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Abstract
In this paper we analyze k-ary inclusion-exclusion logic, INEX[k], which is
obtained by extending first order logic with k-ary inclusion and exclusion atoms.
We show that every formula of INEX[k] can be expressed with a formula of k-
ary existential second order logic, ESO[k]. Conversely, every formula of ESO[k]
with at most k-ary free relation variables can be expressed with a formula of
INEX[k]. From this it follows that, on the level of sentences, INEX[k] captures
the expressive power of ESO[k].

We also introduce several useful operators that can be expressed in INEX[k].
In particular, we define inclusion and exclusion quantifiers and so-called term
value preserving disjunction which is essential for the proofs of the main results
in this paper. Furthermore, we present a novel method of relativization for
team semantics and analyze the duality of inclusion and exclusion atoms.
Keywords:
Inclusion logic, exclusion logic, dependence logic, team semantics, existential
second order logic, expressive power
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1. Introduction

The origin of inclusion and exclusion logics lies in the notion of dependence
and imperfect information in logic. First approaches in this area were partially
ordered quantifiers by Henkin [10] and IF-logic (independence friendly logic) by
Hintikka and Sandu [11]. The truth for IF-logic was originally defined by using
semantic games of imperfect information ([12]), but an equivalent compositional
semantics was presented later by Hodges [13]. However, in the compositional
approach it is not sufficient to consider single assignments, but instead sets of
assignments which are called teams.
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Teams can be seen as parallel positions in a semantic game, or can be in-
terpreted as information sets or as databases ([18]). By using similar team se-
mantics as Hodges, Väänänen [18] introduced dependence logic which extends
first order logic with new atomic formulas called dependence atoms. Later
Grädel and Väänänen [7] presented independence logic by analogously adding
independence atoms to first order logic. The truth conditions for these atoms
are defined by dependencies/independencies of the values of terms in a team.
These logics have been recently studied actively with an attempt to formal-
ize the dependency phenomena in different fields of science. There has been
research in several areas such as database dependency theory ([15]), belief pre-
sentation ([3]) and quantum mechanics ([14]).

Inclusion and exclusion logics were first presented by Galliani [4]. They
extend first order logic with inclusion and exclusion atoms as dependence atoms
in dependence logic. Suppose that ~t1,~t2 are k-tuples of terms and X is a team.
The k-ary inclusion atom ~t1⊆~t2 says that the values of ~t1 are included in the
values of~t2 in the teamX. The k-ary exclusion atom~t1 |~t2 analogously says that
~t1 and ~t2 get distinct values in X. These are simple and natural dependencies
in database theory ([4]), and thus it is reasonable to consider such atoms in a
team semantical setting.

Inclusion and exclusion atoms have some natural complementary properties.
Exclusion logic is known to be closed downwards ([4]), i.e. if a team satisfies
some formula, then also all of its subteams satisfy it. Inclusion logic, on the
other hand, is known to be closed under unions ([4]), i.e. if each team in a
set of teams satisfies a formula, then also their union satisfies it. However,
neither of these logics is both closed downwards and under unions. Therefore
the combination of these logics, inclusion-exclusion logic, has neither of these
properties.

Exclusion logic is equivalent with dependence logic ([4]) which captures
existential second order logic, ESO, on the level of sentences ([18]). Inclusion
logic is not comparable with dependence logic in general ([4]), but captures
positive greatest fixed point logic on the level of sentences, as shown by Galliani
and Hella [6]. Hence exclusion logic captures NP, and inclusion logic captures
PTIME over finite structures with linear order. Inclusion-exclusion logic has
been shown to be equivalent with independence logic by Galliani [4]. Galliani
has also shown in [4] that with inclusion-exclusion logic it is possible to define
exactly those properties of teams which are definable in ESO. Thus we can say
that inclusion-exclusion logic captures ESO on the level of formulas.

By these earlier results, we see that the expressive power of inclusion-
exclusion logic is rather strong. Instead of studying this whole logic, we will
consider its weaker fragments. One of the most canonical approaches is to re-
strict the arities of inclusion and exclusion atoms. In particular, unary atoms
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are much simpler than inclusion and exclusion atoms in general. Hannula [8]
has shown that inclusion logic has a strict arity hierarchy over graphs, but it is
still open what is the exact fragment of ESO that corresponds to k-ary inclusion
logic, INC[k]. Before our work similar research has not been done for exclusion-
nor for inclusion-exclusion logic. Our main research question for this paper was
to examine whether there is some natural fragment of ESO that corresponds
to unary inclusion-exclusion logic, INEX[1].

Similar research has been done on the related logics: Durand and Kontinen
[2] have shown that, on the level of sentences, k-ary dependence logic captures
the fragment of ESO in which at most (k−1)-ary functions can be quantified.
Galliani, Hannula and Kontinen [5] have shown that the same result holds
also for k-ary independence logic. The arity hierarchy of ESO (over arbitrary
vocabulary) is known to be strict, as shown by Ajtai [1] in 1983. Consequently
dependence and independence logics have a strict arity hierarchy over sentences.

These earlier results, however, do not tell much about the expressive power
of k-ary exclusion logic, EXC[k], and k-ary inclusion-exclusion logic, INEX[k],
since the known translations from them to dependence and independence logics
do not respect the arities of atoms. Also, since these results are proven on the
level of sentences, we do not know much how does the arity affect the expressive
power of these logics on the level of formulas.

We will show in Subsection 4.1 that every formula of EXC[k] can be ex-
pressed with a formula of k-ary ESO, ESO[k]. The idea of this compositional
translation is that for each occurrence of an exclusion atom ~t1 |~t2 we quantify
a separate k-ary relation variable that gives limits to the values that the tuple
~t1 can get and~t2 cannot. We can formulate a similar, yet more complex, trans-
lation for INC[k] and then merge these two translations to create a translation
from INEX[k] to ESO[k].

In Subsection 4.2 we will show that all ESO[k]-formulas that contain at
most k-ary free relation variables can be expressed with a formula of INEX[k].
The translation we use here is compositional, very natural and uses inclusion
and exclusion atoms in a dualistic way: The quantified k-ary relation variables
Pi are just replaced with k-tuples ~wi of quantified first order variables. Then
we simply replace atomic formulas of the form Pi~t with inclusion atoms ~t⊆ ~wi
and formulas of the form ¬Pi~t with exclusion atoms ~t | ~wi.

In order to get make this last translation compositional, we also need a
new operator called term value preserving disjunction which is introduced in
Subsection 3.4. We will show that this operator can be expressed with inclusion
and exclusion atoms, and furthermore when preserving values of k-tuples, it can
be defined in INEX[k]. We will also explain in Subsection 3.4 why this is a useful
operator for the framework of team semantics in general.

From our results it follows that, on the level of sentences, INEX[k] captures

3



the expressive power of ESO[k]. In particular, by using only unary inclusion and
exclusion atoms we get the expressive power of existential monadic second order
logic, EMSO. This special case should be noted for the following reason: As a
consequence of the results mentioned above ([2, 5]), if we extend FO with 1-ary
dependence (or independence) atoms, the expressive power stays inside FO.
But if we extend FO with 2-ary dependence (or independence) atoms, the
expressive power becomes already stronger than EMSO. Thus INEX[1] deserves
extra recognition by capturing this important fragment of ESO that has not
yet been characterized in the framework of team semantics.

In addition to our main results, we also analyze the nature of inclusion and
exclusion logics and their relationship more deeply. Even though inclusion and
exclusion atoms are not contradictory negations of each other, we claim that
they can be seen as duals of each other and thus they make a natural pair.
This is one more reason why inclusion-exclusion logic can be seen as a quite
canonical logic for the framework of team semantics.

We also analyze inclusion and exclusion relations from an another perspec-
tive by introducing inclusion and exclusion quantifiers. This can be seen as a
step back to the origin of these logics, since dependence logic was inspired by
IF-logic, in which dependencies were handled with quantification. In Subsec-
tion 3.2 we first define natural semantics for inclusion and exclusion quantifiers
and then show that we can express them in inclusion-exclusion logic. We also
show reversely that, by extending first order logic with these quantifiers, we
obtain an equivalent logic with inclusion-exclusion logic. However, there are
still some small, yet intriguing, differences between these two approaches.

By using several of our new operators – term value preserving disjunction
and both existential and universal inclusion quantifiers – we can introduce a
novel method of relativization for team semantics. This technique is introduced
in Subsection 3.5 and later, in Section 5, we present further examples on how
it can be applied. In Section 5 we also present some other concrete examples
where we show how to use our translations and new operators to express some
classical properties of models and teams in a rather straightforward way.

The structure of this paper is as follows: In Section 2 we review team
semantics for FO and define inclusion and exclusion logics. In Section 3 we
define several useful operators for inclusion-exclusion logic – such as inclusion
and exclusion quantifiers and term value preserving disjunction. In Section 4
we present our translations between INEX[k] and ESO[k], and in Section 5
we present some further examples. After the conclusion in Section 6, there is
an appendix where we present a single long and technical proof that has been
omitted from the main text. For some further technical details, see an extended
version of this paper [17].
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2. Preliminaries

In this section we first define team semantics for first order logic. Then
we present inclusion and exclusion logics, define team semantics for them and
review some of their know properties. For some further details, see [17].

2.1. Syntax and team semantics for first order logic
Let L be a vocabulary. We denote the set of L-terms by TL. If~t = t1 . . . tk

and ti ∈ TL for each i ≤ k, we write ~t ∈ TL. The set of variables occurring
in a term t is denoted by Vr(t). For a tuple ~t = t1 . . . tk of L-terms we write
Vr(~t ) := Vr(t1)∪ · · · ∪Vr(tk). The set of first order logic formulas with respect
to vocabulary L, denoted by FOL, is defined in the standard way – except that
we require all formulas to be in negation normal form. FOL-formulas of the
form t1 = t2, ¬t1 = t2, R~t and ¬R~t are called literals. We denote the set of
subformulas of an FOL-formula ϕ by Sf(ϕ), the set of variables occurring in ϕ
by Vr(ϕ) and the set of free variables of ϕ by Fr(ϕ).

LetM = (M, I) be an L-model. An assignment s for M is a function that
is defined in some set of variables, dom(s), and ranges over M . A team X
for M is any set of assignments for M with a common domain, denoted by
dom(X). In the literature usually only teams with finite domains have been
considered, but for this paper there is no need to assume the domains of teams
to be finite. Note that we also allow the empty assignment s = ∅ and the
empty team X = ∅. For the empty team we allow any of set variables to be
interpreted as its domain (this is practical for certain technical reasons). The
empty team is not to be confused with the team X = {∅} which has a special
role with FOL-sentences.

Let s be an assignment, ~a := (a1, . . . , ak) ∈ Mk and ~x := x1 . . . xk a tuple
of variables. The assignment s[~a/~x ] is defined in dom(s) ∪Vr(~x ), and it maps
a variable xi to ai (i ≤ k), and all other variables as the assignment s. For a
team X, a set A ⊆Mk and a function F : X → P(Mk) we write

X[A/~x ] := {s[~a/~x ] | s ∈ X, ~a ∈ A}
X[F/~x ] := {s[~a/~x ] | s ∈ X, ~a ∈ F(s)}.

LetM be an L-model, s an assignment and t ∈ TL s.t. Vr(t) ⊆ dom(s). The
interpretation of t with respect toM and s, tM〈s〉, is denoted simply by s(t).
Let ~t := t1 . . . tk ∈ TL and let X be a team s.t. Vr(~t ) ⊆ dom(X). We write

s(~t ) := (s(t1), . . . , s(tk)) and X(~t ) := {s(~t ) | s ∈ X}.

Note that s(~t ) is a vector in M and X(~t ) is a k-ary relation in M . We write
P∗(A) := P(A) \ {∅}. We are now ready to define team semantics for FO.
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Definition 2.1. Let M be an L-model, ϕ ∈ FOL and X a team such that
Fr(ϕ) ⊆ dom(X). We define the truth of ϕ inM and X, denoted byM�X ϕ:
• M�X t1 = t2 iff s(t1) = s(t2) for all s ∈ X.
• M�X ¬t1 = t2 iff s(t1) 6= s(t2) for all s ∈ X.
• M�X R~t iff s(~t ) ∈ RM for all s ∈ X.
• M�X ¬R~t iff s(~t ) /∈ RM for all s ∈ X.
• M�X ψ ∧ θ iff M�X ψ andM�X θ.
• M�X ψ ∨ θ iff there are Y, Y ′ ⊆ X s.t. Y ∪ Y ′ = X,M�Y ψ andM�Y ′ θ.
• M�X ∃xψ iff there is F : X → P∗(M) such thatM�X[F/x] ψ.
• M�X ∀xψ iff M�X[M/x] ψ.

Remark. In the truth definition above we introduced so-called lax semantics
for existential quantifier. In this definition the quantified variable can be given
several witnesses. From the perspective of game-theoretic semantics this can
be interpreted as the verifying player having a non-deterministic strategy when
choosing a value for the quantified variable ([3]). An alternative semantics,
so-called strict semantics, is to allow only a single witness for each assignment.
In first the order case these two truth definitions are equivalent1 ([4]), but this
does not hold when we extend FO with inclusion atoms.

For ϕ ∈ FOL and ~x := x1 . . . xk, we write ∃ ~xϕ := ∃x1 . . . ∃xkϕ and ∀ ~xϕ :=
∀x1 . . . ∀xkϕ. By Definition 2.1, consecutive quantifications modify the team
after the evaluation of each quantifier. Nevertheless, as shown by the following
easy proposition, it is equivalent to quantify several elements in M one after
another and to quantify a single vector in M .

Proposition 2.1. For any k-tuple ~x and ϕ ∈ FOL we have
a) M�X ∃ ~xϕ iff there exists F : X → P∗(Mk) such thatM�X[F/~x ] ϕ.
b) M�X ∀ ~xϕ iffM�X[Mk/~x ] ϕ.

Note that with lax semantics for existential quantifier, when we quantify a
k-tuple of variables, we can actually quantify a k-ary relation in M .

First order logic with team semantics has so-called flatness-property:

Proposition 2.2 ([18], Flatness). Let X be a team and ϕ ∈ FOL. Then

M�X ϕ iff M�{s} ϕ for all s ∈ X.

1Also note that, in the general case, the lax version is not stronger since we can always
turn a strict quantifier into the corresponding lax quantifier by adding a “dummy” universal
quantifier before it in the formula. That is, if z is a fresh variable, then the formula ∃x ϕ
has same truth condition with lax semantics as the formula ∀ z ∃x ϕ with strict semantics.
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We write �T
s and �T for truth with the standard Tarski semantics. The following

proposition shows how team semantics is related to Tarski semantics.

Proposition 2.3 ([18]). Let ϕ ∈ FOL and let s be an assignment. Then for
all FOL-formulas we have M�T

s ϕ iff M�{s} ϕ. In particular, for all FOL-
sentences, we haveM�Tϕ iff M�{∅} ϕ.

Note that, by flatness,M�X ϕ iffM�T
s ϕ for all s ∈ X. In this sense we can

say that team semantics for FO is a generalization of Tarski semantics.
By Proposition 2.3 it is natural to write M�ϕ when we mean M�{∅} ϕ.

Note thatM�∅ ϕ holds trivially for all FOL-formulas ϕ by Definition 2.1. In
general we say that any logic L with team semantics has empty team property
ifM�∅ ϕ holds for all L-formulas ϕ.

We say that a logic L is local if the truth of formulas is determined only
by the values of the free variables in a team, i.e. the following holds for all
L-formulas ϕ.

M�X ϕ iff M�X�Fr(ϕ) ϕ,

where X � Fr(ϕ) := {s � Fr(ϕ) | s ∈ X} and s � Fr(ϕ) is an assignment such
that dom(s �Fr(ϕ)) = Fr(ϕ) and (s �Fr(ϕ))(x) = s(x) for each x ∈ Fr(ϕ). FO
is clearly local by Propositions 2.2 and 2.3. We define two more important
properties for any logic L with team semantics.

Definition 2.2. Let L be a logic with team semantics. We say that
• L is closed downwards if the following implication holds:

IfM�X ϕ and Y ⊆ X, thenM�Y ϕ.

• L is closed under unions if the following implication holds:

IfM�Xi
ϕ for every i ∈ I, thenM�∪i∈IXi

ϕ.

By flatness, FO is both closed both downwards and under unions.

2.2. Inclusion and exclusion logics
Inclusion and exclusion logics are obtained by adding inclusion and exclusion

atoms, respectively, to FO with team semantics. By allowing the use of the
both of these atoms we get inclusion-exclusion logic which is our main topic of
interest in this paper. We first present the syntax and semantics for inclusion
logic (INC).

Definition 2.3. If ~t1,~t2 are k-tuples of L-terms, ~t1⊆~t2 is a k-ary inclusion
atom. The language INCL is defined as FOL, except that (non-negated) inclu-
sion atoms – of any arity – may be used as literals.
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Let M be a model and X a team s.t. Vr(~t1~t2) ⊆ dom(X). We define the
truth of ~t1 ⊆~t2 in the modelM and the team X:

M�X~t1 ⊆~t2 iff for all s ∈ X there exists s′ ∈ X s.t. s(~t1) = s′(~t2).

This truth condition can be written equivalently as follows:

M�X~t1 ⊆~t2 iff X(~t1) ⊆ X(~t2).

Example 2.1. Let ~t1, . . . ,~tm be k-tuples of L-terms and ~x a k-tuple of fresh
variables. Now the following holds for all nonempty teams X:

M�X ∀ ~x
( ∨
i≤m

~x⊆~ti
)

iff
⋃
i≤m

X(~ti) = Mk.

In particular, for t ∈ TL and X 6= ∅ we have M�X ∀x (x⊆ t) iff X(t) = M .
Note that this property is not closed downwards and thus it cannot be expressed
in dependence logic (which is closed downwards as shown in [18]).

Next we present the syntax and semantics for exclusion logic (EXC).

Definition 2.4. If ~t1,~t2 ∈ TL are k-tuples, ~t1 |~t2 is a k-ary exclusion atom.
The language EXCL is defined using by exclusion atoms as literals in FOL.

Let M be a model and X a team s.t. Vr(~t1~t2) ⊆ dom(X). We define the
truth of ~t1 |~t2 in the modelM and the team X:

M�X~t1 |~t2 iff for all s, s′ ∈ X : s(~t1) 6= s′(~t2).

This truth condition can be written equivalently as follows:

M�X~t1 |~t2 iff X(~t1) ∩X(~t2) = ∅.

In inclusion-exclusion logic (INEX) we may use both inclusion and exclusion
atoms, and the corresponding language is denoted by INEXL. INC and EXC
have both been shown local2. By the truth definitions of inclusion and exclusion
atoms, it is easy to see that INC and EXC both satisfy empty team property.
Hence also INEX satisfies these properties. Neither inclusion nor exclusion logic
has flatness-property. Galliani [4] has shown that INC is closed under unions,

2Exclusion logic has been shown equivalent with dependence logic ([4]) which is known to
be local ([18]). Inclusion logic has been shown local by Galliani [4], but for this proof the lax
semantics is required. With strict semantics the locality of INC is lost, which is one of the
reasons why the lax semantics is considered to be a more natural choice to be used in team
semantics. Inclusion logic with strict semantics has also been studied (see for example [9]).
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but not downwards. On the other hand, EXC is closed downwards but not
under unions ([18]). Hence INEX is not closed downwards nor under unions.

Definition 2.5. If ϕ ∈ INEXL contains at most k-ary inclusion and exclusion
atoms, we say that ϕ is an INEXL[k]-formula. By allowing only the use of
these formulas, we obtain k-ary inclusion-exclusion logic, denoted by INEX[k].
Furthermore, k-ary inclusion logic (INC[k]) and k-ary exclusion logic (EXC[k])
are defined analogously.

Note that the exclusion atom ~t1 |~t2 is not the contradictory negation of the
inclusion atom ~t1⊆~t2, and that the former is symmetric while the latter is not
(that is, ~t1 | ~t2 ≡ ~t2 | ~t1 but ~t1⊆~t2 6≡ ~t2⊆~t1). The contradictory negations of
k-ary inclusion and exclusion atoms can be defined in INEX[k] for nonempty
teams, as shown by the following example.

Example 2.2. Let M be a model, X a nonempty team, ~t1,~t2 ∈ TL k-tuples
and ~x a k-tuple of variables. It is easy to see that we have

M2X~t1 |~t2 iff M�X ∃ ~x (~x ⊆~t1 ∧ ~x ⊆~t2)
M2X~t1 ⊆~t2 iff M�X ∃ ~x (~x ⊆~t1 ∧ ~x |~t2).

If we would use negated inclusion/exclusion atoms with the semantics of the
contradictory negation in INEX, we would lose empty team property since the
contradictory negations of these atoms are false in the empty team. But for
nonempty teams, this extension would not give us any more expressive power.

Observation 2.1. In team semantics contradictory negation is not equivalent
with the negation ¬ that is used with literals. This is because, if ϕ is of the form
~t1 =~t2 or R~t, the claimsM2X ϕ andM�X ¬ϕ are not necessarily equivalent
when |X| > 1. Since inclusion and exclusion atoms are atomic formulas as
(non-negated) literals, their negations should behave similarly as the negations
of literals. Therefore, if we would define negated inclusion or exclusion atoms,
the semantics of contradictory negation would not be a natural choice for it.
We will discuss further the issue of sensible semantics for negated atoms in the
end of of Section 4.

3. Defining new operators for inclusion-exclusion logic

In this section we will define several useful operators for INEX[k]. First
we will define constancy atoms and intuitionistic disjunction. Then we will
introduce inclusion and exclusion quantifiers which present a new approach to
inclusion and exclusion dependencies. Then we define a new operator called
term value preserving disjunction which will be essential for our translation
from ESO[k] to INEX[k] in the next section. Finally we will introduce a method

9



called relativization that is an application which uses several of the new oper-
ators defined in this section.

3.1. Constancy atoms and intuitionistic disjunction
Constancy atom =(t) is a unary dependence atom ([18]). It simply says

that the term t has a constant value in a (nonempty) team. Galliani [4] has
shown that this atom can be expressed by using unary exclusion atom. Thus
we can define this atom as an abbreviation in INEXL[k] for any k ≥ 1.

Definition 3.1 ([4]). Let t ∈ TL and x a fresh variable. We define constancy
atom =(t), as an abbreviation, as follows: =(t) := ∀x (x = t ∨ x | t ).

Proposition 3.1 ([4]). With the assumptions of the previous definition, we
obtain the following truth condition: M�X =(t) iff |X(t)| = 1 or X = ∅.

Intuitionistic disjunction t is obtained by lifting the Tarski semantics of
disjunction from single assignments to teams. That is, ϕ t ψ is true in a
team X if either ϕ or ψ is true in X. Galliani [3] has shown that this operator
can be expressed with constancy atoms in any logic with empty team property.
We will define this operator in INEX here in the same way – with the addition
of the special case of single element models.

Definition 3.2 ([3]). Let ϕ, ψ ∈ INEXL. We define intuitionistic disjunction
ϕ t ψ, as an abbreviation, in the following way:

ϕ t ψ :=
(
γ=1 ∧ (ϕ ∨ ψ)

)
∨ ∃ z1 ∃ z2

(
=(z1) ∧=(z2)
∧ ((z1 = z2 ∧ ϕ) ∨ (z1 6= z2 ∧ ψ))

)
,

where z1, z2 are fresh variables and γ=1 is a shorthand for ∀ z1 ∀ z2 (z1 =z2).

Proposition 3.2 ([3]). With the assumptions of the previous definition, we
obtain the following truth condition: M�X ϕ t ψ iff M�X ϕ orM�X ψ.

3.2. Inclusion and exclusion quantifiers
Here we will consider inclusion and exclusion relations from a new perspec-

tive. Instead of having atomic formulas that express them, we embed these
relations to the truth conditions of quantifiers. By this approach, we are aim-
ing to obtain a logic that has similar relationship with INEX, as there is between
IF-logic and dependence logic. We will define inclusion and exclusion versions
for both existential and universal quantifiers. We will also show that we can
express them by using inclusion and exclusion atoms, and thus use them freely
as abbreviations in INEX. Before giving the actual definitions, we first consider
what kind of semantics would be intuitive for such operators.
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In independence friendly logic we can use so-called IF-quantifiers which state
that the values given for a quantified variable are independent of the values of
certain other variables. It would be essentially equivalent to define “dependence
friendly” quantifiers ([18]) which state that the values for a quantified variable
is allowed to depend only on a certain set of variables. Dependence atoms of
dependence logic ([18]) state a the same property about the values of variables in
a team on an atomic level. We take a reverse approach here: Instead of stating
that inclusion or exclusion relation holds for certain variables in a team, we say
that inclusion or exclusion holds for a certain variable when it is quantified.
Syntactically this would give us quantifiers of the form (∃x⊆ y), (∀x⊆ y),
(∃x | y) and (∀x | y).

Remark. Since inclusion is not a symmetric relation, one could also consider
semantics for quantifiers of the form (∃x⊇ y) and (∀x⊇ y). For the first one
of these we see at least two non-equivalent natural semantical approaches, but
the meaning of the latter one seems to become trivial. This question is not
examined further in this paper, but a reader is encouraged to consider intuitive
semantics for such quantifiers after reading this section.

Before considering natural semantics for these quantifiers, we introduce so-
called storing operator that is needed in the definitions later. The idea for it is
simply that we copy the values of a given tuple ~t of terms into a given tuple ~u
of variables. This way it is possible to refer to the old values of ~t, even if they
change later in (re)quantifications.

Definition 3.3. Let ϕ ∈ INEXL,~t ∈ TL a k-tuple and ~u a k-tuple of variables.
The ~t to ~u storing operator, [~t . ~u ], is defined as:

[~t . ~u ]ϕ := ∃ ~u (~u =~t ∧ ϕ).

For this operator to work as desired, we need to set a requirement that the
variables in the tuple ~u do not occur in the tuple~t. However, naturally we must
allow the variables in the tuple ~u to be free variables in the formula ϕ.

The following lemma for storing operator is obvious.

Lemma 3.3. Let ϕ ∈ INEXL, ~t ∈ TL a k-tuple and let ~u be a k-tuple of
variables that are not in Vr(~t ). Let X ′ := {s[s(~t )/~u ] | s ∈ X}. Now we have
X(~t ) = X ′(~u ) and the following holds: M�X [~t . ~u ]ϕ iff M�X′ ϕ.

Existential inclusion and exclusion quantifiers
We begin by defining semantics for existential inclusion and exclusion quan-

tifiers (∃x⊆ y) and (∃x | y). We take here a slightly more general approach by
allowing the variable y to be any L-term t. A natural reading for existential
inclusion quantifier (∃x⊆ t) is that “there exists an x within the values of t”.
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This kind of truth condition can be achieved simply by modifying the standard
truth condition of existential quantifier in such a way that the values given by
the choice function F are restricted to the values of t in a team X. We then
obtain the following truth condition:

M�X(∃x ⊆ t)ϕ iff there is F : X → P∗(X(t)) s.t. M�X[F/x] ϕ.

Another natural language interpretation for quantifier (∃x ⊆ t) is that the
values given for x must be possible for the term t. From the perspective of
semantic games we may say that verifying player’s allowed moves are restricted
on the set X(t) instead of the whole universe of a model.3

Similarly we read existential exclusion quantifier (∃x | t) as “there exists an
x outside the values of t”. To achieve this, we simply restrict values given by
the choice function F to the complement, X(t) = M \X(t), of X(t):

M�X(∃x | t)ϕ iff there is F : X → P∗
(
X(t)

)
s.t. M�X[F/x] ϕ.

This kind of quantification dually must give such values for x that are not
possible for t. Or in a semantic game we can say that the values in the set X(t)
are “banned” from the verifier when (s)he chooses a value for x.

Next we define these operators, as abbreviations, by using inclusion and
exclusion atoms. We want their truth conditions to be as described above, but
we give the definitions in a more general form by allowing the quantification of
tuples instead of just single variables.

Definition 3.4. Let ϕ ∈ INEXL, ~t ∈ TL a k-tuple and let ~x, ~u be k-tuples of
variables s.t. the variables in ~u are not in Vr(~t ). We use the following notations:

(∃ ~x ⊆~t )ϕ := [~t . ~u ] ∃ ~x (~x ⊆ ~u ∧ ϕ)
(∃ ~x |~t )ϕ := [~t . ~u ] ∃ ~x (~x | ~u ∧ ϕ).

Note that the lengths of quantified tuples match the arities of atoms, i.e.
if ϕ ∈ INEXL[k] and ~x, ~t are k-tuples, then (∃ ~x⊆~t )ϕ, (∃ ~x |~t )ϕ ∈ INEX[k].
Since only one type of atom is needed for each quantifier, (∃ ~x⊆~t )ϕ ∈ INCL[k]
when ϕ ∈ INCL[k] and (∃ ~x |~t )ϕ ∈ EXC[k] when ϕ ∈ EXCL[k]. Also note that
Fr((∃ ~x⊆~t )ϕ) = (Fr(ϕ) \ {x}) ∪ Vr(~t) = Fr((∃ ~x |~t )ϕ).

The next proposition presents the truth conditions given by Definition 3.4.

3Note that the setting here is quite different than in IF-logic (or dependence logic). In
IF-logic the verifying player is allowed to choose any values, but values for certain variables
are “hidden” from him/her when making the choice. Here the player may see the values of all
variables, but only certain values are admissible to be chosen. In the former case the domain
of the strategy function is restricted and in the latter case only its range is restricted.
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In the proof of the next proposition, and from now on, we will write ran(F ) :=
{F (s) | s ∈ X} for any function F that is defined in some team X.

Proposition 3.4. With the same assumption as in Definition 3.4, we obtain
the following truth conditions:

a) M�X(∃ ~x ⊆~t )ϕ iff there is F : X → P∗
(
X(~t )

)
s.t. M�X[F/~x ] ϕ.

b) M�X(∃ ~x |~t )ϕ iff there is F : X → P∗
(
X(~t )

)
s.t. M�X[F/~x ] ϕ.

Proof. By locality we may assume that the variables in ~u are not in dom(X).
We write X ′ := {s[s(~t )/u] | s ∈ X}.

a) SupposeM�X (∃ ~x⊆~t )ϕ. By Lemma 3.3,M�X′ ∃ ~x (~x ⊆ ~u∧ϕ). Thus
there is F ′ : X ′ → P∗(Mk) s.t. M�X′[F ′/~x ] ~x ⊆ ~u ∧ ϕ. Let F : X → P∗(M)
s.t. s 7→ F ′(s[s(~t )/~u ]). Now by locality M�X[F/~x ] ϕ. We still need to show
that ran(F) ⊆ P∗(X(~t )). Since X ′(~u ) = X(~t ), this amounts to showing that
ran(F ′) ⊆ P∗(X ′(~u )). But this is easy to see sinceM�X′[F ′/~x ] ~x ⊆ ~u.

Suppose then that there is F : X → P∗(X(~t )) s.t. M�X[F/~x ] ϕ. Let
F ′ : X ′ → P∗(M) s.t. s 7→ F( s�dom(X)). Since ran(F) ⊆ P∗(X(~t )), we also
have ran(F ′) ⊆ P∗(X ′(~u )). Thus it is easy to show thatM�X′[F ′/~x ] ~x⊆ ~u. By
localityM�X′[F ′/~x ] ϕ and thus by Lemma 3.3 we haveM�X (∃ ~x⊆~t )ϕ.

The case b) is proven similarly. For a more detailed proof see [17].

Remark. When defining these quantifiers, we did not want to put any restric-
tions on tuples ~x,~t and thus, in particular, we also allow the variables in ~x to
occur in ~t. This is why we need to use the storing operator, since the values of
~t in a team might change after the quantification of ~x.

If we would drop the storing operator from Definition 3.4, then the choice
function F would be required to choose values within (⊆) or outside ( | ) the
set X[F/~x ](~t ) instead of the set X(~t ). Hence the values in the team after the
quantification would restrict the range of the choice function that is used for
the quantification. This would lead to a very unnatural truth condition.

Since quantifications may change the values of terms in a team, several
identical consecutive existential inclusion/exclusion quantifications can change
the meaning of a formula, as seen by the following example.

Example 3.1. Let c ∈ L be a constant symbol and f ∈ L a unary function
symbol. Let

ϕ := ∃x (∃x⊆ fx)(x = c)
ψ := ∃x (∃x⊆ fx)(∃x⊆ fx)(x = c).

The sentences ϕ and ψ are not logically equivalent since ϕ ≡ ∃x (fx = c), but
ψ ≡ ∃x (ffx = c).

13



The following example presents a property that is not FO-definable, but can
be expressed with a sentence containing a single existential inclusion quantifier.
A similar example was presented originally for inclusion logic in [6].
Example 3.2. A directed finite graph G = (V,E) contains a cycle if and only
if the following holds:

G � ∃x (∃ y⊆x)Exy.

Universal inclusion and exclusion quantifiers
Next we define semantics for universal inclusion and exclusion quantifiers

(∀x⊆ y) and (∀x | y). Again we allow y to be any L-term t and first consider
the semantics for these operators from an intuitive perspective. For universal
inclusion quantifier (∀x ⊆ t) a natural reading would be: “for all x within
the values of t”. This restricted universal quantification is done simply by
quantifying x over the set X(t) instead of the whole universe M :

M�X(∀x ⊆ t)ϕ iff M�X[A/x] ϕ, where A = X(t).

A dualistic reading for universal exclusion quantifier (∀x | t) is “for all x outside
the values of t”. This is achieved by quantifying x over the complement of X(t):

M�X(∀x | t)ϕ iff M�X[A/x] ϕ, where A = X(t).

As with existential inclusion and exclusion quantifiers, we can observe the se-
mantics above from a game-theoretic perspective by restricting the allowed
moves of the players. This time, when choosing values for x, the falsifying
player may only choose the values of t in the case of inclusion, and the values
of t are forbidden from him/her in the case of exclusion.

Next we define these operators as abbreviations in INEX, aiming for the
truth conditions as described above. Again we give the definitions in a more
general form by using tuples instead of just single variables. The definitions here
turn out to be much more complicated than the ones for existential quantifiers.
Definition 3.5. Let ϕ ∈ INEXL, ~t ∈ TL a k-tuple, ~x a k-tuple of variables
and ~u, ~y, ~z k-tuples of fresh variables. We use the following notations:

(∀ ~x ⊆~t )ϕ := [~t . ~u ]
(
∀ ~x (~x ⊆ ~u ∧ ϕ)
t ∀ ~x (∃ ~y ⊆ ~u)(∃ ~z | ~u)

(
(~x = ~y ∧ ϕ) ∨ ~x = ~z

))
(∀ ~x |~t )ϕ := [~t . ~u ]

(
∀ ~x (~x ⊆ ~u)
t ∀ ~x (∃ ~y ⊆ ~u)(∃ ~z | ~u)

(
~x = ~y ∨ (~x = ~z ∧ ϕ)

))
.

Also here the arities match: if ϕ ∈ INEXL[k] and ~x,~t are k-tuples, then
(∀ ~x⊆~t )ϕ, (∀ ~x | ~t )ϕ ∈ INEX[k]. But since we need both inclusion and ex-
clusion atoms for both of these definitions, neither of these quantifiers can be
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defined in this way in just INC or EXC. It is thus natural to ask whether we
could give these definitions in a way that only one type of atoms would be used
for each definition – we will get back to this question in the next subsection.

Proposition 3.5. With the same assumptions as in Definition 3.5, we obtain
the following truth conditions:

a) M�X(∀ ~x ⊆~t )ϕ iff M�X[A/~x ] ϕ, where A = X(~t ).
b) M�X(∀ ~x |~t )ϕ iff M�X[A/~x ] ϕ, where A = X(~t ).

The idea of the proofs for these truth conditions is that the trivial case when
X(~t ) = Mk is dealt on left side of the intuitionistic disjunction. If X(~t ) 6= Mk,
we first universally quantify ~x and then split the resulting team into subteams
Y, Y ′ such that Y = X[X(~t )/~x ] and Y ′ = X[X(~t )/~x ]. Then we just say that
the formula ϕ holds on the desired side.

We first prove the following claim which shows how we can force the team
X[Mk/~x ] to be split into the subteams X[X(~t )/~x ] and X[X(~t )/~x ].

Claim 1. Let ψ, θ ∈ INEXL, ~t ∈ TL, let ~x be a k-tuple of variables, and let ~y, ~z
be k-tuples of fresh variables. We additionally assume here that X(~t ) 6= Mk

and that the variables in the tuple ~x are not in Vr(~t ). Let

ξ := ∀ ~x (∃ ~y ⊆~t )(∃ ~z |~t )
(
(~x = ~y ∧ ψ) ∨ (~x = ~z ∧ θ)

)
.

Now we have: M�X ξ iff M�X[X(~t )/~x ] ψ andM�
X[X(~t )/~x ] θ.

Proof. By locality we may assume that dom(X) = Fr(ξ). Suppose firstM�X ξ.
Thus there are F1 : X1 → P∗(X1(~t )) and F2 : X2 → P∗(X2(~t )) such that
M�X3(~x = ~y ∧ ψ) ∨ (~x = ~z ∧ θ), where X1 := X[Mk/~x ], X2 := X1[F1/~y ]
and X3 := X2[F2/~z ]. Furthermore there are Y, Y ′ ⊆ X3 s.t. Y ∪ Y ′ = X3,
M�Y ~x=~y ∧ ψ andM�Y ′ ~x=~z ∧ θ.

Since M�Y ψ, M�Y ′ θ and ~y, ~z /∈ dom(X1), by locality it is sufficient to
show that X[X(~t )/~x ] = Y � dom(X1) and X[X(~t )/~x ] = Y ′ � dom(X1). But
this is quite easy to see sinceM�Y ~x=~y,M�Y ′ ~x=~z and the values of ~y were
chosen within the values of ~t and the values of ~z outside the values of ~t.

Suppose then thatM�X[X(~t )/~x ] ψ andM�
X[X(~t )/~x ] θ. We may assume that

X 6= ∅, because otherwise the claim would hold trivially. Since now X(~t ) 6= ∅
and by assumption X(~t ) 6= Mk, there is ~a∗ ∈ X(~t ) and ~b∗ ∈ X(~t ).

Let X1 := X[Mk/~x ]. We define F1 : X1 → P∗(Mk) s.t. it maps s to
{s(~x)} if s(~x) ∈ X1(~t ) and else maps s to {~a∗}. Let X2 := X1[F1/~y ]. We then
define F2 : X2 → P∗(Mk) s.t. it maps s to {s(~x)} if s(~x) ∈ X2(~t ) and else
maps s to {~b∗}. Let X3 := X2[F2/~z ]. Clearly now ran(F1) ⊆ P∗(X1(~t )) and
ran(F2) ⊆ P∗(X2(~t )).
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Let Y := {s ∈ X3 | s(~x) ∈ X3(~t )} and Y ′ := {s ∈ X3 | s(~x) ∈ X3(~t )}. Now
clearly Y ∪ Y ′ = X3, M�Y ~x = ~y and M�Y ′ ~x = ~z. Also it is quite easy to
see that X[X(~t )/~x ] = Y � dom(X1) and X[X(~t )/~x ] = Y ′ � dom(X1), whence
by locality M�Y ψ and M�Y ′ θ. Hence M�X3(~x= ~y ∧ ψ) ∨ (~x= ~z ∧ θ), and
furthermore we haveM�X ξ. For a more detailed proof, see [17].

By using Claim 1, we can easily prove the truth conditions for universal
inclusion and exclusion quantifiers (Proposition 3.5). We only need to consider
the use of storing operator and the special case when X(~t ) = Mk. When using
the storing operator, we may drop the extra assumption that Vr(~x)∩Vr(~t ) = ∅.
When X(~t ) = Mk the universal inclusion quantifier (∀ ~x⊆~t ) becomes the
normal universal quantifier ∀ ~x and the universal exclusion quantifier (∀ ~x |~t )
becomes trivially true. For the rest of the proof we apply Claim 1 with ψ := ϕ
and θ := (~x= ~x) for (∀ ~x ⊆ ~t )ϕ, and ψ := (~x= ~x) and θ := ϕ for (∀ ~x | ~t )ϕ.
For all technical details, see [17].

A natural idea for the truth definition for universal inclusion quantification
(∀ ~x ⊆ ~y ) is “∀ ~x ∈ Mk : (~x ⊆ ~y ⇒ ϕ)”. This intuition would give us the
following definition: (∀ ~x ⊆ ~y )ϕ := ∀ ~x (~x | ~y ∨ ϕ). However, this simple idea
does not work for two reasons. Firstly, there might be too many values chosen
for ~x on the right side of the disjunction, which can be a problem since INEX is
not closed downwards. Secondly, the exclusion atom is evaluated after splitting
the team and thus some of the original values for ~y might be lost. This general
problem regarding the “loss of information” when evaluating disjunctions will
be discussed more in the Subsection 3.4, where we define term value preserving
disjunction.

3.3. Analyzing the properties of inclusion and exclusion quantifiers
In the previous subsections we showed that inclusion and exclusion quan-

tifiers can be expressed with inclusion and exclusion atoms, and thus we were
able to define them as abbreviations in INEX. In this subsection we take a
reverse perspective by considering them as basic operations to be added to FO
and examining the expressive power of the resulting logics. The following obser-
vation shows that we can define inclusion and exclusion atoms with existential
inclusion and exclusion quantifiers (∃ ~x⊆~t ) and (∃ ~x |~t ).

Observation 3.1. Let ~t1,~t2 be k-tuples of L-terms and let ~x be a k-tuple of
fresh variables. Now it holds that:

M�X~t1 ⊆~t2 iff M�X(∃ ~x ⊆~t2)(~x =~t1).
M�X~t1 |~t2 iff M�X(∃ ~x |~t2)(~x =~t1),
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We explain briefly why these equivalences hold. We first notice that for any
function F : X → P∗(Mk) the following holds:

M�X[F/~x ] ~x =~t1 iff F(s) = {s(~t1)} for each s ∈ X. (?)

It is easy to see that if F is a function which satisfies the (both) sides of (?), then
we have: ran(F) ⊆ P∗(X(~t2)) if and only ifM�X~t1⊆~t2. The first equivalence
follows from this. The second one is also clear since ran(F) ⊆ P∗(X(~t2)) iff
M�X~t1 |~t2, for any F which satisfies the both sides of (?).

Recall that, in Definition 3.4, we were able to define the quantifier (∃ ~x⊆~t )
with inclusion atom and the quantifier (∃ ~x |~t ) with exclusion atom. Hence, by
the previous observation, if we extend FO with quantifiers (∃ ~x⊆~t ) or (∃ ~x |~t ),
we obtain equivalent logics with INC and EXC, respectively. We call these
logics inclusion and exclusion friendly logics due their similarity with IF-logic.
By using the both of these quantifiers, we obtain inclusion-exclusion friendly
logic that is equivalent with INEX.

Also note that the arities of these operations match, since the use of existen-
tial inclusion (exclusion) quantifiers for k-tuples corresponds to the use of k-ary
inclusion (exclusion) atoms. Hence the use of existential inclusion and exclu-
sion quantifiers for single first order variables corresponds to the use of unary
inclusion and exclusion atoms, and thus, by extending FO with either/both of
them, we obtain logics equivalent to INC[1], EXC[1] and INEX[1].

After the Observation 3.1 it is natural to ask whether we can define inclusion
and exclusion atoms alternatively by using universal inclusion and exclusion
quantifiers (∀ ~x⊆~t ) and (∀ ~x |~t ). This can also be done, however, this time
inclusion atom is defined with universal exclusion quantifier and exclusion atom
is defined with universal inclusion quantifier.

Observation 3.2. Let ~t1,~t2 be k-tuples of L-terms and let ~x be a k-tuple of
fresh variables. Now the following equivalences hold:

M�X~t1⊆~t2 iff M�X(∀ ~x |~t2)(~x 6=~t1)
M�X~t1 |~t2 iff M�X(∀ ~x⊆~t2)(~x 6=~t1),

We prove the first equivalence by contraposition: Suppose that M2X~t1⊆~t2,
i.e. there is s ∈ X such that s(~t1) /∈ X(~t2). Let r := s[s(~t1)/~x ], whence
r ∈ X[X(~t2)/~x ]. Now r(~x) = s(~t1) = r(~t1) and thusM2X(∀ ~x |~t2)(~x 6=~t1).

For the other direction suppose that M2X(∀ ~x |~t2)(~x 6= ~t1), whence there
is r ∈ X[X(~t2)/~x ] such that r(~x) = r(~t1). Now there is s ∈ X and ~a ∈ X(~t2)
such that r = s[~a/~x ]. But since s(~t1) = r(~t1) = r(~x) = ~a /∈ X(~t2), we have
M2X~t1⊆~t2. The second equivalence can be proven by a similar reasoning.
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When we combine the equivalences above with the respective equivalences
in Observation 3.1, we obtain the following correspondence.

(∃ ~x⊆~t2)(~x =~t1) ≡ (∀ ~x |~t2)(~x 6=~t1)
(∃ ~x |~t2)(~x =~t1) ≡ (∀ ~x⊆~t2)(~x 6=~t1).

Here we have an interesting duality between the inclusion and exclusion quan-
tifiers. This leads to a natural question whether existential inclusion quan-
tifier (∃ ~x⊆~t ) has the same expressive power as universal exclusion quan-
tifier (∀ ~x |~t ), and the whether the same holds for the quantifiers (∃ ~x |~t )
and (∀ ~x⊆~t ). We approach this question by first comparing universal inclu-
sion/exclusion quantifiers with INC and EXC.

In Definition 3.5 we defined universal inclusion and exclusion quantifiers in
INEX by using both inclusion and exclusion atoms. We examine next whether
either of them could be defined by using only one type of these atoms. For the
next observation, recall that EXC is closed downwards and INC under unions.

Observation 3.3. LetM = (I,M) be an L-model s.t. M = {0, 1, 2}, and let
X1 = {s01} and X2 = {s10}, where s01(x) = 0 = s10(y) and s01(y) = 1 = s10(x).
(A) We first show that universal inclusion quantifier is not closed under unions.
For this, let ϕ := (∀ z⊆x)(y 6= z). We consider the following teams

Y1 := X1[X1(x)/z] = X1[{0}/z] = {s01[0/z]}
Y2 := X2[X2(x)/z] = X2[{1}/z] = {s10[1/z]}
Y3 := (X1∪X2)

[
(X1∪X2)(x)/z

]
= (X1∪X2)[{0, 1}/z]
= {s01[0/z], s01[1/z], s10[0/z], s10[1/z]}.

Now we haveM�Y1 y 6= z andM�Y2 y 6= z, butM2Y3 y 6= z. HenceM�X1 ϕ
andM�X2 ϕ, butM2X1∪X2 ϕ.
(B) Next, we show that universal exclusion quantifier is not closed under unions.
Let ψ := (∀ z |x)(y⊆ z). Note that, by Observation 3.2, y⊆ z can be expressed
with universal exclusion quantifier (ψ ≡ (∀ z |x)(∀w | z)(w 6=y)). Let

Z1 := X1
[
X1(x)/z

]
= X1

[
{0}/z

]
= X1[{1, 2}/z] = {s01[1/z], s01[2/z]}

Z2 := X2
[
X2(x)/z

]
= X2

[
{1}/z

]
= X2[{0, 2}/x] = {s10[0/z], s10[2/z]}

Z3 := (X1∪X2)
[
(X1∪X2)(x)/z

]
= (X1∪X2)

[
{0, 1}/z

]
= (X1∪X2)[{2}/z] = {s01[2/z], s10[2/z]}.

Since Z1(y) = {1} ⊆ {1, 2} = Z1(z) and Z2(y) = {0} ⊆ {0, 2} = Z2(z), we
haveM�Z1 y⊆ z andM�Z2 y⊆ z. But because Z3(y) = {0, 1} 6⊆ {2} = Z3(z),
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we haveM2Z3 y⊆ z. HenceM�X1 ψ andM�X2 ψ, butM2X1∪X2 ψ.
(C) Finally, we show that universal exclusion quantifier is not closed downwards
either. Let θ := (∀ z |x)(y 6= z) and let Z1, Z3 be as above. NowM�Z3 y 6= z,
butM2Z1 y 6= z. HenceM�X1∪X2 θ, butM2X1 θ; even though X1 ⊆ X1∪X2.

By this observation, universal exclusion quantifier cannot be defined in EXC
and neither universal inclusion nor exclusion quantifier can be defined in INC.
But there is still a possibility that universal inclusion quantifier could be defined
in EXC. It turns out that this can indeed be done, but we must give its definition
in a form that would not work properly in INEX. To make distinction with the
earlier definition, we denote this quantifier (∀ ~x⊆e~t ), where “e” stands for
“exclusion”, as this operator is defined for exclusion logic only.

Definition 3.6. Let ϕ ∈ EXCL, ~t ∈ TL a k-tuple, ~x a k-tuple of variables and
~u, ~y k-tuples of fresh variables. We use the following notation:

(∀ ~x⊆e~t )ϕ := ∀ ~xϕ t [~t . ~u ] ∀ ~x (∃ ~y |~u)(~y=~x ∨ ϕ).

Since intuitionistic disjunction can be defined with unary exclusion atoms we
have (∀ ~x⊆e~t )ϕ ∈ EXCL[k] when ϕ ∈ EXCL[k] (for any k ≥ 1).

Proposition 3.6. With the same assumptions as in Definition 3.6, we obtain
the following truth condition: M�X(∀ ~x⊆e~t )ϕ iff M�X[X(~t )/~x ] ϕ.

The proof for this truth condition can be done using a similar reasoning as
for the standard inclusion quantifier (∀ ~x⊆~t ). Note that since EXC is closed
downwards, the truth of ∀ ~xϕ in X implies that M�X[X(~t )/~x ] ϕ. Also, again
by downwards closure, when the team X[Mk/~x ] is split into two subteams, if
M�Y ϕ for some team Y for which X[X(~t )/~x ] ⊆ Y , then alsoM�X[X(~t )/~x ] ϕ.
For a full proof with all technical details, see [17].

For proving the truth condition for (∀ ~x⊆e~t ) we had to use the assumption
of downwards closure which does not hold for INEX. Moreover, the claim of
Proposition 3.6 is not necessarily true when ϕ ∈ INEXL since, for example, if
ϕ := ∀x (x⊆ y) and X(z) 6= M , thenM�X(∀ y⊆e z)ϕ, butM2X(∀ y⊆ z)ϕ.
By the observation above, we see that definability of these quantifiers, as well

as many other operators for team semantics, is “case sensitive”. That is, if a
certain operator O is definable in a logic L and L′ is an extension of L, then the
operator O may have to be defined differently in L′. Note that atoms in team
semantics are more regular in this sense, since if a certain atom A is definable
in a logic L, then A can be defined in all of the extensions of L identically as
it is defined in L.

Since we were able to define universal inclusion quantifier (∀ ~x⊆~t ) in EXC,
it would have been natural to predict that universal exclusion quantifier (∀ ~x |~t )
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is dually definable in INC. However, this is impossible since this operator is not
closed under unions as shown in Observation 3.3. Here we have an interesting
piece of asymmetry between the inclusion and exclusion operators.

In this subsection we were able to show that existential inclusion and ex-
clusion quantifiers are very closely related to inclusion and exclusion atoms.
However, perhaps a bit surprisingly, with universal inclusion and exclusion
quantifiers, this relationship becomes more complicated. One interesting ques-
tion, that is still open, is the exact expressive power of universal exclusion
quantifier. For now, we only know that when ~x and ~t are k-ary, then (∀ ~x |~t )
is (strictly) stronger than k-ary inclusion atom. However, it is possible that
this difference would disappear on the level of sentences – that is, FO extended
with (∀ ~x |~t ) (where ~x,~t are k-ary) would become equivalent with INC[k] when
we only consider sentences. We leave this question open for further research.

3.4. Term value preserving disjunction
When evaluating disjunctions, the team is split and usually some infor-

mation is lost about the values of terms in the original team. Often this is
desirable, since we want to shrink or distribute the values of certain variables
by giving conditions on the disjuncts.

However, sometimes we want that the values of certain terms (or tuples of
terms) are preserved on both sides after the evaluation of the disjunction. This
is desirable especially when we are using variables to carry information about
sets (or tuples of variables to carry information about relations). This method
will be crucial in the proof of Theorem 4.5 later in this paper.

For this purpose we introduce term value preserving disjunction. It can
be defined by using constancy atoms, intuitionistic disjunctions and inclusion
atoms of the same arity as the lengths of the tuples whose values we want to
preserve. Thus, with this operator, the values of single terms can be preserved
in INEX[1] and the values of k-tuples of terms can be preserved in INEX[k].

Definition 3.7. Let ~t1, . . . ,~tn be k-tuples of L-terms, ϕ, ψ ∈ INEXL and
cl, cr, y fresh variables. We define

ϕ ∨
~t1,...,~tn

ψ := (ϕ t ψ) t ∃ cl ∃ cr
(
=(cl) ∧=(cr) ∧ cl 6= cr

∧ ∃ y
(
((y = cl ∧ ϕ) ∨ (y = cr ∧ ψ)) ∧

∧
i≤n

(θi ∧ θ′i)
))
,

θi := ∃ ~z1 ∃ ~z2
(
((y = cl ∧ ~z1 = ~ti ∧ ~z2 = ~c1 )
∨ (y = cr ∧ ~z1 = ~c1 ∧ ~z2 =~ti)) ∧~ti ⊆ ~z1 ∧~ti ⊆ ~z2

)
θ′i := ∃ ~z1 ∃ ~z2

(
((y = cl ∧ ~z1 =~ti ∧ ~z2 = ~c2 )
∨ (y = cr ∧ ~z1 = ~c2 ∧ ~z2 =~ti)) ∧~ti ⊆ ~z1 ∧~ti ⊆ ~z2

)
,
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where ~z1, ~z2,~c1,~c2 are k-tuples of variables such that the tuples ~z1, ~z2 consist of
fresh variables, and ~c1,~c2 are defined as ~c1 := cl . . . cl and ~c2 := cr . . . cr.

The next proposition gives the truth condition for this operator. Note that
this truth condition is the same as for the normal disjunction with an extra
condition that the values for the tuples ~t1, . . . ,~tn must be preserved on both
sides after splitting the team (supposing that the split is nontrivial).

Proposition 3.7. With the same assumptions as in Definition 3.7, we obtain
the following truth condition:

M�X ϕ ∨
~t1,...,~tn

ψ iff there are Y, Y ′⊆X s.t. Y ∪ Y ′=X,M�Y ϕ,M�Y ′ ψ

and if Y, Y ′ 6= ∅, then Y (~ti)=X(~ti)=Y ′(~ti) for all i ≤ n.

Before presenting a proof for this proposition, we explain its idea here
briefly: We first check if the splitting can be done so that one of the sides
is the empty team. In this case we don’t set any requirements since all INEXL-
formulas are true in the empty team and on the other side values are trivially
preserved since it has to be the whole team X.

Otherwise we fix two constants cl, cr which correspond to the left hand
and right hand sides of the disjunction. Then we attach a “label” y to each
assignment in the team. This label can be either cl, cr or both depending on
if the assignment in question will be placed on the left, on the right or both.
Since these labels are attached before doing the actual splitting, we can check
beforehand that the information will be preserved.

The truth of formula θi guarantees that values of term ti will be preserved on
both sides for all values, expect possibly for the value of ~c1 which is a constant.
The formula θ′i does the same, but it cannot make sure that the value for the
constant ~c2 is preserved. But the truth of both θi and θ′i guarantees that the
values for ~ti are indeed preserved on both sides.

Proof. (Proposition 3.7) In this proof we use the abbreviation ϕ Y ψ := ϕ ∨
~t1,...,~tn

ψ.
If X would be an empty team, the claim would hold trivially, and thus we may
assume that X 6= ∅. By locality we may also assume that cl, cr, y /∈ dom(X).
Suppose first thatM�X ϕ Y ψ. Now eitherM�X ϕ t ψ or

M�X ∃ cl ∃ cr
(
=(cl) ∧=(cr) ∧ cl 6= cr

∧ ∃ y
(
((y = cl ∧ ϕ) ∨ (y = cr ∧ ψ)) ∧

∧
i≤n

(θi ∧ θ′i)
))
. (?)

Suppose first thatM�X ϕ t ψ, i.e. M�X ϕ orM�X ψ. IfM�X ϕ, then we
can choose Y := X and Y ′ := ∅, when the claim holds trivially. Analogously

21



ifM�X ψ, we can choose Y := ∅ and Y ′ := X. Suppose then that (?) holds.
Now there exist F1 : X → P∗(M) and F2 : X[F1/cl]→ P∗(M) such that

M�X1 =(cl) ∧=(cr) ∧ cl 6= cr

∧ ∃ y
(
((y = cl ∧ ϕ) ∨ (y = cr ∧ ψ)) ∧

∧
i≤n

(θi ∧ θ′i)
)
,

where X1 := X[F1/cl, F2/cr]. Since M�X1=(cl), M�X1=(cr), M�X1cl 6= cr
and X 6= ∅, there exist a, b ∈ M such that X1(cl) = {a}, X1(cr) = {b} and
a 6= b. There also exists a function F3 : X1 → P∗(M) such that

M�X2((y = cl ∧ ϕ) ∨ (y = cr ∧ ψ)) ∧
∧
i≤n

(θi ∧ θ′i), where X2 := X1[F3/y].

Now there exist Z1, Z
′
1 ⊆ X2, such that Z1 ∪ Z ′1 = X2, M�Z1 y = cl ∧ ϕ and

M�Z′1 y = cr ∧ ψ. Since X2(cl) = {a}, X2(cr) = {b} and a 6= b, it is easy to
see that the following holds for each s ∈ X2:

s ∈ Z1 iff s(y) = a and s ∈ Z ′1 iff s(y) = b.

Let Y := Z1 � dom(X) and Y ′ := Z ′1 � dom(X). SinceM�Z1 ϕ andM�Z′1 ψ,
we haveM�Y ϕ andM�Y ′ ψ by locality. Because Z1∪Z ′1 = X2, we must also
have Y ∪ Y ′ = X (recall that we assumed that cl, cr, y /∈ dom(X)).

We still need to show that the values of ~ti (i ≤ n) are preserved when
X is split into Y and Y ′. For the sake of showing this, let i ≤ n, whence
M�X2 θi ∧ θ′i. In particular M�X2 θi and thus there are F1 : X2 → P∗(Mk)
and F2 : X2[F1/~z1]→ P∗(Mk) such that

M�X3

(
(y = cl ∧ ~z1 =~ti ∧ ~z2 = ~c1)
∨ (y = cr ∧ ~z1 = ~c1 ∧ ~z2 =~ti)

)
∧~ti ⊆ ~z1 ∧~ti ⊆ ~z2,

where X3 = X2[F1/~z1,F2/~z2]. Now there are Z2, Z
′
2 ⊆ X3 s.t. Z2∪Z ′2 = X3

and M�Z2 y = cl ∧ ~z1 =~ti ∧ ~z2 = ~c1

M�Z′2 y = cr ∧ ~z1 = ~c1 ∧ ~z2 =~ti.

Let ~a := (a, . . . , a) and ~b := (b, . . . , b). For the sake of showing that X(~ti) ⊆
Y (~ti)∪{~a}, let ~c ∈ X(~ti). Now there is s ∈ X such that s(~ti) = ~c, whence there
is r ∈ X3 such that r(~ti) = s(~ti). Since M�X3

~ti ⊆ ~z1, there exists r′ ∈ X3
such that r′(~z1) = r(~ti). Now we have ~c = s(~ti) = r(~ti) = r′(~z1).

Suppose first r′ ∈ Z2. Then r′(~z1) = r′(~ti) and r′(y) = r′(cl) = a. Hence
there is s′ ∈ Y s.t. s′(~ti) = r′(~ti). Now ~c = r′(~z1) = r′(~ti) = s′(~ti) ∈ Y (~ti). If
r′ /∈ Z2, then r′ ∈ Z ′2, whence we have ~c = r′(~z1) = r′(~c1) = r′(cl . . . cl) = ~a.
Hence in either case ~c ∈ Y (~ti) ∪ {~a} and thus X(~ti) ⊆ Y (~ti) ∪ {~a}.
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By using the fact that M�X2 θ
′
i, we can analogously deduce the inclusion

X(~ti) ⊆ Y (~ti)∪ {~b }. Since ~a 6= ~b, it thus has to be that X(~ti) ⊆ Y (~ti). Clearly
Y (~ti) ⊆ X(~ti), and therefore we have Y (~ti) = X(~ti). By using a symmetric
argumentation we can also show that Y ′(~ti) = X(~ti).
Suppose then that there exist Y, Y ′ ⊆ X such that Y ∪ Y ′ = X,M�Y ϕ and
M�Y ′ ψ, and if Y, Y ′ 6= ∅, then we have Y (~ti)=Y ′(~ti)=X(~ti) for each i ≤ n.

If Y = ∅, then Y ′=X and thus M�X ψ. Therefore M�X ϕ t ψ and thus
M�ϕ Y ψ. And if Y ′ = ∅, we obtainM�ϕ Y ψ by a similar argumentation.
Hence we may assume Y, Y ′ 6= ∅, whence Y (~ti) = Y ′(~ti) = X(~ti) for each i ≤ n.

We first examine the special case when |M | = 1. Because X 6= ∅, the team
X has to be a singleton {s} for some s. Since Y, Y ′ 6= ∅, we have Y = X and
Y ′ = X. ThereforeM�X ϕtψ and thus we haveM�X ϕ Yψ. Hence we may
assume that |M | ≥ 2, whence there are a, b ∈M such that a 6= b.

Let F1 : X → P∗(M) s.t. s 7→ {a} and let F2 : X[F1/cl] → P∗(M) s.t.
s 7→ {b}. We write X1 := X[F1/cl, F2/cr]. By the definitions of F1 and F2, we
clearly haveM�X1 =(cl),M�X1 =(cr) andM�X1 cl 6= cr. Let

F3 : X1 → P∗(M) s.t.


s 7→ {a} if s � dom(X) ∈ Y \ Y ′

s 7→ {b} if s � dom(X) ∈ Y ′ \ Y
s 7→ {a, b} if s � dom(X) ∈ Y ∩ Y ′.

We define the following teams X2 := X1[F3/y], Z1 := {s ∈ X3 | s(y) = a}
and Z ′1 := {s ∈ X3 | s(y) = b}. Now it clearly holds that Z1 ∪ Z ′1 = X2,
M�Z1 y = cl andM�Z′1 y = cr. By locality and the definition of F3, we have
M�Z1 ϕ andM�Z′1 ψ. ThereforeM�X2(y = cl ∧ ϕ) ∨ (y = cr ∧ ψ).

Let i ≤ n. We define ~a := (a, . . . , a) and
F1 : X2 → P∗(Mk) s.t.

s 7→ {s(~ti)} if s(y) = a

s 7→ {~a} if s(y) = b

F2 : X2[F1/~z1]→ P∗(Mk) s.t.

s 7→ {~a} if s(y) = a

s 7→ {s(~ti)} if s(y) = b.

Let X3 := X2[F1/~z1,F2/~z2], Z2 := {s ∈ X3 | s(y) = a} and Z ′2 := {s ∈ X3 |
s(y) = b}. Now Z2 ∪ Z ′2 = X3 and by the definitions of F1 and F2 we have

M�Z2 y = cl ∧ ~z1 =~ti ∧ ~z2 = ~c1 and M�Z′2 y = cr ∧ ~z1 = ~c1 ∧ ~z2 =~ti.

For the sake of showing that M�X3
~ti⊆ ~z1, let r ∈ X3. Now there is s ∈ X,

s.t. r(~ti) = s(~ti). Since s(~ti) ∈ X(~ti) = Y (~ti), there is s′ ∈ Y , such that
s′(~ti) = s(~ti). Let r′ := s′[a/cl, b/cr, a/y, s′(~ti)/~z1,~a/~z2]. Now r′ ∈ X3 and
r(~ti) = s(~ti) = s′(~ti) = r′(~z1). HenceM�X3

~ti⊆ ~z1. Analogously we can show
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that M�X3
~ti⊆ ~z2 and thus M�X2 θi. By a similar argumentation M�X2 θ

′
i

and thusM�X2

∧
i≤n(θi ∧ θ′i). Hence (?) holds, and thereforeM�X ϕ Yψ.

Term value preserving disjunction has several natural variants. The version
we defined requires that the values of given tuples of terms are preserved both
on the left and right side of the disjunction. We could weaken this condition
by requiring these values to be preserved only on the left, only on the right or
only on either of the sides without specifying which. Or we could modify this
condition by requiring different tuples of terms to be preserved on the left and
different tuples to be preserved on the right.

Now we allow the splitting to be done in such a way that either of the
sides becomes empty, which is natural for our needs since INEX has empty
team property. But strictly speaking, the values of the given terms are not
necessarily preserved in this case, since there are no values in the empty team.
If we require values to be preserved in then as well, we can additionally require
that splitting must be done in a way that neither of the sides becomes empty.
If we only require this condition – ignoring the values of any terms – we obtain
a disjunction that can be seen as a dual operator for intuitionistic disjunction4.

We will not go into details here, but all of the variants described above
can be defined in INEX. We just need to do some simple modifications on the
formula that defines term value preserving disjunction in Definition 3.7. In this
paper we use term value preserving disjunction only as a useful tool in INEX,
but it would be interesting to study the properties and the expressive power of
this operator (or some of its variants) independently.

3.5. Relativization method for team semantics
In this subsection we introduce an application which uses several of the new

operators that we have defined in this section. Suppose that ϕ is an INEXL-
sentence and y /∈ Vr(ϕ) is a variable in the domain of a teamX. If we replace all
quantifiers ∃x,∀x in ϕ with the corresponding inclusion quantifiers (∃x⊆ y),
(∀x⊆ y), the evaluation of the resulting formula is identical to evaluation of ϕ,
except that the quantifiers in ϕ may only choose values within the values of y.
If we further replace disjunctions in ϕ with the ones that preserve the value
of y, then the quantifications may only choose values within the set X(y) (the
initial values of y in X). Since the resulting formula only “sees” the part of
model that is restricted to the set X(y), we call this method relativization.

Definition 3.8. Let ϕ be an INEXL-sentence and let y /∈ Vr(ϕ) be a variable.

4Intutionistic disjunction states that the splitting must be done in a way that either of
the sides becomes empty – a dual condition is that neither of the sides can be left empty.
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The relativization of ϕ on y, denoted by ϕ�y, is defined recursively:

ψ �y = ψ if ψ is a literal or inclusion/exclusion atom
(ψ ∧ θ)�y = ψ �y ∧ θ �y

(ψ ∨ θ)�y = ψ �y Y θ �y, where Y := ∨
y

(∃xψ)�y = (∃x⊆y)(ψ �y)
(∀xψ)�y = (∀x⊆y)(ψ �y).

Note that since ϕ is a sentence, we have Fr(ϕ�y) = {y}.

Let X be a team and y ∈ dom(X) \ Vr(ϕ). If ϕ defines some property of
the domain of a model, then the formula ϕ�y defines the same property of the
set values for y in the team X. This is proven in Proposition 3.8 below. This
proposition could be proven also for many other logics L with team semantics.
If the following assumptions hold for L, the proof can be done identically as it
is done here: L is an extension of FO with new atomic formulas, it is local, has
empty team property, and inclusion quantifiers (for single variables) and term
value preserving disjunction (for single terms) can expressed in L. Note that
in order to express these operators, it would suffice that we could use unary
inclusion and exclusion atoms in L.

If M = (I,M) is an L-model and A ⊆ M , the notation M � A denotes
the submodel ofM that is relativized on A. That is, the universe ofM � A is
the set A and the symbols in L are interpreted as: RM�A = RM � An for n-ary
relation symbols R ∈ L, fM�A = fM � An for n-ary function symbols f ∈ L
and cM�A = cM for constant symbols c ∈ L. Note that if L contains function
or constant symbols, thenM � A can be an L-model only if fM � An : An → A
for all each n-ary f ∈ L and cM ∈ A for each c ∈ L. But if L is relational, then
M � A is an L-model for any A ⊆M .

Proposition 3.8. Let ϕ be an INEXL-sentence and y be a variable such that
y /∈ Vr(ϕ). Now

M�X ϕ�y iff M � X(y)�ϕ

for all L-modelsM and teams X such thatM � X(y) is an L-model.

Proof. We first show that

IfM�X µ�y, then M � X(y)�X µ, (R1)

for all µ ∈ Sf(ϕ) and teams X for which the following condition holds:

X(z) ⊆ X(y) for all z ∈ dom(X). (?)
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Note that if the condition (?) would not hold, then X would not be a team for
the modelM � X(y). We prove the claim (R1) by induction on µ:
• If µ is a literal or inclusion/exclusion atom, then the claim holds trivially

since µ�y = µ and X(z) ⊆ X(y) for all z ∈ Vr(µ).
• The case µ = ψ ∧ θ is straightforward to prove.
• Let µ = ψ ∨ θ. Suppose first thatM�X(ψ ∨ θ) � y, i.e. M�X ψ � y Y θ � y.

Thus there exist Y1, Y2 ⊆ X s.t. Y1 ∪ Y2 = X, M�Y1 ψ � y andM�Y2 θ � y,
and if Y1, Y2 6= ∅, then Y1(y) = Y2(y) = X(y). If Y1 = ∅, then the condition
(?) holds trivially for Y1. Also if Y2 = ∅, then (?) holds for Y1 as Y1 = X.
Suppose then that Y1, Y2 6= ∅, whence Y1(y) = X(y). Since Y1 ⊆ X, we have
Y1(z) ⊆ X(z) ⊆ X(y) = Y1(y) for all z ∈ dom(X) = dom(Y1). Thus (?)
holds for Y1 in all cases. By an analogous argumentation (?) holds for Y2.
Suppose first that Y2 = ∅. Now Y1 = X and thus M�X ψ � y. By the
inductive hypothesis M � X(y)�X ψ and thus M � X(y)�X ψ ∨ θ. The
case when Y1 = ∅ is analogous. Suppose then that Y1, Y2 6= ∅, whence
Y1(y) = Y2(y) =X(y). By the inductive hypothesis M � Y1(y)�Y1 ψ. Since
Y1(y) = X(y), we haveM � X(y)�Y1 ψ. By similar argumentation we have
M � X(y)�Y2 θ and thusM � X(y)�X ψ ∨ θ.
• Let µ = ∃xψ. Suppose M�X(∃xψ) � y, i.e. M�X(∃x⊆ y)(ψ � y). Thus

there exists F : X → P∗(X(y)) such thatM�X′ ψ �y, where X ′ = X[F/x].
Since X(z) ⊆ X(y) = X ′(y) for all z ∈ dom(X) and X ′(x) ⊆ X(y) = X ′(y),
the condition (?) holds for the team X ′. Thus, by the inductive hypothesis,
M � X ′(y)�X′ ψ. Since X ′(y) = X(y), we have M � X(y)�X[F/x] ψ and
furthermoreM � X(y)�X ∃xψ.
• The case µ = ∀xψ can be proven similarly as the previous case (see [17]).

We then show that if A ⊆M such thatM � A is an L-model, then the following
holds:

If M � A �X µ, then M�X[A/y] µ�y, (R2)

for all µ ∈ Sf(ϕ) and teams X for which dom(X) = Fr(µ). We prove this claim
by induction on µ:
• Suppose that µ is a literal or inclusion/exclusion atom. Since X is a team

for the modelM �A, we must have X(z) ⊆ A for all z ∈ dom(X) = Vr(µ).
We also have µ�y = µ and y /∈ Fr(µ), and thus the claim holds trivially.
• The case µ = ψ ∧ θ is straightforward to prove.
• Let µ = ψ ∨ θ. Suppose thatM � A�X ψ ∨ θ, i.e. there are Y1, Y2 ⊆ X such

that Y1 ∪ Y2 = X, M � A�Y1 ψ and M � A�Y2 θ. Hence, by the inductive
hypothesis and locality, M�Y ′1 ψ � y and M�Y ′2 θ � y, where Y

′
1 = Y1[A/y]
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and Y ′2 = Y2[A/y]. Now clearly Y ′1 ∪ Y ′2 = X[A/y] and if Y ′1 , Y ′2 6= ∅, then

Y ′1(y) = Y ′2(y) = A = (X[A/y])(y).

Thus we haveM�X[A/y] ψ �y Y θ �y, i.e. M�X[A/y](ψ ∨ θ)�y.
• Let µ = ∃xψ. SupposeM � A�X ∃xψ, i.e. there is F : X → P∗(A) such

that M � A�X′ ψ, where X ′ = X[F/x]. Thus, by the inductive hypothesis
and locality,M�X′[A/y] ψ �y. Let

F ′ : X[A/y]→ P∗(A), s 7→ F (s� Fr(µ)) and X ′′ := (X[A/y])[F ′/x].

Note that F ′ is well-defined since dom(X) = Fr(µ) by the assumption. By
the definition of F ′, we have X ′′ = X ′[A/y] and thus M�X′′ ψ � y. We
also have ran(F ′) = ran(F ) ⊆ P∗(A) = P∗((X[A/y])(y)), and therefore
M�X[A/y](∃x⊆y)(ψ �y), i.e. M�X[A/y](∃xψ)�y.
• The case µ = ∀xψ can be proven similarly as the previous case (see [17]).

We are now ready to prove the claim of this proposition:

M�X ϕ�y iff M � X(y)�ϕ.

Suppose first that M�X ϕ � y. By locality we have M�X′ ϕ � y, where
X ′ = X � Fr(ϕ � y). Since ϕ is a sentence, dom(X ′) = Fr(ϕ � y) = {y}, and
thus the condition (?) holds trivially for the team X ′. Hence by (R1) we have
M � X ′(y)�X′ ϕ. Since X ′(y) = X(y), we have M � X(y)�X′ ϕ and thus by
localityM � X(y)�ϕ.

Suppose then thatM � X(y)�ϕ. Now by (R2), we haveM�{∅}[X(y)/y] ϕ�y.
Since X � {y} = {∅}[X(y)/y], we have M�X�{y} ϕ � y. Since Fr(ϕ � y) = {y},
by localityM�X ϕ�y.

The relativization method gives us a simple way to express properties of
certain sets of values in a team. We can apply the same technique for many
other logics with team semantics if we extend them with unary inclusion and
exclusion atoms. For example, there is a dependence logic sentence ϕ which
expresses that a model has even cardinality ([18]). Now the formula ϕ � y
expresses that the variable y has even number of different values in a team. We
will give more examples on this method in Section 5.

4. The expressive power of k-ary inclusion-exclusion logic

In this section we will analyze the expressive power of INEX[k]. We first
present translations from INC[k] and EXC[k] to ESO[k] and then combine them
to form a translation from INEX[k] to ESO[k]. For the other direction we show
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that any ESO[k]-formula, with at most k-ary free relation variables, can be
expressed in INEX[k].

4.1. Translation from INEX[k] to ESO[k]
For the language ESOL we also need a set of relation variables which are

symbols not in the vocabulary L. These relation variables can appear in atomic
formulas similarly as relation symbols in L and they can also be existentially
quantified. We require all of these second order quantifiers to appear in front
of the ESOL-formula, before its first order part.

In the language ESOL[k] we only allow existential quantification of at most
k-ary relation variables, but free relation variables in a formula may have any
arity. Hence ESOL[0]-fomulas are second order quantifier free, but may con-
tain free relation variables. If an ESOL-formula Φ has free relation variables
R1, . . . , Rn, we can emphasize this by writing Φ as Φ(R1 . . . Rn). In this paper
we will not consider ESO-formulas with free first order variables and thus their
first order part can be seen as FO-sentence. After evaluating all second order
quantifications, the truth of Φ in depends only on the first order part of Φ. We
may then apply team semantics for the first order part of Φ in any suitable
model, whence flatness and locality properties hold as well.

Let L be any logic with team semantics and let ϕ(~y ) be an L-formula. The
truth of ϕ depends on a modelM and a team X. If L is local, it is sufficient to
consider the teamX �Vr(~y) that is determined by the relationX(~y ) (notice that
the ordering of the variables in ~y here needs to be fixed). Therefore it is natural
to compare ϕ with an ESO-formula Φ(R) and check whether the relations in
M that satisfy Φ correspond to the relations X(~y ), where X satisfies ϕ. Thus
we say that ϕ and Φ are equivalent if we have

M�X ϕ iff M[X(~y )/R]�Φ.

Translation from EXC[k] to ESO[k]
In the next theorem we formulate a translation from EXC[k] to ESO[k].

The idea of the proof is that we quantify a separate relation variable P for each
occurrence of an exclusion atom ~t1 | ~t2. The values quantified for P are the
limit for the values that ~t1 can get and ~t2 cannot get, when ~t1 |~t2 is evaluated.

Theorem 4.1. Let ϕ(~y ) ∈ EXCL[k]. Now there exists an ESOL[k]-formula
Φ(R), for which

M�X ϕ iff M[X(~y )/R]�Φ.

Proof. Without loss of generality we may assume that each exclusion atom in
ϕ is k-ary. We index these atoms by (~t1 |~t2)1, . . . , (~t1 |~t2)n. This is done so that
each occurrence of an exclusion atom has a unique index. Let P1, . . . , Pn be
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k-ary relation variables. Let ψ ∈ Sf(ϕ). We define the formula ψ′ recursively:

ψ′ = ψ if ψ is a literal
((~t1 |~t2)i)′ = Pi~t1 ∧ ¬Pi~t2 for each i ≤ n

(ψ ∧ θ)′ = ψ′∧ θ′, (ψ ∨ θ)′ = ψ′∨ θ′

(∃xψ)′ = ∃xψ′, (∀xψ)′ = ∀xψ′.

We can now define the formula Φ in the following way5:

Φ := ∃P1 . . . ∃Pn ∀ ~y
(
¬R~y ∨ (R~y ∧ ϕ′)

)
.

Clearly Φ is an ESOL[k]-formula and R is the only free relation variable in Φ.
We first need to prove the following claim.
Claim 2. Let µ ∈ Sf(ϕ). Now the following holds for all suitable teams X:

M�X µ iff there exist A1, . . . , An ⊆Mk such thatM′ �X µ
′,

whereM′ :=M[ ~A/~P ] (=M[A1/P1, . . . , An/Pn]).
We prove this claim by structural induction on µ:
• If µ is a literal we can set Ai := ∅ for each i ≤ n. Now the claim holds

trivially since µ′ = µ and Pi does not occur in µ for any i ≤ n.
• Let ϕ = (~t1 |~t2)j for some j ≤ n. Suppose first thatM�X~t1 |~t2. Let

M′ :=M[ ~A/~P ], where Ai :=

X(~t1) if i = j

∅ else.
(i ≤ n)

Because X(~t1) = Aj = PM
′

j , we clearly haveM′ �X Pj~t1.
For the sake of contradiction, suppose that there exists s ∈ X for which
s(~t2) ∈ PM

′
j . Since PM′j = X(~t1), there exists s′ ∈ X s.t s′(~t1) = s(~t2).

But this is a contradiction since by the assumptionM�X ~t1 |~t2. Therefore
M′ �X ¬Pj~t2 and thusM′ �X Pj~t1 ∧ ¬Pj~t2, i.e. M′ �X((~t1 |~t2)j)′.

Suppose then that there exist A1, . . . , An ⊆Mk s.t. M′ �X((~t1 |~t2)j)′. Hence
M′ �X Pj~t1 and M′ �X ¬Pj~t2. For the sake of contradiction, suppose that
there are s, s′ ∈ X s.t. s(~t1) = s′(~t2). BecauseM′ �X Pj~t1, we have s(~t1) ∈
PM

′
j . But becauseM′ �X ¬Pj~t2, it has to be that s(~t1) = s′(~t2) /∈ PM′j . This

is a contradiction, and thusM�X~t1 |~t2.

5If ϕ is an EXCL-sentence we define simply Φ := ∃P1 . . . ∃Pnϕ′.
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• Let µ = ψ ∨ θ (The case µ = ψ ∧ θ can be proven similarly). Suppose first
that M�X ψ ∨ θ. Thus there are Y, Y ′ ⊆ X s.t. Y ∪ Y ′ = X, M�Y ψ
and M�Y ′ θ. By the inductive hypothesis there are B1, . . . , Bn ⊆ Mk and
B′1, . . . , B

′
n ⊆Mk s.t. M[ ~B/~P ]�Y ψ′ andM[ ~B′/~P ]�Y ′ θ′. Let

M′ :=M[ ~A/~P ], where Ai :=

Bi if Pi occurs in ψ′

B′i if Pi does not occur in ψ′.

Since none of Pi can occur in both ψ′ and θ′, we haveM′ �Y ψ′ andM′ �Y ′ θ′.
HenceM′ �X ψ′ ∨ θ′, i.e. M′ �X(ψ ∨ θ)′.

Suppose then that there are A1, . . . , An ⊆ Mk s.t. M′ �X(ψ ∨ θ)′. Thus
M′ �X ψ′ ∨ θ′, i.e. there are Y, Y ′ ⊆ X s.t. Y ∪ Y ′ = X, M′ �Y ψ′ and
M′ �Y ′ θ′. By the inductive hypothesisM�Y ψ andM�Y ′ θ, i.e. M�X ψ∨θ.
• The cases µ = ∃xψ and µ = ∀xψ are straightforward to prove.
Let M′ = M[ ~A/~P ] for some A1, . . . , An ⊆ Mk. Since Fr(ϕ′) = Vr(~y), by
locality it is easy to see that the following holds for all suitable teams X:

M′ �X ϕ
′ iff M′[X(~y )/R]�∀ ~y

(
¬R~y ∨ (R~y ∧ ϕ′)

)
.

By combining this with the result of Claim 2, we obtain:

M�X ϕ iff there are A1, . . . , An ⊆Mk

s.t. M[ ~A/~P ,X(~y )/R]� ∀ ~y
(
¬R~y ∨ (R~y ∧ ϕ′)

)
.

Equivalently: M�X ϕ iffM[X(~y )/R]�Φ.

Translation from INC[k] to ESO[k]
In the next theorem we present a translation from INC[k] to ESO[k]. Again

the idea is that we quantify a separate predicate symbol P for each inclusion
atom ~t1⊆~t2, and the values of ~t1 must be included in the values chosen for P .
But we must also show that each value of P is a value that tuple ~t2 gets in the
team when ~t1⊆~t2 is evaluated. For this we need special formulas, ϕ′i(~u), which
“find” the assignment that gets same values for ~u and ~t2 – for any value of ~u
that is in the values chosen for P .

Theorem 4.2. Let ϕ(~y ), where ~y = y1 . . . ym, be an INCL[k]-formula. Then
there exists an ESOL[k]-formula Φ(R), for which we have

M�X ϕ iff M[X(~y )/R]�Φ.

Proof. Without loss of generality we may assume that each inclusion atom in ϕ
is k-ary. We index these atoms by (~t1 ⊆~t2)1, . . . , (~t1 ⊆~t2)n. Let ~u be a k-tuple
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of fresh variables and P1, . . . , Pn be k-ary relation variables.
Let ψ ∈ Sf(ϕ). We define the formula ψ′ recursively:

(ψ)′ = ψ if ψ is a literal
((~t1 ⊆~t2)i)′ = Pi~t1 for each i ≤ n

(ψ ∧ θ)′ = ψ′∧ θ′, (ψ ∨ θ)′ = ψ′∨ θ′

(∃xψ)′ = ∃xψ′, (∀xψ)′ = ∀xψ′.

Formulas ψ′i are defined recursively for all i ≤ n:

(ψ)′i = ψ if ψ is a literal
((~t1 ⊆~t2)j)′i = Pj~t1 if j 6= i

((~t1 ⊆~t2)i)′i = (~u =~t2) ∧ Pi~t1
(ψ ∧ θ)′i = ψ′i ∧ θ′i

(ψ ∨ θ)′i =


ψ′i if (~t1 ⊆~t2)i occurs in ψ
θ′i if (~t1 ⊆~t2)i occurs in θ
ψ′i ∨ θ′i else

(∃xψ)′i = ∃xψ′i
(∀xψ)′i = ∃xψ′i ∧ ∀xψ′.

Note that the cases of disjunction above are exclusive, since for each i ≤ n the
inclusion atom (~t1 ⊆~t2)i can occur in at most one of the disjuncts.
We can now define the formula Φ in the following way6:

Φ := ∃P1 . . . ∃Pn
(
∀ ~y

(
¬R~y ∨ (R~y ∧ ϕ′)

)
∧
∧
i≤n
∀ ~u

(
¬Pi~u ∨ ∃ ~y (R~y ∧ ϕ′i(~u))

))
.

Clearly Φ is an ESOL[k]-formula and R is the only free relation variable in Φ.
To complete the proof, we need to prove the following claim which demonstrates
the relevance of the formulas ϕ′i:
Claim 3. The following holds for all µ ∈ Sf(ϕ) and all suitable teams X:

M�X µ iff there exist A1, . . . , An ⊆Mk s.t. M[ ~A/~P ]�X µ′,
and for any i ≤ n and tuple of elements ~a ∈ Ai
there exists s ∈ X s.t. M[ ~A/~P ]�{s[~a/~u ]} µ

′
i.

We present a proof for this claim in the appendix.

6If ϕ is an INCL-sentence we can define Φ := ∃P1 . . . ∃Pn

(
ϕ′ ∧

∧
i≤n ∀ ~u (¬Pi~u ∨ϕ′i(~u))

)
.
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Note that since µ′ and µ′i do not contain the relation variable R, we can
replace the modelM[ ~A/~P ] with the modelM[ ~A/~P ,X(~y )/R] in Claim 3. The
existence of s ∈X for each tuple ~a ∈ Ai such that s[~a/~u ] satisfies ϕ′i, guarantees
that the values in Ai are included in the values~t2 in the team when the inclusion
atom (~t1 ⊆ ~t2)i is evaluated. With this result we can prove the claim of this
theorem; that is M�X ϕ iff M[X(~y )/R]�Φ.

Suppose first that M�X ϕ. Now by Claim 3 there are A1, . . . , An ⊆ Mk

s.t. M′ �X ϕ′, and for all i ≤ n and ~a ∈ Ai there exists s ∈ X such that
M′ �{s[~a/~u ]} ϕ

′
i, whereM′ =M[ ~A/~P ,X(~y )/R]. Let j ≤ n and let

Y := {r ∈ {∅}[Mk/~u ] | r(~u) /∈ Aj} and Y ′ := {r ∈ {∅}[Mk/~u ] | r(~u) ∈ Aj}.

Now Y ∪Y ′ = {∅}[Mk/~u ] and because Aj = PM
′

j , clearlyM′ �Y ¬Pj~u. By the
definition of Y ′, we have r(~u) ∈ Aj for each r ∈ Y ′. Hence, by applying the
result of Claim 3 for the values r(~u), the following holds: for each r ∈ Y ′ there
exists sr ∈ X s.t. M′ �{sr[r(~u)/~u ]} ϕ

′
j.

Let F : Y ′ → P∗(Mm) s.t. r 7→ {sr(~y)}. Now r[sr(~y)/~y ] = sr[r(~u)/~u ] for
each r ∈ Y ′ and thus M′ �{r[sr(~y)/~y ]} ϕ

′
j for each r ∈ Y ′. Hence by locality

and flatnessM′ �Y ′[F/~y ] ϕ
′
j. Because sr(~y) ∈ X(~y ) = RM

′ for each r ∈ Y ′, by
flatness we also haveM′ �Y ′[F/~y ] R~y and thusM′ �Y ′ ∃ ~y (R~y ∧ ϕ′j). Therefore
M′ �{∅}[Mk/~u ] ¬Pj~u∨∃ ~y (R~y∧ϕ′j) and thusM′ �

∧
i≤n ∀ ~u (¬Pi~u ∨∃ ~y (R~y∧ϕ′i)).

BecauseM′ �X ϕ′ and X(~y ) = RM
′ , by localityM′ �∀ ~y (¬R~y ∨(R~y∧ϕ′)).

Therefore we can conclude thatM[X(~y )/R]�Φ.
Suppose then that M[X(~y )/R]�Φ. Thus there exist A1, . . . , An ⊆ Mk such
that the first order part of Φ holds inM′ :=M[ ~A/~P ,X(~y )/R]. In particular,
M′ � ∀ ~y (¬R~y ∨ (R~y ∧ ϕ′)) and thus by localityM′ �X ϕ′.

For the sake of proving the right side of the equivalence of Claim 3, let
j ≤ n and ~a ∈ Aj. Now M′ � ∀ ~u (¬Pj~u ∨ ∃ ~y (R~y ∧ ϕ′j)), and thus there
are Y, Y ′ ⊆ {∅}[Mk/~u ] such that Y ∪ Y ′ = {∅}[Mk/~u ], M′ �Y ¬Pj~u and
M′ �Y ′ ∃ ~y (R~y ∧ ϕ′j). Hence there is a function F : Y ′ → P∗(Mm) such that
M′ �Y ′[F/~y ] R~y ∧ ϕ′j.

Let r := ∅[~a/~u ], whence r ∈ {∅}[Mk/~u ]. Since r(~u) = ~a ∈ Aj = PM
′

j

and M′ �Y ¬Pj~u, we have r /∈ Y and thus r ∈ Y ′. Let ~b ∈ F(r) and let
s := r[~b/~y ]. By flatness, M′ �{s}R~y and thus s(~y) ∈ RM

′ = X(~y ). Hence
there exists s′ ∈ X such that s′(~y) = s(~y). Since M′ �{s} ϕ′j, by locality also
M′ �{s′[s(~u)/~u ]} ϕ

′
j. Because s(~u) = r(~u) = ~a, by Claim 3 we haveM�X ϕ.

Forming a translation from INEX[k] to ESO[k]
The next theorem shows that there is also a translation from INEX[k] to

ESO[k]. This translation can be formulated by first eliminating exclusion atoms
as in Theorem 4.1 and then inclusion atoms as in Theorem 4.2.
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Theorem 4.3. Let ϕ(~y ) ∈ INEXL[k]. Now there is an ESOL[k]-formula Φ(R),
for which we have

M�X ϕ iff M[X(~y )/R]�Φ.

Proof. Without loss of generality we may assume that each exclusion and in-
clusion atom in the formula ϕ is k-ary. We index the exclusion atoms by
(~t1 |~t2)1, . . . , (~t1 |~t2)n. Let P1, . . . Pn be k-ary relation variables. Let ψ ∈ Sf(ϕ).
We define the formula ψ′ recursively as follows.

ψ′ = ψ if ψ is a literal
((~t1 |~t2)i)′ = Pi~t1 ∧ ¬Pi~t2 for each i ≤ n

(~t1 ⊆~t2)′ =~t1 ⊆~t2
(ψ ∧ θ)′ = ψ′∧ θ′, (ψ ∨ θ)′ = ψ′∨ θ′

(∃xψ)′ = ∃xψ′, (∀xψ)′ = ∀xψ′.

We can prove the equivalence of Claim 2 for any µ ∈ Sf(ϕ) by structural
induction on µ: Since inclusion atoms are left as they are, their step in the
induction is trivial. Other steps can be proven identically as in the proof of
Claim 2 within the proof of Theorem 4.1. Thus we have

M�X ϕ iff there exist A1, . . . , An ⊆Mk s.t. M[ ~A/~P ]�X ϕ′.

Since ϕ′ contains only inclusion atoms and Fr(ϕ) = Fr(ϕ′) = Vr(~y), we can
apply Theorem 4.2 for ϕ′ to get an ESOL-formula Ψ(R) for which we have

M�X ϕ′ iff M[X(~y)/R]�Ψ.

We can now define Φ := ∃P1 . . . ∃Pn Ψ, whence Φ is an ESOL-formula with the
free relation variable R. Then we have

M�X ϕ iff there exist A1, . . . An ⊆Mk s.t. M[ ~A/~P ]�X ϕ′

iff there exist A1, . . . An ⊆Mk s.t. M[ ~A/~P ,X(~y)/R]�Ψ
iff M[X(~y)/R]�Φ.

The result of Theorem 4.3 can be formulated equivalently as follows:
All INEX[k]-definable properties of teams are ESO[k]-definable.

4.2. Translation from ESO[k] to INEX[k]
When translating from ESO to INEX, our technique is to simulate second

order quantification by replacing the quantifications of k-ary relation variables
P simply with quantifications of k-tuples of first order variables ~w. The idea
is then to choose such values for ~w that in the resulting team X, the relation
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X(~w) is the same as the relation that is quantified for the value of P . However,
we cannot simulate the quantification of the empty set this way, since the first
order variables must be given at least one value. But this problem can be
avoided, since any ESO-formula Φ can be written in an equivalent form Φ′
which is satisfied if and only if it is satisfied with nonempty interpretations for
the quantified relation variables. This is stated in the following easy lemma
(for a proof, see [17]).

Lemma 4.4. Let Φ := ∃P1 . . . ∃Pn γ be an ESOL[k]-formula, where γ is the
first order part of Φ. Then there exists δ ∈ ESOL[0] with the same free relation
variables as γ such that the following holds:

M�Φ iff there exist nonempty A1, . . . , An ⊆Mk s.t. M[ ~A/~P ]� δ.

Now we are ready to formulate our translation from ESO[k] to INEX[k].
For this translation we must require the given teams to be nonempty and
assume that the free relation variables in ESOL[k]-formulas are at most k-ary.
But here we can allow the ESOL[k]-formula Φ to have any number of free
relation variables instead of just one. Suppose that Φ defines some properties
p1, . . . , pm for relations R1, . . . , Rm respectively. Then it is natural to say that
ϕ(~y1 . . . ~ym) ∈ INEXL is equivalent with Φ if the relations X(~y1), . . . , X(~ym)
have the properties p1, . . . , pm in all teams X in which ϕ true.

Theorem 4.5. Let Φ(R1 . . . Rm) ∈ ESOL[k], where the free relation variables
Ri are at most k-ary. Let ~y, . . . , ~ym be k-tuples of fresh variables. Then there
exists an INEXL[k]-formula ϕ(~y1 . . . ~ym), such that

M�X ϕ iff M[X(~y1)/R1, . . . , X(~ym)/Rm]�Φ,

for all suitable L-modelsM and nonempty teams X.

Proof. Since Φ ∈ ESOL[k], it is of the form Φ = ∃P1 . . . ∃Pn γ, where P1, . . . , Pn
are relation variables and γ is the first order part of Φ. Without loss of gen-
erality, we may assume that P1, . . . , Pn, R1, . . . , Rm are all distinct and k-ary.
Let δ be the formula given by Lemma 4.4 for the formula γ. Now we have

M�Φ iff there exist nonempty A1, . . . , An ⊆Mk s.t. M[ ~A/~P ]� δ, (4)

for all modelsM that have interpretations for the relation variables R1, . . . , Rm.
Let ~w1, . . . , ~wn be k-tuples of fresh variables. The formula ψ′ is defined recur-
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sively for each ψ ∈ Sf(δ):

ψ′ = ψ if ψ is a literal and neither Pi nor Rj

occurs in ψ for any i or j.
(Pi~t )′ =~t ⊆ ~wi, (¬Pi~t )′ =~t | ~wi for all i ≤ n

(Ri~t )′ =~t ⊆ ~yi, (¬Ri~t )′ =~t | ~yi for all i ≤ m

(ψ ∧ θ)′ = ψ′∧ θ′

(ψ ∨ θ)′ = ψ′Y θ′, where Y := ∨
~w1,..., ~wn,~y1,...,~ym

(∃xψ)′ = ∃xψ′, (∀xψ)′ = ∀xψ′.

Now we can define the formula ϕ simply as:

ϕ := ∃ ~w1 . . . ∃ ~wnδ′.

Clearly ϕ is an INEXL[k]-formula and Fr(ϕ) = Vr(~y1 . . . ~ym)7. Before proving
the claim of this theorem need to prove Claims 4 and 5.
Claim 4. Let µ ∈ Sf(δ) and let X be a team such that the variables ~w1, . . . , ~wn,
~y1, . . . , ~ym are in dom(X). Let

M′ :=M[X(~w1)/P1, . . . , X(~wn)/Pn, X(~y1)/R1, . . . , X(~ym)/Rm].

Now we have: IfM�X µ′, thenM′ �X µ.

We prove this claim by structural induction on µ:
• If µ is a literal such that neither Pi nor Rj occurs in µ for any i ≤ n or
j ≤ m, the claim holds trivially since µ′ = µ.
• Let µ = Pj~t for some j (the case µ = Rj~t is analogous). Suppose that
M�X(Pj~t )′, i.e. M�X~t ⊆ ~wj, and let s ∈ X. BecauseM�X~t ⊆ ~wj, there
exists s′ ∈ X such that s′(~wj) = s(~t ). Now we have s(~t ) ∈ X(~wj) = PM

′
j ,

and thusM′ �X Pj~t.
• Let µ = ¬Pj~t for some j (the case µ = ¬Rj~t is analogous). Suppose that
M�X(¬Pj~t )′, i.e. M�X~t | ~wj and let s ∈ X. Since M�X~t | ~wj, we have
s(~t ) 6= s′(~wj) for each s′ ∈ X. Therefore s(~t ) /∈ X(~wj) = PM

′
j , and thus

M′ �X ¬Pj~t.
• The case µ = ψ ∧ θ is straightforward to prove.
• Let µ = ψ ∨ θ. Suppose thatM�X(ψ ∨ θ)′, i.e. M�X ψ′ Y θ′. Thus there

are Y1, Y2 ⊆ X s.t. Y1 ∪ Y2 = X, M�Y1 ψ
′ andM�Y2 θ

′, and if Y1, Y2 6= ∅,

7Also, note that if Φ is an ESOL-sentence, then ϕ is an INEXL-sentence.
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then the tuples ~wi and ~yj have the same set of values in Y1 and Y2 as they
have in X (for each i ≤ n and j ≤ m).
If Y1 = ∅, then Y2 = X and thus M�X θ′. By the inductive hypothesis
M′ �X θ and thus M′ �X ψ ∨ θ. Analogously if Y2 = ∅, then M′ �X ψ ∨ θ.
Suppose then that Y1, Y2 6= ∅. Now by the inductive hypothesis we haveM[Y1(~wi)i≤n/~P , Y1(~yj)j≤m/~R ]�Y1 ψ

M[Y2(~wi)i≤n/~P , Y2(~yj)j≤m/~R ]�Y2 θ.

Because ~wi and ~yj have the same set of values in Y1 and Y2 as in X (for any
i ≤ n, j ≤ m), we haveM′ �Y1 ψ andM′ �Y2 θ. ThereforeM′ �X ψ ∨ θ.
• The cases µ = ∃xψ and µ = ∀xψ are straightforward to prove.

Claim 5. Let µ ∈ Sf(δ) and assume that A1, . . . , An, B1, . . . , Bm ⊆ Mk are
nonempty sets. Let X 6= ∅ be a team such that Vr(~y1 . . . ~ym) ⊆ dom(X) and for
each i ≤ m and r ∈ X �Fr(µ) the following assumption holds:

Xr(~yi) = Bi, where Xr := {s ∈ X | s � Fr(µ) = r}. (?)

This condition can be written equivalently as: For each r ∈X � Fr(µ), i ≤ m
and ~b∈Bi there exists s ∈ X such that s � (Fr(µ)∪Vr(~yi)) = r[~b/~yi]. That is,
each assignment in X �Fr(ϕ) can be extended to X with all of the values in Bi.
Now the following implication holds:

IfM′ �X�Fr(µ) µ, thenM�X′ µ′,

whereM′ :=M[ ~A/~P , ~B/~R ] and X ′ := X[A1/~w1, . . . , An/~wn].

We prove this claim by structural induction on µ:
• If µ is a literal such that neither Pi nor Rj occurs in µ, then the claim holds

by locality since µ′ = µ.
• Let µ = Pj~t for some j ≤ n. Suppose that M′ �X�Fr(µ) Pj~t. Let s ∈ X ′

and let r ∈ X � Fr(µ) be an assignment for which r = s � Fr(µ). Since
M′ �X�Fr(µ) Pj~t, we have r(~t ) ∈ PM′j =Aj =X ′(~wj). Thus there exists s′ ∈ X ′
s.t. s′(~wj) = r(~t ). Now s(~t ) = r(~t ) = s′(~wj). ThereforeM�X′~t ⊆ ~wj, i.e.
M�X′(Pj~t )′.
• Let µ = ¬Pj~t for some j ≤ n. Suppose that M′ �X�Fr(µ) ¬Pj~t. Let s, s′ ∈
X ′ and let r ∈ X � Fr(µ) be an assignment s.t. r = s � Fr(µ). Because
M′ �X�Fr(µ) ¬Pj~t, we have r(~t ) /∈ PM′j =Aj =X ′(~wj). Hence it has to be that
r(~t ) 6= s′(~wj), and thus s(~t ) = r(~t ) 6= s′(~wj). Therefore M�X′~t | ~wj, i.e.
M�X′(¬Pj~t )′.
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• Let µ = Rj~t or µ = ¬Rj~t for some j ≤ m. Note that because the condition
(?) holds for X (with respect to Fr(µ)), we have X(~yj) = Bj. Hence RM′j =
Bj =X(~yj)=X ′(~yj), and thus the cases µ = Rj~t and µ = ¬Rj~t can be proved
analogously as we proved the two previous cases.
• The case µ = ψ ∧ θ is straightforward to prove.
• Let µ = ψ ∨ θ. Suppose thatM′ �X�Fr(µ) ψ ∨ θ, i.e. there are Y ∗1 , Y ∗2 ⊆ X �

Fr(µ) such that Y ∗1 ∪ Y ∗2 = X �Fr(µ),M′ �Y ∗1 ψ andM′ �Y ∗2 θ. Let

Y1 := {s ∈ X | s � Fr(µ) ∈ Y ∗1 } and Y2 := {s ∈ X | s � Fr(µ) ∈ Y ∗2 }.

Now Y1 �Fr(µ) = Y ∗1 , Y2 �Fr(µ) = Y ∗2 and Y1 ∪ Y2 = X. Let

Y ′1 := Y1[A1/~w1, . . . , An/~wn] and Y ′2 := Y2[A1/~w1, . . . , An/~wn].

Now X ′=Y ′1 ∪ Y ′2 . If Y ′1 =∅, then Y ′2 =X ′ and thus clearlyM�X′ ψ′ Y θ′, i.e
M�X′(ψ∨θ)′. Analogously if Y ′2 =∅, thenM�X′(ψ∨θ)′. Suppose then that
Y ′1 , Y

′
2 6= ∅. Since the condition (?) holds for X with respect to Fr(µ), by the

definition of Y1 it is easy to see that (?) holds also for Y1 with respect to Fr(µ).
Since Fr(ψ) ⊆ Fr(µ), (?) holds for Y1 also with respect to Fr(ψ). Analogously
(?) holds for Y2 with respect to Fr(θ). Therefore, by the inductive hypothesis,
M�Y ′1 ψ

′ andM�Y ′2 θ
′. We also have Y ′1(~wi)=Y ′2(~wi)=Ai=X ′(wi) for each

i ≤ n. Furthermore, by the condition (?), Y ′1(~yi) = Y ′2(~yi) =Bi =X ′(yi) for
each i ≤ m. ThereforeM�X′ ψ′ Y θ′, i.eM�X′(ψ ∨ θ)′.
• Let µ = ∃xψ (the case µ = ∀xψ can be proven similarly). Suppose

that M′ �X�Fr(µ) ∃xψ. Hence there is F : X � Fr(µ) → P∗(M) such that
M′ �(X�Fr(µ))[F/x] ψ. Let

G : X → P∗(M), s 7→ F (s�Fr(µ))
G′ : X ′ → P∗(M), s 7→ F (s�Fr(µ)).

Now X[G/x] � Fr(ψ) = (X � Fr(µ))[F/x] and therefore M′ �X[G/x]�Fr(ψ) ψ.
Since (?) holds for X with respect to Fr(µ), by the definition of G (?) holds
for X[G/x] with respect to Fr(ψ). Let X ′′ := (X[G/x])[A1/~w1, . . . , An/~wn],
whence by the inductive hypothesis we haveM�X′′ ψ′. By the definition of
G′, we have X ′′ = X ′[G′/x], and thus M�X′[G′/x] ψ

′. Hence M�X′ ∃xψ′,
i.e. M�X′(∃xψ)′.

We are now are finally ready prove the claim of this theorem:

M�X ϕ iff M[X(~y1)/R1, . . . , X(~ym)/Rm]�Φ.
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Suppose first thatM�X ϕ, i.e. M�X ∃ ~w1 . . . ∃ ~wnδ′. Thus there exist

F1 : X → P∗(Mk)
F2 : X[F1/~w1]→ P∗(Mk)...
Fn : X[F1/~w1, . . . ,Fn−1/~wn−1]→ P∗(Mk)

s.t. M�X′ δ′, where X ′ := X[F1/~w1, . . . ,Fn/~wn].

Let M′ := M[X ′(~w1)/P1, . . . , X
′(~wn)/Pn, X ′(~y1)/R1, . . . , X

′(~ym)/Rm]. Now
by Claim 4, we have M′ �X′ δ. Because X ′ � Fr(δ) = {∅}, by locality M′ � δ.
SinceX ′(~yi)=X(~yi) for each i ≤ m, we haveM[X(~y1)/R1, . . . , X(~ym)/Rm]�Φ.
Suppose then that M[X(~y1)/R1, . . . , X(~ym)/Rm]�Φ. Thus, by the equation
(4), there are nonempty sets A1, . . . , An ⊆Mk such that

M′ � δ, whereM′ :=M[A1/P1, . . . , An/Pn, X(~y1)/R1, . . . , X(~ym)/Rm].

Since, by the assumptions, X 6= ∅ and Vr(~y1 . . . ~ym) ⊆ dom(X), we have
X(~yi) 6= ∅ for each i ≤ m. We define the function Fi for each i ≤ n by

Fi : X[F1/~w1, . . . ,Fi−1/~wi−1]→ P∗(Mk), s 7→ Ai.

Let X ′ := X[F1/~w1, . . . ,Fn/~wn], whence X ′ = X[A1/~w1, . . . , An/~wn]. Since
X � Fr(δ) = {∅}, the condition (?) in Claim 5 holds for the team X with
respect to Fr(δ). We also have M′ �X�Fr(δ) δ and thus by Claim 5 we obtain
M�X′ δ′. HenceM�X ∃ ~w1 . . . ∃ ~wnδ′, i.e. M�X ϕ.

Remark. By Theorem 4.5, for each ESOL[k]-formula Φ(R), for which R is at
most k-ary, there exists an INEXL[k]-formula ϕ(~y ) such that for all X 6= ∅:

M�X ϕ iff M[X(~y )/R]�Φ.

Without the requirement of non-empty teams and the arity restriction on R,
this would be the converse of Theorem 4.3. But due empty team property of
INEX, the left side of the equivalence is always true for the empty team and any
formula of INEX. Thus, when defining classes of relations with INEX, we can
only define such classes that include the empty relation. The arity restriction is
also necessary since it can be shown that for any k there are ESO[k]-definable
properties of (k+1)-ary relations X(~y ) that cannot be defined in INEX[k].
A proof for this claim will be presented in a future work by the author.

Since Theorem 4.3 and Theorem 4.5 can also be proven for INEXL[k]- and
ESOL[k]-sentences, we obtain the following corollary.

38



Corollary 4.6. On the level of sentences INEX[k] captures the expressive power
of ESO[k]. In particular, INEX[1] captures EMSO.

As a direct corollary we also obtain a strict arity hierarchy for INEX, since
the arity hierarchy for ESO (with arbitrary vocabulary) is strict, as shown by
Ajtai [1] in 1983. As mentioned in the introduction, k-ary dependence and
independence logics capture the fragment of ESO where at most (k−1)-ary
functions can be quantified. This fragment differs from ESO[k] at least when
k is one or two – and presumably for any k. Hence it appears that INEX[k]
does not correspond to l-ary independence logic for any k and l, even though
without arity bounds these two logics are equivalent.

On the duality of inclusion and exclusion atoms
For the last topic in this section, we will discuss the relationship of inclu-

sion and exclusion atoms. We will also consider natural candidates for the
semantics of negated inclusion and exclusion atoms. In our translation in The-
orem 4.5 we used inclusion and exclusion atoms in a dualistic way by replacing
atomic formulas P~t with inclusion atoms and negated atomic formulas ¬P~t
with exclusion atoms. This correspondence becomes more obvious when we re-
formulate the truth conditions for P~t and ¬P~t (compare with Definition 2.1)
as follows:

M�X P~t iff X(~t ) ⊆ PM and M�X ¬P~t iff X(~t ) ⊆ PM.

The truth conditions for inclusion and exclusion atoms can be written in a form
that is very similar to the equivalences above:

M�X~t1⊆~t2 iff X(~t1) ⊆ X(~t2) and M�X~t1 |~t2 iff X(~t1) ⊆ X(~t2).

As we argued earlier (Observation 2.1), the semantics of a contradictory nega-
tion (M�X ¬ϕ iff M2X ϕ) is not a very natural choice of semantics for the
negated atoms. Instead, it would be more natural to have such a semantics that
is similar to the semantics of literals. From this viewpoint, a natural candidate
for a semantics of a negated inclusion atom would be the following:

M�X ¬(~t1⊆~t2) iff X(~t1) ⊆ X(~t2). (¬ ⊆)

Then we would have ¬(~t1⊆~t2) ≡ ~t1 |~t2. Therefore, if we allow the use of
negated atoms in INC[k] with our semantics, the resulting logic is equivalent
with INEX[k]. Note that since the exclusion relation is symmetric, our choice
of semantics leads to the following equivalence:

¬(~t1⊆~t2) ≡ ~t1 |~t2 ≡ ~t2 |~t1 ≡ ¬(~t2⊆~t1).
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Hence, by this definition, ¬(~t1⊆~t2) ≡ ¬(~t2⊆~t1) even though ~t1⊆~t2 6≡ ~t2⊆~t1.
This kind of property of a negated atom might be a bit exotic, but not un-
thinkable, since our negation is not a contradictory negation.

Let us then consider semantics for the negated exclusion atom ¬(~t1 |~t2).
Semantics of the inclusion atom ~t1⊆~t2 is not a possible choice here, since by
the symmetry of the exclusion relation, we must have ¬(~t1 |~t2) ≡ ¬(~t2 |~t1).
The truth condition M�X~t1 |~t2 iff X(~t1) ∩ X(~t2) = ∅, naturally gives us the
following candidate for a semantics.

M�X ¬(~t1 |~t2) iff X(~t1) = X(~t2) (¬ | )

Now we have ¬(~t1 |~t2) ≡ ¬(~t2 |~t1), as required, and ¬(~t1 |~t2) ≡~t1⊆~t2 ∧~t2⊆~t1.
This choice of semantics is actually equivalent with the semantics of equiex-
tension atom ~t1 ./ ~t2 that was introduced by Galliani in [4]. This atom has
been shown equivalent with the inclusion atom ~t1⊆~t2 of the same arity ([4]).
Hence if we allow the use of negated atoms in EXC[k] with our semantics, the
resulting logic turns out be equivalent with INEX[k].

With our choices for semantics of negated inclusion and exclusion atoms,
(¬ ⊆) and (¬ | ), we have ¬(~t1⊆~t2) ≡ ~t1 | ~t2 and ¬(~t1 |~t2) ≡ ~t1 ./ ~t2. Now
the exclusion atom is equivalent with the negated inclusion atom, but not
vice versa. However, the negated exclusion atom is equally expressive as the
inclusion atom of the corresponding arity. Hence even though inclusion and
exclusion atoms are not exactly negations of each other, they nevertheless have
a dualistic relationship. We could extend FO with either of these atoms and
allow the use of its negation to obtain a logic equivalent to INEX.

In team semantics we must require all formulas to be in negation normal
form. This can be seen as one of the weaknesses of this framework since the
free use of negation is natural for a logic. Dependence logic and other related
logics have also been criticized for not having sensible semantics for negated
atoms8. However, there has not been much research on these issues.

In order to solve these problems, Kuusisto [16] has presented an alternative
framework called double team semantics. In this approach there are always
two teams – a “verifying team” and a “falsifying team”. This allows to use
negations freely, whence it just swaps the roles of these two teams. This
approach has received relatively little attention, but we believe that it should
be studied further in order to understand the role of negation in team semantics
more deeply.

8Originally, in [18], negations were allowed to appear in front of dependence atoms. But
the semantics for negated dependence atom was defined such that it was true only in the
empty team. This way both empty team property and downwards closure were preserved.
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5. Examples of some INEX-definable properties

In this section we present several examples on the expressibility of inclusion-
exclusion logic. Within these examples we also utilize several of the new oper-
ators we introduced in Section 3. Although all of the properties expressed here
are known to be expressible in INEX by the results of the previous section,
we believe that these examples are valuable for demonstrating the nature of
inclusion-exclusion logic and team semantics in general.

By Corollary 4.6 we know that, in particular, all EMSO-definable properties
of models can be expressed by using only unary inclusion and exclusion atoms.
In the next example we show how two classical EMSO-definable properties of
graphs can be defined in INEX[1].

Example 5.1. Let G = (V,E) be an undirected graph. Then we have
(a) G is disconnected if and only if

G �∃x1 ∃x2
(
x1 |x2 ∧ ∀ z (z⊆x1 ∨ z⊆x2) ∧ (∀ y1⊆x1)(∀ y2⊆x2)¬Ey1y2

)
.

(b) G is k-colorable if and only if

G � γ≤k ∨ ∃x1 . . . ∃xk
(∧
i 6=j

xi |xj ∧ ∀ z
(∨
i≤k

z ⊆xi
)

∧
∧
i≤k

(∀ y1⊆xi)(∀ y2⊆xi)¬Ey1y2

)
,

where γ≤k := ∃x1 . . . ∃xk ∀ y (∨i≤k y=xi).

We explain briefly why these equivalences hold: In (a) we first quantify two
nonempty sets for the values of x1 and x2. We use exclusion atom to guarantee
that these sets are disjoint. The formula ∀ z (z ⊆ x1 ∨ z ⊆ x2) checks that the
union of these sets covers the whole set of vertices (recall Example 2.1). Finally
we use universal inclusion quantifiers to confirm that for any pair of elements
chosen within these sets, there is no edge between them.

In (b) we first check if |V | ≤ k, in which case the graph would be trivially k-
colorable. If that is not the case, we can quantify k nonempty disjoint sets which
represent the coloring of the graph. Confirming that these sets are disjoint and
cover all the vertices can be done similarly as in (a). Finally we confirm that
the coloring is correct by choosing any pair of vertices within an unicolored set
and checking that there is no edge between them.

The properties in Example 5.1 could also be expressed in EMSO and then
we could directly use our translation in Theorem 4.5 to express these properties
in INEX[1]. This method would give us sentences that are only slightly longer
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than the ones we have given above. However, the sentences above are not only
shorter but also demonstrate the usefulness of universal inclusion quantifier.

In the next example we demonstrate how we can use our translation in
Theorem 4.5 to apply techniques of ESO directly to inclusion-exclusion logic. In
ESO[k+1] we can quantify a k-ary function by quantifying a (k+1)-ary relation
and giving requirements that it is a function. We can do this analogously in
inclusion-exclusion logic; see the following example.

Example 5.2. Let ϕ be an INEXL∪{F}-sentence where F is a (k+1)-ary relation
symbol. Let ~x be a (k+1)-tuple of fresh variables. The formula ∃F ϕ, where
F is quantified as a k-ary function, is equivalent with the INEXL-sentence:

ξ :=∃ ~x
(
ψ1(~x) ∧ ψ2(~x) ∧ ϕ′

)
, whereψ1(~x) := ∀ ~y ∃ z (~yz ⊆ ~x)

ψ2(~x) := ∀ ~y ∀ z1 ∀ z2
(
(~yz1 | ~x ∨

~x
~yz2 | ~x) ∨

~x
z1 = z2

)
and ϕ′ is a formula obtained from ϕ by replacing all subformulas of the form
F~t with inclusion atoms ~t ⊆ ~x, formulas ¬F~t with exclusion atoms ~t | ~x and
all disjunctions with the disjunctions that preserve the values of the tuple ~x.

Note that ψ1 and ψ2 above are derived by changing the corresponding
ESOL∪{F}-sentences ∀ ~y ∃ z F~yz and ∀ ~y ∀ z1 ∀ z2 ((F~yz1 ∧ F~yz2) → z1 = z2)
to negation normal form and then directly using our translation (Theorem 4.5)
from ESO to INEX.

If we also want the quantified function to injective or surjective, we can add
either of the following formulas inside the brackets of the formula ξ above:

ψinj(~x) := ∀ ~y1 ∀ ~y2 ∀ z ((~y1z | ~x ∨
~x
~y2z | ~x) ∨

~x
~y1 = ~y2)

ψsurj(~x) := ∀ z ∃ ~y (~yz⊆ ~x).

By using the method of the previous example, we can define infinity of a
model in INEX[2] by simply saying that we can existentially quantify the values
of variables x1 and x2 in such a way that in the resulting team X the relation
X(x1x2) is a function that is injective but not surjective.

Example 5.3. Let δinf ∈ INEXL[2] such that

δinf := ∃x1x2
(
ψ1(x1x2) ∧ ψ2(x1x2) ∧ ψinj(x1x2) ∧ ∃ z ∀ y (yz |x1x2)

)
,

where the formulas ψ1, ψ2 and ψinj are as in the previous example. Now a
modelM is infinite if and only ifM� δinf. Note that this property cannot be
expressed by using only unary atoms since it is not EMSO-definable.

The expressive power of INEX[2] is rather strong also on the level of formulas
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since, by Theorem 4.5, all ESO[2]-definable properties of 2-ary relations in
teams are definable in INEX[2]. In particular, we can say in INEX[2] that a
certain variable y gets infinitely many values within a team. This can be done
simply by relativizing (recall Subsection 3.5) the sentence δinf, of the previous
example, on the variable y. See the following example.

Example 5.4. Let δinf be as above and let X be a nonempty team such that
the variables in δinf are not in dom(X). Now for every y ∈ dom(X) we have

M�X δinf �y iff X(y) is infinite.

If the team X has a finite domain, we can now say that X consists of infinitely
many assignments. That is, if dom(X) = {y1, . . . , yn}, then we have

M�X
⊔
i≤n

(δinf �yi) iff X is infinite.

Because of locality property, there cannot be any single INEXL-formula that
would define the infinity of a team with arbitrary domain. For the same reason
we cannot define this property in INEX for teams with infinite domain (even
if it is fixed). To see this, consider a team X for which dom(X) = {xi | i ∈ N}
and {s(x0x1x2 . . . ) | s ∈ X} = {0, 1}N. Now X is infinite but X � V is finite
for every finite V ⊆ dom(X). But if ϕ ∈ INEXL such that Fr(ϕ) ⊆ dom(X),
by locality ϕ is true in X if and only if it is true in X � Fr(ϕ). Note that these
restrictions hold for any logics with locality property – such as dependence and
independence logics. Therefore if our logic is local, we can only define infinity
of teams that have a fixed finite domain.

Since infinity of a team is not downwards closed property, it cannot be
expressed in dependence logic. By the results of Galliani [4] we know that it is
expressible in independence logic. However, to our best knowledge, nobody has
presented an explicit formula that would define this property in independence
logic (or any other logic with team semantics). If we would express this property
in independence logic by directly using the translations given by Galliani [4],
the corresponding formula would be very complicated.

In Example 5.4 we defined infinity of a team with a rather simple formula
that was constructed in an intuitive way by using methods introduced in this
paper. This was just one particular example, but we hope that this demon-
strates how our work for this framework can be useful for deriving concrete
formulas defining desired properties of models or teams.

6. Conclusion

In this paper we have studied the expressive power of inclusion and exclusion
atoms. These two simple types of atoms make a natural pair by a having a
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dualistic relationship. Our main topic of interest was how does the arity of
these atoms affect their expressive power. We showed that INEX has a strict
arity hierarchy, and when restricted to INEX[k], there is a natural connection
to ESO[k] on the level of both sentences and formulas.

When translating from ESO to INEX, atomic k-ary relations translate natu-
rally into k-ary inclusion atoms and analogously negated atomic k-ary relations
translate into k-ary exclusion atoms. This simple correspondence is somewhat
surprising considering how different these two logics seem by first glance. It is
also interesting how in team semantics we can use quantified k-tuples of vari-
ables to simulate quantified k-ary relation variables. That is, we can “embed”
second order quantification within the standard first order quantification.

Even though INEX is equivalent with independence logic in general, it
turned out that the relationship is not so clear when restricting the arities
of atoms. Despite being closely related, these logics are of different nature.
It appears that inclusion and exclusion atoms are naturally connected with
relations while dependence and independence atoms are with functions.

The translations we used between INEX[k] and ESO are very different from
the ones used between k-ary dependence and independence logics and ESO on
the level of sentences ([2, 5]). The methods in our proofs also differ from Gal-
liani’s translations ([4]) between INEX-formulas and ESO-formulas (without
any arity restriction). These earlier translations are not compositional in the
sense that they work only for ESO-formulas in a special normal form. Our
translations are all compositional and, particularly the ones in Theorems 4.1
and 4.5, very natural and do not increase the size of the formulas significantly.

In the translation from ESO[k] to INEX[k], term value preserving disjunc-
tion played an important role. This is a useful operator for any logic with team
semantics, since the splitting of the team when evaluating disjunctions tends
to lose information. This operator has several natural variants that would be
interesting to be studied further either independently or in by adding them to
some other logic with team semantics – such as dependence logic.

We also introduced natural semantics for inclusion and exclusion quantifiers
and defined them in INEX. With these quantifiers we can restrict the range of
quantification to certain sets of values within a team. One practical application
of this was the relativization of formulas. Existential inclusion and exclusion
quantifiers turned out to be equivalent with inclusion and exclusion atoms, and
this naturally lead to the definition of inclusion and exclusion friendly logics.
However, as discussed in Subsection 3.3, properties of universal inclusion and
exclusion quantifiers are not so clear, and there still some open questions.

By our results on formulas, we know that all ESO[k]-definable properties of
at most k-ary relations (in teams) can be defined in INEX[k], and that ESO[k]
is the upper bound for the expressive power of INEX[k]. But these limits are
not strict and when the arity of relations gets higher than the arity of atoms,
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things get quite interesting. In a future work we will pursue this topic further
by showing, e.g, that for 2-ary relations there are some very simple ESO[0]-
definable properties which are not INEX[1]-definable, but there are also some
quite complex INEX[1]-definable properties which are not ESO[0]-definable.
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Appendix: Proof for claim 3

In this appendix we will present the proof for Claim 3 that was used in the
translation from INC[k] to ESO[k]. With the assumptions of Theorem 4.2, the
following equivalence holds for all µ ∈ Sf(ϕ) and all suitable teams X:

M�X µ iff there exist A1, . . . , An ⊆Mk s.t. M[ ~A/~P ]�X µ′,
and for any i ≤ n and tuple of elements ~a ∈ Ai
there exists s ∈ X s.t. M[ ~A/~P ]�{s[~a/~u ]} µ

′
i.

We first need to present two more claims. The first one is about the trivial
cases when the inclusion atom (~t1⊆~t2)i does not occur in a formula µ ∈ Sf(ϕ).

Claim I. Let µ ∈ Sf(ϕ) and assume that i ≤ n is an index such that the atom
(~t1 ⊆~t2)i does not occur in µ. Then the following equivalences hold:

M�X µ′ iff M�X µ′i iff M�{s[~a/~u ]} µ
′
i for all ~a ∈Mk and s ∈ X.

Proof. The first equivalence can be proved by a simple induction on µ. Since
(~t1⊆~t2)i does not occur in µ, the definitions of µ′ and µ′i differ only when
µ = ∀xψ. But then µ′ = ∀xψ′ and µ′i = ∃xψ′i ∧ ∀xψ′ are equivalent, by
assuming that ψ′ ≡ ψ′i by the inductive hypothesis. For the second equivalence,
we note that since (~t1⊆~t2)i does not occur in µ, none of the variables in ~u occurs
in µ′i. Hence the second equivalence holds by locality and flatness.
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The second claim we need shows that we can always extend a team that
satisfies the formula µ′ with any teams that satisfy µ′i for some i ≤ n.

Claim II. Let µ ∈ Sf(ϕ), i ≤ n and let X1, X2 be teams for which it holds that
dom(X2) = dom(X1)∪Vr(~u). Then the following implication holds:

IfM�X1 µ
′ andM�X2 µ

′
i, thenM�X1∪X∗2 µ

′, where X∗2 := X2 � dom(X1).

Proof. We prove this claim by structural induction on µ:

• Let µ be a literal and suppose thatM�X1 µ
′ andM�X2 µ

′
i. Now by locality

M�X∗2 µ
′
i and furthermore by flatnessM�X1∪X∗2 µ

′.
• Let µ = (~t1 ⊆ ~t2)j for some j ≤ n. Suppose that M�X1((~t1⊆~t2)j)′ and
M�X2((~t1⊆~t2)j)′i. By the first assumption, M�X1 Pj~t1. If j 6= i, then
M�X2 Pj~t1, and if j = i, then M�X2(~u = ~t2 ) ∧ Pj~t1. Thus in either case
we have M�X2 Pj~t1. Since none of the variables in ~u occurs in Vr(~t1), by
locality M�X∗2 Pj~t1. Because M�X1 Pj~t1 and M�X∗2 Pj~t1, by flatness we
haveM�X1∪X∗2 Pj

~t1. That is,M�X1∪X∗2 ((~t1⊆~t2)j)′.
• The case µ = ψ ∧ θ is straightforward to prove.
• Let µ = ψ ∨ θ. Suppose that M�X1(ψ ∨ θ)′ and M�X2(ψ ∨ θ)′i. By the

first assumption,M�X1 ψ
′ ∨ θ′, i.e. there are Y1, Y

′
1 ⊆ X1 s.t. Y1 ∪ Y ′1 = X1,

M�Y1 ψ
′ andM�Y ′1 θ

′.
Suppose first that (~t1 ⊆~t2)i occurs in ψ. Because then (ψ ∨ θ)′i = ψ′i, we
have M�X2 ψ

′
i, and thus by the inductive hypothesis M�Y1∪X∗2 ψ

′. Now
(Y1 ∪ X∗2 ) ∪ Y ′1 = (Y1 ∪ Y ′1) ∪ X∗2 = X1 ∪ X∗2 . Hence M�X1∪X∗2 ψ

′ ∨ θ′, i.e.
M�X1∪X∗2 (ψ ∨ θ)′. The case when (~t1 ⊆~t2)i occurs in θ is analogous.
Suppose then that (~t1 ⊆ ~t2)i does not occur in ψ ∨ θ. Then M�X2 ψ

′
i ∨ θ′i,

i.e. there exist Y2, Y
′

2 ⊆ X2 s.t. Y2 ∪ Y ′2 = X2, M�Y2 ψ
′
i and M�Y ′2 θ

′
i. By

the inductive hypothesis,M�Y1∪Y ∗2 ψ
′ andM�Y ′1∪Y ′∗2

θ′. Now

(Y1 ∪ Y ∗2 ) ∪ (Y ′1 ∪ Y ′∗2 ) = (Y1 ∪ Y ′1) ∪ (Y ∗2 ∪ Y ′∗2 )
= (Y1 ∪ Y ′1) ∪ (Y2 ∪ Y ′2)∗ = X1 ∪X∗2 .

HenceM�X1∪X∗2 ψ
′ ∨ θ′, i.e. M�X1∪X∗2 (ψ ∨ θ)′.

• Let µ = ∃xψ. Suppose that M�X1(∃xψ)′ and M�X2(∃xψ)′i. Hence
M�X1 ∃xψ′ and M�X2 ∃xψ′i. Hence there are F1 : X1 → P∗(M) and
F2 : X2 → P∗(M) s.t. M�X1[F1/x] ψ

′ and M�X2[F2/x] ψ
′
i. By the inductive

hypothesisM�X1[F1/x]∪(X2[F2/x])∗ ψ
′. Let

F ∗2 : X∗2 → P∗(M), s 7→
{
b ∈ F2(s[~a/~u ]) | s[~a/~u ] ∈ X2, ~a ∈Mk

}
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F : X1 ∪X∗2 → P∗(M),


s 7→ F1(s) if s ∈ X1 \X∗2
s 7→ F ∗2 (s) if s ∈ X∗2 \X1

s 7→ F1(s) ∪ F ∗2 (s) if s ∈ X1 ∩X∗2 .

By the definitions of F ∗2 and F , we have

X1[F1/x] ∪ (X2[F2/x])∗ = X1[F1/x] ∪X∗2 [F ∗2 /x] = (X1 ∪X∗2 )[F/x].

HenceM�X1∪X∗2 ∃xψ
′, i.e. M�X1∪X∗2 (∃xψ)′.

• Let µ = ∀xψ. SupposeM�X1(∀xψ)′ andM�X2(∀xψ)′i. ThusM�X1 ∀xψ′
andM�X2 ∃xψ′i∧∀xψ′. SinceM�X2 ∀xψ′, by localityM�X∗2 ∀xψ

′. Thus
by flatnessM�X1∪X∗2 ∀xψ

′, i.e. M�X1∪X∗2 (∀xψ)′.

Now we are finally ready to prove Claim 3:

M�X µ iff there exist A1, . . . , An ⊆Mk s.t. M′ �X µ
′,

and for any i ≤ n and ~a ∈ Ai there is s ∈ X s.t. M′ �{s[~a/~u ]} µ
′
i,

whereM′ :=M[ ~A/~P ].

Proof. We first examine the special case when X = ∅: For the other direction
of the equivalence, suppose that M�X µ. Let Ai := ∅ for each i ≤ n and let
M′ :=M[ ~A/~P ]. Because X = ∅, we haveM′ �X µ′, and since Ai = ∅ for each
i ≤ n, the rest of the right side of the equivalence holds trivially. The other
direction is clear sinceM�∅ µ holds always. We may thus assume that X 6= ∅.
• If µ is a literal, the claim holds trivially (we can choose Ai := ∅ for each
i ≤ n when proving the other direction of the equivalence).
• Let µ = (~t1 ⊆~t2)j for some j ≤ n. Suppose first thatM�X~t1 ⊆~t2. Let

M′ :=M[ ~A/~P ], where Ai :=

X(~t1) if i = j

∅ else.

Since X(~t1) = Aj = PM
′

j , we haveM′ �X Pj~t1, i.e. M′ �X(~t1 ⊆~t2)′.
Let i ∈ {1, . . . , n} \ {j} and let ~a ∈ Ai. Since M′ �X Pj~t1 we can choose
any s ∈ X (6= ∅), and then by flatness M′ �{s} Pj~t1. By locality we have
M′ �{s[~a/~u ]} Pj~t1, i.e. M′ �{s[~a/~u ]}(~t1 ⊆~t2)′i.
Let then i = j and ~a ∈ A′j. Because ~a ∈ X(~t1), there is s ∈ X s.t. s(~t1) = ~a.
Since M�X~t1⊆~t2, there is s′ ∈ X s.t. s′(~t2) = s(~t1). Now s′(~t2) = ~a, and
thus s′[~a/~u ](~u) = s′[~a/~u ](~t2), i.e. M′ �{s′[~a/~u ]} ~u=~t2. Since M′ �X Pj~t1, by
locality and flatness M′ �{s′[~a/~u ]} Pj~t1. Thus M′ �{s′[~a/~u ]} ~u =~t2 ∧ Pj~t1, i.e.
M′ �{s′[~a/~u ]}(~t1 ⊆~t2)′i.
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Suppose then that there exist A1, . . . , An ⊆Mk s.t. M′ �X(~t1⊆~t2)′, and for
each i ≤ n and ~a ∈ Ai there exists s ∈ X s.t. M′ �{s[~a/~u ]}(~t1 ⊆~t2)′i.
For the sake of proving thatM�X~t1 ⊆ ~t2, let s ∈ X. SinceM′ �X Pj~t1, by
flatness we haveM′ �{s} Pj~t1. Now s(~t1) ∈ PM′j = Aj and thus there is s′ ∈ X
such thatM′ �{s′[s(~t1)/~u ]} ~u=~t2 ∧ Pj~t1. In particular, M′ �{s′[s(~t1)/~u ]} ~u = ~t2,
and thus we have s(~t1) = s′[s(~t1)/~u ](~u) = s′[s(~t1)/~u ](~t2) = s′(~t2).
• Let µ = ψ ∧ θ. Suppose first thatM�X ψ ∧ θ. HenceM�X ψ andM�X θ.

By the inductive hypothesis there are B1, . . . , Bn ⊆ Mk s.t. M[ ~B/~P ]�X ψ′
and there are B′1, . . . , B′n ⊆ Mk s.t. M[ ~B′/~P ]�X θ′. Moreover, for all i ≤ n

and tuples ~a ∈ Bi and ~a′ ∈ B′i there are s, s′ ∈ X s.t. M[ ~B/~P ]�{s[~a/~u ]} ψ
′
i

andM[ ~B′/~P ]�{s′[~a′/~u ]} θ
′
i. Let

M′ :=M[ ~A/~P ], where Ai :=

Bi if Pi occurs in ψ′

B′i if Pi does not occur in ψ′.

Because none of Pi can occur in both ψ′ and θ′, we clearly have M′ �X ψ′

andM′ �X θ′. HenceM′ �X ψ′ ∧ θ′, i.e. M′ �X(ψ ∧ θ)′.
Let i ≤ n and let ~a ∈ Ai. Suppose first that Pi occurs in ψ′. Now ~a ∈ Bi, and
thus there is s ∈ X s.t. M[ ~B/~P ]�{s[~a/~u ]} ψ

′
i. Relation variables not occurring

in ψ′ do not occur in ψ′i either, and thusM′ �{s[~a/~u ]} ψ
′
i. Because (~t1 ⊆ ~t2)i

does not occur in θ andM′ �X θ′, by Claim I we haveM′ �{s[~a/~u ]} θ
′
i. Thus

M′ �{s[~a/~u ]} ψ
′
i ∧ θ′i, i.e. M′ �{s[~a/~u ]}(ψ ∧ θ)′i. The case when Pi occurs in θ′

is analogous. Finally suppose that Pi does not occur in ψ′ nor θ′, whence
(~t1 ⊆ ~t2)i does not occur in ψ ∧ θ. SinceM′ �X(ψ ∧ θ)′, we can choose any
s ∈ X ( 6= ∅), and then by Claim I we haveM′ �{s[~a/~u ]}(ψ ∧ θ)′i.

Suppose then that there are A1, . . . , An ⊆ Mk s.t. M′ �X(ψ ∧ θ)′, and for
every i ≤ n and ~a ∈ Ai there exists s ∈ X s.t. M′ �{s[~a/~u ]}(ψ ∧ θ)′i. Now we
haveM′ �X ψ′ ∧ θ′, i.e. M′ �X ψ′ andM′ �X θ′. Because (ψ ∧ θ)′i = ψ′i ∧ θ′i,
for every i ≤ n and ~a ∈ Ai there exists s ∈ X such thatM′ �{s[~a/~u ]} ψ

′
i. Since

also M′ �X ψ′, by the inductive hypothesis M�X ψ. Analogously we have
M�X θ, and thusM�X ψ ∧ θ.
• Let µ = ψ ∨ θ. Suppose first that M�X ψ ∨ θ. Thus there are Y, Y ′ ⊆ X

s.t. Y ∪ Y ′ = X, M�Y ψ and M�Y ′ θ. By the inductive hypothesis there
are B1, . . . , Bn, B

′
1, . . . , B

′
n ⊆Mk s.t. M[ ~B/~P ]�Y ψ′ andM[ ~B′/~P ]�Y ′ θ′. In

addition, for every i ≤ n, ~a ∈ Bi and ~a′ ∈ B′i there exist s ∈ Y and s′ ∈ Y ′
s.t. M[ ~B/~P ]�{s[~a/~u ]} ψ

′
i andM[ ~B′/~P ]�{s′[~a′/~u ]} θ

′
i. Let

M′ :=M[ ~A/~P ], where Ai :=

Bi if Pi occurs in ψ′

B′i if Pi does not occur in ψ′.
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Because none of Pi can occur in both ψ′ and θ′, we clearly have M′ �Y ψ′

andM′ �Y ′ θ′. ThereforeM′ �X ψ′ ∨ θ′, i.e. M′ �X(ψ ∨ θ)′.
Let i ≤ n and ~a ∈ Ai. Suppose first that Pi occurs in ψ′. Now Ai = Bi,
and thus, by the inductive hypothesis, there is s ∈ Y (⊆ X) such that
M[ ~B/~P ]�{s[~a/~u ]} ψ

′
i. Relation variables not occurring in ψ′ do not occur in

ψ′i either, and thus M′ �{s[~a/~u ]} ψ
′
i, i.e. M′ �{s[~a/~u ]}(ψ ∨ θ)′i. The case when

Pi occurs in θ′ is analogous. Suppose then that Pi does not occur in ψ′ nor
θ′, whence (~t1 ⊆ ~t2)i does not occur in ψ ∨ θ. SinceM′ �X(ψ ∨ θ)′, we can
choose any s ∈ X (6= ∅), and then by Claim I we haveM′ �{s[~a/~u ]}(ψ ∨ θ)′i.

Suppose then that there are A1, . . . , An ⊆ Mk s.t. M′ �X(ψ ∨ θ)′, and for
all i ≤ n and ~a ∈ Ai there is si,~a ∈ X s.t. M′ �{si,~a[~a/~u ]}(ψ ∨ θ)′i. Since
M′ �X ψ′ ∨ θ′, there are Y, Y ′ ⊆ X s.t. Y ∪Y ′ = X,M′ �Y ψ′ andM′ �Y ′ θ′.
We define the teams Yi and Y ′i , for every i ≤ n, and the teams Z,Z ′ ⊆ X:

Yi := {si,~a[~a/~u ] | ~a ∈ Ai} if (~t1⊆~t2)i occurs in ψ, and else Yi := ∅.
Y ′i := {si,~a[~a/~u ] | ~a ∈ Ai} if (~t1⊆~t2)i occurs in θ, and else Y ′i := ∅.
Z := Y ∪ (

⋃
i≤n

Yi � dom(X)), Z ′ := Y ′ ∪ (
⋃
i≤n

Y ′i � dom(X)).

We then show that for every i ≤ n it holds that M′ �Yi
ψ′i. Let i ≤ n. If

(~t1⊆~t2)i does not occur in ψ, then Yi = ∅ whence triviallyM′ �Yi
ψ′i. Suppose

then that (~t1⊆~t2)i occurs in ψ. Now (ψ ∨ θ)′i = ψ′i and thusM′ �{r} ψ′i for
every r ∈ Yi. By flatness we thus have M′ �Yi

ψ′i. Since M′ �Y ψ′ and
M′ �Yi

ψ′i for every i ≤ n, we can apply Claim II for each i ≤ n to obtain
M′ �Z ψ′. By a symmetric argumentationM′ �Z′ θ′.
We then show thatM�Z ψ. We may suppose that Z 6= ∅, since else trivially
M�Z ψ. Let i ≤ n and let ~a ∈ Ai. Suppose first that (~t1⊆~t2)i occurs
in ψ. Now (ψ ∨ θ)′i = ψ′i and thus there is si,~a ∈ X s.t. M′ �{si,~a[~a/~u ]} ψ

′
i.

By the definition of Yi we must have si,~a[~a/~u ] ∈ Yi and moreover si,~a ∈ Z.
Suppose then that (~t1⊆~t2)i does not occur in ψ. Then we can choose any
assignment s ∈ Z ( 6= ∅), whence by Claim I we haveM′ �{s[~a/~u ]} ψ

′
i. Hence,

by the inductive hypothesis,M�Z ψ. We can analogously deduceM�Z′ θ.
Since Z ∪ Z ′ = X, we haveM�X ψ ∨ θ.
• Let µ = ∃xψ. Suppose first thatM�X ∃xψ, i.e. there is F : X → P∗(M),

s.t. M�X[F/x] ψ. By the inductive hypothesis there are A1, . . . , An ⊆Mk s.t.
M′ �X[F/x] ψ

′, whereM′ :=M[ ~A/~P ]. Moreover, for all i≤n and ~a∈Ai there
is r ∈ X[F/x] s.t. M′ �{r[~a/~u ]} ψ

′
i. SinceM′ �X[F/x] ψ

′, we haveM′ �X ∃xψ′,
i.e. M′ �X(∃xψ)′.
Let i ≤ n and let ~a ∈ Ai. Now there is r ∈ X[F/x] s.t. M′ �{r[~a/~u ]} ψ

′
i.

Since r ∈ X[F/x], there is s ∈ X and b ∈ F (s) s.t. r = s[b/x]. Let F ′ :
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{s[~a/~u ]} → P∗(M) s.t. s[~a/~u ] 7→ {b}. Since {s[~a/~u ]}[F ′/x] = {r[~a/~u ]}, we
haveM′ �{s[~a/~u ]} ∃xψ′i, i.e. M′ �{s[~a/~u ]}(∃xψ)′i.

Suppose then that there are A1, . . . , An ⊆ Mk s.t. M′ �X(∃xψ)′, and for
every i ≤ n and ~a ∈ Ai there is si,~a ∈ X s.t. M′ �{si,~a[~a/~u ]}(∃xψ)′i. Now
there is F : X → P∗(M) s.t. M�X[F/x] ψ

′. Furthermore, for each i ≤ n and
~a ∈ Ai there is Fi,~a : {si,~a[~a/~u ]} → P∗(M) s.t. M′ �{si,~a[~a/~u ]}[Fi,~a/x] ψ

′
i. For

each i ≤ n let
X ′i :=

⋃
~a∈Ai

{si,~a[~a/~u ]}[Fi,~a/x].

By flatnessM′ �X′i ψ
′
i for each i ≤ n. Let F ′ : X → P∗(M) s.t.

s 7→ F (s) ∪ {b ∈ Fi,~a(si,~a[~a/~u ]) | i ≤ n, ~a ∈ Ai s.t. s = si,~a}.

By the definitions of F ′ and X ′i (i ≤ n) we have

X[F/x] ∪
(⋃
i≤n

X ′i � dom(X[F/x])
)

= X[F ′/x].

Thus by applying Claim II for each i ≤ n, we obtainM′ �X[F ′/x] ψ
′. More-

over, now for each i ≤ n and ~a ∈ Ai there is r ∈ X[F ′/x] s.t. M′ �{r[~a/~u ]} ψ
′
i.

Thus, by the inductive hypothesis,M�X[F ′/x] ψ, i.e. M�X ∃xψ.
• Let µ = ∀xψ. Suppose first thatM�X ∀xψ, i.e. M�X[M/x] ψ. By the in-

ductive hypothesis there are A1, . . . , An ⊆Mk s.t. M′ �X[M/x] ψ
′. Moreover,

for each i ≤ n and ~a ∈ Ai there exists r ∈ X[M/x] s.t. M′ �{r[~a/~u ]} ψ
′
i. Now

M′ �X ∀xψ′, i.e. M′ �X(∀xψ)′.
Let i ≤ n and let ~a ∈ Ai. Now there is r ∈ X[M/x] s.t. M′ �{r[~a/~u ]} ψ

′
i. Since

r ∈ X[M/x], there is s ∈ X and b ∈ M s.t. r = s[b/x]. Let F : {s[~a/~u ]} →
P∗(M) s.t. s[~a/~u ] 7→ {b}. Now {s[~a/~u ]}[F/x] = {r[~a/~u ]}, and there-
foreM′ �{s[~a/~u ]} ∃xψ′i. SinceM′ �X ∀xψ′, by flatness and locality we have
M′ �{s[~a/~u ]} ∀xψ′. HenceM′ �{s[~a/~u ]} ∃xψ′i ∧∀xψ′, i.e. M′ �{s[~a/~u ]}(∀xψ)′i.

Suppose then that there are A1, . . . , An ⊆ Mk s.t. M′ �X(∀xψ)′, and that
for each i ≤ n and ~a ∈ Ai there is s ∈ X s.t. M′ �{s[~a/~u ]}(∀xψ)′i. Now we
haveM′ �X ∀xψ′, i.e. M′ �X[M/x] ψ

′.
Let i ≤ n and let ~a ∈ Ai. Now there is s ∈ X s.t. M′ �{s[~a/~u ]}∃xψ′i ∧
∀xψ′ and thus there is F : {s[~a/~u ]} → P∗(M) s.t. M′ �{s[~a/~u ]}[F/x] ψ

′
i.

Let b ∈ F (s[~a/~u]) and let r := s[b/x], whence r ∈ X[M/x] and r[~a/~u] ∈
{s[~a/~u ]}[F/x]. Now by flatnessM′ �{r[~a/~u]} ψ

′
i. Therefore, by the inductive

hypothesis,M�X[M/x] ψ, i.e. M�X ∀xψ.
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