and memory
accesses. RLA is able to considerably speed up the lookup of the first 16 bits, by
reducing the number of memory accesses up to 65% less than Tree Bitmap and 57%
less than Lulea. Although the main purpose of our work is to reduce the number of
memory accesses, RLA shows also a memory consumption which is bigger but not
far from Lulea and Tree Bitmap. This result is extremely appealing, as nowadays
the industry trend leads to the production of fast memories, thus highlighting the
importance of fast schemes. Therefore, RLA allows for a higher maximum sustainable
packet rate than the other lookup engines. For instance, let us consider that any
access to a standard SRAM off-chip memory costs about 7ns [34] and that most of

121

4. IP-LOOKUP AND PACKET CLASSIFICATION

the lookup delay is just due to the memory accesses (it is a rough, but effective, first
order approximation). In these conditions, for the database of 2006, Lulea and Tree
Bitmap are able to process on average the first 16 bits for about 48 Mpps (Mega
packets per second) and 36 Mpps respectively, while RLA allows to reach rates from
71 to 113 Mpps depending on the value of α.

4.2 H-Cube: Heuristic and Hybrid Hash-based Ap-
proach to Fast Lookup

From extensive studies of real-world lookup tables, it appears that there is a large
prefix disparity of density within each lookup table 4.1.2. This suggests that a simple
and effective solution to the IP lookup problem can be the adoption of a Heuristic and
Hybrid Hash-based technique (we name it H-cube), where different data structures
store different prefix ranges according to their density. In this way, also the memory
hierarchy of high performance hardware platforms, such as network processors, can
be exploited. For instance, in our approach we store the most crowded address range
in a very compact structure (to be put in a fast small memory). For this purpose
we choose a specific Minimal Perfect Hash Function (MPHF) 3.1. Instead, the struc-
tures representing the other ranges can be put in slower and bigger memories, thus
presenting other requirements (i.e., few accesses).

4.2.1 Motivations and Main Idea

As above mentioned, the main idea of H-cube is based on the analysis of the forwarding
tables of BGP routers, in order to properly design our overall scheme according to
the actual prefix length distributions of the IP destination addresses. We make the
common assumption that the traffic, in terms of packets frequency distributions over
the rules range, has the same behavior of the rules distribution itself ([87][92]).

In details, the analysis of the forwarding tables available from the Route Views Project
of the University of Oregon [88] highlights a very unbalanced distribution, as table 4.1
reports (for the years from 2001 up to 2006). In particular, four big areas of “prefix
lengths” can be detected, which present very different density of prefixes: 1-16, 17-22,
23-24, 25-32. The largest part of the rules (on the average, about 63%) falls in the
range 23-24. The large disparity of rules distribution among the ranges suggests we
can accordingly adopt different structures for them and take advantage of different
memories.

As for the reference architecture, we make some general assumptions which are satis-
fied by many network processing devices (e.g. the Intel IXP Network Processor [35]).
In particular, we assume our system to be composed of:

• a standard 32 bit processor provided with a fairly small local memory (say, a
few KBs);

• an on-chip fast access SRAM memory block (which we will refer to as scratch-
pad) with higher storage capacity (in the order of 100 KB) and with an access
time of two dozens of clock cycles;

122

4.2 H-Cube: Heuristic and Hybrid Hash-based Approach to Fast Lookup

• two off-chip large memory banks: SRAM and DRAM with a storage capacity
of dozens of MBs (SRAM) and hundreds of MBs (DRAM) and with an access
time in the order of 120 (SRAM) and 250 (DRAM) clock cycles.

From such analysis, it appears convenient to store the table for the 23-24 range in
the scratchpad memory, this way reducing the latency for the search in this range,
which is by far the most frequent. This requires a very compact data structure
and suggests also to start from this table when searching. Instead, the structures
representing the other ranges shall be stored in SRAM, therefore it will be better
to use searching algorithms which require few memory accesses (while there are not
strict size constraints).
While the association of data structures to ranges which we adopt in this work strictly
depends on the prefix distributions shown in tab. 4.1, this approach may be general-
ized as long as the distribution of prefixes presents a large disparity of density.

4.2.1.1 Data Structures

According to the previous considerations, we associate a specific data structure to
each range. For the most frequent range, 23-24, we plan to use a MPHF realized by
means of Blooming Trees 3.1. This structure (hereafter, we call it MPHF24), was
accurately described in the previous chapter; it is able to represent many rules in a
compact way, thus allowing its storage in the small scratchpad memory. In details,
if a match is found for an element, the MPHF gives an unambiguous index which
allows to address a table (tab24) where the lookup result (i.e., the outgoing port) is
stored. Since the algorithm is “perfect” on the forwarding rules, but the arriving
packets can assume any value, a certain probability of collision has to be taken into
account; therefore, each entry of such a table stores also the first 24 bits of the relative
IP destination address in order to confirm the match.
Let us assume that a k-bit hash function is used and that the original set is composed
of N elements: the collision probability can be roughly estimated as N2−k. For the
17-22 range, where we have a medium density of rules, we need a structure to be put
in SRAM which requires few accesses. Therefore, we choose a Perfect Hash Function
(PHF) obtained by double hashing which, again, provides an unambiguous index to
address a table (we call it PHF22) with the lookup result. Even in this case, each
entry stores the first 22 bits of the relative IP address to solve potential collisions. In
the range 1-16, the number of possible rules is limited (216 ' 65000) and, therefore,
a direct addressing table (DA16) can be used, which requires a single memory access.
Finally, the least populated range, from 25 to 32 bits, can be implemented through
a perfect double hashing or a tree-based scheme (however, we call it PHF32); in any
case, we use a data structure requiring a memory access only. Both for the perfect hash
functions and direct addressing, an initial rule-explosion is performed. In this way
all the prefixes of a range assume the maximum length for that range, thus allowing
the representation. Remember that such structures do not have strict constraints in
terms of memory; in addition, the tests have shown just a slight memory increase for
the explosion.

PHF through Double Hashing The basic idea to create a PHF is using a two-
level hashing scheme with universal hashing at each level. In the first level, the n keys

123

4. IP-LOOKUP AND PACKET CLASSIFICATION

Figure 4.5: A picture of the different structures used in our lookup scheme.

124

4.2 H-Cube: Heuristic and Hybrid Hash-based Approach to Fast Lookup

are hashed into m slots by using a hash function h carefully selected from a family
of universal hash functions. To handle the collisions in a slot j, a small secondary
hash table Sj with an associated hash function hj is used. By choosing the hash
functions hj carefully, we can guarantee that there are no collisions at the secondary
level. However, we will need to let the size mj of hash table Sj be the square of the
number nj of keys hashing to slot j. While having such a quadratic dependence of
mj on nj may seem likely to cause the overall storage requirements to be excessive, it
has been shown that by properly choosing the first level hash function, the expected
total amount of space used is still O(n) [93].

4.2.2 The Algorithm

In this subsection the overall H-cube algorithm is accurately explained. By using a
sort of binary search, we start by performing the lookup in the most dense range
(23-24) and we move towards the other ranges according to this first result.
To be able to use such a binary search [94], in the MPHF24 we have to insert some
“fake” rules to force, if necessary, the search in the more specified range. Therefore,
for each rule in the range 25-32 we insert in the MPHF24 a 24 bit-long rule (e.g., the
rule 192.168.1.116/30 requires in the MPHF24 the rule 192.168.1.0/24). Moreover,
each 24 bit-long rule includes a bit b which signals whether more specified rules are
present in the PHF32.
By starting from the range 23-24, we could have different cases for a packet (as
depicted also in fig.4.6):

• the MPHF24 does not give any index for that IP destination address, which
means that the packet does not match any rule in the range 23-24 (and also, by
construction, in the range 25-32); a further search in the less specified ranges
has to be performed;

• the MPHF24 gives an index for that IP destination address; we check in the
tab24 with the following results:

– it is a false positive: the packet does not match any rule in the ranges
23-24 (and 25-32); a further search in the less specified ranges has to be
performed;

– it is the right entry and the bit b is set: a further search in the PHF32 has
to be made; if a match is found in the PHF32, this next hop is the correct
result, otherwise, the next hop previously found in the MPHF24 has to be
used;

– it is the right entry and the bit b is clear: the search is completed (there is
no more specified matching rule) and we can use the next hop just found.

If a less specified search is requested, we start by processing the PHF22 and then, in
case of no match, the DA16.

4.2.3 Theoretical Analysis

In the following we evaluate the properties of H-cube.

125

4. IP-LOOKUP AND PACKET CLASSIFICATION

4.2.3.1 Memory Consumption

Concerning MPFH24, its memory consumption S depends on the number n of ele-
ments in the set 3.1:

S = n×

[
2

(
1/2 +

1

ln 2

L∑
i=1

Pi(ϕ > 1)

)
+ 1 +

1

ln 2

]
(4.5)

where L is the number of layers required to avoid collisions and Pi(ϕ > 1)=1-Pi(0)-
Pi(1) can be computed from:

Pi(ϕ) ' e−αiαϕi
ϕ!

= Poisson(αi, ϕ) with αi = 2−i ln 2 (4.6)

Equation 4.6 claims that the number of elements ϕ colliding in any block of layer i
can be well-approximated by a Poisson pmf with parameter αi.
The structure tab24, which is addressed by MPHF24, requires a number of entries
equal to the number of 24 bit-long rules to be represented. Each entry has to store
prefix (24 bits) and lookup result (let us assume 4 bits).
Concerning the two lookup structures realized by means of double perfect hashing, we
claimed in previous section that the expected total amount of space used is O(n). In
particular, [93] shows that, in the worst case, 3n slots are needed. Moreover, each slot
has to store, besides the lookup result, the overall prefix which represents, in order to
handle the collisions which are generated by the elements not belonging to the set.
Finally, for the direct addressing used in the range from 1 to 16 bits, its consumption
is obviously 216 locations of 4 bits, for a total amount of 215 bytes. Resuming, we can
claim that the total consumption of H-cube scheme is O(n).

Figure 4.6: Flow diagram of H-cube lookup process.

4.2.3.2 Lookup Time

In order to analytically evaluate the performance of our solution, we refer to the flow
diagram in figure 4.6. It illustrates the different processing stages a packet may get
through during the lookup operation. Each transition in the diagram is labelled with

126

4.2 H-Cube: Heuristic and Hybrid Hash-based Approach to Fast Lookup

its own probability, that is, the probability of reaching that destination stage con-
ditional that such a source stage has been reached. As a direct consequence of this
definition, the probability of a packet passing through a given sequence of processing
stages equals the product of the probabilities associated to the corresponding transi-
tions. Notice that the OK block does not stand for an actual processing stage, but
simply represents the end of the lookup processing for a given packet.

In addition, during our evaluation, we will consider that a packet does not match any
of the rules of the database with probability ε; this, in turn, causes the probability of
a packet matching a given prefix to be scaled by a factor of 1− ε.

dataset
num. constr. memory consumption (KB)
rules time (s) MPHF24 tab24 PHF32 PHF22 DA16 tot SRAM

DB1 110000 0.35 34.28 244.88 17.99 239.41 32.76 535
DB3 135000 0.41 41.73 298.11 25.36 323.36 32.76 680
DB5 200000 0.63 63.27 451.93 26.93 518.37 32.76 1030

Table 4.4: Construction time and memory consumption for our scheme.

In the following, we give an analytical evaluation of the transition probabilities on
the diagram. P4 represents the probability of a positive match on the MPHF24

structure: this can happen either when the incoming packet actually matches a 23-32
bit-long prefix or in case of a false positive. The former event happens with probability
(1− ε)p(l > 22), where l is the prefix length of the rule matched by the packet, while
the latter happens when a collision in the MPHF24 is detected (see section 4.2.1.1)
for a packet that does not match the overall rule set or matches a rule shorter than
23 bytes; as a consequence

P4 = (1− ε)p(l > 22) + 2−kN(ε+ (1− ε)p(l < 23))

Naturally, a lookup will be performed on the less specified prefixes in PHF22 with
probability 1− P4.

As for P3, it corresponds to the probability of discovering a false positive after the
lookup in the tab24, which can be just expressed as the probability of a false positive
scaled by the probability of a tab24 lookup (i.e., P4).

P3 =
2−kN(ε+ (1− ε)p(l < 23))

(1− ε)p(l > 22) + 2−kN(ε+ (1− ε)p(l < 23))
(4.7)

P1 is the probability of finding the final next hop value in tab24, which, in turn,
corresponds to the probability of the incoming packet matching a 23-24 bit-long prefix.
Of course, such a probability has to be scaled by P4 as well:

P1 =
(1− ε)p(22 < l < 25)

(1− ε)p(l > 22) + 2−kN(ε+ (1− ε)p(l < 23))
(4.8)

With a similar procedure, the value of P2, which corresponds to the probability of a

127

4. IP-LOOKUP AND PACKET CLASSIFICATION

lookup on the more specific prefixes in PHF32, can be obtained as:

P2 =
(1− ε)p(l > 24)

(1− ε)p(l > 22) + 2−kN(ε+ (1− ε)p(l < 23))

As for P6, it is the probability of finding a match in the PHF22 hash table, that is,
the probability of the incoming packet matching a 17-22 bit-long prefix scaled by the
probability of performing a lookup in the PHF22 table:

P6 =
(1− ε)p(16 < l < 23)

(1− P4) + P3P4

Of course, P5, which is the probability of perform a search in the DA16, can be
trivially obtained as 1− P6.
Based on these results, the mean number of memory accesses required by H-cube
algorithm can be easily estimated as the sum of number of accesses involved by each
possible path from the departure stage (i.e. each viable sequence of processing stages)
to the OK block weighted by the probability of such a path. As already stated, the
probability of a path is the product of the probabilities associated with each transition
of the path, so the mean number of memory accesses ā could be expressed as:

ā = P1P4 + 2(P2P4 + P3P4P6 + (1− P4)P5) + 3P3P4P5

dataset ε
number of accesses

SRAM scratchpad

DB1

0.1 1.405 2.28
0.2 1.470 2.28
0.3 1.535 2.22
0.4 1.601 2.22

DB3

0.1 1.411 2.4
0.2 1.481 2.22
0.3 1.540 2.28
0.4 1.610 2.1

DB5

0.1 1.412 2.46
0.2 1.481 2.34
0.3 1.545 2.34
0.4 1.609 1.98

Table 4.5: The cost of H-cube lookup in terms of memory accesses.

4.2.4 Simulation Results

We simulated the construction of the H-cube structure for different databases of rules.
We measured both the time required to build the overall structure and the number
of memory accesses per packet lookup.
The addresses in the databases are generated by means of the ANSI C function rand(),

128

4.2 H-Cube: Heuristic and Hybrid Hash-based Approach to Fast Lookup

Figure 4.7: Memory consumption for the different lookup schemes.

while prefix lengths follow the actual distributions of BGP routers. The input traffic
(i.e., 1 million of packets per run) is also randomly generated; the number of packets
with a destination address which does not appear in the database randomly varies
from 10% to 40%.

We tested an implementation of our algorithm on an Intel 2.4 Ghz Pentium 4 Core 2
Duo processor. Tab. 4.4 displays, for three random databases, the time and memory
required for constructing all the structures, while tab. 4.5 shows the average number
of accesses in SRAM and scratchpad for lookup.

Figure 4.8: Memory occupancy versus number of accesses.

Fig.4.7 and 4.8 compares our algorithm with the most important previous solutions
in literature: Lulea, Tree-Bitmap, Huang-Zhao, DIR24−8, and DIR21−3−8. While
calculating the mean number of memory accesses, the different speeds of the memory
blocks involved have been considered: in particular, each access to the scratchpad
memory has been weighted by a factor of 0.17, while each access to DRAM memory
by a factor of 2, thus taking into account their different access latency with respect
to an off SRAM memory block (as mentioned in 4.2.2). In the graphs, the databases
under test are ordered according to the number of rules.

H-cube shows a small memory consumption, as well as Lulea or Tree-Bitmap, while
providing a very high lookup speed. Huang-Zhao shows a comparable speed, but at
the cost of about twice the memory of our solution.

129

4. IP-LOOKUP AND PACKET CLASSIFICATION

4.3 A Randomized Scheme for IP Lookup at Wire
Speed on NetFPGA

The algorithm proposed in this section is based on data structures called Blooming
Trees (hereafter BTs) [56], compact and fast techniques for membership queries. A
BT is a Bloom Filter-based structure which allows for memory saving while accepting
a certain degree of inaccuracy in data representation. Moreover, it allows to reduce
the mean number of memory accesses, which is one of the most important evaluation
criteria for the quality of an algorithm for high performance routers, given that it
strongly influences the mean time required for a lookup process.
An array of parallel BTs accomplishes the LPM function by storing the entries of the
forwarding table belonging to the 16–32 bit range. Every BT has been configured
according to the Minimal Perfect Hash Function (MPHF) presented in 3.1, a scheme
conceived to obtain memory efficient storage and fast item retrieval. Shorter entries,
instead, are stored in a simple Direct Addressing (DA) logical block. In such a module,
the address itself (in this case only the 15 most significant bits) is adopted as offset
to memory locations.
The reference platform for this algorithm is the NetFPGA [1] board, a new ASIC-
based networking hardware which proves to be a perfect tool for research and exper-
imentation. In particular, this work focuses on the data-path of NetFPGA, where
the BT-based algorithm for fast IP lookup is implemented. However, the software
control plane has been also modified in order to accommodate the management and
construction of the novel data structure. These modifications merge perfectly in the
preexistent SCONE (Software Component of the NetFPGA).

4.4 The algorithm

The algorithms described in sec. 4.1.1 remark the most important metrics to be
evaluated in a lookup process: lookup speed, mean number of memory access and
update time. Each of the cited solutions tries to maximize general performance,
with the aim of be implemented on a high performance router and obtain line–rate
speed. The main motivations for this work come from the general limitations for
high–performance routing hardware: limited memory and speed.
To address these issue, we adopt a probabilistic approach, thus reducing both the
memory requirements and the number of external memory accesses. Because of the
large heterogeneity of real IP prefixes distribution (as shown in section 4.1.2 and in
several works as [87] and [88]), our first idea is to divide the entire rule database into
two groups, in order to optimize the structure:

• the prefixes of length ≤ 15, which are the minority of IP prefixes, are sim-
ply stored in a Direct Addressing array; this solution is easily implemented in
hardware and requires an extremely low portion of the FPGA logic area;

• the prefixes of length ≥ 16 are represented by an array of Blooming Trees
(hereafter called BT-array).

In the lookup process, the destination address under processing is hashed and the
output is analyzed by the BT-array and the DA module in parallel (see fig. 4.9).

130

4.4 The algorithm

Figure 4.9: The overall IP lookup scheme.

Finally, an Output Controller compares the results of both modules and provides the
right output (i.e., the longest matching), which is composed of a next-hop address
(32 bits) and an output port number (3 bits, given that the NetFPGA has 8 output
ports). In the BT-array the prefixes are divided into groups based on their lengths
and every group is organized in an MPHF structure (as shown in fig. 4.10). Therefore,
the BT-array is an array where 17 parallel queries are conducted at the same time; at
the end of the process, a bus of 17 wires carries the results: a wire is set to 1 if there
is a match in the corresponding filter. Then a priority encoder collects the results
of the BT-array and takes the longest matching prefix, while a SRAM query module
checks the correctness of the lookup (since BTs are probabilistic filters in which false
positives can happen). In case of false positive, the SRAM query module asks the
Priority Encoder for the next longest matching.

Figure 4.10: BT-array schematic.

4.4.1 Implementation

4.4.1.1 MPHF Module

As above mentioned, the main component of the algorithm is the BT-array, which
is composed of a series of MPHFs realized through BTs 3.1. Because of the large

131

4. IP-LOOKUP AND PACKET CLASSIFICATION

difficulties in allocating a variable–sized structure in hardware and for the sake of
simplicity, in our implementation we simplify the scheme proposed in 3.1 and adopt
a fixed-size structure. In details, the implemented structure presents 3 layers:

• Layer 0: a Huffman Spectral Bloom Filter composed of 128 sections and with
16 bins for every section;

• Layer 1: a simple bitmap that contains two bits for every bin of the level 0;

• Layer 2: another bitmap with two bits for every bit of the level 1; its size is
then of 8192 bits.

These parameters (in terms of number of bins, sections and layers) are chosen in order
to allocate, with a very low false positives probability, up to 8192 prefixes per prefix
length, which implies that the total maximum number of entries is 128 thousands.
Therefore, this implementation can handle even recent prefix rules databases and
largely overcome the limitations of the simple (linear-search-based) scheme provided
with the standard NetFPGA reference architecture.
In order to further simplify the hardware implementation, each bin of the HSBF
consists of 5 bits and its length is fixed. Thus a maximum of 4 elements are allowed
at level 0 for the same bin (i.e.: a trailing zero and max 4 bits set to 1). Since the
probability of having bins with more than 4 elements is quite small (around 10−2)
even if the structure is crowded, this implementation allows for a large number of
entries to be stored.
Moreover, a lookup table is used to perform the lookup in the layer 0, which is
composed of 128 rows containing the SRAM initial address for each section of the
CBF. We place the entire BT and the lookup table in the fast BRAM memory: the
HSBF occupies a block of 2048× 5 bits, while the lookup table has a BRAM block of
128× 20 bits.

4.4.1.2 Managing false positives

As already stated, a BT provides also a certain amount of false positives with proba-
bility f . Thus every lookup match has to be confirmed with a final lookup into SRAM.
Then, intuitively, the average number of SRAM accesses n increases as f grows. More
formally, assuming all BTs in the BT-array have the same false positive probability
f , we can write:

n ≤ 1 +

16∑
i=1

f i ≤ 1

1− f
(4.9)

This equation takes into account the probability of the worst case, i.e.: when all BTs
provide false positives and are checked in sequence. As one can easily verify, even if f
is quite large, the average number of memory accesses is always close to 1 (less than
1.11 for f = 0.1).

4.4.2 Results

In this section, the results about the implementation of our algorithm are shown.
In details, we focus on the supported bit-rate and resource utilization, in terms of

132

4.4 The algorithm

Table 4.6: Resource utilization for the original lookup algorithm.

Resources
XC2VP50 Utilization
Utilization Percentage

Slices 935 out of 23616 3%
4-input LUTS 1321 out of 47232 2%

Flip Flops 343 out of 47232 0%
Block RAMs 3 out of 232 1%

Table 4.7: Utilization for our algorithm.

Resources
XC2VP50 Utilization
Utilization Percentage

Slices 9803 out of 23616 41%
4-input LUTS 10642 out of 47232 22%

Flip Flops 19606 out of 47232 41%
Block RAMs 68 out of 232 29%

Table 4.8: Utilization for our overall project.

Resources
XC2VP50 Utilization
Utilization Percentage

Slices 17626 out of 23616 74%
4-input LUTS 32252 out of 47232 74%

Flip Flops 31512 out of 47232 66%
Block RAMs 220 out of 232 94%

External IOBs 360 out of 692 52%

133

4. IP-LOOKUP AND PACKET CLASSIFICATION

slices, 4-input LUTs, flip flops, and Block RAMs. In details, we test our algorithm
with different real databases taken from the Route Views Project of the University of
Oregon [88] and compare our results with those of the NetFPGA reference router. The
NetFPGA reference router does not include the state-of-the-art algorithms in terms
of performance and capabilities, as it implements many functionalities primarily as a
demo. However, it includes the only available IP lookup engine on NetFPGA which we
are aware of. This must be kept in mind while discussing the following comparisons.

Figure 4.11: Mean bit-rate achieved with different forwarding tables.

Table 4.6 shows the device utilization (both as absolute and relative figures) for the
original NetFPGA lookup algorithm. It provides a simple lookup table which allows to
manage 32 entries only to be looked for through a linear search. Instead we implement
a more efficient and scalable algorithm, which is capable of handling up to around
130000 (≈ 8000 × 16) entries (by assuming a uniform distribution for entries prefix
length). This complexity is obviously paid in terms of resource consumption (see tab.
4.7): in particular, our lookup module uses 41% of the available slices on the Xilinx
Virtex II pro 50 FPGA and 29% of the Block RAMs. However, as for the synthesis of
the project, it is worth noticing that even though we use a wide number of resources,
the timing closure is achieved without any need to re-iterate the project flow. Table
4.8 presents the overall device utilization for the reference router including our lookup
algorithm and highlights the extensive use of the various resources. In particular we
use 94% of the available Block Rams and 74% of slices and LUTs. In figure 4.11 the
behaviour of the NetFPGA router with our lookup algorithm is presented. We take
five different forwarding tables of 2009 from the Route Views Project, and we test
the functionality of the system by creating synthetic traffic with the Spirent Ax4000
[95], an ASIC-based traffic generator. Due to the false positive effects increasing the
number of memory accesses, our algorithm is not able to reach the full line rate;
however, the maximum throughput supported is very close to the upper bound (i.e.,
1 Gb/s) in all runs.

134

4.5 On the Use of Compressed DFAs for Packet Classification

4.5 On the Use of Compressed DFAs for Packet
Classification

The rapid growth of Internet and the fast emergence of new network applications
have brought great challenges and complex issues in deploying high-speed and QoS
guaranteed IP network. For this reason packet classification has assumed a key role
in modern communication networks in order to provide security and QoS. Although
packet classification represents one of the most important and critical functions in
the process of IP packet forwarding and over the years have been many suggestions
in this area of research, none of them can be considered the ultimate solution for
all scenarios. Current technology priority, depending on context, reduced memory
footprint and high speed rating. This work proposes the use of finite automata to
represent the set of rules of the binder. In order to extend the expressiveness of stan-
dard classification rules, we chose to address the packet classification problem as a
more general pattern matching problem. To this end, we leveraged the existing work
on finite state automata (henceforth DFAs). As classification is often performed by
either hardware or embedded processors, where memory footprint is an important is-
sue, we have chosen for our scheme the δFA (presented in section 2.1), which presents
interesting performance characteristics. In particular, in addition to maintaining a
data structure which is much more compact than the standard automation, it needs a
lower number of memory accesses than most compressed automata. These properties
motivate its use for classification as high-capacity networks, where memory latency
is the main factor of performance degradation. In order to implement a prototypal
classifier, the hardware platform used is NetFPGA. The aim of this work is to imple-
ment a compressed DFA scheme 2.1 (born as PatternMatching engine) on NetFPGA
and use it for Packet Classification purpose.

4.5.1 Related Works

Packet classification is an extensively studied topic and several different approaches
have been proposed in the literature.
Hardware classifiers traditionally used CAM based techniques. Given an input key,
a Content Addressable Memory (CAM) compares it against all of the memory words
in parallel; hence, a lookup effectively requires one clock cycle. While binary CAMs
perform well for exact match operations, the widespread use of CIDR requires storing
and searching entries with arbitrary prefix lengths. Hence, Ternary CAMs were devel-
oped with the ability to store an additional Don’t Care state thereby enabling them
to retain single clock cycle lookups for arbitrary prefix lengths. This high degree of
parallelism comes at the cost of storage density, access time, and power consumption.
A few solutions tried to leverage longest-prefix matching trie-based algorithms (which
were conceived for lookup applications) to bi-dimensional matching involving several
fields. Such solutions [96] are typically adopted when rules are specified only over
destination and source IP addresses. The set-pruning algorithm provides good lookup
speed but its memory footprint explodes with the number of rules. A variation of this
technique leverages a backtracking primitive [97] to improve memory scalability, at
the cost of a significant slow-down, while Grid of Tries [98] fairly balances speed and
memory consumption, by speeding up backtracking through the use of switch pointers.

135

4. IP-LOOKUP AND PACKET CLASSIFICATION

Other solutions leveraged a geometric formalization of the classification problem [99]:
as each classification rule can be thought as a range in the multi-dimensional space,
classifying a packet means finding out which ranges the corresponding point belongs
to. To this end, well-known results from the field of computational geometry can be
used.
Another class of algorithms leverage decision trees: although, formally, the algo-
rithm model is analogous to the trie-based approaches, it allows for larger flexibility,
as,instead of having all of the relevant fields inspected in a sequential manner, at
each node of the tree an arbitrary check can be performed. In particular, Hicuts [81],
performs a range check on a particular field while [100] tests single bits. Hypercuts
[82] further improbe performance by checking multiple fields at each step. [101] pro-
posed to optimize decision tree by introducing the common branches optimization:
rules that, due to wildcards, are assigned to both sons of a decision node, are handled
separately, thus reducing worst-case size. [102] Proposes to speed up classification by
using a small cache using a set of evolving rules which preserve classification seman-
tics. [103] Partitions the rules into sets which are close to one another in the tuple
space, and leverages information from single-field lookups to discard subsets and limit
the search space.

4.5.2 Packet Classification as Pattern Matching Problem

The operation of classifying IP packets depending on arbitrary metadata contained
in the packets themselves is logically (and practically) equivalent to perform pattern
matching. Typically, classification rules are expressed in terms of the values of the
canonical 5-tuple SrcIP , DestIP , SrcPort, DestPort, and L4− Protocol: the out-
put of classification can therefore be obtained by simply applying pattern matching
algorithms upon the associated fields of the IP packets. However, our scheme supports
classification rules defined over arbitrary metadata (TCP flags are a simple example).
As pattern matching is a widely addressed topic in literature, the above observation
opens a wide horizon of theoretical and practical solutions to address the problem
of packet classification. In recent years, due to the increasing interest focused on
deep packet inspection, the use of regular expressions (regexes) has become more and
more popular because of their high expressiveness in describing sets of strings [16].
Typically, finite automata are employed to implement regular expression matching.
Deterministic FAs (DFAs), in particular, have gained significant credits as they re-
quire one state traversal per character only, although they need an excessive amount
of memory as the number of regexes increases. For these reasons, many works have
been recently presented with the goal of memory reduction for DFAs, by exploiting
the intrinsic redundancy in regular expression sets [17, 18, 19, 20].

4.5.3 Our Solution: Software

The software level of the Classifier takes care of creating and managing the DFA data
structures as well as of storing them into the NetFPGA SRAM. The user has to write
a simple text file to specify the rules and the associated flowIDs. A bash script then is
in charge of calling all the software in order set up the Classifier. First of all it creates
the standard (uncompressed) DFA associated to the rules specified by the user. After
that it converts the DFA into the δFA structure.

136

4.5 On the Use of Compressed DFAs for Packet Classification

In general, a δFA state consists of a bitmap of 256 bits, which indicate which tran-
sition are stored, followed by a list of pointers for such transitions. If the number
of transitions in the state is small enough, the bitmap is not an optimal solution,
because it would be composed almost entirely of bits to “0”. In this case it is more
efficient (in terms of memory occupancy) to replace the bitmap with a simple flat list
of character-pointer pairs. In figures 4.12 and 4.13 the data structures of the states
of type 1 (we refer to the states with bitmap as type 1 states) and type 2 are shown.
Each line corresponds to a 72 bits entry. If the state data do not cover the whole row,
the entry is padded with 0s and the new state starts at the beginning of the next line.
S1 represents the memory occupancy (in bit) of a type 1 state, while S2 indicates the
memory occupancy of a type 2 state where parameter “n” is the number of specified
transitions for a given state. As it is evdident, in a δFA the size of a state is not
constant because an arbitrary number of transitions may be stored, depending on the
characters whose transitions have to be updated in the local table.

S1 = 360 + 72 ∗ dn
3
e (4.10)

S2 = 72 + 72 ∗ dn
2
e (4.11)

If n ≤ 24, then S1 ≥ S2 and a simple char-transition list is more efficient than a
bitmap. For this reason during the creation of the δFA structure, the number of
transitions for each state is estimated. If it is than 24 a type 1 state is created,
otherwise a character-pointer list (states of type 2) is used.
The state descriptor is a field whose bits have the following meaning:

• Bit 71: if set to 0 it indicates a state of type 1, otherwise type 2;

• Bit 70: if set to 1 it indicates that the state is accepting;

• Bits 69-64: In the type 2 state, they indicate the number of transitions specified.
This information is essential to understand where the state ends. 6 bits are
sufficient because for this kind of states there are at most 30 transitions. In
type 1 states these bits are set to 0.

Type 1 states present also a second byte of information indicating the total number of
specified state transitions. This information, wihch is not strictly necessary because
it could be derived by counting the total number of bits set in the bitmap, is used
to retrieve the data structure through a series of consecutive accesses without having
to scan the bitmap. Such bitmap is distributed evenly over 4 rows of 64 bits and an
entry contains exactly three pointers.
In type 2 states an entry specifies two transitions, each of them associated with a byte
that indicates the corresponding character. The size of type 2 states is from 9 to 144
bytes, while that of type 1 states is from 144 to 819 bytes.

4.5.4 Our Solution: Hardware

The general structure of the classifier is shown in figure 4.14. An optimized version
will be discussed in 4.5.4.1. The first operation performed on the incoming packet is

137

4. IP-LOOKUP AND PACKET CLASSIFICATION

Figure 4.12: Structure of the classifier.

Figure 4.13: Structure of the classifier.

138

4.5 On the Use of Compressed DFAs for Packet Classification

parsing the header fields of the packet in order to compose the string which will be
fed into the DFA state machine. The “Datapath Control” block extracts the right
fields (i.e.: in the implemented prototype the canonical 5-tuple composed of source
and destination IP addresses, layer 4 source and destination port and protocol) and
feeds them, one character per time, into the control module of δFA. The “δFA Control
Automaton” block contains the FPGA hardware modules that actually implement the
automaton logic (i.e.: extract from the SRAM memory the data structure describing
the current state, lookup and update the local transition table). This block communi-
cates with the SRAM via a module that masks the access protocol to the memory and
requires as inputs only the address of the first entry to be accessed and the number
of consecutive entries to be read. “Sram Ctrl” deals with making the appropriate
number of SRAM read/write requests to the “SRAM driver”.

Figure 4.14: Structure of the classifier.

The “δFA Control Automaton” module first performs a single access to SRAM in
order to determine which kind of states (i.e.: type 1 or 2) it has to read. The local
table maintains the current state transitions that are not stored in SRAM, as they are
the same as those of the parent state. In its simplest form is a 256 ∗ 24 matrix where
the i-th row contains the transition (a 24 − bit pointer) associated with character i.
The table is implemented by using Block RAM (BRAM), a type of memory for quick
access, integrated on the FPGA chip. In particular, we use a “dual-port” BRAM
in “read-first” mode, which allows to write two entries in the table within a single
clock cycle. Notice that, for type 2 states, a dual port configuration is enough to
avoid buffering transitions, as at most two pointers are extracted simultaneously form
the SRAM. As for type 1 states, since three transitions may be read, one of them
would have to be buffered and served in the following clock cycle. For this reason,
we chose to deploy two dual port “128x24” BRAMs, each of them containing half
the original table. The “BRAM 1” stores the addresses for the even characters while
the BRAM 2 those associated with the odd characters. In the worst case all of the
pointers may still be stored in the same BRAM block and an intermediate buffer
would still be necessary, but in the average case the transitions are divided equally
between the tables and therefore can be written in parallel during the same clock
cycle, thus speeding up the process of updating the local table.

139

4. IP-LOOKUP AND PACKET CLASSIFICATION

4.5.4.1 Optimized Classifier

An ordinary way to speed up a classifier is caching flows. Packets of the same flow
are likely to exhibit good temporal locality, and the classification result issued for the
opening packet can be cached and used for the following ones. Therefore it is useful
to introduce a flow-cache, where a new entry is added when the first packet of a new
flow enters the system. In this case, the classifier performs a lookup in the classifier
table and stores the result in the flow cache. Otherwise, for each packet belonging to
a known flow, the classification result is already in the cached data and the amount
of memory accesses is reduced. Since the number of flows can be very high, a hash
table is an efficient way to implement such a cache. In our current implementation,
such a table is kept in BRAM memory.

4.5.5 Experimental Results

Figure 4.15: Throughtput of the classifier with constant-rate traffic of interest and
different rates of the background traffic (ρ stands for link utilization).

In order to assess the performance of our architecture and its capability to filter traffic
at line rate, we carried out several tests by using a Spirent AX 4000 hardware based
traffic generator; such a device is able to completely saturate a Gigabit link with
minimum sized packets, thus recreating the worst case scenario for a netwrok device
performing packet-by-packet processing; actually we always performed our tests with
minimum sized packets. As the performance of the classifier is strictly dependent not
only on the packet rate, but on the number of flows, which, in turn, reflects on the
speed-up introduced by the cache, we used the generator API in order to produce a
high number of flows. In particular, the AX 4000 generator can inject packets whose
addresses are randomly selected within user defined ranges, thus producing traffic
where different flows are randomly interleaved. We point out that this scenario is
probably more challenging than real traffic, as in the latter packets from the same
flows are close to each othe and a cache can provide a significant speed up. In a
first experiment, we used the classifier to extract from the traffic a set of 65536 flows
matching properly written regexes. The background traffic (which is simply dropped

140

4.5 On the Use of Compressed DFAs for Packet Classification

Figure 4.16: Throughtput of the classifier with growing rates of the traffic of interest.

by the classifier after regex matching) is made up of packets whose addresses are
chosen within a very large set (thousands of possible source addresses and as many
destination addresses) thus potentially providing milions of different flows. We kept
the rate of the traffic of interest constant, while gradually increasing that of the
background traffic and we measured the rate of the NetFPGA output by using the
capturing facilities provided by the Spirent AX. The results are shown in figure 4.15
and apparently the classifier manages to filter in all of the traffic of interest with
negligible losses. Besides, the performance is almost constant whatever the rate of
the background traffic.In a second experiment we assumed all of the incoming traffic to
match the classification ruleset, and we increased its rate until the link was completely
saturated. Again, as illustrated in figure 4.16 our classifier is able to process all of the
packets with negligible losses.

141

4. IP-LOOKUP AND PACKET CLASSIFICATION

142

Chapter 5

Network Monitoring and IP
Traffic Generation

In this chapter, we discuss the problems of network monitoring and IP traffic gener-
ation. In the last few years, the proposal for measurement-based techniques of traffic
engineering and management as well as the continuously increasing concern for net-
work security has raised the interest of researchers and network operators towards
the development of measurement tools for traffic monitoring/characterization and to
support Intrusion Detection Systems (IDSs). Most of them are designed to run on
general purpose architectures and are based on the well known libpcap API, which
rapidly became a de facto standard. Even though many improvements have been
applied to packet capturing software, it still suffers from several performance flaws,
mainly due to the underlying hardware bottlenecks. To overcome these issues, we
propose a system architecture based on the cooperation of NetFPGA and a general
purpose PC-Host. Finally we introduce BRUNO, a traffic generator we implemented
as a tool to test network systems and to push the development of faster applications.
This work proposes an hybrid approach, based on a cooperative PC/NP architecture:
an advanced software tool runs on a host PC and instructs the processing engines of
an Intel IXP2400 Network Processor, which take care of the actual traffic generation.
This way we keep the high flexibility of PC tools while achieving the high packet rates
of hardware solutions.

143

5. NETWORK MONITORING AND IP TRAFFIC GENERATION

5.1 An Open-Source Solution for High-Speed Net-
work Monitoring

Passive network measurement is the best way to observe packets on a network without
disturbing the nature or timing of the pre-existing packets. The large availability of
flexible, easy to use and easy to customize network monitoring software, suggests the
PC as a suitable and cheap platform for network measurement and testing. Indeed,
applications such as tcpdump [104], wireshark [105], ntop [106], etc., prove to be
very effective and flexible for a large variety of monitoring tasks. As network link
speeds increase, it is arguable that traditional network measurement techniques based
primarily on software time-stamping and capture of packets will not scale to the
required performance levels.
In particular, to sustain a high-packet rate, the PC must drive interface cards by
using a polling scheme or interrupt driven I/O with interrupt mitigation enabled.
This results into poor timestamp accuracy. In addition, packet loss could happen at
high-speed if the host CPU cannot allocate or release memory for packets or if the
system bus cannot keep the pace of the incoming data.
Moreover, since the CPU time is used for capturing, no extra CPU power is left for
on-line analysis [107] [108]. As result, only off-line processing can often be performed
on incoming packets. This is mainly due to the lack of packet processing capabilities
on the network interface cards which commonly equip commodity PCs. In particular,
the impossibility of:

• time-stamping the arrival of a packet (avoiding interrupt latency);

• filtering unwanted packets out (avoiding memory allocation or release for un-
wanted packets);

• feeding the host PC with only a fragment of the packet instead of the entire one
(avoiding system bus saturation).

make solutions based on reconfigurable hardware more interesting.
The research described in this work addresses the development of a novel measurement
tool that overcome the above listed weaknesses of a purely PC–based architecture by
using the NetFPGA board [1] in a cooperative platform with a general-purpose PC-
Host. The target is to create a powerful and very cheap system that is able to process
packets at full rate (Gigabit Ethernet link) with a good timestamp accuracy preserving
the flexibility of PC-based solution.

5.1.1 Related Work

Several works on passive measurement systems have been proposed in the literature
in the last few years. Our work originates from the need for a flexible and very cheap
architecture able to timestamp packets with high accuracy. For this reason we propose
a measurement system based on cooperative PC/NetFPGA architecture. A widely
recognized benchmarking hardware for traffic capturing is represented by the Endace
Dag Card [109]. In this moment, our system supports up to 32 rules, while the DAG
4.3 card, which integrates a simple 7-rule filter, costs as triple as much and the times-
tamp accurancy it is not so better with respect our system. Moreover, our solution

144

5.1 An Open-Source Solution for High-Speed Network Monitoring

allows a very flexible and quickly updatable definition of flows. In [110], Wolf et al.
propose to use a distributed architecture, called Distributed Online Measurement En-
vironment (DOME), of passive measurement nodes equipped with Intel IXP2400 NP.
Their work includes header anonymization schemes and performance is compared to
that of Endace DAG 4.3 cards. Both the previous systems are able to analyze up to
500 Mbit/s traffic flows composed by small packets (64 bytes). In [111], Ficara et al.
propose an architecture to combine the flexibility of general purpose PCs (equipped
with libpcap based applications with the power of Network Processors (NPs) of the
Intel IXP2XXX family. In this scenario the NP applies Early Filtering techniques
and then it forwards traffic to different sensors, according to Locality Buffers or hash
load balancing. This system provides a timestamp accurancy of micoseconds while
our solution could compete with the DAG resolution of ten nanoseconds. A related
project is “SCAMPI” [112]. This project developed a framework for high speed traffic
monitoring and filtering which relies on a FPGA based network adapter. The used
board is the COMBO6 [2], developed by CESNET. Such a device implements traf-
fic filtering functions directly on the board and forwards to the upper software layer
only the matching packets, thus offloading the kernel from the task of classifying and
discarding non-matching packets.

Finally, Luca Deri’s nCap [113] and related works provide software-based measure-
ment techniques that work well, but are at the mercy of kernel-based timestamping.
These software solutions are both inexpensive and flexible, but traffic load and times-
tamp quality are both limited by NIC hardware and kernel performance. Hardware
solutions typically provide very good timestamp quality, but hardware is typically ex-
pensive and offer limited flexibility (especially in the case of proprietary offerings). A
NetFPGA-based solution offers the accuracy of hardware timestamping on inexpen-
sive hardware (thanks to support from Xilinx) with the flexibility of open firmware,
together with a rapidly growing community of developers and academics.

5.1.2 Architecture

Figure 5.1: The overall monitoring scheme.

A network monitor may either be installed in-series with the link to be monitored, or
connected by means of a network tap. Optical network links make the choice is easy:
passive optical splitters are inexpensive, and other than during initial installation,
offer no possibility of interruption of the link. Copper network links, on the other
hand, are more challenging. Some protocols, such as 10/100 Ethernet can be tapped

145

5. NETWORK MONITORING AND IP TRAFFIC GENERATION

using a passive resistive network but others (including Gigabit Ethernet) require an
expensive active tap, such as the NetOptics TP-CU3, or installation of the monitor
in-line. In-line monitoring is cheap, and offers the possibility of building an Intrusion
Prevention System) system, but comes at the cost of significant extra latency and
the risk of interruption of the link, should the monitor lose power, be misconfigured,
or otherwise fail. Our aim is to obtain a low cost, high performance and extensible
monitoring system. For this reason we decide to install the NetFPGA in series with
a link in order to avoid the use of an active copper ethernet tap. Since the NetFPGA
has four ports, but supports only copper Ethernet, our monitoring solution integrates
the function of an active copper tap by internally coupling two ports of the card. Traf-
fic received on one port is retransmitted out of the other, and visa versa. Where a
deployment is especially cost-sensitive, a single NetFPGA-based monitor is sufficient
for a single full-duplex link (our solution could be modified to monitor two full-duplex
links with ease). Where uptime is more critical, our monitor may also be used with a
conventional active copper Gigabit Ethernet tap. As previously stated our solution is
based on a cooperation with NetFPGA and the PC-Host in which the board is allo-
cated. While the NetFPGA takes care of filtering the traffic of interest (i.e.classifying
the flows based on the 5-tuple) and take the timestamp of the packets in a nanosec-
ond accurancy, the developed software (i.e.kernel and user space) consists in a set of
useful applications that the user could run while the hardware plane is running. The
idea behind our system is to take advantage of the fast packet processing capabilities
of the FPGA in order to decrease the CPU load. The user, through a simple CLI
(Command Line Interface) is able to set what kind of flows he wants to monitor.
When the NetFPGA receive a packet, it takes the timestamp and then checks if the
packet matches a rule or not. In the first case, it will send a copy of itself, with the
associated timestamp, to the CPU through the PCI bus for the host to analyze the
data.

5.1.3 Hardware Plane

Figure 5.2: The Timestamp and Packet data streaming are passed in parallel.

We organized the system in order that the timestamp data streaming would pass
through the modules in parallel with respect to the packet data-streaming (see fig.
5.2). In fact, when a packet arrive at the physical interface, the related timestamp
is taken and passed to the next module with an independent data-stream. A strict
control system in passing data from one module to the next was added in order to
prevent a mismatch between a packet and its associated timestamp. In order to be
sure to keep track of every packet that the board receives, we have also inserted two
registers that pass to the CPU the timestamp of the packets dropped in the input
queues (i.e.a packet could be dropped if the associated input queue is full or if a bad

146

5.1 An Open-Source Solution for High-Speed Network Monitoring

Ethernet CRC is received).

5.1.3.1 Timestamping module: a naive solution

The time-stamping module was added before the MAC fifos, after the RGMII (Re-
duced Gigabit Media Independent Interface) in order to timestamp the incoming
packets as they are received by the hardware. In this way, it is possible to obtain
a much lower jitter than if the timestamp were sampled after the kernel receives
the packet from the hardware. This module in a first release was implemented as a
64−bit free-running counter driven by the 125MHz system clock, which increments
by 8 once every 8 ns. By using the system clock, the time stamp module can be
made synchronous with receive logic, and thereby avoid additional error associated
with crossing clock domains. When a good frame is received by the physical interface,
after the Start of Frame Delimiter (SFD), the “data valid” signal is asserted. We used
this signal to mark when a new frame has arrived and to sample the right timestamp
of the packet.

5.1.3.2 Obtaining an Accurate Timestamp: DUCK implementation

The timestamp counter implemented in the first release is easy to implement, but
provides no means of correcting for oscillator drift and yields data in units of whole
nanoseconds. Since standard formats record time in units of seconds, conversion by
a floating-point division is required. Both of these drawbacks can be addressed by
means of using Direct Digital Synthesis [114], a technique of producing arbitrarily
variable frequencies using FPGA-friendly, purely synchronous, digital logic. For these
reasons, we implemented the DUCK (Dag Universal Clock Kit) to obtain precise
packet timestamp. Refer to [115] for a description of the DUCK operations. The
Crystal Frequency used is the one from the GMII receiver path and runs at 125MHz.
Our solution by default produces a time-stamp clock that runs at 226(67, 108, 864)Hz
to provide 26 valid bits of time-stamp fraction. This means that the 64-bit time-
stamp increments approximately 15ns every tick. This clock is referred to, in the
DUCK implementation, as the Synthetic Frequency (fs), as it is generated from the
crystal oscillator on the board. It is also possible to adjust the DDS Rate variable in
order to maintain a stable output frequency where the input frequency is unstable.
This is very useful as the crystal oscillators used as sources for the Crystal Frequency
exhibit jitter and are temperature sensitive. In the current version of the system the
core clock of NetFPGA board is used as reference clock for the DUCK (i.e.in order
to adjust the DDS). This kind of solution in not optimal since the correction will be
plagued by the inevitable drift of the clock used as reference. For this reason, in the
next version we will use the PPS (Pulse-Per-Second) generated by an external GPS
receiver. A synchronization mechanism is obtained through a script that takes the
NTP (Network Time Protocol) timestamp and initializes the hardware timestamp
counter. At the same time, it writes the 64−bit value returned by the NTP call in
two different 32−bit NetFPGA host registers.

147

5. NETWORK MONITORING AND IP TRAFFIC GENERATION

5.1.3.3 Core Monitoring

Because the NetFPGA PCI interface lacks the bandwidth to record all traffic, we
provide a 5-tuple (IP address pair, protocol and port pair) filter. As described in
Section 5.1.2, all packets received are retransmitted. Packets that match one of up to
32 filter rules are also copied verbatim, with their timestamp prepended (as shown in
figure 5.4), to the host. The timestamp is converted to Intel (little-endian) byte order
in the card to save the host most commonly used in these applications from having
to do so.

Figure 5.3: Flow Diagram of the Core Monitoring.

When a packet arrives, the associated 5-tuple (Source IP, Destination IP, Protocol
and 4 layer ports) is extracted and sent to two different TCAM (Ternary Content
Addressable Memory) that have sixteen entries each. Since NetFPGA does not have
TCAM, we created one using an external Xilinx Coregen application [116]. We chose
to implement the TCAMs with SRL16E (16-Bit Shift Register Look-Up-Table (LUT)
with Clock Enable) primitives that guarantee a single clock latency on read operations
and 16−clock latency on write operations and, as an additional feature, we make sure
that we could read and write in the CAM simultaneously, in order that we can change
rules on-the-fly without disrupting a capture in progress, or causing packet loss on the
network link. As shown in the flow diagram in fig. 5.3, the copy of the arriving packet
is made if the 5-tuple matches a rule. The copy is used to pass the packet to the CPU
through the PCI interface with the Timestamp (see fig. 5.4) while the original packet
is sent out of the board. It is possible to pass to the CPU a maximum of 32 different
flows per time. Our implementation doesnt automatically try both combinations of
source and destination port and address, requiring two rule slots to specify a complete
flow. Rather than try to address this limitation, we feel that a Bloom filter would
provide considerably greater density, while also providing the flexibility of specifying
only one half of a flow, should that be desirable. Since the object of the filter is
to manage PCI interface throughput by limiting irrelevant traffic, any false positive
matches from the bloom filters are harmless, and the host can simply throw them
away.

If a packet matches no rule, no copy is required. The packet is sent out to the NetF-
PGA and the related timestamp is sent to the CPU through two different registers, in

148

5.1 An Open-Source Solution for High-Speed Network Monitoring

Figure 5.4: Format of the Packet sent to the CPU.

order that the user could keep track of the timestamps of the packets that are filtered
by the two TCAMs. Notice that reading the two registers it is possible only to see
the timestamp of the last packet that is not copied to the Host.

5.1.4 Software

Libpcap is the de facto standard capture API but, without any change in the NetF-
PGA kernel module, libpcap applications cannot yet directly be used with our mon-
itoring solution. Simple packet recorders should work, but the 8-byte timestamp
prepended to each packet will confound protocol analysis. For this reason we changed
the NetFPGA kernel module running on the PC-Host in order to remove the times-
tamp prepended and store the value in the related structure in the sk–buff. To do so,
we interfaces the NetFPGA board with a PC-Host running a newer kernel in order
to have a time variable in the sk-buff structure that allows nanoseconds granularity
(i.e.older kernels allows only microsecond granularity).

Such modification allows the use of libpcap for packet capturing using the timestamp
taken directly from the hardware NetFPGA. Unfortunately, the limits of the current
version of libpcap prevent a resolution of the nanosecond (i.e.only microseconds res-
olution is supported). For this reason the current libpcap also have been hacked in
order to support the nanosecond resolution. Finally, in order to guarantee an online
traffic analyisis even the current version of TCPdump has been changed to correctly
interface with our libpcap.

Table 5.1: Device utilization for the Passive Monitoring System.

Resources
XC2VP50 Utilization
Utilization Percentage

Slices 19685 out of 23616 83%
4-input LUTS 28017 out of 47232 59%

Flip Flops 22816 out of 47232 48%
Block RAMs 128 out of 232 55%

External IOBs 356 out of 692 51%

149

5. NETWORK MONITORING AND IP TRAFFIC GENERATION

We also provide auxiliary command-line tools for TCAM rule management, and the
initialisation of the hardware timestamp using the value returned by the NTP system
call. Our CLI (Command Line Interface) that can list the rules set in hardware, insert
new rules, load a set of rules from a file or clear a specified rule. A rule is presented
as the 5-tuple with the associated masks for each field.

5.1.5 Device Utilization

This Passive Monitor System uses 83% of the available slices on the Xilinx Virtex
II Pro 50 FPGA. The largest use of the slices are from the Core-Monitoring module
where the two TCAMs are instantiated. Almost sixty percent of the block RAMs
available are used. The main use of block RAMs occurs in the instantiation of the
TCAMs and in the FIFOs used between the modules and the main input and output
queues of the system.

Figure 5.5: System setup.

5.1.6 Results

In the first experiment, we characterised the latency through the NetFPGA with an
Endace DAG 4.3ge SX, as shown in figure 5.5. Being optical, we were obliged to
use a pair of media converters (Allied-Telesyn AT-MC-1004), and we didnt have the
means at our disposal to calibrate out the latency contributed by these devices. We
measured latency through the two converters and the NetFPGA card at a constant 2.4
µs, irrespective of whether the test packets matched a filter rule, or how many rules
were programmed into the filter. We tested also the quality of timestamps returned to
the host against the DAG card, using as timestamping module the “naive solution”.
We used TCPreplay with a real traffic trace as “software traffic generator”.
In the set of experimets we compared both the two absolute drift (fig. 5.6) and the
relative drift between the two oscillaror (fig. 5.7). We sent 1000 packets and as we
can see in fig.5.6 the inter-arrival times of packets recorded by our solution are exactly
the same as those achieved with the DAG card. Fig. 5.7 however shows the relative
drift of our solution with respect the DAG card. We sent the same 1000 packets of
the previous test and as we can see we lose 1.7 milliseconds in approximately 53.7
seconds. Considering that the timestamping module used in this test provides no
means of correcting for oscillator drift we obtianed a good accurancy.

150

5.2 BRUNO: High Performance Traffic Generator

Figure 5.6: Comparison of the two absolute drift with the naive timestamping module.

Figure 5.7: Comparison between the two oscillator with the naive timestamping mod-
ule.

5.2 BRUNO: High Performance Traffic Generator

In the last few years, interest in modern Internet applications has been constantly
growing and a significant number of such applications has imposed strict demands on
network performance. This has required reliable networks offering high transmission
capacity, which in turn has raised the need for network testing to measure performance
and reveal possible “weaknesses”. Such an evaluation, however, is a very difficult
task. Given the high speed of current networks, the simulation of their behavior (for
example by means of tools such as the largely diffused ns2) [117] is not possible with
the proper accuracy: the unavoidable simplifications required by simulations have
become unacceptable.

Therefore, the only viable direction to test modern networks is emulation. This re-
quires to generate packet flows which resemble the actual internet traffic, in terms of
both data rate and statistical properties. It is obviously a critical task for software
tools running on general purpose hardware, especially when dealing with high traffic
rates. To address this issue, a very accurate traffic generator, called BRUTE (Browny
and RobUst Traffic Engine), has been implemented by our research group [118]. It
has a flexible architecture and an extensible design, by providing a number of library
modules implementing common traffic profiles. Although BRUTE outperforms all the
widespread software tools (KUTE [119], RUDE [120], MGEN [121]) in terms of both
the achieved throughput and time precision, it is still limited by PC capabilities in
terms of sustainable bit rates (i.e., it is able to generate a maximum traffic load of
400 Mbps).

151

5. NETWORK MONITORING AND IP TRAFFIC GENERATION

As already mentioned, the poor performance of software tools is due to the intrin-
sic limitations of the PC architecture (for which all these tools are designed): such
limitations include the PCI bus, which is shared by all the devices thus introducing
access conflict penalties, the Operating System, which is usually non real-time, and
the adoption of NICs, which are designed and provided with drivers (with rare ex-
ceptions) with loose performance standards. Therefore, different solutions have to
be devised, and the use of hardware platforms to improve performance and accuracy
looks unavoidable. Network processors (NPs) appear as promising solutions for such
purposes, and traffic generators based on NP platform are presented in works [122]
and [123], which have inspired our activity.

This work presents BRUNO (BRUte on Network prOcessor), a traffic generator built
on the IXP2400 Intel Network Processor and based on a modified BRUTE version.
BRUTE is designed to run on the PC hosting the NP-card and is in charge of com-
puting departure times according to given traffic models. Then, the host PC writes
such information in the memory shared with the packet processing units of NP (i.e.,
the microengines), which, in turn, use these data to generate packets and send them
with the right timeliness. The motivation is a smart distribution of tasks according
to capabilities and practicality: while it is very easy to program and make a PC “in-
telligent” and “flexible” enough to provide new functionalities and models, it is quite
difficult to do so on a Network Processor which, in turn, has a great brute-force power
to sustain and produce high loads of packet rates. The overall application has shown
a sustainable rate of 1 Gbps and a great accuracy in models reproduction, guaranteed
by a feedback scheme for time correction, thus confirming the goodness of the design.

To date, the traffic models implemented in BRUNO are those inherited from BRUTE
(Constant Bit Rate, Poisson, Poisson Arrival of Burst). However, the simple APIs
provided by BRUTE are also inherited, so that adding custom traffic models is an
easy process that involves a minimum amount of programming skills. In addition,
a “playback capability” is also available as BRUNO is able to exactly reproduce a
libpcap trace and to introduce a scaling factor on the interarrival times for “speeding
up” or “slowing down” the real trace.

5.2.1 Related Works

In the following we briefly introduce some of the most popular and powerful traffic
generators developed for PC, FPGA and NP architectures along with related works
of interest.

Several open-source tools for traffic generation on commodity PCs have been proposed
over the years, most of them designed for the Linux Operating System. KUTE [119]
(an evolution of the former UDPgen) is an UDP traffic generator which is designed
to achieve high performance over Gigabit-Ethernet. It is based on a Linux kernel
module that operates directly on the network device driver bypassing the Linux kernel
networking subsystem. This means that its architecture is strictly related to the
kernel, and it cannot take advantage of the support of kernel-space extensible interface.

RUDE [120], MGEN [121], ITG [124] and BRUTE [118] are user-space tools. The
first one is able to instantiate simultaneous patterns of traffic, but it does not provide
any explicit support for extensible interfaces and is not suitable to work at high rates,
especially with small frames, as shown in [118].

152

5.2 BRUNO: High Performance Traffic Generator

Figure 5.8: Architecture of BRUTE.

MGEN provides both a command line and a GUI for user-friendly traffic generation
in user-space. It runs on different Unix-based Operating Systems such as FreeBSD,
Linux, NetBSD and Solaris, but its accuracy is limited by the system timers it exploits
(e.g.: in the Linux kernel on PC-platforms, the timer resolution used by MGEN is
only 10ms [120]).
The Internet Traffic Generator (ITG) [124, 125] aims to reproduce TCP and UDP traf-
fic and replicate appropriate stochastic processes for interdeparture time and packet
size. It is based on daemon processes that are contacted through Inter Process
Communications by the interfaces. It is able to achieve performance comparable
to that of RUDE and MGEN but provides more traffic patterns and runs also under
WindowsTM.

5.2.1.1 BRUTE

The Browny and RobUst Traffic Engine (BRUTE) [118] takes advantage of the Linux
kernel potential in order to accurately generate traffic flows up to very high bit rates.
Because of its excellent flexibility due to a simple scripting language and an extensi-
ble architecture, it has been chosen as the basis for the development of our generator
BRUNO. BRUTE provides extensibility by means of optimized functions and an in-
terface (API) which enable the implementation in C language of additional traffic
sources (named T-modules) by users. Because of portability issues (at the expense of
a slight loss in terms of latency), it uses POSIX.1B FIFO process type and has been
designed as an user space application.
Fig. 5.8 shows the architecture of BRUTE:

• the parser reads script files containing the generation requests;

• such information is then stored into an internal database called mod-line;

• the traffic engine examines the mod-line entries and instantiates the proper
traffic handlers, called micro-engines, which are defined into the T-modules;

• all the micro-engines are sequentially executed to generate the requested traffic.

Currently BRUTE is available in [126] along with several traffic patterns: Constant
Bit Rate, Poisson, Poisson Arrival of Burst, constant inter-departure time, trimodal
ethernet distribution and more. The programming script language is organized in a
list of statements, each occupying a single line that consists of an optional label, a

153

5. NETWORK MONITORING AND IP TRAFFIC GENERATION

command identifier and a sequence of parameters of the traffic class. A little example
of the script language is reported in the following:

lab: cbr msec=1000; rate=1000;

daddr=10.0.1.10; len=512;

This statement instructs the traffic engine to generate a 1 Kfps CBR traffic flow
with 512 bytes long frames for a duration of 1000 ms. When not all parameters are
specified, BRUTE uses default values (for instance in this example the default source
IP address is assumed).
However, all the PC-based generators, even if well designed, are limited by the capacity
of the PC architecture. For instance, in a gigabit ethernet scenario, the highest
throughput achievable with BRUTE (1.09 Mpps) is reached only in intermittent bursts
(as it will be show in section 5.2.5).

5.2.1.2 Hardware architectures for generation

A few solutions for traffic generation upon specialized hardware architectures have
been proposed in last years. Abdo et al. [127] employed an Altera Stratix GX FPGA
to develop an OC-48 traffic generator. This tool provides high performance but it
presents a lack of flexibility and a restricted set of traffic models. This is mainly due to
the difficulties in the definition of new models because of the limited programmability.
To the best of our knowledge, only two traffic generation tools have been proposed on
Network Processors, both for Intel R©IXP2XXX NPs. Such tools are reviewed in sec.
5.2.1.2.
This work has been inspired by the need for a generator combining the high flexibility
of PC-based tools such as BRUTE and the high performance of dedicated hardware
instruments.

Traffic generators on the IXP2400 NP The University of Kentucky developed
IXPktgen [122], a generator based on the Intel IXP2400. In spite of the lack of specific
informations about this generator, an accurate study of its source code has shown its
structure. It employs 4 µEs (working in 8-threads mode) which are used for traffic
generation. This implies that, since each thread is statically assigned a single flow,
only 32 flows can be generated at the same time. IXPktgen is developed in microcode-
assembly and can generate any kind of ethernet frames according to a static parameter
file which is read at the startup. Thus the generator is not dynamically reconfigurable.
The Pktgen [123] is a traffic generator proposed by the University of Genova. It is
based on the Radysis ENP-2611 board equipped with the Intel IXP2400 NP. It can
generate Constant Bit Rate and burst traffic with high throughput. In its design,
5 µEs (working in 4-threads mode with a single flow per thread) are in charge of
traffic generations. Therefore it is possible to generate only 20 flows at the same time.
The Pktgen code is developed in microC (a C language with several ”intrinsics” for
IXP-based specific requirements). Although microC compiler is not as optimized as
the microcode-assembler (according to Intel’s guidelines [10]), the adoption of a C
dialect can simplify a possible porting to other platforms. However, as the previous
IXPktgen, in this generator the traffic is statically defined and cannot be changed at
run-time.

154

5.2 BRUNO: High Performance Traffic Generator

5.2.2 BRUNO

The target of BRUNO is to combine the flexibility of software-based generators with
the high performances achievable only by hardware-assisted applications. Therefore
in our architecture we exploit both a general purpose PC and an ENP2611 Radisys
pci-board equipped with the Intel IXP2400 NP. The DRAM and SRAM memories on
the board, accessible through PCI bus, set up the link between PC host and NP in
terms of shared data structures.
The user interface, as well as the parsing process and the creation of flow structures,
are assigned to the host PC, while the actual traffic creation is committed to the
IXP2400. More precisely, the host PC, through an ad-hoc modified version of BRUTE
(that we simply call BRUTE in the following), computes departure times and packet
lengths according to the user specifications and stores them in the DRAM. On the
NP side, a µE named Load Balancer (LB) is in charge of reading data from DRAM
and applying a correction algorithm on packet departure times, while 4 µEs named
Traffic Generators (TGs) create packets for transmission.

5.2.2.1 Design of BRUNO

In fig. 5.9 the design of our solution is depicted. The first µE, represented by the
tagged box on the left (Load Balancer), reads the packet timeline that BRUTE (on
the PC) writes in DRAM and SRAM. Then it properly modifies and sends it to the
µEs called Traffic Generators, through a ring structure. Rings are circular, fast and
small FIFO queues allocated into the scratchpad memory of the IXP2400 [128]. Since
the scratchpad memory is the only shared memory that is embedded in the NP, such
rings represent an optimal solution for the communication among the processing units.
Traffic Generators finally send packet transmission requests to the transmitter (TX)
µE, which, in turn, is connected to the Load Balancer through the feedback ring.

Figure 5.9: Architecture of BRUNO.

The choice of this particular design comes from the need to overcome some limitations
that the other NP-based generators have shown. The maximum number of flows that

155

5. NETWORK MONITORING AND IP TRAFFIC GENERATION

can be simultaneously generated is one of them. This is mainly due to the fixed
association between flows and µE threads. For these reasons, in BRUNO a given flow
is not strictly associated to a particular thread, thus allowing for an unlimited number
of simultaneous flows.
Moreover, if each thread is in charge of a single flow, it is likely that some threads
work more than others, or even that all threads on a certain µE work while other µEs
just sleep. This is not desirable since a high number of active threads on the same
µE could affect the timeliness of packets and hence the precision of the system. In
BRUNO each thread processes packets regardless of flows which they belong to and
the LB µE guarantees an equal balance of load among TG µEs, by distributing the
packet generation requests in a round robin fashion. This way, for instance, whenever
a single flow has to be generated, all the threads in the TGs can work for it.
The feedback ring is introduced in order to improve the traffic generation accuracy.
Indeed, this mechanism makes the observed real transmission times available to the
LB for a comparison with the ideal departure ones. While the packets request are
kept in DRAM in a memory window that is continuously refreshed by the PC with
new data, the traffic parameters (e.g. L2 and L3 addresses, as we will see later) are
kept in SRAM as they need to be accessed very frequently for the creation of each
packet.

5.2.2.2 Load Balancer

The LB µE draws data from DRAM related to a packet generation, properly modifies
its departure time and then sends them to a TG µE. Fig. 5.10 depicts the structure
for a packet generation request (PR), which is loaded in DRAM by the BRUTE
application running on the host PC. The first 32 bits contain the interdeparture time,
the packet size (16 bits), the pointer to the flow structure in SRAM (Flow Index, 15
bits), and the IP version (IPv4 or IPv6, 1 bit) follow.

Interdeparture Time
(31-0)

Packet Size Flow Index Type
(31-16) (15-1) 0

Figure 5.10: Structure of a packet request (PR).

More precisely, the threads of LB are divided into two groups.

• Even Threads: they convert the departure times from “relative” (as generated
by BRUTE) into “absolute” (as required by TGs) and then move PRs from
DRAM to the rings in the local memory of µEs. 8 requests are processed at a
time since the DRAM is read in blocks of 16 words of 32 bits.

• Odd Threads: they draw PRs from local memory, adjust the departure times ac-
cording to the feedbacks (the process of departure times correction is accurately
explained in section 5.2.4) and forward the new requests to TGs.

Since the timestamp counter in the TGs is limited to 16 bits, the LB should not send
to TGs any PRs scheduled more than 216 clock ticks ahead in the future. Therefore

156

5.2 BRUNO: High Performance Traffic Generator

Output Port Protocol TOS Ind Type Res
(31-23) (22-15) (14-7) (6-5) (4-0)

Source Port Destination Port
(31-16) (15-0)

Index Total SRC ADDs
(31-24) (23-16) (15-0)
Index Total DEST ADDs

(31-24) (23-16) (15-0)

Figure 5.11: A flow structure.

odd threads stop when the difference between the time written in the PR and present
time is greater than a parameter (AWAITING THRESHOLD), which has to be set
at the start of BRUNO application. This parameter can be at most 216 ticks. Since
the timestamp counter is increased every 16 clock cycles and the µE clock frequency
is set to 600 Mhz:

1 tick =
16

600 · 106
seconds = 26ns

The choice of the AWAITING THRESHOLD must be carefully considered. In fact,
low values lead to an under-utilization of the Traffic Generators that may not respond
properly to abrupt changes in the traffic. On the other hand, high values of this
parameter can easily saturate the scratch rings between the Load Balancer and Traffic.

5.2.2.3 Traffic Generators

As shown in fig. 5.9, 4 µEs are designed for packet creation. The thread of Traffic
Generators process a packet at a time, by taking the corresponding PR from the
communication ring between LB and TG. Through the field Flow Index in the PR,
the structure describing the flow which the packet belongs to is accessed. Fig. 5.11
shows an example of such flow structures, which are loaded into the SRAM by BRUTE
in the initialization phase, according to the user settings.

Output Port indicates the physical output port for the flow. Protocol, TOS, Source Port,
and Destination Port provide the corresponding fields of L3 and L4 packet headers.
SRC ADDs and DEST ADDs point to two SRAM locations which contain a list of
source and destination addresses respectively. Total provides the number of these
addresses, while Index indicates the next address to be read if the choice is made in a
linear way (otherwise, in random mode, the proper address is suggested by a random
number generator). The two bits of Ind Type indicates the selection mode for both
source and destination addresses (which in addition can be IP or MAC addresses).

From these data, a thread is able to create packet metadata and L2, L3 and L4
headers. Then the thread is placed in a state of sleep, until the time to send the
packet arrives. At this point, the thread wakes up and sends the packet transmission
request to the transmission block, which will provide to transmit the packet.

157

5. NETWORK MONITORING AND IP TRAFFIC GENERATION

5.2.2.4 Transmitter

The last stage of the generator is the transmitter. The code used is the one provided
by Intel R©, as optimized for the transmission. Obviously, the feedback system for
time correction has been added. It is executed right before before the last step of
the transmission process, in order to measure “real departure times” as truthfully as
possible.

5.2.2.5 System Initialization

BRUNO requires that the flow structures and the addresses lists are loaded in the
SRAM, as well as the requests for transmission generated by BRUTE have to be
stored in the DRAM, before the application begins to create traffic. In order to ob-
tain a time consistency among the various µEs, which is fundamental for the good
feedback functioning, a system synchronization is required. For this purpose, a spe-
cific function is included in Load Balancer, Traffic Generators and Transmitter code
to force initialization and timestamp synchronization of the various µEs before the
regular functioning.

5.2.3 BRUTE-NP communication

The communication between the BRUTE application, which is in charge of generating
the packet requests, and the Network Processor, where the traffic generation actually
takes place, is performed through the PCI bus. In particular, both the DRAM and
SRAM memory banks on the board are accessible through the local PCI bus, which,
in turn, is connected to the PCI bus of the host PC through the Intel 21555 non-
transparent PCI-to-PCI bridge [129]. Since the address plan referring to the two
buses is different (this is the main reason of using a non-transparent bridging), address
translation is implemented on such a device (see fig. 5.12): up to three non overlapping
intervals in the PCI address space of the host PC (called downstream windows) can
be configured to be translated into the corresponding address intervals in the Radisys
PCI address space. Every time the 21555 bridge receives a transaction referring to an
address falling into one of the downstream windows, it maps such an address into the
corresponding address of the Radisys PCI bus and forwards the transaction over it.
In a symmetric way, three upstream windows in the Radisys PCI address space can
be defined in order to forward transactions from the board bus to the host PC bus.
Different address translation methods are provided by the bridge, but the most simple
and efficient one is the direct base translation: a downstream (or upstream) memory
window is defined by a base address, and address translation is performed by simply
replacing such a base with a corresponding translated base which defines an address
region over the target bus. Since the base length is variable, the size of an address
window can be defined by the user: in general, the window size may assume values
from 4 KB up to 2 GB, thus allowing to completely map each memory bank of the
Radisys board.
The memory translation map can be configured by accessing and setting some con-
trol registers associated with the non-transparent bridge; in our implementation, this
is done by a Linux kernel module inserted in the host PC operating system. After
the initialization of such a module, both the SRAM and the DRAM memory banks

158

5.2 BRUNO: High Performance Traffic Generator

Figure 5.12: Address Translation.

are accessible as PCI resource regions by the host PC operating system and can be
read and written by using system calls referring to memory mapped I/O. In order to
offer a simple interface to user applications, our module registers two virtual char-
acter devices in the Linux kernel, which are associated to the Radisys DRAM and
SRAM banks, respectively. Such devices provide support to the mmap access method
[130], which allows to register a direct binding between a statically defined physical
address region and a user space virtual address region. When a user process accesses
a virtual address falling into the mapped area, the virtual memory manager of the
kernel directly converts it to the corresponding physical address. This allows user
processes to directly access the resources associated with a device, without using any
data buffering in the kernel memory. Such a mechanism, which is generally used for
accessing high performance devices such as graphical cards, provides the maximum
speed for accessing peripheral devices, since no data copying is required. By accessing
the two character devices, BRUTE can both configure the parameters defining each
generated traffic flow (stored in SRAM) and set the times and lengths for each packet,
by writing the corresponding data structure in DRAM.

5.2.3.1 Synchronization

In operational conditions, the DRAM area containing the packet requests must be
accessed by both the µEs and the host CPU through the PCI communication mecha-
nism described in the previous section. In order to accurately reproduce the statistical
characteristics of a given traffic flow, while the µEs read the metadata and actually
generate the packets, new packets lengths and interarrival times must be written in
the DRAM memory by the host CPU. Therefore, we need to define a mechanism to
cope with the simultaneous presence of readers and writers on the same memory area.
In particular, each packet request must be written by the host CPU and read by the
NP only once. Let us take as a trivial example a plain Poisson traffic flow: since
the packet interdeparture times are independent exponentially distributed random
variables, the repetition of a given interdeparture time is not compliant with the flow

159

5. NETWORK MONITORING AND IP TRAFFIC GENERATION

specification.

For this reason, a synchronization mechanism between the NP and the host CPU has
to be implemented. We choose a method that does not rely on the classic interrupt
based solutions (typically used for PCI devices) because of the variable and possibly
long latencies which are involved in such schemes. On the contrary, we adopt a
polling based mechanism. In particular, in our scheme, the CPU takes care of the
whole synchronization task: first, ordinary CPUs are generally faster than our NP
(the IXP2400 has a 600Mhz clock rate, while ordinary PCs usually work at a frequency
of a few Ghz); in addition, the mean rate at which the data structure in the buffer
can be read must be of the same order of the packet sending rate (otherwise, in the
long run, the internal buffers of the LB µE, where the packet requests are temporarily
stored, would overflow). Since, even at full rate, less than a few million packets per
second can be sent by the traffic generator, a common PC can easily fill the buffer
faster than it is emptied. Besides, in order to avoid contention issues on the host
PC, the BRUTE process can be assigned a higher priority in the Linux processor
scheduling mechanism, thus guaranteeing that other tasks interfere only marginally
with the traffic generation. As a consequence, there is no need for the NP to wait
for the CPU, while it is likely that the CPU has to stop to wait for the NP to read
the data in the buffer. In addition, the code running on the NP is optimized for
maximum performance and implementing waiting mechanisms could lead to a major
performance degradation.

Figure 5.13: DRAM window circular buffer.

The DRAM window containing the packet requests is cyclically read by the Network
Processor as a circular buffer. Transferring a large block of data over the PCI bus (and
from/to the DRAM) is, in terms of overall delay, more profitable for the host CPU
than moving small amounts of packet requests at a time. Therefore, such a circular
buffer will be partitioned in blocks containing a given number of data structures (let
us say 8); each time either the host CPU or the NP accesses the buffer, a whole block
of data structures is read or written. In fig. 5.13, the DRAM window divided into
different blocks (arranged in a FIFO circular queue) is depicted.

The NP keeps in its SRAM a pointer to the last block it has read and, in turn, the

160

5.2 BRUNO: High Performance Traffic Generator

CPU maintains in its own memory a pointer to the last block it has written. Before
performing a write operation, the CPU reads both pointers to check whether the
buffer is full. In such a case, the CPU enters a waiting state for a given waiting time
and, after that, it checks the pointers again.
We avoid using a polling mechanism that continuously reads the pointer in order to
reduce the number of accesses to the NP SRAM. Indeed, contention for access to the
memory block could affect the delay of NP accesses to such a memory, and lead to a
performance degradation.
The waiting time must be accurately calculated so as to avoid that the NP reads the
whole buffer while the CPU is waiting. Since, as already pointed out, the average
buffer reading rate must be equal to the average packet sending rate of the NP, good
estimate of such a waiting time can be computed by the host CPU as:

Tdelay = ρ× B

R
(5.1)

where B is the overall amount of packet requests that can be contained in the buffer, R
is the average packet rate produced by the generator (known by the host PC) and ρ is
an arbitrary safety parameter smaller than one (if ρ = 1 then Tdelay is the time needed
to empty the whole buffer). For very low values of ρ the CPU floods the SRAM with
read requests, thus affecting precision. On the other hand, if ρ ' 1, the CPU may
not be able to fill the buffer properly and the system would not be able to respond
in time to abrupt changes of the generated traffic. Preliminary experimental results
(limited to the PCI communication) seems to confirm that setting 0.1 ≤ ρ ≤ 0.4 is a
good choice.
The implementation of the busy waiting mechanism over the host PC relies on the
real time capabilities which are included in the original BRUTE. It provides busy
waiting functions which, by actually counting the CPU clock cycles and by taking
advantage of the Linux process scheduling policies, allow to set a waiting period with
a fairly good accuracy.

5.2.4 Performance Evaluation

5.2.4.1 System delays

In this section, we analyze the system behavior in order to estimate the goodness of
our design in terms of performance. In particular, we will try to understand if the
system is able to generate the maximum packet rate for a gigabit ethernet: 1488000
pps (with 64 bytes per packet). As stated by code simulation, the hardest workload
among the µEs is in the charge of the Traffic Generators, so we focus on them.
The mean time (hereafter we call “T” the mean times) spent by a thread of a Traffic
Generator µE for its overall processing of a packet is:

Tc = Tr,scr + Tel + Tw,SRAM + Tw,DRAM + Twait + Tw,scr (5.2)

where Tr,scr represents the mean time spent for reading the PR from the scratchring,
Tel for processing the request, Tw,SRAM , Tw,DRAM , and Tw,scr for writing metadata
in SRAM, the whole packet in DRAM, and the packet transmission request in the
transmission scratchring respectively. Finally, Twait represents the time a thread must

161

5. NETWORK MONITORING AND IP TRAFFIC GENERATION

Tr,scr Tel Tw,SRAM Tw,DRAM Twait Tw,scr
60 200 100 100 250 60

Table 5.2: Mean times for each operation in clock cycles.

wait when it is placed in the sleep state, as we have described above.

By using Little’s law, we compute the available time budget for the overall processing
of a packet by the TGs:

Tc · λ = n (5.3)

where λ represents the load (in our worst case 1488000 pps) and n the number of
entities that take care of packet generation. In particular, in our design, n = nm · nt,
where nt = 8 is the number of threads per microengine and nm = 4 the number of
Traffic Generator µEs. With such values, we obtain a time budget for a packet of
Tc ' 12900 clks.

Then we have measured by means of the Develop Workbench the mean times above
listed: tab. 5.2 reports these values in terms of clock cycles. Their sum amounts to
770 clks, which is widely within the computed budget. Therefore our system looks
able to support the maximum packet rate in a gigabit ethernet, and the experimental
results shown in sec. 5.2.5 confirm this analysis.

5.2.4.2 Timing correction

In fig. 5.14 we represent a schematic view of BRUNO as a system with an input (the
ideal departure time t(n) for the n-th packet) and an output (the actual departure
time τ(n)). This representation comes in handy in order to describe the actual sys-
tem implementation and also the timing correction algorithm introduced in the Load
Balancer µE. The introduction of a correction algorithm is motivated by the large
number of phenomena that, in a complex multi-core system such as our IXP2400 NP,
could affect the accuracy of the traffic generation. As an example it suffices to say
that the latency of each memory access to any SRAM or DRAM is strictly dependent
on the number and the state of all the other threads and the number of requests
coming from the PCI bus referring to that memory. A large variety of events (that
imply memory and bus accesses) also occurs on the XScale core because of the reg-
ular OS house-keeping (e.g.: timing interrupts, memory paging and swapping). All
these phenomena may affect a number of packet departures because of their duration
in time. Therefore they are modeled in our scheme as a noise ω(n) with a non-null
autocorrelation. In addition, we point out that, since the noise represents a sum of
different phenomena that introduce delays, its mean value is positive: E[ω(n)] > 0.
Hence the reason for a correction algorithm (f(·) in fig. 5.14).

However, because of the limited instruction set of the µEs and to limit the delay
it introduces, our error-correction algorithm must be devised to be fast and simple,
requiring the minimal amount of instructions. Therefore we choose an exponential
moving average:

ϕ(n) = A · ϕ(n− 1) +B · [∆̂(n− k)−∆(n− k)] (5.4)

162

5.2 BRUNO: High Performance Traffic Generator

+t(n) + τ(n)

ω(n)

f(·)

z−k + z−k

+ x(n)

-

-
ϕ(n)

+

Figure 5.14: Schematic view of BRUNO as a system

where ϕ(n) represents the correction applied to the n-th packet departure time, ∆̂(n−
k) = τ(n−k)−τ(n−k−1) is the measured interdeparture time of the (n−k)-th packet
(taken from the feedback scratchring) and ∆(n− k) = t(n− k)− t(n− k − 1) is the
ideal interdeparture time (kept in local memory) of the same packet. The parameters
A and B are real and positive numbers, with A+B = 1, while the term k takes into
account the feedback and system delay (shown in fig. 5.14 as z−k). In fact, when the
LB is working on the n-th PR, there are a certain number of PRs in the TGs and on
the rings, moreover the feedback mechanism is obviously not instantaneous. Notice
that the correction function is applied to the difference of interarrival time rather
than on the absolute time themselves: indeed, interarrival times must be very precise
while the presence of a possible constant offset between t(n) and τ(n) is not relevant.

In the following, we assume this term k to be fixed and known and we analyze the
system in fig. 5.14 as a discrete-time linear system where packet departure times
define the time-domain. Notice that, dealing with a discrete time system that evolves
on a packet generation basis (i.e., events are not necessarily equally spaced in time),
the mathematical approach is still valid though the frequency parameter cannot be
interpreted in the standard way and measured in Hertz.

By simple calculations, it is easy do derive the transfer function H(z) that describes
the output of the correcting block as a function of the noise process ω(n) as:

H(z) =
ϕ(z)

ω(z)
=

Bz−k(1− z−1)

1−Az−1 +Bz−k(1− z−1)
(5.5)

According to fig. 5.14, and by indicating the impulse response of the system H(z)
with h(n), one has:

τ(n) = t(n)− ϕ(n) + ω(n)
= t(n) + ω(n)− h(n)⊗ ω(n)
= t(n) + e(n)

(5.6)

The error term e(n) associated with the absolute generated times can be calculated
as the output of the system:

L(z) = 1−H(z) =
1−Az−1

1− z−1 +Bz−k(1− z−1)
(5.7)

163

5. NETWORK MONITORING AND IP TRAFFIC GENERATION

which receives as an input the sequence of noise ω(n).
As above mentioned, though, the error sequence of interest is that of the interarrival
time, that is:

∆̂(n)−∆(n) = τ(n)− τ(n− 1)− (t(n)− t(n− 1))
= e(n)− e(n− 1)
= ε(n)

(5.8)

In other words, we can express the sequence of errors of interarrival times ε(n) in terms
of the noise process ω(n) through the transfer function of the equivalent system:

G(z) =
(
1− z−1

)
L(z) =

(
1−Az−1

) (
1− z−1

)
1−Az−1 +Bz−k(1− z−1)

(5.9)

The effectiveness of the timing correction mechanism can then be evaluated through
the characteristics of the equivalent system G(z).
By assuming the noise process as wide sense stationary, it turns out that the average
error is null:

E[ε(n)] = E[ω(n)] ·G(1) = 0 (5.10)

and that its power spectral density Sε(f) is given by:

Sε(f) = Sω(f) |G(f)|2 (5.11)

Figure 5.15: Energy of the impulse response of G(z).

In lack of any statistical information on the noise, the selection of parameters A and
B = 1−A should be made in order to minimize the energy of the system G(z) so as
to minimize the variance of the error ε(n) in the case of flat spectral density of the
noise process.
Fig. 5.15 shows the energy of the system G(z) with respect to A for several values

164

5.2 BRUNO: High Performance Traffic Generator

Figure 5.16: Estimated Power Spectral Density of ω(n).

Figure 5.17: Square absolute frequency response of G(z).

of k. From this figure, the choice of A > 0.5 seems to be suitable in that the energy
approaches 1 and it is very little sensitive with respect to k.

In our experiments (fig. 5.16), though, the noise ω(n) turns out to be colored as it
exhibits stronger components at low frequencies (notice that the peak at f = 0 is
mainly due to the non zero mean of ω(n)). As shown in fig. 5.17, the frequency
response G(f) evaluated for A = 0.75 and k = 12 (the maximum value of k observed
in our experiments) indeed proves a clear high pass behavior, thus effectively filtering
out the low frequency relevant components of noise.

5.2.5 Experimental results

We evaluate the actual performance of BRUNO through a wide variety of experimental
tests. All the measurements are taken by means of the Spirent AX4000 traffic analyzer
[95], which is an ASIC-based tool supporting a precision of the order of nanoseconds.

We test the accuracy of BRUNO in traffic models and synthetic traces reproduction,

165

5. NETWORK MONITORING AND IP TRAFFIC GENERATION

and illustrate the advantages of the time error correction scheme.

5.2.5.1 Traffic models

To date, the library of synthetic models implemented in BRUNO includes three com-
mon traffic profiles with different statistical features and parameters. The modular
design of the system, however, allows to add any other models upon need. The traffic
models implemented are described in the following along with a performance analysis.

Constant Bit Rate traffic. CBR is the easiest traffic pattern that can be generated
as it consists of a sequence of packets with constant interdeparture time. In addition
to the common parameters used to build IPv4 packets and UDP headers (i.e., IP
addresses, packet size, etc.), the only parameter to be specified is given by the rate,
that is the number of packets sent per second (or, the inverse of the interdeparture
time of packets).
In fig. 5.18, which reports the short term packet rate (calculated as a mean over
intervals of 0.10 s), we compare the performance of BRUNO to those of BRUTE in
reproducing the CBR model. The improvement of BRUNO is evident, in particular for
the accuracy and the maximum achievable throughput: BRUNO is able to generate
up to 1488000 pps with a high precision. It is worth noticing that this is the maximum
packet rate achievable over a 1 Gigabit Ethernet link with the smallest packet size
(64 Bytes); this is clearly the worst case scenario for testing network devices. In such
conditions BRUTE provides lower throughput and accuracy.

Figure 5.18: CBR traffic: Brute vs Bruno.

Poisson traffic. The Poisson process is historically one of the most popular traffic
models and it is obtained by generating packets whose interdeparture times are inde-
pendent and exponentially distributed random variables. The parameter λ is used to
define the mean number of packets generated per second.
Fig.5.19 shows the distribution of a Poisson traffic with throughput= 300 Kpps and
λ = 0.03; the comparison among the traces generated by AX4000, by BRUNO and by
BRUTE highlights the improvement of our solution with respect to BRUTE, and es-
pecially the capability to properly produce also very small interarrival times (between

166

5.2 BRUNO: High Performance Traffic Generator

0 and 1 µs) thus providing great accuracy at high rates. Moreover, it is worthy notic-
ing that the histogram of interarrival times generated by BRUNO is very similar to
that of the commercial AX4000 traffic generator, which is a very expensive hardware
solution (hundreds of thousands dollars, while an NP board costs a few thousands
dollars).

Poisson Arrival of Burst traffic (PAB). The PAB model is the process given by
the superposition of CBR bursts scheduled according to a Poisson process of parameter
λ, where the duration of bursts are independent and might be modeled as an arbitrary
random variable B with distribution B(x). More formally, the instantaneous rate can
be written as

R(t) = R ·N(t) (5.12)

where N(t) is the number of active bursts at time t and R is a scaling factor whose
dimension is a data rate (e.g. packet/byte/bit per second). Notice that the random
process N(t) is equivalent to the process representing the number of busy servers in a
M/G/∞ queue with Poisson arrival rate of parameter λ and service time distribution
B(x) (with mean value E(B)).

While the marginal distribution of N(t) is given by:

P (N(t) = n) =
λE(B) t

n!
e−λE(B) t (5.13)

its correlelation features (and so those of the resulting traffic) vary according to the
distribution of burst length B(x). In particular, if burst lengths are distributed ac-
cording to a power–law distribution (e.g., Pareto distribution), such as:

P (B > x) = 1−B(x) =

(
θ

θ + x

)α
(5.14)

depending on the value of α, the resulting traffic process may exhibit either Short
Range Dependence (α ≥ 2 – light tailed distribution) or Long Range Dependence
(1 < α < 2 – heavy tailed distribution) [131] with Hurst parameter given by:

H =
3− α

2
(5.15)

The parameter θ acts simply as used for time offset. Fig. 5.20 and 5.21 show a slice of
about 15 minutes of PAB trace generated with parameters α = 1.5 (thus H = 0.75),
θ = 1s, λ = 300 s−1 and R = 1000 packets/s. The associated Variance–Time plot
clearly proves the presence of Long Range Dependence. Moreover, the estimated value
of H is equal to 0.736, which is pretty close to the nominal value H = 0.75.

5.2.5.2 Playback capability

The second set of experimental runs aims at illustrating the “playback capability”.
Our application is able to exactly reproduce a libpcap trace in terms of packet lengths,
IP addresses and ports. Moreover, BRUNO gives the possibility of modifying the
original speed of the trace by multiplying its interarrival times by a scale factor: the

167

5. NETWORK MONITORING AND IP TRAFFIC GENERATION

(a) AX4000

(b) BRUNO

(c) BRUTE

Figure 5.19: Bar chart of interarrival times of a Poisson traffic (λ = 0.03).

168

5.2 BRUNO: High Performance Traffic Generator

Figure 5.20: PAB traffic profile.

Figure 5.21: Variance time of generated PAB traffic.

application preserves the time distribution shape of the traffic, while the time scale
is “compressed” or “enlarged”. This “playback capability” allows at the same time
to perform tests with real traffic and stress devices or networks with different traffic
loads.
Fig. 5.22(a) shows the interarrival time distribution of a real SIP call (signalling and
data) performed through a soft-phone. Fig. 5.22(b) and 5.22(c) show the distribution
of the trace reproduced by BRUNO and an “accelerated” version with a scaling factor
of 100. It is evident that the shape is almost the same of the original trace and that
the time references (time axis and mean packet interarrival time) differ by the factor
of 100.

5.2.5.3 Timing Correction Effect

In this set of experiments, the benefits introduced by the error correction mechanism
are investigated. We instruct BRUNO to generate CBR traffic flows within a wide
range of bit rates, spanning from 100 to 600 Mbps, and we run, for each value of

169

5. NETWORK MONITORING AND IP TRAFFIC GENERATION

(a) Original trace (ns)

(b) Trace reproduced by BRUNO (ms) (c) Trace accelerated by BRUNO (µs)

Figure 5.22: Interarrival times of a 40s SIP call.

170

5.2 BRUNO: High Performance Traffic Generator

rate (Mb/s) σnε − σε(ns)
100 14.3
200 12.4
300 3.9
400 3.1
500 14.3
600 13.1

Table 5.3: Interdeparture time variation reduction achieved by the correction mech-
anism.

bit rate, both the standard version of BRUNO and a modified version in which the
feedback correction mechanism was disabled. The measurements are taken again by
means of the AX4000.
Tab. 5.3 reports the reduction in the interdeparture time variation due to the in-
troduction of the correction mechanism. We have measured the standard deviations
of interdeparture times (σε for the system with error correction, σnε for the simple
one), obtaining for both versions extremely small values (in the order of hundreds
of nanoseconds). However, the use of the timing correction mechanism increases the
performance of the system, as shown by the difference σnε − σε. In any case, these
benefits are more evident with increasing complexity of the traffic model generated,
because in a CBR model there are few variable factors that can cause a consistent
deviation from the ideal behavior, and, therefore, the variance reduction achievable
with an error correction mechanism is limited.

171

5. NETWORK MONITORING AND IP TRAFFIC GENERATION

172

Conclusions

This thesis discusses a number of solutions to some taks that represent a critical
processing for network devices: IP-Lookup, Packet Classification and Deep Packet
Inspection.
We introduced the two reference platforms used both for the tests and implementation
of many of the proposed algorithms: NetFPGA and Intel IXP2400 Network Processor.
Then we moved into the Deep Packet Inspection section by describing some exact
solutions based on a compressed version of DFA (Deterministic Finite Automata)
and an approximate one based on Counting Bloom Filters. We discussed two new
methods to create Perfect Hash Function with limited amount of memory and we
use one of them for some novel IP-Lookup algorithms. We introduced, also, a novel
Packet Classification algorithm based on DFAs and we tested it on NetFPGA board.
Finally high speed network monitoring with accurate timestamping and IP traffic gen-
eration have been discussed with two solution: the former implemented on NetFPGA,
the latter on Intel IXP2400 Network Processor.

173

174

Appendix A

Hash Functions and Bloom
Filters

A.1 Hash Functions

Hashing is one of the most adopted primitives in network devices and regular com-
puters. Its use is quite ubiquituos when dealing with tables which must be addressed
by large indexes.
A hash function is any well-defined procedure or mathematical function that converts
a large, possibly variable-sized amount of data into a small datum, usually a single
integer that may serve as an index to an array (cf. associative array). The values
returned by a hash function are called hash values, hash codes, hash sums, checksums
or simply hashes.
Hash functions are mostly used to speed up table lookup or data comparison taskssuch
as finding items in a database, detecting duplicated or similar records in a large file,
finding similar stretches in DNA sequences, and so on.
A hash function may map two or more keys to the same hash value. In many ap-
plications, it is desirable to minimize the occurrence of such collisions, which means
that the hash function must map the keys to the hash values as evenly as possible.
Depending on the application, other properties may be required as well. Although
the idea was conceived in the 1950s. the design of good hash functions is still a topic
of active research.

A.2 Bloom Filters

A Bloom Filter (BF) is a simple data structure for information representation and
query processing. It is a randomized method based on hash functions; thus, it allows
for false positives, but the space savings often outweigh this drawback. BFs were
introduced by Burton Bloom [132] in the 1970s for database applications, but recently
they have received a great attention also in the networking area [133], for collaborating
in overlay and peer-to-peer networks, packet routing, and measurements. BFs are also
proposed for many distributed networking protocols: for example, in order to share

175

A. HASH FUNCTIONS AND BLOOM FILTERS

web cache, a proxy periodically broadcasts BFs that represent the contents of their
cache. In this situation, BFs are not only data structures but also messages being
transmitted in a network.
Thus, several performance parameters have to be taken into account: the probability
of false positives, memory size, number of items to be managed and transmission size.
BFs do not address the issues of inserting and deleting items in the set. For example, a
set may change over time, with elements being inserted and deleted. Deletion cannot
be done by simply reversing the insertion operation, because of the collisions created
by the hash functions. In order to allow these operations, Counting Bloom Filters
have been designed [48]. They are based on the same idea of BFs, but they use fixed
size counters (also called bins) instead of single bits of presence. When an item is
inserted, the corresponding counters are incremented; deletions can then be safely
done by decrementing the counters. CBFs present the problem of counters overflow,
which has to be considered in the design.
A Bloom Filter represents a set S of n elements from a universe U by using an array of
m bits, denoted by B[1], ..., B[m], initially all set to 0. The filter uses k independent
hash functions h1, ..., hk with log2(m) bits long output, that independently map each
element in the universe to a random number uniformly distributed over the range.
For each element x in S, the bits B[hi(x)] are set to 1, for 1 ≤ i ≤ k (a bit can be set
to 1 multiple times). To answer a query of the form “Is y in S?”, we check whether all
B[hi(y)] are set to 1. If not, y is not a member of S, by construction. If all B[hi(y)]
are set to 1, it is assumed that y is in S, hence a BF may yield a false positive. The
probability of a false positive f can be tuned by choosing the proper values for m and
k. It is a well-known result [48] that the minimum f is obtained for k = (m/n) ln 2.
In this configuration, all bits B[1], ..., B[m] are set or cleared with probability p = 1/2
(thus, roughly, the same number of ones and zeros are present in the BF).

176

References

[1] http://www.netfpga.org. 3, 130, 144

[2] http://www.liberouter.org/hardware.php. 3, 145

[3] http://www.liberouter.org. 5

[4] Agere, “The challenge for next generation network processors.” [Online].
Available: www.agere.com/docs/challenge new.pdf 10

[5] Alchemy, “Alchemy semiconductor unveils au1000 internet edge processor.”
[Online]. Available: http://www.thefreelibrary.com/Alchemy+Semiconductor+
Unveils+Au1000+Internet+Edge+Processor.-a062704288 14

[6] AMCC, “Product family for packet processors.” [Online]. Avail-
able: https://www.amcc.com/MyAMCC/jsp/public/browse/controller.jsp?
networkLevel=EMBE&superFamily=NETP 15

[7] CISCO, “Parallel express forwarding in the cisco 10000 edge service
router.” [Online]. Available: http://whitepapers.zdnet.co.uk/0,1000000651,
260007268p-39000421q,00.htm 16

[8] EZchip, “Network processor designs for next-generation networking
equipment.” [Online]. Available: http://whitepapers.silicon.com/0,39024759,
60001341p-39000410q,00.htm 20

[9] J. R. A. Jr., B. M. Bass, C. Basso, and R. H. B. et al et al, “Ibm powernp
network processor: Hardware, software, and applications.” [Online]. Available:
http://www.research.ibm.com/journal/rd/472/allen.pdf 21

[10] Intel R© IXP2400/2800 Developer’s Tool reference manual. 28, 154

[11] E. J. Johnson and A. R. Kunze, Ixp2400-2800 Programming: The Complete
Microengine Coding Guide. Intel Press, 2003. 32

[12] D. E.Comer, “Network systems design using network processors: Intel 2xxx
version,” 2005. 32

[13] Snort: Lightweight Intrusion Detection for Networks, http://www.snort.org/.
37, 38

177

www.agere.com/docs/challenge_new.pdf
http://www.thefreelibrary.com/Alchemy+Semiconductor+Unveils+Au1000+Internet+Edge+Processor.-a062704288
http://www.thefreelibrary.com/Alchemy+Semiconductor+Unveils+Au1000+Internet+Edge+Processor.-a062704288
https://www.amcc.com/MyAMCC/jsp/public/browse/controller.jsp?networkLevel=EMBE&superFamily=NETP
https://www.amcc.com/MyAMCC/jsp/public/browse/controller.jsp?networkLevel=EMBE&superFamily=NETP
http://whitepapers.zdnet.co.uk/0,1000000651,260007268p-39000421q,00.htm
http://whitepapers.zdnet.co.uk/0,1000000651,260007268p-39000421q,00.htm
http://whitepapers.silicon.com/0,39024759,60001341p-39000410q,00.htm
http://whitepapers.silicon.com/0,39024759,60001341p-39000410q,00.htm
http://www.research.ibm.com/journal/rd/472/allen.pdf

REFERENCES

[14] Bro: A system for Detecting Network Intruders in Real Time, http://bro-
ids.org/. 37, 38

[15] W. Eatherton and J. Williams, An encoded version of reg-ex database from cisco
systems provided for research purposes. 37, 38, 51, 58, 67, 79

[16] R. Sommer and V. Paxson, “Enhancing byte-level network intrusion detection
signatures with context,” in Proc. of CCS ’03. ACM, pp. 262–271. 38, 39, 136

[17] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, “Algorithms to
accelerate multiple regular expressions matching for deep packet inspection,” in
SIGCOMM ’06. 38, 39, 42, 52, 54, 56, 59, 67, 136

[18] S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese, “Curing regular
expressions matching algorithms from insomnia, amnesia, and acalculia,” in
Proc. of ANCS ’07. ACM, pp. 155–164. 38, 40, 45, 79, 136

[19] M. Becchi and P. Crowley, “A hybrid finite automaton for practical deep packet
inspection,” in Proc. of CoNEXT ’07. ACM, 2007, pp. 1–12. 38, 40, 52, 67,
136

[20] R. Smith, C. Estan, and S. Jha, “Xfas: Fast and compact signature matching,”
University of Wisconsin, Madison, Tech. Rep., August 2007. 38, 40, 45, 53, 136

[21] ——, “Xfa: Faster signature matching with extended automata,” in IEEE Sym-
posium on Security and Privacy, May 2008. 38, 40, 45, 53

[22] R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating the big bang: Fast and
scalable deep packet inspection with extended finite automata,” in SIGCOMM
’08. 38

[23] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to bibliographic
search,” Commun. ACM, vol. 18, no. 6, pp. 333–340, 1975. 39

[24] B. Commentz-Walter, “A string matching algorithm fast on the average,” in
Proceedings of the 6th Colloquium, on Automata, Languages and Programming.
London, UK: Springer-Verlag, 1979, pp. 118–132. 39

[25] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,” Univer-
sity of Arizona, Tech. Rep. TR-94-17. 39

[26] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic memory-
efficient string matching algorithms for intrusion detection,” pp. 333–340, 2004.
39, 43, 45

[27] W. Eatherton, Z. Dittia, and G. Varghese, “Tree bitmap: Hardware/software
ip lookups with incremental updates,” 2004. [Online]. Available: citeseer.ist.
psu.edu/dittia02tree.html 39, 112, 113, 121

[28] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and memory-
efficient regular expression matching for deep packet inspection,” in ANCS ’06,
New York, NY, USA, 2006, pp. 93–102. 39, 79

178

citeseer.ist.psu.edu/dittia02tree.html
citeseer.ist.psu.edu/dittia02tree.html

REFERENCES

[29] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison Wesley, August 2006. 39

[30] M. Becchi and P. Crowley, “An improved algorithm to accelerate regular ex-
pression evaluation,” in Proc. of ANCS ’07, 2007, pp. 145–154. 39, 42, 52,
67

[31] M. Becchi and S. Cadambi, “Memory-efficient regular expression search using
state merging.” in Proc. of INFOCOM 2007, May 2007. 39, 40, 43, 52, 67

[32] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A scalable architecture for high-
throughput regular-expression pattern matching,” in Proc. of ISCA’06, June
2006. 40, 61

[33] S. Kumar, J. Turner, and J. Williams, “Advanced algorithms for fast and scal-
able deep packet inspection,” in ANCS ’06: Proc. of the ACM/IEEE symposium
on Architecture for networking and communications systems. New York, NY,
USA: ACM, 2006, pp. 81–92. 40, 103

[34] G. Varghese, Network Algorithmics,: An Interdisciplinary Approach to Design-
ing Fast Networked Devices. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2004. 49, 121

[35] Intel Network Processors, www.intel.com/design/network/products/npfamily/.
50, 122

[36] Michela Becchi, regex tool, http://regex.wustl.edu/. 52, 59, 67, 81

[37] J. E. Hopcroft and J. D. Ullman, Introduction To Automata Theory, Languages,
And Computation. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1990. 60, 62, 71

[38] M. Becchi and P. Crowley, “Efficient regular expression evaluation: theory to
practice,” in ANCS ’08, 2008. 61, 82

[39] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979. 64

[40] G. Khanna, I. Laguna, F. Arshad, and S. Bagchi, “Stateful detection in high
throughput distributed systems,” in IEEE SRDS 2007. 70

[41] E. Ketcha Ngassam, D. G. Kourie, and B. W. Watson, “On implementation
and performance of table-driven DFA-based string processors,” in Proceedings
of the Prague Stringology Conference ’06, 2006. 74

[42] E. K. Ngassam, B. W. Watson, and D. G. Kourie, “Hardcoding finite state
automata processing,” in SAICSIT ’03, 2003. 74

[43] K. Ngassam, “Towards cache optimization in finite automata implementations,”
Ph.D. dissertation, University of Pretoria, South Africa, 2007. 74

[44] http://www.circlemud.org/ jelson/software/tcpflow/. 81

179

REFERENCES

[45] http://www.intel.com/design/network/products/ npfamily/ixp2800.htm. 81

[46] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, and J. W. Lockwood, “Deep
packet inspection using parallel bloom filters,” IEEE Micro, vol. 24, no. 1, pp.
52–61, 2004. 84

[47] M. Nourani and P. Katta, “Bloom filter accelerator for string matching,” in
ICCCN 2007: Proceedings of the 16th International Conference on Computer
Communications and Networks, 2007, pp. 185–190. 84

[48] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scalable
wide-area web cache sharing protocol,” SIGCOMM Comput. Commun. Rev.,
vol. 28, no. 4, pp. 254–265, 1998. 84, 176

[49] T. H. Ptacek and T. N. Newsham, “Insertion, evasion, and denial of service:
Eluding network intrusion detection,” Secure Networks, Inc., Suite 330, 1201
5th Street S.W, Calgary, Alberta, Canada, T2R-0Y6, Tech. Rep., 1998.
[Online]. Available: citeseer.ist.psu.edu/ptacek98insertion.html 85

[50] M. Handley, V. Paxson, and C. Kreibich, “Network intrusion detection: eva-
sion, traffic normalization, and end-to-end protocol semantics,” in SSYM’01:
Proceedings of the 10th conference on USENIX Security Symposium. Berkeley,
CA, USA: USENIX Association, 2001, pp. 9–9. 85

[51] N. S. Artan and H. J. Chao, “Multi-packet signature detection using prefix
bloom filters,” in GLOBECOM 2005: Proceedings of the IEEE Global Telecom-
munications Conference, vol. 3, 2005, p. 18111816. 85, 86, 89

[52] G. Varghese, J. A. Fingerhut, and F. Bonomi, “Detecting evasion attacks at
high speeds without reassembly,” SIGCOMM Comput. Commun. Rev., vol. 36,
no. 4, pp. 327–338, 2006. 85, 86, 89

[53] M. Vutukuru, H. Balakrishnan, and V. Paxson, “Efficient and Robust TCP
Stream Normalization,” in 2008 IEEE Symposium on Security and Privacy,
Oakland, CA, May 2008. 87

[54] D. Ficara, S. Giordano, G. Procissi, and F. Vitucci, “Multilayer compressed
counting bloom filters,” in Proc. of INFOCOM ’08, Phoenix, AZ, USA, April
2008. 87, 90, 95, 97

[55] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash table
lookup using extended bloom filter: An aid to network processing,” in Proceed-
ings of ACM SIGCOMM’05, 2005. 87, 102

[56] D. Ficara, S. Giordano, G. Procissi, and F. Vitucci, “Blooming trees: Space-
efficient structures for data representation,” in Communications, 2008. ICC ’08.
IEEE International Conference on, May 2008, pp. 5828–5832. 90, 94, 95, 96,
97, 99, 130

[57] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese, “An
improved construction for counting bloom filters,” in LNCS 4168, 14th Annual
European Symposium on Algorithms, 2006, pp. 684–695. 90

180

citeseer.ist.psu.edu/ptacek98insertion.html

REFERENCES

[58] G. Bianchi, S. Teofili, M. Pomposini, “New directions in privacy-preserving
anomaly detection for network traffic,” in Proc. of Network Data Anonymisation
(NDA 2008), Virginia, USA, October 2008. 94

[59] http://www.intel.com/design/itanium/documentation.htm. 94

[60] http://softwarecommunity.intel.com/isn/Downloads/Intel SSE4 Programming
Reference.pdf. 94

[61] http://www.intel.com/design/network/products/npfamily/ixp2805.htm. 94

[62] http://vincent.amd.com/us-en/assets/content type/white papers and tech
docs/40546.pdf. 94

[63] http://www.power.org/resources/reading/PowerISA V2.05.pdf. 94

[64] Z. J. Czech, G. Havas, and B. S. Majewski, “Fundamental study - perfect hash-
ing,” Theoretical Computer Science, vol. 182, no. 1, August 1997. 94, 95

[65] M. L. Fredman, J. Komlós, and E. Szemerédi, “Storing a sparse table with 0(1)
worst case access time,” J. ACM, vol. 31, no. 3, 1984. 94

[66] Z. J. Czech, G. Havas, and B. S. Majewski, “An optimal algorithm for generating
minimal perfect hash functions,” Information Processing Letters, vol. 43, no. 5,
1992. 94, 95

[67] R. Pagh, “Hash and displace: Efficient evaluation of minimal perfect hash func-
tions,” in Workshop on Algorithms and Data Structures, 1999. 94, 95

[68] K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching, ser.
Monographs in Theoretical Computer Science. An EATCS Series. Springer,
1984, vol. 1. 94

[69] E. A. Fox, L. S. Heath, Q. F. Chen, and A. M. Daoud, “Practical minimal
perfect hash functions for large databases,” Commun. ACM, vol. 35, no. 1,
1992. 94

[70] F. C. Botelho, Y. Kohayakawa, and N. Ziviani, “An approach for minimal per-
fect hash functions for very large databases,” Universidade Federal de Minas
Gerais, Belo Horizonte, Brazil, Tech. Rep., 2006. 95

[71] F. C. Botelho, R. Pagh, and N. Ziviani, “Simple and space-efficient minimal
perfect hash functions,” Springer-Verlag Lecture Notes in Computer Science,
vol. 4619, 2007. 95, 101

[72] Y. Lu, B. Prabhakar, and F. Bonomi, “Perfect hashing for network applica-
tions,” in Proceedings of International Symposium on Information Theory 2006,
2006. 95, 99, 101

[73] S. Kumar, J. Turner, P. Crowley, and M. Mitzenmacher, “Hexa: Compact data
structures for faster packer processing,” in Proc. of ICNP 07, 2007. 103

181

REFERENCES

[74] D. Ficara, S. Giordano, S. Kumar, and B. Lynch, “Divide and discriminate:
Algorithm for fast and deterministich hash lookups,” in ANCS ’09: Proc. of the
ACM/IEEE symposium on Architecture for networking and communications
systems. New York, NY, USA: ACM, 2009. 103

[75] B. Chazelle, J. Kilian, R. Rubinfeld, A. Tal, and O. Boy, “The bloomier filter:
An efficient data structure for static support lookup tables,” in Proc. of the Fif-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2004,
pp. 30–39. 103, 108

[76] P. Hall, “On representatives of subsets,” J. London Math. Soc., vol. 10, pp.
26–30, 1936. 106

[77] R. Motwani, “Average-case analysis of algorithms for matchings and related
problems,” Journal of the ACM, vol. 41, pp. 1329–1356, 1994. 107

[78] J. Hopcroft and R. Karp, “An n5/2 algorithm for maximum matchings in bi-
partite graphs,” SIAM Journal on Computing, vol. 2, 1973. 107

[79] M. Mitchell, “An introduction to genetic algorithms,” 1996. 107, 108

[80] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding tables
for fast routing lookups,” in Proc. of the ACM SIGCOMM ’97. New York,
NY, USA: ACM, 1997, pp. 3–14. 112, 113, 121

[81] P. Gupta and N. Mckeown, “Packet classification using hierarchical intelligent
cuttings,” in in Hot Interconnects VII, 1999, pp. 34–41. 112, 136

[82] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classification using
multidimensional cutting,” in SIGCOMM ’03. 112, 136

[83] T. V. Lakshman and D. Stiliadis, “High-speed policy-based packet forwarding
using efficient multi-dimensional range matching,” in SIGCOMM, 1998, pp.
203–214. [Online]. Available: citeseer.ist.psu.edu/lakshman98highspeed.html
112

[84] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using
tuple space search,” in SIGCOMM, 1999, pp. 135–146. [Online]. Available:
citeseer.ist.psu.edu/article/srinivasan99packet.html 112

[85] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at memory
access speeds,” in INFOCOM ’98. 114

[86] N.-F. Huang and S.-M. Zhao, “A novel ip-routing lookup scheme and hardware
architecture for multigigabit switching routers,” IEEE Journal on Selected Areas
in Communications, vol. 17, no. 6, June 1999. 114

[87] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor, “Longest prefix
matching using bloom filters,” 2003. [Online]. Available: citeseer.ist.psu.edu/
dharmapurikar00longest.html 114, 122, 130

[88] Route Views 6447, http://www.routeviews.org/. 114, 122, 130, 134

182

citeseer.ist.psu.edu/lakshman98highspeed.html
citeseer.ist.psu.edu/article/srinivasan99packet.html
citeseer.ist.psu.edu/dharmapurikar00longest.html
citeseer.ist.psu.edu/dharmapurikar00longest.html

REFERENCES

[89] V. Srinivasan and G. Varghese, “Faster ip lookups using controlled prefix ex-
pansion,” SIGMETRICS Perform. Eval. Rev., vol. 26, no. 1, pp. 1–10, 1998.
117

[90] Classbench, A Packet Classification Benchmark,
http://www.arl.wustl.edu/classbench/. 118

[91] BGP potaroo, http://bgp.potaroo.net. 121

[92] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable high speed
ip routing lookups,” SIGCOMM Comput. Commun. Rev., 1997. 122

[93] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. McGraw-Hill Book Company, 2001. 125, 126

[94] K. S. Kim and S. Sahni, “Ip lookup by binary search on prefix length,” in ISCC
’03. Washington, DC, USA: IEEE Computer Society, p. 77. 125

[95] http://www.spirent.com. 134, 165

[96] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner, “Router plugins: A soft-
ware architecture for next generation routers,” in IEEE/ACM transactions on
Networking, 1998, pp. 229–240. 135

[97] G. V. L. Qiu and S. Suri, “Fast firewall implementations for software and
hardware-based routers,” Proc. of the 9th International Conference on Network
Protocols (ICNP), 2001. 135

[98] S. S. P. Warkhede and G. Varghese., “Fast packet classification for two-
dimensional conflict-free filters,” Proc. IEEE Infocom, 2001. 135

[99] H. Adisheshu, “Services for next-generation routers,” Ph.D. dissertation, Wash-
ington University Computer Science Department, 1998. 136

[100] T. Woo, “A modular approach to packet classification: Algorithms and results,”
Proc. IEEE Infocom, 2000. 136

[101] E. Cohen and C. Lund, “Packet classification in large isps: design and evaluation
of decision tree classifiers,” in Sigmetrics, 2005, pp. 73–84. 136

[102] Q. Dong, S. Banerjee, J. Wang, and D. Agrawal, “Wire speed packet classifi-
cation without tcams: a few more registers (and a bit of logic) are enough,”
Sigmetrics Perform. Eval. Rev., vol. 35, no. 1, 2007. 136

[103] H. Song, J. Turner, and S. Dharmapurikar, “Packet classification using coarse-
grained tuple spaces,” in ANCS ’06: Proceedings of the 2006 ACM/IEEE sym-
posium on Architecture for networking and communications systems. New York,
NY, USA: ACM, 2006, pp. 41–50. 136

[104] Lawrence Berkeley National Labs, tcpdump/libpcap, Network Research Group,
http://www.tcpdump.org. 144

[105] Wireshark protocol Analyzer (was Ethereal), http://www.wireshark.org. 144

183

REFERENCES

[106] Ntop network traffic probe, http://www.ntop.org. 144

[107] L. Deri, “Improving passive packet capture: Beyond device polling,” in SANE
2004. 144

[108] ——, “Passively monitoring networks at gigabit speeds using commodity hard-
ware and open source software,” in PAM 2003. 144

[109] Endace, http://www.endace.com. 144

[110] T. Wolf, R. Ramaswamy, S. Bunga, and N. Yang, “An architecture for dis-
tribuited real-time passive network measurement,” in MASCOTS 2006. 145

[111] A. D. Pietro, D. Ficara, S. Giordano, F. Oppedisano, G. Procissi, and F. Vitucci,
“A network processor based architecture for multi gigabit traffic analysis,” in
International Journal of Communication Systems, 2009. 145

[112] SCAMPI project, http://www.ist-scampi.org. 145

[113] L. Deri, “ncap: Wire-speed packet capture and transmission,” in End-to-End
Monitoring, 2005. 145

[114] P. Saul, “Direct digital synthesis,” in Circuits and systems tutorials, 1996. 147

[115] S. F. Donnely, “High precision timing in passive measurements of data net-
works,” in PhD Thesis, 2002. 147

[116] Xilinx, http://www.xilinx.com. 148

[117] http://www.isi.edu/nsnam/ns/. 151

[118] N. Bonelli, S. Giordano, G. Procissi, and R. Secchi, “Brute: A high performance
and extensibile traffic generator,” in Proc. of Int’l Symposium on Performance
of Telecommunication Systems (SPECTS’05), July 2005. 151, 152, 153

[119] http://caia.swin.edu.au/genius/tools/kute/. 151, 152

[120] http://rude.sourceforge.net/. 151, 152, 153

[121] http://mgen.pf.itd.nrl.navy.mil/. 151, 152

[122] http://protocols.netlab.uky.edu/ esp/pktgen/. 152, 154

[123] R. Bolla, R. Bruschi, M. Canini, and M. Repetto, A High Performance IP
Traffic Generation Tool Based On The Intel IXP2400 Network Processor, ser.
Distributed Cooperative Laboratories: Networking, Instrumentation, and Mea-
surements. Springer Berlin Heidelberg, 2006, pp. 127–142. 152, 154

[124] A. Botta, A. Dainotti, and A. Pescape, “Multi-protocol and multi-platform traf-
fic generation and measurement,” in Proc. of INFOCOM 2007 DEMO Session,
May 2007. 152, 153

184

REFERENCES

[125] S. Avallone, A. Pescape, and G. Ventre, “Analysis and experimentation of in-
ternet traffic generator,” in Proc. of New2an 2004, International Conference on
Next Generation Teletraffic and Wired/Wireless Advanced Networking, Febru-
ary 2004. 153

[126] http://netgroup-serv.iet.unipi.it/brute/. 153

[127] A. Abdo, H. Awad, S. Paredes, and T. J. Hall, “Oc-48 configurable ip traf-
fic generator with dwdm capability,” in Proc. of the Canadian Conference on
Electrical and Computer Engineering, May 2006, pp. 1842 – 1845. 154

[128] Intel R© IXP2800 Hardware reference manual. 155

[129] Intel Corporation, 21555 Non-Transparent PCI-to-PCI Bridge User’s manual.
158

[130] Linux Device Drivers, Third Edition, http://lwn.net/Kernel/LDD3/. 159

[131] K. Park and W. Willinger, Self-Similar Network Traffic: An Overview. Wiley
Interscience, 1999. 167

[132] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Commu. of the ACM, vol. 13, no. 7, pp. 422–426, July 1970. 175

[133] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet Mathematics, vol. 1, no. 4, 2005. [Online]. Available:
http://www.internetmathematics.org/volumes/1/4/Broder.pdf 175

185

http://www.internetmathematics.org/volumes/1/4/Broder.pdf

