
Annals of Pure and Applied Logic 163 (2012) 68–84

Contents lists available at SciVerse ScienceDirect

Annals of Pure and Applied Logic

journal homepage: www.elsevier.com/locate/apal

Inclusion and exclusion dependencies in team semantics — On some
logics of imperfect information
Pietro Galliani ∗
Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Institute for Logic, Language and Computation, Universiteit van Amsterdam, P.O. Box 94242, 1090
GE AMSTERDAM, The Netherlands

a r t i c l e i n f o

Article history:
Received 7 June 2011
Received in revised form 5 August 2011
Accepted 17 August 2011
Available online 25 September 2011
Communicated by P.J. Scott

MSC:
03B60
03C80
03C85

Keywords:
Dependence
Independence
Imperfect information
Team semantics
Model theory

a b s t r a c t

We introduce some new logics of imperfect information by adding atomic formulas corre-
sponding to inclusion and exclusion dependencies to the language of first order logic. The
properties of these logics and their relationships with other logics of imperfect informa-
tion are then studied. As a corollary of these results, we characterize the expressive power
of independence logic, thus answering an open problem posed in Grädel and Väänänen,
2010 [9].

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The notions of dependence and independence are among themost fundamental ones considered in logic, inmathematics,
and inmany of their applications. For example, one of themain aspects inwhichmodern predicate logic can be thought of as
superior to medieval term logic is that the former allows for quantifier alternation, and hence can express certain complex
patterns of dependence and independence between variables that the latter cannot easily represent.

Logics of imperfect information are a family of logical formalisms whose development arose from the observation that not
all possible patterns of dependence and independence between variables may be represented in first order logic. Among
these logics, dependence logic [20] is perhaps the one most suited for the analysis of the notion of dependence itself, since it
isolates it by means of dependence atoms which correspond, in a very exact sense, to functional dependencies of the exact
kind studied in database theory. The properties of this logic, and of a number of variants and generalizations thereof, have
been the object of much research in recent years, and we cannot hope to give here an exhaustive summary of the known
results. We will content ourselves, therefore, to recall in Section 2.1 those that will be of particular interest for the rest of
this work.

Independence logic [9] is a recent variant of dependence logic. In this new logic, the fundamental concept that is
being added to the first order language is not functional dependence, as for the case of dependence logic proper, but

∗ Tel.: +31 020 525 8260; fax: +31 20 525 5206.
E-mail address: pgallian@gmail.com.

0168-0072/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.apal.2011.08.005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82153323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.apal.2011.08.005
http://www.elsevier.com/locate/apal
http://www.elsevier.com/locate/apal
mailto:pgallian@gmail.com
http://dx.doi.org/10.1016/j.apal.2011.08.005

P. Galliani / Annals of Pure and Applied Logic 163 (2012) 68–84 69

informational independence; as we will see, this is achieved by considering independence atoms y ⊥x z, whose informal
meaning corresponds to the statement according to which, for any fixed value of x, the sets of the possible values for y and z
are independent. Just as dependence logic allows us to reason about the properties of functional dependence, independence
logic does the same for this notion. Much is not known at the moment about independence logic; in particular, one open
problem mentioned in [9] concerns the expressive power of this formalism over open formulas.

In this work, we will find an answer to this problem; and furthermore, as a means to do so, we will study some logics
obtained by extending the language of first order logic along the same lines of dependence or independence logic.

2. Dependence and independence logic

2.1. Dependence logic

Dependence logic [20] is, together with independence-friendly (IF) logic [10,19], one of the most widely studied logics of
imperfect information. In brief, it can be described as the extension of first order logic obtained by adding dependence atoms
=(t1 . . . tn) to its language, with the informal meaning of ‘‘The value of the term tn is functionally determined by the values
of the terms t1 . . . tn−1’’.

We will later recall the full definition of the team semantics of dependence logic, an adaptation of Hodges’ compositional
semantics for IF logic [12], and one of the three equivalent semantics for dependence logic described in [20]. It is worth
noting already here, though, that the key difference between Hodges semantics and the usual Tarskian semantics is that in
the former the satisfaction relation |H associates to every first order model1 M and formula φ a set of teams, that is, a set of
sets of assignments, instead of just a set of assignments as in the latter.

As discussed in [13], the fundamental intuition behind Hodges’ semantics is that a team is a representation of an
information state of some agent: given a model M , a team X , and a suitable formula φ, the expression M |HX φ asserts
that, from the information that the ‘‘true’’ assignment s belongs to the team X , it is possible to infer that φ holds, or, in
game-theoretic terms, that the verifier has a strategy τ which is winning for all plays of the game G(φ)which start from any
assignment s ∈ X .

The satisfaction conditions for dependence atoms are then given by the following semantic rule TS-dep.

Definition 2.1 (Dependence Atoms). LetM be a first order model, let X be a team over it, let n ∈ N, and let t1 . . . tn be terms
over the signature ofM and with variables in Dom(X). Then the following holds.

TS-dep: M |HX=(t1 . . . tn) if and only if, for all s, s′ ∈ X such that ti⟨s⟩ = ti⟨s′⟩ for i = 1 . . . n − 1, tn⟨s⟩ = tn⟨s′⟩.

This rule corresponds closely to the definition of functional dependency commonly used in database theory [4]: more
precisely, if X(t1 . . . tn) is the relation {(t1⟨s⟩, . . . , tn⟨s⟩) : s ∈ X} then

M |HX=(t1 . . . tn) ⇔ X(t1 . . . tn) |H {t1 . . . tn−1} → tn,

where the right-hand expression states that, in the relation X(t1 . . . tn), the value of the last term tn is a function of the values
of t1 . . . tn−1.

The following known results will be of some use for the rest of this work.

Theorem 2.2 (Locality [20]). Let M be a first order model and let φ be a dependence logic formula over the signature of M with
free variables in v⃗. Then, for all teams X with domain w⃗ ⊇ v⃗, if X ′ is the restriction of X to v⃗, then

M |HX φ ⇔ M |HX ′ φ.

As an aside, it is worth pointing out that the above property does not hold for most variants of IF logic: for example, if
Dom(M) = {0, 1} and X = {(x := 0, y := 0), (x := 1, y := 1)}, it is easy to see that M |HX (∃z/y)z = y, even though for
the restriction X ′ of X to Free((∃z/y)z = y) = {y} we have that M |̸HX ′ (∃z/y)z = y. This is a typical example of signalling
[10,14], one of the most peculiar and, perhaps, problematic aspects of IF logic.

Theorem 2.3 (Downwards Closure Property [20]). Let M be a model, let φ be a dependence logic formula over the signature of
M, and let X be a team over M with domain v⃗ ⊇ Free(φ) such that M |HX φ. Then, for all X ′

⊆ X,

M |HX ′ φ.

Theorem 2.4 (Dependence Logic Sentences andΣ1
1 [20]). For every dependence logic sentence φ, there exists a Σ1

1 sentence Φ
such that

M |H{∅} φ ⇔ M |H Φ.

Conversely, for everyΣ1
1 sentenceΦ , there exists a dependence logic sentence φ such that the above holds.

1 In all of this paper, I will assume that first order models have at least two elements in their domain.

70 P. Galliani / Annals of Pure and Applied Logic 163 (2012) 68–84

Theorem 2.5 (Dependence Logic Formulas andΣ1
1 [16]). For every dependence logic formula φ and every tuple of variables

x⃗ ⊇ Free(φ), there exists a Σ1
1 sentence Φ(R), where R is a |x⃗|-ary relation which occurs only negatively in Φ , such that, for

all teams X with domain x⃗ and for R = {s(x⃗) : s ∈ X}, it holds that

M |HX φ ⇔ M |H Φ(R).

Conversely, for all such Σ1
1 sentences, there exists a dependence logic formula φ such that the above holds with respect to all

nonempty teams X.

2.2. Independence logic

Independence logic [9] is a recently developed logic which substitutes the dependence atoms of dependence logic with
independence atoms t⃗2 ⊥t⃗1 t⃗3, where t⃗1 . . . t⃗3 are tuples of terms (not necessarily of the same length).

The intuitive meaning of such an atom is that the values of the tuples t⃗2 and t⃗3 are informationally independent for any
fixed value of t⃗1; or, in other words, that all information about the value of t⃗3 that can be possibly inferred from the values
of t⃗1 and t⃗2 can already be inferred from the value of t⃗1 alone.

More formally, the definition of team semantics for the independence atom is as follows.

Definition 2.6 (Independence Atoms). Let M be a first order model, let X be a team over it, and let t⃗1, t⃗2 and t⃗3 be three
finite tuples of terms (not necessarily of the same length) over the signature of M and with variables in Dom(X). Then the
following holds.

TS-indep: M |HX t⃗2 ⊥t⃗1 t⃗3 if and only if, for all s, s′ ∈ X with t⃗1⟨s⟩ = t⃗1⟨s⟩, there exists an s′′ ∈ X such that
t⃗1⟨s′′⟩t⃗2⟨s′′⟩ = t⃗1⟨s⟩t⃗2⟨s⟩ and t⃗1⟨s′′⟩t⃗3⟨s′′⟩ = t⃗1⟨s′⟩t⃗3⟨s′⟩.

We refer to [9] for a discussion of this interesting class of atomic formulas and of the resulting logic. Herewe onlymention
a few results, found in that paper, which will be useful for the rest of this work2.

Theorem 2.7. Dependence atoms are expressible in terms of independence atoms:more precisely, for all suitablemodelsM, teams
X, and terms t1 . . . tn,

M |HX=(t1 . . . tn) ⇔ M |HX tn ⊥t1...tn−1 tn.

Theorem 2.8. Independence logic is equivalent to Σ1
1 (and therefore, by Theorem 2.4, to dependence logic) over sentences: in

other words, for every sentence φ of independence logic there exists a sentenceΦ of existential second order logic such that

M |H{∅} φ ⇔ M |H Φ,

and for every suchΦ there exists a φ such that the above holds.

There is no analogue of Theorem 2.3 for independence logic, however, as the classes of teams corresponding to
independence atoms are not necessarily downwards closed: for example, according Definition 2.6, the formula x ⊥∅ y holds
in the team {(x := a, y := b) : a, b ∈ {0, 1}} but not in its subteam {(x := 0, y := 0), (x := 1, y := 1)}.

The problem of finding a characterization similar to that of Theorem 2.5 for the classes of teams definable by formulas of
independence logic was left open by Grädel and Väänänen, who concluded their paper by stating that [9]

The main open question raised by the above discussion is the following, formulated for finite structures:

Open Problem: Characterize the NP properties of teams that correspond to formulas of independence logic.

In this paper, an answer to this question will be given, as a corollary of an analogous result for a new logic of imperfect
information.

3. Team semantics

3.1. First order (team) logic, in two flavors

In this subsection, we will present and briefly discuss the team semantics for first order logic, laying the groundwork for
reasoning about its extensions while avoiding, as far as we are able to do so, all forms of semantical ambiguity.

As we will see, some special care is required here, since certain rules which are equivalent with respect to dependence
logic proper will not be so with respect to these new logics.

But let us begin by recalling some basic definitions from [20].

2 Another interesting result about independence logic, pointed out by Fredrik Engström in [6], is that the semantic rule for independence atoms
corresponds to that of embedded multivalued dependencies, in the same sense in which the one for dependence atoms corresponds to functional ones.

P. Galliani / Annals of Pure and Applied Logic 163 (2012) 68–84 71

Definition 3.1 (Team). LetM be a first order model, and let v⃗ be a tuple of variables.3 Then a team X forM with domain v⃗ is
simply a set of assignments with domain v⃗ overM .

Definition 3.2 (From Teams to Relations). Let M be a first order model, let X be a team for M with domain v⃗, and let
t⃗ = t1 . . . tk be a tuple of terms with variables in v⃗. Then we write X(t⃗) for the relation

X(t⃗) = {(t1⟨s⟩ . . . tk⟨s⟩) : s ∈ X}.

Furthermore, if w⃗ is contained in v⃗ we will write Relw⃗(X) for X(w⃗); and, finally, if Dom(X) = v⃗ we will write Rel(X) for
Relv⃗(X).

Definition 3.3 (Team Restrictions). Let X be any team in any model, and let V be a set of variables contained in Dom(X).
Then

X�V = {s�V : s ∈ X},

where s�V is the restriction of s to V , that is, the only assignment s′ with domain V such that s′(v) = s(v) for all v ∈ V .

The team semantics for the first order fragment of dependence logic is then defined as follows.

Definition 3.4 (Team Semantics for First Order Logic [12,20])). Let M be a first order model, let φ be a first order formula in
negation normal form, and let X be a team overM with domain v⃗ ⊇ Free(φ). Then the following hold.

TS-atom: If φ is a first order literal,M |HX φ if and only if, for all assignments s ∈ X ,M |Hs φ in the usual first order sense.
TS-∨L: If φ is ψ ∨ θ , M |HX φ if and only if there exist two teams Y and Z such that X = Y ∪ Z , M |HY ψ and M |HZ θ .
TS-∧: If φ is ψ ∧ θ , M |HX φ if and only if M |HX ψ and M |HX θ .
TS-∃S : If φ is ∃xψ , M |HX φ if and only if there exists a function F : X → Dom(M) such thatM |HX[F/x] ψ , where

X[F/x] = {s[F(s)/x] : s ∈ X}.

TS-∀: If φ is ∀xψ , M |HX φ if and only ifM |HX[M/x] ψ , where

X[M/x] = {s[m/x] : s ∈ X,m ∈ Dom(M)}.

Over singleton teams, this semantics coincides with the usual one for first order logic.

Proposition 3.5 ([20]). Let M be a first order model, let φ be a first order formula in negation normal form over the signature of
M, and let s be an assignment with Dom(s) ⊇ Free(φ). Then M |H{s} φ if and only if M |Hs φ with respect to the usual Tarski
semantics for first order logic.

Proposition 3.6 ([20]). Let M be a first order model, let φ be a first order formula in negation normal form over the signature of
M, and let X be a team with Dom(X) ⊇ Free(φ). Then M |HX φ if and only if, for all assignments s ∈ X, M |H{s} φ.

These two propositions show that, for first order logic, all the above machinery is quite unnecessary. We have no need
to carry around such complex objects as teams, since we can consider the assignments in a team individually!

However, things change if we add dependence atoms = (t1 . . . tn) to our language, with the semantics of rule TS-dep
(Definition 2.1 here). In the resulting formalism, which is precisely dependence logic as defined in [20], not all satisfaction
conditions over teams can be reduced to satisfaction conditions over assignments: for example, a ‘‘constancy atom’’ =(x)
holds in a team X if and only if s(x) = s′(x) for all s, s′ ∈ X , and verifying this condition clearly requires checking pairs of
assignments at least!

When studying variants of dependence logic, similarly, it is necessary to keep in mind that semantic rules which are
equivalent with respect to dependence logic proper may not be equivalent with respect to these new formalisms. In
particular, two alternative definitions of disjunction and existential quantification exist which are of special interest for
this work’s purposes.

Definition 3.7 (Alternative Rules for Disjunctions and Existentials). LetM , X , φ,ψ , and θ be as usual. Then the following hold.

TS-∨S : If φ is ψ ∨ θ , M |HX φ if and only if there exist two teams Y and Z such that X = Y ∪ Z , Y ∩ Z = ∅, M |HY ψ and
M |HZ θ .

TS-∃L: If φ is ∃xψ , M |HX φ if and only if there exists a function H : X → P (Dom(M))\∅ such that M |HX[H/x] ψ , where
X[H/x] = {s[m/x] : s ∈ X,m ∈ H(s)}.4

3 Or, equivalently, a set of variables; but having a fixed ordering of the variables as part of the definition of team will simplify the definition of the
correspondence between teams and relations. With an abuse of notation, we will identify this tuple of variables with the underlying set whenever it is
expedient to do so.
4 The rule TS-∃L is also discussed in [6], in which it is shown that it arises naturally from treating the existential quantifier as a generalized quantifier [18,

17] for dependence logic.

72 P. Galliani / Annals of Pure and Applied Logic 163 (2012) 68–84

The subscripts ·S and ·L of these rules and of the corresponding ones of Definition 3.4 allow us to discriminate between the
lax operators∨L and ∃L and the strict ones∨S and ∃S . From the point of view of game-theoretic semantics, it is not difficult to
verify that the choice between lax and strict semantics corresponds to the choice between allowing and disallowing players
from using nondeterministic strategies; but, even at a glance, this grouping of the rules is justified by the fact that TS-∨S and
TS-∃S appear to be stronger conditions than TS-∨L and TS-∃L. We can then define two alternative semantics for first order
logic (and for its extensions, of course) as follows.

Definition 3.8 (Lax and Strict Semantics). The relation M |H
L
X φ, where M ranges over all first order models, X ranges over

all teams, and φ ranges over all formulas with free variables in Dom(X), is defined as the relationM |HX φ of Definition 3.4
(with additional rules for further atomic formulas as required), but substituting rule TS-∃S with rule TS-∃L. Similarly, the
relationM |H

S
X φ is defined as the relationM |HX φ of Definition 3.4, but substituting rule TS-∨L with rule TS-∨S .

For the cases of first order and dependence logic, lax and strict semantics are equivalent.

Proposition 3.9. Let φ be any formula of dependence logic. Then

M |H
S
X φ ⇔ M |H

L
X φ

for all suitable models M and teams φ.

Proof. This is easily verified by structural induction over φ, using the downwards closure property (Theorem 2.3) to take
care of disjunctions and existentials (and, moreover, applying the Axiom of Choice for the case of existentials). �

As we will argue in Section 4.2, for the logics that we will study for which a difference exists between lax and strict
semantics the former will be the most natural choice; therefore, from this point until the end of this work, the symbol |H
written without superscripts will stand for the relation |H

L.

3.2. Constancy logic

In this section, we will present and examine a simple fragment of dependence logic. This fragment, which we will call
constancy logic, consists of all the formulas of dependence logic in which only dependence atoms of the form =(t) occur; or,
equivalently, it can be defined as the extension of (team) first order logic obtained by adding constancy atoms to it, with the
semantics given by the following definition.

Definition 3.10 (Constancy Atoms). LetM be a first ordermodel, let X be a teamover it, and let t be a termover the signature
ofM and with variables in Dom(X). Then the following holds.

TS-const: M |HX=(t) if and only if, for all s, s′ ∈ X , t⟨s⟩ = t⟨s′⟩.

Clearly, constancy logic is contained in dependence logic. Furthermore, over open formulas it is more expressive than first
order logic proper, since, as already mentioned, the constancy atom =(x) is a counterexample to Proposition 3.6.

The question then arises whether constancy logic is properly contained in dependence logic, or if it coincides with it. This
will be answered through the following results.

Proposition 3.11. Let φ be a constancy logic formula, let z be a variable not occurring in φ, and let φ′ be obtained from φ by
substituting one instance of =(t) with the expression z = t.

Then

M |HX φ ⇔ M |HX ∃z(=(z) ∧ φ′).

Proof. The proof is an easy induction on φ. �

As a corollary of this result, we get the following normal form theorem for constancy logic5.

Corollary 3.12. Let φ be a constancy logic formula. Then φ is logically equivalent to a constancy logic formula of the form

∃z1 . . . zn

n

i=1

=(zi) ∧ ψ(z1 . . . zn)

for some tuple of variables z⃗ = z1 . . . zn and some first order formula ψ .

5 This normal form theorem is very similar to the one of dependence logic proper found in [20]. See also [5] for a similar, but not identical result, developed
independently, which Arnaud Durand and Juha Kontinen use in that paper in order to characterize the expressive powers of subclasses of dependence logic
in terms of the maximum allowed width of their dependence atoms.

P. Galliani / Annals of Pure and Applied Logic 163 (2012) 68–84 73

Proof. Repeatedly apply Proposition 3.11 to ‘‘push out’’ all constancy atoms from φ, thus obtaining a formula, equivalent to
it, of the form

∃z1(=(z1) ∧ ∃z2(= (z2) ∧ · · · ∧ ∃zn(=(zn) ∧ ψ(z1 . . . zn)))

for some first order formula ψ(z1 . . . zn). It is then easy to see, from the semantics of our logic, that this is equivalent to

∃z1 . . . zn(=(z1) ∧ · · · ∧ =(zn) ∧ ψ(z1 . . . zn)),

as required. �

The following result shows that, over sentences, constancy logic is precisely as expressive as first order logic.

Corollary 3.13. Let φ = ∃z⃗

i =(zi) ∧ ψ(z⃗)

be a constancy logic sentence in normal form.

Then φ is logically equivalent to ∃z⃗ψ(z⃗).

Proof. By the rules of our semantics,M |H{∅} ψ if and only if there exists a family A1 . . . An of nonempty sets of elements in
Dom(M) such that, for

X = {(z1 := m1 . . . zn := mn) : (m1 . . .mn) ∈ A1 × · · · × An},

it holds that M |HX ψ . But ψ is first order, and therefore, by Proposition 3.6, this is the case if and only if for all
m1 ∈ A1, . . . ,mn ∈ An it holds thatM |H{(z1:=m1,...zn:=mn)} ψ .

But then M |H{∅} φ if and only if there exist m1 . . .mn such that this holds6; and therefore, by Proposition 3.5,
M |H{∅} φ if and only if M |H∅ ∃z1 . . . znψ(z1 . . . zn) according to Tarski’s semantics, or, equivalently, if and only if
M |H{∅} ∃z1 . . . znψ(z1 . . . zn) according to team semantics. �

Since, by Theorem 2.4, dependence logic is strictly stronger than first order logic over sentences, this implies that constancy
logic is strictly weaker than dependence logic over sentences (and, since sentences are a particular kind of formulas, over
formulas too).

The relation between first order logic and constancy logic, in conclusion, appears somewhat similar to that between
dependence logic and independence logic; that is, in both cases we have a pair of logics which are reciprocally translatable
on the level of sentences, but such that one of them is strictlyweaker than the other on the level of formulas. This discrepancy
between translatability on the level of sentences and translatability on the level of formulas is, in the opinion of the author,
one of the most intriguing aspects of logics of imperfect information, and it deserves further investigation.

4. Inclusion and exclusion in logic

4.1. Inclusion and exclusion dependencies

Functional dependencies are the forms of dependency which attracted the most interest from database theorists, but
they certainly are not the only ones ever considered in that field.

Therefore, studying the effect of substituting the dependence atoms with ones corresponding to other forms of
dependency, and examining the relationship between the resulting logics, may be, in the author’s opinion, at least, a very
promising, and hitherto not sufficiently explored, direction of research in the field of logics of imperfect information.7

The present paper will, for the most part, focus on inclusion [8,2] and exclusion [3] dependencies and on the properties of
the corresponding logics of imperfect information. Let us start by recalling and briefly discussing these dependencies.

Definition 4.1 (Inclusion Dependencies). Let R be a relation, and let x⃗, y⃗ be tuples of attributes of R of the same length. Then
R |H x⃗ ⊆ y⃗ if and only if R(x⃗) ⊆ R(y⃗), where

R(z⃗) = {r(z⃗) : r is a tuple in R}.

In other words, an inclusion dependency x⃗ ⊆ y⃗ states that all values taken by the attributes x⃗ are also taken by the
attributes y⃗.

Exclusion dependencies [3], instead, assert that two tuples of attributes have no values in common.

Definition 4.2 (Exclusion Dependencies). Let R be a relation, and let x⃗, y⃗ be tuples of attributes of R of the same length. Then
R |H x⃗ | y⃗ if and only if R(x⃗) ∩ R(y⃗) = ∅, where R(x⃗) and R(y⃗) are as stated in the previous definition.

6 Indeed, if this is the case we can just choose A1 = {m1}, . . . , An = {mn}, and conversely if A1 . . . An exist with the required properties we can simply
select arbitrary elements of them form1 . . .mn .
7 Apart from thepresent paper, [6],which introducesmultivalued dependence atoms, is also a step in this direction. The resulting ‘‘multivalued dependence

logic’’ is easily seen to be equivalent to independence logic.

74 P. Galliani / Annals of Pure and Applied Logic 163 (2012) 68–84

Wewill not discuss here the significance of inclusion and exclusion dependencies in the context of database theory, nor the
results that were found in that area of study about their properties.

What interests us here is that it is not difficult to transfer the definitions of inclusion and exclusion dependencies to team
semantics, thus obtaining inclusion atoms and exclusion atoms.

Definition 4.3 (Inclusion and Exclusion Atoms). LetM be a first order model, let t⃗1 and t⃗2 be two finite tuples of terms of the
same length over the signature of M , and let X be a team whose domain contains all variables occurring in t⃗1 and t⃗2. Then
the following hold.

TS-inc: M |HX t⃗1 ⊆ t⃗2 if and only if for every s ∈ X there exists an s′ ∈ X such that t⃗1⟨s⟩ = t⃗2⟨s′⟩.
TS-exc: M |HX t⃗1 | t⃗2 if and only if, for all s, s′ ∈ X , t⃗1⟨s⟩ ≠ t⃗2⟨s′⟩.

We will also consider another kind of atom, which can be seen as a symmetric version of inclusion.

Definition 4.4 (Equiextension Atoms). Let M be a first order model, let t⃗1 and t⃗2 be two finite tuples of terms of the same
length over the signature of M , and let X be a team whose domain contains all variables occurring in t⃗1 and t⃗2. Then the
following holds.

TS-equ: M |HX t⃗1 ◃▹ t⃗2 if and only if X(t⃗1) = X(t⃗2).

It is easy to see that t⃗1 ◃▹ t⃗2 is equivalent to t⃗1 ⊆ t⃗2 ∧ t⃗2 ⊆ t⃗1 and that it is strictly weaker than the first order formula

t⃗1 = t⃗2 :=

i

((t⃗1)i = (t⃗2)i).

As we will see later, it is possible to recover inclusion atoms from equiextension atoms and the connectives of our logics.

4.2. Inclusion logic

In this section, we will begin to examine the properties of inclusion logic, that is, the logic obtained adding to (team) first
order logic the inclusion atoms t⃗1 ⊆ t⃗2 with the semantics of Definition 4.3.

A first, easy observation is that this logic does not respect the downwards closure property. For example, consider the
two assignments s0 = (x := 0, y := 1) and s1 = (x := 1, y := 0); then, for X = {s0, s1} and Y = {s0}, it is easy to see by
rule TS-inc thatM |HX x ⊆ y butM |̸HY x ⊆ y.

Hence, the proof of Proposition 3.9 cannot be adapted to the case of inclusion logic. The question then arises whether
inclusion logic with strict semantics and inclusion logic with lax semantics are different; and, as the next two propositions
will show, this is indeed the case.

Proposition 4.5. There exist a model M, a team X, and two formulas ψ and θ of inclusion logic such that M |H
L
X ψ ∨ θ but

M |̸H
S
X ψ ∨ θ .

Proof. Let Dom(M) = {0, 1, 2, 3, 4}, let X be the team

X =

x y z
s0 0 1 2
s1 1 0 3
s2 4 3 0

,

and let ψ = x ⊆ y, θ = y ⊆ z.

• M |H
L
X ψ ∨ θ :

Let Y = {s0, s1} and Z = {s1, s2}. Then Y ∪ Z = X , Y (x) = {0, 1} = Y (y) and Z(y) = {0, 3} = Z(z).
Hence,M |H

L
Y x ⊆ y andM |H

L
Z y ⊆ z, and thereforeM |H

L
X x ⊆ y ∨ y ⊆ z as required.

• M |̸H
S
X ψ ∨ θ :

Suppose that X = Y ∪ Z , Y ∩ Z = ∅,M |H
S
X x ⊆ y and M |H

S
Z y ⊆ z.

Now, s2 cannot belong in Y , since s2(x) = 4 and si(y) ≠ 4 for all assignments si; therefore, we necessarily have that
s2 ∈ Z . But since M |H

S
Z y ⊆ z, this implies that there exists an assignment si ∈ Y such that si(z) = s2(y) = 3. The only

such assignment in X is s1, and therefore s1 ∈ Y .
Analogously, s0 cannot belong in Z: indeed, s0(y) = 1 ≠ si(z) for all i ∈ 0 . . . 2. Therefore, s0 ∈ Y ; and since

M |H
S
Y x ⊆ y, there exists an si ∈ Y with si(y) = s0(x) = 0. But the only such assignment in X is s1, and therefore

s1 ∈ Y .
In conclusion, Y = {s0, s1}, Z = {s1, s2} and Y ∩ Z = {s1} ≠ ∅, which contradicts our hypothesis. �

Proposition 4.6. There exist a model M, a team X, and a formula φ of inclusion logic such that M |H
L
X ∃xφ but M |̸H

S
X ∃xφ.

P. Galliani / Annals of Pure and Applied Logic 163 (2012) 68–84 75

Proof. Let Dom(M) = {0, 1}, let X be the team

X =
y z

s0 0 1 ,

and let φ be y ⊆ x ∧ z ⊆ x.

• M |H
L
X ∃xφ:

Let H : X → P (Dom(M)) be such that H(s0) = {0, 1}.
Then

X[H/x] =

y z x
s′0 0 1 0
s′1 0 1 1

,

and hence X[H/x](y), X[H/x](z) ⊆ X[H/x](x), as required.
• M |̸H

S
X ∃xψ:

Let F be any function from X to Dom(M). Then

X[F/x] =
y z x

s′′0 0 1 F(s0)
.

But F(s0) ≠ 0 or F(s0) ≠ 1; and in the first caseM |̸H
S
X[F/x] y ⊆ x, while in the second caseM |̸H

S
X[F/x] z ⊆ x. �

Therefore, when studying the properties of inclusion logic it is necessary to specify whether we are using strict or lax
semantics for disjunction and existential quantification. However, only one of these choices preserves locality in the sense
of Theorem 2.2, as the two following results show.

Proposition 4.7. The strict semantics does not respect locality in inclusion logic (or in any extension thereof). In other words,
there exists a model M, a team X, and two formulas ψ and θ such that M |H

S
X ψ ∨ θ , but for X ′

= X�Free(φ∨ψ) it holds that
M |̸H

S
X ′ ψ ∨ θ instead; and, analogously, there exists a model M, a team X, and a formula ξ such that M |H

S
X ∃xξ , but for

X ′
= X�Free(∃xξ) we have that M |̸H

S
X ′ ∃ξ instead.

Proof. 1. Let Dom(M) = {0 . . . 4}, let ψ and θ be x ⊆ y and y ⊆ z, respectively, and let

X =

x y z u
s0 0 1 2 0
s1 1 0 3 0
s2 1 0 3 1
s3 4 3 0 0

.

Then M |H
S
X ψ ∨ θ ; indeed, for Y = {s0, s1} and Z = {s2, s3}, we have that X = Y ∪ Z , Y ∩ Z = ∅, M |HY ψ , and

M |HZ θ , as required. However, the restriction X ′ of X to Free(ψ ∨ θ) = {x, y, z} is the team considered in the proof of
Proposition 4.5, and, as shown in that proof,M |̸H

S
X ψ ∨ θ .

2. Let Dom(M) = {0, 1}, let ξ be y ⊆ x ∧ z ⊆ x, and let

X =

y z u
s0 0 1 0
s1 0 1 1

.

ThenM |H
S
X ∃xξ ; indeed, for F : X → Dom(M) defined as

F(s0) = 0;
F(s1) = 1,

we have that

X[F/x] =

y z u x
s′0 0 1 0 0
s′1 0 1 1 1

,

and it is easy to check that this team satisfies ξ . However, the restriction X ′ of X to Free(∃xξ) = {y, z} is the team
considered in the proof of Proposition 4.6, and, again, as shown in that proof,M |̸H

S
X ∃xψ . �

Theorem 4.8 (Inclusion Logic with Lax Semantics is Local). Let M be a first order model, let φ be any inclusion logic formula, and
let V be a set of variables with Free(φ) ⊆ V . Then, for all suitable teams X,

M |H
L
X φ ⇔ M |H

L
X�V
φ.

76 P. Galliani / Annals of Pure and Applied Logic 163 (2012) 68–84

Proof. The proof is by structural induction on φ.
In Section 4.5, Theorem 4.22, wewill prove the same result for an extension of inclusion logic; sowe refer to that theorem

for the details of the proof. �

Since, as we saw, inclusion logic is not downwards closed, by Theorem 2.3, it is not contained in dependence logic. It is
then natural to ask whether dependence logic is contained in inclusion logic, or if dependence and inclusion logic are two
incomparable extensions of first order logic.

This is answered by the following result, and by its corollary.

Theorem 4.9 (Union Closure for Inclusion Logic). Let φ be any inclusion logic formula, let M be a first order model, and let (Xi)i∈I
be a family of teams with the same domain such that M |HXi φ for all i ∈ I . Then, for X =

i∈I Xi, we have that M |HX φ.

Proof. The proof is an easy structural induction over φ. �

Corollary 4.10. There exist constancy logic formulas which are not equivalent to any inclusion logic formula.

Proof. This follows at once from the fact that the constancy atom =(x) is not closed under unions.
Indeed, let M be any model with two elements 0 and 1 in its domain, and consider the two teams X0 = {(x := 0)} and

X1 = {(x := 1)}; thenM |HX0=(x) and M |HX1=(x), butM |̸HX0∪X1=(x). �

Therefore, not only does inclusion logic not contain dependence logic, it does not even contain constancy logic!
Now, by Theorem 2.7, we know that dependence logic is properly contained in independence logic. As the following

result shows, inclusion logic is also (properly, because dependence atoms are expressible in independence logic) contained
in independence logic.

Theorem 4.11. Inclusion atoms are expressible in terms of independence logic formulas.More precisely, an inclusion atom t⃗1 ⊆ t⃗2
is equivalent to the independence logic formula

φ := ∀v1v2z⃗((z⃗ ≠ t⃗1 ∧ z⃗ ≠ t⃗2) ∨ (v1 ≠ v2 ∧ z⃗ ≠ t⃗2) ∨ ((v1 = v2 ∨ z⃗ = t⃗2) ∧ z⃗ ⊥ v1v2)),

where v1, v2, and z⃗ do not occur in t⃗1 or t⃗2 and where, as in [9], z⃗ ⊥ v1v2 is a shorthand for z⃗ ⊥∅ v1v2.

Proof. Suppose thatM |HX t⃗1 ⊆ t⃗2. Then split the team X ′
= X[M/v1v2z⃗] into three teams Y , Z and W as follows.

• Y = {s ∈ X ′
: s(z⃗) ≠ t⃗1⟨s⟩ and s(z⃗) ≠ t⃗2⟨s⟩}.

• Z = {s ∈ X ′
: s(v1) ≠ s(v2) and s(z⃗) ≠ t⃗2⟨s⟩}.

• W = X ′
\(Y ∪ Z) = {s ∈ X ′

: s(z⃗) = t⃗2⟨s⟩ or (s(z⃗) = t⃗1⟨s⟩ and s(v1) = s(v2))}.

Clearly, X ′
= Y ∪ Z ∪ W , M |HY z ≠ t1 ∧ z ≠ t2, andM |HZ v1 ≠ v2 ∧ z ≠ t2; hence, if we can prove that

M |HW ((v1 = v2 ∨ z⃗ = t⃗2)) ∧ z⃗ ⊥ v1v2,

then we can conclude thatM |HX φ, as required.
Now, suppose that s ∈ W and s(v1) ≠ s(v2); then necessarily s(z⃗) = t⃗2, since otherwise we would have that s ∈ Z

instead. Hence, the first conjunct v1 = v2 ∨ z⃗ = t⃗2 is satisfied byW .
Consider two assignments s and s′ in W ; in order to conclude this direction of the proof, we need to show that there

exists an s′′ ∈ W such that s′′(z⃗) = s(z⃗) and s′′(v1v2) = s′(v1v2). There are two distinct cases to examine.

1. If s(z⃗) = t⃗2⟨s⟩, consider the assignment s′′ = s[s′(v1)/v1][s′(v2)/v2]. By construction, s′′ ∈ X ′; and, furthermore, since
s′′(z⃗) = t⃗2⟨s⟩ = t⃗2⟨s′′⟩, s′′ is neither in Y nor in Z . Hence, it is inW , as required.

2. If s(z⃗) ≠ t⃗2⟨s⟩ and s ∈ W , then necessarily s(z⃗) = t⃗1⟨s⟩ and s(v1) = s(v2). Since s ∈ W ⊆ X ′
= X[M/v1v2z⃗], there exists

an assignment o ∈ X such that t⃗1⟨o⟩ = t⃗1⟨s⟩ = s(z⃗); and since M |HX t⃗1 ⊆ t⃗2, there also exists an assignment o′
∈ X

such that t⃗2⟨o′
⟩ = t⃗1⟨o⟩ = s(z⃗). Now, consider the assignment s′′ = o′

[s′(v1)/v1][s′(v2)/v2][s(z⃗)/z⃗]; by construction,
s′′ ∈ X ′, and, since s′′(z⃗) = s(z⃗) = t⃗2⟨o′

⟩ = t⃗2⟨s′′⟩, we have that s′′ ∈ W , that s′′(z⃗) = s(z⃗), and that s′′(v1v2) = s′(v1v2),
as required.

Conversely, suppose thatM |HX φ, let 0 and 1 be two distinct elements of the domain ofM , and let s ∈ X .
By the definition of φ, the fact thatM |HX φ implies that the team X[M/v1v2z⃗] can be split into three teams Y , Z , andW

such that

M |HY z⃗ ≠ t⃗1 ∧ z⃗ ≠ t⃗2;
M |HZ v1 ≠ v2 ∧ z⃗ ≠ t⃗2;
M |HW (v1 = v2 ∨ z⃗ = t⃗2) ∧ z⃗ ⊥ v1v2.

Then consider the assignments h = s[0/v1][0/v2][t⃗1⟨s⟩/z⃗] and h′
= s[0/v1][1/v2][t⃗2⟨s⟩/z⃗].

Clearly, h and h′ are in X[M/v1v2z⃗]. However, neither of them is in Y , since h(z⃗) = t⃗1⟨h⟩ and h′(z⃗) = t⃗2⟨h′
⟩, nor in Z ,

since h(v1) = h(v2) and, again, since h′(z⃗) = t⃗2⟨h′
⟩. Hence, both of them are inW .

But we know that M |HW z⃗ ⊥ v1v2, and thus there exists an assignment h′′
∈ W with h′′(z⃗) = h(z⃗) = t⃗1⟨s⟩ and

h′′(v1v2) = h′(v1v2) = 01.

P. Galliani / Annals of Pure and Applied Logic 163 (2012) 68–84 77

Fig. 1. Translatability relations between logics (with respect to formulas).

Now, since h′′(v1) ≠ h′′(v2), since h′′
∈ W , and since M |HW v1 = v2 ∨ z⃗ = t⃗2, it must be the case that h′′(z⃗) = t⃗2⟨h′′

⟩.
Finally, this h′′ corresponds to some s′′ ∈ X; and, for this s′′,

t⃗2⟨s′′⟩ = t⃗2⟨h′′
⟩ = h′′(z⃗) = h(z⃗) = t⃗1⟨s⟩.

This concludes the proof. �

The relations between first order (team) logic, constancy logic, dependence logic, inclusion logic, and independence logic
discovered so far are then represented by Fig. 1.

However, things change if we take in consideration the expressive power of these logics with respect to their sentences
alone. Then, as we saw, first order logic and constancy logic have the same expressive power, in the sense that every
constancy logic formula is equivalent to some first order formula and vice versa, and so do dependence and independence
logic. What about inclusion logic sentences?

At the moment, relatively little is known by the author about this. In essence, all that we know is the following result.

Proposition 4.12. Let ψ(x⃗, y⃗) be any first order formula, where x⃗ and y⃗ are tuples of disjoint variables of the same arity.
Furthermore, let ψ ′(x⃗, y⃗) be the result of writing ¬ψ(x⃗, y⃗) in negation normal form. Then, for all suitable models M and all
suitable pairs a⃗, b⃗ of constant terms of the model,

M |H{∅} ∃z⃗(a⃗ ⊆ z⃗ ∧ z⃗ ≠ b⃗ ∧ ∀w⃗(ψ ′(z⃗, w⃗) ∨ w⃗ ⊆ z⃗))

if and only if M |H ¬[TCx⃗,y⃗ ψ](a⃗, b⃗), that is, if and only if the pair of tuples of elements corresponding to (a⃗, b⃗) is not in the
transitive closure of {(m⃗1, m⃗2) : M |H ψ(m⃗1, m⃗2)}.

Proof. Suppose that M |H{∅} ∃z⃗(a⃗ ⊆ z⃗ ∧ z⃗ ≠ b⃗ ∧ ∀w⃗(ψ ′(z⃗, w⃗) ∨ w⃗ ⊆ z⃗)). Then, by definition, there exists a tuple of
functions H⃗ = H1 . . .Hn such that

1. M |H
{∅}[H⃗/z⃗] a⃗ ⊆ z⃗, that is, a⃗ ∈ H⃗({∅});

2. M |H
{∅}[H⃗/z⃗] z⃗ ≠ b⃗, and therefore b⃗ ∉ H⃗({∅});

3. M |H
{∅}[H⃗/z⃗][M⃗/w⃗]

ψ ′(z⃗, w⃗) ∨ w⃗ ⊆ z⃗.

Now, the third condition implies that, whenever M |H ψ(m⃗1, m⃗2) and m⃗1 is in H⃗({∅}), m⃗2 is in H⃗({∅}) too. Indeed, let
Y = {∅}[H⃗/z⃗][M⃗/w⃗]; then, by the semantics of our logic, we know that Y = Y1 ∪ Y2 for two subteams Y1 and Y2 such that
M |HY1 ψ

′(z⃗, w⃗) and M |HY2 w⃗ ⊆ z⃗. But ψ ′ is logically equivalent to the negation of ψ , and therefore we know that, for all
s ∈ Y1, M |̸H ψ(s(z⃗), s(w⃗)) in the usual Tarskian semantics.

Suppose now that m⃗1 ∈ H⃗({∅}) and that M |H ψ(m⃗1, m⃗2). Then s = (z⃗ := m⃗1, w⃗ := m⃗2) is in Y ; but it cannot be in Y1,
as we saw, and hence it must belong to Y2. But M |HY2 w⃗ ⊆ z⃗, and therefore there exists another assignment s′ ∈ Y2 such
that s′(z⃗) = s(w⃗) = m⃗2. But we necessarily have that s′(z⃗) ∈ H⃗({∅}), and therefore m⃗2 ∈ H⃗({∅}), as required.

So, H⃗({∅}) is an set of tuples of elements of our models which contains the interpretation of a⃗ but not that of b⃗, and such
that

m⃗1 ∈ H({∅}),M |H ψ(m⃗1), M⃗2 ⇒ m⃗2 ∈ H({∅}).

This implies thatM |H ¬[TCx⃗,y⃗ ψ](a⃗, b⃗), as required.
Conversely, suppose thatM |H ¬[TCx⃗,y⃗ ψ](a⃗, b⃗); then there exists a set A of tuples of elements of the domain ofM which

contains the interpretation of a⃗ but not that of b⃗, and such that it is closed by transitive closure forψ(x⃗, y⃗). Then, by choosing
the functions H⃗ so that h⃗({∅}) = A, it is easy to verify thatM satisfies our inclusion logic sentence. �

78 P. Galliani / Annals of Pure and Applied Logic 163 (2012) 68–84

As a corollary, we have that inclusion logic is strictly more expressive than first order logic over sentences; for example, for
all finite linear ordersM = (Dom(M),<, S, 0, e), where S is the successor function, 0 is the first element of the linear order
and e is the last one, we have that

M |H ∃z(0 ⊆ z ∧ z ≠ e ∧ ∀w(w ≠ S(S(z)) ∨ w ⊆ z))

if and only if |M| is odd. It is not difficult to see, for example through the Ehrenfeucht-Fraïssémethod [11], that this property
is not expressible in first order logic.

4.3. Equiextension logic

Let us now consider equiextension logic, that is, the logic obtained by adding to first order logic (with lax team semantics)
equiextension atoms t⃗1 ◃▹ t⃗2 with the semantics of Definition 4.4.

It is easy to see that equiextension logic is contained in inclusion logic.

Proposition 4.13. Let t⃗1 and t⃗2 be any two tuples of terms of the same length. Then, for all suitable models M and teams X,

M |HX t⃗1 ◃▹ t⃗2 ⇔ M |HX t⃗1 ⊆ t⃗2 ∧ t⃗2 ⊆ t⃗1.

Proof. Obvious. �

Translating in the other direction, however, requires a little more care.

Proposition 4.14. Let t⃗1 and t⃗2 be any two tuples of terms of the same length. Then, for all suitable models M and teams X,
M |HX t⃗1 ⊆ t⃗2 if and only if

M |HX ∀u1u2∃z⃗(t⃗2 ◃▹ z⃗ ∧ (u1 ≠ u2 ∨ z⃗ = t⃗1)),

where u1, u2, and z⃗ do not occur in t⃗1 and t⃗2.

Proof. Suppose thatM |HX t⃗1 ⊆ t⃗2. Then, let X ′
= X[M/u1u2], and pick the tuple of functions H⃗ used to choose z⃗ so that

H⃗(s) =

{t⃗1⟨s⟩}, if s(u⃗1) = s(u⃗2);

{t⃗2⟨s⟩}, otherwise

for all s ∈ X ′.
Then, for Y = X ′

[H⃗/z⃗], by definitionwehave thatM |HY u1 ≠ u2∨z⃗ = t⃗1, and it only remains to verify thatM |HY t⃗2 ◃▹ z⃗,
that is, that Y (t⃗2) = Y (z⃗).

• Y (t⃗2) ⊆ Y (z⃗):
Let h ∈ Y . Then there exists an assignment s ∈ X with t⃗2⟨s⟩ = t⃗2⟨h⟩. Now, let 0 and 1 be two distinct elements ofM , and
consider the assignment h′

= s[0/u1][1/u2][H⃗/z⃗]. By construction, h′
∈ Y ; and furthermore, by the definition of H⃗ we

have that h′(z⃗) = t⃗2⟨s⟩ = t⃗2⟨h⟩, as required.
• Y (z⃗) ⊆ Y (t⃗2):

Let h ∈ Y . Then, by construction, h(z⃗) is t⃗1⟨h⟩ or t⃗2⟨h⟩. But, since X(t⃗1) ⊆ X(t⃗2), in either case there exists an assignment
s ∈ X such t⃗2⟨s⟩ = h(z⃗). Now, consider h′

= s[0/u1][1/u2][H⃗/z⃗]; again, h′
∈ Y and t⃗2⟨h′

⟩ = t⃗2⟨s⟩ = h(z⃗), as required.

Conversely, suppose thatM |HX ∀u1u2∃z⃗(t⃗2 ◃▹ z⃗∧(u1 ≠ u2∨ z⃗ = t⃗1)), and that therefore there exists a tuple of functions
H⃗ such that, for Y = X[M/u1u2][H⃗/z⃗], M |HY t⃗2 ◃▹ z⃗ ∧ (u1 ≠ u2 ∨ z⃗ = t⃗1). Then, consider any assignment s ∈ X , and let
h = s[0/u1][0/u2][H⃗/z⃗]. Now, h ∈ Y and h(z⃗) = t⃗1⟨s⟩; but, sinceM |HY t⃗2 ◃▹ z⃗, this implies that there exists an assignment
h′

∈ Y such that t⃗2⟨h′
⟩ = h(z⃗) = t⃗1⟨s⟩. Finally, h′ derives from some assignment s′ ∈ X , and for this assignment we have

that t⃗2⟨s⟩ = t⃗2⟨h′
⟩ = t⃗1⟨s⟩, as required. �

As a consequence, inclusion logic is precisely as expressive as equiextension logic.

Corollary 4.15. Any formula of inclusion logic is equivalent to some formula of equiextension logic, and vice versa.

4.4. Exclusion logic

With the name of exclusion logic we refer to (lax, team) first order logic supplemented with the exclusion atoms t⃗1 | t⃗2,
with the satisfaction condition given in Definition 4.3.

As the following results show, exclusion logic is, in a very strong sense, equivalent to dependence logic.

Theorem 4.16. For all tuples of terms t⃗1 and t⃗2, of the same length, there exists a dependence logic formula φ such that

M |HX φ ⇔ M |HX t⃗1 | t⃗2

for all suitable models M and teams X.

P. Galliani / Annals of Pure and Applied Logic 163 (2012) 68–84 79

Proof. This follows immediately from Theorem 2.5, since the satisfaction condition for the exclusion atom is downwards
monotone and expressible inΣ1

1 . �

An exclusion atom t⃗1 | t⃗2 can also be translated explicitly in dependence logic as ∀z⃗∃u1u2(=(z⃗, u1)∧ =(z⃗, u2) ∧ ((u1 =

u2 ∧ z⃗ ≠ t⃗1)∨ (u1 ≠ u2 ∧ z⃗ ≠ t⃗2))), and interested readers should be able to verify that the interpretation of this expression
is indeed the required one.

Theorem 4.17. Let t1 . . . tn be terms, and let z be a variable not occurring in any of them. Then the dependence atom =(t1 . . . tn)
is equivalent to the exclusion logic expression

φ = ∀z(z = tn ∨ (t1 . . . tn−1z | t1 . . . tn−1tn)),

for all suitable models M and teams X.

Proof. Suppose that M |HX=(t1 . . . tn), and consider the team X[M/z]. Now, let Y = {s ∈ X[M/z] : s(z) = tn⟨s⟩}, and let
Z = X[M/z]\Y .

Clearly, Y ∪ Z = X[M/x] and M |HY z = tn; hence, if we show that Z |H t1 . . . tn−1z | t1 . . . tn−1tn, we can conclude that
M |HX φ, as required.

Now, consider any two s, s′ ∈ Z , and suppose that ti⟨s⟩ = ti⟨s′⟩ for all i = 1 . . . n − 1. But then s(z) ≠ tn⟨s′⟩;
indeed, since M |HX=(t1 . . . tn), by the locality of dependence logic and by the downwards closure property, we have that
M |HZ=(t1 . . . tn), and hence that tn⟨s⟩ = tn⟨s′⟩.

Therefore, if we had that s(z) = tn⟨s′⟩, it would follow that s(z) = tn⟨s⟩, and swould be in Y instead.
So, s(z) ≠ tn⟨s′⟩, and, since this holds for all s and s′ in Z which coincide over t1 . . . tn−1, we have that

M |HZ t1 . . . tn−1z | t1 . . . tn−1tn,

as required.
Conversely, suppose that M |HX φ, and let s, s′ ∈ X assign the same values to t1 . . . tn−1. Now, by the definition of φ,

X[M/z] can be split into two subteams Y and Z such that M |HY z = tn, and such thatM |HZ (t1 . . . tn−1z | t1 . . . tn−1tn).
Suppose that tn⟨s⟩ = m and tn⟨s′⟩ = m′, and thatm ≠ m′; then s[m′/z] and s′[m/z] are in s[M/z] but not in Y , and hence

they are both in Z . But then, since t⃗i⟨s⟩ = t⃗i⟨s′⟩ for all i = 1 . . . n − 1,

tn⟨s′⟩ = m′
= s[m′/z](z) ≠ tn⟨s′[m/z]⟩ = tn⟨s′⟩,

which is a contradiction. Therefore,m = m′, as required. �

Corollary 4.18. Dependence logic is precisely as expressive as exclusion logic, both with respect to definability of sets of teams
and with respect to sentences.

4.5. Inclusion/exclusion logic

Now that we have some information about inclusion logic and about exclusion logic, let us study inclusion/exclusion logic
(I/E logic for short), that is, the formalism obtained by adding both inclusion and exclusion atoms to the language of first
order logic.

By the results of the previous sections, we already know that inclusion atoms are expressible in independence logic and
that exclusion atoms are expressible in dependence logic; furthermore, by Theorem 2.7, dependence atoms are expressible
in independence logic.

Then it follows at once that I/E logic is contained in independence logic.

Corollary 4.19. For every inclusion/exclusion logic formula φ there exists an independence logic formula φ∗ such that

M |HX φ ⇔ M |HX φ
∗

for all suitable models M and teams X.

Now, is I/E logic properly contained in independence logic?
As the following result illustrates, this is not the case.

Theorem 4.20. Let t⃗2 ⊥t⃗1 t⃗3 be an independence atom, and let φ be the formula

∀p⃗q⃗r⃗ ∃u1u2u3u4(

4
i=1

=(p⃗q⃗r⃗, ui) ∧ ((u1 ≠ u2 ∧ (p⃗q⃗ | t⃗1 t⃗2)) ∨

∨(u1 = u2 ∧ u3 ≠ u4 ∧ (p⃗r⃗ | t⃗1 t⃗3)) ∨ (u1 = u2 ∧ u3 = u4 ∧ (p⃗q⃗r⃗ ⊆ t⃗1 t⃗2 t⃗3)))),

where the dependence atoms are used as shorthand for the corresponding exclusion logic expressions, which exist because of
Theorem 4.17, and where all the quantified variables are new.

Then, for all suitable models M and teams X,

M |HX t⃗2 ⊥t⃗1 t⃗3 ⇔ M |HX φ.

80 P. Galliani / Annals of Pure and Applied Logic 163 (2012) 68–84

Proof. Suppose thatM |HX t⃗2 ⊥t⃗1 t⃗3, and consider the team X ′
= X[M/p⃗q⃗r⃗].

Now, let 0 and 1 be two distinct elements of the domain ofM , and let the functions F1 . . . F4 be defined as follows.

• For all s ∈ X ′, F1(s) = 0.
• For all s ∈ X ′

[F1/u1],

F2(s) =

0 if there exists a s′ ∈ X such that t⃗1⟨s′⟩t⃗2⟨s′⟩ = s(p⃗)s(q⃗);
1 otherwise.

• For all s ∈ X ′
[F1/u1][F2/u2], F3(s) = 0.

• For all s ∈ X ′
[F1/u1][F2/u2][F3/u3],

F4(s) =

0 if there exists a s′ ∈ X such that t⃗1⟨s′⟩t⃗3⟨s′⟩ = s(p⃗)s(r⃗);
1 otherwise.

Now, let Y = X ′
[F1/u1][F2/u2][F3/u3][F4/u4]; by the definitions of F1 . . . F4, it holds that all dependencies are respected.

Then, let Y be split into Y1, Y2, and Y3, according to: the following:

• Y1 = {s ∈ Y : s(u1) ≠ s(u2)};
• Y2 = {s ∈ Y : s(u3) ≠ s(u4)}\Y1;
• Y3 = Y\(Y1 ∪ Y2).

Now, let s be any assignment of Y1; then, since s(u1) ≠ s(u2), by the definitions of F1 and F2, we have that, for all s′ ∈ Y ,
s(p⃗)s(q⃗) ≠ t⃗1⟨s′⟩t⃗2⟨s′⟩, and, in particular, that the same holds for all the s′ ∈ Y1. Hence, M |HY1 u1 ≠ u2 ∧ (p⃗q⃗ | t⃗1 t⃗2), as
required.

Analogously, let s be any assignment of Y2; then s(u1) = s(u2), since otherwise swould be in Y1. Moreover, s(u3) ≠ s(u4),
and therefore, for all s′ ∈ Y , s(p⃗)s(r⃗) ≠ t⃗1⟨s′⟩t⃗3⟨s′⟩, and thusM |HY2 u1 = u2 ∧ u3 ≠ u4 ∧ (p⃗r⃗ | t⃗1 t⃗3).

Finally, suppose that s ∈ Y3; then, by definition, s(u1) = s(u2) and s(u3) = s(u4). Therefore, there exist two assignments
s′ and s′′ in X such that t⃗1⟨s′⟩t⃗2⟨s′⟩ = s(p⃗)s(q⃗) and t⃗1⟨s′′⟩t⃗3⟨s′′⟩ = s(p⃗)s(r⃗).

But, by hypothesis, M |HX t⃗2 ⊥t⃗1 t⃗3, and s′ and s′′ coincide over t⃗1; thus, there exists a new assignment h ∈ X such that
t⃗1⟨h⟩t⃗2⟨h⟩t⃗3⟨h⟩ = s(p⃗)s(q⃗)s(r⃗). Now, let o be the assignment of Y given by

o = h[t⃗1⟨h⟩t⃗2⟨h⟩t⃗3⟨h⟩/p⃗q⃗r⃗][F1 . . . F4/u1 . . . u4];

then, by the definitions of F1 . . . F4 and by the construction of o, we get that o(u1) = o(u2) = o(u3) = o(u4) = 0, and
therefore that o ∈ Y3.

But, by construction, t⃗1⟨o⟩t⃗2⟨o⟩t⃗3⟨o⟩ = t⃗1⟨h⟩t⃗2⟨h⟩t⃗3⟨h⟩ = s(p⃗)s(q⃗)s(r⃗), and henceM |HY3 p⃗q⃗r⃗ ⊆ t⃗1 t⃗2 t⃗3, as required.
Conversely, suppose that M |HX φ, and let s, s′ ∈ X be such that t⃗1⟨s⟩ = t⃗1⟨s′⟩. Now, consider the two assignments

h, h′
∈ X ′

= X[M/p⃗q⃗r⃗] given by h = s[t⃗1⟨s⟩/p⃗][t⃗2⟨s⟩/q⃗][t⃗3⟨s′⟩/r⃗] and h′
= s′[t⃗1⟨s⟩/p⃗][t⃗2⟨s⟩/q⃗][t⃗3⟨s′⟩/r⃗].

Now, sinceM |HX φ, there exist functions F1 . . . F4, depending only on p⃗, q⃗, and r⃗ , such that
Y = X ′

[F1/u1][F2/u2][F3/u3][F4/u4] can be split into three subteams Y1, Y2, and Y3, and

M |HY1 (u1 ≠ u2 ∧ (p⃗q⃗ | t⃗1 t⃗2));

M |HY2 (u1 = u2 ∧ u3 ≠ u4 ∧ (p⃗r⃗ | t⃗1 t⃗3));

M |HY3 (u1 = u2 ∧ u3 = u4 ∧ (p⃗q⃗r⃗ ⊆ t⃗1 t⃗2 t⃗3)).

Now, let o = h[F1/u1][F2/u2][F3/u3][F4/u4], and let
o′

= h′
[F1/u1][F2/u2][F3/u3][F4/u4]; since the Fi depend only on p⃗q⃗r⃗ , and the values of these variables are the same for h

and for h′, we have that o and o′ have the same values for u1 . . . u4, and therefore that they belong to the same Yi. But they
cannot be in Y1 or in Y2, since

o(p⃗)o(q⃗) = o′(p⃗)o′(q⃗) = t⃗1⟨s⟩t⃗2⟨s⟩ = t⃗1⟨o⟩t⃗2⟨o⟩

and

o(p⃗)o(r⃗) = o′(p⃗)o′(r⃗) = t⃗1⟨s′⟩t⃗3⟨s′⟩ = t⃗1⟨o′
⟩t⃗3⟨o′

⟩;

therefore, o and o′ are in Y3, and there exists an assignment o′′
∈ Y3 with

t⃗1⟨o′′
⟩t⃗2⟨o′′

⟩t⃗3⟨o′′
⟩ = o(p⃗)o(q⃗)o(r⃗) = t⃗1⟨s⟩t⃗2⟨s⟩t⃗3⟨s′⟩;

and, finally, there exists an s′′ ∈ X such that t⃗1⟨s′′⟩t⃗2⟨s′′⟩t⃗3⟨s′′⟩ = t⃗1⟨s⟩t⃗2⟨s⟩t⃗3⟨s′⟩, as required. �

Independence logic and inclusion/exclusion logic are therefore equivalent.

Corollary 4.21. Any independence logic formula is equivalent to some inclusion/exclusion logic formula, and any inclusion/
exclusion logic formula is equivalent to some independence logic formula.

P. Galliani / Annals of Pure and Applied Logic 163 (2012) 68–84 81

Fig. 2. Relations between logics of imperfect information (with respect to formulas).

Fig. 2 summarizes the translatability8 relations between the logics of imperfect information which have been considered
in this work.

Let us finish this section by verifying that I/E logic (and, as a consequence, also inclusion logic, equiextension logic, and
independence logic) with lax semantics is local.

Theorem 4.22 (Inclusion/Exclusion Logic with Lax Semantics is Local). LetM be a first ordermodel, letφ be any I/E logic formula,
and let V be a set of variables such that Free(φ) ⊆ V . Then, for all suitable teams X,

M |HX φ ⇔ M |HX�V φ.

Proof. The proof is by structural induction on φ.

1. If φ is a first order literal, an inclusion atom, or an exclusion atom then the statement follows trivially from the corre-
sponding semantic rule.

2. Let φ be of the formψ ∨ θ , and suppose thatM |HX ψ ∨ θ . Then, by definition, X = Y ∪ Z for two subteams Y and Z such
that M |HY ψ and M |HZ θ . Then, by the induction hypothesis, M |HY�V ψ and M |HZ�V θ . But X�V = Y�V ∪ Z�V . Hence,
M |HX�V ψ ∨ θ , as required.

Conversely, suppose thatM |HX�V ψ ∨ θ , that is, that X�V = Y ′
∪Z ′ for two subteams Y ′ and Z ′ such thatM |HY ′ ψ and

M |HZ ′ θ . Then, define Y = {s ∈ X : s�V ∈ Y ′
} and Z = {s ∈ X : s�V ∈ Z ′

}. Now, X = Y ∪ Z and, furthermore, Y�V = Y ′

and Z�V = Z ′, and hence, by the induction hypothesis,M |HY ψ and M |HZ θ , and finallyM |HX ψ ∨ θ .
3. Let φ be of the form ψ ∧ θ . Then M |HX ψ ∧ θ if and only if M |HX ψ and M |HX θ , that is, by the induction hypothesis,

if and only if M |HX�V ψ andM |HX�V θ . But this is the case if and only ifM |HX�V ψ ∧ θ , as required.
4. Let φ be of the form ∃xψ , and suppose that M |HX ∃xψ . Then there exists a function H : X → P (Dom(M))\{∅} such

thatM |HX[H/x] ψ . Then, by the induction hypothesis,M |H(X[H/x])�V∪{x} ψ .
Now, consider the function H ′

: X�V → P (Dom(M))\∅, which assigns to every s′ ∈ X�V the set

H ′(s′) =

{H(s) : s ∈ X, s′ = s�V }.

Then H ′ assigns a nonempty set to every s′ ∈ X�V , as required; and furthermore, X�V [H ′/x] is precisely (X[H/x])�V∪{x}.
Therefore, M |HX�V ∃xψ , as required.

Conversely, suppose that M |HX�V ∃xψ , that is, that M |HX�V [H ′/x] ψ for some H ′. Then, define the function H : X →

P (Dom(M))\{x} so that H(s) = H ′(s�V) for all s ∈ X; now, X�V [H ′/x] = (X[H/x])�V∪{x}, and hence, by the induction
hypothesis, M |HX ∃xψ .

5. For all suitable teams X , X[M/x]�V∪{x} = X�V [M/x]; and hence, M |HX�V ∀xψ ⇔ M |HX[M/x]�V∪{x} ψ ⇔ M |HX[M/x] ψ ⇔

M |HX ∀xψ , as required. �

8 To be more accurate, Fig. 2 represents the translatability relations between the logics which we considered, with respect to all formulas. Considering
sentences only would lead to a different graph.

82 P. Galliani / Annals of Pure and Applied Logic 163 (2012) 68–84

5. Definability in I/E logic (and in independence logic)

In [16], Kontinen and Väänänen characterized the expressive power of dependence logic formulas (Theorem 2.5 here),
and, in [15], Kontinen and Nurmi used a similar technique to prove that a class of teams is definable in team logic [21] if and
only if it is expressible in full second order logic.

In this section, I will attempt to find an analogous result for I/E logic (and hence, through Corollary 4.21, for independence
logic). One direction of the intended result is straightforward.

Theorem 5.1. Let φ(v⃗) be a formula of I/E logic with free variables in v⃗. Then there exists an existential second order logic formula
Φ(A), where A is a second order variable with arity |v⃗|, such that

M |HX φ(v⃗) ⇔ M |H Φ(Relv⃗(X))

for all suitable models M and teams X.

Proof. The proof is an unproblematic induction over the formula φ, and follows closely the proof of the analogous results
for dependence logic [20] or independence logic [9]. �

The other direction, instead, requires some care.9

Theorem 5.2. LetΦ(A) be a formula inΣ1
1 such that Free(Φ) = {A}, and let v⃗ be a tuple of distinct variables with |v⃗| = Arity(A).

Then there exists an I/E logic formula φ(v⃗) such that

M |HX φ(v⃗) ⇔ M |H Φ(Relv⃗(X))

for all suitable models M and nonempty teams X.

Proof. It is easy to see that any Φ(A) as in our hypothesis is equivalent to the formula Φ∗(A) = ∃B(∀x⃗(Ax⃗ ↔ Bx⃗) ∧ Φ(B)),
in which the variable A occurs only in the conjunct ∀x⃗(Ax⃗ ↔ Bx⃗). Then, as in [16], it is possible to write Φ∗(A) in the form
∃f⃗ ∀x⃗y⃗((Ax⃗ ↔ f1(x⃗) = f2(x⃗)) ∧ ψ(x⃗, y⃗, f⃗)), where f⃗ = f1f2 . . . fn, ψ(f⃗ , x, y) is a quantifier-free formula in which A does not
appear, and each fi occurs only as f (w⃗i) for some fixed tuple of variables w⃗i ⊆ x⃗y⃗. Now, define the formula φ(v⃗) as

∀x⃗y⃗ ∃z⃗

i

=(w⃗i, zi) ∧ (((v⃗ ⊆ x⃗ ∧ z1 = z2) ∨ (v⃗ | x⃗ ∧ z1 ≠ z2)) ∧ ψ ′(x⃗, y⃗, z⃗))

,

where ψ ′(x⃗, y⃗, z⃗) is obtained from ψ(x⃗, y⃗, f⃗) by substituting each fi(w⃗i) with zi, and the dependence atoms are used as
shorthand for the corresponding expressions of I/E logic.

Now, we have thatM |HX φ(v⃗) ⇔ M |H Φ∗(Relv⃗(X)). Indeed, suppose that M |HX φ(v⃗). Then, by construction, for each
i = 1 . . . n there exists a function Fi, depending only on w⃗i, such that, for Y = X[M/x⃗y⃗][F⃗/z⃗],

M |HY ((v⃗ ⊆ x⃗ ∧ z1 = z2) ∨ (v⃗ | x⃗ ∧ z1 ≠ z2)) ∧ ψ ′(x⃗, y⃗, z⃗).

Therefore, we can split Y into two subteams Y1 and Y2 such thatM |HY1 v⃗ ⊆ x⃗ ∧ z1 = z2 and M |HY2 v⃗ | x⃗ ∧ z1 ≠ z2.
Now, for each i, define the function fi so that, for every tuple m⃗ of the required arity, fi(m⃗) corresponds to Fi(s) for

an arbitrary s ∈ X[M/x⃗y⃗] with s(w⃗i) = m⃗, and let o be any assignment with domain x⃗y⃗. Thus, if we can prove that
M |Ho ((Relv⃗(X))x⃗ ↔ f1(x⃗) = f2(x⃗)) ∧ ψ(x⃗, y⃗, f⃗), then the left-to-right direction of our proof is done.

First of all, suppose that M |Ho (Relv⃗(X))x⃗, that is, that o(x⃗) = m⃗ = s(v⃗) for some s ∈ X . Then, choose an
arbitrary tuple of elements r⃗ , and consider the assignment h = s[m⃗/x⃗][r⃗/y⃗][F⃗/z⃗] ∈ Y . This h cannot belong to Y2, since
h(v⃗) = s(v⃗) = m⃗ = h(x⃗), and therefore it is in Y1, and h(z1) = h(z2). By the definition of the fi, this implies that
f1(m⃗) = f2(m⃗), as required.

Analogously, suppose that M |̸Ho (Relv⃗(X))x⃗, that is, that o(x⃗) = m⃗ ≠ s(v⃗) for all s ∈ X . Then, pick an arbitrary such
s ∈ X and an arbitrary tuple of elements r⃗ , and consider the assignment h = s[m⃗/x⃗][r⃗/y⃗][F⃗/z⃗] ∈ Y .

If hwere in Y1, there would exist an assignment h′
∈ Y1 such that h′(v⃗) = h(x⃗) = m⃗; but this is impossible, and therefore

h ∈ Y2. Hence h(z1) ≠ h(z2), and therefore f1(m⃗) ≠ f2(m⃗).
Putting everything together, we have just proved that M |Ho Rx⃗ ⇔ f1(x⃗) = f2(x⃗) for all assignments o with domain x⃗y⃗,

and we still need to verify thatM |Ho ψ(x⃗, y⃗, f) for all such o.
But this is immediate: indeed, let s be an arbitrary assignment of X , and construct the assignment h = s[o(x⃗y⃗)/x⃗y⃗][F⃗/z⃗] ∈

X[M/x⃗y⃗][F⃗/z⃗].
Then, since M |HX[M/x⃗y⃗][F⃗/z⃗] ψ

′(x⃗, y⃗, z⃗) and ψ ′(x⃗, y⃗, z⃗) is first order, M |H{h} ψ
′(x⃗, y⃗, z⃗); but ψ ′(x⃗, y⃗, f⃗ (x⃗y⃗)) is equivalent

to ψ(x⃗, y⃗, f⃗) and h(zi) = f (h(w⃗i)) = f (o(w⃗i)), and thereforeM |Ho ψ(x⃗, y⃗, f⃗), as required.

9 The details of this proof are similar to those of [16,15].

P. Galliani / Annals of Pure and Applied Logic 163 (2012) 68–84 83

Conversely, suppose that M |Hs (Relv⃗(X))x⃗ ↔ (f1(x⃗) = f2(x⃗)) ∧ ψ(x⃗, y⃗, f⃗) for all assignments s with domain x⃗y⃗ and for
some fixed choice of the tuple of functions f⃗ . Then, let F⃗ be such that, for all assignments h, and for all i, Fi(h) = fi(h(w⃗i)),
and consider Y = X[M/x⃗y⃗][F/z⃗].

Clearly, Y satisfies the dependency conditions; furthermore, it satisfies ψ ′(x⃗, y⃗, z⃗), because, for every assignment h ∈ Y
and every i ∈ 1 . . . n, we have that h(zi) = Fi(h) = fi(h(w⃗i)). Finally, we can split Y into two subteams Y1 and Y2 as follows:

Y1 = {o ∈ Y : o(z⃗1) = o(z⃗2)};
Y2 = {o ∈ Y : o(z⃗1) ≠ o(z⃗2)}.

It is then trivially true thatM |HY1 z1 = z2 andM |HY2 z1 ≠ z2, and all that is left to do is to prove thatM |HY1 v⃗ ⊆ x⃗ and
M |HY2 v⃗ | x⃗.

As for the former, let o ∈ Y1; then, since o(z1) = o(z2), f1(o(x⃗)) = f2(o(x⃗)). This implies that o(x⃗) ∈ Relv⃗(X), and hence
that there exists an assignment s′ ∈ X with s′(v⃗) = o(x⃗).

Now, consider the assignment o′
= s′[o(x⃗y⃗)/x⃗y⃗][F⃗/z⃗]; since in Y the values of z⃗ depend only on the values of x⃗y⃗, and,

since o(z1) = o(z2), we have that o′(z1) = o′(z2), and hence o′
∈ Y1 too. But o′(v⃗) = s′(v⃗) = o(x⃗), and, since o was an

arbitrary assignment of Y1, this implies thatM |HY1 v⃗ ⊆ x⃗.
Finally, suppose that o ∈ Y2. Then, since o(z1) ≠ o(z2), we have that f1(o(x⃗)) ≠ f2(o(x⃗)), and therefore, o(x⃗) ∉ Relv⃗(X);

that is, for all assignments s ∈ X it holds that s(v⃗) ≠ o(x⃗). Then, the same holds for all o′
∈ Y2.

This concludes the proof. �

Since, by Corollary 4.21, we already know that independence logic and I/E logic have the same expressive power, this has
the following corollary.
Corollary 5.3. Let Φ(A) be an existential second order formula with Free(Φ) = A, and let v⃗ be any set of variables such that
|v⃗| = Arity(A). Then there exists an independence logic formula φ(v⃗) such that

M |HX φ(v⃗) ⇔ M |H Φ(Relv⃗(X))

for all suitable models M and teams X.

Finally, by Fagin’s Theorem [7], this gives an answer to Grädel and Väänänen’s question.
Corollary 5.4. All NP properties of teams are expressible in independence logic.

This result has far-reaching consequences. First of all, it implies that independence logic (or, equivalently, I/E logic) is
the most expressive logic of imperfect information which only deals with existential second order properties. Extensions of
independence logic can of course be defined; but unless they are capable of expressing somepropertywhich is not existential
second order (as, for example, is the case for the intuitionistic dependence logic of [22], or for the logics discussed in [1]), they
will be expressively equivalent to independence logic proper. As Jouko Väänänen pointed out, in a private communication,
this means that independence logic ismaximal among the logics of imperfect informationwhich always generate existential
second order properties of teams. In particular, any dependency conditionwhich is expressible as an existential second order
property10 over teams can be expressed in independence logic.

As was to be expected, this vast expressive power comes at a very high computational cost; but nonetheless, it is the
hope of the author that these results may provide some justification for the study of variants of dependence logic of the sort
that was discussed in this work.

Acknowledgements

The author wishes to thank Jouko Väänänen for many valuable insights and suggestions. Furthermore, he thanks Erich
Grädel for having suggested a better notation for inclusion and exclusion dependencies. Moreover, the author thankfully
acknowledges the support of the EUROCORES LogICCC LINT programme. Finally, we thank an anonymous referee for a
number of useful suggestions.

References

[1] Samson Abramsky, Jouko Väänänen, From IF to BI, a Tale of Dependence and Separation, ILLC Publications, 2008, PP–2008–27.
[2] Marco A. Casanova, Ronald Fagin, Christos H. Papadimitriou, Inclusion dependencies and their interaction with functional dependencies,

in: Proceedings of the 1st ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, PODS’82, ACM, NewYork, NY, USA, 1982, pp. 171–176.
[3] Marco A. Casanova, Vânia M.P. Vidal, Towards a sound view integration methodology, in: Proceedings of the 2nd ACM SIGACT-SIGMOD Symposium

on Principles of Database Systems, PODS’83, ACM, New York, NY, USA, 1983, pp. 36–47.
[4] Edgar F. Codd, Further normalization of the data base relational model, in: R. Rustin (Ed.), Data Base Systems, Prentice-Hall, 1972, pp. 33–64.
[5] Arnaud Durand, Juha Kontinen, Hierarchies in dependence logic, CoRR (2011) abs/1105.3324.
[6] Fredrik Engström, Generalized Quantifiers in Dependence Logic. Draft, 2010.
[7] Ronald Fagin, 1974. Generalized first-order spectra and polynomial-time recognizable sets. In: Complexity of Computation, SIAM-AMS Proceedings,

vol. 7, pp. 43–73.
[8] Ronald Fagin, A normal form for relational databases that is based on domains and keys, ACM Transactions on Database Systems 6 (September 1981)

387–415.

10 Such as, for example, tuple generating and equality generating dependencies, two of themost general classes of dependencies studied in database theory.

84 P. Galliani / Annals of Pure and Applied Logic 163 (2012) 68–84

[9] Erich Grädel, Jouko Väänänen, 2010. Dependence and Independence. Studia Logica (in press).
[10] Jaakko Hintikka, The Principles of Mathematics Revisited, Cambridge University Press, 1996.
[11] Wilfrid Hodges, A Shorter Model Theory, Cambridge University Press, 1997.
[12] W. Hodges, Compositional semantics for a language of imperfect information, Logic Journal of IGPL 5 (4) (1997) 539–563. doi:10.1093/jigpal/5.4.539.
[13] Wilfrid Hodges, Logics of imperfect information: why sets of assignments? in: D. van Benthem, J. Gabbay, B. Löwe (Eds.), Interactive Logic, in: Texts

in Logic and Games, Amsterdam University Press, 2007, pp. 117–133.
[14] Theo M.V. Janssen, Francien Dechesne, Signaling in if-games: a tricky business, in: J. van Benthem, G. Heinzmann, M. Rebuschi, H. Visser (Eds.), The

Age of Alternative Logics, Springer, 2006, pp. 221–241.
[15] Juha Kontinen, Ville Nurmi, Team logic and second-order logic, in: Hiroakira Ono, Makoto Kanazawa, Ruy de Queiroz (Eds.), Logic, Language,

Information and Computation, in: Lecture Notes in Computer Science, vol. 5514, Springer, Berlin, Heidelberg, 2009, pp. 230–241.
[16] Juha Kontinen, Jouko Väänänen, On definability in dependence logic, Journal of Logic, Language and Information 3 (18) (2009) 317–332.
[17] Per Lindström, First order predicate logic with generalized quantifiers, Theoria 32 (3) (1966) 186–195.
[18] Andrzej Mostowski, On a generalization of quantifiers, Fundamenta Mathematicae 44 (1957) 12–36.
[19] Tero Tulenheimo, Independence friendly logic, Stanford Encyclopedia of Philosophy (2009).
[20] Jouko Väänänen, Dependence Logic, Cambridge University Press, 2007.
[21] Jouko Väänänen, Team Logic, in: J. van Benthem, D. Gabbay, B. Löwe (Eds.), Interactive Logic. Selected Papers from the 7th Augustus de Morgan

Workshop, Amsterdam University Press, 2007, pp. 281–302.
[22] Fan Yang, 2010. Expressing second-order sentences in intuitionistic dependence logic. In: Juha Kontinen and Jouko Väänänen, editors, Proceedings of

Dependence and Independence in Logic, pp. 118–132. ESSLLI 2010.

http://dx.doi.org/doi:10.1093/jigpal/5.4.539

	Inclusion and exclusion dependencies in team semantics --- On some logics of imperfect information
	Introduction
	Dependence and independence logic
	Dependence logic
	Independence logic

	Team semantics
	First order (team) logic, in two flavors
	Constancy logic

	Inclusion and exclusion in logic
	Inclusion and exclusion dependencies
	Inclusion logic
	Equiextension logic
	Exclusion logic
	Inclusion/exclusion logic

	Definability in I/E logic (and in independence logic)
	Acknowledgements
	References

