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ABSTRACT

This thesis describes initial development and evaluation of an F / A-18 Fuzzy

Logic Automatic Carrier Landing System(FACLS). The FACLS is designed so

that at touchdown on the carrier, the aircraft has the proper position, sink rate,

angular attitudes, and speed. Further, this is done with limited control authority,

and under varying conditions of carrier motion, air turbulence, radar tracking

noise, and ship air wake. The FACLS has eleven sensor inputs, three effector

outputs, and approximately 400 fuzzy rules. The small number of rules is possible

due to two factors. For one, instead of using a pure fuzzy logic controller, a

classical control structure that contains five fuzzy-logic elements is used. The

other factor that decreases the number of required rules is the use of variable

membership functions. This use of fuzzy logic control is also different from many

applications since fuzzy logic is not used only to model a set of human rules, but

to combine the best features of human and automatic control approaches. This

includes improving system acceptability by making it sensitive to pilot concerns

that cannot be easily accommodated in conventional control systems. TheFACLS

was tested in simulation and compared with the current F / A-18 Carrier Landing

System. Results indicate that the FACLS could yield significant improvements

over the F/A-18 ACLS in its ability to make acceptable landings, particularly in

severe weather conditions or with poor initial conditions.
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1. INTRODUCTION

1.1 Background

Carrier landing is the most demanding task routinely done by Naval aircraft[l­

9]. Medical studies have shown that carrier landing provides greater stress to pilots

than actual combat in terms of respiration, pulse rate, and other physiological in­

dicators[4]. This is because, unlike land-based operations, a carrier landing is

essentially a precisely controlled crash on a small moving target with significant

disturbances. Further, high performance jet aircraft do not perform well at the

low approach speeds needed to make a successful arrested landing, and the landing

must terminate, not only with the correct aircraft position, but also with accept­

able pitch and roll attitudes, sink rate, and total speed. Due to the difficulty of

this task, Automatic Carrier Landing Systems(ACLS) have been created[lO-20].

Yet, ACLS's generally only track a specified glide slope and maintain correct angle

of attack, angular attitudes, and sink rate. Unlike pilots, they cannot intelligently

alter control strategies or plan ahead. Also, regardless of how well they work,

ACLS's often cannot incorporate key pilot concerns. This decreases pilot confi­

dence in the system, which is a major factor in determining the usefulness of any

aircraft automatic control function. In addition, the Navy has long been inter­

ested in developing an ACLS that can safely be used under all weather conditions.

Therefore, the goal of this thesis is to develop an improved carrier landing sys­

tem that can take advantage of both heuristics developed by pilots, and control

strategies developed by controls engineers, while remaining sensitive to key pilot
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concerns. One technology that has great potential for creating such a system is

fuzzy logic[21-23].

FUzzy logic has recently become the first machine intelligence technology to

have wide-spread use in real-worid control systems[24-35]. There are currently es-

timated to be several hundred systems that are either in use or have at least been

field tested. Some of the most widely publicized examples include the subway

system in Sendai, Japan[30], climate control systems[30], and cement kiln con­

trol[35]. There are many additional examples from the process control industry
,

such as steel mill temperature regulation, water purification, furnace control, crane

operation, and continuous casting plant control[29-30]. FUzzy logic controllers

are also beginning to be used in many consumer products such as camera auto-

focusing, camcorder stabilization systems, microwave ovens, washing machines,

and automobile anti-lock brakes, transmissions, and fuel injectors[30,34-35]. One

large company has recently stated plans to introduce 200 fuzzy logic products by

1995[34]. Another company has estimated it will gross 500 million dollars per

year from fuzzy systems by 1995[34]. The reason for such expectations have been

the benefits demonstrated thus far. Proven benefits of fuzzy logic controllers have

included greatly improved performance, reduced power consumption, improved

safety, reduced stresses on equipment, improved robustness, and much quicker de-

velopment times. The fuzzy logic subway control system, for example, significantly

improved the smoothness of acceleration and deceleration to the point that passen-

gers supposedly cannot tell when the train stops and starts. This controller also

has improved the accuracy of stopping points to a standard deviation of about 10

em., reduced total power consumption by 10 percent, and decreased wear on sub-
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way componenents. Another successful ex~plewas the development of a camera

auto-focus system. This system both improved the quality of focus and reduced

average focusing time by twenty percent. A final fuzzy logic example is devel­

opment of a fuzzy logic wind-tunnel controller[33]. The conventional controller

designed for this task took close to two months to develop and required creation

of a detailed process model. A comparable fuzzy logic controller, however, was

developed in three days without the need for a process model.

Despite this excellent outlook, many of the successful applications of fuzzy

logic have been for problems much easier than carrier landing. Nonetheless, re­

cent laboratory work has begun to show the benefits of fuzzy logic based control

for more difficult problems. Two examples of this stabilizing a three stage in­

verted pendulum on a cart[36] , and parallel parking an automobile[32]. Both these

problems had otherwise been unsolvable for conventional control theory or artifi­

cial intelligence methods. Some noteworthy laboratory demonstrations from the

aerospace industry have included simulations of space shuttle trajectory control[37­

40], spacecraft tether control[40], unmanned vehicle obstacle avoidance[40], and

aircraft roll control[41]. Many of these simulations also found benefits such as

quick development times, improved performance, and reduced energy consump­

tion. The space shuttle trajectory controller, for example, has shown fuel savings

of 20-70 percent in all attitude hold, rate hold, and maneuver cases as compared

with the space shuttle automated attitude controller[40]. The spacecraft tether

controller operated more smoothly than a conventional controller, and was able to

reduce length error by one third to one half in preliminary testing.

One reason that fuzzy logic controllers have produced these benefits is that

4
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they can easily embed human if-then type rules into a mathematically based con­

troller. For example, a representative fuzzy logic rule is if an error is near zero

and the rate of error increase is large, then move an effector a medium amount.

Yet, a fuzzy rule is a complex numerical mapping from the input space to the

output space and functionally much different from a similarly stated classical logic

rule. FUzzy logic control is not, as its truly awful name seems to imply, some

type of illogical or poorly considered reasoning. Instead, it is based on the idea

that in real-world problems, it may be difficult to force everything to fit in exact

categories. For example, in an expert system using classical logic, if an input is

one micron larger than the definition of small, the system assumes the input is not

small. Then all the rules relating to small inputs are completely irrelevant and all

the rwes for not small inputs perfectly apply. In contrast, a fuzzy system allows

the possibility that ru1es for both categories might apply to some degree. Thus,

instead of requiring a specific ru1e for each possible situation, a fuzzy controller

can look at all potentially relevant principles of operation and determine an exact

response based on some weighting of these principles. Further, since fuzzy logic

is numerically based and not symbolically based, a great deal of mathematics can

be brought to bear on a fuzzy logic controller. This includes analytical ways of

determining stability and robustness[42-43].

Another key reason for fuzzy logic control's success is that it is a computa­

tionally efficient and somewhat transparent means for implementing complex non­

linear control laws. Thus, it has allowed the creation of sophisticated non-linear

control laws with less effort than is required for conventional non-linear control

techniques like gain scheduling. Further, these control laws can then be imple-
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mented with reasonable computational overhead via the use of specialized fuzzy

logic chips. This is possible because in a fuzzy logic controller, rules are in parallel

and can be evaluated concurrently instead of in time-consuming tree searches. For

example, currently, there are boards that can be inserted in a standard 286-based

PC that can calculate as many as 30,000 fuzzy rules per second[44-46]. Further,

these boards can be placed in parallel, allowing calculation of over a million fuzzy

rules per second on a low-end computational platform like a PC.

1.2 Approach

The use of fuzzy logic control in this thesis has some differences from many

current applications. The major difference concerns the nature of the rule base.

Often the reason for developing a fuzzy logic controller is that there are human

operators who can perform a task, but no easy way of creating an automatic

control system. This typically occurs due to the lack of an accurate process model

or the need for a complex non-linear control strategy. In contrast, for carrier

landing, adequate process models are always developed and both human pilots

and automatic systems can perform carrier landings acceptably. Just duplicating

pilot technique would not yield significant improvements, and would likely decrease

the capability of the system. Some pilot techniques, for example, are used to

compensate for human weaknesses. Other pilot techniques rely on strictly human

capabilities, like vision cues to which automatic systems do not have access(at least

not yet). Also, pilots are given more control authority than automatic systems,

and therefore can initiate maneuvers that automatic systems would not be allowed
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to perform for safety reasons.

Another significant difference between the FACLS and many fuzzy logic con­

trollers, is that a pure fuzzy logic controller is not used. Instead, the system is

organized much like a classical controller, with five key blocks being fuzzy rule

bases. Four are standard fuzzy logic controllers, and the fifth also affects the gains

in the classical control elements. This allows a significant reduction in the number

of rules required and provided comparable performance to a pure fuzzy logic con­

troller with a much larger rule base. Another difference between the FACLS and

most fuzzy controllers is that fuzzy logic membership functions are not constant,

but vary as a function of range to carrier. This significantly decreases the number

of membership functions and rules required.

1.3 Thesis Overview

This thesis is organized in the following manner.

Section 2 provides a brief functional description of fuzzy logic controllers.

Section 3 provides a detailed overview of the carrier landing problem, piloting

technique for carrier approach, and current automatic carrier landing systems.

Section 4 briefly describes the F/ A-IS aircraft and the particular simulation

used in this thesis.

Section 5 describes the Fuzzy Logic Carrier Landing System, and provides

details of the development process and insight into why particular design decisions

were made.

Section 6 describes the fuzzy logic controller's five rule bases in depth.

7



Section 7 presents the results of simulation of the FACLS and compares it

with the current F/A-18 ACLS, which is the most advanced ACLSin operation

in the fleet.

Finally, Section 8 presents the conclusions of this study.
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2. FUZZY LOGIC CONTROL OVERVIEW

As briefly mentioned in the introduction, fuzzy logic is based on the idea that

real-world problems are often difficult to put into classical logic expressions. In

classical logic, for example, categories might be divided as shown in Fig. 1., where

anything less than 5 is small, and anything greater than 5 is large. Fuzzy logic

might break up the same categories as shown in Fig. 2, where instead of being

exactly small or large, an input can belong to small or large with a degree of

membership on the real line between 0 and 1. An input of 4, for example, would

be small with a degree of 0.6 and large with a degree of 0.4. The curves in Fig.

2 are called membership functions. Triangles and trapezoids are often used since

they are computationally simple, and they approximate mathematically tractable

Gaussian curves. To extend classical logic operators to degrees of membership

other than 0 or 1, the AND operator is usually taken as the minimum of the

values and the OR operator is taken as the maximum. Note that this is exactly

equal to classical logic if the only allowable input values are 0 and 1.

Creating controllers with fuzzy logic rules is typically done as shown in Fig. 3.

There is an initial fan out layer that sends the inputs to each rule. Each rule can

then be evaluated concurrently using specialized chips. Finally, all rules that are

activated to some degree are combined in a final exact output with a summation

process called defuzzification(another truly awful name). There are a number of

ways of performing these operations. A look at one way this summation process

can be done for two activated rules is shown in Fig. 4. The first step in this

process is to fuzzify the inputs by checking the inputs degree of membership in

all relevant categories. In this case, position is small with degree 0.25 and zero
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with degree 0.0. Velocity,on the other hand, is large with degree 0.6 and small

with degree 0.4. Rille 1 states that if position is small and velocity is large then

actuator position shoilld be large. The total activation of Rille 1 is then 0.25 since

under fuzzy logic

0.25 AND 0.6 = MIN(O.25,0.6) = 0.25

Similarly, the degree of activation of Rule 2 is 0.6 since

0.6 OR 0.0 = MAX(O.6,0.0) = 0.6

(1)

(2)

Note that this step is just a mapping between Unit hyper-cubes. On the right

of Fig. 4 are the membership functions of the consequents of each rule. These

membership functions are multiplied by .25 and .4 respectively since this is the

degree of activation of each rule. This yields the smaller triangles as the fuzzy

outputs of each rule. The final step, defuzzification, is used to return an exact

output from the controller. The way this is done in Fig. 4 is by taking the centroid

of the two modified consequent membership functions using

(3)

where y is the actuator command and Ai and Bi are the area and centroid, re-

spective1y for each modified consequent membership function.

In some ways this parallel structure is much like a traditional three layer neural

network, with a fan out layer, the fuzzy rules forming a layer of non-linearities,

and a final summation layer. Thus, neural network techniques like backward error

propagation learning or adaptive vector quantization for initial placement of rules
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can be brought to bear. However, learning has some advantages over conventional

three layer neural networks since the rules are only active in one area of the

input space. This means that when learning in one area of the space, significant

changes probably will not be made in other areas of the input space. Also, where

conventional neural network structures are often very difficult to understand and

validate, fuzzy logic systems are more transparent due to their representation in

English rules.
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3. CARRIER LANDING OVERVIEW

As mentioned in the introduction, a carrier landing is essentially a precisely con­

trolled crash on a small moving target. For the landing to be successful, the

aircraft must be high enough to clear the carrier ramp, but low enough to en­

gage the number 4 wire as shown in Fig. 5. Typically, the ship's Landing Signal

Officer(LSO) will insist on much tighter bounds than this, including clearing the

carrier ramp by at least seven feet. In addition, the landing must occur with wings

level, the proper horizontal position, and an acceptable sink rate and total velocity

to prevent damage from a hard landing. Achieving these goals is difficult since

high performance jet aircraft have unforgiving dynamics at low approach speeds

and the landing must be performed in the presence of carrier motion, the carrier

air wake, normal air turbulence, and radar tracking noise. Further, the final stage

of the approach takes place in about 30 seconds, with the aircraft moving at over

200 ft./sec. Thus, any corrections must be made in a very limited amount of time.

The time to make corrections is further constrained by an allowable envelope the

aircraft must remain in to avoid a wave-off by the ship's LSO. Thus, successful

carrier landing requires aggressive closed loop control that makes optimal use of

all available control power.

3.1 Pilot Techniques for Carrier Landing

A complete carrier landing is composed of several legs as shown in Fig. 6[10].

This thesis only examines the final and most difficult leg of the approach when the

pilot or ACLS begins tracking glideslope. It is assumed that the aircraft has been
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trimmed close to the proper approach speed and sink rate with wings level. Pilot

techniques for this final stage of the approach are not well defined in available

Naval literature. There is a very strong Naval operational doctrine that pilots

are required to follow[7]. Still, within this doctrine there is room for individual

techniques. These techniques are difficult to discern from conversations with pi­

lots and landing signal officers for several reasons. First, unlike the traditional

control system operator, pilots are an integral part of the closed loop system with

a significant effect on the dynamics of the system. Thus, pilot responses are not

made following a clear and well established set of quantifiable rules, such as may

be done by the operators of simpler processes. The second reason for the difficulty

of determining pilot techniques is that carrier landing is a two-man-in-the-Ioop

operation between a pilot and a ship-board Landing Signal Officer(LSO). Besides

calling wave-offs, the LSO provides considerable help to the pilot in determining

how to deal with carrier motion. The LSO also is excellent at spotting trends

that may lead to error conditions and providing guidance to help the pilot remain

within tight bounds. The final reason it is difficult to discern piloting techniques

is that they greatly differ based on what type of aircraft the pilot is used to fly­

ing, how much experience the pilot has, and even what aircraft carrier the pilot is

used to landing on. For example, there have been significant technique differences

noticed between pilots used to aircraft with different engine responses, pilots used

to using auto-throttles or not, and pilots used to carriers with different degrees of

air wake.

There are two general strategies used by Naval pilots during carrier approach.

The first and simplest is the compensatory strategy where one control is used to

13



control each error loop separately. The primary use of the compensatory strategy

is with the backside technique where throttle controls altitude, longitudinal stick

controls angle of attack, and lateral stick controls back angle. The longitudinal

stick loop, for example, could be represented as

(4)

where 88 is stick command, a is angle of attack, and K c is an element such as

a gain or a lead-lag compensator. The back-side technique is simple and tends

to minimize angle of attack excursions when making altitude corrections. Yet,

for faster, more precise altitude corrections, the front-side technique that uses

longitudinal stick to control altitude and throttle to control angle of attack may

be used. With the compensatory front-side method, however, it is difficult to

maintain constant angle of attack. Therefore, a pursuit strategy is often used

instead of a compensatory one. In the pursuit strategy, there are crossfeeds to

decouple controls. For example, when putting in a stick change to alter sink rate,

a feedforward throttle command would be put in to maintain angle of attack.

Thus, longitudinal stick commands for the pursuit front-side technique might be

(5)

where 88 and 8, are stick and throttle commands, h is sink rate, and Kpi are

compensation strategies. For purely manual approaches, experienced pilots use

the back-side pursuit technique most of the time. The front-side technique is

usually only used with an auto-throttle that maintains constant angle of attack.

This is because, while the front-side technique allows more aggressive glide-slope

regulation, it is much more difficult for the pilot. Nonetheless, some pilots do
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favor using the front-side technique in specific situations when fast, precise altitude

changes are required. This mainly happens in the last 15· seconds of the approach,

when deck motion must be dealt with.

When using either strategy, pilots typically begin with a large control input,

back off the control as the desired state is approached, slightly increase it as rates

stabilize, and so on. These corrections are not always applied in a constant man­

ner. The overwhelming response of pilots to questions on providing successful error

regulation was that the primary concern should be for developing trends and not

for steady-state errors, within certain bounds. For example, pilots and LSO's were

generally unconcerned with small errors above glideslope and with small errors in

speed and lineup if sink rate, drift rate, and acceleration are acceptable. The one

exception to this idea is the below glideslope condition, where pilots state very

strongly that no low error is acceptable. Pilots also indicated that control actions

vary based on the environmental conditions. For example, in smooth air and calm

seas, pilots can fly with minimal inputs and often used the backside pursuit tech­

nique for the entire approach. With large vertical gusts and carrier motion, pilots

sometimes prefer the front-side technique to make small rapid changes. Also, for

poor weather conditions, pilots use more of an averaging technique to deal with

errors, except for low conditions that are dealt with quickly. Dealing with the

carrier air wake is usually done by a quick pulse of throttle input, particularly for

aircraft with good engine response like the F / A-IS. For dealing with significant

carrier motion in the final stages of the approach, it was very unclear from conver­

sation how this is done. Too much is based on quick pilot reactions and on LSO's

excellent abilities to predict carrier motion and judge aircraft responses visually.
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Also, this is a region where pilots might perlorm a technique considered unsafe

such as deck-following with bang-bang control and would therefore be reluctant to

discuss it. Thus, understanding techniques used for this part of the approach was

out of the scope of this thesis and will likely require a study conducted on actual

carrier decks.

3.2 Automatic Carrier Landing Systems

Automatic carrier landing systems(ACLS) handle landing much differently

than pilots. The basic requirements for an ACLS are that they be robust to tur­

bulence, have high bandwidth tracking, and can handle the following ship motion:

1.25 deg. rms pitch, 5 deg. rIDS roll, 4 ft. rms heave, 20 ft. maximum vertical

motion, and 1/4 deg/sec. heading changes at 30 knots

Within these boundaries, the ACLS must have a landing dispersion of less

than 40 ft. longitudinally, and 15 ft. laterally. An ACLS also has to remain within

certain bounds or it is forced to disengage. The F / A-IS ACLS must maintain angle

of attack, roll angle, and aircraft position within certain ranges. Also, all ACLS

systems have limited control authority so the pilot has time to manually disengage

if there is a failure. For the F / A-IS, the limits are placed on maximum pitch and

bank angle rates.

An ACLS consists of a number of components as shown in Fig. 7. One of the

main ones is a ship-board tracking radar and digital computer to measure aircraft

position and calculate pitch and bank steering commands. These commands are

sent to the aircraft's autopilot, which determines appropriate control responses to

16



meet the commands. For the F / A-IS, there may be delays of up to 200ms since

the ship's link to the aircraft is over the aircraft's 1553 multiplex data bus and

via the aircraft's mission computer. The last component of the ACLS system is

the Approach Power Compensation System or auto-throttle. This component sets

the throttle to maintain constant angle of attack. It operates independently of the

other parts of the system, except for using stabilator position and roll to perform

feedforward compensation similar to the pilots pursuit strategy for angle of attack

regulation.

The F / A-IS longitudinal autopilot uses Inertial Navigation System sink rate

and vertical acceleration to set stabilator actuator commands to get desired sink

rate. Studies have shown dramatic improvements, particularly in gust rejection,

over ACLS's that do not use vertical rate feedback. In addition, pitch rate feedback

is used to provide an inner loop with higher gain amplitude in the 2-30 rad/sec

range than the inner loop used by the pilot. Also, angle of attack is used to

schedule leading edge flaps. The F / A-IS lateral autopilot component is similar to

the longitudinal component with an inner roll loop and an outer loop that compares

roll feedback to roll command. An additional feature of the ACLS is that at 10­

13 sec. before touchdown, deck motion compensation is added to the glide-path

tracking command to add a lead component from the deck position measurement

sensors. This is the only way carrier motion away from the stabilized glideslope is

incorporated.

The APCS component on the F/A-18 is not a simple angle of attack loop.

The APCS uses normal acceleration, pitch rate, stabilator position, and bank angle

inputs. Normal acceleration and pitch rate are used to improve angle of attack

17
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regulation. Stabilator position and bank angle are used to provide feedforward

compensation for turns and pitch maneuvers before they can substantially affect

angle of attack.

18



4. SIMULATION TESTBED

The F / A-18 is a Naval twin-engine high performance jet aircraft with all-weather

intercept and ground attack capabilities. This aircraft is controlled primarily by

ten hydraulically actuated surfaces. These primary surfaces are dual rudders,

ailerons, leading edge flaps, trailing edge flaps, and stabilators. Inputs to the

actuators are provided by two flight control computers through a full authority

control augmentation system. These computers can use all ten surfaces to their

best benefit. For example, besides ailerons, differential flap and stabilator as well

as a rudder interconnect can be used to· improve roll performance. On landing

approach, however, differential flaps may not be used and differential stabilator

can only be used when it does not interfere with its primary use as pitch control.

Similarly, longitudinal control may not use not only stabilators and flaps, but also

more unconventional control surfaces such as asymmetric rudder deflection.

The simulation testbed was a 386-based F / A-18A six-degree-of-freedom non­

linear carrier approach model. The required characteristics for the simulation was

to have representative complexity and limitations of an actual F / A-18 on carrier

approach. Toward this goal, the simulation was augmented for this thesis with

more realistic sensor, actuator, engine, noise, and disturbance models. These

are necessary, since otherwise, the fuzzy logic system was capable at some times

of producing clearly unrealistic behavior, such as virtually instantaneous angular

decelerations.

The simulation block diagram is shown in Fig. 8. The aerodynamic model is

a linear perturbation model with scheduled parameters to introduce aerodynamic
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non-linearities.This model is in standard state space form

x = A(x)x +B(x)u + G(x)v (6)

where x is the state vector, u is the control vector, and v is the disturbance vector.

This is s~cient since the major causes of aerodynamic non-linearities are changes

in angle of attack, sideslip, speed, altitude, Mach number, aircraft weight, and cen­

ter of gravity. Thus, since these quantities are relatively constant during approach,

the major non-linearities relate to aircraft components, such as data transmission

delays, and actuators and engine performance. The actuator models are third or­

der sub-systems with rate and position saturations. Different actuator models are

used for the stabilizer, rudder, aileron, leading edge, trailing edge, and approach

power compensation actuators. The engine model is a sixth order sub-system also

with rate and position saturations. The sensor models are all first order lags,

except for air data parameters and ship-board measurements. Air data parame­

ters have a 50ms delay to model computational lags and ship-board measurements

have a lOOms delay with a randomly varying 0-50 ms delay to also model lags due

to asynchronous processors. Sensor noise is additive Gaussian white noise, except

for velocity and aircraft position measurements from ship-board radar. Velocity

has multiplicative noise and aircraft position has a first order random walk for

each component of noise. Sensor noise and dynamics are also passed through an

anti-aliasing filter to avoid unrealistic sensor behavior. There were four types of

disturbances that are simultaneously applied to the system. The first is the stan­

dard Dryden continuous turbulence model from MIL-F-8785C. This model has

first order dynamics and is driven by white noise. Fbr simulation, the amount

of turbulence can be set at light, moderate, or severe. The second disturbance
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is a carrier motion model. Sinusoidal motion in pitch and heave dominate the

sea-state model, with heave lagging pitch by 90 degrees. This model also can be

set at light, moderate or severe. There is some random narrow band noise put in

the carrier motion model to prevent unrealistic prediction capabilities. The other

two disturbances are'the deterministic and random components of the carrier air

wake or burble. The deterministic part is a complex function of range to carrier

and carrier motion. The random part is a first order dynamic system driven by

white noise whose parameters also change as a function of range to carrier and

carrier motion.
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5. DEVELOPMENT OF FACLS

The FUzzy Logic Automatic Carrier Landing System is designed only to provide a

Mode I fully automatic approach. It also only controls the final leg of the approach

from tipover to touchdown. It is assumed that gear and flaps have been extended,

the aircraft is close to approach speed, and the wings are close to level. To provide

a fair comparison with the current F/A-IS carrier landing system, the FACLS is

constrained to have most of the same limitations. As described in Section 3.2, it

has to disengage beyond certain glideslope errors and angular attitudes, and it has

limits on allowable roll and pitch rates. The FACLS also only uses inputs that are

available to current ACLS ·systems. The one advantage the FACLS has over the

current ACLS system is that the FACLS has the potential to be a more coupled

controller since it combines the ship-based ACLS system, the aircraft auto-pilot,

and the auto-throttle. As described in section 3.2, these are combined in current

systems to a lesser extent. The current ACLS, however, has an advantage over

the FACLS since it uses specially designed inner loops. The FACLS, on the other

hand, has to rely on a modified version of the manual control inner loops.

There are eleven inputs used in the FACLS. These are vertical glideslope

position, sink rate, vertical acceleration, angle of attack, pitch rate, normal accel-

eration, range to ideal carrier touchdown point, lineup(horizontal position errors),
,

drift rate(rate of change in lineup), roll rate, and roll angle. All inputs but range

are broken into seven triangular membership functions. The seven membership

functions represented OK and small, medium, and large deviation from a nominal

value in each direction. 'liiangular functions were chosen since they are computa­

tionally simple, and trapezoids would not yield precise enough changes in ACLS
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outputs. Some experimentation yielded no benefit from other more complex mem­

bership functions such as Gaussian curves. Before tuning, the size and location

of the membership functions were based on what pilots and landing signal officers

would consider to be within these ranges. One example of this is for angle of attack,

which is shown in Fig. 9. The membership functions in Fig. 9 are very fast, fast,

slightly fast, OK, slightly slow, slow, and very slow(pilots refer to angle of attack

in terms of fast and slow due to its relation to speed during carrier approach). As

described later, these membership functions were altered during simulation and

tuning. The one FACLS input that does not use triangular membership functions

is range to carrier. This input space is divided into four trapezoidal membership

functions as shown in Fig. 10. Using four trapezoidal membership functions is ad­

equate since some membership functions vary as a function of range. This means

that the range membership functions are mostly used for altering control strate­

gies, and not for altering control magnitudes. One input with variable membership

functions is glideslope error. The membership functions for glideslope error are

scaled so that the highest value of the large membership functions in each direction

is at the exact boundary to disengage.

The outputs of the FACLS are longitudinal stick position change, lateral stick

position, and throttle position change. These are not ideal, but are used to keep

rules transparent to pilots. Throttle output is the <:mly true physical quantity

since it goes directly into the approach power compensator actuator. Stick out­

puts, however, are not physical quantities, but idealized values that would be

implemented in the flight control computer. This overcomes the limitations of an

actual stick, such as deadband non-linearities, and allows some modification of the
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F / A-18 inner loop control law. Each of these outputs is broken into 19 equal sized

triangular membership functions. Nineteen was found through experimentation

to be sufficient to get the necessary variety of outputs.

The rule base was developed in two parts. In the first part, a set of rules was

determined based on the current state of the art F / A-18 ACLS system, Navy ACLS

requirements, research reports on how to improve ACLS systems, and discussions

with Navy flight controls engineers. This yielded a set of rules roughly similar to

a very complex gain-scheduled automatic feedback control system. Following this,

a set of rules was put together based on discussions with Naval pilots, literature

on piloting techniques, and Naval Flight Procedures. Developing these rules was

one of the most difficult parts of this study due to the difficulty in determining

pilot strategy through conversation as described in Section III.

After building both rule bases, these were combined to yield an optimal control

strategy. Pilot rules based on human limitations such as the inability to monitor

many sensor inputs at once or poor response times were eliminated. Other pilot

rules based on non-accessible cues such as visual or auditory ones were eliminated

or modified so they could be used by an automatic system. Automatic control

rules, on the other hand, were often constrained to keep system complexity or

design and development effort reasonable. This allowed many rules to be changed

or modified to be more in spirit with the pilot rules. Also, given the ease with

which complexity could be added to fuzzy rules, many were modified to be more

sensitive to prominent pilot concerns, such as dealing quickly with low conditions

and being more concerned with trends than small steady-state errors. The final set

of rules was largely based on good automatic techniques that had been augmented
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to incorporate useful pilot techniques and prominent pilot concerns.

This final rule base would need more than five thousand rules for implemen­

tation in a pure fuzzy logic controller. Yet, many control strategies could be

expressed as standard control loops. Therefore, the fuzzy controller was designed

as· a classical control structure with five blocks containing individual fuzzy rule

bases as shown in Fig. 11. Each of these rule bases is described in Section 6.

The glideslope rule base controls glideslope position and sink rate using longitu­

dinal stick, and also outputs a command proportional to throttle that maintains

angle of attack during glideslope changes. The alpha rule base operates much

like the F/A-1S APCS to contro~ angle of attack with throttle. It also outputs a

feedforward command to longitudinal stick to maintain sink r~te during throttle

changes. The longitudinal stick command passes through a first order lag due to

the difference in bandwidth between engine and stabilator responses. The lineup

rule base outputs a desired bank angle to control lineup and drift-rate and has a

similar function to the lateral part of the ship-board ACLS computations. After

passing through a limiter, the roll rule base uses this bank command to output

lateral stick commands to control roll angle and rate. It also outputs throttle

and longitudinal stick commands to maintain angle of attack and sink rate during

maneuvers. The final rule base contains all rules that could not be decoupled and

is mainly concerned with close in where allowable control deflections are limited

and a more coupled strategy must be used for best effect. With this structure, the

system required only about 400 rules. There is probably a better way of perform­

ing carrier landing by using only one rule base and not decoupling the problem at

all. Still, determining this is very difficult since both control designers and pilots
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use the decoupled approach. Also, it was not possible to derive fuzzy logic rules

. using, for example, a neural network technique, since there was no easy way to

determine a good cost function for criteria such as pilot acceptance.

Each fuzzy rule base has the same functional description. The fuzzification

method for each system is function calculation instead of table look-ups due to the

size of the rule base, the need for precision, and the quick calculation possible with

piecewise linear membership functions. AND and OR are defined by the standard

Max and Min as described in Section 2. The defuzzification method is the centroid

procedure, which is required for a true weighted combination of activated rules.

For encoding, Max-dot is used since it worked better in some situations than the

Max-min method. The primary reason for this is that for triangular membership

functions, Max-dot gives stronger weighting to the most heavily weighted rules.

Based on these results a new encoding method that squared the degree of activation

and multiplied the output membership function by it was attempted. This seemed

very promising for some types of control problems.

The FACLS and aircraft model were both programmed in the Borland Inte­

grated Development Environment using C and C++. The mathematic's program,

386-Matlab was used to interface between the different programs. In the FACLS

software each input variable was considered to range from -1000 to 1000 or 0 to

1000. Matlab handled all interfacing including scaling sections of the input vari­

able space to each piecewise linear segment of the membership functions. This

enabled quick adjustment of input membership functions without having to con­

stantly recompile the code or provide many inputs to the C and C++ code. Fur­

ther, Matlab's capability of caJ)jng the user as a sub-routine allowed very efficient
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"on-line" tuning during a simulated approach. Two main trends arose in much

of the tuning. One trend was the decrease in the size of membership functions

near zero error with the corresponding increase in ones further out. This allowed

better precision for smaller errors. The second trend was many inputs ended with

non-symmetrical membership functions about zero error. The tuned membership

functions for angle of attack are shown in Fig. 12, which can be compared with

the original ones in Fig. 9.
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6. RULE BASE DESCRIPTIONS



a desired roll angle. The lineup rules are much more complex due to the way

they vary with range to carrier, and the nature of lineup changes. The "at start"

rules are very similar in spirit to roll rules 1-19, since the "at start" range is the

only one at which large lineup errors have time to be corrected. However, for this

range, their are many more lineup rules than roll rules. This is because all lineup

rules need to consider drift rate as well as lineup. By the "in middle" range, it is

too late to make any large corrections in lineup. It is better to insure drift rate

in adverse directions has been nulled or at best make one small correction early

in this range. Thus, the "in middle" rules use even more derivative action. There

is only one "in close" rule and that is return to wings level. It is important in

understanding how these rules work, to remember that ranges are not described

as exact categories, but as shown in Fig. 10. Thus, up to 3500 ft. "at start"

rules are still active, although they are moderated by "in middle" commands that

decreases the maximum size of alterations and add much more derivative action

to null drift rates. Similarly, the "in close" rules begin being blended in at 2500 ft.

and therefore create an increasing tendency toward wings level by the "in middle"

rules. Further, the "in middle" rules that control drift rate do not completely cease

being active until 1500 ft., allowing small alterations well into what is considered

the "in close" range.

The angle of attack rules use angle of attack, normal acceleration, pitch rate,

and range to carrier to output changes in throttle position. This change in throttle

position is combined with proportional values of lateral and longitudinal stick

commands to provide the final change in throttle position command. This rule

base is similar to the roll control rules, except it uses both normal acceleration
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and pitch rate to provide damping. Differences between. throttle control rules and

roll control rules appear mainly in the "close in" and "at ramp" range and are

contained in the coupled rule base. Thus, this rule base's theory of operation is

very similar to the current F/A-18 Approach Power Compensation, although it

has a somewhat more complex non-linear control strategy.

The longitudinal glideslope control rules are form most complex rule base of

the four main decoupled bases. This rule base uses vertical glideslope position, sink

rate, vertical acceleration, and range to carrier to generate changes in longitudinal

stick commands. This command is then combined with outputs of roll and angle

of attack rules to give a final change in longitudinal stick command. The primary

strategy used by this rule base is the pursuit front-side technique, since the benefits

far outweigh the disadvantages for any system with good automatic control of

angle of attack. These rules are also changed based on range to carrier. For

the "at start" range, this is the only time at which large errors are allowed and

they must be accommodated quickly. This is done using rules very similar to

rules 1-19 of the roll control rule base. Rules for large errors operate like high

gain proportional controllers. As the error gets smaller derivative action is used

to create a well damped system. However, unlike the roll control system there

are rules which decrease commands based on rates. For example, small errors

tend to be ignored if there is a decreasing trend and they will shortly be nulled.

At the "in middle" range, as with lineup rules, a primary concern is nulling any

adverse rates in vertical rate or acceleration. However, unlike lineup, one category

of position errors is taken very seriously. These are low errors. Thus, responses

are not symmetrical about glideslope. Low conditions are dealt with very rapidly,
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even if it means accepting some overshoot. This is because a high condition, may

still catch the number four wire, and may be corrected anyway during settling in

burble. This reasoning is carried through with regard to rates, where any fast sink

rate or acceleration tendency is dealt with quickly unless their is a significant high

condition.

Closer in, the problem changes since instead of a stabilized glideslope, carrier

motion must be accommodated. All compensation of deck motion is done by the

fifth and final rule base, the coupled one. This rule base has all the inputs and

outputs of the other four rule bases. It can also choose either to add to their

commands or to replace other rwe base's commands with its own. Usually, for

deck motion compensation, this rule base just adds to the other commands that

are based on a stabilized glideslope. However, very close to touchdown, this rule

base may exert complete control of the aircraft. This is usually done to make

very small combinations of throttle and stick to correct an error, as opposed to

the more decoupled strategies used further out. The coupled rule base also has

commands for other strategies. For example, when flying into the deterministic

part of the burble, the coupled ru1e base adds some temporary throttle and stick

to the other rule base commands to compensate for the burble's settling effect.
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7. SIMULATION RESULTS

Both the FACLS and the H-dot system were tested over 200 approaches. The

majority of approaches were with severe turbulence and sea-state conditions. The

reason for this is that the F / A-IS system has excellent performance in calm and

even moderate conditions and there is little room for improvement over its capa­

bilities. For each weather condition, there was a variety of starting conditions,

from dead-on glideslope to some errors just within the allowable boundary. As

with weather conditions, most cases dealt with more difficult initial conditions.

Each landing attempt was classified as a wave-off, bolter, hard landing, ramp

strike, excellent, acceptable, or poor.

A wave-off is a deliberately aborted landing attempt that is called by either the

pilot or the LSO. Criteria for a wave-off is very subjective. LSO's often use inputs

as difficult to measure as their knowledge of the pilot. Thus, the following criteria

are relatively simple approximations of some of the more widely used wave-off

requirements. They are conservative in some regards and liberal in others. One

example of liberal behavior is shown by the number of ramp strikes, which are

much more unlikely in real operations. A wave-off was considered to have been

called if any of the following four conditions occurred:

1) The carrier landing system was required to disengage after exceeding the

boundaries given in Section 3.2. In some ways, this criterion is tighter than LSO

bounds. In others, it is looser.

2) There were more than two major deviations in glideslope, lineup or angle

of attack when entering the "close in" range. Note that this does not include small

steady-state, acceptable errors.
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3) The aircraft had a high condition combined with a low sink rate in the

"close in" range. This is often called a wave-off to prevent a hard landing or ramp

strike due to over correction.

4) The aircraft had a low condition with a high sink rate in the "in close"

range. If the aircraft had either a low condition or a high sink rate, a wave-off was

called unless the aircraft's combination of sink rate and altitude made it probable

that the aircraft could clear the ramp by more than seven feet.

A bolter was considered to have occurred if the aircraft cleared the ramp by

more than 18 feet, unless the aircraft had a suffiCiently fast sink rate. This was

considered to be the boundary by many pilots for successfully getting the number

four wire.

A hard landing was considered to have occurred if the aircraft landed with

a sink rate greater than fifteen feet per second or a speed 15 percent above the

nominal.

A ramp strike was considered to have occurred if the combination of pitch

attitude with altitude at the ramp would cause the hook to strike the ramp.

An excellent landing was considered to have occurred if the aircraft landed

with the proper pitch attitude, wings level, speed close to nominal, sink rate less

than fourteen feet per second, lineup close to desired, and caught the number three

.
Wlre.

An acceptable landing was considered to have occurred if the aircraft landed

with wings level, sink rate less than fourteen feet per second, and acceptable speed

and lineup.

All other landings were considered poor.
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The results of the 200 landings are displayed in Table 2. The FACLS achieved

a significant reduction in hard and poor landings, ramp strikes, and wave-oft's.

This yielded a substantially larger number of excellent and acceptable landings.

Interestingly, the number of bolters was slightly increased for the FACLS. This

is because the FACLS is much more concerned with low conditions and fast sink

rates than high conditions. Thus, bolters increase, while hard landings decrease.

It is important to note that in getting these results, two factors were tilted toward

the FACLS. One factor was that there was minimal improvement for the FACLS

in mild weather conditions. The improvements largely showed up during severe

environmental conditions. Thus, FACLS improvements would not have been as

good under a more typical distribution of environmental conditions. Also, it is

important to note that some of this success of the FACLS is because the wave-off

criteria and fuzzy logic rule bases were designed by the same person. Thus, the

FACLS had an unfair advantage in avoiding unnecessary wave-oft's, and in having

its potential ramp strikes, and hard landings become wave-offs.

Despite these factors, the FACLS still clearly outperformed the H-dot system.

There are two main reasons for this. The first reasons is the FACLS ability to make

very rapid changes with very little overshoot. This occurred due to its ability to

change control system gains and damping during a maneuver. An example of this

is given for a glideslope correction in Fig. 13 and 14. Fig. 13 shows the return to

glideslope with an incredible ability to make a quick return to nominal sink rate

when the correction was finished as shown in Fig. 14. It is important to note that

the FACLS makes the quickest glideslope correction possible without any threat

of going low or acquiring fast sink rate. The H-dot system on the other hand
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had much poorer perfortnance. A comparison of sink rate control between the

FACLS and the H-dot system for another case is shown in Fig. 15. The FACLS

has both better rise time at the beginning of the correction and better damping at

the end, achieving its 5 ft/sec. change in minimal time. The H-dot system, on the

other hand, has a slightly slower rise time, and pays for it with some overshoot

in a temporary fast sink rate condition. One offshoot of this improved sink rate

control is better control in turbulence. A comparison between the two systems

performance in turbulence is shown in Fig. 16. This demonstrates the FACLS has

much smaller deviations from glideslope. In general, the FACLS had about a 30

percent reduction in glideslope errors due to turbulence. A final example is shown

for making a correction to drift rate. A comparison between the H-dot system

and the FACLS for roll angle change is shown in Fig. 17. While the FACLS does

not have as much improvement in this case, this is largely because of the limits

on roll rate for carrier landing systems. Also, the current system does have some

overshoot in lineup, which requires a much longer correction than the FACLS.

The second reason for the FACLS success relates to the difference in operating

ideas. The H-dot system is designed to be very good at tracking glideslope and it

is. However, the FACLS does not only attempt to track glideslope and maintain

speed. Fig. 18, for example shows the FACLS in a slightly high position with a

slightly slow sink rate going into the carrier air wake. In this condition, the FACLS

with minimal control inputs allows the settling effect of the air wake to return the

aircraft to glideslope and proper sink rate. In contrast, the H-dot system returns

to glideslope and proper sink rate, and then implements a feedforward command

to alleviate the effects of the air wake. Another example of this is Fig. 19. Here,
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the aircraft is at the start and the vertical glideslope error is not significant and

decreasing. The FACLS then waits until intersection instead of wasting control

power making a quick return to glideslope. A final example of this concerns a

situation with a slightly high condition, but good sink rate in the latter stages

of the "in middle range". Then, the FACLS maintains the high condition and

catches the number fOlm wire with an otherwise excellent landing at 14 ft/sec sink

rate. In contrast, the H-dot system tries to correct this error and due to the high

amount of vertical turbulence and ship motion ends in a hard landing at 19 feet

per second sink rate.

In terms of control power used, the fuzzy logic controller commands higher

rates more often, but ultimately requires less actuator motion due to its ability

to do more than just track glideslope. The current ACLS is designed for high

bandwidth tracking and disturbance rejection so it uses a great deal of control

power. The FACLS is sometimes an even higher gain system, but is also sometimes

a much lower gain system. What effect this would have on the aircraft's structure

and the hydraulic actuation system is something that needs to be explored. There

may be some benefits, for example, in including rules to lessen structural stress

on the aircraft or reduce actuation rates in less critical situations.

A final question is whether the FACLS would improve pilot confidence. This

question is impossible to answer without real-time simulation and flight testing.

Further, the pilots interviewed in conjunction with this thesis all currently worked

in a research and development or test and evaluation environment. Thus, their

opinions may be different from the average fleet pilot. Also, it is uncertain if

what pilots say they want on the ground, will still be as desirable when it actually
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happens in the air. Nonetheless, the results of.this thesis have shown that it is

possible to include pilot concerns with fuzzy logic. The main question is whether

the ways it was incorporated in this thesis are correct. Thus, it is likely that pilot

confidence could be improved with fuzzy logic control under a more substantial

study(Le. more money and more fleet pilot and LSO participation).
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8. CONCLUSIONS·

Thus far, fuzzy logic shows great potential for automatic carrier landing. The ma­

jor benefits that were sought from fuzzy logic control were improved performance,

improved pilot acceptance, reduced controller development times, and improved

robustness. Of these benefits, some were clearly apparent, while others were ei­

ther uncertain or unlikely. The one benefit that clearly occurred was an increase

in performance. The excellent time responses of this highly non-linear controller

combined with the use of some pilot heuristics clearly demonstrated substantial

performance improvements over the current F IA-18 H-dot ACLS. While there are

some minor differences between the two systems operating criterion, these are not

significant enough to diminish the performance improvements noted. The perfor­

mance improvement is particularly noteworthy since the FACLS could possibly

exceed it by using more input data than the standard ACLS or through use of

some form of on-line "learning". These results suggest that ultimately, fuzzy logic

control may allow an expansion of operating conditions to more severe weather

and sea-states. Similarly, pilot acceptance was clearly improved based on the cri­

teria developed in this study. While this criteria might not improve acceptance for

the average fleet pilot, it does clearly show the potential of fuzzy logic for doing so

with a more thorough pilot study. In contrast to these two clear benefits, develop­

ment time was not improved. The actual time spent developing the controller was

decreased, but time spent in tuning was similar, and time spent in determining a

heuristic model of how the FACLS should operate clearly increased. Quick devel­

opment times with fuzzy controllers probably will only be the case when a good

quantitative heuristic model of the controller's action is readily available. Finally,
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there are still questions about robustness and stability that need to be answered

for the FACLS. Fuzzy controllers seem to have very strong static stability, in that

they react to deviations from desired states with opposing forces. Still, there is

some concern over whether changes or uncertainty in control surface effectiveness

and aircraft response times will create residual oscillations, limit cycles, or even

dynamic instability. Experience with tuning the controller has shown that these

types of adverse behavior are possible even with an adequate rule base.
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Table 1 Fuzzy. Roll Control Rules

Note: Rules 1-19 only apply if range is not at ramp, although this is not written

out in each rule.

To simplify this table all lateral stick outputs were classified as small, medium,

or large, although there are really 9 values for lateral stick in each direction.

1. H roll error is positive large, then lateral stick is positive large

2. H roll error is positive medium, then lateral stick is postive medium

3. H roll error is positive small, then lateral stick is positive small

Rules 4-6 are identical to 1-3 in the negative direction

7. H roll error is positive medium and roll rate is negative large, then lateral

stick is positive large

8. H roll error is positive small and roll rate is negative medium, then lateral

stick is positive medium

9. H roll error is positive small and roll rate is negative medium, then lateral

stick is postive large

Rules 10-12 are identical to 7-9 in the opposite direction

13. H roll error is near zero and roll rate is zero, then lateral stick is zero.

14. H roll error is near zero and roll rate is positive small, then lateral stick

is negative small

15. H roll error is near zero and roll rate is positive medium, then lateral stick

is negative medium

16. H roll error is near zero and roll rate is positive large, then lateral stick is

negative large

Rules 17-19 are identical to 14-16 in the opposite direction
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TABLE 2 FAClS Results Over 200 Carrier Approaches

Each Entry is a comparison with the results for the current F/ A-18 ACLS.

Waveoff

Bolter

Hard Landing

Ramp Strike

Excellent

Acceptable

Poor

Longitudinal Dispersion

Lateral Dispersion

48% Reduction

21% Increase

67% Reduction

80% Reduction

47% Increase

23% Increase

55% Reduction

23% Reduction in landing short of ideal
4% Increase in landing past ideal

11% Reduction
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