2,842 research outputs found

    Autonomous flight cycles and extreme landings of airliners beyond the current limits and capabilities using artificial neural networks

    Get PDF
    We describe the Intelligent Autopilot System (IAS), a fully autonomous autopilot capable of piloting large jets such as airliners by learning from experienced human pilots using Artificial Neural Networks. The IAS is capable of autonomously executing the required piloting tasks and handling the different flight phases to fly an aircraft from one airport to another including takeoff, climb, cruise, navigate, descent, approach, and land in simulation. In addition, the IAS is capable of autonomously landing large jets in the presence of extreme weather conditions including severe crosswind, gust, wind shear, and turbulence. The IAS is a potential solution to the limitations and robustness problems of modern autopilots such as the inability to execute complete flights, the inability to handle extreme weather conditions especially during approach and landing where the aircraft’s speed is relatively low, and the uncertainty factor is high, and the pilots shortage problem compared to the increasing aircraft demand. In this paper, we present the work done by collaborating with the aviation industry to provide training data for the IAS to learn from. The training data is used by Artificial Neural Networks to generate control models automatically. The control models imitate the skills of the human pilot when executing all the piloting tasks required to pilot an aircraft between two airports. In addition, we introduce new ANNs trained to control the aircraft’s elevators, elevators’ trim, throttle, flaps, and new ailerons and rudder ANNs to counter the effects of extreme weather conditions and land safely. Experiments show that small datasets containing single demonstrations are sufficient to train the IAS and achieve excellent performance by using clearly separable and traceable neural network modules which eliminate the black-box problem of large Artificial Intelligence methods such as Deep Learning. In addition, experiments show that the IAS can handle landing in extreme weather conditions beyond the capabilities of modern autopilots and even experienced human pilots. The proposed IAS is a novel approach towards achieving full control autonomy of large jets using ANN models that match the skills and abilities of experienced human pilots and beyond

    Reliability Analysis of Complex Systems with Failure Propagation

    Get PDF
    Failure propagation is a critical factor for the reliability and safety of complex systems. To recognise and identify failure propagation of systems, a deep fusion model based on deep belief network (DBN) and Bayesian structural equation model (BSEM) is proposed. The deep belief network is applied to extract features between status monitoring data and the performance degradation in different failure components. To calculate the path weight of failure propagation, the Bayesian structural equation model is proposed to study the relationship among different fault modes. After getting the performance degradation of each fault through DBN and calculating the path weight of fault propagation by BSEM, it is available to get the overall reliability of the system. The aircraft landing gear system with 19 fault patterns is selected to evaluate the feasibility of the proposed deep fusion model. The results demonstrate that the overall reliability of the system can be obtained by analysing the fault propagation of multiple fault patterns, and the proposed model has a lower deviation than traditional back propagation neural network

    Using learning from demonstration to enable automated flight control comparable with experienced human pilots

    Get PDF
    Modern autopilots fall under the domain of Control Theory which utilizes Proportional Integral Derivative (PID) controllers that can provide relatively simple autonomous control of an aircraft such as maintaining a certain trajectory. However, PID controllers cannot cope with uncertainties due to their non-adaptive nature. In addition, modern autopilots of airliners contributed to several air catastrophes due to their robustness issues. Therefore, the aviation industry is seeking solutions that would enhance safety. A potential solution to achieve this is to develop intelligent autopilots that can learn how to pilot aircraft in a manner comparable with experienced human pilots. This work proposes the Intelligent Autopilot System (IAS) which provides a comprehensive level of autonomy and intelligent control to the aviation industry. The IAS learns piloting skills by observing experienced teachers while they provide demonstrations in simulation. A robust Learning from Demonstration approach is proposed which uses human pilots to demonstrate the task to be learned in a flight simulator while training datasets are captured. The datasets are then used by Artificial Neural Networks (ANNs) to generate control models automatically. The control models imitate the skills of the experienced pilots when performing the different piloting tasks while handling flight uncertainties such as severe weather conditions and emergency situations. Experiments show that the IAS performs learned skills and tasks with high accuracy even after being presented with limited examples which are suitable for the proposed approach that relies on many single-hidden-layer ANNs instead of one or few large deep ANNs which produce a black-box that cannot be explained to the aviation regulators. The results demonstrate that the IAS is capable of imitating low-level sub-cognitive skills such as rapid and continuous stabilization attempts in stormy weather conditions, and high-level strategic skills such as the sequence of sub-tasks necessary to takeoff, land, and handle emergencies

    Multi-authored monograph

    Get PDF
    Unmanned aerial vehicles. Perspectives. Management. Power supply : Multi-authored monograph / V. V. Holovenskiy, T. F. Shmelova,Y. M. Shmelev and oth.; Science Editor DSc. (Engineering), T. F. Shmelova. – Warsaw, 2019. – 100 p. - ISBN 978-83-66216-10-5.У монографії аналізуються можливі варіанти енергопостачання та управління безпілотними літальними апаратами. Також розглядається питання прийняття рішення оператором безпілотного літального апарату при управлінні у надзвичайних ситуаціях. Рекомендується для фахівців, аспірантів і студентів за спеціальностями 141 - «Електроенергетика, електротехніка та електромеханіка», 173 - «Авіоніка» та інших суміжних спеціальностей.The monograph analyzes the possible options for energy supply and control of unmanned aerial vehicles. Also, the issue of decision-making by the operator of an unmanned aerial vehicle in the management of emergencies is considered.

    Joint University Program for Air Transportation Research, 1991-1992

    Get PDF
    This report summarizes the research conducted during the academic year 1991-1992 under the FAA/NASA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, June 18-19, 1992. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, intelligent flight control, flight dynamics, human factors, and air traffic control processes. An overview of the year's activities for each university is also presented

    Evidence-Based Managerial Decision-Making With Machine Learning: The Case of Bayesian Inference in Aviation Incidents

    Get PDF
    Understanding the factors behind aviation incidents is essential, not only because of the lethality of the accidents but also the incidents’ direct and indirect economic impact. Even minor incidents trigger significant economic damage and create disruptions to aviation operations. It is crucial to investigate these incidents to understand the underlying reasons and hence, reduce the risk associated with physical and financial safety in a precarious industry like aviation. The findings may provide decision-makers with a causally accurate means of investigating the topic while untangling the difficulties concerning the statistical associations and causal effects. This research aims to identify the significant variables and their probabilistic dependencies/relationships determining the degree of aircraft damage. The value and the contribution of this study include (1) developing a fully automatic ML prediction based DSS for aircraft damage severity, (2) conducting a deep network analysis of affinity between predicting variables using probabilistic graphical modeling (PGM), and (3) implementing a user-friendly dashboard to interpret the business insight coming from the design and development of the Bayesian Belief Network (BBN). By leveraging a large, real-world dataset, the proposed methodology captures the probability-based interrelations among air terminal, flight, flight crew, and air-vehicle-related characteristics as explanatory variables, thereby revealing the underlying, complex interactions in accident severity. This research contributes significantly to the current body of knowledge by defining and proving a methodology for automatically categorizing aircraft damage severity based on flight, aircraft, and PIC (pilot in command) information. Moreover, the study combines the findings of the Bayesian Belief Networks with decades of aviation expertise of the subject matter expert, drawing and explaining the association map to find the root causes of the problems and accident relayed variables

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 314)

    Get PDF
    This bibliography lists 139 reports, articles, and other documents introduced into the NASA scientific and technical information system in August, 1988
    corecore