1,342 research outputs found

    Simple Approach For Induction Motor Control Using Reconfigurable Hardware

    Get PDF
    The paper deals with rotor-field-oriented vector control structures for the induction motor drives fed by the so-called tandem frequency converter. It is composed of two different types of DC-link converters connected in parallel arrangement. The larger-power one has current-source character and is operating synchronized in time and in amplitude with the stator currents. The other one has voltage-source character and it is the actuator of the motor control system. The drive is able to run also with partial-failed tandem converter, if the control strategy corresponds to the actual operating mode. A reconfigurable hardware implemented in configurable logic cells ensures the changing of the vector-control structure. The proposed control schemes were tested by simulation based on Matlab-Simulink model

    FPGAs in Industrial Control Applications

    Get PDF
    The aim of this paper is to review the state-of-the-art of Field Programmable Gate Array (FPGA) technologies and their contribution to industrial control applications. Authors start by addressing various research fields which can exploit the advantages of FPGAs. The features of these devices are then presented, followed by their corresponding design tools. To illustrate the benefits of using FPGAs in the case of complex control applications, a sensorless motor controller has been treated. This controller is based on the Extended Kalman Filter. Its development has been made according to a dedicated design methodology, which is also discussed. The use of FPGAs to implement artificial intelligence-based industrial controllers is then briefly reviewed. The final section presents two short case studies of Neural Network control systems designs targeting FPGAs

    FPGA design methodology for industrial control systems—a review

    Get PDF
    This paper reviews the state of the art of fieldprogrammable gate array (FPGA) design methodologies with a focus on industrial control system applications. This paper starts with an overview of FPGA technology development, followed by a presentation of design methodologies, development tools and relevant CAD environments, including the use of portable hardware description languages and system level programming/design tools. They enable a holistic functional approach with the major advantage of setting up a unique modeling and evaluation environment for complete industrial electronics systems. Three main design rules are then presented. These are algorithm refinement, modularity, and systematic search for the best compromise between the control performance and the architectural constraints. An overview of contributions and limits of FPGAs is also given, followed by a short survey of FPGA-based intelligent controllers for modern industrial systems. Finally, two complete and timely case studies are presented to illustrate the benefits of an FPGA implementation when using the proposed system modeling and design methodology. These consist of the direct torque control for induction motor drives and the control of a diesel-driven synchronous stand-alone generator with the help of fuzzy logic

    FPGA-Realization of a Motion Control IC for X-Y Table

    Get PDF

    Smart technologies for effective reconfiguration: the FASTER approach

    Get PDF
    Current and future computing systems increasingly require that their functionality stays flexible after the system is operational, in order to cope with changing user requirements and improvements in system features, i.e. changing protocols and data-coding standards, evolving demands for support of different user applications, and newly emerging applications in communication, computing and consumer electronics. Therefore, extending the functionality and the lifetime of products requires the addition of new functionality to track and satisfy the customers needs and market and technology trends. Many contemporary products along with the software part incorporate hardware accelerators for reasons of performance and power efficiency. While adaptivity of software is straightforward, adaptation of the hardware to changing requirements constitutes a challenging problem requiring delicate solutions. The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) project aims at introducing a complete methodology to allow designers to easily implement a system specification on a platform which includes a general purpose processor combined with multiple accelerators running on an FPGA, taking as input a high-level description and fully exploiting, both at design time and at run time, the capabilities of partial dynamic reconfiguration. The goal is that for selected application domains, the FASTER toolchain will be able to reduce the design and verification time of complex reconfigurable systems providing additional novel verification features that are not available in existing tool flows

    Design and Implementation of an RF Front-End for Software Defined Radios

    Get PDF
    Software Defined Radios have brought a major reformation in the design standards for radios, in which a large portion of the functionality is implemented through pro­ grammable signal processing devices, giving the radio the ability to change its op­ erating parameters to accommodate new features and capabilities. A software radio approach reduces the content of radio frequency and other analog components of the traditional radios and emphasizes digital signal processing to enhance overall receiver flexibility. Field Programmable Gate Arrays (FPGA) are a suitable technology for the hardware platform as they offer the potential of hardware-like performance coupled with software-like programmability. Software defined radio is a very broad field, encompassing the design of various technologies all the way from the antenna to RF, IF, and baseband digital design. The RF section primarily consists of analog hardware modules. The IF and baseband sections are primarily digital. It is the general process of the radio to convert the incoming signal from RF to IF and then IF to baseband for better signal processing system. In this thesis, some of major building blocks of a Software defined radio are de­ signed and implemented using FPGAs. The design of a Digital front end, which provides the bridge between the baseband and analog RF portions of a wireless receiver, is synthesized. The Digital front end receiver consists of a digital down converter(DDC) which in turn comprises of a direct digital frequency synthesizer (DDFS), a phase accumulator and a low pass filter. The signal processing block of the DDFS is executed using Co-ordinate Rotation Digital Computer (CORDIC) iii Abstract algorithm. Cascaded-Integrator-Comb filters (CIC) are implemented for changing the sample rate of the incoming data. Application of a DDC includes software ra­ dios, multicarrier, multimode digital receivers, micro and pico cell systems,broadband data applications, instrumentation and test equipment and in-building wireless tele­ phony. Also, in this thesis, interfaces for connecting Texas Instruments high speed and high resolution Analog-to-Digital converters (ADC) and Digital-to-Analog converters (DAC) with Xilinx Virtex-5 FPGAs are also implemented and demonstrated

    FPGA-Realization of a Motion Control IC for Robot Manipulator

    Get PDF

    FPGA-based real-time simulation of sensorless control of PMSM drive at standstill

    Get PDF
    This paper presents a real-time simulation of a sensorless control method for IPMSM drives based on Park Transformation with a reference frame fixed to the rotor and assuming a sinusoidal flux (sinusoidal back-emf). The objective of this paper is to Hardware In Loop (HIL) evaluation of a sensorless position estimation of the Permanent Magnet Synchronous Motor (PMSM) drive at standstill as well as the current controller. An anti-windup method is integrated within the controller to ensure a good dynamic performance during transients. Test voltages vectors are injected in such a manner the current samples are not affected. An asymmetric Pulse Width Modulation (PWM) allows to apply these test vectors each PWM period

    Design of a universal robot controller

    Get PDF
    The paper deals with a general purpose industrial robot controller. Due to the modules of the system is universal. It can be connected to several types of robots, even to CNC, turning-mill or other machines. It was connected to an Adept Scara robot successfully,experimental results will be presented. The basic element of the system is the EMC2 open source robot controller program, which runs in a realtime linux kernel. A PCI card creates the high speed connection between the EMC2 and the machine. DC servo amplifier, digital input and output module, teach pendant, and power electronics designed for the system. The system is RT-middleware (Robotics Technology Middleware)compatible. The RT-middleware is a common robot control platform, which can easily connect different robots to the same network for a common work
    corecore