693 research outputs found

    Inductive queries for a drug designing robot scientist

    Get PDF
    It is increasingly clear that machine learning algorithms need to be integrated in an iterative scientific discovery loop, in which data is queried repeatedly by means of inductive queries and where the computer provides guidance to the experiments that are being performed. In this chapter, we summarise several key challenges in achieving this integration of machine learning and data mining algorithms in methods for the discovery of Quantitative Structure Activity Relationships (QSARs). We introduce the concept of a robot scientist, in which all steps of the discovery process are automated; we discuss the representation of molecular data such that knowledge discovery tools can analyse it, and we discuss the adaptation of machine learning and data mining algorithms to guide QSAR experiments

    Learning to Understand by Evolving Theories

    Full text link
    In this paper, we describe an approach that enables an autonomous system to infer the semantics of a command (i.e. a symbol sequence representing an action) in terms of the relations between changes in the observations and the action instances. We present a method of how to induce a theory (i.e. a semantic description) of the meaning of a command in terms of a minimal set of background knowledge. The only thing we have is a sequence of observations from which we extract what kinds of effects were caused by performing the command. This way, we yield a description of the semantics of the action and, hence, a definition.Comment: KRR Workshop at ICLP 201

    Artificial scientists

    No full text

    Learning programs by learning from failures

    Full text link
    We describe an inductive logic programming (ILP) approach called learning from failures. In this approach, an ILP system (the learner) decomposes the learning problem into three separate stages: generate, test, and constrain. In the generate stage, the learner generates a hypothesis (a logic program) that satisfies a set of hypothesis constraints (constraints on the syntactic form of hypotheses). In the test stage, the learner tests the hypothesis against training examples. A hypothesis fails when it does not entail all the positive examples or entails a negative example. If a hypothesis fails, then, in the constrain stage, the learner learns constraints from the failed hypothesis to prune the hypothesis space, i.e. to constrain subsequent hypothesis generation. For instance, if a hypothesis is too general (entails a negative example), the constraints prune generalisations of the hypothesis. If a hypothesis is too specific (does not entail all the positive examples), the constraints prune specialisations of the hypothesis. This loop repeats until either (i) the learner finds a hypothesis that entails all the positive and none of the negative examples, or (ii) there are no more hypotheses to test. We introduce Popper, an ILP system that implements this approach by combining answer set programming and Prolog. Popper supports infinite problem domains, reasoning about lists and numbers, learning textually minimal programs, and learning recursive programs. Our experimental results on three domains (toy game problems, robot strategies, and list transformations) show that (i) constraints drastically improve learning performance, and (ii) Popper can outperform existing ILP systems, both in terms of predictive accuracies and learning times.Comment: Accepted for the machine learning journa

    Combining inductive logic programming, active learning and robotics to discover the function of genes

    Get PDF
    The paper is addressed to AI workers with an interest in biomolecular genetics and also to biomolecular geneticists interested in what AI tools may do for them. The authors are engaged in a collaborative enterprise aimed at partially automating some aspects of scientific work. These aspects include the processes of forming hypotheses, devising trials to discriminate between these competing hypotheses, physically performing these trials and then using the results of these trials to converge upon an accurate hypothesis. As a potential component of the reasoning carried out by an "artificial scientist" this paper describes ASE-Progol, an Active Learning system which uses Inductive Logic Programming to construct hypothesised first-order theories and uses a CART-like algorithm to select trials for eliminating ILP derived hypotheses. In simulated yeast growth tests ASE-Progol was used to rediscover how genes participate in the aromatic amino acid pathway of Saccharomyces cerevisiae. The cost of the chemicals consumed in converging upon a hypothesis with an accuracy of around 88% was reduced by five orders of magnitude when trials were selected by ASE-Progol rather than being sampled at random. While the naive strategy of always choosing the cheapest trial from the set of candidate trials led to lower cumulative costs than ASE-Progol, both the naive strategy and the random strategy took significantly longer to converge upon a final hypothesis than ASE-Progol. For example to reach an accuracy of 80%, ASE-Progol required 4 days while random sampling required 6 days and the naive strategy required 10 days

    Nonmonotonic Learning in Large Biological Networks

    Get PDF

    Explanatory machine learning for sequential human teaching

    Full text link
    The topic of comprehensibility of machine-learned theories has recently drawn increasing attention. Inductive Logic Programming (ILP) uses logic programming to derive logic theories from small data based on abduction and induction techniques. Learned theories are represented in the form of rules as declarative descriptions of obtained knowledge. In earlier work, the authors provided the first evidence of a measurable increase in human comprehension based on machine-learned logic rules for simple classification tasks. In a later study, it was found that the presentation of machine-learned explanations to humans can produce both beneficial and harmful effects in the context of game learning. We continue our investigation of comprehensibility by examining the effects of the ordering of concept presentations on human comprehension. In this work, we examine the explanatory effects of curriculum order and the presence of machine-learned explanations for sequential problem-solving. We show that 1) there exist tasks A and B such that learning A before B has a better human comprehension with respect to learning B before A and 2) there exist tasks A and B such that the presence of explanations when learning A contributes to improved human comprehension when subsequently learning B. We propose a framework for the effects of sequential teaching on comprehension based on an existing definition of comprehensibility and provide evidence for support from data collected in human trials. Empirical results show that sequential teaching of concepts with increasing complexity a) has a beneficial effect on human comprehension and b) leads to human re-discovery of divide-and-conquer problem-solving strategies, and c) studying machine-learned explanations allows adaptations of human problem-solving strategy with better performance.Comment: Submitted to the International Joint Conference on Learning & Reasoning (IJCLR) 202
    • …
    corecore