6,210 research outputs found

    Observer-biased bearing condition monitoring: from fault detection to multi-fault classification

    Get PDF
    Bearings are simultaneously a fundamental component and one of the principal causes of failure in rotary machinery. The work focuses on the employment of fuzzy clustering for bearing condition monitoring, i.e., fault detection and classification. The output of a clustering algorithm is a data partition (a set of clusters) which is merely a hypothesis on the structure of the data. This hypothesis requires validation by domain experts. In general, clustering algorithms allow a limited usage of domain knowledge on the cluster formation process. In this study, a novel method allowing for interactive clustering in bearing fault diagnosis is proposed. The method resorts to shrinkage to generalize an otherwise unbiased clustering algorithm into a biased one. In this way, the method provides a natural and intuitive way to control the cluster formation process, allowing for the employment of domain knowledge to guiding it. The domain expert can select a desirable level of granularity ranging from fault detection to classification of a variable number of faults and can select a specific region of the feature space for detailed analysis. Moreover, experimental results under realistic conditions show that the adopted algorithm outperforms the corresponding unbiased algorithm (fuzzy c-means) which is being widely used in this type of problems. (C) 2016 Elsevier Ltd. All rights reserved.Grant number: 145602

    Cluster validity in clustering methods

    Get PDF

    Analysis of FMRI Exams Through Unsupervised Learning and Evaluation Index

    Get PDF
    In the last few years, the clustering of time series has seen significant growth and has proven effective in providing useful information in various domains of use. This growing interest in time series clustering is the result of the effort made by the scientific community in the context of time data mining. For these reasons, the first phase of the thesis focused on the study of the data obtained from fMRI exams carried out in task-based and resting state mode, using and comparing different clustering algorithms: SelfOrganizing map (SOM), the Growing Neural Gas (GNG) and Neural Gas (NG) which are crisp-type algorithms, a fuzzy algorithm, the Fuzzy C algorithm, was also used (FCM). The evaluation of the results obtained by using clustering algorithms was carried out using the Davies Bouldin evaluation index (DBI or DB index). Clustering evaluation is the second topic of this thesis. To evaluate the validity of the clustering, there are specific techniques, but none of these is already consolidated for the study of fMRI exams. Furthermore, the evaluation of evaluation techniques is still an open research field. Eight clustering validation indexes (CVIs) applied to fMRI data clustering will be analysed. The validation indices that have been used are Pakhira Bandyopadhyay Maulik Index (crisp and fuzzy), Fukuyama Sugeno Index, Rezaee Lelieveldt Reider Index, Wang Sun Jiang Index, Xie Beni Index, Davies Bouldin Index, Soft Davies Bouldin Index. Furthermore, an evaluation of the evaluation indices will be carried out, which will take into account the sub-optimal performance obtained by the indices, through the introduction of new metrics. Finally, a new methodology for the evaluation of CVIs will be introduced, which will use an ANFIS model

    Relational visual cluster validity

    Get PDF
    The assessment of cluster validity plays a very important role in cluster analysis. Most commonly used cluster validity methods are based on statistical hypothesis testing or finding the best clustering scheme by computing a number of different cluster validity indices. A number of visual methods of cluster validity have been produced to display directly the validity of clusters by mapping data into two- or three-dimensional space. However, these methods may lose too much information to correctly estimate the results of clustering algorithms. Although the visual cluster validity (VCV) method of Hathaway and Bezdek can successfully solve this problem, it can only be applied for object data, i.e. feature measurements. There are very few validity methods that can be used to analyze the validity of data where only a similarity or dissimilarity relation exists – relational data. To tackle this problem, this paper presents a relational visual cluster validity (RVCV) method to assess the validity of clustering relational data. This is done by combining the results of the non-Euclidean relational fuzzy c-means (NERFCM) algorithm with a modification of the VCV method to produce a visual representation of cluster validity. RVCV can cluster complete and incomplete relational data and adds to the visual cluster validity theory. Numeric examples using synthetic and real data are presente

    Contributions in computational intelligence with results in functional neuroimaging

    Get PDF
    This thesis applies computational intelligence methodologies to study functional brain images. It is a state-of-the-art application relative to unsupervised learning domain to functional neuroimaging. There are also contributions related to computational intelligence on topics relative to clustering validation and spatio-temporal clustering analysis. Speci_cally, there are the presentation of a new separation measure based on fuzzy sets theory to establish the validity of the fuzzy clustering outcomes and the presentation of a framework to approach the parcellation of functional neuroimages taking in account both spatial and temporal patterns. These contributions have been applied to neuroimages obtained with functional Magnetic Resonance Imaging, using both active and passive paradigm and using both in-house data and fMRI repository. The results obtained shown, globally, an improvement on the quality of the neuroimaging analysis using the methodological contributions proposed
    • …
    corecore