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1
Introduction

1.1 Motivation

In the last few years, the clustering of time series [78, 33] has seen significant growth

and has proven effective in providing useful information in various domains of use. This

growing interest in time series clustering is the result of the effort made by the scientific

community in the context of time data mining.

In the past decade, there has also been a field in the biomedical area that has at-

tracted considerable interest and is the branch of functional neuroimaging. Functional

neuroimaging is based on the use of technologies capable of measuring brain metabolism,

to analyse and study the relationship between the activity of certain brain areas and spe-

cific brain functions, moreover, the functional neuroimaging is a tool of primary impor-

tance in cognitive neuroscience and neuropsychology. The data analyses obtained from

these technologies are based on the study of time series. Starting from these premises,

one part of this thesis work was developed based on the analysis of data based on time

series through clustering techniques and comparison of various clustering algorithms.

The time series analysed come from fMRI (functional magnetic resonance imag-

ing) examinations; other techniques use time series, such as EEG (electroencephalogra-

phy), MEG (magnetoencephalogram) and even PET (positron emission tomography),

but fMRI is the technique that has taken the most important position in the field of

neuroimaging. Functional magnetic resonance imaging (fMRI) in recent years has been

widely used to study the functional activities, and cognitive behaviours of the brain
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8 Introduction

based on a stimulus [52] or during the resting state [63, 23]. To search for neuroscientific

patterns within fMRI data, various statistical methods have been used [16, 38, 80, 54, 10].

For task-based analyses, the most widely used model is the general linear model (GLM)

[24, 81], while for resting-state analyses one of the most widely used algorithms is the

independent component analysis (ICA) [59].

The idea is becoming increasingly widespread that the analysis of the two different

types of fMRI exams can generate a better understanding of the organisation and origin

of the cognitive functioning of the brain. However, there are some problems to be

addressed; the first is the variability of fMRI signals between brain scans and between

individuals, in fact, it is difficult to derive coherent fMRI activation patterns across

different brains and populations due to the enormous variability between individuals

[87]. Another problem is the high dimensional of the data turns out to be a problem,

especially in the comparison between different subjects, and finally there is also the

problem of noise management in fMRI signals which may be due to hardware problems

(the instability of the scanner, experiment design deficits, high field susceptibility) but

also problems due to possible patient head movement and other factors unrelated to

the [87] exam. Technics as GLM, ICA, and other statistical techniques appear to be

in difficulty in managing these issues. Given the complexity of the field of study, to

overcome the limits of statistical techniques and also to have a different analysis, in the

scientific community there has been an increase in fMRI analyses through unsupervised

learning models (clustering). These models given them characteristic of being guided

by data without the need for any truth,and for their ability to manage large volumes of

data and resistance to errors, they are candidates as an excellent alternative to the more

classic methods of statistical analysis.

For these reasons, the first phase of the thesis focused on the study of the data

obtained from fMRI exams carried out in task-based and resting state mode, using and

comparing different clustering algorithms: Self-Organizing map (SOM) [47], the Growing

Neural Gas (GNG) [28] and Neural Gas (NG) [58] which are crisp-type algorithms, a

fuzzy algorithm, the Fuzzy C algorithm, was also used (FCM) [6]. The evaluation of the

results obtained by using clustering algorithms was carried out using the Davies Bouldin

evaluation index (DBI or DB index) [14].

Clustering algorithms being unsupervised learning models, they suffer the problem

of how to carry out their evaluation, the most used technique is that of using evalua-

tion indexes. The evaluation indexes assess the clustering carried out through internal

metrics, usually the compactness and separation of the clusters created are evaluated.

There are different indexes of validation and, based on their characteristics, they may

be more or less suitable for the evaluation of clustering performed on certain types of

data. Since fMRI clustering analysis is relatively new, there is still a lack of literature

on validation indexes studies for this analysis, so the second part of this thesis focuses
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on the study of assessment indexes within fMRI analyses, using eight different indexes.

The indexes analysed are the Fukuyama-Sugeno index (FSI) [29], the Xie-Beni index

(XBI) [82], the Pakhira-Bandyopadhyay-Maulik (PBMI) index [60] in the crisp version

and its fuzzy version (FPBMI) [60], the Rezaee-Lelieveldt-Reiberuno (RLRI) index [66],

Wang-Sun-Jiang (WSJI) [77], the aforementioned Davies Bouldin (DBI) [14] index, and

the soft version of the Davies Bouldin (SDBI) [73] index. The analysis of these indexes

also implies an evaluation of the performance of the various indexes; typically an index

is evaluated based on whether it is able to recognise the correct number of partitions

into which a reference data set is divided, therefore only the performance excellent are

recognised. Given the complexity of the data and its characteristics of heterogeneity, the

evaluation of the excellent results may not be sufficient alone, therefore for the evaluation

of the indexes a metric was introduced that takes into account the sub-optimal results.

Wanting to extend the evaluation of sub-optimal results with other metrics an adequate

methodology was needed; this was done through the use of the adaptive neuro-fuzzy

inference system (ANFIS) [11]. In the next chapters, the themes just exposed will be

deepened.

The two main topics of this thesis will be introduced in the next chapters, the analysis

of fMRI exams and the evaluation of clustering. The first topic will be detailed in the

Chapter 2.1which will explain in detail the usefulness, execution and processing of an

fMRI exam. Giving a very concise definition, an fMRI exam is an exam that allows us

to highlight brain activities, both during actions and in rest situations.

Clustering evaluation is the second topic of this thesis, clustering, which will be

explained in detail in the Chapter 2.4, is a technique that allows to group data, according

to their characteristics. To evaluate the goodness of the grouping there are specific

techniques, but none of these is already consolidated for the study of fMRI exams,

furthermore, the assess of evaluation techniques is still an open field of research.

1.2 Neuroimaging analysis through fMRI

The analysis and interpretation of neuroimaging data often require the division of the

brain into several regions, with similar characteristics, regardless of whether they are

defined in the brain volume or instead are on the cortical surface.

The most commonly used techniques for data studies are the regions of anatomical or

functional interest (ROI) [62], the brain atlases, the data-based plots, these techniques

can also be used in combination with each other.

The ROI-based analysis is a technique to focus data analysis on some structures of

interest, in this case, a unique element is created that represents the signal in a predefined

region, the regions can be chosen based on previous knowledge, and having very different

dimensions, a region could also be made up of a handful of voxels. The results depend
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heavily on the choice of ROI.

Brain atlases, depending on the atlas, provide a mapping that can cover the entire

volume of the brain divided into ROI. An atlas, therefore, reports a knowledge of brain

structures (anatomically, functionally or based on connectivity) often derived from an

ontology derived from previous knowledge in which the regions are clearly distinguished,

to which labels are assigned. However, atlases have limits due precisely to their char-

acteristics, as mentioned above, atlases are created based on previous knowledge, and

currently, there are many different atlases. Still, they are not all consistent with each

other, moreover, an atlas is a standard representation of a brain, but this representation

does not always perfectly adapt to the data to be analysed. There are various factors

that can influence, a common reason is the atlas processing strategies, which are differ-

ent from those used in the image to be analysed. Another example concerns the frontal

brain regions which are often very large in atlases, while it would be preferable to have

a greater division into subgroups with well-defined roles.

The parcellations based on the data, unlike the brain atlases, do not reflect a prede-

fined ontology of the brain structures but allow to represent a better model of the signal

given by the signal itself. The parcellations through statistical techniques allow the re-

duction of data, the creation of models of brain connectivity, of physiological parameters,

and it is useful for group analysis, and the comparison of multiple or multivariate mod-

els. This is particularly useful for analysing groups of subjects, as this step can reduce

the data size by several orders of magnitude while retaining most of the information of

interest.

In recent years, fMRI neuroimaging analysis has seen a significant increase, with both

statistical and data-oriented brain fragmentation analyses. In fMRI analyses typically

the aim is to identify which areas of the brain are activated following a stimulus. To

establish which areas have been activated, a particular signal called BOLD signal is

analysed, the analysis of this signal is determined for the experimental activity. In the

statistical analysis of the acquired data, after a pre-processing, the voxels with greater

intensity are identified. The images obtained, representing the activated regions, are

called statistical parametric map. The GLM (General Linear Model) [24] represents

the most used and robust method for obtaining statistical activation maps from fMRI

images.GLM models the time series as a linear combination of several different signal

components, and checks whether activity in a region of the brain is systematically linked

to one of the known input functions.

Generalised linear models are a generalisation of the more classic linear model in

the context of linear regression. While in the traditional linear model it is assumed

that the endogenous variable is normally distributed, in the context of generalised linear

models the endogenous variable does not have a predetermined distribution, so it can

be distributed like any random variable.
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The generalised linear models were formulated in order to standardise several other

statistical models within a single model, including the linear model, logistic regression

and poissonian regression. The result obtained is a volumetric Statistical Parametric

Map (SPM) [26]. Importantly, spatial information is not exploited with the GLM. The

standard methods of statistical analysis of the fMRI signal require high accuracy of

the fMRI signal determined by the execution of the tasks provided in the experimental

design. These methods are based on the execution of statistical tests that classify a

voxel as active if its signal has a temporal trend corresponding to an ideal waveform

that reflects the experimental design. But this hypothesis is a strong assumption and

is often not reflected in reality. Data-driven analyses represent a complementary and /

or alternative approach to the statistical analysis of the signal’s temporal trend. Data-

driven analyses are considered exploratory because the data structure is explored in

search of activations that can be linked to the task performed.

One of the most used techniques in the data-driven analysis is clustering that allows

identifying sets of voxels whose activity varies over time in a similar and distinctly

different way from that of other sets sets of voxels whose activity varies over time in

a similar way and in a distinctly different way from that of the other sets. Voxels

belonging to each cluster need not be spatially close together. Analysis techniques

through clustering are becoming the predominant method, given the ability to produce

new information. Since clustering is an unsupervised learning technique, selecting the

correct algorithm is a non-trivial problem, the choice of the model may depend on the

context of the study and previous knowledge.

Given the growing interest in the study of fMRI neuroimaging through clustering

in this thesis, several fMRI examinations have been analysed both with clustering tech-

niques and with statistical techniques. For the analysis performed through clustering,

different algorithms have been analysed, with different characteristics. A fundamental

topic concerning clustering will now be introduced, the problem of clustering evaluation

1.3 Clustering Validation

Clustering is an unsupervised classification method that divides the input space into

clusters. The goal of a clustering algorithm is to perform a partition in which the

objects within a cluster are as similar as possible to each other and at the same time

as dissimilar as possible from the elements present in the different clusters. This data-

driven approach is suitable for identifying natural structures in a data set, and for this

reason, it is widely used in many fields such as biology, model recognition, computer

security, and image processing.

As clustering belongs to the unsupervised learning family, once the partitions have

been obtained it is not possible to know whether the proposed partition is the most
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correct. This aspect is certainly not of secondary importance, indeed first of all, there

is no universal clustering algorithm, in fact, the choice of algorithm is often taken based

on the type of data and previous experience. This is because each clustering algorithm

processes the partitions following different functions, and therefore two algorithms can

create different partitions; in addition to this, rarely the clustering algorithms are able

to independently determine the number of natural clusters in the data, which therefore

must be fixed a priori, and this determines the division of clusters. Given that the

choice of the number of clusters is not a simple task, the most used approach is to

execute the clustering algorithm several times, changing the number of clusters to be

created each time, the number of clusters is usually chosen through some heuristics.

After the generation of the various clustering, the problem remains of identifying which

partitioning is best suited to the data, to overcome this problem, techniques for the

evaluation of data partitioning have been introduced, these techniques are called cluster

validation.

Cluster validation is a very complex branch, still under development, which pays for

the lack of a strong theoretical background which does not happen in other fields. In

clustering validation, we can distinguish three main strands, internal validation, external

validation, relative validation.

External validation: validate a partition by comparing it with the correct partition;

therefore it is applied in experiments for which the correct partition of the data is known,

or in which it is possible to know it a posteriori through experts. Internal validation:

the techniques related to internal validation, are not based on the knowledge of the

truth, but they evaluate the characteristics of the partitions, they are the most used

techniques because typically clustering is used in situations where there is no previous

knowledge. The features that are usually analysed by internal validation techniques are

the “Compactness”, i.e. how close/similar the elements within a cluster are, and the

“Separation” that is how distant/dissimilar are the elements present in different clusters.

Relative validation: the relative validation is the most recent approach, in this case, the

validation is based on the stability. Validation takes place by comparing the partition

with the partitions obtained, always on the same dataset, by other clustering algorithms

or by the same algorithm, but also using different values for the internal parameters.

It is very difficult to make a direct comparison between the techniques mentioned

above. In this thesis, we have dedicated ourselves to the analysis of clustering through

internal evaluations, as they reflect more the real cases, this analysis has been performed

through clustering evaluation index (CVI). In the literature it has been shown that as

for the clustering algorithms, there is no optimal CVI compared to others, some perform

better than others for some types of data, and therefore there is a need to have guidelines

on which CVI to use for some data fields. Few papers provide suggestions on which CVI

is optimal for a specific search field. Most of the research work on CVIs concerns the
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proposal of a new CVI, which is compared with others. Often these comparisons are

made on benchmark dataset or synthetic dataset created expressly for comparison.

This thesis will analyze different CVIs using fMRI image data, given the lack of

specific studies for this field in the literature, and a method to evaluate the different

CVIs will be proposed. In most of the works in the literature, the evaluation of a

CVI is performed using a data set of which the correct partitioning is known, through

a clustering algorithm several partitions are created in which the number of clusters is

varied. Once executed, the partitions are evaluated by the CVI and if the latter evaluates

as better partitioning the one with a number of partitions corresponding to the real one,

the CVI is positively evaluated. With the aim of overcoming this methodology that

rewards only excellent results, we have proposed a methodology that evaluates not only

the excellent performance but also the sub-optimal ones obtained by CVIs.





2
Background

In this chapter we will first explain how an fMRI exam is carried out, and what are

the properties that allow the measurement of brain activities and their transformation

into images. In this way it is possible to understand the complexity of the data, and

consequently the inherent difficulty in analyzing this type of data. The concepts of

machine learning will then be exposed to better understand the choices made for the

analysis, the potential of the algorithms used, and the use of techniques for evaluating

the results.

2.1 FMRI

Functional magnetic resonance imaging (fMRI) [12] is a non-invasive and in vivo tech-

nique for studying brain activity. This technique, through the help of a magnetic field

and thanks to the characteristics of the cerebral blood flow, manages to provide images

of brain activities. FMRI is a technique that, given its relevance, has involved various

interdisciplinary teams of researchers in neuroscience, medicine, physics and computer

science, in an attempt to address several crucial aspects during the acquisition, analysis

and interpretation of the data.

Before proceeding with a more in-depth exposure on fMRI, it is good to explain the

two fundamental phenomena on which the fMRI is based on, the BOLD signal and the

hemodynamic response [4].

15



16 Background

Figure 2.1: The BOLD signal consists of several parts: (1) the neuronal response to an
underlying stimulus or modulation; (2) the relationship between neuronal activity and
the starter of a hemodynamic response; (3) the hemodynamic response itself; and (4)
how this response is detected by an MRI scanner.[4]

2.1.1 Bold Signal

Changes in the neural activity of the brain are associated with a change in energy needs:

the greater the functional activity of a part of the brain, the higher its metabolism and,

consequently, its energy demand. The increase in neuronal electrical activity leads to

a higher demand for energy by neurons and consequently of oxygen. To satisfy this

need for oxygen, the blood flow must increase, and it does so thanks to the dilation of

the capillaries and/or the increase in the speed of the blood. However, the increase in

local blood flow occurs to a greater extent than the increase in oxygen consumption; the

result of this decoupling is an increase in the concentration of oxyhemoglobin (oxygenated

hemoglobin) with reduction of the deoxyhemoglobin (free or reduced oxygen hemoglobin)

on the venous side of the capillary bed. Hemoglobin has different magnetic properties

depending on whether it is linked to oxygen or not. The oxygenated hemoglobin is

diamagnetic, i.e. it has no unpaired electrons and has zero magnetic moments, while the

deoxygenated hemoglobin is paramagnetic; therefore, it has unpaired electrons and non-

zero magnetic moment. Fully deoxygenated blood has a magnetic susceptibility of 20%

higher than fully oxygenated blood. Functional magnetic resonance imaging exploits

this magnetic property of hemoglobin, which is used as an endogenous contrast medium.

The introduction of material with magnetic susceptibility within a magnetic field causes

the phase shift of the nuclear spins, creating decay of the transverse magnetization,

linked to the temporal variable T2 * (transverse relaxation time and is a measure of the
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time taken by the spin protons to de-synchronize). The deoxygenation of the blood, by

changing the magnetic susceptibility, causes the MR (magnetic resonance imaging) signal

to vary, and the measured value of T2 *, which increases as the deoxygenation decreases.

The amplitude of this effect increases with the square root of the intensity of the static

magnetic field. In fact, the relative decrease in the concentration of deoxyhemoglobin

in the regions where there is neuronal activity causes an increase in the T2 * parameter

which in turn leads to an increase in the intensity of the image. The increase in blood flow

following neural activity causes an incoming flow of blood into the venous system greater

than the outgoing one, causing an increase in blood volume. In the small veins, the initial

increase in volume is characterised by the presence of deoxygenated hemoglobin, which

is eliminated first by the capillaries. This increase causes a loss of the MR signal, the

initial dip. The increase in the acquired signal is due to a disproportionate increase in

blood flow compared to actual needs, which leads to a local increase in the concentration

of oxygenated hemoglobin and a relative decrease in the concentration of deoxygenated

hemoglobin. The subsequent undershoot is caused by an imbalance between the rates

at which flow and blood volume return to baseline.

2.1.2 Hemodynamic Response

The change in the measured MR signal, triggered by neuronal activity, is called hemody-

namic response (HDR). The form of the hemodynamic response varies over time, from

region to region and is closely connected to the stimulus that generated it, persistent

stimuli will increase its amplitude, while more prolonged duration stimuli will prolong

its duration. Since the changes in the BOLD signal are dominated by hemodynamics,

and not directly by the activity of neurons, the increase in the signal following a neural

activation is slow and protracted over time. It is essential to consider that the activity of

each individual neuron is almost impulsive (temporal duration in the order of millisec-

onds), while the duration of the hemodynamic response, thanks to the cascade of events

that occur during an activation, is about 10 second. Determining the exact relationship

between neuronal events and the shape of the hemodynamic response is, therefore, very

difficult since the dynamics that characterise them are different. After an initial latency,

metabolic demands following neuronal activity increase above basal levels, resulting in

an increase in the flow of oxygenated blood. If the supply of oxygenated blood in the

area exceeds its extraction, there is a decrease in the oxygenated hemoglobin inside the

voxel. About 2 seconds after the beginning of the nervous activity, the acquired signal

increases above the basal value, this occurs in correspondence with the increase in blood

flow beyond the real needs with consequent increase in the ratio between oxygenated and

non-oxygenated hemoglobin. The signal reaches a peak value after about 5 seconds and,

if neuronal activity persists over time, it stops at a constant value forming a plateau.

At the end of the neuronal activity, there is a post-stimulus undershoot due to the fact
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that the blood flow decreases much faster than the blood volume causing a decrease

in the amplitude of the fMRI signal up to a value lower than that of the baseline. As

the blood volume returns to normal levels, the signal reaches the baseline. It is impor-

tant to underline that the BOLD signal relative to a voxel reflects the total amount of

deoxygenated hemoglobin present. Still, it is also influenced by the noise coming from

different sources; this noise often reaches amplitudes of the same order of magnitude as

the measured signal. It should also be remembered that the MR signal derives almost

entirely from the hydrogen protons contained in the tissues, disturbed by the presence

of the paramagnetic contrast medium, deoxyhemoglobin.

2.1.3 FMRI Exam

During an fMRI exam, the Blood-Oxygen-Level Dependent (BOLD) signal is measured,

relating to the hemodynamic changes that occur after greater neural activity, this activity

is measured and generates a large amount of data, unfortunately, this data contains

noise. These data are structured as magnetic resonance imaging (MRI) sequences, each

consisting of several evenly distributed voxels, each voxel is associated with a portion of

the brain, the portions are of equal size to each other like voxels.

FMRI Data Acquisition

The data collected during an fMRI experiment consist of a sequence of individual mag-

netic resonance images; these are acquired to study oxygenation patterns in the brain.

Therefore, to understand the nature of the fMRI data and how these images are used

to infer neuronal activity, the acquisition of single MR images must first be studied. To

build an image, the subject is placed inside by the fMRI machine which has a large elec-

tromagnet inside. The magnet has a powerful magnetic field, typically between 1.5-7.0

Tesla (1 Tesla = 10,000 Gauss, terrestrial magnetic field = 0.5 Gauss), which allows

aligning hydrogen (H) atoms in the brain. A hydrogen atom is formed by a proton

and an electron that rotates around it. Typically their position is random, but in the

presence of a strong magnetic field, they align and absorb energy. In the moment which

magnetic signal is interrupted, the protons return to their original position, dispersing

all the stored energy. The latter is recorded by special reels placed inside the machine.

With this recording, you get the basic MR signal. Through the particular coils placed

inside the machine, the inhomogeneity of the magnetic field is checked, so that each mea-

surement can be represented as the spin density in a single point of the frequency domain

(k-space). To reconstruct a single fMRI image, it is necessary to sample a large amount

of individual measurements of space k; the exact number depends on the resolution of

the desired image. For example, to reconstruct a 64 × 64 images, 4096 measurements

are needed, each sample in a coordinate different from the others in the k-space. From
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this, we understand that the time needed to acquire an image is directly related to its

spatial resolution. Changes in brain hemodynamics in response to neuronal activity

affect the local intensity of the MR signal. Therefore, a sequence of properly acquired

brain images allows you to study changes in brain function over time. An fMRI study,

therefore, consists of a series of brain volumes collected in rapid succession. The tempo-

ral resolution of the acquired data will depend on the time between the acquisitions of

each individual volume. From this, we deduce that the intensity of each voxel over time

is linked to changes in cerebral hemodynamics, in reaction to neuronal activity and can,

therefore, be used to locate where the neural activity takes place. There are two main

classes of fMRI design experiments:

• Task Based

• Resting State

Task Based A task-based fMRI exam allows you to detect the functional areas of the

brain that are involved in motor or cognitive functions; this is usually done by asking

patients to perform different tasks during an fMRI exam. All patients must perform

several tests synchronised with the acquisition of images. There are two main classes of

fMRI design experiments:

• Block Designs

• Event Related

Block Designs In a block design, the different experimental conditions are sep-

arated in time intervals called blocks. Usually, such an experiment is carried out in

the following way, proceeding with the task of interest (for example, touching the finger)

during an experimental block (A), and going to rest during a control block (B). The A-B

comparison can be used to compare the signal differences between the two conditions.

In general, increasing the length of each block will result in a larger response during the

activity. This increases the separation of the signal between the blocks, which in turn

leads to higher detection power. Examples of block design tasks are:

• Object Naming: The patient must think of the name of the object, whose image

is presented

• Finger Tapping DX: The patient must repeatedly touch the thumb of his right

hand with the index finger of the same hand

• Finger Tapping SX: The patient must repeatedly touch the thumb of his left hand

with the index finger of the same hand
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• Phonemic Fluency: The patient must think of all the words, which begin with a

letter that is presented to him

• Generation of Verbs: The patient must think of the verb that expresses the action

represented in a drawing

Event Related In event-related designs, the stimulus consists of short events (e.g.

quick flashes of light) whose timing can be randomised, unlike the previous method, the

rest time is short and can be of different length. Precisely because of this characteristic,

it is little used because, given the nature of the measurement that takes place through

the hemodynamic response, these random and close intervals lead to very nuanced and

difficult to interpret results.

Resting State The brain is always active, even in the absence of a specific task, this

is called resting state (RS). In recent magnetic resonance studies, it has been observed

that brain activity at rest is not random noise, but reflects a functional organization of

the brain, and the functional constituent networks are organised in a very coherent way.

This has created a new avenue for neuroimaging research. To perform a resting fMRI

exam, the patient only needs to sit still without performing any activity.

Figure 2.2: A represents a Block-design task-based protocol with two different tasks,
the task and rest time are equal. B a represents Event-related task-based protocol with
two tasks, the task has a limited duration and the rest time is random. C represents a
Resting-state protocol, to analyze the cerebral activities at rest.[67]

2.1.4 Preprocessing FMRI Data

After the acquisition, the fMRI data is generally subjected to a series of preprocessing

steps aimed at removing the artefacts and validating the model hypotheses. The main
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objectives are to minimise the influence of data acquisition and physiological artefacts,

to standardise the positions of brain regions across subjects to obtain greater validity

and sensitivity in the analysis. The main phases of fMRI preprocessing are:

• Slice Timing Correction

• Motion Correction

• Coregistration and Normalisation

• Spatial Smoothing

Slice Timing Correction When analysing three-dimensional fMRI data, it is gener-

ally assumed that the whole brain is measured simultaneously. In fact, since the volume

of the brain is made up of several slices that are sampled in sequence and therefore at

different times, similar temporal trends from different slices will be temporarily shifted

relative to each other. Suppose that three voxels contained in three adjacent slices have

the same temporal profile. Due to the fact that they are sampled at different time points,

the corresponding measured time periods appear different. The slice timing correction

involves moving the trend of each voxel so that it can be assumed that they are mea-

sured simultaneously. This can be done using Fourier theorem interpolation to correct

differences in acquisition times.

Motion Correction An important issue involving the fMRI study is the correct man-

agement of any subject movement that could have taken place during data acquisition.

Even small amounts of head movement during an experiment can be a major source of

error if not treated properly. When movement occurs, the signal from a particular voxel

will be contaminated by the signal from nearby voxels and the resulting data can be

rendered useless. Therefore, it is of great importance to accurately evaluate the amount

of movement and to use this information to correct the images. The first step in correct-

ing movement is to find the best possible alignment between the input image and some

target image (for example, the first image or the average image). A rigid body transfor-

mation involving six variables is used as parameters. This allows the translation of the

input image (moved in the x, y and z directions) and its rotation (altered roll, pitch and

yaw) to match the destination image. Usually, the matching process is performed by

minimising a cost function (e.g. sums of square differences) that assesses the similarity

between the two images. Once the parameters that achieve optimal realignment are

determined, the image is resampled using interpolation to create the correct new voxel

values. This procedure is repeated for every single volume of the brain.
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Coregistration and Normalisation Functional MRI data in comparison with other

techniques have a better spatial resolution, but in absolute values they are typically of low

spatial resolution and provide relatively little anatomical detail. Therefore, it is common

to map the results obtained from functional data onto a high-resolution structural MR

image for presentation purposes. The process of aligning structural and functional im-

ages, called coregistration, is typically performed using a rigid body (using 6 parameters)

or an affine transformation (using 12 parameters). For the analysis of multiple subjects

in a group, it is important that each voxel is located within the same brain structure for

each subject. Of course, individual brains have different shapes and characteristics, but

there are regularities shared by each non-pathological brain. Normalisation attempts

to record the anatomy of each subject in a standardised stereotaxic space defined by a

template. In this context, a rigid transformation of the body is inappropriate due to the

intrinsic differences in the brains of the subjects. On the contrary, it is common to use

nonlinear transformations to match local characteristics. Subsequently, mapping is used

to resample the input image so that it fits the target image. The main advantages of data

normalisation are that spatial positions can be reported and interpreted consistently, the

results can be generalised in a larger population, and the results can be compared with

other studies.

Spatial Smoothing The spatial levelling process of an image is equivalent to ap-

plying a low pass filter First, smoothing can improve interindividual registration and

overcome differences in spatial normalisation by blurring any residual anatomical differ-

ences. Second, the random field theory (RFT) assumptions, used regularly for multiple

comparisons, are helpful. After these steps, the images can be processed for analysis.



2.2 Machine Learning 23

2.2 Machine Learning

Machine learning is a sub-branch of artificial intelligence. The term Machine Learning

(ML) was coined for the first time in 1959 by Arthur Samuel, and Tom Mitchell gave a

formal definition: “A program is said to learn from a certain experience AND compared

to a class of T tasks obtaining a P performance, if his performance in carrying out the T

tasks, measured by the P performance, improves with the E experience”. In short words,

he says that if a machine improves the performance of a task thanks to past experience, it

has learned. Unlike traditional algorithms where the programmer defines the parameters

and data necessary for solving the activity, in the ML a specific model is not created to

solve the problem, but it will be the model itself thanks to the training that adapts to

the problem. The goal of ML is to extract useful knowledge from the data, so that it

can support decision making. The algorithms used in the ML field, therefore, build a

generalised model capable of making predictions and finding patterns in the dataset. ML

techniques are applied in various sectors, in economics, biology, medicine, in personal

life, virtual personal assistants, product recommendations, and autonomous driving are

of great interest. ML learning processes can be classified into two macro-categories.

• Supervised learning

• Unsupervised learning

• Reinforcement learning

2.2.1 Supervised learning

The supervised definition comes from the fact that behind to the models that learn there

is a “teacher” who has the task of rewarding or punishing the model on the basis of the

results obtained in the learning phase. Supervised learning problems can be divided into

problems of:

• Classification

• Regression

Classification This type of learning is based on the possibility of knowing the solution

or truth of the problem to be solved. In supervised learning, data has a label that

identifies its class to which it belongs. The dataset is generally divided into two sub-

datasets: training and set. The training dataset is used for the model learning phase,

once the training is finished the test one will be used to verify that the network is able

to provide correct answers to unknown data, thus demonstrating generalisation skills.

Sometimes the model can learn by heart, that is it has specialised too much on the data
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seen in training and therefore does not have the right degree of generalisation to evaluate

new data correctly, some techniques are used in the training phase to overcome to this

problem. The most used algorithms for classification analysis are logistic regression, the

nearest neighbour, the supporting vector machines, the decision trees, the random forest

and the neural networks.

Regression Regression models are used to identify a functional relationship between

the variables that make up the dataset. The most used algorithms for regression analysis

are linear and multilinear regression, support vector, random forest regressor, and neural

networks [31, 13, 18].

2.2.2 Unsupervised learning

Learning without a supervisor is mainly used in contexts where the solution to the

problem is not known. Contrary to supervised learning, it does not have the role of

the “teacher” given the lack of truth; it would be impossible to reward or punish the

machine. In this learning, the model has the mood to find relationships or patterns

between the various data analyzed independently. Unsupervised learning can also be

divided into two macro-categories

• Clustering

• Association rules

Clustering

Clustering algorithms are used to identify groups of homogeneous elements within a data

set. The clusters contain highly homogeneous elements with each other and with a high

degree of heterogeneity concerning the elements present in the other clusters. Clustering

will be explained in detail in Chapter 2.4

Association rules

The goal of association rules [86] is to identify models and patterns that recur between

combinations of objects. For example, they are used to determine suggested products

based on those already purchased (the most famous is the beer-diaper scheme).

2.2.3 Reinforcement learning

Reinforcement learning [70] is a technique for the training of automatic learning models

that aims to create models which, in order to achieve the objective, can perform actions
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based on the environment in which they are immersed. In reinforcement learning, artifi-

cial intelligence faces a situation similar to a game and learns through trial and error, in

fact, the model gets rewards or penalties for the actions it performs, the ultimate goal

of the model is to maximise the total reward. The intervention of the designer is limited

to the choice of the reward policy; the model must independently understand how to

perform the activity to maximise the reward. In the beginning, the model will start with

totally random attempts, but as the training progresses, the choices made by the model

will become increasingly more efficient.
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2.3 Neural Networks

A neural network (NN) is a computational model that draws inspiration from the neural

connections of the human brain[47]. Inspired by the human brain, this model is composed

of neurons (also called nodes) that make up the processing units, and the connections

that connect neurons to each other. Another characteristic that makes neural networks

similar to a biological brain is that the NN is an adaptive system, it continuously changes

its structure during the learning phase, based on information external or internal to the

NN. A NN receives external signals through a layer of neurons called input neurons,

each of the input neurons connected to numerous internal nodes, organised on several

levels. Neurons can only perform simple tasks, typically they are activated when a

certain threshold of the signal received at the input is exceeded. If a unit is activated,

the signal will be carried to the other nodes connected to it through the connections.

Based on the characteristics of the connections they can modify the signal, increasing or

decreasing it, these characteristics are called weights. Based on the connection structure

between neurons, neural networks can be divided into two categories which are:

• Feed-forward network.

• Recurrent (or feedback) network, in which there are feedback loops.

The most common type of feed-forward networks is the multilayer perceptron (MLP)

[61]; the neurons are organised in layers that have unidirectional connections. Feed-

forward networks [40] are “out of memory”, this means that the output returned by

input not dependent on the previous states of the network. On the contrary, in recurring

networks through a feedback loop, the output of one or more nodes will be presented to

the network as new input, this will bring the network into a new state, this behaviour

leads to a “memory” effect in which the output will depend on previous network states.
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2.4 Clustering

Clustering is a process of grouping a set of physical or abstract objects into classes of

similar objects. A cluster is a collection of “similar” objects among them that are “dis-

similar” to other cluster objects [37]. The clustering algorithms partition the elements

based on their mutual distance, therefore whether or not to belong to a cluster depends

on the distance of the element from the cluster. To carry out a clustering it is necessary

to decide a priori some rules:

• What characteristics will be the basis of the grouping

• The choice of an adequate measure of the similarity between the objects

• The clustering algorithm to be used

• How to validate the results

Variable choice The choice of the variables to be clustered depends very much on

what you want to achieve as a result. It is necessary to choose the most significant

variables for identifying clusters, this phase is also called features selection. The features

selection involves the reduction of the features, as only the selected features are used.

The choice is made by searching for the features that best express the similarity between

the objects belonging to the same cluster.

Similarity measure The measure of similarity is the technique with which the simi-

larity between the objects of the set under consideration is assessed, this occurs through

the “distance” that exists between the objects. The more two objects are similar, the

more their distance tends to zero. There are various techniques for calculating the dis-

tance, some distance examples are Euclidean distance, Manhattan, Minkowski’s distance,

cosine similarity, and Pearson’s correlation.

Clustering algorithms A clustering algorithm arises from the combination between

the choice of the proximity/distance measure, and choose the criterion function with

which to group the data, thus defining how to measure the level of similarity between

the units. This implicitly decides the “types of groups” to research in the data [83].

A criterion function is intended to achieve the “best” grouping of data based on the

data structure itself. A large number of clustering algorithms have been developed from

various combinations of proximity measurement and criterion function. Although there

are many types of clustering algorithms, there is no algorithm that can universally solve

all problems. To choose the appropriate type of clustering it is important to carefully

examine the characteristics of the problem, taking into account the hypotheses implicit
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in the method, the shape of the clusters, the partitioning structure, the hypotheses made

based on the proximity/distance measurements and the criterion function. Clustering

algorithms can be divided into hierarchical or partitioned, excluded and non-exclusive,

total or partial [83].

• Hierarchical: Clusters are nested, and organised within a hierarchical tree

• Partitioning: objects are divided into clusters without any hierarchy. They are

divided into two categories:

– Exclusive: a datum always and only belongs to a cluster.

– Non-exclusive: In non-exclusive clustering, data can belong to multiple clus-

ters.

• Totals: Clustering is done on all data.

• Partial: Clustering takes place only on a specific portion of the data.

The most famous algorithm is also among the simplest clustering algorithms and is the K-

means [42]. K-means is a partitioning algorithm that aims to minimise total intra-cluster

variance. In K-means, each cluster is identified by a centroid or midpoint. The algorithm

follows an iterative procedure, initially creating K partitions and assigning a centroid

to each partition can be done randomly or using some heuristic information. After

assigning the centroids for each cluster, the distances of each point from all the centroids

are calculated, and the point is assigned to the nearest centroid. Then the centroids are

recalculated, and are recalculated as the average of the values belonging to the cluster.

This cycle is repeated until the algorithm reaches the convergence, the convergence

occurs when, after calculating the new centroids, no point changes its cluster. Other

clustering algorithms will be exposed to the development of this thesis.

Validation Validation is a fundamental aspect of the Cluster Analysis, because given

a dataset, a clustering algorithm generates a subdivision of it, but generates a partition

also when the data do not have any natural grouping, that is, it can create groups that do

not represent anything. It follows that the success of the Cluster Analysis applications

depends entirely on knowing whether the grouping model performed corresponds to a

real structure or not. Furthermore, different approaches often lead to different solutions;

and also for the same algorithm, the choice of input parameters or even the order of

the units in the dataset can influence the final results. The use of valid evaluation

criteria is important to provide the user with results with a certain degree of reliability.

This validation should be objective and independent of the clustering algorithm chosen.

Also, they must be useful for identifying the number of clusters present in the data,

for assessing whether the clusters obtained are significant or are only an artefact of the
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algorithms, or for deciding which algorithms to use. There are three approaches to verify

the validity of clustering [83] :

• external validation criteria, which measure how much the clusters identified corre-

spond to class labels provided externally (previous knowledge).

• internal validation criteria, which measure how well a Clustering solution fits data.

Data is the only information available.

• relative validation criteria, which measure the goodness of a Clustering solution by

comparing it with the results obtained by other Clustering algorithms, or by the

same algorithm, but using different parameter values.

2.4.1 Uses of Clustering

Clustering is used in many industries as an example in marketing for the division of

customers into homogeneous groups, which is one of the fundamental strategies. Clus-

tering analysis can also be used to classify the city based on the possibility that a service

may be profitable. Clustering is also used in seismic studies where groups of epicentres

of seismic events are formed, and checks are made to see if they are located along the

faults of the continents. Other fields in which clustering is used are astronomy, biology,

archaeology and many other sectors, besides, of course, the IT sectors where it is widely

used [65]. In computer science, clustering is used for pattern recognition, spatial data

analysis, image processing, on the web for document classification, and also for Weblog

data analysis to discover groups characterised by common profiles of access and navi-

gation and in many other areas. Clustering was adopted for the study of fMRI data,

offering excellent performance, especially for the classification of brain areas, managing

to manage the data, the number of voxels and the adequacy to the nature of the data.

For these reasons, it is receiving a lot of consensuses in functional imaging field.

2.4.2 Clustering algorithms

In this thesis the following clustering algorithms have been used:

• Self Organizing Maps (SOM)

• Neural Gas (NG)

• Growing Neural Gas (GNG)

• Fuzzy C-Means (FCM)

The detailed description of the four algorithms is defined below.
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Self Organizing Maps

Kohonen introduced Self-organized maps (SOM) [47] in the 1980s, and they have become

very popular for their characteristic of respecting the spatial ordering while preserving

the space of the input data which is reflected by order of the prototype vectors (cluster

centroids). In SOMs, the data is mapped onto an n-dimensional grid of neurons, and

this grid forms the output space. The neurons in the output layer are generally arranged

in a one-dimensional or two-dimensional lattice and are all connected to each other; in

most cases a rectangular or hexagonal distribution is chosen. The structure of the grid

and the number of neurons present in it is chosen before the phase of education of the

network. The neurons of the network can be selected randomly from the input data

or be generated randomly with the same dimensionality as the input data. During the

competitive learning process, at the network is presented with a random vector belonging

to the input data; this will be compared with all the neurons of the network that will

compete with each other. The winning neuron called Best Matching Unit (BMU), will

be the one that, based on a discriminated function, will be the most similar to the input

vector, so the BMU and the neighboring nodes will modify their weights through a fitting

rule that will move them closer in space to the input vector. In the SOM the models that

are close in the input space will be mapped into neurons that are close (or equal) in the

output space. Thanks to this feature the SOMs are defined as “topology conservation”,

i.e. the surroundings are preserved through the mapping process, the characteristics

of the input domain are also reported in the output domain, and since this happens

without any prior knowledge about the input distribution, they have received the name

self-organizing map. In SOM, three phases are distinguished:

• Competition

• Cooperation

• Synaptic Adaptation

Competition In the competition phase, an input vector is passed to the network,

and the neurons in the network will begin to compete with each other by calculating

their similarity values through a discriminant function. Based on this discriminating

function that competition between neurons takes place. The neuron with the best value

is declared the winner of the competition. Let x = [x1, x2, ..., xd] be a randomly selected

input vector from the input space, where d represents the size of the input space. A

prototype neuron j of the SOM output space can be defined as:

wj = [wj,1, wj,2, ..., wj,d]
T , j = 1, 2, ..., C (2.1)



2.4 Clustering 31

Where C is the total number of neurons in the output layer, in other words, the number

of the cluster. The similarity between the output neurons and the input vector can be

calculated through a distance, and the neuron j that minimises this distance is selected

as the winning neuron (BMU) and can be defined as:

BMU = min||xt − wjt|| 1 ≤ j ≤ C (2.2)

Where t represents discrete time coordinate.

Cooperation In the cooperative process, a topological neighbourhood is defined in

which the winning neuron is the center and the cooperating neurons are the neighbours.

The winning neuron will excite the neighbouring neurons more while the distant ones will

have a lower excitation value. Let hj,i denote the topological neighbourhood centered on

winning neuron i and dj,i denote the lateral distance between the winning neuron i and

the excited neuron j. The topological neighbourhood hj,i can be a unimodal function of

the lateral distance dj,i satisfying the following two distinct requirement:

• hj,i is symmetric about the maximum point defined by dj,i = 0; in other words, it

attains its maximum value at the winning neuron i for which the distance dj,i is

zero.

• The amplitude of hj,i decreases monotonically with increasing lateral distance dj,i,

and decays to zero as dj,i →∞.

Synaptic Adaptation In this part, the excited neurons (both BMU and its surround-

ings) change their internal weights through a discriminate function that arranges them

through appropriate adjustments, in relation to the input pattern. The adjustments lead

to better the response of the winning neuron to the subsequent application of a similar

input model. The discriminating function is formalized as follows:

wj(t+ 1) = wj(t) + ϕ(t)hj,i(t)(x(t)− wj(t)) (2.3)

Which is applied to all the neurons in the lattice that lie inside the topological neighbour-

hood of the winning neuron i,and where the parameter ϕ(t) represents the learning-rate

which is a value that gradually decreases with increasing time.

Algorithm Step Before training the network, you need to set some parameters such

as:

• Number of neurons for the output layer.

• Select neurons from the input dataset or generate them randomly.
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• Define the structure of the lattice and the size of the neighbourhood.

• Define the value of the learning-rate value, and of the maximum number of itera-

tions.

Once the parameters have been set, we start training the network as follows:

1. Randomly select a vector x from input dataset.

2. Find the BMU by using the minimum-distance (see formula (2.2)).

3. Adjust the synaptic-weight vectors of all excited neurons by using the update

formula (2.3).

4. Repeat from the beginning until no noticeable changes in synaptic weight output

vectors, or maximum number of iterations is achieved.

Neural Gas

The Neural-Gas (NG) [58] learning algorithm is a variant of the Kohonen algorithm and

has the advantage of converging more quickly. It was presented in 1991 by Thomas M.

Martinetz. Unlike SOM, the neurons of the output layer are not organised on a two-

dimensional grid, since the algorithm does not maintain any topological relationship,

but is a standard network of two linear layers. As in the SOM, NG uses a soft-max

adaptation for the weights, i.e.the weights of the non-winning neurons are also updated,

but, unlike the SOMs, in NG a list is created with the neurons ordered according to

the proximity of the winning neuron, and the weights are updated according to this list.

The name Neural-Gas derives from the dynamics of the prototype vectors during the

adaptation process, which distribute themselves like a gas within the data space. In NG

as in SOM, it is necessary to choose a priori the number of neurons, therefore of clusters,

to be used. NG uses parameters which are:

• ε which represents the size of the adaptation step.

• λ which represents the proximity range, i.e. the number of neural units that will

be involved in updating the synaptic weights at each step of adaptation.

• T , which defines the maximum age of a connection between neurons.

• ki is the classification index of the node in the ordered list of neurons (the node in

the first position has the value 0).

Both ε and λ decrease as the iterations increase, λ, therefore, brings strong excitation

to all neurons when the first input samples are presented. The resulting graph at the end

of the training procedure represents the similarity, hence the neighbourhood relationship

between the input data. Covering the data space with minimal representation error.
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Algorithm Step Before training the network you need to set some parameters such

as:

• Number of neurons for the output layer.

• Select neurons from the input dataset or generate them randomly, but consistent

with the input dataset.

• Define ε, λ, T .

• Define maximum number of iterations.

Once the parameters have been set, start training the network as follows:

1. Randomly draw a vector x from the input dataset.

2. Calculate the similarity of each neuron with the input vector using the formula

(2.2).

3. The ordered list of neurons is created based on their similarity from the input

vector, each neuron is assigned its own ki value;

4. Adjust the synaptic-weight vectors of all excited neurons by using the update

formula:

wj(t+ 1) = wj(t) + εe
−ki
λ (x(t)− wj(t)) (2.4)

5. Initialise or update to 0 the connection between the first and the second winning

neurons.

6. Increase the age of all the other connections in the neighbourhood of the winning

neurons.

7. Remove the lateral connections between the winning neuron and the neurons in

its neighbourhood with age greater than the value of T .

8. Repeat from the beginning until the number of iterations is achieved.

Growing Neural Gas

The Growing Neural Gas (GNG) [28] algorithm proposed by Fritzke manages to over-

come the NG problem of having to choose in advance the number of neurons to use.

GNG has the ability to add and remove nodes based on implementation choices. The

GNG algorithm starts with two neurons in random positions in the input space; new

neurons are periodically added by evaluating the local statistical measurements collected

during the previous adaptation phases. Each γ input vectors, a new neuron is inserted



34 Background

between the neuron that has accumulated the highest local error and its neighbour with

the highest error. Furthermore, GNG, in addition to adding nodes also eliminates the

connections that appear to be below a predefined value, if a neuron remains without

connections, it is removed. So the GNG continues to add and delete neurons leaving

only those that are very active. The fundamental parameters of GNG are:

• nmax which represents the maximum number of neurons that the network can have.

• εb which represents the learning rate of the winning neuron.

• εn which represents the learning rate of the neighbourhood of winning neuron.

• T , the maximum age of the connection.

• γ, parameter that defines how often it is possible to include a new neuron in the

network.

• ∆e which represents the local error variable.

• α and d, constants that influence the decrease of the error variables.

The performance of the GNG algorithm is heavily influenced by these parameters,

and their optimal setting turns out to be a very complex operation.

Algorithm Step Before training the network you need to set some parameters such

as:

• Define nmax, εb, εn, γ, T , α, d.

• Define maximum number of iterations.

• Select two neurons from the input dataset or generate them randomly, but consis-

tent with the input dataset.

Once the parameters have been set,start training the network as follows:

1. Randomly draw a vector x from input dataset.

2. Calculate the similarity of each neuron with the input vector using the formula

(2.2).

3. The ordered list of neurons is created based on their similarity from the input

vector, select the first and second winning neurons, called s1, s2.

4. Update the age of the connection between the two winning neurons to 0, and

increase the age of all connections emanating from s1.
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5. Add the squared distance between the input signal and the nearest unit in input

space to local error variable.

6. Move the weights of the winning neuron, and of its direct topological neighbours

by using the update formulas:

ws1(t+ 1) = εb(x(t)− ws1(t)) (2.5)

wi(t+ 1) = εn(x(t)− wi(t)) ∀i ∈ s1 neighbourhood (2.6)

7. If the number of input signals is an integer multiple of parameter γ, then insert

new node as follow:

• Determine the neuron q as having the largest accumulated error and deter-

mine f, a direct neighbour farthest from q.

• Interpolate a new unit r between q and f:

wr =
(wq + wf )

2
(2.7)

• Insert connections between r and q and between r and f. Also, remove the

connections between q and f.

• Decrease the error variable of q and f.

• Update the connections among these three neurons and their error variables

∆e(multiplying them with the α parameters).

8. Remove the lateral connections between the winning neuron and the neurons in

its neighbourhood with age greater than the value of T .In case a neuron remains

without connections, remove it.

9. Decrease all error variables ∆e (multiplying them with the d parameter).

10. Repeat from the beginning until the number of iterations is achieved.

Fuzzy C-Means

The classic clustering techniques create partitions that have an N → 1 correspondence

with data between patterns and partitions (more data goes into a single cluster). The

fuzzy approach [6] modifies this concept in order to have an N → N correspondence

by associating each data to each cluster through the use of a membership function [85].

So a fuzzy clustering algorithm will not provide crisp data segmentation’s but will be a

softer (fuzzier) segmentation. For this reason, data assignment in a cluster is described

with a membership degree between 0 and 1. The unsupervised FCM algorithm is a
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technique based on the objective function. The algorithm, which is a generalisation of

the least-squares method, works by minimising the following objective function.

Jm =
N∑
i=1

K∑
j=1

µmji ||xi − zj ||2 (2.8)

where:

• m is the fuzzy factor, and is any real number greater than 1, this parameter

indicates the overlap of the generated clusters; if it tends to 1 the clusters will be

slightly overlapped, the more it tends to infinity and the more the clusters overlap.

• K is the number of cluster decided by the user.

• N is the number of data contained in the input dataset.

• xi is the i-th data belonging to the input dataset.

• zj is the j-th centroid belonging to the clusters, a centroid is the prototype vector

that represents all the data belonging to the same cluster.

• µji is the degree of membership of xi in the cluster j.

Algorithm Step Before running the algorithm, you need to choose the following pa-

rameters:

• Define K.

• Define m.

• Define ε, represents the minimum update value, below this value, the algorithm

ends.

• Define maximum number of iterations.

• Initialise U = [µji] matrix at 0, U matrix represents the fuzzy partition matrix,

returned as a matrix with K rows and N columns. Element in position U(j, i)

indicates the degree of adhesion of the i-th element in cluster j. The sum of the

column values is one.

• Random generation of K centroids.

Once the parameters have been set,the algorithm proceeds as follows:
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1. Calculation of centroids which is performed with the following formula:

zj =

∑N
i=1 µ

m
jixi∑N

i=1 µ
m
ji

(2.9)

in the first step this point is skipped since the centroids have just been created

randomly.

2. U matrix update:

µji =
1∑K

k=1

(
||xi − zj ||2

||xi − zk||2

) 2
m−1

(2.10)

3. The Jm object function is calculated through the formula 2.8.

4. If the maximum number of iterations is reached or if Jm(t) − Jm(t − 1) ≤ ε the

algorithm ends otherwise it repeats from the first step.

2.5 CVIs

Clustering algorithms with different cost functions provide different solutions. No uni-

versal best choice exist. For most clustering algorithms, the number of clusters to use

for dividing the dataset is not known a priori, and thus the latter is set as an experience-

based parameter or on heuristic base. Once you have selected the correct clustering

algorithm and the number of clusters, you need to tackle the evaluation of the clustering

results. In conditions where there is no preliminary information on the data, the best

evaluation method is internal indexes [15]; these indexes can be used to choose the best

clustering algorithm and the optimal number of clusters, without the need for a priori

information on the dataset.

Indexes that use internal validation are called the Cluster Evaluation Index (CVIs).

Typically, CVIs measure Compactness, i.e. how similar the data are within a cluster,

and Separation, i.e. how dissimilar the elements present in the different clusters are, pre-

cisely because they evaluate these values they are called internal evaluation measures.

Eight of the most famous or innovative CVIs were chosen for the analyses performed,

while crisp and fuzzy CVIs were chosen. Among the CVIs chosen, one part maximises

the evaluation function negatively (-), i.e. the more the returned value tends to 0, the

better the evaluation, others maximise the evaluation function positively (+), i.e. the

more the returned value tends to infinity the better the rating. The CVIs will now be

presented in detail.
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2.5.1 Fukuyama Sugeno

The index proposed by Fukuyama and Sugeno(FSI)[29] exploits cohesion and separation.

The first term of the formula is a measure of compactness, while the second term is a

degree of separation between each cluster and the mean of the centroids of the cluster(z).

FSI is a fuzzy and negative (-) index:

FSI =

K∑
i=1

N∑
j=1

µmij ||xj − zi||2 −
K∑
i=1

N∑
j=1

µmij ||zi − z||2 (2.11)

Where K is the number of clusters, N the number of elements present in the dataset,

µij is the value of the fuzzy membership matrix corresponding to the j-th element of the

dataset in the i-th cluster, m is the fuzzyfication value used in the algorithm. Further-

more, xj and zi represent the j-th element of the dataset and the centroid of the i-th

cluster, finally, z is a vector representing the mean of all K centroids.

2.5.2 Xie Beni

The Xie and Beni index (XBI) [82] is a negative (-) and fuzzy index and is also a ratio

type index, which measures the average fuzzy compactness within the cluster compared

to the minimum separation between clusters.

XBI =

∑K
i=1

∑N
j=1 µ

2
ij ||xj − zi||2

N (mini 6=k{‖zi − zk‖2})
(2.12)

Where K is the number of clusters, N is the number of elements present in the dataset,

µij is the value of the fuzzy membership matrix corresponding to the j-th element of

the dataset in the i-th cluster. Furthermore, xj and zi represent the j-th element of the

dataset and the centroid of the i-th cluster,and zk is a centroid different from zi but

always belonging to K.

The numerator of the equation, which represents the least squares error, indicates the

compactness of the fuzzy partition, while the denominator indicates the separation be-

tween clusters. An optimal partition should have a low value for compactness and a high

value for separation.

2.5.3 Compose Within and Between scattering Index

The Compose Within and Between scattering Index (CWBI) [66], alternatively called

the RLR Index (RLRI) deriving from the name of its authors, is a negative (-) and fuzzy

index that evaluates the average compactness and separation of fuzzy clustering using
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the sum of two functions.

CWBI = αScat(K) +Dis(K) (2.13)

Where Scat(K) represents the average scattering for the K clusters and is defined as:

Scat(K) =

1

K

∑K
i=1 ||sigma(zi)||

||σ(X)||
(2.14)

where ||x|| = (xT · x)
1
2 and σ(X) represent the variance of the input data and is repre-

sented as:

σ(X) =
1

N

N∑
j=1

(xj − x)2 (2.15)

Where N is the number of elements present in the dataset K number of cluster, xj
represent the j-th element of the dataset, x is a vector representing the mean of all data

input. Also σ(zi) indicates the fuzzy variation of the i-th cluster,which is defined as:

σ(zi) =
1

N

N∑
j=1

µij(xj − zi)2 (2.16)

Where µij is the value of the fuzzy membership matrix corresponding to the j-th element

of the dataset in the i-th cluster, and zi the centroid of the i-th cluster. The smaller the

value of Scat (K), the better the compactness of the clustering.

The distance function Dis(K) measuring the separation between clusters,and is defined

as:

Dis(K) =
Dmax

Dmin

K∑
i=1

(
K∑
k=1

‖zi − zk‖)−1 i 6= k (2.17)

Where Dmax = max(‖zi − zk‖) and Dmin = min(‖zi − zk‖).The smaller the value of

Dis(K), the better the separation of clusters. The parameter called α is a weighting

factor equal to Dis(Kmax). Where Kmax in case of single evaluation corresponds to K,

but in case of comparing different clusterings on the same input dataset, Kmax represents

the clustering whit the highest K value among the various clustering.

2.5.4 WSJ

Inspired by the CWBI, the WSJ index (WSJI) [69] is a negative (-) and fuzzy index,

uses a linear combination of averaged fuzzy compactness and separation to measure
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clustering, which is defined as:

WSJI = Scat(k) +
Sep(K)

Sep(Kmax)
(2.18)

Where Scat(K) is given by equation (2.14), Sep(K) denotes the between-cluster sepa-

ration, which is defined as:

Sep(K) =
D2
max

D2
min

K∑
i=1

(

K∑
k=1

‖zi − zk‖2)−1 i 6= k (2.19)

Where Dmax = max(‖zi − zk‖) and Dmin = min(‖zi − zk‖). Kmax in case of single

evaluation corresponds to K, but in case of comparing different clusterings on the same

input dataset, Kmax represents the clustering whit the highestK value among the various

clustering.

2.5.5 PBM

The PBM index (PBMI) [60] is named after its authors, is a positive (+) and crisp index,

the index estimates the compactness within the cluster and the wide separation between

fuzzy clustering clusters, and represented as follows:

PBM =

(
1

K
· E1

Ew
·Dk

)2

(2.20)

Where K is the number of clusters, E1 is define as follows:

E1 =

N∑
j=1

||xj − x|| (2.21)

Where N is the number of elements present in the input dataset, xj represent the j-

th element of the dataset, x is a vector representing the mean of all data input. Dk

represents the max separation of clusters.

Dk = ||zi − zk|| i 6= k (2.22)

where zi the centroid of the i-th cluster, and zk is a centroid different from zi but always

belonging to K. Ew represents the compactness of the cluster.

Ew =

K∑
i=1

N∑
j=1

||xj − zi|| (2.23)
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2.5.6 FPBM

It is the fuzzy PBM (FPBMI )[60] version, and it is defined as follows:

PBM =

(
1

K
· E1

Efw
·Dk

)2

(2.24)

Where E1 is represented in the equation(2.21), Dk in the equation(2.22),K is the num-

ber of clusters, N the number of elements present in the input dataset, while Efw is

represented as follows:

Efw =
K∑
i=1

N∑
j=1

µij||xj − zi|| (2.25)

Where µij is the value of the fuzzy membership matrix corresponding to the j-th element

of the dataset in the i-th cluster.

2.5.7 Davies Bouldin

The Davies-Bouldin Index (DBI) [14] is a negative (-) and crisp index, the index estimates

the ratio of within-cluster compactness to between-cluster separation, which is defined

as:

DBI =
1

K

K∑
i=1

max(
Si + Sk
||zi − zk||2

) i 6= k (2.26)

Where K is the number of clusters, zi the centroid of the i-th cluster, and zk is a centroid

different from zi but always belonging to K, and Si is represented as follows:

Si =
1

C

C∑
Kij=1

||xKij − zi||2 xKij ∈ Ki (2.27)

Where C denotes the number of data points in the i-th cluster Ki, and xKij represents

the j-th element in the i-th cluster Ki.

2.5.8 Soft Davies Bouldin

Soft Davies Bouldin index (SDBI) is the fuzzy version of DBI and is defined as:

SDBI =
1

K

K∑
i=1

max(
SUi + SUk
||zi − zk||2)

i 6= k (2.28)
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Where K is the number of clusters, zi the centroid of the i-th cluster,and zk is a centroid

different from zi but always belonging to K, and SUi is represented as follows:

Si =
1

C

C∑
Kij=1

µmij · ||xj − zi||2 xKij ∈ Ki (2.29)

Where C denotes the number of data points in the i-th cluster Ki, and xKij represents

the j-th element in the i-th cluster Ki, and µij represents the degree of belonging of xKij
to the i-th cluster, m is the fuzzification coefficient.
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2.6 ANFIS

In this chapter, we will explain the fundamental concepts on which ANFIS is based, its

structure and the advantages and criticisms that this model entails.

2.6.1 Fuzzy Logic

Fuzzy logic [85] is a non-binary logic, the theorization of which was defined by Lotfi

Zadeh in 1965. Binary (or classical) logic, deals only with what is completely true or

completely false, while fuzzy logic extends its interest to what is not completely true

and to what is probable or uncertain. Fuzzy logic is based on a linguistic approach, in

which words or phrases in natural language are used instead of numbers. Thanks to his

approach the fuzzy logic simplifies complex situations and concepts within traditional

logic. Fuzzy logic uses fuzzy sets, which obey rules, structures and axioms quite similar

to those of classical set theory, with the difference that an object can belong to several

subsets at the same time. Membership in a subset, in fuzzy logic, is associated with a

degree of membership. The set of inference rules that must be applied to a given system

to obtain results through the use of fuzzy logic represents the fuzzy inference process.

2.6.2 Fuzzy Inference

Fuzzy inference [68, 55] is the mapping process starting from an input space and arriving

at an appropriate output space using fuzzy rules. These rules are not represented by com-

plicated mathematical models but by simple linguistic expressions, which are converted

into mathematical formalism with the ”if-then-else” language of fuzzy logic. Typically,

the rules consist of two parts, ”if” and ”then”, the antecedent (if) which defines the

condition and the consequent (then) which represents the action. It is also possible to

define an additional “else” rule which is used when none of the rules has been satisfied.

Inference can be defined as the procedure through which the fuzzy output is determined

starting from the antecedents. There are several models of fuzzy inference; the most

used is Sugeno [68]. The Sugeno method has several sub-methods, but the most used

ones are only of order 0 and order 1. In the Sugeno method of order 0, each rule results

in a crisp value of the fixed output variable, in the Sugeno inference method of order 1,

however, the value of the consequent is not a fixed value, but is a linear combination of

the inputs. For example, if the inputs of the fuzzy system are P and T, the output for

each rule is given by the following formula:

Z = a+ bP + cT (2.30)

where a, b and c are coefficients that vary from rule to rule.
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2.6.3 NEURO-FUZZY Networks

Both neural networks and fuzzy algorithms solve problems of their domain without a

mathematical model. The neural network consists of a black box, it is difficult to find

logical rules to describe the final states, and the learning process which can take a long

time and even come to converge, but is tolerant to changes in input and structure. The

fuzzy method undergoes the problem of complexity in the definition of fuzzy rules as

the number of parameters increases, but it is optimal as a basis for decision support. A

neuro-fuzzy model has the characteristics to be able to fill the shortcomings of the fuzzy

systems on the one hand and of the neural ones on the other. Fuzzy inference, unlike

neural networks, does not acquire knowledge from input-output relationships but needs

heuristic rules. The advantage of a neuro-fuzzy network over a neural one consists in

the fact that the structure can be represented through linguistic rules. The nodes that

make up a neuro-fuzzy network do not have weights, as in a system based on a neural

network, and the training of the network takes place with back-propagation algorithms.

ANFIS adaptive neuro-fuzzy inference models acquire knowledge from data using the

operating algorithms typical of neural networks, representing them using fuzzy rules.

Basically, these are neural networks structured on different levels which, starting from

the correlated inputs and outputs, autonomously generate fuzzy rule systems that guide

the output construction process. As in fuzzy logic, the final result is linked both to the

fuzzy rules and to the membership functions. Membership functions can be of various

types as for fuzzy logic.

2.6.4 ANFIS architecture

The neuro-fuzzy models use training data to acquire knowledge of the data to be anal-

ysed; the neuro-fuzzy algorithms allow to calibrate the membership functions of the

fuzzy inference by training an NN. To carry out the training, it is necessary to define

a matrix consisting of input parameters, an output value and a number of eras. The

higher the number of epochs, the more detailed the output result will be. The ANFIS

[43] models acquire knowledge from data through the operating algorithms typical of

neural networks, representing them through fuzzy rules. The ANFIS structure can be

divided into five different levels, which allow for the autonomous generation of fuzzy rule

systems, based on the input data and the expected outputs.

A neuro-fuzzy model is characterised by a five-level network, which will now be

detailed.
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Figure 2.3: Organization of the ANFIS architecture

Description of the five layers

As an example we assume that the fuzzy inference system under consideration has two

inputs x and y and one output z (Figure 2.3). Suppose the rule base contains two fuzzy

if-then rules of the type of Takagi and Sugeno.

Rule1 = If x is A1 and y B1, then f1 = p1x+ q1y + r1

Rule2 = If x is A2 and y B2, then f2 = p2x+ q2y + r2
(2.31)

Layer 1: This is the layer that deals with the Fuzzification of the input. Nodes are

adaptive so that they can be modified based on the membership function. Every node i

in this layer is a square node with a node function:

O1
i = µAi (x) (2.32)

where x is the input to node i and Ai is the linguistic label associated with this node

function. O1
i is the membership function of Ai that defines the degree to which the given

x satisfies the quantifier Ai. The most common choice is the one in which µAi(x) assumes

a bell shape with maximum equal to 1 and minimum equal to 0, like the generalised bell
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function For example, with the Gaussian membership function, the node is defined by

the following formula:

µAi (x) =
1

1 +

[(
x− ci
ai

)2
]bi (2.33)

where ai, bi, ci is the parameter set. As the values of these parameters change, the

bell-shaped functions change accordingly, thus exhibiting various forms of membership

functions on the Ai language label. Parameters in this level are referred to as premise

parameters.

Layer 2: The nodes of the second level, on the other hand, incorporate the antecedents

of the fuzzy rules. Within these nodes, only the logical AND operation is performed

between the active inputs, for this reason they are called multiplier nodes. For example:

wi = µAi(x)× µBi(y) i = 1, 2 (2.34)

where wi stands for weight. In ANFIS language, weights are usually called “Firing

Strengths” of a rule.

Layer 3: In this layer the weights are normalised with respect to all the other weights

for this reason they are called normalised fire force. They are described by the following

formula:

wi =
wi

w1 + w2
i = 1, 2 (2.35)

Layer 4: The nodes of the fourth layer are adaptive and incorporate the consequent

of the rules. Each node accepts as input all the input variables at the first level and the

corresponding weight coming from the previous level.the nodes are represented by the

following formula:

O4
i = wifi = wi (pix+ qiy + ri) (2.36)

where wi is the output of layer 3, and pi, qi, ri is the parameter set. Parameters in this

layer will be referred to as consequent parameters.

Layer 5: In this layer there is only one node, called or adder, because it calculates

the overall output as the sum of all incoming signals, described by the following formula:

O5
1 =

∑
i

wifi =

∑
iwifi
wi

(2.37)

So, this is how any ANFIS produces an output from its fuzzy network by inserting

inputs. However, there is no specific way to tell which is the optimal number of rules
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and membership functions to have a good approximator, without being too heavy in

terms of calculation. The determination of the forms and quantity of the membership

functions depends on the design choices made by the user. The initial fuzzy model can

be derived systematically through some techniques so that you have a rough structure

to start. The most popular methods are grid partitioning and subtractive clustering.





3
Unsupervised Learning in fMRI Analysis

In this section, we will present the results of the analysis of fMRI exams using

unsupervised learning techniques. The results achieved are organised and set out below

order:

• Analysis of resting-state fMRI exams using soft and competitive learning algo-

rithms.i.e., results on the comparison of competitive algorithms, i.e. results con-

cerning the application of a large family of unsupervised learning algorithms to an

fMRI dataset in a resting state.

• Task-based fMRI exam analysis with fuzzy and competitive algorithms, i.e. results

concerning the application of the clustering algorithm with the specific intent of

evaluating the different results of cross clustering on task-oriented fMRI dataset.

49
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3.1 Resting State FMRI Functional Connectivity Analysis Using

Soft Competitive Learning Algorithms

3.1.1 Premise

This research work was presented at a Joint Congress of the 15th International Sym-

posium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd

Conference on Imaging and Visualization held in Lisbon (Portugal) on March 2018. It

that won the Taylor and Francis prize for the section “Imaging and Visualization” at

the 15th International Symposium on Computer Methods in Biomechanics and Biomed-

ical Engineering and 3rd Conference on Imaging and Visualization.This paper it is the

result of collaboration with other authors, and presented in other works [1].The parts

for which I have most contributed concern the selection, evaluation, implementation and

optimization of the algorithms used, and the management of the experimental part.

The main topic regarding this work is resting state fMRI data analysis for functional

connectivity explorations is a challenging topic in computational neuroimaging. Several

approaches have been investigated to discover whole-brain data features. Among these,

clustering techniques based on Soft Competitive Learning (SCL) have been shown effec-

tive in providing useful information in various contexts. However, although significant

achievements have been reached, these techniques still present critical aspects that re-

quire further investigations. We selected three clustering algorithms, i.e. Self-Organizing

Maps (SOM), Neural Gas (NG) and Growing Neural Gas (GNG), to study the intrinsic

functional properties of images coming from a shared repository of resting state fMRI

experiments (1000 Functional Connectome Project, i.e. Oxford dataset). To compare

the functional connectivity based on soft clustering, we calculated the Seed Based Linear

Correlation (SBLC) to study the Default Mode Network (DMN) functionality, i.e. we

found that Precuneus L/R has the higher Correlations Coefficients with its controlat-

eral part and with the posterior division of Cingulate Gyrus. The differences among the

three soft clustering algorithms adopted were measured basing on Jaccard Similarity Co-

efficient (JSC), whereas the quality of clusters has been evaluated with Davies-Bouldin

Index (DBI).

The optimal clustering computation was with 2 partitions for all the algorithms. We

obtained the following results: a) clusters differentiated the amplitude of BOLD signals

for both Males and Females, i.e. low level signal vs high level signal; b) clusters also

differentiated the quality of seed-based correlations, i.e. strong (positive) associations vs

weakly associations. These multivariate outcomes highlighted the complementary usage

of clustering algorithms with statistical signal processing: the first made the partitions,

the last explain the partitions.
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3.1.2 Introduction

The main goal of our study is to integrate different methodologies useful to discover and

to explore the inner properties of brain signals, with application to resting state BOLD

time series in healthy subjects. The motivation of our study emerges in relation to a

recent work published by Biswal et al. [8], that highlighted a universal architecture of

functional connections in the brain resting state networks, with age and sex as significant

determinants. The specific goal of our analysis was to evaluate the following points: 1)

if there is a between gender functional variability, i.e. if there is a statistical BOLD

signal difference between males and females, 2) if there is a within gender functional

variability, i.e. if male and female exams have different spread, and 3) if there is a

confirmation of some interesting functional connectivity networks. In particular, our

intent was to extend this conclusion with clustering algorithms to find similarities in

time series (signatures) or in activation patterns (exams).

Approaching the general fMRI signal processing with data-driven methods is a chal-

lenging application (cfr. works by Lachiche [49] and Liao [78] for an overview and

Vergani et al [74] for our recent work with clustering techniques); data-driven methods

are used as well in the resting state paradigm in functional neuroimaging (cfr. papers

by Margulies [56], Van Den Heuvel [72, 39], Lee [50], and Wang [77]). For this pur-

pose, we adopted as data driven methods the soft competitive learning algorithms to

explore the natural partitions of the data (cfr. [19] and [21]). We choose Self Organizing

Map (SOM), Neural Gas (NG) and Growing Neural Gas (GNN), that are a soft class of

unsupervised artificial neural networks.

SOM are models initially proposed by Kohonen [47] and they are widely used be-

cause they allow the representation of data in a low-dimensional space, preserving the

topological properties of the entrance space. SOMs are single-layer feedforward neural

networks where output neurons are organised into low-dimensional grids (typically 2D

or 3D spaces). The number of clusters that will be created is defined a priori.

NG is an alternative approach to SOM networks [17, 58] . The name derives from the

fact that the neurons in the data space are moved as particles of a gaseous element, all

negatively charged. Neurons repel each other, occupying the surrounding space, but they

are attracted by areas of high data density as if the latter are positively charged particles.

The NG algorithm is part of the soft competitive learning family, where not only the

winning unit is adapted after the presentation of an input data, but also the remaining

units. Unlike the SOM algorithm, no fixed topology is imposed on the network, the

neurons are not arranged on the grid (they are free in space). Learning is performed

according to a leaky learning strategy, by updating not only weight vectors of the winner

neurons but also weight vectors of all losing neurons with a smaller rate that decreases

in function of the increasing distance with the current input data.

GNG algorithm is an extension of NG and it was developed by Fritzke [27, 28]. Given
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a certain distribution of input data in the real domain, GNG incrementally creates a

graph, or a network of nodes, where each node in the graph has a position in Rn. GNG

is an adaptive algorithm because if the distribution of input data changes over time,

GNG can adapt, that is to move the nodes in order to adapt to the new distribution.

In this graph the number of nodes is increased incrementally starting from two initial

nodes. The nodes are considered neighbours if they are connected by an edge, and the

neighbourhood information is maintained during the execution of the algorithm basing

on a variant of the standard Competitive Hebbian learning (CHL). The big difference

compared to SOM and NG is that it is not necessary to establish previously the number

of a priori nodes (clusters) since the nodes are added incrementally during execution.

An edge is associated to each node that, through a vector, represents the position in the

node space. The edge has an associated age variable and a local error variable that has

the purpose to indicate the insertion point of a new node. GNG is an algorithm with

many parameters and it is complex. Its strong point is the adaptation of nodes that can

also be deleted. This allows to free users of the burden of choosing a priori the number

of clusters. The weak point is the difficulty in finding the optimal value for the all the

parameters involved.

Keeping in mind the peculiarities these clustering algorithms that have, we want to

understand with more details the features of the elements partitioned. In other word,

we decided to complement the clustering outcomes with the classical signal processing

methodologies adopting methods able to analyse the temporal dynamic of the BOLD

brain signals and the spatial features related to specific regions of interest. Also, we

studied the functional associations across the brain regions about the spontaneous signal

fluctuations depending by the resting state fMRI experimental paradigm.

Therefore, we first approach the resting state signals with standard tools for image

processing making filtering, motion correction, standard registrations, labelling and data

reduction procedures. Then, we integrated measures of strength/weakly signals associa-

tion to investigate – in general – the cross correlations between all-ROIs with all-ROIs,

and – precisely – the cross correlation with all-ROIs and two seeds: Left and Right Pre-

cuneus, that it is a bilateral region that has a role of central hub in the so-called Default

Mode Network (DMN) (cfr. the historical work by Biswal [7, 9] and for the anatomo-

functional details about the brain resting network cfr. Raichle et al [63, 64] or Utevsky

et al [71] and also the work by Van Den Heuvel where he shown alternative to DMN

[44] and work by Iraji [41] for technicalities about the resting state connectivity-domain

analysis).

The general aim of this study is to address the functional connectivity problem in

the resting state neuroimaging using both classical signal processing methods and soft

clustering techniques. In the next sections, we propose and justify the type of data we

have selected from a repository specialised in resting state functional neuroimages; then
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we present methods, results, discussion and conclusions.

3.1.3 Data

Within the NITRC repository (https://www.nitrc.org/) and the 1000 Functional Con-

nectome Project (http://fcon_1000.projects.nitrc.org/), we selected the Oxford

dataset with 22 healthy subjects (12M /10F; ages 20-35). The fMRI parameters were

the following: TR = 2, slices = 34, time-points = 175, magnet = 3 [T]. The selection of

this dataset is motivated by the nice age balance and the small age spread that have the

subjects. Furthermore, we selected this dataset because was one used by Biswal et al [8]

to discover resting state functional properties and their gender determinants. Therefore,

our approach is also a confirmatory data analysis.

3.1.4 Methods

The methods we used followed this pipeline: image processing, data reduction, statistical

analysis and algebraic measurements, functional connectivity investigations with linear

correlation and soft competitive clustering techniques.

Image processing

Image processing was done with the functions for resting state image analysis contained

in the software FSL [44]: we did spatial filtering with 3 [mm] of smoothing, frequency

filtering with a high pass filter having 1/100 [Hz] as cutoff frequency, motion correction

and standard registration with a reference atlas MNI152 (2mm). The ROIs labelling

was done with the Harvard-Oxford atlas with 96 lateralized labels.

Data reduction for both females and males,

We did temporal signal reduction, spatial signal reduction, and whole brain signal re-

duction; i.e. the temporal data reduction was done with the extraction of mean and

standard deviation of BOLD signals according to each time points, whereas the spatial

reduction was the same but according to each atlas ROIs; the whole brain reduction

is the global average of mean and standard deviation obtained by temporal reduction,

with the aim to have two macro-signals, one for Females and one for Males.

Statistics analysis

To investigate if females and males are samples coming from different populations, we

tested the mean and the standard deviation of the whole brain signals with parametric

(one-way ANOVA) and non-parametric test (Kruskall-Wallis); we choose both kind of

tests because we have globally 22 subjects and some ANOVA assumptions are difficult
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to sustain; therefore, we preferred to compare the parametric results with the non-

parametric outcomes, that had mild assumptions.

Algebraic distances to compute metrics

we needed another step of data reduction: we averaged the spatial reduction results

to have one value for each ROI, i.e. each exam became a vector with 96 components;

then we measured how far are exams in vectorial forms from each other using Euclidean

metric and Manhattan/Taxi-cub metric.

Correlations

To study the brain functional connectivity, we used the Pearson’s linear Correlation

Coefficient (CC) applied to all-ROIs versus all-ROIs and applied to seed versus all-

ROIs; the seeds we used were Precuneus Left and Right, according to the anatomical

architecture of Default Network Mode, as a model for the brain resting state paradigm;

we selected only the higher or the lesser seed correlation results according to specific

cut-off, i.e. CC > 0.8 or CC < - 0.8 and - 0.2 < CC < 0.2, respectively, in order to

evaluate strong (positive/negative) associations and weakly/absent associations with the

seed.

Clustering

To investigate brain resting functionality using unsupervised learning algorithms, we

used Self Organizing Map (SOM), Growing Neural Gas (GNG) and Neural Gas (NG),

i.e. to set GNG, we adopted 10 nodes, 1000 iterations, λ = 2, εb = 0.0005, εn = 0.00001,

α = 0.05,δ = 0.995,age-node = 60. To set NG, we used 2 nodes, 500 iterations, tmax =

8000,εinitial = 0.90, εfinal = 0.50, λinitial = 10, λfinal = 1, Tinitial = 5, Tfinal = 10. To

evaluates the optimal partitions with the three clustering methods, we adopted Davies-

Bouldin separation measure [14] and we compared the selected partitions with Jaccard

similarity measures.

3.1.5 Result

The results we obtained regard the statistical descriptions of resting state fMRI data, the

algebraic measures of fMRI in vectorial forms, the functional connectivity studied with

the Pearson linear coefficient correlation in both the conditions (all-ROIs vs all-ROIs

and Seeds vs all-ROIs) and the general outcomes of the three clustering techniques with

their comparison with the classical statistical signal processing approach.
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Figure 3.1: Plots of the average and the standard deviation of BOLD signals in Males
and Females in the temporal (175 time-points versus BOLD signals) and spatial domains
(96 ROIs versus BOLD signals). Both the average and the standard deviation of BOLD
signals in the temporal domain are quite different between gender: Females have higher
values then Males; whereas, in the spatial domain, both Males and Females have similar
average BOLD signals, but Females have more standard deviation of BOLD signal.

Statistical descriptions of fMRI data

The temporal analysis of RS-fMRI exams indicated that Females had the higher values

for both the average and the standard deviation of the BOLD signals (3.1 - top); the

spatial analysis revealed that Females and Males were similar for the average signals,

but Females had more standard deviation (3.1 - bottom); both one-way ANOVA and

Kruskall-Wallis test proved that there are statistical differences between males and fe-

males (p − value ≤ 0.05) for the mean and the standard deviation of the whole brain

RS-fMRI signals, i.e. Females have greater mean and a greater variance than Males (3.2

- top).

Algebraic measures of fMRI data Euclidean and Manhattan/Taxi-cub distances es-

timated that Females are more far from each other than Males, for both the mean and

the standard deviation of the measures (3.2 - bottom).

Clustering validations and outcomes comparison Davies-Bouldin separation index

(DB) indicated that SOM, NG and GNG reached the best data partitions with two

clusters (3.3 - top). The Jaccard index computed for all the pairs (NG vs GNG, SOM vs

GNG, SOM vs NG) in both Females and Males showed that the more similar clustering

was in Males and Females between NG and GNG (3.3 - bottom).

Functional Connectivity with Linear Correlation Pearson’s linear Correlation Coef-
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Figure 3.2: In the top part of the figure, there are the boxplots of whole brain signals
in Males (1) and Females (2), showing the between gender statistical difference of the
average (left) and the standard deviation (right) about the whole brain signals: in the
both cases, Females have higher values then Males. In the bottom part of the figure,
there are the within gender distance measures of the exams: with both Euclidean and
Manhattan distances, Females have higher values then Males for the mean and the
standard deviation of the distances computed.
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Figure 3.3: The top diagram shows the optimum Davies-Bouldin index associated to
SOM, NG and GNG algorithms, for both Females and Males: all the DB are referred to
2 clusters as optimal clusters number for each algorithm; all the best indexes are under
1; the lesser is related to the fourth Males subject, and the higher to the fourth Female
subject. The bottom histogram represents the discrete distribution of the Jaccard index
computed for all the algorithm pairs: the more similar clustering outcomes are with the
NG-GNG pairs in both Females and Males (Jaccard < 0.3), and the other clustering
combinations are very different (Jaccard > 0.7)
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Figure 3.4: The scatter plots show the clustering outcomes for NG, GNG and SOM in
Females (red points) and Males (blue points): the main result is that, using two clusters
as optimum partitions number, the clusters detect the amplitude information of BOLD
signals in Females and Males, i.e. clusters differentiate low levels and high levels in
BOLD signals.

ficient (CC) applied to all-ROIs quantified that there is a difference between gender, i.e.

Females had more negative correlations then Males, but they shared common positive

correlations (3.4 – top – the left plot). Instead, the seed-based Correlation Coefficient

(CC), with Left and Right Precuneus as seeds, shown that all the subjects had princi-

pally positive correlations, with a little presence of anti-correlation in Females (3.5 – top

– the central and the right plot). Apart general comments about strength and weakly

associations, it is remarkable the presence of the specific seeds weakly correlations, es-

pecially for the L/R Posterior Division of the Temporal Gyrus (ROI 29 and ROI 30)

and for the L/R Anterior Division of Temporal Fusiform Cortexes (ROI 73 and ROI

74); also, it is remarkable the highest seeds positive correlation, especially for the L/R

Cingulate Cortexes (ROI 59 and ROI 60) and with the controlateral part of the seed,

the L/R Precuneus (ROI 61 and ROI 62) (3.5 - the correlation matrixes)

Functional Connectivity with Soft Competitive Clustering

The two optimal clusters distinguished the quality of correlations for both the seeds

(Precuneus Left and Right) analysis in Females and Males, i.e. strength (positive)

coefficients and weakly coefficients were always mismatched in separated clusters (3.6

and 3.7). We also noticed some overimposition for the central values of the coefficients.

Furthermore, the two clusters discriminated the amplitude of BOLD signals, i.e. low
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Figure 3.5: In the upper part of the figure, there are the Correlation Coefficients (CC)
distributions between all-ROIs versus all-ROIs in Males and Females, and the correlation
coefficients distributions between seeds (L/R Precuneus) versus all-ROIs. In the first
discrete distribution, there are present positive and negative correlations, both in Males
and Females; whereas, in the seeds based correlations distributions, there are less anti-
correlations, with always, a bit gender difference. In the bottom part of the figure,
there are the seed-based correlation matrix between Left and Right Precuneus in Males
and Females: it is evident the strong correlation with many brain regions, as well as
weak correlations with few brain regions. The highest positive correlations (CC ¿ 0.8)
are with seed-controlateral region (ROI 61 and ROI 62) and L/R Posterior Division of
Cingulated gyrus (ROI 59 and ROI 60). The lowest correlations (CC +/- 0.2) are with
L/R Posterior Division of Temporal Gyrus (ROI 29 and ROI 30) and with the L/R
Anterior Division of Temporal Fusiform Cortexes (ROI 73 and ROI 74).
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Figure 3.6: These figures represent the organization of the two optimal clusters in Males
and Females in relation to the seeds based (L/R Precuneus) Correlation Coefficient. In
the left column, it is reported the evidence that low and high correlations belong to
different clusters, with some superimposition between them for the central values. The
central and the right columns show the relation between ROIs, correlation coefficients
and clusters, showing precisely that low and high correlations are within different clusters
in Males and Females.
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Figure 3.7: The image shows a detailed result of SOM algorithm in the Males case, with
a specification about the higher and the lower correlations with both the seeds (Left and
Right Precuneus), and their organisation within the two clusters. In the left side of the
figure, the brain is represented with the centre-of-mass of each regions of interest (the
96 ROIs labelled with Harvard-Oxford atlas), that are filled or unfilled if they belong to
cluster 1 or 2. The coloured circles are the height selected regions that are, respectively,
the four with the higher correlations (hot colours), and the four with the lower correlation
(cool colours). In the right side of the figure, there is a plot with the clusters planes in
relation to their elements: the four higher correlations regions are on the plane of cluster
1, whereas the four lower correlation are on the plane of cluster 2. We choose to plot
the brain parcellation relative to the SOM algorithm in Males because was the better
optimized algorithm, having as a Davies-Bouldin (DB) separation measure a value equal
to 0.7641 (the lesser value respect the other algorithms).
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and high intensities were mismatched as well in both Females and Males (3.4).

3.1.6 Discussion and Conclusion

We obtained two types of results. The first-type result globally confirms the gender

determinants in RS-fMRI functionality found by Biswal et al. Our approach is also re-

lated to the anatomo-functional correlation (L/F Precuneus - DMN) with other regions,

and specially with their controlateral part and their associated bilateral cingulated re-

gions; this is a confirmation because we found brain functionality noted in the scientific

literatures [2]. We also added information about Male and Females peculiarities using

algebraic distances to measure the within gender variability. Globally, we can claim that

Females had more amplitude and more variability than Males. The second-type result

regards the integration of clustering techniques, with classical statistical processing for

signal analysis. We can affirm that, once the clustering algorithm differentiates data

in different clusters, it became necessary to explicate the inner property that determine

their inclusion: in our case, we found that clusters differentiated the intensity of the brain

signal, i.e. low versus high level BOLD signal, and clusters also differentiated the qual-

ity of the brain functional connectivity, i.e. strength (positive) associations versus weak

associations. There are limitations of this study: the number of samples we adopted

are limited – 22 subjects – but, interestingly, the statistical tests demonstrated that the

two subsamples (10 Females and 12 Males) are significantly different (they did not come

from the same population, and then they are nice comparable but not useful to infer

general population properties). Next study will attempt to address these limitations,

using also other soft competitive learning algorithms to cluster fMRI data, e.g. using

fuzzy algorithms to better handle the complexity of the of Resting-State fMRI data.
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3.2 Clustering Functional MRI Patterns with Fuzzy and Com-

petitive Algorithms

3.2.1 Premise

This research work was presented at 6th Computational Modelling of Objects Presented

in Images Congress held in Cracow (Poland) on July 2018. This paper is the result

of collaboration with other authors, and presented in other works [1]. The parts for

which I have most contributed concern the selection, evaluation, implementation and

optimization of the algorithms used, and the management of the experimental part.

In this work, we used model free methods to explore the brain’s functional properties

adopting a partitioning procedure based on crossed-clustering. We selected Fuzzy C-

Means (FCM) and Neural Gas (NG) algorithms to find spatial patterns with temporal

features and temporal patterns with spatial features. We applied these algorithms to a

shared fMRI repository of face recognition tasks. We matched the classes found and our

results of functional connectivity analysis with partitioning of BOLD signal signatures.

We compared the outcomes using the just known model-based knowledge as likely ground

truth, confirming the role of Fusiform Brain Regions. In general, partitioning results

show a better spatial clustering than temporal clustering for both algorithms. In the

case of temporal clustering, FCM outperforms Neural Gas. The relevance of brain

subregions related to face recognition were correctly distinguished by algorithms and

the results are in agreement with the current neuroscientific literature.

3.2.2 Introduction

In functional Magnetic Resonance Imaging (fMRI) there are two kinds of approaches

to data analysis: model-based methods and model-free methods. The main difference

between the methodologies is that the first one needs a priori knowledge about the

functional data structures, whereas the second one does not need any assumptions related

the images to be investigated. The main model-based approach to fMRI data is the

Statistical Parametric Maps (SPMs) approach introduced by Friston [25].

The main model-free models are the Analysis of Principal Components (PCA) or

the Analysis of Indipendent Components (ICA) (for an overview see [53]). In addition,

there are other model-free techniques to explore fMRI data properties that allow to

classify functional patterns, such as the clustering algorithms, that are a class of compu-

tational models used to find the natural groupings of input features [20]. Several kinds of

separation methodologies based on different theoretical framework are proposed in the

literature [42]. Generally, clustering is divided in crisp or soft partitioning: crisp classes

have unshared elements (e.g., k-Means Algorithm), whereas soft classes have elements

that could be shared with more then one class (e.g., fuzzy sets based algorithms [6]). The
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soft properties in clustering have a wide meaning that encompasses not only the data

multi-membership feature, but also (in computational learning theory) the competitive

learning approach that is used by unsupervised algorithms to adapt themselves on the

data to be clustered (e.g. self-organizing maps). Using this double meaning of the soft

clustering category, we selected Fuzzy C-Means (FCM) and Neural Gas (NG)

algorithms, where the first one is a soft algorithm in terms of multi-class properties and

the second one is a soft algorithm in terms of competitive learning rule [79].

Clustering techniques applied to fMRI time series data are a interesting approaches

to explore brain functional properties [78, 50, 74]. Partitioning works grouping image

voxels together based on how much they are alike in relation to some measure (distances,

correlation, etc.), that probes how their intensity profiles in time are similar. In more

details, let n denote the number of scans in a fMRI experiment, and let K be the number

of voxels in each volume: the dynamics of each voxel µ ∈ {1, ...,K}, are the signal values

{xµ(1), ...,xµ(n)} that can be modeled as a vector xµ(i) ∈ <n in the n-dimensional (Eu-

clidean) feature space of possible time series. Each of the these points is partitioned into

clusters based on the similarity of their intensity profile in time. Therefore, the principal

approach to fMRI clustering is to cluster spatial features (i.e., brain regions) that have

similar temporal patterns (i.e., the brain functional signatures). In other words, the pro-

cedure to cluster functional images has the goal to find common functional structures in

different Region of Interest (ROIs).

In this work, we also aim to find functional structures in temporal features that

have similar spatial patterns: we named these objects as ”Times of Interest” (TOIs),

that in computational terms mean to cluster the experimental blocks related to each

brain volume. The assumption is that the exploration of TOIs allows to find properties

related to the peculiarity of each block of the experimental design . E.g., imagine a block

design structured as TASK-REST stimuli alternations; the TOIs clustering could allows

finding spatial structures that are similar to TASK or REST blocks, whereas the classic

ROIs clustering allows finding in different brain regions temporal structures that are

similar. We named this global procedure cross-clustering that want as it finds spatial

patterns in the temporal features (TOIs) and temporal patterns in the spatial features

(ROIs). The postclustering procedure we applied performs a statistical evaluation of the

obtained clusters. We used parametric and nonparametric tests to study whether the

classes are statistically different with the aim to investigate the numerical properties that

distinguished the clustering outcomes. Furthermore, we compared the classes computed

by the algorithms using Jaccard similarity index. Also, we compared the functional

connectivity of the fMRI scans within various subjects in order to find useful information

to be associated with adopted clustering techniques. In the next section, we present the
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dataset we selected to be clustered, the computational methodologies we used, and the

results we obtained. We conclude with a discussion and possible future works.

3.2.3 Materials and Methods

Data

We selected the dataset proposed by Wakeman and Henson [76] available in openfmri

repository (https://openfmri.org/dataset/ds000117). This dataset contains face recog-

nition task paradigms applied to 16 healthy and young subjects. The study of Wakeman

and Henson showed functional peculiarity along the fusiform regions in the brain tem-

poral and occipital parts. Keeping in mind these features, we clustered the subjects

paying special attention on the clustering outcomes related to eight fusiform cortexes

using Harvard-Oxford labels. According to these labels, they are ROIs 73:74 L/R Tem-

poral Fusiform Cx Anterior Divisions, ROIs 75:76 L/R Temporal Fusiform Cx Posterior

Divisions, ROIs 77:78 L/R Temporo-Occipital Fusiform Cx, and ROIs 79:80 L/R Occip-

ital Fusiform Cx. Before clustering the images, we performed preprocessing with FSL

standard tools [44]: such as spatial and temporal filtering, motion correction, standard

registration (with MNI152 reference), and time-series extraction as per the meaning of

Harvard-Oxford Atlas using 96 lateralized labels.

Clustering Algorithms

We adopted two soft clustering algorithms to process the fRMI data: Fuzzy C-Means

(FCM) and Neural Gas (NG). We used as an input features of both Regions of In-

terest (ROIs) and Times of Interest (TOIs). We validated the optimal clustering using

Davies-Bouldin index [14] and we compared the various clustering outcomes using the

Jaccard similarity measure. We investigated the statistical difference of the clusters com-

puted with parametric (One-way Analysis of Variance – ANOVA-1) and non-parametric

method (Kruskall-Wallis) using the p-value as a decision criterion. Furthermore, we

computed the brain functional connectivity with the Pearson Linear Correlation Coef-

ficient across the ROIs: we wanted to analyse the overall dynamics of the subjects in

relation to the task-oriented study, i.e., the face recognition paradigm, in order to obtain

similar results about the brain face processing as the ones in the literature specialised

in experimental neuroscience (see [34]).

Fuzzy C-Means Fuzzy C-means is a clustering method that allows to each element of

a dataset to be a part of more than one cluster with a respective degree of membership

[6]. The algorithm is based on the optimisation of the following objective function:



66 Unsupervised Learning in fMRI Analysis

Jm =
D∑
i=1

C∑
j=1

µmij ||Xi −Aj ||2 (3.1)

For the ||...||2 we chose a distance, D is the number of the data points, C is the

number of the clusters, m is the partition exponent controlling the fuzzy overlap between

clusters that determines how fuzzy the boundaries between the clusters are (m > 1; in

the computational set-up we adopted m = 2). Xi are the points, Aj are the centroids of

the clusters and µij is the degree of membership of Xi in the j th cluster (i.e., for a given

cluster j,
∑N

i=1 µij = 1). FCM working randomly initialising the membership values

µij and then calculating the cluster centers. It repeats the updating of µij until the

objective function Jm reaches the minimum value. FCM is a useful clustering algorithm

that allows to handle the softness of datasets. In many cases, if is necessary to take

into account the possibility that data-points could be within more then one class, for

example when they represent complex objects without a crisp natural shape (e.g., in the

case of fMRI functional partitioning); so, the use of FCM could be an appropriate choice

for the task-based paradigm, when periodically the brain functionally varies due to the

stimulation of the rapidly changing experimental blocks.

Neural Gas The Neural Gas (NG) algorithm for clustering analysis is a vector-

quantization approach inspired by the Self Organizing Map [58]. The method converges

quickly to low error rate, and also has lower distortion value than the Kohonen’s fea-

ture map. It uses the gradient descent method as optimisation solver. NG utilized a

neighbourhood-ranking of the reference vectors wi for the given data vector x. The

learning model is determined by the formula:

wi(t+ 1) = wi(t) + ε(t) exp{−ki(x,
wi

λ
}(x(t)−wi(t)) (3.2)

Here ki = 0, ..., N − 1 are the rank indexes describing the ranking of the neighbour-

hood of the reference vectors wi to the data vector x in a decreasing order; N is the

cardinality of the neural network units that update their synapses for each iteration;

the step-size variable ε ∈ [0, 1] tunes the ranges of modification. Referred to Kohonen

algorithm, NG has the advantage that it does not need a prespecified network and it

produces topologically-preserving maps. Prototype classification is based on distance.

It updates the prototypes and assigns the data to the prototype closest to it. When the

number of maximum iterations is reached, the algorithm terminates; otherwise, it goes

through the next iteration.
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3.2.4 Results

In this section, we describe the obtained results, which are illustrated in Figures 3.8

trough 3.21. We discuss the results in the Section 3.2.5.

Figure 3.8 shows the empirical distributions of the overall Correlation Coefficients

(CC) of every subject and the global correlation matrix represented as a mean of the

correlation matrices of each subject.

Figure 3.9 shows, first, the best Davies-Bouldin Indexes (DBI) computed for clusters

ranging from 2 to 20 for both FCM and NG algorithms applied on both ROIs and Time

Points. Figure 3.10 illustrates spatial semantics of FCM and NG in the case of 2-classes

computed as the statistical mode of the subjects (i.e., if a region frequently appears in

a cluster i, than it belongs to the cluster i in the representation). Table 3.1 gives details

about he the best DBI configurations for the dataset.

Figure 3.11 and Figure 3.12 display the results of the non-parametric (Kruskal-Wallis)

and parametric (ANOVA 1-way) statistical tests applied to the optimal FCM and NG

algorithms in both the spatial and the temporal configuration. The figures demonstrate

that in the spatial configurations of both FCM and NG, the p-value was always less

then 0.05. Hence, we can reject the hypothesis that all clusters have all the same means.

In contrast, the p-value computed in the temporal configuration clustering for either

FCM or NG, is not always less then 0.05, as the worst behaviour is in the case of NG

algorithm.

In the Figure 3.13 and 3.14, the results are almost the ones in Figure 3.11 and 3.12.

In general, spatial clustering (i.e., ROIs partitioning) is always statistically significant

(p-value less then 0.05) for both NG and FCM in the optimal case as well as in the case

of 2-classes. Temporal clustering (i.e., TOIs partitioning) has lesser p-value, but it is

not always significant; according to the non-parametric test, it is significant only in the

case of FCM, where p-value is around 0.05.

Figure 3.15 shows the comparison of the Regions of Interests (ROIs) clustering of 2-

classes using Jaccard matrix. The comparison is between subjects in case when applying

NG and FCM algorithms. Under the matrices, the distributions of the Jaccard distance

values are shown. In general, the distributions of the similarity of the subjects are

uniform, expect when using the FCM algorithm. The explanation of this fact is not

related to the quality of the clustering itself, but is rather rooted in the initialisation

procedure of the algorithms we used.

Figure 3.16 shows the comparison of the Times of Interest (TOIs) clustering with

2-classes using Jaccard matrix. The comparison is between subjects in case of NG

and FCM. Under the matrices, the distributions of the Jaccard distance values are

shown. In general, the similarity distributions between subjects are uniform (for NG)

and middle-centred (for FCM). The main result is that none of the outcomes seems to

be in agreement between clustering algorithms. Instead, it is interesting to note that the
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empirical distributions of the indexes vary widely from almost unimodal to multi-modal

distributions.

Figure 3.17 shows the Jaccard’s distance of the the NG and FCM results using

2-classes. The ROIs clustering configuration exhibits almost uniform distribution of

the values, while the TOIs clustering configuration exhibits unimodal (gaussian-like)

distribution.

In sum, Figure 3.15, 3.16 and 3.17 demonstrate that when clustering algorithms

perform the computations in a different way, it is hard to compare the results. This

does not mean that the clustering methods miscalculated the data, but rather that the

initialisation procedures used by the algorithms lead to assigning different classes to the

same pattern found among the subjects.

Figures 3.18, 3.19, 3.20 and 3.21 shows the results related to one-subject analysis.

We selected specifically the FCM 2-clusters for the Subject 12 because it has good per-

formance in spatial and temporal configurations according to both the parametric and

the non-parametric tests. Figure 3.18 shows the graph-based topological representation

that gives an idea about the parcellation. In the top-left part of Figure 3.19 there are

details about the relation between ROIs and clusters: in particular, following the hori-

zontal lines, it is notable that the Fusiform regions (ROI from 73 to 80) are splitted half

and half in the Cluster 1 and the Cluster 2; this peculiarity is due to the different BOLD

signal amplitude that allows to discriminate the membership to clusters, as indicated in

the centre plot of Figure 3.19. The difficulty to distinguish temporal pattern along the

time points is evident in the right plot of Figure 3.19, where there is no clear data struc-

ture that explains the two partitions, though the statistical tests for temporal clusters

have always a p-value less then (or around) 0.05 for the Subject 12. Specially, Figures

3.20 and 3.21 show the brain voxels parcellation of Subject 12 clustered with FCM using

the optimal configuration. The algorithms computed 14 clusters that grouped differ-

ently all brain portions. Figure 3.21 shows the Fusiform regions superimposed to the

brain parcellation in Figure 3.20: the eight Fusiform cortexes belong to different clusters

according to their BOLD values: i.e., L/R Temporo-Occipital Fusiform Cx and L/R

Occipital Fusiform Cx have greater BOLD values than the L/R Temporal Fusiform Cx

Anterior and Posterior Divisions. Clusters 2, 6 and 8 contain the Fusiform ROIs with

greater activation’s, Cluster 3, 13, 14 contain the ones with the less activation’s.

3.2.5 Discussion

The results in Figure 3.8 are related to the global functional connectivity analysis that

reflects the presence of some variability in the single subject correlations (left figure), i.e.,

more than half subjects had positive correlations during the task, whereas few ones had

negative correlations. In particular, the mean correlation matrix (right figure) shows

great correlation in specific submatrixes, e.g. the submatrix that regards the ROIs
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Figure 3.8: The Figure shows the information related to the correlation coefficients. The
left plot is the empirical distribution of the all correlation coefficients (CC) computed for
every subject. the right plot is the mean correlation matrix computed for all subjects’
correlations)

Figure 3.9: The figure shows the plot of the optimal clusters versus the lesser Davies-
Bouldin index for clustering with FCM and NG algorithms, that differentiated by the
Regions of Interest (ROIs) configuration and the Time Of Interest (TOIs) configuration.
Globally, the partitioning of ROIs with both FCM and NG had lower Davies-Bouldin
index values then the partitioning of TOIs.



70 Unsupervised Learning in fMRI Analysis

Figure 3.10: The figure shows the more frequent ROIs partitioning in the special case of
clustering with 2 groups for NG and FCM for all the subjects; the horizontal line from
ROIs 73 to 80 are the ones related to the eight Fusiform regions, i.e., they are ROIs 73:74
L/R Temporal Fusiform Cx Anterior Divisions, ROIs 75:76 L/R Temporal Fusiform Cx
Posterior Divisions, ROIs 77:78 L/R Temporo-Occipital Fusiform Cx and ROIs 79:80
L/R Occipital Fusiform Cx.

Table 3.1: The table describes the Davies-Bouldin (DB) index computation for each
subject differentiated for clustering (FCM or NG) and inputs (ROIs or TOIs).The values
presented are the lesser DB associated with the corresponding number of clusters.

Sub DB FCMROI DB NGROI DB FCMTOI DB NGTOI

1 0.47 19 0.46 12 1.37 2 0.95 18
2 0.40 5 0.37 15 1.23 2 1.38 2
3 0.39 18 0.42 16 1.23 2 0.69 2
4 0.41 14 0.41 2 1.14 2 1.57 2
5 0.40 14 0.46 20 1.44 2 1.30 5
6 0.41 17 0.37 2 1.64 2 1.39 7
7 0.40 14 0.32 5 1.47 14 0.46 3
8 0.43 20 0.39 15 1.52 2 1.28 10
9 0.40 16 0.36 5 1.00 2 0.76 14
10 0.43 7 0.26 10 0.78 4 0.57 15
11 0.43 8 0.38 2 1.40 2 1.69 2
12 0.39 14 0.36 4 1.11 2 0.78 4
13 0.41 17 0.43 19 1.03 2 0.72 7
14 0.38 15 0.39 7 1.38 2 1.27 14
15 0.38 20 0.45 19 1.67 2 1.57 13
16 0.41 12 0.54 19 1.30 2 0.23 19
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Figure 3.11: The figure shows the results of non-parametric tests (Kruskall-Wallis) for
the clusters obtained with FCM and NG algorithms for the ROIs (Regions of Interest)
and TOIs (Times of Interest) inputs in case of the optimal configurations. The black
line is the significance level 0.05. The values under the black line allow to reject the null
hypothesis of the test. ROIs clustering with both FCM and NG have statistically dif-
ferent clusters for all the subjects with non-parametric tests. TOIs clustering is globally
near the significative criterion only with FCM algorithms.
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Figure 3.12: The figure shows the results of the parametric test (ANOVA-1) for the
clusters obtained with FCM and NG algorithms for the ROIs (Regions of Interest) and
TOIs (Times of Interest) in the case of the optimal clusters configurations. The black
line is the significance level 0.05. The results were similar to Figure 3.11, but with a
higher p-value for the TOIs clustering with FCM algorithm.

Figure 3.13: The figure shows the results of the non parametric test (Kruskall-Wallis) for
the clusters obtained with FCM and NG algorithms for the ROIs (Regions of Interest)
and TOIs (Times of Interest) configurations in the special case of 2-clusters partitioning.
The black line is the significance level 0.05. The results were similar to Figure 3.11 and
Figure 3.12, but with lower p-value for the TOIs clustering with FCM algorithm.
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Figure 3.14: The figure shows the results of the parametric (one-way ANOVA) for the
clusters obtained with FCM and NG algorithms for the ROIs (Regions of Interest) and
TOIs (Times of Interest) in the case of 2-clusters partitioning. The black line is the
significance level 0.05. The results were similar to Figure 3.13, but with a higher p-value
for the TOIs clustering with FCM algorithm.

Figure 3.15: The figure shows the comparison of Regions of Interests (ROIs) clustering
of two groups using Jaccard matrix. The comparison is between subjects in case of
applying NG and FCM algorithms. Under the matrices there is the distribution of the
Jaccard distance values. In general, the similarity distribution between the subjects is
uniform and without big differences, expect when using the FCM algorithm.
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Figure 3.16: The figure shows the comparison of Times of Interest (TOIs) clustering
with two groups using Jaccard matrix. The comparison is between subjects in case
of NG and FCM. Under the matrices there is the distribution of the Jaccard distance
values. In general, the similarity distribution between the subjects is uniform (for NG)
and middle-centered (for FCM).

Figure 3.17: The figure shows the Jaccard Matrices in both the cases of two classes
clustering with Regions of Interest (ROIs) and Times of Interest (TOIs). The comparison
is between subjects in cases of NG and FCM. Under the matrices there is the distribution
of the Jaccard distance values. In general, the similarity distribution between subjects
is weakly bimodal for the ROIs clustering (bottom left) and middle-centred for the TOIs
clustering (bottom right).
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Figure 3.18: The figure shows the brain parcellation based on a graph model and the
Regions of Interest (ROIs) organisation partitioned with two clusters. In the left plot
the horizontal line indicates the Fusiform Cortexes (ROIs 73:80) and their clusters. In
the right image the nodes are the 96 centroids according to Harvard-Oxford atlas. In
general, the inferior regions were clustered in the Class 2 and the superior regions were
clustered in the Class 1. The figure is referred specifically to the Regions of Interest
(ROIs) of Subject 12 clustered with FCM.

Figure 3.19: The figure shows the BOLD values partitioning among the two clusters
and the Times of Interests (TOIs) partition among the two clusters. In the left plot,
clusters exhibit the BOLD amplitude and in the right plot the clusters seem to exhibit
spatio-temporal patterns. The figure refers specifically to Subject 12 clustered with
FCM.



76 Unsupervised Learning in fMRI Analysis

Figure 3.20: The figure shows the brain voxels parcellation of Subject 12 clustered with
FCM using the optimal configuration (with the lesser Davies-Bouldin index). There are
14 clusters that covered all brain voxels (cfr. Figure 3.21 for more details).

Figure 3.21: The left plot shows the substructures of the Fusiform regions (the legend
is the same of the right plot). In the right plot there are the eight Fusiform regions
distributed to different clusters according to their BOLD values: L/R Temporo-Occipital
Fusiform Cx and L/R Occipital Fusiform Cx have greater BOLD values than the L/R
Temporal Fusiform Cx Anterior and Posterior Divisions. Precisely, clusters 2, 6 and 8
contain the Fusiform ROIs with greater activations, whereas clusters 3, 13, 14 the ones
with lesser activations.
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from 73 to 80 includes the Fusiform brain regions (using the Harvard-Oxford labels,

they are ROIs 73:74 L/R Temporal Fusiform Cx Anterior Divisions, ROIs 75:76 L/R

Temporal Fusiform Cx Posterior Divisions, ROIs 77:78 L/R Temporo-Occipital Fusiform

Cx and ROIs 79:80 L/R Occipital Fusiform Cx). This submatrix positive correlation is

in agreement with the selective importance for the face recognition task of the Fusiform

regions shown in the results of Wakeman and Henson [76].

The results presented in Figure 3.11, Figure 3.12, Figure 3.13 and Figure 3.14 reveal

the important evidence that optimal clustering and 2-group clustering are both statis-

tically different for the spatial configuration in the case of both FCM and NG for both

the parametric and non-parametric test. Knowing that the two spatial clusters are suf-

ficient to be statistically different is helpful for the comparison of the optimal clustering

outcomes between subjects, that in our case leads a different number of clusters for

subjects (see. Table 3.1). The use of 2-clusters (or a fixed-clusters) classifications allows

to easly compare subjects for post-clustering analysis. Furthermore, spatial clustering

has in general good properties, but temporal clustering does not have the same quality,

due to the difficulty to find statistically different clusters, albeit FCM outperformed NG,

but not always with p-value less than 0.05, as better results were achieved for 2-clusters

setting.

The results presented in Figure 3.15 , Figure 3.16 and Figure 3.17 are regarding to

the variability observed in the clustering results. Jaccard similarity matrices highlight

huge differences within and between clustering algorithms. This fact could be explained

with the random initialisation labels; then, although the clustering reached the optimal

configuration, it could be the case that the i label is not assigned to the i pattern in all

the subjects. In other words, the same pattern in different subjects could be labelled

sometimes with label i or with label j.

Figures 3.18 and 3.19 present the results in the special case of the clustering com-

puted for the Subject 12. It had the best behaviour for both the parametric and the

non-parametric tests. The figures show the topological graph-based parcellation of FCM

clustering in 2-group, where many inferior regions were clustered in the Class 1, whereas

many superior regions were clustered in Class 2. The two spatial clusters differed two

BOLD signal macro-levels, but the two temporal clusters do not have easily distin-

guishable differences, although they have in fact statistical differences probed by the

non-parametric test.

Subject 12 was also studied with a voxel-based parcellation that has found 14 clusters

with FCM in the case of ROIs clustering. Precisely, considerations about results in

the Figure 3.20 and Figure 3.21 refer to the Fusiform regions classification. The eight

regions involved in the Fusiform bilateral portions were correctly distinguished in zones

with more activation that the others. This clustering evidences detailed the role of

brain substructures particularly related to the Face Recognition task, confirming the
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specialized nature for the Fusiform cortexes, according, for example, to the results of

Wakeman and Henson [76] that have shared the data we processed, and also the main

related works (cfr. the seminal paper by Kanwisher [45], or the recent findings by

Ghuman [30] and Grill-Spector [34])

3.2.6 Conclusion and Future Works

In this chapter we adopted a cross-clustering approach to fMRI data with the aim to

cluster both spatial and temporal patterns, given that the main information related

to brain activity, in the case of task-based paradigm, stems from both the anatomical

regions with their BOLD temporal signatures and the ON/OFF blocks during an exper-

iment in which they exhibit brain spatial response. More specifically, we processed fMRI

images from a repository of images for face recognition. The selected images depict with

16 healthy subjects that did a Face Recognition Task. We investigated spatial (ROIs -

Regions Of Interest) and temporal (TOIs - Times Of Interest) features, using Fuzzy C-

Means (FCM) and Neural Gas (NG) algorithms to find similar and structured patterns.

We validated the optimal clustering using the Davies-Bouldin index and we compared

the different subjects outcomes using with Jaccard measure. We used parametrical and

non-parametrical statistical tests to evaluate whether the differences between the classes

are significant throughout clusters, using the p-value as a decision criterion. Also, we

employed the functional connectivity analysis to explore the brain BOLD co-relations

activities. This procedure is useful to understand the ROIs clustering meaning as it

associates with the functional properties referred as task-based paradigm. The results

showed that, in general, ROIs clustering was performed easier than TOIs clustering by

either of the algorithms. However, in the case of TOIs clustering, which is more complex

then the spatial one, Fuzzy C-Means method outperformed the Neural Gas Method,

based on the statistical significance test.

This study has some limitations. The first one is the random assignment of starting

clusters for each of the algorithms. The second limitation is the absence to known block

paradigm that matches the TOIs clustering. This is a theoretical limitation, because it

depends on the amount of information available in a repository. The first limitation is

more important because it sheds light why when two clusters are used, the algorithm

marks the same pattern with different labels (see Jaccard matrix). The results indicate

that even if there is a correct classification of statistically different clusters, there isn’t

an easy way to compare the same class with objects from different datasets. In other

words, there is no clustering consistency in terms of labels names for the subjects. This

peculiarity could be overcome using a linguist procedure based on a formal description

able to combine the labels of similar patterns. As future task, we plan to develop a

translation procedure able to merge under one name different labels that are associated

to similar patterns. Furthermore, we will investigate the cross-clustering more in de-
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tail. In this study, we clustered ROIs and TOIs and we tested the classes properties

uncoupled. Using other statistical tests, e.g., the two-way ANOVA or Friedman test, we

can evaluate whether the coupled − classes are significantly different, i.e., we plan to

test whether the clusters of ROIs combined with the clusters of TOIs have elements that

are significantly different. This procedure would allow to find spatial patterns that are

associated statistically with temporal patterns and viceversa. Combining the clustering

results is a more precise exploration of the brain during task-paradigm, where the main

features are both spatial dynamics (the regional signatures) and temporal dynamics (the

ON-OFF blocks paradigm).





4
CVIs and Evaluation Methodologies Analysis for

fMRI

In this section we will present the results of the analysis carried out on different

evaluation indexes used on clustering performed on fMRI exams. A methodology for

the evaluation of evaluation indexes will also be presented. The results achieved are

organized and reported below:

• Analysis of the evaluation indexes with fMRI data, and introduction of a metric

for the evaluation of the indexes in sub-optimal cases.

• Analysis of evaluation indexes with fMRI data and benchmark data, introduction

of a new methodology through the use of ANFIS for the evaluation of indexes in

sub-optimal cases.

81
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4.1 Comparison of validity indexes for fuzzy clusters of fMRI

data

4.1.1 Premise

This research work was presented at the ECCOMAS Thematic Conference on Compu-

tational Vision and Medical Image Processing held in Porto. The main topic related

to this work is a comparison analysis of eight representative fuzzy and crisp clustering

validation indexes. This paper is the result of collaboration with other authors. For this

work I have dedicated myself to the research design, to the choice, implementation and

optimisation of the algorithms and indexes used, to the management of the experimental

part and to the conception of the metric.

In computational neuroimaging, the analysis of functional Magnetic Resonance Im-

ages (fMRIs) using fuzzy clustering methods is a promising data driven approach to

explore brain functional connectivity. In this complex domain, accurate evaluation pro-

cedures based on suitable indexes, able to identify optimal clustering results, are of great

values strongly affecting the validity and interpretation of the overall fMRI data analysis.

Salient aspects of the proposed strategy are the use of the widely adopted fuzzy c-means

algorithm as underlying fuzzy clustering algorithm, the use of resting state fMRI data

from the NITRC repository and the comparison and evaluation of eight of the most

famous or innovative clustering evaluation indexes using clustering performed on fMRI

exams; furthermore, the assessment of the indexes took into account the suboptimal

performance provided by the indexes.

4.1.2 Introduction

Data Clustering is one of the widely used methods to explore data in several domains.

It utilizes only the statistical information inherent in the data without human supervi-

sion [21]. Fuzzy clustering computes degrees of membership of a single data to multiple

clusters. In computational neuroimaging, the analysis of functional Magnetic Resonance

Images (fMRIs) using fuzzy clustering methods is a promising data driven approach to

explore brain functional connectivity. fMRI data have a complex content that regards

both spatial and temporal information: the spatial ones are related to the mapping

of brain regions that have common topological properties, whereas the temporal ones

are referred to the detection of brain signal changes in correspondence to specific ex-

perimental times (see 4.1). In this context, clustering techniques find homogeneous

spatio-temporal patterns without relying on any model of functional response are con-

sidered in principle more accurate than model-based methods when dealing with fMRI

data analysis under complicated experimental conditions [39, 79]. Clustering algorithms

perform a partition of the complex fMRI content in homogeneous groups. Finding an



4.1 Comparison of validity indexes for fuzzy clusters of fMRI data 83

optimised partition is a sophisticated task: not all the fMRI patterns are separable in

distinguished crisp parcels since some of them could share common properties, as in the

case of extended brain networks that vary the coactivation of different brain modules

during an experimental task. Thus, the natural dynamic of the neuronal structures

must be managed properly by clustering algorithms that should be able to handle both

simple regularities of well-known patterns related to low-level active tasks and complex

irregularities of partially-known patterns related to high-level active tasks or self-referred

passive paradigms. Clustering has an important role in fMRI passive studies allowing

to investigate the neurophysiological resting state that has debated biomarkers [39] and

also evidence-based differences related both to gender and age [8].

In this context, accurate evaluation procedures based on suitable indexes able to iden-

tify optimal (and suboptimal) clustering results are of great values strongly affecting the

validity and interpretation of the overall fMRI data analysis which is still a controversial

task in neuroimaging. Among the varied methods used for fMRI data clustering, fuzzy

c-means [6] is certainly the most popular method [39, 50, 73, 32]. An important issue in

cluster analysis is the cluster validation aimed to measure how well the clustering results

reflect the structure of the data set. For this purpose a large number of clustering valida-

tion indexes (CVIs) have been proposed in literature [60, 29, 66, 69, 82, 14, 73] to detect

the optimal cluster number for a given dataset on the base of a balancing between the

two opposite criteria of compactness within each cluster and separation between them.

Several studies have been developed to investigate and compare the effectiveness of fuzzy

and crisp CVIs in appropriately determining the number of clusters and measuring the

goodness of clusters themselves produced by diverse algorithms [3, 36]. Despite sev-

eral achievements obtained, guidelines resulting from these general studies have not yet

been adopted with large consensus and validation indexes are often selected basing on

individual experience and/or arbitrary criteria. Critical aspects arise also in fMRI data

analysis where clustering techniques are usually validated using external criteria based

on prior knowledge about the data, whenever possible, or using internal different indexes

depending on individual studies.

The problem can be addressed by proposing comprehensive comparison studies ori-

ented to specific clustering algorithm and specific application domains in such a way

that resulting guidelines are applicable in future studies. Proceding from these consid-

erations, in this work we focus the attention on validation of fuzzy clustering of fMRI

data and develop a comparison analysis of a set of representative fuzzy and crisp CVIs.

Salient aspects of the proposed strategy are the use of the widely adopted fuzzy c-means

(FCM) algorithm as underlying clustering algorithm and the use of resting state fMRI

data from the NITRC repository [46]. The remaining part of the paper is organised

as follows: Section 2 describes the clustering problem and the soft algorithm chosen to

approach its solution, Section 3 lists the indexes used to validate the clustering results,
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Section 4 describes the general experimental procedure, the datasets used and the results

obtained. Section 5 reports both the discussion of the results and the conclusions.

Figure 4.1: This image displays resting-state functional connectivity as linear correlation
for the seed region in a sample of 1,000 subjects. The seed chosen is the Precuneus
(X/Y/Z MNI152 coordinates: 2 -60 30), that is the main core of the Default Mode
Network (DMN), a candidate biomarker for the fMRI resting state studies. In the
images, the Precuneus is in the zone with the highest functionality (yellow color).

4.1.3 Clustering Problem and Fuzzy C-Means Algorithm

The purpose of clustering is to partition a given set of data into groups (clusters) fol-

lowing a predefined criterion. These groups contain data that have both high similarity

within clusters and high dissimilarity between the other clusters [21].

LetX = {x1, x2, . . . , xn} a given dataset (with n elements), and let C = {c1, c2, ..., cK}
the set of cluster, where K is the desired number of clusters. Regardless of the criterion

chosen for the partition, the purpose of clustering is to develop a partition matrix of size

K × n denoted as U = [µij ], with i = 1, 2, . . . ,K and j = 1, 2, . . . , n, where µij is the
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grade of membership of point xj to cluster ci.

In crisp clustering, each point in the specified dataset belongs to a single cluster class.

Then µij = 1 if xj ∈ ci, otherwise µij = 0. Instead, in fuzzy clustering, a point can

be associated with more than one cluster, potentially also to all clusters, with a certain

degree of membership, and the partition matrix in this case is represented as U = [µij ],

where µij ∈ [0, 1] indicates the degree of membership of the j-th element to the i-th

cluster.

The FCM algorithm proposed by Bezdek [6] is used for the data analysis in a non-

supervised way in several fields. The purpose of the FCM algorithm is to create vectors

called centroids that minimise the value of the function Jm that is given by the sum of

the intra-cluster quadratic error. Jm it is defined as:

Jm =
n∑
j=1

K∑
i=1

µmij ||xj − zi||2 (4.1)

where

• m > 1 is the exponent of the element of the fuzzy partition matrix to adjust the

degree of fuzzy overlap.

• zi is the centre of the i-th cluster.

• µij is the degree of membership of xj to the i-th cluster.

• ||...|| is the Euclidean norm between a point and the corresponding cluster center.

The FCM algorithm performs the following steps:

1. Randomly initialise the U matrix.

2. Calculate the cluster centroids with the following formula :

zi =

∑n
j=1(µij)

m(xj)∑n
j=1(µij)

m
(4.2)

3. Update µij according to the following formula:

µij =
1∑K

k=1(
||xj−zi||2
||xj−zk||2

)
2

(m−1)

(4.3)

4. Calculate the objective function Jm

5. Repeat steps 2-4 until Jm improves less than the prefixed threshold or until the

specified maximum number of iterations is reached.
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4.1.4 Cluster Validation Indexes

The use of a clustering algorithm must be complemented with the use of a validation

index to detect the optimal cluster number for a given input dataset. A clustering valid-

ity index has two indicators: the compactness and the separation [51]. The compactness

indicates the concentration of points that share the same cluster. The separation, evalu-

ates the degree of isolation among clusters. A dataset is well partitioned if there is both

high compactness and high separation. But often the two indicators conflict, e.g., if the

compactness is high, the separation is low and viceversa. Therefore, a rationale between

the two indicators is needed to design a clustering validation index.

The aim of the present work is to identify suitable CVIs for fMRI Clustering studies

among a set of representative and widely used crisp and fuzzy indexes. A total of eight

indexes is considered and their formal definition given below.

• The Pakhira Bandyopadhyay Maulik Index (PBMI) [60]. It evaluates the product

between compactness and separation and its optimal value is towards the maxi-

mum. It is formalised as

PBMI(K) =

(
1

K
× E1

EK
×DK

)2

(4.4)

where K is the number of clusters used, i.e., K = {k′ , k′′ , . . . , kK}, the EK =∑K
k=1Ek holds such that the compactness is defined as crisp functional

J(U,Z) = Ek =
N∑
n=1

unk||xn − zk|| (4.5)

where U(N) = [unk]N×K is the binary partition matrix of the clustered data and

the crisp separation is formalized as

Dk =
K

max
k′,k′′

{
||zk′ − zk′′ ||

}
(4.6)

with zk′ 6= zk′′ (that are different centroids). Note that xn is the n-th point in the

dataset and zk is the center of the k-th cluster. E1 =
∑N

n=1 ||xn − z1|| z1 is the

centroid calculated on all points of the dataset

• The FPBMI is the fuzzy version of the index proposed by Pakhira et al. [60]. It

evaluates the product between compactness and separation and its optimal value

is towards the maximum. It is formalised similar as in the equation (4.4), except
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for the compactness of all clusters that it is defined as fuzzy functional, i.e.,

Jm(U,Z) = Ek =
K∑
k=1

N∑
n=1

umnk||xn − zk|| (4.7)

and E1 that defined the fuzzy compactness of the cluster 1, i.e. E1 =
∑N

n=1 u
m
n1||xn−

z1||. Both contain the membership value unk, where U(N) = [unk]N×K is the fuzzy

partition matrix of the clustered data.

• The Fukuyama Sugeno Index (FSI) [29]. It computes the difference between fuzzy

compactness and fuzzy separation and its optimal value is towards the minimum,

i.e.,

FSI(K) =

K∑
k=1

N∑
n=1

umnk||xn − zk||2 −
K∑
k=1

N∑
n=1

umnk||zk − z||2 (4.8)

in which the z is the mean of all Z centroids and the unk is the membership value

of the n-th point in the k-th cluster, and m is the fuzzy exponent.

• The Rezaee Lelieveldt Reider Index (RLRI) [66], also known as Compose Within

and Between scattering Index (CWBI). It is the sum of compactness and separa-

tion and its optimal value is towards the minimum. RLRI assesses the average

compactness and separation of fuzzy clustering by using the sum of two functions,

i.e.,

RLR(K) = αScat(K) +Dis(K), (4.9)

where α is a weighting factor equals to Dis(Kmax) (the Dis(K) with the maximum

cluster number), and Scat(K) that is the clustering compactness measure defined

as

Scat(K) =
1
K

∑K
k=1 ||σ2(zk)||
||σ2(X)||

(4.10)

with ||x|| = (xT · x)1/2. Note that σ2(X) denotes the variance of all the dataset

X and σ2(zk) is the fuzzy variance of cluster k. The Dis(K) is the clustering

separation measure defined as

Dis(K) =
Dmax

Dmin

K∑
k=1

[
K∑
k=1

||zk′ − zk′′ ||

]−1
(4.11)

with zk′ 6= zk′′ (different k centroids) and with Dismax and Dismin are the clus-

tering separation with the maximum and minimum cluster number respectively.

• The Wang Sun Jiang Index (WSJI) [69]. It is the sum of compactness and sepa-

ration and its optimal value is towards the minimum. It derived from the RLRI,
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adopting a linear combination of average fuzzy compactness and separation to

evaluate clustering outcomes, i.e.,

WSJI(K) = Scat(K) +
Sep(K)

Sep(Kmax)
(4.12)

where the separation Sep(K) is differently defined as in equation 4.11, i.e.,

Dis(K) =
D2
max

D2
min

K∑
k=1

[ K∑
k=1

||zk′ − zk′′ ||2
]−1

. (4.13)

Instead, the Scat(K) is the defined as in equation (4.10).

• The Xie Beni Index (XBI) [82]. It is the ratio between compactness and separation

and its optimal value is toward the minimum. It measures the average within clus-

ter fuzzy compactness versus the minimal value of the between-clusters separation,

i.e.,

XBI(K) =

∑K
k=1

∑N
n=1 u

2
nk||xn − zk||2

N ·mink′ 6=k′′{||zk′ − zk′′ ||2}
(4.14)

with K = {k′ , k′′ , . . . , kK} is the number of clusters used, N the number of data

points, unk the membership values associated to the points n and a cluster k, the

zk is the centroid of a generic cluster k.

• The Davies Bouldin Index (DBI) [14]. It is the ratio between crisp compactness

and separation and its optimal value is towards the minimum., i.e.,

DBI(K) =
1

K

K∑
k=1

max
{ Sk′ + Sk′′

||zk′ − zk′′ ||
}

(4.15)

with k′ 6= k′′ (different k centroids) and Sk′ the crisp clustering compactness of the

k′ = k−th cluster defined as

Sk′ =
( 1

Nk′

∑
xn∈ki

||xn − zk′ ||2
)1/2

(4.16)

where Nk′ is the cardinality of the cluster k
′
.

• The SDBI is the soft (fuzzy) version of DBI [73]. It is the ratio between the fuzzy

compactness and the separation and its optimal value is towards the minimum. It

is defined as

SDBI(K) =
1

K

K∑
k=1

max
{Sk′Uk′ + Sk′′Uk′′

||zk′ − zk′′ ||
}

(4.17)
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where the fuzzy compactness Sk′ is the defined as follow

Sk′ =
( 1

N

∑
xn∈N

||xn − zk′ ||2
)1/2

(4.18)

in which N is the cardinality of the used datasets, whereas the Uk′ is the average of

the membership values for the cluster k
′
(note that k

′
and k

′′
are different clusters).

4.1.5 Experiments and Results

Performances of the eight indexes introduced in Section 3 are evaluated using cluster-

ing results obtained by processing fMRI datasets with different configuration of FCM

algorithm and comparing the optimal number of clusters indicated by the indexes with

those indicated by the available ground truth.

Taking as an example a single subject and a single CVI, the experiment is performed as

follows:

• Step 1: the dataset is passed in the FCM algorithm input initially set with the

value K = 2 and the value m = 1.1.

• Step 2: the algorithm creates K clusters and calculates the Jm value. This step is

repeated 200 times, and the clustering with the lower Jm value is saved.

• Step 3: The clustering obtained in Step 2 is passed in input to the CVI that carries

out the evaluation, and the evaluation is saved.

• Step 4: You return to Step 1, setting the K value as K = K + 1, and this is

repeated until K <= 10, if K > 10 go to the next step.

• Step 5: A normalisation is applied to the evaluations through z-scores to make

them comparable with those obtained from the other indices.

• Step 6: You go back to Step 1, setting the value K = 2 again, and setting the

value m as m = m+ 0.1, and this is repeated untilm <= 2.5, if m > 2.5 go to the

next step.

• Step 7: For each of the 15 tables containing the evaluations from K = 2 to K = 10,

parameter E is calculated first with a two-class truth, then with a 4-class truth.

4.1.6 fMRI dataset

From the NITRC repository [46] and 1000 Functional Connectome Project, we selected

the Beijing dataset with 187 healthy subjects (73M /114F; ages 18-25; all righthanded).

The subjects did a resting state experimental paradigm with eyes closed. The fMRI
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parameters were the following: TR = 2, slices = 33 acquired with interleaved ascending

procedure, time-points = 225, magnet = 3 [T]. The selection of this dataset is motivated

by the specific age range and because it was used by Biswal et al. [8] to discover

resting state functional properties and their gender determinants. The brain resting state

measured with fMRI has a bunch of possible biomarkers that allow researchers to build a

likely ground truth (or experimental-based ground truth). The common knowledge about

those biomarkers are presented in [39, 8, 50]. Since we want to get an empirical ground

truth to validate the indexes, we defined it taking in account the acquired common

knowledge about resting state fMRI biomarkers, obtaining a two classes ground truth and

a four classes ground truth. The first has two labels associated to the presence/absence

of regions related to the so-called Default Mode Network (DMN) [22] and the second

has four labels associated to regions part of DMN and other three candidate resting

networks, i.e., the Visual Network (VN), the Sensory/Motor Network (SMN) and the

Other Resting Networks (ORN) (the last one encompasses all the regions that are not

classified as DMN, VN or SMN).

4.1.7 Experiments

Two experiments have been developed by using fMRI data. In the first experiment two

classes of truth are considered: what is DMN network and what is not. In the second

experiment, 4 classes are considered: DMN network, VN network, SMN network and

other resting networks. The FCM algorithm was configured with number of clusters

K = 2, 3, ..,
√
n and weighting exponent m =1,1.2,. . . ,2.5. To improve robustness in the

evaluation, each FCM implementation was executed 200 times for each configuration

and clustering result having the lowest Jm value was considered for the CVIs evalua-

tion. In both the experiments the eight CVIs were applied to evaluate clustering results

obtained by the allowed FCM implementations distinguished by the different values of

K and m parameters. To enable the quantitative comparison analysis, CVIs values were

normalised taking into consideration the fact that some indexes designate the optimal

number of clusters by using the maximum value, while the others the minimum value.

In particular, the z-score normalisation has been implemented in a positive way for the

indexes that minimise their optimal value, and in a negative way for the indexes that

maximise their optimal value. After normalisation, the indexes indicated the number

of optimal clusters with the lowest value, making them to be well comparable. Table 1

illustrates the CVIs values resulting from the evaluation of clustering fMRI dataset by

FCM with m = 2 and i ranging from 2 to 10.
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Table 4.1: Values of CVIs resulting from the evaluation of clustering fMRI dataset by
FCM with m=2 and K ranging from 2 to 10.

Index K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10

FPBMI 1.66 1.59 -1.66 -0.12 1.95 -0.44 0.62 1.62 -0.12

PBMI 1.02 0.89 -1.19 -0.47 0.69 -0.67 0.93 1.12 -0.44

FSI 0.75 0.81 -0.08 -0.53 0.07 -0.64 0.93 -0.42 -0.54

WSJI -0.27 0.02 0.02 -0.44 0.05 -0.35 1.09 -0.95 -0.61

XBI -0.73 -0.90 0.11 -0.46 -0.81 -0.40 -0.61 -0.63 -0.41

RLRI -0.82 -0.98 0.65 -0.31 -0.96 -0.11 -0.57 -1.05 -0.63

DBI -0.92 -0.97 0.93 -0.07 -1.03 0.28 -0.94 -0.29 0.46

SDBI -0.67 -0.46 1.21 2.43 0.02 2.35 -1.44 0.61 2.30

To summarise the set of results generated and develop systematically a comparative

evaluation of CVIs, we introduced a measure E defined as:

E = |ni− nr| (4.19)

where ni is the optimal number of clusters designated by the index, nr the number of

cluster by reference. Table 2 illustrates performance of E values of the 8 CVIs, computed

as average of E values obtained varying parameter m in the two experiments mentioned

above.

Table 4.2: Mean and variance of E values for the 8 index evaluating clustering of fMRI
data with 2 (Experiment 1) and 4 (Experiment 2) reference classes, the CVIs are in
ascending order based on the E mean.

Index Experiment 1 Index Experiment2
E mean Var E mean Var

FSI 0.58 0.13 WSJI 0.78 0.08
RLRI 0.65 0.18 RLRI 1.35 0.17
WSJI 1.28 0.10 FSI 1.47 0.08
SDBI 1.54 1.50 SDBI 1.55 0.49
DBI 4.76 5.02 DBI 3.31 2.35
XBI 5.50 0.40 XBI 3.69 0.39
PBMI 6.22 0.42 PBMI 4.22 0.42
FPBMI 6.36 0.25 FPBMI 4.36 0.25

4.1.8 Discussion and Conclusions

In this work the performance of eight well-known CVIs was quantitatively evaluated by

using the FCM algorithm to process fMRI data. The use of the selected dataset allows
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to investigate the behaviour of CVIs under two different levels of organising data in two

and four reference classes. The results obtained are preliminary but useful to suggest

guidelines for a reliable use of cluster evaluation indexes and to contribute to a proper

use of data driven, clustering techniques in the complex and more and more investigated

brain function evaluation domain. Looking into the details of the results listed in Table

4.2, we noticed that RLRI, WSJI and FSI gained the top three positions in both the

experiments even if with a different internal order. This fact leads to the conclusion

that each one of them is able to both mediate between different characteristics of cluster

structures and efficiently create a balance between compactness and separation. It was

found also that widely used indexes such XBI, DBI and PBMI showed values considerably

lower than the three indexes mentioned above. The major differences between the two

sets of CVIs lie in the formalisation of separation component that plays an important role

when dealing with clusters allocated closely as probably in case of fMRI data, and in the

management of the two measures (compactness and separation) in the case of RLRI and

WSJI is the sum of the two components, FSI subtraction while XBI, DBI, SDBI apply the

ratio and FPBMI, PBMI the product. The novel SDBI index showed better values than

crisp standard version and gained a position just below the top three positions. The

XBI, PBM, FPBM, and DBI indexes seem to be more suitable for contexts in which

data distribution with little overlap is hypothesised, or in which cluster compactness is

preferred.

Main conclusions obtained by our experimental work are consistent with results ob-

tained in previous works [51] while considering the different experimental strategies and

different domains. However caution must be exercised when applying results to other

fMRI contexts taking into account the variability and complexity of these data and the

different processing strategies. Future work contemplates a refinement of the metric

adopted in the comparison to include other evaluation criteria and the use of a broader

set of fMRI data with different levels of complexity and inter-cluster overlap, to obtain

which would be results more robust and extensible to other similar contexts.
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4.2 Comparison of Validity Indexes for Fuzzy Clusters of fMRI

data by Using Adaptive-Network Fuzzy Inference Systems

4.2.1 Premise

This research work is the extension of the paper presented at the ECCOMAS Thematic

Conference on Computational Vision and Medical Image Processing held in Porto [57].

This paper is the result of collaboration with other authors. For this work I have

dedicated myself to the research design, to the choice, implementation and optimisation

of the algorithms and indexes used, to the management of the experimental part, to the

conception of metrics and to the training of the ANFIS model. This work focused on

the introduction of new parameters for the evaluation of CVIs, and on the introduction

of ANFIS to carry out the evaluation of clustering evaluation indexes. Furthermore,

synthetic and benchmark datasets were also used for the evaluation of CVIS in addition

to fMRI datasets.

In computational neuroimaging, functional magnetic resonance imaging (fMRI) anal-

ysis using fuzzy clustering methods is arousing a lot of interest, providing very inter-

esting results. In a very complex context such as functional neuroimaging, index-based

assessments play a fundamental role in obtaining a correct analysis. In this article, a

comparative analysis of eight validation indexes chosen from the most famous / inno-

vative will be exposed. The fuzzy c means algorithm, already widely used in the fuzzy

analysis of fMRI exams, will be used as the clustering algorithm for the analysis of fMRI

exams. For the evaluation of the indexes, metrics will be introduced, which will make

it possible to provide an evaluation in which even sub-optimal results obtained by the

indexes will have a weight. Furthermore, ANFIS will be used with the aim of creating

rules for the evaluation of the indexes, and obtaining an evaluation through a linguistic

label. Furthermore, we wanted to expand this study on indices to different domains, and

we did so through the use of synthetic and benchmark dataset, as well as fMRI dataset,

which remain the main interest.

4.2.2 Introduction

Data clustering is one of the most used data analysis methods to explore data in different

domains, is a methodology that uses only the statistical information inherent in the data

without the need for human supervision [21].

The grouping carried out by clustering can be of the fuzzy or crisp type, in the crisp

case the algorithm assigns a datum to a single cluster. In contrast, in the fuzzy case, a

datum can belong with different degrees of belonging to several clusters.

Given its flexibility, clustering is used in several domains, including marketing, insur-

ance, city-planning, earthquake studies, and computational neuroimaging. In functional



94 CVIs and Evaluation Methodologies Analysis for fMRI

magnetic resonance imaging (fMRI) analysis, the use of fuzzy clustering techniques is

showing great promise. Thanks to its characteristic of being a data-based approach, it

appears to be a suitable approach to explore the functional connectivity of the brain. An

fMRI exam provides both spatial information and temporal information, spatial infor-

mation is related to the mapping of brain regions, while temporal information is related

to detecting changes in the brain signal at specific experimental times.

The results of clustering techniques in fMRI analyses are more accurate than the

results obtained from model-based methods, especially when it comes to analyses per-

formed under complicated experimental conditions [39, 79].

Given the complexity of fMRI data, finding the optimal partition for clustering is

not an easy task. Not all fMRI models are easily separable, as some of them may

share common properties, an example being the extended brain networks that vary

the coactivation of different brain modules during an experimental activity. Clustering

must therefore overcome the challenge of managing the natural dynamics of neuronal

structures, this implies the management of the regularities of known low-level patterns,

but also the irregularities related to high-level active tasks or passive self-referential

paradigms.

Clustering plays an important role in passive fMRI studies, it has allowed to investi-

gate the neurophysiological resting state with the discussion of biomarkers [39], and to

highlight evidence-based differences relating to both sex and age [8].

Among the various algorithms for analysing fMRI data, fuzzy c-mean (FCM) [6] is

certainly the most popular method [39, 50, 73, 32] for its ability to handle complex data.

One of the main problems in clustering analysis is represented by cluster validation.

Clusters are created by the algorithm by aggregating similar elements, but to evaluate

whether this aggregation is optimal, an external agent is needed. There are various

techniques for the evaluation of clustering, but the most used is that of the cluster

validation indexes (CVIs) [60, 29, 66, 69, 82, 14, 73], these algorithms evaluate the

clustering carried out through the computation of Compactness (the degree of similarity

between the elements belonging to the same cluster) and of the Separation (the degree

of dissimilarity between the elements of the various clusters).

This is a very important topic, numerous studies have been conducted to analyse

and compare the performance of the various CVIs [3, 36]. Despite the numerous stud-

ies there are still no rules that provide based on the type of data, which index is the

most appropriate, so the validation indexes are often selected on the basis of individual

experience, based on arbitrary criteria or using both. These criticalities also arise in

the analysis of fMRI data, in which clustering techniques often find validation through

previous knowledge of the data, or on the basis of studies using internal indexes.

To overcome this problem, a comparative study was carried out on the performance of

CVIs both in the fMRI field and in more general areas through synthetic and benchmark
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data. For the evaluation of CVIs the FCM algorithm will be used and metrics will

be introduced that will allow the evaluation not only of the optimal performance of

the CVIs, but also of the sub-optimal ones. An adaptive neuro-fuzzy inference system

(ANFIS) will be used to combine the evaluations obtained from the metrics, and have

evaluations in linguistic labeling form.

4.2.3 Clustering problem

Clustering is part of unsupervised learning techniques. The clustering technique consists

of dividing a specific set of data into subgroups called clusters; clusters are created

following a predefined policy. Clustering being an unsupervised technique, does not

need previous knowledge on the data but is driven by data.

The clusters contain data that appear to have a high similarity to each other, and at

the same time, present a high dissimilarity with the data present in the other clusters

[21]. Clustering can be formally defined as follows: Let X = {x1, x2, . . . , xn} a given

dataset (with n elements) and C = {C1, C2, ..., CK} the collection of clusters, where K

is the desired number of clusters. Regardless of the partitioning policy used, clustering

requires the creation of a partition matrix of size K × n defined as U = [µij ], with

i = 1, 2, . . . ,K and j = 1, 2, . . . , n, where µij is the grade of membership of xj point to

Ci cluster.

Clusters can be crisp type or fuzzy type, in a crisp clustering, each element of the

specified data set will belong to a single cluster. So µij = 1 if xj ∈ Ci, otherwise µij = 0.

In a fuzzy clustering, each element of the dataset can also be associated with all clusters,

and for each cluster to which it is associated it, will have a degree of membership. The

partition matrix in this case is represented as U = [µij ], where µij ∈ [0, 1] indicates the

degree of belonging to j -th to cluster i -th.

There are several clustering algorithms for both crisp clustering and fuzzy clustering;

in this paper, we chose to carry out the analyses using a fuzzy clustering algorithm, the

Fuzzy C-Mean (FCM) [6] already used in other research on fMRI data.

4.2.4 Cluster validation index

The use of a clustering algorithm also involves the use of a criterion for the validation of

the clustering performed. There are three types of criteria to evaluate the partitioning

performed by the clustering algorithm:

• External criteria: in which the performance of a clustering is measured by com-

paring a priori information.

• Internal criteria: they measure the performance of a clustering using only the data
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• Relative criteria: the results of two or more clustering algorithms applied to the

same dataset are compared.

In this paper, we will use the internal criterion through clustering validation indexes

(CVIs). The CVIs adopt two indicators: i) Compactness and ii) Separation [51] to carry

out their evaluation. The Compactness scale probes the density of the elements within

the calculated clusters, in other words, it is the measure used to estimate the similarity

between the elements sharing the same cluster. The Separation probes the isolation

between the computed clusters, in other words, it measures the diversity of the elements

of a cluster compared to the elements present in the other clusters. A grouping result

should be defined as optimal if there is a high Compactness and a high Separation.

Therefore, a dataset is said to be optimally split if both Compactness and Separation

are satisfied. The disadvantage is that very often, the two indicators conflict, for example

if the Compactness is high and the separation is low and vice versa. Therefore, a rationale

between the two indicators is needed to design a clustering validation index.

The eight CVIs used in this work will now be exposed, and these CVIs use different

rationale to make their evaluations.

• The Pakhira Bandyopadhyay Maulik Index (PBMI) [60]. It evaluates the product

between compactness and separation and its optimal value is towards the maxi-

mum. It is formalized as

PBMI(K) =

(
1

K
× E1

EK
×DK

)2

(4.20)

where K is the number of clusters used, i.e., K = {k′ , k′′ , . . . , kK}, the EK =∑K
k=1Ek holds such that the compactness is defined as crisp functional

J(U,Z) = Ek =

N∑
n=1

unk||xn − zk|| (4.21)

where U(N) = [unk]N×K is the binary partition matrix of the clustered data and

the crisp separation is formalised as

Dk =
K

max
k′,k′′

{
||zk′ − zk′′ ||

}
(4.22)

with zk′ 6= zk′′ (that are different centroids). Note that xn is the n-th point in the

dataset and zk is the center of the k-th cluster. E1 =
∑N

n=1 ||xn − z1|| z1 is the

centroid calculated on all points of the dataset

• The FPBMI is the fuzzy version of the index proposed by Pakhira et al. [60]. It

evaluates the product between compactness and separation and its optimal value
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is towards the maximum. It is formalised similar as in the equation (4.20), except

for the compactness of all clusters that it is defined as fuzzy functional, i.e.,

Jm(U,Z) = Ek =

K∑
k=1

N∑
n=1

umnk||xn − zk|| (4.23)

and E1 that defined the fuzzy compactness of the cluster 1, i.e., E1 =
∑N

n=1 u
m
n1||xn−

z1||. Both contain the membership value unk, where U(N) = [unk]N×K is the fuzzy

partition matrix of the clustered data.

• The Fukuyama Sugeno Index (FSI) [29]. It computes the difference between fuzzy

compactness and fuzzy separation and its optimal value is towards the minimum,

i.e.

FSI(K) =

K∑
k=1

N∑
n=1

umnk||xn − zk||2 −
K∑
k=1

N∑
n=1

umnk||zk − z||2 (4.24)

in which the z is the mean of all Z centroids and the unk is the membership value

of the n-th point in the k-th cluster, and m is the fuzzy exponent.

• The Rezaee Lelieveldt Reider Index (RLRI) [66], also known as Compose Within

and Between scattering Index (CWBI). It is the sum of compactness and separa-

tion and its optimal value is towards the minimum. RLRI assesses the average

compactness and separation of fuzzy clustering by using the sum of two functions,

i.e.,

RLR(K) = αScat(K) +Dis(K), (4.25)

where α is a weighting factor equals to Dis(Kmax) (the Dis(K) with the maximum

cluster number), and Scat(K) that is the clustering compactness measure defined

as

Scat(K) =
1
K

∑K
k=1 ||σ2(zk)||
||σ2(X)||

(4.26)

with ||x|| = (xT · x)1/2. Note that σ2(X) denotes the variance of all the dataset

X and σ2(zk) is the fuzzy variance of cluster k. The Dis(K) is the clustering

separation measure defined as

Dis(K) =
Dmax

Dmin

K∑
k=1

[
K∑
k=1

||zk′ − zk′′ ||

]−1
(4.27)

with zk′ 6= zk′′ (different k centroids) and with Dismax and Dismin are the clus-

tering separation with the maximum and minimum cluster number respectively.

• The Wang Sun Jiang Index (WSJI) [69]. It is the sum of compactness and sepa-
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ration and its optimal value is towards the minimum. It derived from the RLRI,

adopting a linear combination of average fuzzy compactness and separation to

evaluate clustering outcomes, i.e.,

WSJI(K) = Scat(K) +
Sep(K)

Sep(Kmax)
(4.28)

where the separation Sep(K) is differently defined as in equation 4.27, i.e.,

Dis(K) =
D2
max

D2
min

K∑
k=1

[ K∑
k=1

||zk′ − zk′′ ||2
]−1

. (4.29)

Instead, the Scat(K) is the defined as in equation (4.26).

• The Xie Beni Index (XBI) [82]. It is the ratio between compactness and separation

and its optimal value is toward the minimum. It measures the average within clus-

ter fuzzy compactness versus the minimal value of the between-clusters separation,

i.e.,

XBI(K) =

∑K
k=1

∑N
n=1 u

2
nk||xn − zk||2

N ·mink′ 6=k′′{||zk′ − zk′′ ||2}
(4.30)

with K = {k′ , k′′ , . . . , kK} is the number of clusters used, N the number of data

points, unk the membership values associated to the points n and a cluster k, the

zk is the centroid of a generic cluster k.

• The Davies Bouldin Index (DBI) [14]. It is the ratio between crisp compactness

and separation and its optimal value is towards the minimum., i.e.,

DBI(K) =
1

K

K∑
k=1

max
{ Sk′ + Sk′′

||zk′ − zk′′ ||
}

(4.31)

with k′ 6= k′′ (different k centroids) and Sk′ the crisp clustering compactness of the

k′ = k−th cluster defined as

Sk′ =
( 1

Nk′

∑
xn∈ki

||xn − zk′ ||2
)1/2

(4.32)

where Nk′ is the cardinality of the cluster k
′
.

• The SDBI is the soft (fuzzy) version of DBI [73]. It is the ratio between the fuzzy

compactness and the separation and its optimal value is towards the minimum. It
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is defined as

SDBI(K) =
1

K

K∑
k=1

max
{Sk′Uk′ + Sk′′Uk′′

||zk′ − zk′′ ||
}

(4.33)

where the fuzzy compactness Sk′ is the defined as follow

Sk′ =
( 1

N

∑
xn∈N

||xn − zk′ ||2
)1/2

(4.34)

in which N is the cardinality of the used datasets, whereas the Uk′ is the average of

the membership values for the cluster k
′
(note that k

′
and k

′′
are different clusters).

4.2.5 ANFIS

ANFIS is a class of adaptive networks that incorporate both neural networks and fuzzy

logic principles. In fuzzy logic, the control signal is generated by the activation of the

rule base. In ANFIS, the rule base is selected using neural network techniques. Through

the approximation of a non-linear system by setting IF-THEN rules inherited from the

fuzzy logic, ANFIS is able to obtain excellent performance in various application areas,

in fact ANFIS is defined as a universal estimator[48]. ANFIS draws its origins from

the fuzzy logic theorem proposed by Zadeh [85] to describe complicated systems, this

theorem, over the years has been used successfully in various fields, eg. manufacturing

technique, decision making, pattern recognition, diagnostics, data analysis [11, 35].

ANFIS is essentially a rule-based fuzzy logic model whose rules are developed during

the model training process trougth a data-driven process . ANFIS builds a fuzzy infer-

ence system (FIS) whose membership function parameters are derived from the training

examples. An example of an ANFIS system will now be exposed, assuming that there

are two inputs: x and y. Two fuzzy if–then rules for a first-order Sugeno fuzzy model

can be expressed as follows

Rule1 : If(x isA1) and (y isB1) then (f1 = p1x+ q1y + r1)

Rule2 : If(x isA2) and (y isB2) then (f2 = p2x+ q2y + r2)

Where x and y represent the input data, A1 and B1 are the fuzzy sets, while fi
represents the output, which is within the fuzzy area specified by the fuzzy rule. The

variables pi, qi and ri correspond to the design parameters calculated during the training

process.

In figure 4.2 the ANFIS architecture used to implement the two rules of the example,

we note that it is divided into five layers that will now be analysed in detail.

Level 1: Input nodes; each node of this level assigns the degree to which the input
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Figure 4.2: In the figure the ANFIS architecture with the five layers, the fixed type
nodes are represented with squares, instead of the adaptive nodes with circles.

belongs to the membership function. These nodes generate the membership degrees to

which the appropriate fuzzy sets belong to use the membership functions. They are

determined as follows:

O1
i = µAi(x) i = 1, 2 (4.35)

O1
i = µBi−2(y) i = 3, 4 (4.36)

In the first level, all nodes are adaptive nodes,µAi(x) and µBi−2(y) adopt the chosen

membership function,if for example a bell-shaped membership function was used, µAi(x)

is defined as follows:

µAi(x) =
1

1 +

{(
x− ci
ai

)2
}bi (4.37)

where ai, bi and ci are the parameters for bell-shaped functions. Analysing the

second layer, we find nodes of a fixed type, which have the function of a multiplier, and

are represented as follows:

O2
i = wi = µAi(x)µBi(x) i = 1, 2 (4.38)

In the third level, we still have fixed nodes, which perform the function of normalising
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the nodes of the previous level, and are represented as:

O3
i = wi =

wi
w1 + w2

i = 1, 2 (4.39)

In the fourth layer, the output of each node in this layer is calculated as the contribution

of each of the rules, the nodes are adaptive and are defined as follows:

O4
i = wifi = wi(pix+ qiy + ri) i = 1, 2 (4.40)

In the fifth and last level there is an adder node (S) which, as can be guessed,

performs the sum of the values obtained from the previous layer. It is a static type node

and the output it generates is calculated as follows:

O5
i =

2∑
i=1

wifi =

∑2
i=1wifi
w1 + w2

(4.41)

Note that there are two adaptive levels in this ANFIS architecture, in the first layer

where there are three modifiable parameters ai, bi, ci, and in the fourth layer where we

find the three modifiable parameters pi, qi, ri. The parameters of the first layer ai, bi, ci
are called premise parameters, while the parameters of the fourth layer pi, qi, ri are called

consequent parameters. The learning algorithm aims to find the values of ai, bi, ci and

pi, qi, ri that match ANFIS output to that seen in training.

ANFIS uses two different learning algorithms, back-propagation and hybrid methods,

which aim to minimize the error between observed and predicted data [84].

4.2.6 Experiments and Results

For the experiments on the evaluation of CVIs, three different types of data sets were

used, and the fuzzy c-mean was selected as the algorithm for the creation of the clus-

terings that will be evaluated by the CVIs. Three metrics will be introduced to allow

evaluation of sub-optimal performances by CVIs, and an ANFIS model will be intro-

duced to classify the evaluations obtained. Taking a single dataset and a single CVI as

an example, the experiment is performed as follows:

• Step 1: the dataset is passed into the FCM algorithm input set with the valueK = 2

and the value m = 2.0.

• Step 2: the algorithm creates K clusters and calculates the Jm value. This step is

repeated 200 times, and the grouping with the lowest Jm value is saved.

• Step 3: The grouping obtained in Step 2 is passed as input to the CVI that performs

the evaluation, and the evaluation is saved.
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• Step 4: you go back to Step 1, setting the K value as K = K + 1, and this is

repeated until K <= 10, if K > 10 you go to the next step.

• Step 5: A normalisation is applied to the evaluations through z-scores to make

them comparable with those obtained from the other indices.

• Step 6: From the table containing the evaluations from K = 2 to K = 10, the

parameters E1, E2, E3 are calculated through the truth relating to the dataset, in

the case of the fMRI data the truth is calculated as described in the paragraph.

• Step 7: The parameters E1, E2, E3 are passed in input to ANFIS, which carries

out the evaluation.

For ANFIS training, we proceeded as follows:

• Step 1: random creation of a dataset containing 1000 elements and three features

corresponding to E1, E2, E3.

• Step 2: evaluation of each element by an expert.

• Step 3: the creation of 30 different models by varying the internal parameters of

ANFIS.

• Step 4: model training using750 data as training and 250 as test.

• Step 5: Comparison of the results of the various models, and choice of the model

with the best performance

Fuzzy C-means

The FCM algorithm proposed by Bezdek [6] is used for the analysis of unsupervised data

in various fields, and is one of the most used fuzzy clustering algorithms. The purpose

of the FCM algorithm is to create vectors called centroids that minimise the value of the

function Jm which is obtained by the sum of the quadratic error calculated between the

points present within the cluster. Jm is therefore defined as defined as:

Jm =
N∑
j=1

K∑
i=1

µmij ||xj − zi||2 (4.42)

Where:

• m > 1 is the exponent of the element of the fuzzy partition matrix to adjust the

degree of fuzzy overlap. The fuzzy overlap defines how blurred the boundaries

between clusters are, the greater the value of me the greater the summary of

boundaries
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• xj is the data point j-th.

• zi is the center of the i-th cluster.

• K is the number of clusters required.

• N is the number of elements contained in the dataset.

• µij is the degree to which xj belongs to the i -th cluster.Considering a given point

xj , the sum of its cluster membership values must give 1.

• ‖...‖ is the Euclidean norm between a point and the center of the corresponding

cluster.

The FCM algorithm does the following step:

1. Randomly initialises the U matrix.

2. Calculate the centroids of the cluster with the following formula:

zi =

∑n
j=1(µij)

m(xj)∑n
j=1(µij)

m
(4.43)

3. Update µij according to the following formula:

µij =
1∑K

k=1(
||xj−zi||2
||xj−zk||2

)
2

(m−1)

(4.44)

4. Calculate the objective function Jm

5. If Jm improves less than the set value or if the specified maximum number of

iterations has been reached, the algorithm ends, otherwise steps 2 to 4 are repeated.

Datasets

Three different types of data sets were used for this analysis of the index behavior. The

first type is composed of fMRI datasets, this dataset is very complex and with a large

number of elements. The second type is represented by the benchmark datasets, these

datasets are very heterogeneous, they have different degrees of complexity and number

of elements. Finally, synthetic datasets were used whose we can control distribution

and truth classes. The three types of datasets used will be described below and a

representation of the synthetic and fMRI data is shown in Figure 4.3. The methodology

used to obtain truth classes from fMRI datasets will also be introduced.
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fMRI Dataset

From the NITRC repository [46], two subjects, one female and one male, part of the

Beijing dataset were randomly selected. Beijing dataset contains in total of 187 healthy

subjects (73M /114F; ages 18-25; all righthanded). All the subjects did a resting state

experimental paradigm with eyes closed. The fMRI parameters were the following: TR

= 2, slices = 33 acquired with interleaved ascending procedure, time-points = 225,

magnet = 3 [T]. We indeed selected this dataset because the specific age range and

for its salience as benchmark dataset in functional neuroimaging (see for example the

work by Biswal et al. [8] that explored the resting-state functional properties and their

gender determinants). Moreover, the brain resting state measured with fMRI has a

bunch of possible biomarkers (or experimental-based ground-truth). We then computed

the likely ground truth for both the subjects by using the shared knowledge about those

biomarkers [39, 8, 50].

In the figure 4.3-b are presented the resting state fMRI images of both the subjects,

displaying one volume in three different sections.

Benchmark Datasets

There are five benchmark datasets (Cancer, Glass, Iris, SimpleClass, Thyroid); these are

very different from each other as a data type, this choice was made to have the most

heterogeneous datasets possible, so that the evaluation of the indexes made on them

provides a non-specialised evaluation but more general, in order to see which index is

best suited to different types of data distribution.

• The Cancer dataset consists of biopsies on benign and malignant tumours. The

dataset is a 699x9 matrix where on the row we have biopsies and on the columns

the features.

The number of classes is two because they are divided into benign tumours and

malignant moods.

• The Glass dataset can be used to classifies glass either as window or non-window

depending on the glass chemistry. This dataset is a 214x9 matrix where on the

rows we have the samples and on the columns the features.

This dataset has two classes, Window glass or Non-window glass.

• The Iris dataset can be used that classifies iris flowers into three species. The

dataset is represented by a 150x4 matrix where on the rows we have iris and on

the columns the features.

This dataset has three-class, iris setosa, iris virginica and iris versicolor.
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• The SimpleClass dataset consists of two-dimensional vectors that represent geo-

metric shapes. This dataset is represented by a matrix 1000x2 where on the rows

we have the examples and on the columns the characteristics that represent the

coordinates in a 2D space.

This dataset has four class, four geometrical figures.

• The thyroid dataset has patients with a clinical report on thyroid function. The

dataset is a 7200x21 matrix where on the rows there are the patients, and on the

columns, the characteristics are composed of 15 binary and 6 continuous features.

The classes, in this case, are three: Normal (Not hyperthyroid), Hyperfunction,

Subnormal functioning.

Synthetic Datasets

Two distinct groups of synthetic data sets were created, the first to analyse the data

overlap and the second to explore the dynamics present due to a large number of data

and clusters.

• Overlap Dataset: to test the performance of CVIs in cases where the data is

strongly overlapped, we initially created a dataset consisting of 1000 elements and

4 features belonging to two different classes, where the data does not overlap.

In total, five datasets of 1000 elements and four features have been created start-

ing from the first in which the data is perfectly divisible; we arrive at the fifth

where the data overlap heavily. Therefore, starting from a dataset without over-

lapping, an iterative function was used, which allowed to reach a high degree of

data overlap. In detail, starting from the first dataset, we have created a second of

identical dimensions and always from two classes of truth. However, in this case,

the elements had a slight overlap, successively we have created a third dataset of

the same size where the data shows more overlap, and so for a fourth and fifth

data set. These datasets were called:

– Without overlap

– Minimal overlap

– Mean overlap

– Medium-high overlap

– High overlap

• High Cluster Number Dataset: to analyse the behaviour in the case of a large

number of clusters, a synthetic dataset of 60000 elements has been created. This

dataset is composed of 60000 points in two-dimensional space, therefore with two
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features. The points are distributed in 60 classes of 1000 points each equally

distributed.

The synthetic datasets are presented in the figure 4.3-a.

Figure 4.3: The image shows the changes in the synthetic datasets in their fuzziness (a)
and the resting state fMRI brain volumes observed in three different sections (coronal,
saggittal and medial) about the two subjects (b). In the (a) pictures, the five datasets
were reduced via Principal Component Analysis and represented by the first two com-
ponents.
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Computation of experimental-based ground-truth

In order to estimate the experimental ground-truth for the clustering of the fMRI

datasets, we defined the clustering centroids with the literature-based seed centroids.

From the works by Lee et al. [50], Raichle et al. [63], Fox et al. [23] and Vincent et al.

[75], we selected seven seeds that - given the actual knowledge acquired in Neuroimaging

- are the candidate biomarkers for the resting state physiological functional activity of

the brain, measured with fMRI scanners:

1. the Default Mode Network (DMN) (MNI152: x=“-2”, y=“-60”, z=“44”, i.e, the

Precuneous Cortex in the Harvard-Oxford Atlas);

2. the Fronto-Parietal Control Network (FPCN) (MNI152: x=”-40”, y=”30”, z=”38”,

i.e., the Left Middle Frontal Gyrus in Harvard-Oxford Atlas);

3. the Language Network (LN) (MNI152: x=“-66”, y=“-34”, z=“-10”, i.e,, the Mid-

dle Temporal Gyrus, poster division, in the Harvard-Oxford Atlas);

4. the Ventral-Attention Network (VAN) (MNI152: x=“48”, y=“46”, z=“-6”, i.e.,

the Right Frontal Pole in the Harvard-Oxford Atlas);

5. the Somato-Sensory Network (SSN) (MNI152: x=“-44”, y=“-32”, z=“18”, i.e., the

Left Parietal Operculum Cortex in the Harvard-Oxford Atlas);

6. the Visual Network (VN) (MNI152: x=“16”, y=“-102”, z=“4”, i.e., the Right

Occipital Pole);

7. the Dorsal Attention Network (DAN) (MNI152: x=“62”, y=“4”, z=“28”, i.e, the

Right Precentral Gyrus in the Harvard-Oxford Atlas).

Taken the above seven seeds as static clustering centroids for the fuzzy c-means

algorithm, we clustered the two fMRI datasets obtaining an experimental ground-truth,

one for each subject. In this way, the likely ground-truth used to validate the clustering

outcomes has both the generality of the neuroscientific literature and the speciality of

the subjects. In Figure 4.4 the seeds are shown.
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Figure 4.4: The image shows the localization of the seeds in a template brain. The
seeds are the Precuneus for the Default Mode Network (DMN), the Left Middle Frontal
Gyrus for the Fronto-Parietal Control Network (FPCN), the Left Middle Temporal Gyrus
for the Language Network (LN), the Left Parietal Operculum for the Somato-Sensory
Network (SSN), the Right Frontal Lobe for the Ventral Attention Network (VAN), the
Right Precentral Gyrus for the Dorsal Attention Network (DAN) and Right Occipital
Pole for the Visual Network (VN).
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4.2.7 Experiments

For this experiment, the fuzzy c-means clustering algorithm was applied to each of

the datasets described in Chapter 4.2.6. The FCM algorithm was used by setting the

parameter m = 2 and varying the parameter of the desired clusters K from two to ten

(K = 2, 3, ...10), to obtain nine clusters different for each data set. For the dataset ”Data

set with large number of clusters” the parameter K was varied from two to one hundred

(K = 2, 3, ...100) to obtain ninety-nine clusters. The algorithm was repeated 200 times

to improve clustering robustness, and this iteration was performed for each dataset and

K value, where the clustering with the lowest Jm value was saved. For each dataset, the

clustering with K equal to the number of truth classes of the dataset, as compared with

the respective truth. In the results of the comparisons made, the minimum similarity

was 86% and an average of about 91%. For reference datasets and synthetic datasets

there was a known truth, for fMRI datasets the truth was derived experimentally as

described in Chapater 4.2.6.

The clusterings obtained from each dataset were evaluated by the CVIs. The evalu-

ation logic of the various CVIs are different, for some the evaluation is as much better

as it gets closer to 0, for others the evaluation is as much better as it gets closer ad ∞.

In order to make the CVIs results comparable, a normalization of the data was

therefore carried out, specifically it was the use of the z-score normalisation. The z-score

technique has been implemented positively for indexes that minimize their optimal value,

and negatively for indexes that maximize their optimal value. After normalization, for

all indexes, the valuation is as much better as it approaches 0. Table 4.3 shows the

evaluations of the indexes on a dataset after applying the zscore.

Table 4.3: In this table the evaluations of the indexes after applying the zscore of the
synthetic dataset with medium overlap.
Index K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10

FSI -2,188 -0.918 -0,256 0,113 0,356 0.548 0,662 0,797 0,885

WSJI -2,028 -1,231 0,393 0,378 1,107 0,119 0,136 0,262 0,862

XBI -0,462 -0,452 -0,444 -0,252 -0,400 0,058 -0,305 -0,373 2,631

RLRI -2,273 -0,161 1,018 0,769 1,027 -0,011 -0,242 -0225 0,099

FPBMI 2,101 0,585 0,454 0,338 -0,879 -0,161 -1,018 -0,515 -0,905

PBMI -1,964 -1,271 -0,247 0,228 0,233 0,637 0,600 0.872 0,910

DBI -1,399 0,739 1,824 0,729 0,430 -0,332 -0,720 -0,701 -0,570

SDBI 1,830 0,911 0,859 0,121 -0,347 -0,608 -0,816 -0,934 -1,017

The methodology for evaluating the performance of CVIs most widespread in the lit-

erature consists of a binary measurement, in which the index indicates correct clustering

or fails. This methodology allows to evaluate only the optimal performances of CVIs. In

this chapter, we want to overcome this binary methodology, and evaluate both excellent
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and sub-optimal performances. For this reason, three different parameters have been

introduced. These parameters named E1, E2, E3 measure in different ways the result

proposed by the CVIs, and are described as follows:

The first parameter, E1, represents the error made by the index expressed in number

of clusters, and is described as:

E1 = |ni − nr| (4.45)

where ni is the number of clusters contained in the clustering designated by the index,

nr is the number of classes from which the reference truth is composed. The second

parameter, E2,represents the difference between the evaluation obtained by clustering

suggested by the index, and the evaluation obtained by clustering corresponds to the

truth, and is described as:

E2 = |vi − vr| (4.46)

where vi is the value calculated by the index corresponding to the optimal number of

clusters designated by the index, vr is the value calculated by the index corresponding

to the number of clusters by reference.

The third parameter, E3 it is calculated after sorting in ascending order all CVIs

evaluation values for a given dataset. So E3 corresponds to the difference between the

first position and the position of the suggested clustering value, and is represented as:

E3 = |1− p| (4.47)

where p represents the position of vr in an ascending ordered vector, containing the

values computed from the index of each grouping of a given dataset. In other words,

how many other values does the index suggest before the one corresponding to the truth.

Once the parameters E1, E2, E3 were calculated for each index and each dataset,

they were given as input to ANFIS for the evaluation of the index performance. The

choice to use ANFIS for the evaluation is due to the need to overcome the criticality

related to methodology for combining the three indexes, to obtain a final evaluation.

The choice of which criterion to use to combine the three parameters, and the weight to

be given to each, turned out to be a non-trivial task. Furthermore, we believe that an

evaluation using fuzzy rules is the most suitable for a complex field such as that of index

evaluation. ANFIS, through a training performed with a training dataset, independently

creates the fuzzy rules to carry out the evaluation. One of the fundamental parameters

for the construction of an ANFIS model are the membership functions. There are a

wide variety of forms of the membership functions: Gaussian, triangular, bell, moreover,

these membership functions can also be modified, or even hybridized, to customize the

shape to generate maximum precision better. Another essential parameter concerns the

technique used for optimization the most used are backpropagation and hybrid.

To train the ANFIS model, a synthetic dataset was generated consisting of two thou-
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sand elements, with three characteristics for each element and with four truth classes.

An expert evaluated the dataset, and each data was assigned a label with its evalua-

tion. Fifteen hundred elements were used for the training phase, and the remaining five

hundred elements were used for the testing phase. Several ANFIS models have been

created by varying the forms of the membership functions and the optimization metric.

For the experiments, the model with the highest degree of accuracy was selected, which

was 93%, where the membership function was the Gaussian bell with back propagation.

The labels used to evaluate the indexes are:

• Excellent : represents an excellent evaluation made by the index, therefore without

errors.

• Good : represents an index that did not give an optimal rating but is still a sub-

optimal solution.

• Insufficient : represents an index that did not provide a rating or a suboptimal

rating, an incorrect rating and far from the truth.

• Poor : represents an index that has given an incorrect evaluation far from the truth.

In addition to CVIS performance assessments on individual datasets, CVI performance

assessments by dataset type were performed. To carry out the evaluation by dataset type,

the average parameters E1m, E2m, E3m were calculated for each index. The parameters

E1m, E2m, E3m were calculated as the average of the calculated E1, E2, E3 parameters

for each index based on their type fMRI, benchmark and synthetic dataset. For example,

for the DBI index there is E1m for fMRI datasets, one for benchmark datasets and one

for synthetic datasets, the same for E2m and E3m. In the case of synthetic data sets,

E1m, E2m, E3m, were calculated by excluding the high-number dataset, this is because,

given the diversity from the other sets of data. Furthermore, a global performance of

the indexes was evaluated by calculating, similarly to what was done for the assessments

on the types of datasets, the parameters E1mg, E2mg, E3mg. They represent the values

of the global parameters obtained by averaging the values E1, E2, E3 obtained from the

indexes on all datasets.The average ratings in the case of E1m, E3m, E1mg, and E3mg

provide non-integer values. To bring them to integer values it was decided that any non-

integer value should be carried to the next integer. The experiments were conducted

both with integer values and with non-integer values, having obtained the same results,

only the experiments with integer values will be reported. In the next chapter, the

results of the evaluations provided by ANFIS will be presented, divided both by single

dataset, type of dataset and the average of all the evaluations obtained by the CVIs.

The experimental work process is schematized in figure 4.5.
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Figure 4.5: Workflow of the experiments
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4.2.8 Results

In this paragraph all the evaluations on the CVIs performance will be shown divided by

single data set. The evaluations will be shown in tabular form, where for each index,

the values of E1, E2, E3 and the evaluation assigned by ANFIS are reported. The same

methodology was used to show the average evaluations carried out by type of dataset.

Evaluation of fMRI datasets

The evaluations obtained by the CVIs on single fMRI dataset are shown below

Table 4.4: This table represents the evaluation obtained of CVIs on the male subject of
fMRI dataset

Index E1 E2 E3 Evaluation
FSI 2 0,387 2 Good
WSJI 3 0,962 2 Good
XBI 3 0,650 4 Insufficient
RLRI 3 0,691 1 Good
FPBMI 3 0.728 4 Insufficient
PBMI 3 0,851 4 Insufficient
DBI 5 2,864 5 Poor
SDBI 4 2,282 5 Poor

Table 4.5: This table represents the evaluation obtained of CVIs on the female subject
of fMRI dataset

Index E1 E2 E3 Evaluation
FSI 2 0,568 1 Good
WSJI 3 0,789 1 Good
XBI 3 0,529 4 Insufficent
RLRI 1 0,703 1 Good
FPBMI 3 0.662 4 Insufficient
PBMI 3 0,591 4 Insufficient
DBI 5 2,970 6 Poor
SDBI 4 2,312 6 Poor
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Evaluation of Benchmark datasets

The evaluations obtained by the CVIs on the single Benchmark datasets are shown below

Table 4.6: This table represents the evaluation obtained of CVIs on the Cancer dataset.
Index E1 E2 E3 Evaluation
FSI 0 0 0 Excellent
WSJI 2 0.001 1 Good
XBI 0 0 0 Excellent
RLRI 1 0,014 2 Good
FPBMI 6 0.850 3 Insufficient
PBMI 3 1,037 2 Good
DBI 0 0 0 Excellent
SDBI 1 0,0006 1 Good

Table 4.7: This table represents the evaluation obtained of CVIs on the Glass dataset
Index E1 E2 E3 Evaluation
FSI 0 0 0 Excellent
WSJI 2 0,667 2 Good
XBI 7 0,289 5 Poor
RLRI 1 0,780 2 Good
FPBMI 8 2,505 9 Poor
PBMI 4 0,045 3 Insufficient
DBI 1 0,728 2 Good
SDBI 8 2,548 7 Poor

Table 4.8: This table represents the evaluation obtained of CVIs on the Iris dataset
Index E1 E2 E3 Evaluation
FSI 1 0,860 1 Good
WSJI 0 0 0 Excellent
XBI 1 0,007 1 Good
RLRI 1 0,292 1 Good
FPBMI 3 1,064 7 Poor
PBMI 0 0 0 Excellent
DBI 1 1,169 1 Good
SDBI 2 2,206 7 Poor
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Table 4.9: This table represents the evaluation obtained of CVIs on the Simple dataset
Index E1 E2 E3 Evaluation
FSI 0 0 0 Excellent
WSJI 0 0 0 Excellent
XBI 2 2,713 8 Poor
RLRI 0 0 0 Excellent
FPBMI 4 0,424 3 Insufficient
PBMI 0 0 0 Excellent
DBI 0 0 0 Excellent
SDBI 0 0 0 Excellent

Table 4.10: This table represents the evaluation obtained of CVIs on the Thyroid dataset
Index E1 E2 E3 Evaluation
FSI 3 0,783 2 Good
WSJI 3 0,609 2 Good
XBI 4 1,826 3 Insufficient
RLRI 2 0,587 2 Good
FPBMI 6 2,410 7 Poor
PBMI 3 1,424 4 Insufficient
DBI 0 0 0 Excellent
SDBI 6 1,010 5 Poor

Evaluation of Synthetic datasets

The evaluations obtained by the CVIs on the single Synthetic datasets are shown below

Table 4.11: This table represents the evaluation obtained of CVIs on the synthetic data
set without overlap

Index E1 E2 E3 Evaluation
FSI 0 0 0 Excellent
WSJI 0 0 0 Excellent
XBI 0 0 0 Excellent
RLRI 0 0 0 Excellent
FPBMI 2 0.185 1 Good
PBMI 0 0 0 Excellent
DBI 0 0 0 Excellent
SDBI 4 0,052 1 Good
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Table 4.12: This table represents the evaluation obtained of CVIs on the synthetic data
set with minimal overlap

Index E1 E2 E3 Evaluation
FSI 0 0 0 Excellent
WSJI 0 0 0 Excellent
XBI 0 0 0 Excellent
RLRI 0 0 0 Excellent
FPBMI 8 3,333 8 Poor
PBMI 0 0 0 Excellent
DBI 0 0 0 Excellent
SDBI 8 2,256 7 Poor

Table 4.13: This table represents the evaluation obtained of CVIs on the synthetic data
set with mean overlap

Index E1 E2 E3 Evaluation
FSI 0 0 0 Excellent
WSJI 0 0 0 Excellent
XBI 0 0 0 Excellent
RLRI 0 0 0 Excellent
FPBMI 6 3,119 8 Poor
PBMI 0 0 0 Excellent
DBI 0 0 0 Excellent
SDBI 8 2,847 8 Poor

Table 4.14: This table represents the evaluation obtained of CVIs on the synthetic data
set with medium-high overlap

Index E1 E2 E3 Evaluation
FSI 0 0 0 Excellent
WSJI 0 0 0 Excellent
XBI 0 0 0 Excellent
RLRI 0 0 0 Excellent
FPBMI 8 3,380 8 Poor
PBMI 0 0 0 Excellent
DBI 5 0,280 2 Good
SDBI 8 2,924 8 Poor
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Table 4.15: This table represents the evaluation obtained of CVIs on the synthetic data
set with high overlap

Index E1 E2 E3 Evaluation
FSI 0 0 0 Excellent
WSJI 0 0 0 Excellent
XBI 0 0 0 Excellent
RLRI 3 0,541 1 Good
FPBMI 8 3,024 8 Poor
PBMI 0 0 0 Excellent
DBI 6 2,019 7 Poor
SDBI 8 3,011 8 Poor

Table 4.16: This table represents the evaluation obtained of CVIs on the synthetic
dataset with 60 clusters

Index E1 E2 E3 Evaluation
FSI 8 0.860 8 Poor
WSJI 13 0.997 9 Poor
XBI 15 1.105 6 Poor
RLRI 6 1.103 7 Poor
FPBMI 18 0.289 9 Poor
PBMI 18 2.000 12 Poor
DBI 10 0,500 38 Poor
SDBI 28 1.242 51 Poor
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CVIs evaluation based on dataset type

The CVIs evaluation based on dataset type are shown below.

Table 4.17: This table represents the evaluations obtained by the CVIs considering all
fMRI dataset

Index E1m E2m E3m Evaluation
FSI 2 0,477 2 Good
WSJI 3 0,875 2 Good
XBI 3 0.589 4 Insufficient
RLRI 2 0,697 1 Good
FPBMI 3 1,390 4 Insufficient
PBMI 3 0,721 4 Insufficient
DBI 5 2.917 6 Poor
SDBI 4 2.297 6 Poor

Table 4.18: This table represents the evaluations obtained by the CVIs considering all
Benchmark dataset

Index E1m E2m E3m Evaluation
FSI 2 0,328 1 Good
WSJI 2 0,255 1 Good
XBI 3 0.967 4 Insufficient
RLRI 1 0,334 2 Good
FPBMI 6 1,450 6 Poor
PBMI 2 0,501 2 Good
DBI 1 0,379 1 Good
SDBI 3 1.152 4 Insufficient

Table 4.19: This table represents the evaluations obtained by the CVIs considering all
synthetic overlap dataset, excluding the 60 cluster synthetic dataset

Index E1m E2m E3m Evaluation
FSI 0 0 0 Excellent
WSJI 0 0 0 Excellent
XBI 0 0 0 Excellent
RLRI 1 0,108 1 Good
FPBMI 7 2.608 7 Poor
PBMI 0 0 0 Excellent
DBI 3 0,459 2 Good
SDBI 8 2,218 7 Poor
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CVIs evaluation based on all dataset

CVIs evaluation based on all datasets, excluding the high-volume synthetic dataset, is

shown below.

Table 4.20: This table represents the mean evaluation of CVIs on all datasets excluding
the synthetic 60 cluster dataset

Index E1mg E2mg E3mg Evaluation
FSI 2 0,268 1 Good
WSJI 2 0,376 1 Good
XBI 3 0,518 3 Good
RLRI 2 0,379 2 Good
FPBMI 6 1,816 6 Poor
PBMI 2 0,407 2 Good
DBI 3 1.251 3 Good
SDBI 5 1.889 6 Poor

4.2.9 Discussion of results and conclusions.

In this document, we wanted to evaluate the performance of eight evaluation indexes

chosen from among the most famous or innovative. The CVIs were evaluated using three

different types of datasets: fMRI, benchmark and synthetic, these datasets were chosen

because we wanted an evaluation that took into account the sub-optimal performance of

CVIs in the fMRI field, but also to extend the evaluation to more heterogeneous areas.

The results obtained in the study of CVI on the single fMRI datasets confirmed the

results obtained in previous work by [57], always conducted on an evaluation of subopti-

mal results. In this last work, it was pointed out that the indexes using summations or

differences to relate Compactness and Separation, offer better performance than indexes

that use multiplications or ratios as a type of relationship between Compactness and

Separation. Furthermore, the formalization of the Separation component also plays an

important role; the group of indexes that obtained a good evaluation uses a very similar

procedure for the calculation of the Separation.

In the study conducted on the benchmark datasets, a good overall performance was

found for almost all CVIs, with the exception of the indexes of the FPBM, Xie-Beni and

SDBi indexes,the good performance of most CVIs is not surprising, as in the literature

some of the CVIs used had already been evaluated with benchmark datasets, even if

using the classic methodologies. We believe that the low performances obtained by the

FPBMI, Xie-Beni and SDB indices are linked to the choice of the value of the exponent

belonging to a cluster. In FPBM and SDBI, the exponent parameter of the membership

value of a datum to a cluster is represented by m. In the Xie-Beni index, the value 2
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is used as the exponent of the membership value of a cluster, therefore in a similar way

also to the FPBMI and SDBI indexes since the value of m is equal to 2.

Examining the results obtained in the synthetic datasets, we note, also in this case,

the excellent performances by the CVIs except SDBI and FPBMI, we believe due, as in

the case of the benchmark datasets, to the parameter m. The high-number synthetic

dataset deserves a separate discussion, in this case, all the indexes obtained low evalua-

tions; even though RLRI and FSI have values E1, E2, E3 lower than the other indexes.

The difficulties encountered by the indexes are due to the number of cluster to be eval-

uated, they were ninety-nine, it is easy with such a high number of clustering that more

partitions provide good value of Compactness and Separation, and this increases the

complexity of the evaluation by the CVIs.

The results of the evaluations on CVIs based on the type of dataset (Tables 4.17,

4.18, 4.19), provide a good summary of the evaluations given to the indexes. The results

obtained in this study show limits to the evaluation of fMRI data due to the use of

a limited number of exams, but the exams were nevertheless analyzed in-depth and

with a data-driven approach. In general, another limit is given by the selection of the

indices, from which other known indices and with different valuation methods have been

excluded. However, we believe that the work presented may provide insights into the

reliable use of cluster evaluation indexes, particularly in the complex and increasingly

studied domain of FMRI data evaluation.

Finally, we would like to underline the importance of using ANFIS, which made

it possible to solve the criticality of the combination of parameters, and which gives

flexibility to the proposed methodology. It allows the extension to n-number of evaluation

parameters by performing only retraining of the model. Thanks to ANFIS, innumerable

metrics for evaluation can be introduced, including categorical ones. Hence, it is also

possible to choose, based on the type of dataset, which metrics to use and then use the

relative ANFIS model.

In the next works, the analysis on FMRI exams will be extended using a large number

of datasets and introducing new indexes and new evaluation metrics.
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Conclusion and Future Works

5.1 Conclusion

In this thesis a multitude of fMRI exams were analyzed, the exams were performed

both in task-based mode and in resting-state mode, these exams were analyzed using

unsupervised learning techniques (clustering), instead of the more widely used statistical

techniques. Different clustering algorithms were used for the analyzes, both crisp and

fuzzy, always referring to the field of fMRI data analysis, given the use of clustering

techniques, clustering evaluation indexes were also studied. Various indexes have been

analyzed, both crisp and fuzzy, and a new evaluation method has also been proposed,

which allows to assess the clustering evaluation indices based on different parameters.

The analysis of fMRI exams is a very complex research field, until a few years ago

they used almost exclusively statistical techniques, which have provided good results;

but they have also shown some limitations, for this reason in recent years other analysis

techniques have been developed in parallel with the statistical techniques. Among these

new techniques, the ones that are gaining more interest thanks to the results provided are

the techniques of unsupervised learning (clustering). Clustering techniques provide an

analysis of fMRI exams different from the statistical one, thanks to their characteristic

of being guided by the data without the need for any previous knowledge.

In the study of active fMRI exams, a cross-clustering approach was adopted to the

data with the aim of grouping both spatial and temporal patterns. The spatial (ROI

- Regions of interest) and temporal (TOI - Times of interest) characteristics were ana-

lyzed, parametric and non-parametric statistical tests were used to assess whether the
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differences between classes are significant in all clusters, using the value p as a decision

criterion. This procedure is useful for understanding the meaning of ROI clustering as

it is associated with functional properties called activity-based paradigm. Noteworthy

is the behavior of the algorithms in the TOI analysis, the Fuzzy C-Means method has

surpassed the neural gas method, based on the statistical significance test.

In the analysis of examinations carried out in resting state, there are confirmation of

the gender determinants in RS-fMRI functionality found by Biswal et al., in addition,

information on male and female peculiarities was also added through algebraic distances

to measure gender variability. Globally it was noted that female subjects had greater

amplitude and greater variability of basal signal than male subjects. Another result

concerns the integration of clustering techniques with classical statistical processing for

signal analysis. The algorithms created clusters based on the intensity of the brain

signal, and also differentiated the quality of the brain’s functional connectivity, that is,

strong (positive) associations versus weak associations.

The use of clustering techniques also involves the evaluation of the clustering per-

formed. The evaluation of clustering is a very complex research field, there are different

methodologies to carry out the evaluation of clustering, the most used are the evaluation

indexes. There are various evaluation indexes, in this thesis we wanted to analyze,in the

context of fMRI analysis, the behavior of some of the most famous/innovative indexes .

To overcome the classic methodology of index evaluation, and to give a different

analysis to a complex field such as clustering of fMRI exams, a new metric was intro-

duced. This new metric allows, albeit to a limited extent, to give weight also to the

sub-optimal performance of the valuation indices, while the classic methodologies, on

the other hand, only evaluate the optimal performance of the indices. Valuation indexes

use internal metrics to evaluate clustering, each index uses different metrics. The ana-

lyzes showed that the indexes that used sums or subtractions to combine the different

metrics performed better than those that used multiplication or ratios to combine the

metrics.

With the aim of extending the metrics for the evaluation of the indexes, an evaluation

methodology has been introduced which uses an ANFIS system. ANFIS is used to

autonomously create rules that allow, based on the input parameters, to evaluate the

performance of the indexes through linguistic labels. This methodology was applied both

to evaluate the performance of the CVIs inherent to the clustering evaluation of fMRI

data, and to evaluate the performance of the CVIs inherent to the clustering evaluation

on benchmark data.

The analysis of the indices in the fMRI field confirmed the best performance of the

indices using adders and subtractions, for the combination of internal metrics. In the

analysis of the benchmark data, all CVIs obtained good results, this result was desirable

because often in the literature CVIs are tested through the use of benchmark datasets.
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The new methodology proposed through the use of metrics for the evaluation of sub-

optimal performances and the use of ANFIS has shown great potential. By introducing

further metrics, it is possible to deepen the evaluations or focus on particular aspects of

the evaluation of CVIs not taken into consideration in this thesis.

For further details, I remain at the conclusions of the works presented in this thesis

3.1.6,3.2.6,4.1.8,4.2.9.

5.2 Future Works

In the analyses carried out in this thesis, both the clustering algorithms and the CVIs

adopted the Euclidean distance as a metric for the calculation of the similarities between

the elements. In the literature, some works are emerging which support the use of

correlation as a metric to calculate the similarity between elements for clustering, and

it would seem it could be a valid alternative to the Euclidean distance [5].

A study is being developed in which we want to analyse this possibility. For this

study, synthetic data are used to simulate fMRI exams, this choice was made to have

maximum control over the data, and allow to evaluate the results obtained from both

CVIs and clustering more precisely. The work will be divided into two interconnected

parts in which both the clustering algorithms and the CVIs will be analysed. In the

first part of the work, the performance of the clustering algorithms on synthetic fMRI

data will be evaluated. The results obtained using both the Euclidean distance and the

correlation will be compared with respect to a known truth.

In the second part, the performances of the CVIs will be evaluated, which will be

declined both in the version with the use of both the Euclidean distance and the cor-

relation. For the evaluation, the CVIs will receive as input the clustering generated by

the clustering algorithms using both the Euclidean distance and the correlation. CVI

evaluation will take place with the methodology expressed in Chapter 4.2, therefore with

the use of ANFIS and new metrics could be introduced for a more complete analysis.
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