180 research outputs found

    An Evolvable Combinational Unit for FPGAs

    Get PDF
    A complete hardware implementation of an evolvable combinational unit for FPGAs is presented. The proposed combinational unit consisting of a virtual reconfigurable circuit and evolutionary algorithm was described in VHDL independently of a target platform, i.e. as a soft IP core, and realized in the COMBO6 card. In many cases the unit is able to evolve (i.e. to design) the required function automatically and autonomously, in a few seconds, only on the basis of interactions with an environment. A number of circuits were successfully evolved directly in the FPGA, in particular, 3-bit multipliers, adders, multiplexers and parity encoders. The evolvable unit was also tested in a simulated dynamic environment and used to design various circuits specified by randomly generated truth tables

    ParaFPGA : parallel computing with flexible hardware

    Get PDF
    ParaFPGA 2009 is a Mini-Symposium on parallel computing with field programmable gate arrays (FPGAs), held in conjunction with the ParCo conference on parallel computing. FPGAs allow to map an algorithm directly onto the hardware, optimize the architecture for parallel execution, and dynamically reconfigure the system in between different phases of the computation. Compared to e.g. Cell processors, GPGPU's (general-purpose GPU's) and other high-performance devices, FPGAs are considered as flexible hardware in the sense that the building blocks of one or more single or multiple FPGAs can be interconnected freely to build a highly parallel system. In this Mini-Symposium the following topics are addressed: clustering FPGAs, evolvable hardware using FPGAs and fast dynamic reconfiguration

    VHDL IMPLEMENTATION OF GENETIC ALGORITHM FOR 2-BIT ADDER

    Get PDF
    Future planetary and deep space exploration demands that the space vehicles should have robust system architectures and be reconfigurable in unpredictable environment. The Evolutionary design of electronic circuits, or Evolvable hardware (EHW), is a discipline that allows the user to automatically obtain the desired circuit design. The circuit configuration is under control of Evolutionary algorithms. The most commonly used evolutionary algorithm is Genetic Algorithm. The paper discusses on Cartesian Genetic Programming for evolving gate level designs and proposes Evolvable unit for 2-bit adder based on Genetic Algorithm

    Accelerating FPGA-based evolution of wavelet transform filters by optimized task scheduling

    Get PDF
    Adaptive embedded systems are required in various applications. This work addresses these needs in the area of adaptive image compression in FPGA devices. A simplified version of an evolution strategy is utilized to optimize wavelet filters of a Discrete Wavelet Transform algorithm. We propose an adaptive image compression system in FPGA where optimized memory architecture, parallel processing and optimized task scheduling allow reducing the time of evolution. The proposed solution has been extensively evaluated in terms of the quality of compression as well as the processing time. The proposed architecture reduces the time of evolution by 44% compared to our previous reports while maintaining the quality of compression unchanged with respect to existing implementations. The system is able to find an optimized set of wavelet filters in less than 2 min whenever the input type of data changes

    A genetic parallel programming based logic circuit synthesizer.

    Get PDF
    Lau, Wai Shing.Thesis submitted in: November 2006.Thesis (M.Phil.)--Chinese University of Hong Kong, 2007.Includes bibliographical references (leaves 85-94).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.ivChapter 1 --- Introduction --- p.1Chapter 1.1 --- Field Programmable Gate Arrays --- p.2Chapter 1.2 --- FPGA technology mapping problem --- p.3Chapter 1.3 --- Motivations --- p.5Chapter 1.4 --- Contributions --- p.6Chapter 1.5 --- Thesis Organization --- p.9Chapter 2 --- Background Study --- p.11Chapter 2.1 --- Deterministic approach to technology mapping problem --- p.11Chapter 2.1.1 --- FlowMap --- p.12Chapter 2.1.2 --- DAOMap --- p.14Chapter 2.2 --- Stochastic approach --- p.15Chapter 2.2.1 --- Bio-Inspired Methods for Multi-Level Combinational Logic Circuit Design --- p.15Chapter 2.2.2 --- A Survey of Combinational Logic Circuit Representations in stochastic algorithms --- p.17Chapter 2.3 --- Genetic Parallel Programming --- p.20Chapter 2.3.1 --- Accelerating Phenomenon --- p.22Chapter 2.4 --- Chapter Summary --- p.23Chapter 3 --- A GPP based Logic Circuit Synthesizer --- p.24Chapter 3.1 --- Overall system architecture --- p.25Chapter 3.2 --- Multi-Logic-Unit Processor --- p.26Chapter 3.3 --- The Genotype of a MLP program --- p.28Chapter 3.4 --- The Phenotype of a MLP program --- p.31Chapter 3.5 --- The Evolution Engine --- p.33Chapter 3.5.1 --- The Dual-Phase Approach --- p.33Chapter 3.5.2 --- Genetic operators --- p.35Chapter 3.6 --- Chapter Summary --- p.38Chapter 4 --- MLP in hardware --- p.39Chapter 4.1 --- Motivation --- p.39Chapter 4.2 --- Hardware Design and Implementation --- p.40Chapter 4.3 --- Experimental Settings --- p.43Chapter 4.4 --- Experimental Results and Evaluations --- p.46Chapter 4.5 --- Chapter Summary --- p.50Chapter 5 --- Feasibility Study of Multi MLPs --- p.51Chapter 5.1 --- Motivation --- p.52Chapter 5.2 --- Overall Architecture --- p.53Chapter 5.3 --- Experimental settings --- p.55Chapter 5.4 --- Experimental results and evaluations --- p.59Chapter 5.5 --- Chapter Summary --- p.59Chapter 6 --- A Hybridized GPPLCS --- p.61Chapter 6.1 --- Motivation --- p.62Chapter 6.2 --- Overall system architecture --- p.62Chapter 6.3 --- Experimental settings --- p.64Chapter 6.4 --- Experimental results and evaluations --- p.66Chapter 6.5 --- Chapter Summary --- p.70Chapter 7 --- A Memetic GPPLCS --- p.71Chapter 7.1 --- Motivation --- p.72Chapter 7.2 --- Overall system architecture --- p.72Chapter 7.3 --- Experimental settings --- p.76Chapter 7.4 --- Experimental results and evaluations --- p.77Chapter 7.5 --- Chapter Summary --- p.80Chapter 8 --- Conclusion --- p.82Chapter 8.1 --- Future work --- p.83Bibliography --- p.8

    Pipelined genetic propagation

    Get PDF
    © 2015 IEEE.Genetic Algorithms (GAs) are a class of numerical and combinatorial optimisers which are especially useful for solving complex non-linear and non-convex problems. However, the required execution time often limits their application to small-scale or latency-insensitive problems, so techniques to increase the computational efficiency of GAs are needed. FPGA-based acceleration has significant potential for speeding up genetic algorithms, but existing FPGA GAs are limited by the generational approaches inherited from software GAs. Many parts of the generational approach do not map well to hardware, such as the large shared population memory and intrinsic loop-carried dependency. To address this problem, this paper proposes a new hardware-oriented approach to GAs, called Pipelined Genetic Propagation (PGP), which is intrinsically distributed and pipelined. PGP represents a GA solver as a graph of loosely coupled genetic operators, which allows the solution to be scaled to the available resources, and also to dynamically change topology at run-time to explore different solution strategies. Experiments show that pipelined genetic propagation is effective in solving seven different applications. Our PGP design is 5 times faster than a recent FPGA-based GA system, and 90 times faster than a CPU-based GA system

    Intrinsically Evolvable Artificial Neural Networks

    Get PDF
    Dedicated hardware implementations of neural networks promise to provide faster, lower power operation when compared to software implementations executing on processors. Unfortunately, most custom hardware implementations do not support intrinsic training of these networks on-chip. The training is typically done using offline software simulations and the obtained network is synthesized and targeted to the hardware offline. The FPGA design presented here facilitates on-chip intrinsic training of artificial neural networks. Block-based neural networks (BbNN), the type of artificial neural networks implemented here, are grid-based networks neuron blocks. These networks are trained using genetic algorithms to simultaneously optimize the network structure and the internal synaptic parameters. The design supports online structure and parameter updates, and is an intrinsically evolvable BbNN platform supporting functional-level hardware evolution. Functional-level evolvable hardware (EHW) uses evolutionary algorithms to evolve interconnections and internal parameters of functional modules in reconfigurable computing systems such as FPGAs. Functional modules can be any hardware modules such as multipliers, adders, and trigonometric functions. In the implementation presented, the functional module is a neuron block. The designed platform is suitable for applications in dynamic environments, and can be adapted and retrained online. The online training capability has been demonstrated using a case study. A performance characterization model for RC implementations of BbNNs has also been presented

    A Multi-layer Fpga Framework Supporting Autonomous Runtime Partial Reconfiguration

    Get PDF
    Partial reconfiguration is a unique capability provided by several Field Programmable Gate Array (FPGA) vendors recently, which involves altering part of the programmed design within an SRAM-based FPGA at run-time. In this dissertation, a Multilayer Runtime Reconfiguration Architecture (MRRA) is developed, evaluated, and refined for Autonomous Runtime Partial Reconfiguration of FPGA devices. Under the proposed MRRA paradigm, FPGA configurations can be manipulated at runtime using on-chip resources. Operations are partitioned into Logic, Translation, and Reconfiguration layers along with a standardized set of Application Programming Interfaces (APIs). At each level, resource details are encapsulated and managed for efficiency and portability during operation. An MRRA mapping theory is developed to link the general logic function and area allocation information to the device related physical configuration level data by using mathematical data structure and physical constraints. In certain scenarios, configuration bit stream data can be read and modified directly for fast operations, relying on the use of similar logic functions and common interconnection resources for communication. A corresponding logic control flow is also developed to make the entire process autonomous. Several prototype MRRA systems are developed on a Xilinx Virtex II Pro platform. The Virtex II Pro on-chip PowerPC core and block RAM are employed to manage control operations while multiple physical interfaces establish and supplement autonomous reconfiguration capabilities. Area, speed and power optimization techniques are developed based on the developed Xilinx prototype. Evaluations and analysis of these prototype and techniques are performed on a number of benchmark and hashing algorithm case studies. The results indicate that based on a variety of test benches, up to 70% reduction in the resource utilization, up to 50% improvement in power consumption, and up to 10 times increase in run-time performance are achieved using the developed architecture and approaches compared with Xilinx baseline reconfiguration flow. Finally, a Genetic Algorithm (GA) for a FPGA fault tolerance case study is evaluated as a ultimate high-level application running on this architecture. It demonstrated that this is a hardware and software infrastructure that enables an FPGA to dynamically reconfigure itself efficiently under the control of a soft microprocessor core that is instantiated within the FPGA fabric. Such a system contributes to the observed benefits of intelligent control, fast reconfiguration, and low overhead

    Sustainable Fault-handling Of Reconfigurable Logic Using Throughput-driven Assessment

    Get PDF
    A sustainable Evolvable Hardware (EH) system is developed for SRAM-based reconfigurable Field Programmable Gate Arrays (FPGAs) using outlier detection and group testing-based assessment principles. The fault diagnosis methods presented herein leverage throughput-driven, relative fitness assessment to maintain resource viability autonomously. Group testing-based techniques are developed for adaptive input-driven fault isolation in FPGAs, without the need for exhaustive testing or coding-based evaluation. The techniques maintain the device operational, and when possible generate validated outputs throughout the repair process. Adaptive fault isolation methods based on discrepancy-enabled pair-wise comparisons are developed. By observing the discrepancy characteristics of multiple Concurrent Error Detection (CED) configurations, a method for robust detection of faults is developed based on pairwise parallel evaluation using Discrepancy Mirror logic. The results from the analytical FPGA model are demonstrated via a self-healing, self-organizing evolvable hardware system. Reconfigurability of the SRAM-based FPGA is leveraged to identify logic resource faults which are successively excluded by group testing using alternate device configurations. This simplifies the system architect\u27s role to definition of functionality using a high-level Hardware Description Language (HDL) and system-level performance versus availability operating point. System availability, throughput, and mean time to isolate faults are monitored and maintained using an Observer-Controller model. Results are demonstrated using a Data Encryption Standard (DES) core that occupies approximately 305 FPGA slices on a Xilinx Virtex-II Pro FPGA. With a single simulated stuck-at-fault, the system identifies a completely validated replacement configuration within three to five positive tests. The approach demonstrates a readily-implemented yet robust organic hardware application framework featuring a high degree of autonomous self-control
    • …
    corecore