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a b s t r a c t 

Understanding the factors behind aviation incidents is essential, not only because of the lethality of the 

accidents but also the incidents’ direct and indirect economic impact. Even minor incidents trigger sig- 

nificant economic damage and create disruptions to aviation operations. It is crucial to investigate these 

incidents to understand the underlying reasons and hence, reduce the risk associated with physical and 

financial safety in a precarious industry like aviation. The findings may provide decision-makers with a 

causally accurate means of investigating the topic while untangling the difficulties concerning the statisti- 

cal associations and causal effects. This research aims to identify the significant variables and their prob- 

abilistic dependencies/relationships determining the degree of aircraft damage. The value and the contri- 

bution of this study include (1) developing a fully automatic ML prediction-based DSS for aircraft damage 

severity, (2) conducting a deep network analysis of affinity between predicting variables using probabilis- 

tic graphical modeling (PGM), and (3) implementing a user-friendly dashboard to interpret the business 

insight coming from the design and development of the Bayesian Belief Network (BBN). By leveraging a 

large, real-world dataset, the proposed methodology captures the probability-based interrelations among 

air terminal, flight, flight crew, and air-vehicle-related characteristics as explanatory variables, thereby re- 

vealing the underlying, complex interactions in accident severity. This research contributes significantly 

to the current body of knowledge by defining and proving a methodology for automatically categoriz- 

ing aircraft damage severity based on flight, aircraft, and PIC (pilot in command) information. Moreover, 

the study combines the findings of the Bayesian Belief Networks with decades of aviation expertise of 

the subject matter expert, drawing and explaining the association map to find the root causes of the 

problems and accident relayed variables. 

© 2023 Elsevier Ltd. All rights reserved. 

1. Introduction 

Flight safety is crucial in global aviation because lives are at 

stake, and the capital burden is enormous [1] . The economic im- 

pact of the incidents has a direct and indirect effect on the or- 

ganizations. Immediate results include the cost of the parts and 

maintenance, the cost of the disruption to the utilization of the air- 

craft, and the cost of the trouble to airport gates, runways, and the 

whole airport system. Indirect impacts include brand damage, un- 

planned changes on the flight, maintenance, crew and schedules, 

depreciation costs, and business and personal life disruptions to 

the crew and passengers. The aviation business has a low-profit 
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margin in the return-on-investment with significant investments 

up-front [2] . 

Considering the fatality and severity of aviation incidents, the 

Federal Aviation Administration (FAA) gathers, evaluates, and re- 

leases valuable information about reportable incidents. Even minor 

incidents have millions of dollars of impact [3] . For example, inci- 

dents involving engine failure or landing gear flaws are classified 

as minor, yet they have a multimillion-dollar monetary impact on 

corporations and the entire aviation industry. The aviation indus- 

try aims for zero mishaps and makes efforts to predict the inci- 

dents before they happen. Thus, understanding the root causes of 

the incidents is crucial [4] . 

The strategic decisions made in the aviation industry desper- 

ately need better decision support systems (DSSs) powered by ex- 

pert judgment and machine-learning, especially explanatory meth- 

ods such as Bayesian Belief Networks. Since aviation incidents 

rarely happen, most small aviation companies need more data on 
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the incidents, especially those not reportable via government chan- 

nels (e.g., FAA, NTSB, etc.). Many of them do not have the opportu- 

nity to hire data scientists specializing in aviation to evaluate their 

flight data and merge it with the findings from other incidents. 

They can make competent business decisions with a holistic view 

and datasets. A collective dataset fed DSS that considers relevant 

incidents in the US can guide stakeholders to make better strate- 

gic decisions. The holistic approach to collecting all of the relevant 

datasets enhances the power of Machine Learning algorithms. Ma- 

chine Learning algorithms map the intricate relations between the 

variables and predict the target variable, the aircraft damage sever- 

ity in this case. Machine Learning algorithms are typically known 

as "black-box" because they are good at predictions but hard to 

explain. Bayesian Belief Networks are contrary to this stereotype 

because they are good at making predictions and explaining the 

patterns resulting in incidents. Bayesian Belief Networks define the 

affinity between the most impactful categories of the most impact- 

ful variables. The size and complexity of the dataset require ex- 

perts to utilize these Machine Learning methods because only ex- 

perts can make these predictions and produce these insights with 

these technologies. Manual expert-based analysis can be shallow, 

frustrating, expensive, and miss critical relationships. 

Even though Machine Learning is not new to predicting inci- 

dents, combining algorithmic root cause analysis and expert opin- 

ions to enlighten the business decisions inferred from aviation in- 

cidents is a comprehensive and novel approach to the aviation in- 

dustry and the relevant body of knowledge. The current study’s 

primary contributions are the design and development of a fully 

automatic ML prediction-based DSS for aircraft damage severity, 

conducting a deep network analysis of affinity between predicting 

variables using probabilistic graphical modeling (PGM) and devel- 

oping a user-friendly dashboard to interpret the business insight 

coming from Bayesian Belief Network (BBN). Such summarizing ap- 

proach to predict and explain the complex relationship between 

multiple variables with a simple explanatory tool brings evidence- 

based insights into the incident patterns and enables decision- 

makers to understand the incident patterns from numerous similar 

incidents. 

This paper provides an analytical framework for identifying and 

understanding the severity of aircraft damage when a probability- 

based graphical model makes much sense for simpler, more in- 

formed decision-making and intuitive explanation of complicated 

relationships. Using publicly accessible data gathered and struc- 

tured by the Federal Aviation Administration (FAA), this study an- 

alyzes the high-risk characteristics contributing to the severity of 

aviation accidents. This study proposes a multi-step skillful prob- 

abilistic Bayesian framework. It provides insight into probabilistic 

tracing accidents to multiple causes via the Bayesian Network (BN) 

framework. Additionally, this study introduces an omnidirectional 

expert system, a BN decision analysis tool, to assist aviation busi- 

ness managers in understanding interconnected relations. 

The remainder of the manuscript is organized as follows. 

Section 2 summarizes the pertinent literature to identify the 

current study’s novelty and contribution, Section 3 explains the 

methodology and data, Section 4 presents details behind the model 

design and development, and Section 5 describes the findings and 

implications. The last section, Section 6 , is dedicated to providing 

concluding remarks, limitations of the study, and future research 

suggestions. 

2. Background 

Aviation incidents are generally considered low-probability/ 

high-consequence (lp/hc) events. Even though the likelihood of the 

occurrence of events is low in terms of probability, the impact 

severity of the events is vital by risking human life and costly at 

the expense of the properties in the industry. Also, the direct and 

indirect disruptions to the aviation system have a high impact. Risk 

modeling of lp/hc events is a critical subject gaining professional 

and public attention, such as transportation and power plant acci- 

dents [5] . Aviation accidents are of particular interest in this study. 

The need to avert lp/hc events and the associated risks has grown 

in the past decades, leading to research efforts in risk modeling air- 

craft accidents. Several academic outlets have featured articles on 

investigating aircraft damage severity by analytical methods. These 

publications can be grouped into four categories: expert judgment 

and survey-based research, traditional statistical models, Machine 

Learning techniques, and PGMs. 

2.1. Literature on expert judgment and survey studies 

Expert judgment and survey studies employ traditional ap- 

proaches with pre-sampled data, and they frequently aim at sub- 

ject matter experts, such as accident analysts, pilots, designers, and 

policymakers. Many of these studies are aimed at individual re- 

ports, not summarizing the bulk of similar events and their occur- 

rence patterns. There are institutional reports that experts write 

due to their incident analysis. These long institutional reports an- 

alyze the incident data, pilot communication, and environmental 

conditions and share their judgmental results and detail of the in- 

dividual incidents with the public. These expert studies often con- 

tain complex information that only aviation specialists can under- 

stand [6] . 

Survey studies with pilots and aviation experts are also com- 

mon in the literature. Expert-specific information such as; knowl- 

edge of the technical standards of the instruments, environmen- 

tal conditions, the experience of the pilots and operators, special- 

ized training of the pilots, emotional state of the pilots, and sleep 

quality of the pilots have been examined with expert surveys [ 7 , 8 ]. 

In addition, another study conducted a survey to compare pilot- 

related accidents for male and female pilots [9] . Meanwhile, some 

studies focused on probabilistic risk assessment to predict the re- 

sponses in lp/hc environments such as nuclear power plant control 

rooms [ 10 , 11 ]. In addition, some studies elaborate on combining 

subject matter expertise (SME) with operations research (OR) and 

ML to predict lp/hc events [12–14] in other transportation mode 

contexts. Also, review studies have examined the human factors- 

related causations in airline incidents [15] . In another psychology 

and human factor analysis study, human factor causations are re- 

ported as not paying attention, distraction, complacency, fatigue, 

task over and undersaturation, misinterpretation of auditory, and 

inadequate mission briefing, but these human factors are not as- 

sociated with incidents their specifications such as flight phase, 

model, flight hours by using Machine Learning [16] . 

2.2. Literature on traditional statistical models 

Traditional statistical models such as simple linear regression, 

multiple linear regression, and multinomial logistics regression fo- 

cus on finding primitive relationships between variables and find- 

ing how significant these relationships are. The relation between 

pilot errors and characteristics of the pilot in command (PIC), 

crash circumstances, and specifications of aircraft are evaluated 

with multivariate logistics regression modeling with NTSB data 

with a traditional descriptive statistical approach [17] . Li [18] con- 

ducted a study to summarize historic aviation accidents with tra- 

ditional statistical methods and employed ARIMA (Autoregressive 

Integrated Moving Average model) to do a time series forecast- 

ing of possible aviation accidents. Koteeswaran et al. [19] describe 

an improved oscillated correlation feature selection (IOCFS) based 

on correlation-based feature selection and Oscillation Search Tech- 

nique when data mining FAA accident and incident data. Their goal 
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was to identify key attributes to help prevent accidents/incidents. 

This method showed some promise when compared against Naïve 

Bayes, artificial neural networks, support vector machines, decision 

trees, and like conventional methods. 

There have been location-specific studies such as Sun et al. 

[20] and Wang et al. [21] to utilize statistical models such as or- 

dered weighted averaging (OWA) to predict civil aviation incident 

rates in China. Likewise, Gürbüz et al. [22] utilized regression to 

predict failures for component analysis report results of a local air- 

line in Turkey. Nazeri et al. [23] described the impact of severe 

weather on the National Airspace System by utilizing classifica- 

tions, regression, and clustering. Some studies focused on predict- 

ing the probabilities of a broader spectrum of accidents and inci- 

dents with statistical methods [24] . Bazargan and Guzhva [25] uti- 

lized NTSB data to investigate the statistical relations between pi- 

lot flight hours, experience, age, and gender in accidents. Simi- 

larly, Marais and Robichaud [26] evaluated NTSB accidents result- 

ing in fatalities and their relationship with aircraft maintenance 

and found a correlation for their thesis. 

2.3. Literature on conventional machine learning techniques 

Data mining and its key enabler, machine learning, techniques, 

are superior tools to predict and explain aviation incidents because 

these algorithms effectively identify and capture complex patterns 

and relationships, as aviation incidents usually have highly intri- 

cate occurrence patterns. However, they can account for variable- 

related assumptions and other limitations, such as a lack of 

explainability and transparency. Conventional machine learning 

methods such as Decision Trees, Linear Regression, and Neural Net- 

works are employed by Rehm [27] to predict the aircraft delay 

categories in Frankfurt Airport by considering the severity of the 

weather conditions. Lukáčová et al. [28] utilized a variety of deci- 

sion tree algorithms (e.g., C5.0, CART, and CHAID) to predict fatali- 

ties in aviation accidents. Rao et al. [29] utilized several ML meth- 

ods to predict and understand high-risk event chains for helicopter 

accidents in the US and found loss of control as the main rea- 

son for these accidents. Baugh [30] sampled 26,387 general avia- 

tion accidents using qualitative and quantitate data from the NTSB. 

This data was analyzed using a design tree, gradient boosting, lo- 

gistic regression (text), neural network, and random forest (text 

and data) models. Using NTSB data, the gradient boosting and ran- 

dom forest models generate similar results; however, the logistic 

regression model had the lowest misclassification rate with the 

most predictive power. Data from the Philippine Aviation Incident 

Reporting System has also been analyzed using linear regression, 

gaussian process, multilayer perceptron, and SMO regression to de- 

scribe present trends and predict causal factors of different acci- 

dent profiles now and in the future [31] . Despite their high level 

of predictive accuracy, these conventional machine learning meth- 

ods lack an in-depth explanation between multiple variables and 

complex fault patterns. What is needed is an intuitive, probability- 

based, graphical model that we can predict not only the outcomes 

but also simulate possible probabilities, sensitivities, and causal in- 

ferences. 

Despite the recent overwhelming buzz, machine learning is 

not a new concept in the world of decision support systems; it 

has been used in a variety of domains, including healthcare and 

medicine [ 32 , 33 ], sports prediction [34] , and drug court decisions 

[35] . However, it is the right time for its popularity and renewed 

value proposition due to the advancements in computation power, 

community-created unconventional new algorithms, and big data 

sources that feed into these algorithms [36] . One of the most chal- 

lenging parts of big data analytics in solving complex business 

problems is to create actionable and understandable business in- 

sights because this phase in the analytics process is typically un- 

structured and often chaotic, as Delen and Ram [37] stated in their 

article where they explained the significant challenges of business 

analytics. Analyzing text and image data with ML methods and 

methods such as NLP to explain some of the variables can improve 

the accuracy of the predictions [38–40] . As ML methods become 

a “buzzword,” many people use the methods to claim that they 

are making accurate predictions but have biases in many cases. 

Van Giffen et al. [41] summarized the common pitfalls and bi- 

ases in ML research studies that benchmarked business research to 

claim accuracy in their predictions. Few studies analyze the busi- 

ness value creation out of ML models, which is supposed to be the 

most meaningful part for businesses. Reis et al. [42] surveyed 319 

companies that use ML models and found that; ML use, analyt- 

ics culture maturity, the expertise in the platform they are using, 

managerial approval, and the degree of sophistication of the an- 

alytics process are the drivers of business value creation in these 

organizations. 

The latest trend in machine learning is deep learning, or more 

precisely, deep neural networks (DNN). Using a representation 

learning methodology (where the predictive features are deter- 

mined by the learning algorithm itself, as opposed to explicitly 

provided by the data scientist), DNN progressively merges sim- 

ple features via its multiple layers to create complex features and 

then uses these features to predict the target variable [ 43 , 44 ]. Al- 

though the predictive performance of DNN models has been im- 

pressive [45] , due to their complex structure, DNN models suffer 

from explainability and interpretability [46] . Furthermore, design- 

ing and fine-tuning a proper DNN architecture (i.e., the number 

of layers and a number of processing elements in each layer) usu- 

ally involves a large number of trial-and-error experiments with an 

in-depth understanding of the learning process. In addition to the 

number of layers and units, several other hyper-parameters (e.g., 

type of activation functions, initialization method, training batch 

size, number of training epochs, optimizer, learning rate, etc.) must 

be determined via fine-tuning to obtain the best possible model. 

Because of the vast number of possible combinations, obtaining a 

globally optimal set of all the hyper-parameters for the network 

architecture is computationally expensive and time-consuming. 

2.4. Literature on probabilistic graphical models 

The common anonymized phrase “correlation is not necessar- 

ily the causation” has been discussed among scientists in refer- 

ence to prediction versus causal inferencing and understanding for 

decades. With the recent popularity of everyday use of machine 

learning (i.e., making accurate predictions by utilizing data as the 

pattern creator), understanding the causal inference and using this 

inference for explainability reignited the discussion as a crucial el- 

ement of the analytics process, perhaps as important as (in some 

cases even more so) accurate prediction in many business settings. 

In prediction problems needing causal inference, Bayesian Net- 

works (BNs) are advantageous to other ML techniques by sim- 

ply explaining complex inferences [47] . BN gives researchers a 

causally explanatory tool and separates statistical correlation and 

causal effects with input from subject matter experts [48] . BNs 

have become popular among PGMs because one can map previ- 

ously disregarded data and complex relations in the network us- 

ing graphical representation [49–51] . Weighting the variables is an 

essential component of Bayesian-based PGMs maned best-worst 

method (BWM) while making multicriteria decision-making by ex- 

perts. Still, in our case, we did not need BWM because this study 

does not employ group decision-making [52] . These graphical rep- 

resentations are combined with risk categorization to make a com- 

prehensive prediction and determine the patterns defining the risk 

categories [53] . 
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Kraus et al. [54] conducted a study comparing the performances 

of deep learning algorithms with BN algorithms to predict and un- 

derstand the aircraft engine sensor data collected from over 200 

engine sensor data and successfully explained the prediction. Cor- 

respondingly, Chang et al. [55] examined and predicted wellhead 

fatigue failure for subsea oil rigs using Dynamic Bayesian Networks 

(DBN). Similarly, Arnaldo et al. [56] predicted the incident rate of 

events for different fleets of a generic airline and mid-air collisions 

using Bayesian Interference and Hierarchical Structured algorithms. 

Some studies demonstrate probabilistic relationships between 

variables and injury severity. For example, Topuz and Delen 

[50] studied injury severity in car accidents using BNs. Their anal- 

ysis revealed high-risk indicators of vehicle crashes using big data 

from a diverse range of car accidents and their severity categoriza- 

tion. Ancel et al. [57] focused on developing object-oriented BNs 

to incorporate the risks that result from US-based mid-air colli- 

sions (MACs) and flight loss-of-control events from 1987 to 2008. 

Arnaldo et al. [58] used BNs to predict the risk of loss of separa- 

tion (LOS) near accidents, regarded as precursors of MACs. Bayesian 

Belief Networks effectively comprehend probabilistic interdepen- 

dencies. There have been exciting findings with detailed techni- 

cal reasoning-based investigation using consultation with experts 

[59] and NTSB incident reports [4] . 

This study differs from previous studies in the following ways. 

It solves inherent data challenges, blends subject matter expertise 

with aviation incident data, and leverages BN in an intuitive graph- 

ical network to explain the interdependencies between variables 

and their categories to understand causal inference. The study dis- 

plays the Omnidirectional probabilistic dependencies among all 

variables, including direct and indirect relationships. This research 

also gives valuable information about the conditional likelihood of 

some of the most dangerous flight-type and flight-phase combina- 

tions. It leads experts through these scenarios to make policies and 

business decisions. 

3. Method and data 

This study provides a five-phase probability-based inference 

methodology for identifying the critical elements influencing the 

severity of aviation incidents by revealing the hidden relationships 

between all variables (input and output). The phases are shown in 

different colors in Fig. 1 . Phase 1 starts with data comprehension, 

which entails merging, describing, and exploring data from diverse 

sources. The main database is the FAA incidents data, but other 

datasets, such as busy airports, major airlines, and aircraft man- 

ufacturers, are prepared and merged with the primary FAA data. 

After addressing data issues in the data preparation phase (2), the 

data is selected. The primary data issues are; inconsistencies like 

different names for the aircraft manufacturer names airport names, 

and changes in these names over time because of mergers and ac- 

quisitions. Some variables also have significant missing data that 

couldn’t be used. Phase (3) compromises building a probabilistic 

graphical model, employing k-fold cross-validation on model as- 

sessment and selection, and estimating joint probabilities using 

data. Phase (4) evaluates model results. Phase (5) performs a sensi- 

tivity analysis to interpret the results and use the model for knowl- 

edge discovery using various what-if analyses to create recommen- 

dations for aviation decision-makers. 

3.1. Data overview and preparation 

The first step involves the consolidation of repositories to pro- 

duce a complete data collection. The current study makes use 

of the FAA’s Accident and Incident Data System (AIDS) database, 

which spans two decades, ending in August 2020. The data set in- 

cludes all types of aviation incidents, from minor incidents such 

as bird-plane collisions, personal injuries, incidents that result in 

fatalities, and aircraft abandonment. 

The FAA Aviation Accident and Incident Data System (AIDS) 

database includes accidents and incidents and may be sorted ac- 

cording to the categories listed above. The FAA database employs 

the exact definition of an aviation accident as 49 CFR 830.2, which 

is the definition used by the National Transportation Safety Board 

(NTSB) and requires the existence of severe injury and substan- 

tial damage as defined in those regulations. Additionally, the FAA 

database contains incidents that do not reach the aircraft damage 

or personal injury requirements specified in the NTSB definition of 

an accident [60] . 

It is essential to understand the concept of accident or incident 

as the definitions may only sometimes be intuitive. For example, 

a turbulence event in a “cruise” phase flight that led to a passen- 

ger head injury that did not require medical attention is likely nei- 

ther an accident nor an incident if there were no other injuries 

or aircraft damage. In the same example, if a passenger received 

a broken nose that required medical attention, this would be clas- 

sified as an incident since an accident does include broken bones 

but excludes simple fractures of the nose, toes, or fingers. Using 

a different example, a bird strike on takeoff that caused the air- 

craft to return to the departure airport is likely an incident. If the 

same bird hit penetrated the First Officer’s windshield, it would be 

categorized as an accident since the aircraft’s flying characteristics 

were harmed. A significant repair was necessary to return the air- 

craft to airworthiness. 

The FAA defines "substantial" incidents as damage or failure 

that has a detrimental effect on the aircraft’s structural strength, 

performance, or flying characteristics and would ordinarily need 

extensive repair or replacement of the affected component [60] . 

They characterized the "Destroyed" incidents as being unrepairable 

or scrap. "None" events are those that cause no damage to the 

aircraft, while "Minor" occurrences are those that cause damage 

between none and substantial. The "Substantial" and "Destroyed" 

categories were combined in this analysis due to their similar eco- 

nomic effect designations. 

Data collectors review files from numerous agencies, evaluate 

them, and electronically store thousands of crash reports. The data 

includes when, where, who, and how the incidents happened. Even 

though the data has been taken care of by the organization stan- 

dards, there are messy sides at the data collection phase that 

makes it hard to produce insights from the data; text columns 

that result in typos, missing data in many columns, aircraft, and 

operator companies change their names. Because this is a data- 

driven analytical study, the time spent on data preparation is crit- 

ical to ensuring the quality and, more importantly, the credibility 

of the findings. The dataset has details of the incidents, such as 

the date, city, state, and airport where the incident was recorded. 

It has recorded aircraft type, make, operator, the number of en- 

gines, engine type, engine make, engine group code, flight type, 

flight conduct code, PIC flight experience in hours, damage sever- 

ity, and fatality of the incident. 

In phase 2, we address the data issues using the CRISP-DM 

procedure to prepare for Bayesian Analysis. The CRISP-DM pro- 

cesses are considered the cross-industry standard approach for 

data mining’s "best practices." The data has been filtered for re- 

cent years and then examined for missing, erroneous, and imbal- 

anced data. The data processing stage consumed a significant part 

of the project time, making it one of the most demanding compo- 

nents of the study. Machine Learning algorithms need clean data 

to give fast and accurate results, which means removing outliers, 

removing duplicates, removing unrelated variables and having con- 

siderable data size [61] . The data is cleaned, and some columns are 

merged with the help of the SME to create meaningful columns 

such as combining, changing company names, or different ver- 
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Fig. 1. Proposed methodology for the aviation DSS. 

sions of brand names. The locally interpretable model explanations 

(LIME) method calculates the Euclidean distance between random 

values for that variable and the final prediction of all variables, 

then weights and selects the most impactful variables for the pre- 

diction [62] . Additional variables were created with manual and 

auto-variable creation methods to see influential variables com- 

bined with multiple variables. New columns have been added, such 

as whether the airport is congested, whether the aircraft is a he- 

licopter, and whether the operator is a major airline. The aircraft 

damage column is the target variable; substantial and destroyed 

categories are merged, and final categories are reduced to minor, 

none, and destroyed/substantial. Minor incidents are four times 

more than other categories due to the nature of the dataset, defi- 

nitions, and disparate probabilities of each category. 

3.1.1. Resolving the issue of missing data 

Preparing the data to handle the missing cases was a signifi- 

cant task. Missing values may be found in all data collection op- 

erations, especially when a human enters the data. Our study is 

no different; incorrect or misleading interpretations of missing ob- 

servations, as well as an inaccurate perception of confidence in 

conclusions, can result from faulty treatment of missing observa- 

tions [50] . Table 1 illustrates the missing percentages in our final 

cleaned data. 

Rubin [63] distinguished three categories of missing data: To 

begin, “Missing Completely at Random (MCAR)” does not associate 

a missing data point with any value in the data collection. Second, 

“Missing at Random (MAR)” happens when missing values are im- 

pacted by known values and may be estimated by other data fea- 

tures. When data are “Missing not at Random (MNAR),” the fact 

that the data are missing is systematically connected to the unob- 

served data, i.e., the missingness is related to occurrences or cir- 

cumstances that the researcher does not quantify. Using a system- 

atic approach to imputation has led to significant advancements, 

according to MAR and MCAR [64] . More data should be addressed 

or presumed to represent MCAR in aviation literature, leading to 

ad hoc imputations [65] . 

Furthermore, we assume that our data is missing at random 

(MAR) because the missing variables are related to other variables 

in the dataset. For example, a large portion of the missing data 

is found in the variable “ModifiedAircraft Engine Model,” which 

is highly associated with another variable, “Aircraft Engine Make.”

This suggests that the missingness is due to the observed values 

in the dataset rather than any unobservable factors that cannot be 

quantified. Assuming MAR is thus a reasonable approach for im- 

puting missing data in this context. 

This research addresses the problem using BNs rather than ad- 

hoc alternatives. As Heckerman [66] stated, BN offers a consistent 

framework for describing the overall joint distribution while con- 

currently capturing missing data links. Second, because BN is in- 

trinsically probabilistic, the researchers manage missing data and 

imputations in a non-deterministic manner. It indicates that the 

necessary variation in the imputed data should be made naturally 

available rather than manufactured artificially. As with most other 

ad hoc imputation techniques (such as multiple imputations), BN’s 

imputation technique makes the MAR assumption. Although miss- 

ing values in certain variables may be systematic, other variables 

may be conducive to imputing. The following procedure has been 

followed: 

• Initiation step: We will use the Tree Augmented Naive Bayes 

(TAN) approach, discussed in the following section, to learn 

how to build an initial structure from a loose network and then 

populate its conditional probability tables. We will then use 

this structure learning algorithm to learn how to build a con- 

nected network and populate its conditional probability tables. 
• Expectation step: Draw from probability distributions of the fac- 

tors based on observed (non-missing or imputed) values using 

the newly learned network and parameters. 
• Maximization step: Make use of this new dataset, which has no 

missing values, to learn about the structure of the data and es- 

timate its parameters. 
• Convergence step: Until convergence, the Expectation and Maxi- 

mization processes alternate. 
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Table 1 

Data description. 

Variable Explanation Data Type Descriptive Statistics ∗ Percent Missing 

DOW Day of Week Nominal Sunday(28.25), Saturday(22.46) 0 

Weekday Weekday of Weekend Nominal Weekday(68.25), Weekend(31.75) 0 

Month Month of Year Nominal July(10.41), August(9.53) 0 

Day Day of Month Nominal 29th(3.47)- 17th(3.45) 0 

Event_State State the Incident Happened Nominal CA(11.14),FL(10.78) 3.29 

Busy If the Airport is one of the Busy Airports Nominal Yes (JFK, MCO)(6.0), No(94.0) 0 

Aircraft Damage Type of Damage Nominal Minor (82.1), None(13.3), Substantial_Destroyed(4.61) 0 

Merged_Flight_Phase Flight Phase Nominal Landing(26.86), Touchdown(17.59) 0 

Helicopter If the Aircraft is a Helicopter Binary Yes (2.81), No (97.19) 0.9 

Primary_Flight_Type Flight Type Nominal Personal(61.69), Instruction(14.34) 23.3 

MajorCarrier If the fight is managed by a major carrier Binary Yes (8.33), No (91.67) 4.14 

Flight_Conduct_Code Flight Conduct Code Nominal General(78.99), AirCarrier(8.36) 0.39 

Aircraft_Engine_Make Maker of Engine Nominal Lyoming(39.98), Continental(29.31) 40.98 

ModifiedAircraft_Engine_Model Engine Model Nominal IOSeries(65.59), PW6(5.43) 41.78 

Nbr_of_Engines Number of Engines Nominal 1(70.14), 2(27.67) 26.33 

PIC_Certificate_Type PIC Certificate Type Nominal Private Pilot(38.81), Commercial(16.92) 14.77 

Merged_PIC_Category PIC Category Hours Numeric 3955.3 (6134.7) 16.38 

Merged_PIC_Model PIC Model Hours Numeric 738.0 (1657.2) 18.95 

Merged_90 Flight hours in the last 90 days Numeric 54.0 (72.5) 18.95 

∗ Descriptive statistics: Binary-% of each category; Nominal-% of most common two categories; Numeric- mean (standard deviation);. 

As an outcome of this process, the BN evolves from an ini- 

tially disjointed network to its final form. A large number of it- 

erations could be required based on the variables, method, and 

network complexity. Following that, the fully imputed dataset can 

be studied or extracted. Records with missing aircraft damage 

are removed from the study because it is the target variable. 

BBN method is more meaningful with categorical or ordinal vari- 

ables, so continuous variables such as date are broken into month, 

day, weekday, and day of the week. Pilot flight hours are bro- 

ken into expertise categories as Merged PIC Category as over and 

under 20 0 0 h, PIC Model over and under 50 0 h, PIC in last 90 

days is broken into over and under 20 h categories to reflect 

pilot expertise. The number of engines is converted to categor- 

ical variables. These data conversion judgments are needed for 

SME. The combined data set consists of 25,527 records; 21,065 of 

these records are categorized as “Minor,” 3264 records are “None,”

and 1199 are “Substantial/Destroyed” in the target variable. There 

are twenty variables; five are eliminated in the prediction be- 

cause of ID-ness(likelihood of the variable being an ID variable), 

the number of missing data, and low impact with a substantial 

number of categories whose effect on the prediction is negligible 

( Table 1 ). 

Since the number of records for target variable categories is im- 

balanced and to aim for low bias and low deviation, 10-fold cross- 

validation has been applied in phase 3, and training to testing data 

has been partitioned to nine to one. In 10-fold cross-validation, in 

every iteration, one of these pieces of data is held as test data, and 

the other nine are held as training. The process is reiterated for 

every piece combination, and their performance is compared with 

each other and the whole original data. This study utilized k = 10 

folds to balance effort for computation and objectivity, a common 

practice in the data mining community [39] . The cross-validation 

performance metrics may be expressed as follows: 

P er f or mance = 

1 

k 

∑ 

P i (1) 

where k is the number of folds and P i is the validation perfor- 

mance [67] 

Phase 4 involves the creation of a PGM to display the BN infer- 

ence diagram. The tree augmentation describes the relationship of 

multiple factors to their parents. 

In phase 5, the results of the BBN analysis are tested to see the 

sensitivity of the influence utilized for the incident risk factors. The 

model results are compared to validate the results of the data sam- 

pling, balancing data, and variable selection. All predictor variables 

are included in these comparisons, and there is no data balanc- 

ing. The synthetic minority oversampling technique (SMOTE) is a 

data balancing method where the target variable is not balanced. 

SMOTE is used to oversample minority classes and balance their 

weight in the data. This study presents selected features without 

data balancing since SMOTE did not significantly increase the ac- 

curacy of "Minor" incidences under this scenario [68] . 

3.1.2. Entropy and mutual information 

When conducting analysis, we often investigate the correlation 

and covariance among factors to identify their relative importance 

and link to the targeted variable. In this study, aircraft damage is 

the categorical target variable, and we examine correlations and 

covariance based on the information theory and evaluate the re- 

sults with SME. We predict the uncertainty of the states of the 

variables and consider the technical meanings of these states. En- 

tropy is a quantifiable measure of uncertainty in information the- 

ory [69] . This study uses entropy to measure uncertainty in the 

form of probability distributions. Our case explains the uncertainty 

of aircraft damage in aviation incidents. Incident investigation is 

a deep field in terms of SMEs. To present a case, we need de- 

tailed information about the case. When the data is missing, we 

can comprehend the information we already have with the help 

of the SME and clarify the uncertainty. For example, an incident 

at a scheduled carrier will have a significantly different likeli- 

hood of the flight phase from a personal recreational flight be- 

cause of many reasons such as the number of people flying, the 

congestion difference of the airports, and experience. The infor- 

mation about these variables significantly increases or reduces the 

probability. 

We can calculate the entropy using the probability distribution. 

Where H represents the marginal entropy of a random variable X, 

discrete distribution entropy is defined as follows: 

H ( X ) = −
∑ 

x 

P ( x ) logP ( x ) (2) 

In terms of probability distributions, the conditional entropy of 

X given Y is as follows: 

H ( X | Y ) = −
∑ 

x 

∑ 

y 

P ( x, y ) logP ( x, y ) (3) 
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Alternatively, the conditional entropy of X given Y can also be 

expressed as: 

H ( X | Y ) = H ( X, Y ) − H ( Y ) (4) 

where H(X,Y) is the joint entropy of X and Y, and H(Y) is the 

marginal entropy of Y. And the information gain for a random vari- 

able X with respect to Y is given by: 

I ( X | Y ) = H ( Y ) − H ( X | Y ) (5) 

For example, the information gain or entropy decline associated 

with knowledge regarding "FlightType" is self-evident. Observing 

another event with a more common flight type, such as personal 

recreation, typically provides less knowledge and so has less pre- 

dictive ability for that event. However, we want to know how 

much information we would get on average if we considered all 

potential values of "FlightType" and their associated probabilities—

in other words, if we used it as a predictive variable for "Incident 

Severity." The predictive value of observing the variable "Flight- 

Type" would be shown by this "average information gain" statis- 

tics. Assume we have a random variable X that represents the 

severity of an incident, with three levels of severity: none, minor, 

and major. We also have a random variable Y that represents the 

flight type, which has two options: personal or instructional. Con- 

ditional entropy of Severity given FlightType: 

H(Se v erity | F lightT ype ) = 

− [ P ( X = none, Y = personal ) log P (X = none | Y = personal) 
+ P ( X = minor, Y = personal ) log P ( X = minor| Y = personal ) 
+ P ( X = ma jor, Y = personal ) log P ( X = ma jor| Y = personal ) 
+ P ( X = none, Y = inst ruct ional ) log P ( X = none | Y = inst ruct ional ) 
+ P ( X = ma jor, Y = inst ruct ional ) log P (X = ma jor | Y = instr uctional)] 

(6) 

Mutual Information, denoted by I, is the gap between the tar- 

get variable’s marginal entropy and the target’s conditional en- 

tropy given the predictive variable. Mutual Information between 

"Incident Severity" and "FlightType" is defined as "Incident Sever- 

ity" marginal entropy minus "Incident Severity" conditional en- 

tropy given "Flight Type" in our example: 

I ( Se v erit y, F light T ype ) = H ( Se v erity ) − H(Se v erity | F lightT ype ) 

(7) 

With this method, we can calculate the information gain for 

each independent variable and its predictive importance. 

3.2. Bayesian network probabilistic inference model 

DAG (Directed Acyclic Graphs) were the ancestors of the PGMs. 

Early examples from the 20th century, such as Seawall Wright’s 

works, have been utilized in different application areas [70] . 

Over time, the PGMs are developed and updated as BBNs, re- 

ferred to as the directed graphical models that utilize statis- 

tics and Machine Learning to build belief networks between 

variables. 

By the late seventies and early eighties, decision sciences 

started to make bottom-up and top-down reasoning to find an- 

swers to research questions [48] . The reasoning process started 

with more qualitative methods such as Root Cause Analysis, Five 

Why’s, DELPHI, etc. Using expert judgment, the reasoning process 

evolved to use survey results and other data collection to under- 

stand the reasoning using statistical methods [71] . Later, BN re- 

placed the reasoning methods mentioned above. The qualitative 

and primitive qualitative reasoning methods and rule-based meth- 

ods are improved by utilizing artificial intelligence’s power and en- 

abling experts to make deeper reasoning by utilizing BN-based Ma- 

chine Learning algorithms and end up with indeterminate infer- 

ences [ 72 , 73 ]. 

Fig. 2. An illustration of simple directed acyclic graphs (DAG). 

The BN model is a directed acyclic graph (DAG) having nodes 

matching certain variables. For instance, the purpose or nature of 

a flight operation is referred to as its flight type. Flight types vary 

depending on the purpose of the flight, such as personal, instruc- 

tional, industrial, and air taxi flights. The flight Phase describes 

the various stages of a flight operation. Takeoff, cruise, touch, and 

roll-out are all flight phases based on the position and move- 

ment of the aircraft during a flight. Assuming no additional vari- 

ables are present, Fig. 2 depicts a basic DAG representing vari- 

able conditional dependencies using arcs, with the direction of 

the arcs indicating specific parent-child relationships. Suppose a 

connection between x 1 : Aircraft_Damage, x 2 : Primary_Flight_Type, 

and x 3 : Flight Phase. Three types of connections between variables 

are commonly observed in causal inference: common effect, com- 

mon cause, and indirect effect. The variables x1: Aircraft Damage, 

x2: Primary Flight Type, and x3: Flight Phase may have differ- 

ent types of connections in the context of flight operations. When 

two or more variables have a common effect on a third variable, 

this is referred to as a common effect connection. For example, 

x2: Primary Flight Type and x3: Flight Phase may have a com- 

mon effect on x1: Aircraft Damage, such as when a personal flight 

during the takeoff phase is more likely to cause aircraft damage. 

A common cause connection occurs when a common cause af- 

fects two or more variables. For example, x2: Primary Flight Type 

and x3: Flight Phase may share a common cause, weather con- 

ditions, which can affect the likelihood of aircraft damage dur- 

ing a flight. When one or more intermediate variables mediate 

the effect of one variable on another, this is referred to as an 

indirect effect connection. For example, x2: Primary Flight Type 

may have an indirect effect on x1: Aircraft Damage via x3: Flight 

Phase. A flight operation with an industrial primary flight type 

may be more likely to be in the cruise phase, which may reduce 

the risk of aircraft damage. The type of connection between vari- 

ables in a DAG can have significant consequences for causal in- 

ference and decision-making in flight operations. Flight operators 

can make more informed decisions about safety protocols and risk 

management if they understand the direction and nature of these 

connections. 

There are two types of probability distributions: marginal and 

conditional. It is marginal for parentless nodes and conditional for 

those with parents. In conditional, the dependencies will be de- 

termined using conditional probability tables (CPT) for each node 

in the graph with a parent. Following the specification, the BN 

efficiently depicts the JPD (joint probability distribution) and can 

therefore be used to calculate the posterior probabilities of any 

subset of variables. BN chain rule is often employed to represent 
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Fig. 3. Depiction of a simple tan network structure. 

complicated probability distributions [63] : 

P (x 1 . . . , x n ) = 

n ∏ 

i =1 

P (x i | A x i ) (8) 

where x i is a variable, and A x i is the parent, in Fig. 3 , P (x 3 |x 2 , x 1 ) 

is the probability of flight phase given the values of flight type and 

damage. 

Predicting the exact inference using BN is an NP-hard problem 

to solve, as Pearl 47] eloquently explains. It is more beneficial to 

use BN since it is simple to transfer earlier knowledge into a net- 

work structure by prohibiting relations, leveraging prior distribu- 

tion across network constraints, or modifying structural compo- 

nents. 

This process begins with Naive Bayes, which provides conclu- 

sions for all examined variables to be anticipated. The Naive Bayes 

classifier keeps to the Bayes principle by constraining the network 

under the strict assumption that all factors except the target vari- 

able are independent. In the development of naive Bayes classifiers, 

the TAN approach provides a tree-like graphical model for predict- 

ing the interactions among several predictors [74] . 

The TAN structure outperforms the Naive Bayes approach and 

requires no search in the calculation. TAN employs a parentless 

class variable; nonetheless, the conditional probability for the class 

variable and another feature is determined for each attribute. TAN 

fits this research problem better because we need tree augmenta- 

tion to understand the relationship between incident-creating vari- 

ables [76] . The TAN structure is shown in Fig. 3 , where the tree is 

a function over x (i ) > 0 , x 1 is the target variable with no parents, 

i.e., A x 1 = ∅ . Chow and Liu’s [77] . Tree Bayesian concept is used to 

assemble the TAN structure. The elaborated conceptual proof and 

formulation of the tree Bayesian concept can be found in detail in 

Chow and Liu’s [77] and TAN structure in the work of Friedman 

et al. [75] . 

Safety is the first factor considered while designing any sys- 

tem related to aviation, such as an airport or aircraft. Aviation sys- 

tems are designed and regulated to have multiple safety futures 

with multiple assurance systems. The aviation systems are care- 

fully designed to back up one another in an emergency, so un- 

derstanding the series of events and pattern of failed systems in a 

tree-based augmentation network is critical to remedying reverse- 

engineered policymaking for the aviation industry. Unlike alterna- 

tives, we aimed to determine conditional dependencies of incident- 

creating variables due to their enhanced performance in under- 

standing the aviation incidents. We utilized the BN’s TAN model for 

its outstanding performance compared to other structural learning 

algorithms. 

Table 2 

Notation used in this study. 

Symbol Definition 

X Random variable 

Y Random variable 

P(x) Probability mass function of X 

P(y) Probability mass function of Y 

P(x,y) Joint probability mass function of X and Y 

P(x|y) Conditional probability mass function of X given Y 

H(X) Marginal entropy of X 

H(Y) Marginal entropy of Y 

H(X|Y) Conditional entropy of X given Y 

H(X,Y) Joint entropy of X and Y 

I(X|Y) Information gain of X with respect to Y 

4. Model design and results 

4.1. Model design 

Making solid expert judgments about aviation incidents is chal- 

lenging. We need to make inferences with components and find- 

ings contrary to each other and produce evidential results. BNs can 

do these computations under uncertainty and create reliable in- 

ferences. Even though we have created a predictive model in this 

study, the focus is on creating an insightful explanatory model to 

enable decision-makers to test different aviation incident scenario 

combinations and take preventive actions accordingly. 

This study gives the metrics about the predictive performance, 

but the main spotlight will be on interpreting the aviation inci- 

dents with a multiclass probabilistic Bayesian Belief Model. The 

data used in the study is gathered from FAA public records, and it 

is assumed that the data is MAR (Missing at Random). We applied 

the routine missing data resolving methods for stochastic condi- 

tional BN methods depending on the properties of the variables 

that can be better understood by looking at the data properties in 

Table 2 . Due to the nature of the aviation incidents, the Substantial 

and Destroyed (% 4.72), Minor (%82.25), and None (%12.71) cate- 

gory incidents are imbalanced in the data. We applied the cross- 

entropy loss function approach to offset the data. Minor incidents 

are the main focus of the research question accordingly. Under 

Sampling for the “minor incident” category has been implemented 

to align the cross-entropy loss function by balancing the data. 

4.2. Sensitivity analysis 

When we look at the model’s predictive performance, com- 

paring the balanced and imbalanced datasets is essential because 

there is a significant imbalance in the target class categories. The 

receiver operating characteristic (ROC) curve is a summarizing 

model performance metric that visualizes the True Positive Rate 

over False Positive Rate. As a result of the comparison, imbalanced 

datasets performed better than balanced datasets. 

(ROC 73.74% vs 73.98%). In addition, the business scenarios we 

mainly evaluated depend on the “Minor” severity class because of 

the economic value of the events that happen in the class, and the 

imbalanced dataset gave better in-class precision for the “Minor”

class values (93.35% vs. 67.55%). 

A ten-fold cross-validation procedure was used in this study. 

Cross-validation is necessary when it is a classification problem 

and an imbalance in the data. Table 3 reflects the cross-validation 

test results for the target variable. The aircraft damage variable 

has three categories for damage severity. The categories are un- 

balanced. Experiments are repeated with and without SMOTE data 

balanced datasets to overcome the balance issue. The study found 

that SMOTE data balancing did not significantly improve the over- 

all metric compared to no balancing. Since our primary focus is on 
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Fig. 4. Bayesian network for prediction of injury severity. 

Table 3 

Ten-fold cross-validation prediction performance measures for the models with and 

without SMOTE data balancing. 

No Balancing SMOTE Data Balancing 

Mean ROC 73.74% 73.98% 

Overall Precision 83.04% 81.28% 

Overall Reliability 79.10% 78.26% 

“Minor” Damage In-Class Precision 93.35% 67.55% 

the” Minor” category incidents and their business inferences, we 

proceeded with imbalanced data. 

5. Discussion of the findings 

The result of the BN structure enables us to simulate testing 

different event scenarios. Depending on the business type, orga- 

nizations can test the interdependency of variables and compre- 

hend beliefs to develop findings to create a competitive advantage 

by having fewer incidents. In addition, the reduced risks using the 

decision support system contribute to the organization by reduc- 

ing the insurance costs and increasing public brand value, opera- 

tional efficiency, and profitability in a business where every little 

incident has significant direct and indirect costs. We utilized some 

of the most reliable and interpretable data preparation, prediction, 

and explanation methods to reduce the prediction bias. Fig. 4 ex- 

plains the Baseline model for the Bayesian belief network (BBN). It 

visualizes the prior probabilities and interdependencies of the BBN. 

It shows the interdependencies of all variables and how changing 

one category impacts other flight-related characteristics. 

The arrows indicate the relations between variables; the TAN 

network explains the interdependency between variables. Un- 

certainty is an essential factor in predictive analytics problems. 

Fig. 4 is a summary visualization that includes the descriptive na- 

ture of the situation by the distribution of the data and the predic- 

tive solution by the parental relations between the variables visu- 

alized by the arrows between variables. For example, Flight type is 

parent to flight phase, conduct code, number of engines, and Ma- 

jor Carrier and PIC certificate type. On the other hand, flight type 

is also a child of Aircraft Engine Make and Aircraft Damage. 

The sensitivity analysis of the target variable (Aircraft Damage) 

in Fig. 5 is a critical metric to visualize the comparative impor- 

tance of the variables to the target variables. The sensitivity analy- 

sis means the order of the sensitivity means relative significance 

for the prediction. Fig. 5 shows that Flight Phase (16.6%) is the 

most critical variable. We know from the aviation community that 

landing and departure are the most problematic flight phases in 

that incidents happen [ 78 , 79 ]. The aviation community focuses on 

improving flight safety in these phases. After the Flight Phase, the 

Flight Conduct Code (10%) defines the flight type, pilot certifica- 

tion, and schedule flexibility of the flights. Later, the Engine Model 

(8.92%) and the Engine Brand (8.44%) can define the aircraft brand, 

aircraft type, maintenance routines, brand specifications, and relia- 

bility. Flight Type (7.83%) is similar to the conduct code but more 

specific to explain personal flights, instructional flights, executive 

flights, for-hire flights, and industrial flights, which gives the con- 

text of the flight. The aircraft type in terms of the number of en- 

gines (4.96%) is related to the flight type, pilot expertise, and air- 

port specifications. These variables are the most important vari- 

ables to predict the damage. Whereas PIC experience is one of the 

first factors that come to mind, shockingly, they could be more 

impactful. The sensitivity of PIC-related variables is PIC Certificate 

Type (4.9%), PIC Total Flight Hour (0.83%), and PIC hour in the last 

90 days (0.26%). PIC hour in the model (0.085%) 

Fig. 6 adds another level and investigates Aircraft Damage’s sen- 

sitivity to the Flight Phase. When we look at the business infer- 
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Fig. 5. Sensitivity analysis of aircraft damage-related factors. 

Fig. 6. Sensitivity of aircraft damage to flight phases. 

ence by testing the sensitivity of Aircraft Damage to Flight Phases 

for all aviation incidents, we can see in Fig. 6 that there is a sig- 

nificant difference between damage categories and flight phases in 

the incidents that happen. Touchdown is a landing base phase, and 

touchdown phase incidents are more likely to end up in “Minor”

(30.7%), “None” (3.77%), and “Substantial_Destroyed” (3.6%), and 

combined (26.1%) category incidents. Similarly, in another landing- 

related phase, the Rollout phase incidents are more likely at “Mi- 

nor” (17.5%) incidents than “None” (4.57%), “Substantial_Destroyed”

(5.77%), and combined (15.2%) category events. Historically, landing 

is the most challenging part of flying an airplane [80] . Both touch- 

down and rollout are landing phase events where the rollout is just 

after the touchdown. In this comparison of Touchdown and Roll- 

out phase incidents, it is observed that Rollout incidents are more 

likely to cause “None” category incidents than touchdown incidents 

because they primarily impact people, not aircraft. 

Although, the “Cruise” phase has more “None” (17.7%) Air- 

craft Damage category events than “Minor” (5.28%), “Substan- 

tial_Destroyed” (4.08%), and “Combined” (6.87%). Similarly, there 

is a significant difference for “Climb” phase incidents at “None”

(8.3%) Aircraft Damage in comparison with Minor (5.77%), “Sub- 

stantial_Destroyed” (4.8%), and “Combined” (5.73%) 

To illustrate some of the incident cases and model findings of 

cases, we came up with an omnidirectional inference diagram. In 

Fig. 7 , we visualize the omnidirectional probabilistic relationship 

between Flight Type, Flight Phase, and Aircraft Damage to compare 

personal flights and scheduled air carrier flights on cruise-level in- 

cidents. We run the model for the probabilistic value of chosen 

category combinations called omnidirectional inference. If a vari- 

able category is chosen, that is shown to have 100% probability. 

Case 1 shows the overall model with flight and flight phases. Case 

2 offers personal flights. Case 3 shows scheduled air carriers. Case 

4 shows scheduled air carriers on crise level incidents. And Case 

5 shows personal typed flights on cruise level. We observed the 

“Flight Type”-Scheduled Carrier vs. Personal Flights-the probability 

of Minor Incidents in Personal Flights (Case 2–92.7%) is higher than 

in Scheduled Carriers (Case 3–74.1%). On the other hand, the likeli- 

hood of Substantial_Destroyed Incidents in Personal Flights (1.83%) 

is lower than in Scheduled Carriers (6.36%). In all flights, the prob- 

able flight phase is sorted in order as; Level-of-Touchdown (26.1%), 

Roll-Out (15.2%), Ground (9.11%), Cruise (6.78%), Climb (5.73%). 

In Personal Flights, the probable flight phase is sorted in order 

as; Level-of-Touchdown (40.1%), Roll-Out (21.5%), Ground (9.41%), 

Cruise (6.19%), Climb (4.50%). The ranking of probabilities for Flight 

Phases changes for Scheduled Carrier vs. Personal Flights. Whereas 

in Scheduled Carriers, the flight phase probabilities for incidents 

are sorted as follows; Ground (%17.3), Climb (14.5%), Cruise (11.7%), 

Roll-Out (7.44%), Level-of-Touchdown (6.79%), Takeoff (5.76%). 
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Fig. 7. Omnidirectional inference update for flight type and flight phase. 

Flight Type “Scheduled Flights” have many “None” Aircraft 

Damage category incidents because most incidents happen at the 

terminal while the aircraft is grounded. In some cases, nothing is 

happening about the aircraft, but the crew or passengers fall off

the stairs, etc. “Personal Flights” are mostly non-scheduled and for 

leisure due to their nature. Their schedule can easily be resched- 

uled or rerouted, but an airliner cannot easily be rescheduled in 

case of a low probability weather risk event. So, “Climb” phased 

incidents are inevitable and more likely to happen on Scheduled 

Flights (14.5%) than on Personal Flights (4.5%) because Bird Strikes, 

Engine Shutdowns, and “Cruise” phase incidents with turbulence 

cannot be easily avoided without changing the schedule or route. 

The main reason for the significant difference between sched- 

uled and personal flights in the climb phase is the prior being 

fixed scheduled months ahead and later mostly being leisure and 

rescheduled in any risky weather condition. 

6. Conclusion, limitation, and future research 

Aviation authorities, airline operators, airport managers, flight 

schools, aircraft manufacturers, aviation researchers, and insurance 

companies benefit from this study to determine the landscape of 

related incidents and speculate on the physical safety of their as- 

sets and financial safety of their assets. Aviation authorities can 

use the tool to discover risky patterns and change aviation poli- 

cies for a safer aviation system. The most repeated incident pat- 

terns, such as the landing phase (touchdown and rollout phases), 

are associated with personal flights. These personal flights are 

mostly recreational flights, and the flight schedule and location are 

changeable. These flights where the pilot has less experience than 

professional flight categories can be operated at better weather 

conditions and from less-risk airports. In addition, flight training 

schools should spend more training and simulation time on these 

types of landing pieces of their training. Government authorities 

should increase the responsibility and requirements of flight train- 

ing schools to spend more time on the landing phase. The airline 

operators further investigate the incident patterns for their compa- 

nies to define their crew planning, fleet planning, and flight routes 

built on stochastic demand [81] . “None” category aircraft damage 

incidents for scheduled carriers mostly have ground, climb, and 

cruise phase incidents. The ambiguity can be mitigated by the inci- 

dent patterns the company is likely to have [82] . In addition, they 

can find out solutions for “Ground,” “Climb,” and “Cruise” phase in- 

cidents with schedule and route changes which holds the majority 

of their incidents. The taxi phase is part of the ground phase, and 

airlines need to train pilots for the airport-specific blind spots, hot 

spots, and airport layout. The pilots need to be more airports spe- 

cific, trained, and assigned to reduce these incidents. Airport man- 

agers can evaluate the patterns of the incidents happening in their 

airports, find seasonality, and compare the results with runway 

blind-spot analysis reports done by FAA [83] . Airport managers can 

also plan for high-risk seasons, which can be winter scheduling op- 

erations, by predicting the stochastic variables such as when and 

where it is likely to have incidents [84] . 

Cruise phase incidents for scheduled carriers have mostly tur- 

bulence as the cause of the incident. In these events, there is no 

damage to the aircraft but to the people. Airlines should choose 

less-turbulent routes and reduce these cruise category events. Pas- 

sengers record turbulent incidents, and their appearance on so- 

cial media causes significant damage to the brand image. Flight 

Schools can use the tool to filter the airports and aircrafts simi- 

lar to their specifications, comprehend training flight findings, and 

advance their operations. The air traffic control (ATC) schedule is 

very fragile and a bottleneck of all aviation operations. Utilizing 

this study to assess incident risks specified for that airport and 

make the ATC schedule accordingly so that the schedules become 

less vulnerable [85] . 

In addition, flight schools can improve the flight phases with 

their experienced instructors or search for what mistakes new PICs 

make. Aircraft Manufacturers use the decision support tool to test 

the specifications they plan to add to the aircraft by comparing the 

incidents with similar aircraft models that already have the speci- 
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fications. Aircraft manufacturers also see the landscape of incidents 

as a summary in a BBN structure. Aviation Researchers build om- 

nidirectional specific scenarios for various pilot expertise, aircraft 

model, and flight phase combinations. Similarly, they can add the 

TAN structure to visualize the research area they are interested. In- 

surance Companies use the DSS to test various combination events 

and the potential damage and injuries to find high-risk and low- 

risk flights to calibrate their pricing policies. 

The limitation of the study is not combining the incident re- 

ports with other third-party incident investigation reports because 

the study targets incidents in an extensive timeframe and aims to 

find the patterns that build the big picture by combining BBN re- 

sults with SMEs. We also did not consider NLP analysis in the ex- 

pert comment column. 

The study can be advanced by expanding the data set with 

other incident reports, such as NTSB data or third-party incident 

reports. Conducting a natural language processing (NLP) analysis 

and getting more information from the investigator report. In addi- 

tion, the study can be combined with other expert guidance infor- 

mation about incidents, such as integrating with the airport run- 

way blind-spot notes released by the FAA to find the root cause 

of related incident cases and understand the causality of such 

blind spot-related incident cases. Finally, many omnidirectional in- 

ferences update possibilities mean different possible variable com- 

binations important for aviation stakeholders. These varying com- 

binations mean other incident cases with free text format notes 

(categorical variables) are also possible combination changes in the 

flight equipment, pilot, or physical conditions of the flight. We only 

discussed a few of these crucial combinations in this study. 
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