2,768 research outputs found

    Capturing k-ary Existential Second Order Logic with k-ary Inclusion-Exclusion Logic

    Get PDF
    In this paper we analyze k-ary inclusion-exclusion logic, INEX[k], which is obtained by extending first order logic with k-ary inclusion and exclusion atoms. We show that every formula of INEX[k] can be expressed with a formula of k-ary existential second order logic, ESO[k]. Conversely, every formula of ESO[k] with at most k-ary free relation variables can be expressed with a formula of INEX[k]. From this it follows that, on the level of sentences, INEX[k] captures the expressive power of ESO[k]. We also introduce several useful operators that can be expressed in INEX[k]. In particular, we define inclusion and exclusion quantifiers and so-called term value preserving disjunction which is essential for the proofs of the main results in this paper. Furthermore, we present a novel method of relativization for team semantics and analyze the duality of inclusion and exclusion atoms.Comment: Extended version of a paper published in Annals of Pure and Applied Logic 169 (3), 177-21

    Existential Contextuality and the Models of Meyer, Kent and Clifton

    Full text link
    It is shown that the models recently proposed by Meyer, Kent and Clifton (MKC) exhibit a novel kind of contextuality, which we term existential contextuality. In this phenomenon it is not simply the pre-existing value but the actual existence of an observable which is context dependent. This result confirms the point made elsewhere, that the MKC models do not, as the authors claim, ``nullify'' the Kochen-Specker theorem. It may also be of some independent interest.Comment: Revtex, 7 pages, 1 figure. Replaced with published versio

    The Expressive Power of k-ary Exclusion Logic

    Get PDF
    In this paper we study the expressive power of k-ary exclusion logic, EXC[k], that is obtained by extending first order logic with k-ary exclusion atoms. It is known that without arity bounds exclusion logic is equivalent with dependence logic. By observing the translations, we see that the expressive power of EXC[k] lies in between k-ary and (k+1)-ary dependence logics. We will show that, at least in the case of k=1, the both of these inclusions are proper. In a recent work by the author it was shown that k-ary inclusion-exclusion logic is equivalent with k-ary existential second order logic, ESO[k]. We will show that, on the level of sentences, it is possible to simulate inclusion atoms with exclusion atoms, and this way express ESO[k]-sentences by using only k-ary exclusion atoms. For this translation we also need to introduce a novel method for "unifying" the values of certain variables in a team. As a consequence, EXC[k] captures ESO[k] on the level of sentences, and we get a strict arity hierarchy for exclusion logic. It also follows that k-ary inclusion logic is strictly weaker than EXC[k]. Finally we will use similar techniques to formulate a translation from ESO[k] to k-ary inclusion logic with strict semantics. Consequently, for any arity fragment of inclusion logic, strict semantics is more expressive than lax semantics.Comment: Preprint of a paper in the special issue of WoLLIC2016 in Annals of Pure and Applied Logic, 170(9):1070-1099, 201

    Faster Existential FO Model Checking on Posets

    Full text link
    We prove that the model checking problem for the existential fragment of first-order (FO) logic on partially ordered sets is fixed-parameter tractable (FPT) with respect to the formula and the width of a poset (the maximum size of an antichain). While there is a long line of research into FO model checking on graphs, the study of this problem on posets has been initiated just recently by Bova, Ganian and Szeider (CSL-LICS 2014), who proved that the existential fragment of FO has an FPT algorithm for a poset of fixed width. We improve upon their result in two ways: (1) the runtime of our algorithm is O(f(|{\phi}|,w).n^2) on n-element posets of width w, compared to O(g(|{\phi}|). n^{h(w)}) of Bova et al., and (2) our proofs are simpler and easier to follow. We complement this result by showing that, under a certain complexity-theoretical assumption, the existential FO model checking problem does not have a polynomial kernel.Comment: Paper as accepted to the LMCS journal. An extended abstract of an earlier version of this paper has appeared at ISAAC'14. Main changes to the previous version are improvements in the Multicoloured Clique part (Section 4

    Subshifts as Models for MSO Logic

    Full text link
    We study the Monadic Second Order (MSO) Hierarchy over colourings of the discrete plane, and draw links between classes of formula and classes of subshifts. We give a characterization of existential MSO in terms of projections of tilings, and of universal sentences in terms of combinations of "pattern counting" subshifts. Conversely, we characterise logic fragments corresponding to various classes of subshifts (subshifts of finite type, sofic subshifts, all subshifts). Finally, we show by a separation result how the situation here is different from the case of tiling pictures studied earlier by Giammarresi et al.Comment: arXiv admin note: substantial text overlap with arXiv:0904.245

    Inclusion and Exclusion Dependencies in Team Semantics: On Some Logics of Imperfect Information

    Get PDF
    We introduce some new logics of imperfect information by adding atomic formulas corresponding to inclusion and exclusion dependencies to the language of first order logic. The properties of these logics and their relationships with other logics of imperfect information are then studied. Furthermore, a game theoretic semantics for these logics is developed. As a corollary of these results, we characterize the expressive power of independence logic, thus answering an open problem posed in (Gr\"adel and V\"a\"an\"anen, 2010)

    Characterizing downwards closed, strongly first order, relativizable dependencies

    Full text link
    In Team Semantics, a dependency notion is strongly first order if every sentence of the logic obtained by adding the corresponding atoms to First Order Logic is equivalent to some first order sentence. In this work it is shown that all nontrivial dependency atoms that are strongly first order, downwards closed, and relativizable (in the sense that the relativizations of the corresponding atoms with respect to some unary predicate are expressible in terms of them) are definable in terms of constancy atoms. Additionally, it is shown that any strongly first order dependency is safe for any family of downwards closed dependencies, in the sense that every sentence of the logic obtained by adding to First Order Logic both the strongly first order dependency and the downwards closed dependencies is equivalent to some sentence of the logic obtained by adding only the downwards closed dependencies
    • …
    corecore