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Abstract

In this paper we study the expressive power of k-ary exclusion logic,
EXC[k], that is obtained by extending first order logic with k-ary ex-
clusion atoms. It is known that without arity bounds exclusion logic is
equivalent with dependence logic. By observing the translations, we see
that the expressive power of EXC[k] lies in between k-ary and (k+1)-ary
dependence logics. We will show that, at least in the case when k = 1,
both of these inclusions are proper.

In a recent work by the author it was shown that k-ary inclusion-
exclusion logic is equivalent with k-ary existential second order logic,
ESO[k]. We will show that, on the level of sentences, it is possible to
simulate inclusion atoms with exclusion atoms, and in this way express
ESO[k]-sentences by using only k-ary exclusion atoms. For this transla-
tion we also need to introduce a novel method for “unifying” the values of
certain variables in a team. As a consequence, EXC[k] captures ESO[k]
on the level of sentences, and we obtain a strict arity hierarchy for ex-
clusion logic. It also follows that k-ary inclusion logic is strictly weaker
than EXC[k]. Finally we use similar techniques to formulate a trans-
lation from ESO[k] to k-ary inclusion logic with an alternative strict
semantics. Consequently, for any arity fragment of inclusion logic, strict
semantics is strictly more expressive than lax semantics.

Keywords: exclusion logic, inclusion logic, dependence logic, team
semantics, existential second order logic, expressive power.

1 Introduction
Exclusion logic is an extension of first order logic with team semantics. In team
semantics the truth of formulas is interpreted by using sets of assignments
which are called teams. This approach was introduced by Hodges [14] to define
compositional semantics for the IF-logic by Hintikka and Sandu [12]. The truth
for the IF-logic was originally defined by using semantic games of imperfect
information ([13]), and in thus teams can be seen as sets of parallel positions in
a semantic game. Teams can also be interpreted as databases ([20]), and thus
the study of logics with team semantics has natural connections with the study
of database dependencies.

For first order logic team semantics is just a generalization of Tarski se-
mantics and has the same expressive power. But if we extend first order logic
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with new atomic formulas, we obtain higher expressive power and we can de-
fine more complex properties of teams. The first new atoms for this framework
were dependence atoms introduced by Väänänen [20]. In dependence logic the
semantics for these atoms are defined by functional dependencies of the val-
ues of variables in a team. Several new atoms have been presented for this
framework with the motivation from simple database dependencies – such as
independence atoms by Grädel and Väänänen [8] and inclusion and exclusion
atoms by Galliani [5]. Lately there has been research on these atoms with an
attempt to formalize the dependency phenomena in different fields of science,
such as database theory ([16]), belief presentation ([4]) and quantum mechanics
([15]).

If we extend first order logic with inclusion/exclusion atoms we obtain in-
clusion and exclusion logics. The team semantics for these atoms is very simple:
Suppose that ~t1,~t2 are k-tuples of terms and X is a team. The k-ary inclusion
atom ~t1 ⊆ ~t2 says that the values of ~t1 are included in the values of ~t2 in the
team X. The k-ary exclusion atom ~t1 |~t2 dually says that ~t1 and ~t2 get distinct
values in X, i.e. for all assignments s, s′ ∈ X we have s(~t1) 6= s′(~t2).

Galliani [5] has shown that without arity bounds exclusion logic is equivalent
with dependence logic. Thus, on the level of sentences, it captures existential
second order logic, ESO ([20]). Inclusion logic is not comparable with depen-
dence logic in general ([5]), but captures positive greatest fixed point logic on
the level of sentences, as shown by Galliani and Hella [7]. Hence exclusion logic
captures NP and inclusion logic captures PTIME over finite structures with
linear order.

In order to understand the nature of these atoms, there has been research on
the bounded arity fragments of the corresponding logics. Durand and Kontinen
[3] have shown that, on the level of sentences, k-ary dependence logic captures
the fragment of ESO in which at most (k−1)-ary functions can be quantified.1
From this it follows that dependence logic has a strict arity hierarchy over
sentences since the arity hierarchy of ESO (over arbitrary vocabulary) is known
to be strict, as shown by Ajtai [1]. However, these earlier results do not tell much
about the expressive power of k-ary exclusion logic, EXC[k], as the existing
translation from it to dependence logic does not respect the arities of atoms.

There has not been much research on exclusion logic after Galliani proved its
equivalence to dependence logic. In this paper we will show that the relationship
between these two logics becomes nontrivial when we consider their bounded
arity fragments. This also leads to results on the relation between inclusion
and exclusion logics, which is interesting because they can be seen as duals to
each other, as we have argued in [19].

By inspecting Galliani’s translations ([5]) between exclusion and dependence
logics more closely, we observe that EXC[k] is stronger than k-ary dependence
logic but weaker than (k+1)-ary dependence logic. Thus it is natural to ask
whether the expressive power of EXC[k] is strictly in between k-ary and (k+1)-
ary dependence logics. We will show that this holds at least when k = 1.

In an earlier work by the author [19] it was shown that both INC[k]- and
EXC[k]-formulas could be translated into k-ary ESO, ESO[k], which gives us an

1See [6], [9] and [10] for similar hierarchy results on independence and inclusion logics.
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upper bound for the expressive power of EXC[k]. In [19] it was also shown that
conversely ESO[k]-formulas with at most k-ary free relation variables can be ex-
pressed in k-ary inclusion-exclusion logic, INEX[k], and consequently INEX[k]
captures ESO[k] on the level of sentences.

Since exclusion logic is closed downwards, unlike inclusion-exclusion logic,
we know that EXC[k] is strictly weaker than INEX[k]. However, in certain cases
we can simulate the use of inclusion atoms with exclusion atoms: Suppose
that x, w, wc are variables such that the sets of values of w and wc in X
are complements of each other. Now we have M�X x ⊆ w iff M�X x | wc.
This can be generalized for k-ary atoms if the values of k-tuples ~w and ~wc are
complementary (with respect to the full relation Mk).

We will use the observation above to modify our translation (in [19]) from
ESO[k] to INEX[k]. If we only consider sentences of exclusion logic, we can
quantify the needed complementary values, and then replace inclusion atoms in
the translation with the corresponding exclusion atoms. The remaining problem
is that in our translation we also needed a new connective called term value
preserving disjunction ([19]) to avoid the loss of information on the values of
certain variables when evaluating disjunctions. This operator can be defined
by using both inclusion and exclusion atoms ([19]), but it is undefinable in
exclusion logic since it is not closed downwards.

In [19] we have introduced new operators called inclusion and exclusion
quantifiers and defined them in inclusion-exclusion logic. Furthermore, we have
shown that universal inclusion quantifier (∀ ~x⊆~t ) could be defined also in
exclusion logic. A natural reading for this quantifier is: “for all the values of
~x that are included in the values of ~t ”. We will now consider the use of this
quantifier in somewhat trivial looking form (∀ ~x⊆ ~x). This operator turns out
to be useful as it “unifies” the values of variables in a team. We will use it to
define new operators called unifier, unified existential quantifier and unifying
disjunction.

Unifying disjunction will give us an alternative method to avoid the loss of
information in the translation from ESO[k]. This completes our translation and
proves the equivalence between EXC[k] and ESO[k] on the level of sentences.
Hence we also obtain a strict arity hierarchy for exclusion logic since the arity
hierarchy for ESO is known to be strict. We also get an interesting consequence
that k-ary inclusion logic is strictly weaker than EXC[k] on the level of sentences
(for any k ≥ 1).

Finally, we will examine the expressive power of inclusion logic with an
alternative semantics, so-called strict semantics. This semantical variant of
inclusion logic has stronger expressive power by capturing the whole ESO, as
shown by Galliani, Hannula and Kontinen [6], but lacks some nice semantical
properties. We will use similar ideas, as in our translation from ESO[k] to
EXC[k], to formulate a translation from ESO[k] to INC[k] with strict semantics.
Consequently, for any arity fragment of inclusion logic, strict semantics is more
expressive than the standard semantics.

The structure of this paper is as follows: After preliminaries in Section 2,
we present various new operators for exclusion logic Section 3. In Section 4 we
prove our main result by forming a translation from ESO[k] to EXC[k] on the
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level of sentences. Finally, in Section 5, we present a translation from ESO[k] to
INC[k] with strict semantics. This paper is an extended journal version of [18]
with more detailed proofs and additional examples. Moreover, all the results
in Section 5 are previously unpublished work.

2 Preliminaries
In this section we first present the team semantics for FO. Then we define
inclusion and exclusion logics and review some of their known properties.

2.1 Syntax and team semantics for FO
A vocabulary L is a set of relation symbols R, function symbols f and constant
symbols c. The set of L-terms, TL, is defined in the standard way. The set of
variables occurring in a tuple ~t of L-terms is denoted by Vr(~t ).

Definition 2.1. The set of FOL-formulas is defined as follows:

ϕ ::= t1 = t2 | ¬t1 = t2 | R~t | ¬R~t | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∃xϕ | ∀xϕ

FOL-formulas of the form t1 = t2, ¬t1 = t2, R~t and ¬R~t are called literals.

Let ϕ ∈ FOL. We denote the set of subformulas of ϕ by Sf(ϕ), the set of
variables occurring in ϕ by Vr(ϕ) and the set of free variables of ϕ by Fr(ϕ).

An L-model M = (M, I), where the universe M is any nonempty set and
the interpretation I is a function whose domain is the vocabulary L. The inter-
pretation I maps constant symbols to elements in M , k-ary relation symbols
to k-ary relations in M and k-ary function symbols to functions Mk →M . For
all k ∈ L we write kM := I(k). An assignment s for M is a function that is
defined in some set of variables, dom(s), and ranges over M . A team X for M
is any set of assignments for M with a common domain, denoted by dom(X).

Let s be an assignment and a be any element in M . The assignment s[a/x]
is defined in dom(s)∪{x}, and it maps the variable x to a and all other variables
as s. If ~x := x1 . . . xk is a tuple of variables and ~a := (a1, . . . , ak) ∈ Mk, we
write s[~a/~x ] := s[a1/x1, . . . , ak/xk]. For a team X, a set A ⊆ Mk and for a
function F : X → P(Mk) \ {∅} we use the following notations.X[A/~x ] :=

{
s[~a/~x ] | s ∈ X, ~a ∈ A

}
X[F/~x ] :=

{
s[~a/~x ] | s ∈ X, ~a ∈ F(s)

}
.

LetM be an L-model, s an assignment and t an L-term s.t. Vr(t) ⊆ dom(s).
The interpretation of t with respect toM and s is denoted simply by s(t). For
a team X and a tuple ~t := t1 . . . tk of L-terms we write

s(~t ) := (s(t1), . . . , s(tk)) and X(~t ) := {s(~t ) | s ∈ X}.

If A ⊆ Mk, we write A := Mk \ A. We are now ready to define team
semantics for first order logic.
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Definition 2.2. Let M be an L-model, ϕ ∈ FOL and X a team such that
Fr(ϕ) ⊆ dom(X). We define the truth of ϕ in the model M and the team X,
M�X ϕ, as follows.

• M�X t1 = t2 iff s(t1) = s(t2) for all s ∈ X.

• M�X ¬t1 = t2 iff s(t1) 6= s(t2) for all s ∈ X.

• M�X R~t iff X(~t ) ⊆ RM.

• M�X ¬R~t iff X(~t ) ⊆ RM.

• M�X ψ ∧ θ iff M�X ψ andM�X θ.

• M�X ψ∨θ iff there are Y, Y ′⊆X s.t. Y ∪Y ′ = X,M�Y ψ andM�Y ′ θ.

• M�X ∃xψ iff there exists F : X → P(M) \ {∅} s.t. M�X[F/x] ψ.

• M�X ∀xψ iff M�X[M/x] ψ.

Remark. Above we have defined so-called lax-semantics in which we may select
several witnesses when existentially quantifying variables and we may allow the
“witnessing teams” (Y and Y ′) for disjunction to overlap. These operators also
have an alternative so-called strict semantics:

• M�X ψ ∨ θ iff there are Y, Y ′⊆X s.t. Y ∪ Y ′ = X,
Y ∩ Y ′ = ∅,M�Y ψ andM�Y ′ θ.

• M�X ∃xψ iff there is F : X →M s.t. M�X[F/x] ψ,
where X[F/x] is the team {x[F (s)/x] | s ∈ X}.

For FO these two semantic variants are equivalent. Galliani [5] has shown
that they are also equivalent for exclusion logic but not for inclusion logic.

For tuples ~t := t1 . . . tk and ~t′ := t′1 . . . t
′
k of L-terms we write

~t=~t′ :=
∧
i≤k

ti = t′i and ~t 6=~t′ :=
∨
i≤k

¬ti = t′i.

It is easy to see that the following equivalences hold:

M�X
~t = ~t′ iff s(~t ) = s(~t′) for all s ∈ X

M�X
~t 6= ~t′ iff s(~t ) 6= s(~t′) for all s ∈ X.

For ϕ ∈ FOL and tuple ~x := x1 . . . xk we write: ∃ ~xϕ := ∃x1 . . . ∃xkϕ and
∀ ~xϕ := ∀x1 . . . ∀xkϕ. It is easy to show that

• M�X ∃ ~xϕ iff there exists F : X → P(Mk) \ {∅} s.t. M�X[F/~x ] ϕ.

• M�X ∀ ~xϕ iffM�X[Mk/~x ] ϕ.

In strict semantics the first condition turns into the form: M�X ∃ ~xϕ iff there
exists F : X → Mk s.t. M�X[F/~x ] ϕ, where X[F/~x ] := {s[F(s)/~x ] | s ∈ X}.
First order logic with team semantics has so-called flatness-property:
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Proposition 2.1 ([20], Flatness). Let X be a team and ϕ ∈ FOL. The following
equivalence holds: M�X ϕ iff M�{s} ϕ for all s ∈ X.

We use notations �T
s and �T for truth in a model with standard Tarski

semantics. Team semantics can be seen just as a generalization of Tarski se-
mantics as shown by the following proposition.

Proposition 2.2 ([20]). The following equivalences hold:

M�T
s ϕ iff M�{s} ϕ for all FOL-formulas ϕ and assignments s.

M�T ϕ iff M�{∅} ϕ for all FOL-sentences ϕ.

Note that, by flatness, M�X ϕ if and only if M�T
s ϕ for all s ∈ X. By

Proposition 2.2 it is natural to writeM�ϕ, when we mean thatM�{∅} ϕ. Note
thatM�∅ ϕ holds trivially for all FOL-formulas ϕ by Definition 2.2. In general
we say that any logic L with team semantics has the empty team property if
M�∅ ϕ holds for all L-formulas ϕ. We define three more important properties
for any logic L with team semantics.

Definition 2.3. Let L be any logic with team semantics. We say that

• L is local, if the truth of formulas is determined only by the values of their
free variables in a team, i.e. we have: M�X ϕ iffM�X�Fr(ϕ) ϕ.

• L is closed downwards if: M�X ϕ and Y ⊆ X ⇒M�Y ϕ.

• L is closed under unions if: M�Xi
ϕ for every i ∈ I ⇒M�∪i∈IXi

ϕ.

By flatness it is easy to see that FO is local and closed both downwards and
under unions.

2.2 Inclusion and exclusion logics
Inclusion logic (INC) and exclusion logic (EXC) are obtained by adding inclu-
sion and exclusion atoms, respectively, to FO with team semantics.

Definition 2.4. If ~t1,~t2 are k-tuples of L-terms, ~t1⊆~t2 is a k-ary inclusion
atom. INCL-formulas are formed like FOL-formulas by allowing the use of
(non-negated) inclusion atoms like literals. LetM be a model and X a team
s.t. Vr(~t1~t2) ⊆ dom(X). We define the truth of ~t1 ⊆ ~t2 inM and X as:

M�X
~t1 ⊆ ~t2 iff for all s ∈ X there exists s′ ∈ X s.t. s(~t1) = s′(~t2).

Equivalently we haveM�X
~t1 ⊆ ~t2 iff X(~t1) ⊆ X(~t2).

If ~t1,~t2 are k-tuples of L-terms, ~t1 |~t2 is a k-ary exclusion atom. EXCL-
formulas are formed as FOL-formulas, but (non-negated) exclusion atoms may
be used as literals are used in FO. LetM be a model and X a team for which
we have Vr(~t1~t2) ⊆ dom(X). We define the truth of ~t1 | ~t2 inM and X as:

M�X
~t1 | ~t2 iff for all s, s′ ∈ X : s(~t1) 6= s′(~t2).

Equivalently we haveM�X
~t1 | ~t2 iff X(~t1) ∩X(~t2) = ∅ ( iff X(~t1) ⊆ X(~t2) ).
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Inclusion-exclusion logic (INEX) is defined simply by allowing the use of
both inclusion and exclusion atoms. If ϕ ∈ EXCL contains at most k-ary
exclusion atoms, we say that ϕ is a formula of k-ary exclusion logic, EXC[k].
Moreover, k-ary inclusion logic (INC[k]) and k-ary inclusion-exclusion logic
(INEX[k]) are defined analogously.

The following properties have all been shown by Galliani [5]: EXC, INC and
INEX are all local and satisfy the empty team property. EXC is also closed
downwards, unlike INC which is closed under unions. If we use strict semantics
for INC, the resulting logic is not local. This is one of the reasons why the
(lax)-semantics given in Definition 2.2 is usually considered to be more natural.

We denote inclusion logic with strict semantics by INCs and its k-ary frag-
ment by INCs[k]. Galliani, Hannula and Kontinen [6] have shown INCs is
equivalent with ESO. Thus, on the level of sentences, INCs is equivalent with
exclusion logic and stronger than (the standard) inclusion logic. We will study
the properties of INCs[k] in Section 5.

3 Useful operators for exclusion logic
In this section we will define several operators for EXC[k]. We first review
how k-ary dependence atoms and intuitionistic disjunction can be expressed in
EXC[k]. Then we show how the values of certain tuples of terms can be unified
by using universal inclusion quantifier that can be defined for EXC. With this
technique we can define other useful operators for this framework.

3.1 Dependence atoms and intuitionistic disjunction
Let us review the semantics for dependence atoms of dependence logic ([20]).
Let t1 . . . tk be L-terms. The k-ary dependence atom =(t1 . . . tk−1, tk) has the
following truth condition: M�X =(t1 . . . tk−1, tk) if and only if we have:

for all s, s′ ∈ X for which s(t1 . . . tk−1) = s′(t1 . . . tk−1) also s(tk) = s′(tk),

for all L-modelsM and teams X for which Vr(t1 . . . tk) ⊆ dom(X). This truth
condition can be read as follows: “the value of tk is (functionally) dependent on
the values of t1, . . . , tk−1”. By using Galliani’s translation between dependence
logic and exclusion logic, we can express k-ary dependence atoms in EXC[k]:

Proposition 3.1 ([5]). Let ~t = t1 . . . tk be a tuple of L-terms. The k-ary
dependence atom =(t1 . . . tk−1, tk) is equivalent with the EXCL[k]-formula ϕ:

ϕ := ∀x (x = tk ∨ t1 . . . tk−1x | ~t ), where x is a fresh variable.

Hence, in particular, we can express constancy atom2 =(t) in EXC[k] for
any k ≥ 1. The semantics of intuitionistic disjunction t is obtained by lifting
the Tarski semantics of classical disjunction from single assignments to teams.
That is,M�X ϕt ψ iff M�X ϕ orM�X ψ. Galliani [4] has shown that this
operator can be expressed by using constancy atoms. Hence we can can define
it as an abbreviation in EXC[k] for any k ≥ 1.

2=(t) is true in a nonempty team X iff t has a constant value in X, i.e. |X(t)| = 1.
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3.2 Universal inclusion quantifier and unifier
In [19] we have considered inclusion and exclusion dependencies from a new per-
spective by introducing inclusion and exclusion quantifiers. These quantifiers
range over values of certain terms (or their complements) in the team instead
of the whole universe M . We review here the semantics for universal inclusion
and exclusion quantifiers (∀ ~x⊆~t ) and (∀ ~x |~t ). Let ~x be a k-tuple of variables,
~t a k-tuple of L-terms and ϕ ∈ INEXL. Now (∀ ~x⊆~t ) and (∀ ~x |~t ) have the
following truth conditions:

M�X(∀ ~x⊆~t )ϕ iff M�X[A/~x ] ϕ, where A = X(~t ).

M�X(∀ ~x |~t )ϕ iff M�X[A/~x ] ϕ, where A = X(~t ).

The quantifier (∀ ~x⊆~t ) has a natural reading: “for all tuples ~x that are
included in the values of ~t ”. And likewise (∀ ~x |~t ) can be read as: “for all
tuples ~x that are excluded of the values of ~t ”. These quantifiers can be defined
in INEX by using the following idea: we first universally quantify ~x and then
use inclusion and and exclusion atoms along with disjunction to force the team
to be split into subteams X[X(~t)/~x ] and X[X(~t)/~x ]; then we just state that ϕ
holds in the corresponding subteam (see [19] for more details).

In order to define these quantifiers as abbreviations in INEX we needed to
use both k-ary inclusion and exclusion atoms (see [19] for details). However,
we can alternatively define a quantifier (∀ ~x⊆e~t) as an abbreviation by using
only k-ary exclusion atoms ([19]). This quantifier has the same truth condition
as (∀ ~x⊆~t ) above, when ϕ is a formula of exclusion logic. Hence the universal
inclusion quantifier for k-tuples of variables can be defined for both INEX[k]
and EXC[k], although these definitions have to be given differently. From now
on we will always use the plain notation (∀ ~x⊆~t ) and assume it be defined in
the right way depending on whether we use it with INEX or EXC.

When defining quantifier (∀ ~x⊆~t ), we allowed the variables in the tuple ~x
to occur in Vr(~t ). In particular, we accept the quantifiers of the form (∀ ~x⊆ ~x).
Quantifiers of this form may seem trivial, but they turn out to be rather useful
operators. Let us analyze their truth condition:

M�X(∀ ~x⊆ ~x)ϕ iff M�X′ ϕ, where X ′ = X[X(~x)/~x ].

Note that the team X ′ is not necessarily the same team as X, although we have
dom(X ′) = dom(X) and even X ′(~x) = X(~x). Consider the following example.

Example 3.1. Let X={s1, s2} where s1(v1)=a, s2(v1) = b and a 6= b. Now

X[X(v1)/v1] = X[{a, b}/v1] = {s1[a/v1], s1[b/v1], s2[a/v1], s2[b/v1]}
= {s1, s2, s1[b/v1], s2[a/v1]}.

Thus, supposing that there is at least one variable x ∈ dom(X) for which x 6= v1
and s1(x) 6= s2(x), we have X[X(v1)/v1] 6= X.

We say that the quantifier (∀ ~x⊆ ~x) unifies the values of the tuple ~x in
a team. After executing this operation for a team X, then each assignment
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s ∈ X � (dom(X) \ Vr(~x)) “carries” the information on the whole relation
X(~x). This also makes the values of the tuple ~x independent of all the other
variables in dom(X). We can formulate this latter statement in independence
logic ([8]) as follows, when Vr(~x) ∩ Vr(~v) = ∅.

M�X(∀ ~x⊆ ~x) ~x⊥~v holds in any team X for which Vr(~v) ⊆ dom(X).

We introduce the following operator as an abbreviation.

Definition 3.1. Let ~x1, . . . , ~xn be tuples of variables and ϕ ∈ EXCL. The
unifier of the values of ~x1, . . . , ~xn, denoted by U(~x1, . . . , ~xn), is defined as:

U(~x1, . . . , ~xn)ϕ := (∀ ~x1⊆ ~x1) . . . (∀ ~xn⊆ ~xn)ϕ.

Note that tuples ~x1, . . . , ~xn above do not necessarily need to be of the same
length. Moreover, they do not have to be disjoint, i.e the same variable may
occur in more than one tuple. Also note that if the longest of the tuples ~xi is
a k-tuple, then this operator can be defined in EXC[k] (and in INEX[k]).

Example 3.2. We have U(~x1, . . . , ~xn)ϕ ≡ U(~x1) . . .U(~xn)ϕ by the definition
of the unifier. But one should note that usually

U(~x1. . . ~xn)ϕ 6≡ U(~x1, . . . , ~xn)ϕ.

To see this, consider X s.t. v1, v2 ∈ dom(X) and let X1 := X[X(v1v2)/v1v2]
and X2 := X[X(v1)/v1, X(v2)/v2]. Now we have X1(v1v2) = X(v1v2) but
X2(v1v2) = X(v1)×X(v2). It is easy to see that X1 and X2 are identical only
if X(v1v2) = X(v1)×X(v2).

We also note that the ordering of variables within the tuples does not effect
the truth condition of the unifier. Hence for example U(x1x2)ϕ ≡ U(x2x1)ϕ
for any formula ϕ. Also clearly the repetitions of variables within the tuples do
not matter, and thus for example U(x1x1)ϕ ≡ U(x1)ϕ for any ϕ.

The truth condition for the unifier is given by the following proposition
whose truth is obvious.

Proposition 3.2. Let ~x1, . . . , ~xn be tuples of variables and ϕ ∈ EXCL. Now

M�X U(~x1, . . . , ~xn)ϕ iff M�X[X(~x1)/~x1,...,X(~xn)/~xn] ϕ.

When looking at Definition 3.1, it seems that if the tuples ~x1, . . . , ~xn are
not disjoint, then their ordering affects the truth condition of U(~x1, . . . , ~xn).
However, we can show that it is actually irrelevant in which order we unify
the tuples. We first prove the following proposition which shows what happens
when we unify two tuples which have some shared variables. The result shows
that we obtain then the same result as when unifying separately the part that
is overlapping and the disjoint parts.

Proposition 3.3. Let x1, . . . , xk be distinct variables and 1 < m ≤ n < k.
Then the following equivalence holds.

M�X U(x1 . . . xn) U(xm . . . xk)ϕ
iffM�X U(x1 . . . xm−1) U(xm . . . xn) U(xn+1 . . . xk)ϕ.

9



Proof. We define the following teams:

X1 := X[X(x1 . . . xn)/x1 . . . xn]
X2 := X1[X1(xm . . . xk)/xm . . . xk]
X3 := X[X(x1 . . . xm−1)/x1 . . . xm−1, X(xm . . . xn)/xm . . . xn,

X(xn+1 . . . xk)/xn+1 . . . xk].

By the semantics of universal inclusion quantifier, it is sufficient to show that
X2 = X3.

For the sake of showing that X3 ⊆ X2, let s ∈ X3. Hence there is r ∈ X
and a1 . . . am−1 ∈ X(x1 . . . xm−1), am . . . an ∈ X(xm . . . xn) and an+1 . . . ak ∈
X(xn+1 . . . xk) such that

s = r[a1 . . . am−1/x1 . . . xm−1, am . . . an/xm . . . xn, an+1 . . . ak/xn+1 . . . xk].

Moreover, there are r1, r2, r3 ∈ X such that r1(x1, . . . xm−1) = a1 . . . am−1,
r2(xm, . . . xn) = am . . . an and r3(xn+1, . . . xk) = an+1 . . . ak.

Let now r′ := r[r1(x1 . . . xn)/x1 . . . xn] and r′′ := r3[r2(x1 . . . xn)/x1 . . . xn],
whence r′, r′′ ∈ X1. It is quite easy to see that s = r′[r′′(xm . . . xk)/xm . . . xk]
and therefore s ∈ X2.

For the sake of showing that X2 ⊆ X3, let s ∈ X2. Now there is r1 ∈ X1 and
am . . . ak ∈ X1(xm . . . xk) such that s = r1[am . . . ak/xm . . . xk]. Moreover, there
is r2 ∈ X and a′1 . . . a

′
n ∈ X(x1 . . . xn) such that r1 = r2[a′1 . . . a′n/x1 . . . xn].

Since am . . . ak ∈ X1(xm . . . xk), there is r′1 ∈ X1 s.t. r′1(xm . . . xk) = am . . . ak.
Furthermore there is r′2 ∈ X and a tuple a′′1 . . . a′′n ∈ X(x1 . . . xn) such that
r′1 = r′2[a′′1 . . . a′′n/x1 . . . xn]. Let a′′′i := r′2(xi) for each i s.t. n < i ≤ k. Now

s = r2[a′1 . . . a′m−1/x1 . . . xm−1, a
′′
m . . . a

′′
n/xm . . . xn, a

′′′
n+1 . . . a

′′′
k /xn+1 . . . xk].

Because we have a′1 . . . a′m−1 ∈ X(x1 . . . xm−1), a′′m . . . a′′n ∈ X(xm . . . xn) and
a′′′n+1 . . . a

′′′
k ∈ X(xn+1 . . . xk), it holds that s ∈ X3.

Consider now some arbitrary tuples ~x1 and ~x2 of variables. Recalling the
observations in Example 3.2, we can first rearrange these tuples in such a way
that they match the assumptions of Proposition 3.3 and then unify the over-
lapping and disjoint parts separately. When unifying several tuples that are
not disjoint, we can then show by a straightforward induction that one always
obtains the same result by separately unifying some disjoint tuples. It then
follows that the ordering of tuples ~x1, . . . , ~xn in U(~x1, . . . , ~xn) indeed does not
affect its truth condition. For example we have

U(v1v2, v2v3)ϕ ≡ U(v1, v2, v3)ϕ ≡ U(v3v2, v2v1)ϕ ≡ U(v2v3, v1v2)ϕ.

For the main results of this paper we only use the unifier for disjoint tuples
and in this case the result of Proposition 3.3 is not needed. However, we think
that this is an interesting property which could be useful when using unifier in
some other context.
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3.3 New operators that can be defined with unifier
Unifier can be used in combination with other logical operators to form new
useful tools for the framework of team semantics. We will introduce here two
such operators. The definitions for the following operators are given more
generally for INEX, but they can be defined in the same way for EXC as well.

Definition 3.2. Let ~x be a k-tuple of variables and ϕ ∈ INEXL. Unified
existential quantifier ∃U is defined as:

∃U ~xϕ := ∃ ~x U(~x)ϕ.

Proposition 3.4. Let ~x be a k-tuple and ϕ ∈ INEXL. Now

M�X ∃U ~xϕ iff there exists a nonempty set A ⊆Mk s.t. M�X[A/~x ] ϕ.

Proof. If X were the empty team, then the claim would hold trivially. Thus
we may assume that X 6= ∅.

Suppose first that we have M�X ∃U ~xϕ, i.e. M�X ∃ ~xU(~x)ϕ. There-
fore there exists a function F : X → P(Mk) \ {∅} s.t. M�X′ U(~x)ϕ, where
X ′ = X[F/~x ]. Then M�X′[X′(~x)/~x ] ϕ. Since X[X ′(~x)/~x ] = X ′[X ′(~x)/~x] and
X ′(~x) 6= ∅, we can choose A := X ′(~x).

Suppose then that there exists nonempty A ⊆ Mk s.t. M�X[A/~x ] ϕ. We
define the function

F : X → P(Mk) \ {∅}, s 7→ A for all s ∈ X.

Let X ′ := X[F/~x ], whence X ′(~x)=A. Now X ′[X ′(~x)/~x ]=X ′[A/~x ]=X[A/~x ].
Hence M�X′[X′(~x)/~x ] ϕ, and thus M�X′ U(~x)ϕ. Therefore M�X ∃ ~xU(~x)ϕ,
i.e. M�X ∃U ~xϕ.

If we use this quantifier in EXC (or in any other downwards closed logic),
the following equivalence holds:

M�X ∃U ~xϕ iff there exists ~a ∈Mk s.t. M�X[{~a}/~x ] ϕ.

For single variables this truth condition is equivalent with the semantics of the
quantifier ∃1 that was introduced in [17]. Note that in dependence logic this
quantifier can be defined simply as ∃1 xϕ := ∃x(=(x) ∧ ϕ).

The next operator will play a very important role in our translation from
ESO[k] to EXC[k] in the next section.

Definition 3.3. Let ϕ, ψ ∈ INEXL and let ~x1, . . . , ~xn be k-tuples of disjoint
variables. Unifying disjunction for tuples ~x1, . . . , ~xn is defined as:

ϕ ∨U
~x1,...,~xn

ψ := ∃ y1 ∃ y2 U(~x1, . . . , ~xn)
(
(y1 =y2 ∧ ϕ) ∨ (y1 6=y2 ∧ ψ)

)
,

where y1, y2 are fresh variables.

Proposition 3.5. Let ϕ, ψ ∈ INEXL and let ~x1, . . . , ~xn be k-tuples of variables.
Now for all L-modelsM with at least two elements we have

M�X ϕ ∨U
~x1,...,~xn

ψ iff there exist Y, Y ′ ⊆ X s.t. Y ∪ Y ′ = X,

M�Y [X(~x1)/~x1,...,X(~xn)/~xn] ϕ and M�Y ′[X(~x1)/~x1,...,X(~xn)/~xn] ψ.
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The intuitive idea about the proof of Proposition 3.5 is that before splitting
the team, we must “announce” beforehand for each assignment if it will be
placed on the left hand side or on the right hand side (or on both). This is
done by giving the same or different values for the variables y1 and y2. Because
the unification is done after this announcement, but before the actual splitting
of the team, all the values will be unified correctly on both sides.

Proof. (Proposition 3.5) Because INEX is local, we may assume that y1, y2 /∈
dom(X). Suppose first thatM�X ϕ ∨U

~x1,...,~xn
ψ, i.e.

M�X ∃ y1 ∃ y2 U(~x1, . . . , ~xn)
(
(y1 =y2 ∧ ψ) ∨ (y1 6=y2 ∧ θ)

)
.

Thus there exist F1 : X → P(M) \ {∅} and F2 : X[F1/y1]→ P(M) \ {∅} s.t.

M�X1 U(~x1, . . . , ~xn)
(
(y1 =y2 ∧ ϕ) ∨ (y1 6=y2 ∧ ψ)

)
,

where X1 = X[F1/y1, F2/y2]. Therefore M�X2(y1 = y2 ∧ ϕ) ∨ (y1 6= y2 ∧ ψ),
where X2 = X1[X1(~x1)/~x1, . . . , X1(~xn)/~xn ]. Thus there exist Z,Z ′ ⊆ X2 s.t.
Z ∪ Z ′ = X2,M�Z y1 =y2 ∧ ϕ andM�Z′ y1 6=y2 ∧ ψ. LetY := {s ∈ X | There exists a ∈M s.t. s[a/y1, a/y2] ∈ X1}

Y ′ := {s ∈ X | There exist a, b ∈M s.t. a 6=b and s[a/y1, b/y2] ∈ X1}.

It is easy to see that Y ∪ Y ′ = X. Also note that since X(~xi) = X1(~xi) for
each i ≤ n, it holds that X2 = X1[X(~x1)/~x1, . . . , X(~xn)/xn ]. We will show
that Y [X(~x1)/~x1, . . . , X(~xn)/~xn] = Z � dom(X).

Let r ∈ Y [X(~x1)/~x1, . . . , X(~xn)/~xn]. Now there exists s ∈ Y and tuples
~a1 ∈ X(~x1), . . . ,~an ∈ X(~xn) s.t. r = s[~a1/~x1, . . . ,~an/~xn ]. Since s ∈ Y , there
exists a ∈M s.t. q := s[a/y1, a/y2] ∈ X1. Let q′ := q[~a1/~x1, . . . ,~an/~xn ], whence
q′ ∈ X2. Since q′(y1) = a = q′(y2) andM�Z′ y1 6=y2 we have q′ /∈ Z ′, and thus
it must be that q′ ∈ Z. But since now r = q′ � dom(X) ∈ Z � dom(X), we
have shown that Y [X(~x1)/~x1, . . . , X(~xn)/~xn] ⊆ Z � dom(X).

Let then r∗ ∈ Z � dom(X). Now there exists r ∈ Z s.t. r∗ = r � dom(X).
Because M�Z y1 = y2 it must be that r(y1) = r(y2). Since r ∈ Z ⊆ X2 there
exists q ∈ X1 and ~a1 ∈ X(~x1), . . . ,~an ∈ X(~xn) s.t. r = q[~a1/~x1, . . . ,~an/~xn ].
Let s := q � dom(X). Since q(y1) = r(y1) = r(y2) = q(y2) and s ∈ X, by
the definition of Y we have s ∈ Y . Let s′ := s[~a1/~x1, . . . ,~an/~xn ], whence
s′ ∈ Y [X(~x1)/~x1, . . . , X(~xn)/~xn]. But now it must also be that s′ = r∗ and
thus Z � dom(X) ⊆ Y [X(~x1)/~x1, . . . , X(~xn)/~xn].

We have shown that Y [X(~x1)/~x1, . . . , X(~xn)/~xn] = Z � dom(X). Since
M�Z ϕ, by localityM�Z�dom(X) ϕ and thus M�Y [X(~x1)/~x1,...,X(~xn)/~xn] ϕ. With
a similar argumentation Y ′[X(~x1)/~x1, . . . , X(~xn)/~xn] = Z ′ � dom(X) and con-
sequentlyM�Y ′[X(~x1)/~x1,...,X(~xn)/~xn] ψ.

Suppose then that there are subteams Y, Y ′ ⊆ X such that Y ∪ Y ′ = X,
M�Y [X(~x1)/~x1,...,X(~xn)/~xn] ϕ andM�Y ′[X(~x1)/~x1,...,X(~xn)/~xn] ψ. Since |M | ≥ 2, there
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exist a, b ∈M s.t. a 6= b. We define the following functions:

F1 : X → P(M) \ {∅},


s 7→ {a} if s ∈ Y \ Y ′

s 7→ {b} if s ∈ Y ′ \ Y
s 7→ {a, b} if s ∈ Y ∩ Y ′

F2 : X[F1/y1]→ P(M) \ {∅}, s 7→ {a}.

We define teams X1 := X[F1/y1, F2/y2], X2 := X1[X(~x1)/~x1, . . . , X(~xn)/xn ],
Z := {s ∈ X2 | s(y1) = s(y2)} and Z ′ := {s ∈ X2 | s(y1) 6= s(y2)}. Clearly
now Z ∪ Z ′ = X2, M�Z y1 = y2 and M�Z′ y1 6= y2. We will then show that
Y [X(~x1)/~x1, . . . , X(~xn)/~xn] = Z � dom(X).

Let r ∈ Y [X(~x1)/~x1, . . . , X(~xn)/~xn]. Now there is s ∈ Y and tuples ~a1 ∈
X(~x1), . . . ,~an ∈ X(~xn) s.t. r = s[~a1/~x1, . . . ,~an/~xn ]. Since s ∈ Y , by the
definition of F1, we have s[a/y1] ∈ X[F1/y1]. Let then q := s[a/y1, a/y2] and
q′ := q[~a1/~x1, . . . ,~an/~xn ], whence q ∈ X1 and q′ ∈ X2. Since q′(y1) = q′(y2), by
the definition of Z, we have q′ ∈ Z. But now r = q′ � dom(X) ∈ Z � dom(X),
and thus we have shown that Y [X(~x1)/~x1, . . . , X(~xn)/~xn] ⊆ Z � dom(X).

Let then r∗ ∈ Z � dom(X). Now there is r ∈ Z s.t. r∗ = r � dom(X). By
the definition of Z we have r(y1) = r(y2). Since r ∈ Z ⊆ X2, there is q ∈ X1
and tuples ~a1 ∈ X(~x1), . . . ,~an ∈ X(~xn) such that r = q[~a1/~x1, . . . ,~an/~xn ]. Let
s := q � dom(X). Since q(y1) = q(y2), by the definition of F1, we must have
s ∈ Y . Let s′ := s[~a1/~x1, . . . ,~an/~xn ], whence s′ ∈ Y [X(~x1)/~x1, . . . , X(~xn)/~xn].
But now s′ = r∗ and thus Z � dom(X) ⊆ Y [X(~x1)/~x1, . . . , X(~xn)/~xn].

We have shown that Y [X(~x1)/~x1, . . . , X(~xn)/~xn] = Z � dom(X). Thus by
the initial assumption we have M�Z�dom(X) ϕ and thus by locality M�Z ϕ.
With similar argumentation we can show that Y ′[X(~x1)/~x1, . . . , X(~xn)/~xn] =
Z ′ � dom(X) and consequentlyM�Z′ ψ.

Therefore it holds thatM�Z y1 =y2∧ϕ andM�Z′ y1 6=y2∧ψ. Furthermore
we can conclude thatM�X ∃ y1 ∃ y2 U(~x1, . . . , ~xn)

(
(y1 =y2∧ψ) ∨ (y1 6=y2∧θ)

)
,

i.e. M�X ϕ ∨U
~x1,...,~xn

ψ.

Remark. We could easily modify the definition of unifying disjunction to make
it work properly also in the case of single element models. Let

ϕ ∨U’
~x1,...,~xn

ψ :=
(
∀ z1 ∀ z2 (z1 =z2) ∧ (ϕ ∨ ψ)

)
t ϕ ∨U

~x1,...,~xn
ψ.

It is easy to see that the truth condition given by Proposition 3.5 holds for
the operator above even without the extra assumption |M | > 1, as unifying
disjunction becomes normal disjunction in the case of single element models.
However, in this paper we are mainly using this operator as a tool in our main
translation (Theorem 4.5) where this simpler form suffices for our needs.

4 The expressive power of EXC[k]
In this section we analyze the expressive power of EXC[k] by comparing it with
k-ary dependence logic and k-ary existential second order logic. Finally we
discuss the correspondence between EXC[k] and INC[k].
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Since the lax- and strict semantics are equivalent for exclusion logic, we may
freely use either of them. In order to simplify some proofs in this section we
decide to use the strict semantics for existential quantifier and lax-semantics
for disjunction.3

4.1 Relationship between EXC and dependence logic
Galliani [5] has shown that, without arity bounds, EXC is equivalent with
dependence logic. However, if we consider the bounded arity fragments, this
relationship becomes nontrivial. We first review Galliani’s translation from
exclusion logic to dependence logic (the translation is slightly simplified here).
Proposition 4.1 ([5]). Let ~t1,~t2 be k-tuples of L-terms. The k-ary exclusion
atom ~t1 | ~t2 is logically equivalent to the depencende logic formula ϕ:

ϕ := ∀ ~y ∃w1∃w2
(
=(w1)∧=(~y, w2) ∧

(
(w1 =w2 ∧ ~y 6=~t1) ∨ (w1 6=w2 ∧ ~y 6=~t2)

))
,

where ~y is a k-tuple of fresh variables and w1, w2 are fresh variables.

By inspecting Galliani’s translations, we obtain the following result on the
relationship between the arity fragments of exclusion logic and dependence
logic.
Corollary 4.2. The expressive power of EXC[k] is in between k-ary dependence
logic and (k+1)-ary dependence logic on the level of formulas.

Proof. By using the translation in Proposition 3.1 we can express k-ary depen-
dence atoms with k-ary exclusion atoms. Moreover, by using the translation in
Proposition 4.1 we can express k-ary exclusion atoms with (k+1)-ary depen-
dence atoms.

By this result it is natural to ask whether these inclusions are proper, or
whether EXC[k+1] collapses to some arity fragment of dependence logic. Let
us inspect the special case k = 1 with the following example.
Example 4.1 (C.f. a similar example for INEX in [19]). Let G = (V,E) be an
undirected graph. Now we have
(a) G is disconnected if and only if

G �∀ z ∃x1 ∃x2
(
(x1 =z ∨ x2 =z) ∧ x1 |x2 ∧ (∀ y1⊆x1)(∀ y2⊆x2)¬Ey1y2

)
.

(b) G is k-colorable if and only if

G � γ≤k t ∀ z ∃x1 . . . ∃xk

( ∨
i≤k

xi =z ∧
∧
i 6=j

xi |xj

∧
∧
i≤k

(∀ y1⊆xi)(∀ y2⊆xi)¬Ey1y2

)
,

where γ≤k := ∃x1 . . . ∃xk ∀ y
( ∨

i≤k
y = xi

)
.

3This combination is in some sense the simplest choice. It was used originally when
dependence logic was defined ([20]). The lax- and strict-separation was noticed only after
introducing logics that were not closed downwards.
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We explain briefly why these equivalences hold. In (a), suppose that the
given sentence is true in G. Let X be the team after the quantification of z, x1
and x2. Since we have M�X x1 = z ∨ x2 = z and X(z) = V , it must be that
X(x1)∪X(x2) = V . And sinceM�X x1 |x2, it must be thatX(x1)∩X(x2) = ∅.
Hence the sets X(x1) and X(x2) must form a disjoint union of all vertices.
Because M�X(∀ y1 ⊆ x1)(∀ y2 ⊆ x2)¬Ey1y2, we have (a, b) /∈ E for any pair
(a, b) in X(x1) × X(x2). That is, there is no edge between these disjoint sets
and thus G must be disconnected. It is easy to see that also the converse claim
holds.

Let us then consider the equivalence in (b). If G � γ≤k the graph is triv-
ially k-colorable. Else let X be the team after the quantification of variables
z, x1, . . . , xk. As above, the truth of ∨i≤k xi =z guarantees that ⋃i≤k X(xi) = V
and the truth of exclusion atoms guarantees that sets X(xi) are disjoint. Let
these sets be the coloring of the graph. Because we have for all i ≤ n:
M�X(∀ y1 ⊆ xi)(∀ y2 ⊆ xi)¬Ey1y2, it follows that (a, b) /∈ E for any pair
a, b ∈ Xi and i ≤ n. That is, there is no edge between any two vertices chosen
from a single color set, i.e. the coloring is correct. It is easy to see that also
the converse claim holds.

Corollary 4.3. The expressive power of EXC[1] is properly in between 1-ary
and 2-ary dependence logics, on the level of both sentences and formulas.

Proof. By Corollary 4.2, the expressive power of EXC[1] is in between 1-ary and
2-ary dependence logics. By the results of Galliani [5], 1-ary dependence logic
is not stronger than FO on the level of sentences. However, by Example 4.1,
there are sentences of EXC[1] that cannot be expressed in FO. Thus EXC[1] is
strictly stronger than 1-ary dependence logic on the level of sentences.

On the other hand, there are properties that are definable 2-ary depen-
dence logic, but which cannot be expressed in existential monadic second order
logic, EMSO, such as infinity of a model and even cardinality ([20]). But since
INEX[1] is equivalent to EMSO on the level of sentences ([19]), EXC[1] must
be strictly weaker than 2-ary dependence logic on the level of sentences.

4.2 Capturing the arity fragments of ESO with EXC
In this subsection we will compare the expressive power of EXC with existential
second order logic, ESO. We denote the k-ary fragment of ESO (where at most
k-ary relation symbols can be quantified) by ESO[k]. We will formulate a
translation from ESO[k] to EXC[k] on the level of sentences by using the idea
from the following observation: Suppose that X is a team and ~x, ~w, ~wc are
tuples variables s.t. X(~wc) = X(~w). NowM�X ~x ⊆ ~w iffM�X ~x | ~wc.

In our translation from ESO[k] to INEX[k] ([19]) the quantified k-ary re-
lation symbols Pi of an ESOL-formula were simply replaced with k-tuples ~wi

of quantified first order variables. Then the formulas of the form Pi
~t were

replaced with the inclusion atoms ~t ⊆ ~wi and the formulas of the form ¬Pi
~t

with the exclusion atoms ~t | ~wi. In order to eliminate inclusion atoms from this
translation, we also need to quantify a tuple ~wc

i of variables for each Pi and set
a requirement that ~wc

i must be given complementary values with respect to the
values of ~wi. This requirement is possible to be set in exclusion logic if we are
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restricted to sentences. Then we simply replace inclusion atoms ~t⊆ ~wi with the
corresponding exclusion atoms ~t | ~wc

i .
We also need to consider the quantification of the empty set and the full

relation Mk as special cases. This is because tuples ~wi and also their “com-
plements” ~wc

i must always be given a nonempty set of values. For this we use
special “label variables” w◦i and w•i for each relation symbol Pi. We first quan-
tify some constant value for a variable u. Then we can give the value of u for w◦i
to “announce” the quantification of the empty set or analogously we can give it
for w•i to announce the quantification of the full relation. In order to give these
label values, there must be at least two elements in the model. For handling
the special case of single element models we will use the following easy lemma
(we omit the proof).

Lemma 4.4. Let ϕ be an ESOL-sentence. Now there exists an FOL-sentence
χ, such that we haveM�ϕ iffM�χ, for all L-modelsM = (M, I) for which
|M | = 1.

The remaining problem is that in the translation from ESO to INEX we
also needed a new connective called term value preserving disjunction ([19]) to
avoid the “loss of information” on the values of variables ~wi when evaluating
disjunctions (as after splitting the team, there might be less values for some
variables in the subteams). This time we can use unifying disjunction instead
to avoid the loss of information on the values of both the tuples ~wi and the
tuples ~wc

i . We are now ready to formulate our main theorem.

Theorem 4.5. For every ESOL[k]-sentence Φ there exists an EXCL[k]-sentence
ϕ such that

M�ϕ iff M�Φ.

Proof. Since Φ is an ESOL[k]-sentence, there exists a FOL-sentence δ and rela-
tion symbols P1, . . . , Pn so that Φ = ∃P1 . . . ∃Pnδ. Without losing generality,
we may assume that P1, . . . , Pn are all k-ary. Let ~w1, . . . , ~wn and ~wc

1, . . . , ~w
c
n be

k-tuples of variables and w◦1, . . . , w
◦
n, w

•
1, . . . , w

•
n and u be variables such that

all of these variables are distinct and do not occur in the sentence δ.
Let ψ ∈ Sf(δ). The formula ψ′ is defined recursively:

ψ′ = ψ if ψ is a literal and Pi does not occur in ψ for any i ≤ n

(Pi
~t )′ = (~t | ~wc

i ∨ w•i =u) ∧ w◦i 6=u for all i ≤ n

(¬Pi
~t )′ = (~t | ~wi ∨ w◦i =u) ∧ w•i 6=u for all i ≤ n

(ψ ∧ θ)′ = ψ′∧ θ′

(ψ ∨ θ)′ = ψ′ YU θ′, where YU := ∨U
~w1,..., ~wn, ~wc

1,..., ~wc
n

(∃xψ)′ = ∃xψ′

(∀xψ)′ = ∀xψ′.

Let χ be a FOL-sentence determined by the Lemma 4.4 for the sentence Φ
and let ~z be a k-tuple of fresh variables. Let γ=1 be an abbreviation for the
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sentence ∀ z1 ∀ z2 (z1 = z2). Now we can define the sentence ϕ in the following
way:

ϕ := (γ=1 ∧ χ) t ∃u∃w◦1 . . . ∃w◦n ∃w•1 . . . ∃w•n
∀ ~z ∃ ~w1 . . . ∃ ~wn ∃ ~wc

1 . . . ∃ ~wc
n

(∧
i≤n

(~z = ~wi ∨ ~z = ~wc
i ) ∧ δ′

)
.

Clearly ϕ is an EXCL[k]-sentence.
Remark. Since we are using the tuples ~wi and ~wc

i to simulate a quantified
relation and its complement, respectively, it would be natural to add the re-
quirement ∧i≤n ~wi | ~wc

i to the sentence ϕ above. However, we will see that this is
not necessary, since it suffices that ~wi and ~wc

i are quantified in such a way that
X(~wi) ∪ X(~wc

i ) = Mk in the resulting team X. This condition is achieved by
first universally quantifying a tuple ~z and adding disjunction ~z = ~wi ∨ ~z = ~wc

i

for each i ≤ n (compare with a similar idea in the sentences of Example 4.1).
We write

V ∗ := Vr(uw◦1 . . . w◦nw•1 . . . w•n ~w1 . . . ~wn ~w
c
1 . . . ~w

c
n).

Before proving the claim of this theorem, we prove the following two claims.
Claim 1. LetM be an L-model with at least two elements. Let µ ∈ Sf(δ) and
let X a team for which V ∗⊆dom(X) and the following assumptions hold:X(~wi) ∪X(~wc

i ) = Mk for each i ≤ n.

The values of w◦i , w•i (i ≤ n) and u are constants in X.

LetM′ :=M[ ~A/~P ] (=M[A1/P1, . . . , An/Pn]), where

Ai =


∅ if X(w◦i ) = X(u) and X(w•i ) 6= X(u)
Mk if X(w•i ) = X(u) and X(w◦i ) 6= X(u)
X(~wi) else.

Now the following implication holds:

IfM�X µ′, thenM′ �X µ.

We prove this claim by structural induction on µ:

• If µ is a literal and Pi does not occur in µ for any i ≤ n, then the claim
holds trivially since µ′ = µ.

• Let µ = Pj
~t for some j ≤ n. Suppose that we have M�X(Pj

~t )′, i.e.
M�X(~t | ~wc

j ∨w•j =u)∧w◦j 6=u. Because the values of u, w◦j are constants
in X andM�X w◦j 6=u, we have X(w◦j ) 6= X(u). If X(w•j ) = X(u), then
Aj = Mk and thus triviallyM′ �X Pj

~t. Suppose then that X(w•j ) 6= X(u)
whence Aj = X(~wj). Because the values of u, w•j are constants in X and
M�X

~t | ~wc
j ∨w•j =u, it must be thatM�X

~t | ~wc
j . Now X(~t )∩X(~wc

j) = ∅
and X(~wj) ∪ X(~wc

j) = Mk. Hence X(~t ) ⊆ X(~wc
j) ⊆ X(~wj) = Aj and

thusM′ �X Pj
~t.
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• Let µ = ¬Pj
~t for some j ≤ n. Suppose that we have M�X(¬Pj

~t )′, i.e.
M�X(~t | ~wj ∨w◦j =u)∧w•j 6=u. Because the values of u, w•j are constants
and M�X w•j 6= u, we have X(w•j ) 6= X(u). If X(w◦j ) = X(u), then
Aj = ∅ and thus triviallyM′ �X ¬Pj

~t. Suppose then that X(w◦i ) 6= X(u)
whence Aj = X(~wj). Because the values of u, w◦j are constants in X and
M�X

~t | ~wj ∨w◦j =u, we haveM�X
~t | ~wj. Now X(~t ) ⊆ X(~wj) = Aj and

thusM′ �X ¬Pj
~t.

• The case µ = ψ ∧ θ is straightforward to prove.

• Let µ = ψ ∨ θ. Suppose that M�X(ψ ∨ θ)′, i.e. M�X ψ′ YU θ′. By
Proposition 3.5 there exist Y1, Y2 ⊆ X s.t. Y1 ∪ Y2 = X, M�Y ∗1

ψ′ and
M�Y ∗2

θ′, whereY ∗1 := Y1[X(~w1)/~w1, . . . , X(~wn)/~wn, X(~wc
1)/~wc

1, . . . , X(~wc
n)/~wc

n]
Y ∗2 := Y2[X(~w1)/~w1, . . . , X(~wn)/~wn, X(~wc

1)/~wc
1, . . . , X(~wc

n)/~wc
n].

Now the sets of values for ~wi and ~wc
i are the same in Y ∗1 and Y ∗2 as in

X. Because the values of u and w◦i , w•i are constants in X they have (the
same) constant values in Y ∗1 and Y ∗2 . Hence, by the inductive hypothesis,
we haveM′ �Y ∗1

ψ andM′ �Y ∗2
θ. Since none of the variables in V ∗ occurs

in ψ ∨ θ, by localityM′ �Y1 ψ andM′ �Y2 θ. ThereforeM′ �X ψ ∨ θ.

• The cases µ = ∃xψ and µ = ∀xψ are straightforward to prove. (Note
here that, since x /∈ V ∗, the assumptions of Claim 1 hold in the resulting
team also after the quantification of x.)

Claim 2. Let M be an L-model with at least two elements. Let µ ∈ Sf(δ)
and X be a team such that dom(X) = Fr(µ). Assume that A1, . . . , An ⊆ Mk,
M′ :=M[ ~A/~P ] and a, b ∈M s.t. a 6= b. Let

X ′ := X
[
{a}/u,B◦1/w◦1, . . . , B◦n/w◦n, B•1/w•1, . . . , B•n/w•n,

B1/~w1, . . . , Bn/~wn, B
c
1/~w

c
1, . . . , B

c
n/~w

c
n

]
,

where


B◦i = {a}, B•i = {b} and Bi = Bc

i = Mk if Ai = ∅
B◦i = {b}, B•i = {a} and Bi = Bc

i = Mk if Ai = Mk

B◦i = {b}, B•i = {b}, Bi = Ai and Bc
i = Ai else.

Now the following implication holds:

IfM′ �X µ, thenM�X′ µ
′.

We prove this claim by structural induction on µ. Note that if X = ∅, then
also X ′ = ∅ and thus the claim holds by the empty team property. Hence we
may assume that X 6= ∅.

• If µ is a literal and Pi does not occur in µ for any i ≤ n, then the claim
holds by locality since µ′ = µ.
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• Let µ = Pj
~t for some j ≤ n. SupposeM′ �X Pj

~t, i.e. X(~t ) ⊆ PM
′

j = Aj.
Since X 6= ∅, also X(~t ) 6= ∅ and thus Aj 6= ∅. Hence X ′(w◦j ) = {b}, and
thusM�X′ w

◦
i 6=u since X ′(u) = {a} . If Aj = Mk, then X ′(w•i ) = {a}

and thus M�X′ w
•
j = u, whence M�X′(~t | ~wc

j ∨ w•j = u) ∧ w◦j 6= u, i.e.
M�X′(Pj

~t )′. Suppose then that Aj 6= Mk. Now we have X ′(~wc
j) = Aj,

i.e. X ′(wc
j) = Aj, and thus X ′(~t ) =X(~t ) ⊆ Aj =X ′(~wc

j). Hence we have
M�X′ ~t | ~wc

j and thusM�X′(~t | ~wc
j ∨ w•j =u) ∧ w◦j 6=u, i.e. M�X′(Pj

~t )′.

• Let µ = ¬Pj
~t for some j ≤ n. Suppose that we have M′ �X ¬Pj

~t, i.e.
X(~t ) ⊆ PM

′
j = Aj. Since X 6= ∅, we have X(~t ) 6= ∅ and thus Aj 6= ∅,

i.e. Aj 6= Mk. Hence X ′(w•j ) = {b}, and thus M�X′ w
•
i 6= u since

X ′(u) = {a}. If Aj = ∅, then X ′(w◦i ) = {a} and thus M�X′ w
◦
j = u,

whence M�X′(~t | ~wj ∨ w◦j = u) ∧ w•j 6= u, i.e. M�X′(¬Pj
~t )′. Suppose

then that we have Aj 6= ∅. Then X ′(~wj) = Aj and thus it holds that
X ′(~t ) =X(~t ) ⊆ Aj =X ′(~wj). Hence we haveM�X′ ~t | ~wj and therefore
M�X′(~t | ~wj ∨ w◦j =u) ∧ w•j 6=u, i.e. M�X′(¬Pj

~t )′.

• The case µ = ψ ∧ θ is straightforward to prove.

• Let µ = ψ ∨ θ. Suppose thatM′ �X ψ ∨ θ, i.e. there exist Y1, Y2 ⊆ X s.t.
Y1 ∪ Y2 = X, M′ �Y1 ψ and M′ �Y2 θ. Let Y ′1 , Y ′2 be the teams obtained
by extending the teams Y1, Y2 as X ′ is obtained by extending X. Then,
by the inductive hypothesis, we have M�Y ′1

ψ′ and M�Y ′2
θ′. Now the

following holds:Y ′1 = Y ′1 [X ′(~w1)/~w1, . . . , X
′(~wn)/~wn, X

′(~wc
1)/~wc

1, . . . , X
′(~wc

n)/~wc
n]

Y ′2 = Y ′2 [X ′(~w1)/~w1, . . . , X
′(~wn)/~wn, X

′(~wc
1)/~wc

1, . . . , X
′(~wc

n)/~wc
n].

Note that also Y ′1 , Y ′2 ⊆ X ′ and Y ′1 ∪ Y ′2 = X ′. Thus by Proposition 3.5
M�X′ ψ

′ YU θ′, i.e. M�X′(ψ ∨ θ)′.

• Let µ = ∃xψ (the case µ = ∀xψ is proven similarly). Suppose that
M′ �X ∃xψ, i.e. there exists F : X → M s.t. M′ �X[F/x] ψ. Let F ′ :
X ′ → M such that s 7→ F (s � Fr(µ)) for each s ∈ X ′. Note that F ′ is
well defined since dom(X) = Fr(µ) by the assumption.
Let (X[F/x])′ be a team that is obtained by extending the team X[F/x]
analogously as X ′ is obtained by extending X. Now by inductive hy-
pothesis we have M�(X[F/x])′ ψ

′. By the definition of F ′ it is easy to
see that (X[F/x])′ = X ′[F ′/x] and thus M�X′[F ′/x] ψ

′. Hence we have
M�X′ ∃xψ′, i.e. M�X′(∃xψ)′.

We are now ready to prove the claim of this theorem:

M�ϕ iff M�Φ.

Suppose first thatM�ϕ, i.e. M� γ=1 ∧ χ or

M� ∃u∃w◦1 . . . ∃w◦n ∃w•1 . . . ∃w•n(?)
∀ ~z ∃ ~w1 . . . ∃ ~wn ∃ ~wc

1 . . . ∃ ~wc
n

(∧
i≤n

(~z = ~wi ∨ ~z = ~wc
i ) ∧ δ′

)
.
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If M� γ=1 ∧ χ, the claim holds by Lemma 4.4. Suppose then (?), whence by
the (strict) semantics of existential quantifier there are a, b1 . . . bn, b

′
1, . . . , b

′
n∈M

such that

M�X1 ∀ ~z ∃ ~w1 . . . ∃ ~wn ∃ ~wc
1 . . . ∃ ~wc

n

(∧
i≤n

(~z = ~wi ∨ ~z = ~wc
i ) ∧ δ′

)
,

where X1 := {∅[a/u, b1/w
◦
1, . . . , bn/w

◦
n, b
′
1/w

•
1, . . . , b

′
n/w

•
n]}. Note that since X1

consists only of a single assignment, the values of u, w◦i and w•i (i ≤ n) are
trivially constants in the team X1. Let X2 := X1[Mk/~z ]. Now there exist
functions Fi : X2[F1/~w1, . . . ,Fi−1/~wi−1]→Mk such that

M�X3 ∃ ~wc
1 . . . ∃ ~wc

n

(∧
i≤n

(~z = ~wi ∨ ~z = ~wc
i ) ∧ δ′

)
,

where X3 := X2[F1/~w1, . . . ,Fn/~wn].
Furthermore there exist functions F ′i : X3[F ′1/~wc

1, . . . ,F ′i−1/~w
c
i−1] → Mk

such thatM�X4

∧
i≤n(~z = ~wi∨~z = ~wc

i )∧δ′, whereX4 := X3[F ′1/~wc
1, . . . ,F ′n/~wc

n].
Since X4(~z) = Mk and M�X4

∧
i≤n(~z = ~wi ∨ ~z = ~wc

i ), it is easy to see that
X4(~wi) ∪ X4(~wc

i ) = Mk for each i ≤ n. Now all the assumptions of Claim 1
hold for the team X4. LetM′ :=M[ ~A/~P ], where

Ai =


∅ if X4(w◦i ) = X4(u) and X4(w•i ) 6= X4(u)
Mk if X4(w•i ) = X4(u) and X4(w◦i ) 6= X4(u)
X4(~wi) else.

SinceM�X4 δ
′, by Claim 1 we haveM′ �X4 δ. By localityM′ � δ, and therefore

M�Φ.

Suppose then that M�Φ. If |M | = 1, then by Lemma 4.4 we have
M� γ=1 ∧ χ and thus M�ϕ. Hence we may assume that |M | ≥ 2, whence
there exist a, b ∈ M s.t. a 6= b. SinceM�Φ, there exist A1, . . . , An ⊆ Mk s.t.
M[ ~A/~P ]� δ. Let

X ′ := {∅}
[
{a}/u,B◦1/w◦1, . . . , B◦n/w◦n, B•1/w•1, . . . , B•n/w•n,

B1/~w1, . . . , Bn/~wn, B
c
1/~w

c
1, . . . , B

c
n/~w

c
n

]
,

where B◦i , B•i , Bi, B
c
i (i ≤ n) are defined as in the assumptions of Claim 2. Since

M[ ~A/~P ]� δ, by Claim 2 we haveM�X′ δ
′. Let

F : {∅} →M2n+1, ∅ 7→ ab1 . . . bnb
′
1 . . . b

′
n,

where

bi = a if Ai = ∅
bi = b else

and

b′i = a if Ai = Mk

b′i = b else.

Let X1 := {∅}[F/uw◦1 . . . w◦nw•1 . . . w•n] and let X2 := X1[Mk/~z ]. We fix some
~bi ∈ Ai for each i ≤ n for which Ai 6= ∅ and define the functions

Fi : X2[F1/~w1, . . . ,Fi−1/~wi−1]→Mk,

s 7→ s(~z) if s(~z) ∈ Ai or Ai = ∅
s 7→ ~bi else.
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Let X3 := X2[F1/~w1, . . . ,Fn/~wn]. We fix some ~b′i ∈ Ai for each i ≤ n for which
Ai 6= Mk and define

F ′i : X3[F ′1/~wc
1, . . . ,F ′i−1/~w

c
i−1]→Mk,

s 7→ s(~z) if s(~z) ∈ Ai or Ai = Mk

s 7→ ~b′i else.

Let X4 := X3[F ′1/~wc
1, . . . ,F ′n/~wc

n]. By the definitions of the functions Fi,F ′i it
is quite easy to see that M�X4

∧
i≤n(~z = ~wi ∨ ~z = ~wc

i ). By the definitions of
the choice functions for the variables in V ∗, we observe that X4 � V ∗ ⊆ X ′

(note here that the variables in ~z are not in dom(X ′)). Hence by locality and
downwards closure M�X4 δ

′. Thus M�X4

∧
i≤n(~z = ~wi ∨ ~z = ~wc

i ) ∧ δ′ and
furthermoreM�ϕ.
Corollary 4.6. On the level of sentences EXC[k] ≡ ESO[k].
Proof. In [19] we have presented a translation from EXC[k] to ESO[k]. By
Theorem 4.5, on the level of sentences, there is also a translation from ESO[k]
to EXC[k].

In particular, we can capture existential monadic second order logic, EMSO,
by using unary exclusion atoms. This is particularly interesting since EMSO
cannot be captured with any arity fragment of dependence nor independence
logic (as a consequence by results in [3, 6]). Hence we argue that exclusion logic
deserves extra recognition by capturing this important fragment of ESO.

4.3 Relationship between INC[k] and EXC[k]
Since by [19] INEX[k] captures ESO[k], by Corollary 4.6 we can deduce that
INEX[k] ≡ EXC[k] on the level of sentences. Hence, on the level of sentences,
k-ary inclusion atoms do not increase the expressive power of EXC[k].

By Dawar [2], 3-colorability of a graph cannot be expressed in fixed point
logic. Since by [7] INC is equivalent with positive greatest fixed point logic,
this property is not expressible in INC. However, since it can be expressed in
EXC[1] (recall Example 4.1), INC[k] is strictly weaker than EXC[k] on the level
of sentences for any k.
Corollary 4.7. On the level of sentences INC[k] < EXC[k] for any k ≥ 1.

This consequence is somewhat surprising since inclusion and exclusion atoms
can be seen as duals of each other ([19]). As a matter of fact, exclusion atoms
can also be simulated with inclusion atoms in an analogous way as we simulated
inclusion atoms with exclusion atoms. To see this, suppose that X is a team
and ~x, ~w, ~wc are tuples variables s.t. X(~wc) = X(~w). Now we have: M�X ~x | ~w
iffM�X ~x⊆ ~wc (c.f. the observation in the beginning of Section 4.2).

By the observation above, it would be natural to assume that ESOL[k]-
sentences could be expressed with INC[k]-sentences similarly as we did with
EXC[k]-sentences. But this is impossible as we deduced above. The problem
is that in INC there is no way to “force” the tuples ~w and ~wc to be quantified
in such a way that their values would be complements of each other. However,
there is a possibility this could be done in inclusion logic with strict semantics,
since Galliani, Hannula and Kontinen [6] have shown that this logic is equivalent
with ESO. We will study this question in the next section.
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5 Lower bound for the expressive power of
k-ary inclusion logic with strict semantics

In this section we will study the expressive power of k-ary inclusion logic with
strict semantics, denoted by INCs[k]. By using similar tricks as in the previous
section, we can formulate a translation from ESO[k] to INCs[k] and thus obtain
a lower bound for the expressive power of INCs[k].

In this section we will exclusively use strict-semantics – both for evaluating
existential quantifiers and for evaluating disjunctions. In order to make make
this more explicit, we could have chosen to use a different symbol for the truth
– such as �s. But have we decided keep our notation more simple.

5.1 Properties of inclusion logic with strict semantics
Inclusion logic with the alternative (nonequivalent) strict semantics has been
studied in e.g. [6] and [10]. As we have noted before, when using strict semantics
with inclusion logic, we lose the locality property. Hence the resulting logic is
a bit strange by having some counterintuitive properties4. We have to be extra
careful when formulating our proofs for INCs since locality is one of the most
commonly used properties used in proofs in the framework of team semantics.

Moreover, not only locality of INC is lost with strict semantics. With inclu-
sion logic we very often use its property of being closed under unions. But also
this property is lost with strict semantics, as seen by the following example.5

Example 5.1. The first case below shows that, with strict semantics for dis-
junction, the closure under unions is lost for INC. The second case shows
the same for strict semantics for existential quantifier. For both cases, let
M = {0, 1, 2}.

1. Let ϕ := x⊆ y ∨ y⊆x and let X1 = {s0, s1} and X2 = {s0, s2}, wheres0(x) = 0
s0(y) = 0

s1(x) = 0
s1(y) = 1

s2(x) = 2
s2(y) = 0.

NowM�X1 ϕ since we do a trivial splitting of X1 by leaving the right side
empty. Similarly M�X2 ϕ since we can leave the left side empty when
splitting X2. But M2X1∪X2 ϕ since there is no way to split X1 ∪ X2 =
{s0, s1, s2} into two disjoint subteams such that the other would satisfy
x⊆ y and the other would satisfy y⊆x. (Note that with lax semantics
X1 ∪X2 can here be split into the subteams {s0, s1} and {s0, s2}.)

2. Let ϕ := ∃ z (z 6= x ∧ z 6= y ∧ x⊆ z) and let X1 = {s0, s1} and X2 =
{s0, s2}, wheres0(x) = 0

s0(y) = 0

s1(x) = 1
s1(y) = 2

s2(x) = 2
s2(y) = 1.

4Note that IF-logic is not local either. This is manifested by some exotic properties, such
as signaling.

5The corresponding observation has been done independently in [11] for propositional
inclusion logic.
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NowM�X1 ϕ since we can map s0 to 1 and s1 to 0. SimilarlyM�X2 ϕ
since we can map s0 to 2 and s2 to 0. However, M2X1∪X2 ϕ since
|(X1 ∪X2)(x)| = 3, but both s1 and s2 must be mapped to 0. (Note
that with lax semantics s0 can here be mapped to both 1 and 2.)

5.2 Simulating exclusion in INCs

In order to formulate a translation from ESO[k] to INCs[k], we need to be
able say in INCs that the exclusion ~x1 | ~x2 holds for k-tuples ~x1 and ~x2. In
certain cases this is possible; even without access to the complementary values
of ~x1 and ~x2 in the team. For this purpose, we consider a variant of term-
value preserving disjunction ([19]). The disjunction ϕ ~x1∨~x2 ψ states the same
as normal disjunction, with the additional assumption that the values of ~x1 are
preserved on the left and the values of ~x2 on the right when the team is split.
That is, M�X ϕ ~x1∨~x2 ψ holds if and only if there are Y, Y ′ ⊆ X such that
Y ∪ Y ′ = X, Y ∩ Y ′ = ∅, M�Y ϕ, M�Y ′ ψ and additionally Y (~x1) = X(~x1)
and Y ′(~x2) = X(~x2).

When ϕ := ~x1⊆ ~z and ψ := ~x2⊆ ~z, the truth of ϕ ~x1∨~x2 ψ (by strict seman-
tics) will guarantee in certain teams that the exclusion ~x1 | ~x2 holds. Sufficient
condition here is that all the values of all variables in X are dependent on the
values of ~z. When this holds andX is split into disjoint subteams Y and Y ′, it is
then guaranteed that Y (~z)∩Y ′(~z) = ∅. Supposing thatM�X ~x1⊆ ~z ~x1∨~x2~x2⊆ ~z,
we then have X(~x1) = Y (~x1) ⊆ Y (~z) and X(~x1) = Y ′(~x1) ⊆ Y ′(~z), whence it
follows that X(~x1) ∩X(~x2) = ∅.

In Definition 5.1 the defined operator exccl,cr,~z(~x1, ~x2) is derived quite di-
rectly from the the definition of the disjunction ~x1⊆ ~z ~x1∨~x2 ~x2⊆ ~z in INEX.
The definition is very complex, but we try to explain its main idea here briefly.
Suppose that cl, cr have constant values in a team X and that X(cl) 6= X(cr).6
Now we can quantify a “label variable” y for each assignment such that it gets
either the value of cl or cr. This value states whether the assignment in question
will be placed on the left (cl) or on the right (cr) when evaluating a disjunction
that follows this quantification. Since these label values are given before the
team is split, we can “check” beforehand by using inclusion atoms that the
values of tuple ~x1 are preserved on the left and the values of ~x2 are preserved
on the right. This is done with formulas θ and θ′: the truth of θ guarantees the
preservation of all values except for a constant ~cl and the truth of θ′ guarantees
the preservation for all values except for a constant ~cr. When ~cl 6= ~cr, the truth
of the conjunction θ ∧ θ′ guarantees the preservation of all values.

Definition 5.1. Let cl and cr be variables and let ~z, ~x1, ~x2 be k-tuples of
6With unary dependence atoms =(x) we could state the values for these variables in the

team are constants. However, since we cannot express these atoms with inclusion atoms, we
have to assume this to be the case. (Alternatively we could use some constant symbols which
have different interpretations.)
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variables. We write

exccl,cr,~z(~x1, ~x2) := ∃ y
(
((y=cl ∧ ~x1⊆ ~z) ∨ (y=cr ∧ ~x2⊆ ~z)) ∧ θ ∧ θ′

)
,

θ := ∃ ~z1 ∃ ~z2
(
((y=cl ∧ ~z1 =~x1 ∧ ~z2 =~c1)

∨ (y=cr ∧ ~z1 =~c1 ∧ ~z2 =~x2)) ∧ ~x1⊆ ~z1 ∧ ~x2⊆ ~z2
)

θ′ := ∃ ~z1 ∃ ~z2
(
((y=cl ∧ ~z1 =~x1 ∧ ~z2 =~c2)

∨ (y=cr ∧ ~z1 =~c2 ∧ ~z2 =~x2)) ∧ ~x1⊆ ~z1 ∧ ~x2⊆ ~z2
)
,

where y is a fresh variable, ~z1, ~z2 are k-tuples of fresh variables and ~c1 and ~c2
are k-tuples such that ~c1 = cl . . . cl and ~c2 = cr . . . cr.

The following lemma gives sufficient conditions for the truth ofM�X ~x1 | ~x2.
This result is needed when proving Theorem 5.3 in the next section.

Lemma 5.1. Let M be a model and let X be a team, where cl and cr have
different constant values a and b, respectively. Suppose that the k-tuples ~z, ~x1,
~x2 are all in dom(X) and that the variable y in the definition of exccl,cr,~z(~x1, ~x2)
is not in dom(X). Moreover, assume that the following conditions hold for X.

1. M�X =(~z, v) for all v ∈ dom(X).

2. M�X exccl,cr,~z(~x1, ~x2).

Then it holds that X(~x1) ∩X(~x2) = ∅.

Proof. We write ~a := a . . . a and ~b := b . . . b. SinceM�X exccl,cr,~z(~x1, ~x2), there
is F : X → M s.t. M�X′((y = cl ∧ ~x1⊆ ~z) ∨ (y = cr ∧ ~x2⊆ ~z)) ∧ θ ∧ θ′,
where X ′ = X[F/y]. Thus M�X′ θ, M�X′ θ

′ and there are Y, Y ′ ⊆ X ′ s.t.
Y ∪ Y ′ = X ′, Y ∩ Y ′ = ∅,M�Y y=cl ∧ ~x1⊆ ~z andM�Y ′ y=cr ∧ ~x2⊆ ~z. Since
X ′(cl) = {a} and X ′(cr) = {b}, it is easy to see that the following conditions
hold for any assignment s ∈ X ′:

s ∈ Y iff s(y) = a and s ∈ Y ′ iff s(y) = b.

We first show that Y (~z)∩Y ′(~z) = ∅. Suppose, for the sake of contradiction,
that Y (~z) ∩ Y ′(~z) 6= ∅, whence there is s ∈ Y and s′ ∈ Y ′ s.t. s(~z) = s′(~z).
Now s(y) = a and s′(y) = b. Since M�X =(~z, v) for all v ∈ dom(X), by the
strict semantics of existential quantifier we must haveM�X′ =(~z, y). But this
is impossible since s(~z) = s′(~z) and s(y) 6= s′(y).

Since M�X′ θ, there are F1 : X ′ → Mk and F2 : X ′[F1/~z1] → Mk s.t.
M�Z((y=cl ∧ ~z1 =~x1 ∧ ~z2 =~c1)∨ (y=cr ∧ ~z1 =~c1 ∧ ~z2 =~x2))∧ ~x1⊆ ~z1 ∧ ~x2⊆ ~z2,
where Z := X[F1/~z1,F2/~z2]. HenceM�Z ~x1⊆ ~z1,M�Z ~x2⊆ ~z2 and there are
W1,W2 ⊆ Z s.t. W1 ∪W2 = Z, W1 ∩W2 = ∅,M�W1 y= cl ∧ ~z1 =~x1 ∧ ~z2 =~c1
andM�W2 y=cr ∧ ~z1 =~c1 ∧ ~z2 =~x2.

As above, sinceM�X′ θ
′, there are F ′1 : X ′ →Mk and F ′2 : X ′[F ′1/~z1]→Mk

s.t. M�Z′ ~x1⊆ ~z1, M�Z′ ~x2⊆ ~z2, where Z ′ := X[F ′1/~z1,F ′2/~z2]. Moreover
there are subteams W ′

1,W
′
2 ⊆ Z ′ such that W ′

1 ∪ W ′
2 = Z ′, W ′

1 ∩ W ′
2 = ∅,

M�W ′1
y=cl ∧ ~z1 =~x1 ∧ ~z2 =~c2 andM�W ′2

y=cr ∧ ~z1 =~c2 ∧ ~z2 =~x2.
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Suppose, for the sake of contradiction, that there is ~e ∈ X(~x1) ∩ X(~x2).
Hence there are s1, s2 ∈ X s.t. s1(~x1) = ~e = s2(~x2). Let r1 := s1[F (s1)/y] and
r2 := s2[F (s2)/y]. Now we must have r1(y), r2(y) ∈ {a, b}.

Suppose first that r1(y) = a and r2(y) = b, whence r1 ∈ Y and r2 ∈ Y ′.
SinceM�Y ~x1⊆ ~z, we must have ~e = r1(~x1) ∈ Y (~z). And sinceM�Y ′ ~x2⊆ ~z,
we must have ~e = r2(~x2) ∈ Y ′(~z). But this is impossible, since we deduced
above that Y (~z) ∩ Y ′(~z) = ∅. The case when r1(y) = b and r2(y) = a leads to
a contradiction with a symmetric reasoning.

Suppose then that r1(y) = a = r2(y), whence r1, r2 ∈ Y . As above, we must
have ~e ∈ Y (~z). Let r′2 ∈ Z be the assignment that is obtained by extending
r2 with F1 and F2. Since M�Z ~x2⊆ ~z2, there is r′3 ∈ Z s.t. r′3(~z2) = r′2(~x2).
Suppose first that r′3 ∈ W2, whence r′3(y) = r′3(cr) and r′3(~z2) = r′3(~x2). Let
r3 ∈ X ′ be the assignment that becomes r′3 when extending it with F1 and
F2. Since r′3(y) = r′3(cr), also r3(y) = r3(cr) and thus r3 ∈ Y ′. Now we have
r3(~x2) = r′3(~x2) = r′3(~z2) = r′2(~x2) = r2(~x2) = s2(~x2) = ~e and thus ~e ∈ Y ′(~x2).
But since M�Y ′ ~x2⊆ ~z, we also have ~e ∈ Y ′(~z). But this is impossible since
~e ∈ Y (~z) and we have shown that Y (~z) ∩ Y ′(~z) = ∅. Thus r′3 cannot be in W2.

Suppose then that r′3 ∈ W1, whence r′3(~z2) = r′3(~c1) and thus r′2(~x2) = ~a.
Let r′′2 ∈ Z ′ be the assignment that is obtained by extending r2 with F ′1 and
F ′2. SinceM�Z′ ~x2⊆ ~z2, there is r′′3 ∈ Z s.t. r′′3(~z2) = r′′2(~x2). If r′′3 ∈ W ′

2, then
we obtain a contradiction with a similar reasoning as for r′3 above. Hence we
must have r′′3 ∈ W ′

1. But then r′′3(~z2) = r′3(~c2) = ~b. But this a contradiction
since r′′3(~z2) = r′′2(~x2) = r2(~x2) = r′2(~x2) = ~a 6= ~b.

The case when r1(y) = b = r2(y) leads to a contradiction with a symmetric
reasoning to the previous case. Since all the possible cases lead to a contradic-
tion, we must have X(~x1) ∩X(~x2) = ∅.

For the proof of Theorem 5.3, we need also some sufficient conditions for the
truth of exccl,cr,~z(~x1, ~x2) in a team. The assumptions in the following lemma
are very specific as this lemma is formulated particularly for the proof of The-
orem 5.3. (The operator exccl,cr,~z(~x1, ~x2) is not very interesting in its own right
– it is just a tool for our translation from ESO[k] to INCs[k].)

Lemma 5.2. Let M be a model and let X be a team where cl and cr have
different constant values a and b, respectively. We assume that the following
conditions hold for the team X.

1. X(~x1) ∩X(~x2) = ∅.

2. For each s ∈ X either s(~z ) = s(~x1) or s(~z ) = s(~x2).

3. For each ~a1 ∈ X(~x1), there is s ∈ X for which s(~x1) = ~a1 = s(~z ).

4. For each ~a2 ∈ X(~x2), there is s ∈ X for which s(~x2) = ~a2 = s(~z ).

Now it holds thatM�X exccl,cr,~z(~x1, ~x2).

Proof. We first note that by the assumptions 1 and 2, it is impossible that
s(~x1) = s(~z) = s(~x2) for any s ∈ X. Hence, by the assumption 2, we can define
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the following function:

F : X →M,

s 7→ a if s(~z ) = s(~x1)
s 7→ b if s(~z ) = s(~x2).

Let X ′ := X[F/y], Y := {s ∈ X | s(y) = a} and Y := {s ∈ X | s(y) = b}. Now
clearly Y, Y ′ ⊆ X ′, Y ∪ Y ′ = X ′ and Y ∩ Y ′ = ∅. By the definition of F it is
easy to see thatM�Y y= cl ∧ ~x1⊆ ~z andM�Y ′ y= cr ∧ ~x2⊆ ~z. Let ~a be the
k-tuple ~a := a . . . a and let

F1 : X ′ →Mk,

s 7→ s(~x1) if s(y) = a

s 7→ ~a if s(y) = b

F2 : X ′[F1/~z1]→Mk,

s 7→ ~a if s(y) = a

s 7→ s(~x2) if s(y) = b.

We define the teams Z := X[F1/~z1,F2/~z2], W1 := {s ∈ Z | s(y) = a}
and W2 := {s ∈ Z | s(y) = b}. We clearly have W1 ∪W2 = Z, W1 ∩W2 =
∅, M�W1 y = cl ∧ ~z1 = ~x1 ∧ ~z2 = ~c1 and M�W2 y = cr ∧ ~z1 = ~c1 ∧ ~z2 = ~x2.
For the sake of showing that M�Z ~x1⊆ ~z1, let r ∈ Z. Let s ∈ X be the
assignment that becomes r, when it is extended with F , F1 and F2. By the
assumption 3, there is s′ ∈ X such that s′(~z) = s(~x1) = s′(~x1). Let then
r′ := s′[a/y, s′(~x1)/~z1,~a/~z2]. Now r′ ∈ W1 and r′(~z1) = s′(~x1) = s(~x1) = r(~x1).
By using the assumption 4, we can analogously show that M�Z ~x2⊆ ~z2 and
thereforeM�X′ θ. Moreover, we can show by a similar reasoning thatM�X′ θ

′,
which concludes the proof.

5.3 Translation from ESO[k] to INCs[k]
We can formulate a translation from ESO[k] to INCs[k] by using very similar
ideas as in our translation form ESO[k] to EXC[k]. As noticed before, we
can simulate exclusion atoms with inclusion atoms if we have access to the
complementary values in the team: Let X be a team and ~x, ~wi, ~wc

i tuples s.t.
X(~wc

i ) = X(~wi). Then we have: M�X ~x | ~wi iffM�X ~x⊆ ~wc
i .

As in the translation in the proof of Theorem 4.5, we use label variables
w◦i and w•i for simulating the quantification of the empty relation and the full
relation Mk. Furthermore, we need again Lemma 4.4 for handling the special
case of single element models. One surprising feature of this translation is that
we can translate disjunctions directly as (ψ∨ θ)′ = ψ′ ∨ θ′; this time there is no
need for term value preserving disjunction or any other trick as we may allow
some of the values of tuples ~wi, ~wc

i to be lost when evaluating disjunctions.
The structure of the following proof has many similarities with the proof

of Theorem 4.5 and we will omit the parts that can be done here analogously.
However, there are also many parts that look similar but which are proven by
using different assumptions and thus need to be presented with all the details.

Theorem 5.3. Let Φ be an ESOL[k]-sentence. Now there exists an INCL[k]-
sentence ϕ such that

M�ϕ iff M�Φ.
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Proof. Since Φ is an ESOL[k]-sentence, there exists a FOL-sentence δ and rela-
tion symbols P1, . . . , Pn so that Φ = ∃P1 . . . ∃Pnδ. We may assume again that
P1, . . . , Pn are all k-ary. Let w◦1, . . . , w◦n, w•1, . . . , w•n, ~w1, . . . , ~wn and ~wc

1, . . . , ~w
c
n

be as in the proof of Theorem 4.5. Let u and u′ be fresh variables.

Let ψ ∈ Sf(δ). The formula ψ′ is defined recursively:

ψ′ = ψ, if ψ is a literal and Pi does not occur in ψ for any i ≤ n

(Pi
~t)′ = (~t⊆ ~wi ∨ w•i =u) ∧ w◦i 6=u for all i ≤ n

(¬Pi
~t)′ = (~t⊆ ~wc

i ∨ w◦i =u) ∧ w•i 6=u for all i ≤ n

(ψ ∧ θ)′ = ψ′ ∧ θ′

(ψ ∨ θ)′ = ψ′ ∨ θ′

(∃xψ)′ = ∃xψ′

(∀xψ)′ = ∀xψ′.

Let χ be a FOL-sentence determined by the lemma 4.4 for the sentence Φ and
let ~z be a k-tuple of fresh variables. We can now define ϕ as follows:

ϕ := (γ=1 ∧ χ) ∨ ∃u∃u′
(
u 6= u′ ∧ ∃w◦1 . . . ∃w◦n ∃w•1 . . . ∃w•n

∀ ~z ∃ ~w1 . . . ∃ ~wn ∃ ~wc
1 . . . ∃ ~wc

n

( n∧
i=1

excu,u′,~z(~wi, ~w
c
i ) ∧ δ′

))
.

Clearly now ϕ is an INCL[k]-sentence.
Remark. Since we are using the tuples ~wi and ~wc

i to simulate a quantified
relation and its complement, it would be natural to require that the union of
these values forms the full relation Mk. This could be achieved by adding the
requirement ∧i≤n ∀~v (~v⊆wi ∨ ~v⊆ ~wc

i ) to the sentence ϕ above. However, we
will see that this is not necessary, since it suffices that ~wi and ~wc

i are quantified
in such a way that X(~wi) ∩X(~wc

i ) = ∅ in the resulting team.7

Before proving the claim of this theorem, we prove the following two claims.
The first claim is quite similar to Claim 1. But here instead of assuming that
X(~wi) ∪X(~wc

i ) = Mk we dually assume that X(~wi) ∩X(~wc
i ) = ∅. Also, when

defining the sets Ai, we cannot simply define Ai = X(~wi) as before. Instead,
we must prove that any set B for which X(~wi) ⊆ B ⊆ X(~wc

i ) could be chosen
as Ai (this requirement makes sense since X(~wi) ∩X(~wc

i ) = ∅ for each i ≤ n).
This strengthening of the claim is crucial for proving the case of disjunction.
We write

V ∗ := Vr(uu′w◦1 . . . w◦nw•1 . . . w•n ~w1 . . . ~wn ~w
c
1 . . . ~w

c
n).

Claim 3. LetM be an L-model with at least two elements. Let µ ∈ Sf(δ) and
let X a team for which V ∗⊆dom(X) and the following assumptions hold:X(~wi) ∩X(~wc

i ) = ∅ for each i ≤ n.

The values of w◦i , w•i (i ≤ n), u and u′ are constants in X.

7Recall that in the proof of Theorem 4.5 we had to require that X(~wi) ∪ X(~wc
i ) = Mk.

This difference forms is an interesting piece of duality between these two translations.
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We consider functions HX : {1, . . . , n} → P(Mk) s.t. for each i ≤ n we have

X(~wi) ⊆ HX(i) ⊆ X(~wc
i ).

LetMHX
:=M[ ~A/~P ], where

Ai =


∅ if X(w◦i ) = X(u) and X(w•i ) 6= X(u)
Mk if X(w•i ) = X(u) and X(w◦i ) 6= X(u)
HX(i) else.

Now the following implication holds for every function HX :

IfM�X µ′, thenMHX
�X µ.

We prove this claim by structural induction on µ:

• If µ is a literal and Pi does not occur in µ for any i ≤ n, then the claim
holds trivially since µ′ = µ.

• Let µ = Pj
~t for some j ≤ n. Suppose that we have M�X(Pj

~t )′, i.e.
M�X(~t⊆ ~wj∨w•j =u)∧w◦j 6=u. Because the values of u, w◦j are constants
in X andM�X w◦j 6=u, we have X(w◦j ) 6= X(u). If X(w•j ) = X(u), then
Aj = Mk and thus trivially MHX

�X Pj
~t. Suppose then that X(w•j ) 6=

X(u) whence Aj = HX(j). Because the values of u, w•j are constants
in X and M�X

~t⊆ ~wj ∨ w•j = u, it must hold that M�X
~t⊆ ~wj. Now

X(~t ) ⊆ X(~wj) ⊆ HX(j) = Aj and thereforeMHX
�X Pj

~t.

• Let µ = ¬Pj
~t for some j ≤ n. Suppose that we have M�X(¬Pj

~t )′, i.e.
M�X(~t⊆ ~wc

j∨w◦j =u)∧w•j 6=u. Because the values of u, w•j are constants
andM�X w•j 6=u, we have X(w•j ) 6= X(u). If X(w◦j ) = X(u), then Aj =
∅ and thus trivially MHX

�X ¬Pj
~t. Suppose then that X(w◦i ) 6= X(u)

whence Aj = HX(j). Because the values of u, w◦j are constants in X and
M�X

~t⊆ ~wc
j ∨w◦j =u, we haveM�X

~t⊆ ~wc
j . Because HX(j) ⊆ X(wc

j), it
also holds that X(~wc

j) ⊆ HX(j). Therefore X(~t ) ⊆ X(~wc
j) ⊆ HX(j) = Aj

and thusMHX
�X ¬Pj

~t.

• Let µ = ψ∨θ. Suppose thatM�X(ψ∨θ)′, i.e. M�X ψ′∨θ′. Hence there
are Y, Y ′ ⊆ X s.t. Y ∪Y ′ = X, Y ∩Y ′ = ∅,M�Y ψ

′ andM�Y ′ θ
′. Since

X(~wi) ∩X(~wc
i ) = ∅ for each i ≤ n, we must also have Y (~wi) ∩ Y (~wc

i ) =
∅ = Y ′(~wi) ∩ Y ′(~wc

i ) for each i ≤ n. Moreover, since the values of w◦i ,
w•i (i ≤ n) and u are constants in X, they must also have (the same)
constant values in Y and Y ′.
By the inductive hypothesis,MHY

�Y ψ andMHY ′
�Y θ, for every func-

tion HY and HY ′ . We then consider an arbitrary function HX . Since
Y (~wi) ⊆ X(~wi) and X(~wc

i ) ⊆ Y (~wc
i ) for each i ≤ n, we haveMHX

�Y ψ.
By a symmetric argumentationMHX

�Y ′ θ. ThereforeMHX
�X ψ ∨ θ.

• The cases µ = ψ ∧ θ, µ = ∃xψ and µ = ∀xψ are straightforward to
prove.
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The next claim is very similar to Claim 2. However, since we cannot use
locality nor downward closure properties with INCs, we must prove this claim
more generally for an extended team Z which: (1) matches with X when re-
stricted dom(X); and (2) has the same values as X ′ for certain tuples in V ∗.
Claim 4. Let M be an L-model with at least two elements. Let µ ∈ Sf(δ)
and X be a team such that dom(X) = Fr(µ). Assume that A1, . . . , An ⊆ Mk,
M′ :=M[ ~A/~P ] and a, b ∈M s.t. a 6= b. We write ~a := a . . . a. Let now

X ′ := X
[
{a}/u, {b}/u′, B◦1/w◦1, . . . , B◦n/w◦n, B•1/w•1, . . . , B•n/w•n,

B1/~w1, . . . , Bn/~wn, B
c
1/~w

c
1, . . . , B

c
n/~w

c
n

]
,

where


B◦i = {a}, B•i = {b}, Bi = {~a} and Bc

i = Mk \ {~a} if Ai = ∅
B◦i = {b}, B•i = {a}, Bi = {~a} and Bc

i = Mk \ {~a} if Ai = Mk

B◦i = {b}, B•i = {b}, Bi = Ai and Bc
i = Ai else.

Now the following implication holds:

IfM′ �X µ, thenM�Z µ
′,

for any team Z for which Z � dom(X) = X and Z(~v) = X ′(~v) for all ~v ∈ ~V ∗,
where

~V ∗ := {u, u′} ∪
⋃
i≤n

{w◦i , w•i , ~wi, ~w
c
i}.

We prove this claim by structural induction on µ. If X = ∅, then also Z = ∅
and thus the claim holds trivially. Hence we may assume that X 6= ∅.

• If µ is a literal and Pi does not occur in µ for any i ≤ n, then the claim
holds by locality (since literals are first order, we may use locality here).

• Let µ = Pj
~t for some j ≤ n. Suppose that we have M′ �X Pj

~t, i.e.
X(~t ) ⊆ PM

′
j = Aj. Since X 6= ∅, also X(~t ) 6= ∅ and thus Aj 6= ∅.

Hence Z(w◦j ) = X ′(w◦j ) = {b}. Since Z(u) = X ′(u) = {a}, we have
M�Z w

◦
j 6= u. If Aj = Mk, then Z(w•j ) = X ′(w•j ) = {a} and thus

M�Z w
•
j = u. ThenM�Z(~t ⊆ ~wj ∨ w•j =u) ∧ w◦j 6= u, i.e. M�Z(Pj

~t )′.
Suppose then that Aj 6= Mk. Now Z(~wj) = X ′(~wj) = Aj and thus
Z(~t ) =X(~t ) ⊆ Aj =Z(~wj). Hence M�Z

~t ⊆ ~wj and therefore we have
M�Z(~t ⊆ ~wj ∨ w•j =u) ∧ w◦j 6= u, i.e. M�Z(Pj

~t )′.

• Let µ = ¬Pj
~t for some j ≤ n. Suppose that we have M′ �X ¬Pj

~t, i.e.
X(~t ) ⊆ PM

′
j = Aj. Since X 6= ∅, also X(~t ) 6= ∅ and thus Aj 6= ∅,

i.e. Aj 6= Mk. Hence Z(w•j ) = X ′(w•j ) = {b}. Since Z(u) = X ′(u) =
{a}, we have M�Z w

•
i 6= u. If Aj = ∅, then Z(wj) = X ′(w◦j ) = {a}

and thus M�X′ w
◦
j = u, whence M�X′(~t⊆ ~wc

j ∨ w◦j = u) ∧ w•j 6= u, i.e.
M�Z(¬Pj

~t )′. Suppose then that Aj 6= ∅. Now Z(~wc
j) = X ′(~wc

j) = Aj

and thus Z(~t ) = X(~t ) ⊆ Aj = Z(~wc
j). Hence M�X′ ~t⊆~wc

j and thus
M�X′(~t⊆ ~wc

j ∨ w◦j =u) ∧ w•j 6=u, i.e. M�X′(¬Pj
~t )′.

• The case µ = ψ ∧ θ is straightforward to prove.
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• Let µ = ψ ∨ θ. Suppose thatM′ �X ψ ∨ θ, i.e. there are Y1, Y2 ⊆ X s.t.
Y1∪Y2 = X, Y1∩Y2 = ∅,M′ �Y1 ψ andM′ �Y2 θ. Let Y ′1 , Y ′2 be the teams
obtained by extending the teams Y1, Y2 as X ′ is obtained by extending
X. We define the following teams W1,W2 ⊆ Z:W1 := {s ∈ Z | s � dom(X) ∈ Y1}

W2 := {s ∈ Z | s � dom(X) ∈ Y2}.

Now W1 � dom(Y1) = W1 � dom(X) = Y1 and W1(~v) = Y ′1(~v) for all ~v ∈
~V ∗. Thus, by the inductive hypothesis, M�W1 ψ

′. By similar reasoning
M�W2 θ

′. It is also easy to see that W1 ∪W2 = Z and W1 ∩W2 = ∅,
whenceM�Z ψ

′ ∨ θ′, i.e. M�Z(ψ ∨ θ)′.

• Let µ = ∃xψ (the case µ = ∀xψ is proven by a similar reasoning).
Suppose M′ �X ∃xψ, i.e. there is F : X → M s.t. M′ �W ψ, where
W := X[F/x]. Let

G : Z →M, s 7→ F (s�Fr(µ)).

Note that G is well defined since dom(X) = Fr(µ) and Z � dom(X) = X.
Let W ′ be a team that is obtained by extending the team W analogously
as X ′ is obtained by extending X. Now by the definition of G we observe
that Z[G/x] � dom(W ) = W . Moreover, (Z[G/x])(~v) = W ′(~v) for all
~v ∈ ~V ∗. Hence, by the inductive hypothesis, M�Z[G/x] ψ

′. Therefore
M�Z ∃xψ′, i.e. M�Z(∃xψ)′.

We are now ready to prove the claim of this theorem:

M�ϕ iff M�Φ.

Suppose first thatM�ϕ. Since the standard disjunction ∨ is equivalent with
intuitionistic disjunction t for the singleton team {∅}, eitherM� γ=1 ∧ χ or

M� ∃u∃u′
(
u 6= u′ ∧ ∃w◦1 . . . ∃w◦n ∃w•1 . . . ∃w•n(??)

∀ ~z ∃ ~w1 . . . ∃ ~wn ∃ ~wc
1 . . . ∃ ~wc

n

( n∧
i=1

excu,u′,~z(~wi, ~w
c
i ) ∧ δ′

))
.

IfM� γ=1 ∧ χ, the claim holds by Lemma 4.4. Suppose then (??), whence
by a similar reasoning as in the proof of Theorem 4.5, there exists a team X4
such that the following conditions hold8:

• The values of the variables u, u′, w◦i , w•i (i ≤ n) are constants in X4 and
moreover X4(u) 6= X4(u′).

• M�X4

∧n
i=1 excu,u′,~z(~wi, ~w

c
i ) ∧ δ′.

8The teamX4 here matches the teamX4 in corresponding part of the proof of Theorem 4.5
with the addition that the variable u′ is quantified here as a constant that is different from
the value of u.
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We first note that since the variables in ~z were universally quantified and all
the other variables in dom(X4) were existentially quantified (by the strict se-
mantics), it holds thatM�X4 =(~z, v) for all v ∈ dom(X).

Let j ≤ n. Now the assumptions of Lemma 5.1 hold when X = X4, cl = u,
cr = u′, ~x1 = ~wj and ~x2 = ~wc

j . Hence by Lemma 5.1 X4(~wj) ∩ X4(~wc
j) = ∅.

Now all the assumptions of Claim 3 hold for the team X4. LetM′ :=M[ ~A/~P ],
where

Ai =


∅ if X4(w◦i ) = X4(u) and X4(w•i ) 6= X4(u)
Mk if X4(w•i ) = X4(u) and X4(w◦i ) 6= X4(u)
X4(~wi) else.

Since M�X4 δ
′, by Claim 3 we have M′ �X4 δ (note that any Ai for which

X(~wi) ⊆ Ai ⊆ X(~wc
i ), could have been chosen in the last case above). By

locality9 M′ � δ, and thereforeM�Φ.

Suppose then that M�Φ. If |M | = 1, then by Lemma 4.4 we have
M� γ=1 ∧ χ and thus M�ϕ. Hence we may assume |M | ≥ 2, whence there
are a, b ∈ M s.t. a 6= b. Since M�Φ, there exist A1, . . . , An ⊆ Mk s.t.
M[ ~A/~P ]� δ. Let

X ′ := {∅}
[
{a}/u, {b}/u′, B◦1/w◦1, . . . , B◦n/w◦n, B•1/w•1, . . . , B•n/w•n,

B1/~w1, . . . , Bn/~wn, B
c
1/~w

c
1, . . . , B

c
n/~w

c
n

]
,

where B◦i , B•i , Bi, B
c
i (i ≤ n) are defined as in the assumptions of Claim 4.

Let F : {∅} →M2n+2 be the function that gives value a for u, value b for u′
and values for variables w•i , w◦i (i ≤ n) exactly as the corresponding function F
in the proof of Theorem 4.5. Let now X1 := {∅}[F/uu′w◦1 . . . w◦nw•1 . . . w•n] and
X2 := X1[Mk/~z ]. We write ~a := a . . . a and fix some ~bi ∈ Ai for each i ≤ n for
which Ai 6= ∅. We define then the following functions

Fi : X2[F1/~w1, . . . ,Fi−1/~wi−1]→Mk,


s 7→ ~a if Ai = ∅ or Ai = Mk

s 7→ s(~z) if s(~z) ∈ Ai and Ai 6= Mk

s 7→ ~bi if s(~z) /∈ Ai and Ai 6= ∅.

Let X3 := X2[F1/~w1, . . . ,Fn/~wn]. We write ~b := b . . . b and fix some ~b′i ∈ Ai for
each i ≤ n for which Ai 6= Mk. Let

F ′i : X3[F ′1/~wc
1, . . . ,F ′i−1/~w

c
i−1]→Mk,


s 7→ s(~z) if Ai ∈ {∅,Mk} and s(~z) 6= ~a

s 7→ ~b if Ai ∈ {∅,Mk} and s(~z) = ~a

s 7→ s(~z) if s(~z) /∈ Ai and Ai 6= ∅
s 7→ ~b′i if s(~z) ∈ Ai and Ai 6= Mk.

Let X4 := X3[F ′1/~wc
1, . . . ,F ′n/~wc

n].
Let j ≤ n. By observing the definitions of F ′j and F ′j, we can see that all

the assumptions of Lemma 5.2 hold when X = X4, cl = u, cr = u′, ~x1 = ~wj

9Note that δ here is an FOL-sentence and thus locality property may be used.
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and ~x2 = ~wc
j . Hence by Lemma 5.2 we haveM�X4 excu,u′,~z(~wj, ~w

c
j). Moreover,

it is easy to see that X4(~v) = X ′(~v) for every ~v ∈ ~V ∗ (recall the assumptions
of Claim 4). SinceM[ ~A/~P ]� δ and X4 � dom({∅}) = {∅} by Claim 4 we have
M�X4 δ

′ (note that we cannot use locality property nor downwards closure here
as in the proof of Theorem 4.5). ThereforeM�X4

∧
i≤n excu,u′,~z(~wi, ~w

c
i )∧ δ′ and

moreoverM�ϕ.

Corollary 5.4. On the level of sentences ESO[k] ≤ INCs[k] for any k ≥ 1.

Thus, by Theorem 4.5, k-ary inclusion logic with strict semantics is at least
as expressive as k-ary exclusion logic on the level of sentences. Recall that
by Corollary 4.7, with the standard (lax) semantics, INC[k] is strictly weaker
than EXC[k] on the level of sentences. Consequently INCs[k] is strictly more
expressive than INC[k] for any k ≥ 110.

Since inclusion logic with strict semantics is equivalent with ESO by [6], it
would be natural to predict that INCs[k] ≡ ESO[k] for any k ≥ 1. However,
for now we only have a lower bound for the expressive power of INCs[k]. To
our understanding, a translation from INCs[k] to ESO[k] cannot be achieved by
modifying the translation from INC[k] to ESO[k] (in [19]) in any straightforward
way. Therefore we leave this question as an open problem for further research.

5.4 On the relationship between ESO and various logics
with team semantics

We give here some final remarks on the correspondence between ESO and var-
ious logics with team semantics. On the level of sentences the whole ESO can
be captured with several logics in this framework, such as dependence logic,
independence logic, exclusion logic or inclusion logic with strict semantics. But
what are the differences between these approaches and which approach can be
considered the most natural or practical?

Usually we do not need the whole ESO and some of its simpler fragments
suffice. By restricting the arities of atoms in either dependence or indepen-
dence logic, we can naturally capture all the functional arity fragments of ESO.
However, supposing that the functional arity fragments of ESO differ from the
relational ones, then the arity fragments of dependence or independence logic
cannot capture any of the relational fragments of ESO – of which ESO[1] and
ESO[2] are particularly natural. These and all the other relational fragments
can be captured with the fragments of INEX and EXC.

By examining the actual translations that have been presented, we believe
that the compositional translation from ESO[k] to INEX[k], presented in [19], is
currently the most simple and straightforward. By the results of this paper, we
know that inclusion atoms are not needed in order to formulate this translation.
However, in order to get rid of inclusion atoms, we had to do several “tricks”
which made the translation more complicated and unnatural.

So far we have only considered this correspondence on the level of sentences.
In order to capture ESO on the level of formulas, we need either independence

10For the general case this is a known results by [6]. But, to our best knowledge, this is a
new result for bounded arity fragments of inclusion logic.
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logic or inclusion-exclusion logic. From the know translations, the one between
ESO and INEX ([19]) respects the arity fragments in a natural way. It should
also be noted that inclusion atoms are crucial for this translation and we cannot
simulate them with exclusion atoms (as we could do on the level of sentences).
By the observations given here, we argue the results of this paper rather com-
plement the results of [19] instead of trivializing them.

6 Conclusion
In this paper we have analyzed the expressive power of k-ary exclusion atoms.
We first observed that the expressive power of EXC[k] is between k-ary and
(k+1)-ary dependence logics, and that when k = 1, these inclusions are proper.
By simulating the use of inclusion atoms with exclusion atoms and by using the
complementary values, we were able to translate ESO[k]-sentences into EXC[k].
By combining this with our earlier translation we managed to capture the k-
ary fragment of ESO by using only k-ary exclusion atoms, which resolves the
expressive power of EXC[k] on the level of sentences. However, on the level of
formulas our results are not yet conclusive.

As mentioned in the introduction, by [3], on the level of sentences k-ary
dependence logic captures the fragment of ESO where (k−1)-ary functions can
be quantified. Thus 1-ary dependence logic is not more expressive than FO, but
2-ary dependence logic is strictly stronger than EMSO – which can be captured
with EXC[1]. Also, the question whether EXC[k] is properly in between k- and
(k+1)-ary dependence logic for all k ≥ 2, amounts to showing whether k-ary
relational fragment of ESO is properly between (k−1)-ary and k-ary functional
fragments of ESO for any k ≥ 2. To our best knowledge this is still an open
problem, even though, by the result of Ajtai [1], both relational and functional
fragments of ESO have a strict arity hierarchy (over arbitrary vocabulary).

In order to formulate the translation in our main theorem, we needed use
a new operator to called unifier which is expressible in exclusion logic. This
is a very simple but interesting operator for the framework of team seman-
tics by its own right, and its properties deserve to be studied further – either
independently or by adding it to some other logics in this framework.

Finally we used the techniques developed in this paper to formulate a trans-
lation from ESO[k] to k-ary inclusion logic with strict semantics (INCs[k]). We
left as an open problem whether INCs[k] captures ESO[k] or is even stronger.
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