
IMPLEMENTATION OF A MULTIPROCESSOR
ARRAY FOR SPIKING NEURAL NETWORK

EMULATION ON FPGA

A Degree Thesis
Submitted to the Faculty of the

Escola Tècnica d’Enginyeria de Telecomunicació de Barcelona
Universitat Politècnica de Catalunya

by
Sergi Juan Moreno

In partial fulfilment
of the requirements for the degree in

ELECTRONIC SYSTEMS ENGINEERING

Advisors:
Mireya Zapata Rodŕıguez
Jordi Madrenas Boadas

Barcelona, January 2017

Abstract

During this project I have described and simulated an Array of Multiprocessors to emulate
Spiking Neural Networks in a new architecture. Finally I have synthesized and implemented
it on a FPGA to check the correct behaviour.

The main described block is the Process Element, which contains several elements that allow
the processing of the neuronal algorithm. Inside we find the ALU, which allows to perform
calculations, a bank of registers to store values, a LFSR to generate pseudorandom numbers,
data memory to store parameters and memories, which allow a dynamic interaction between
Processing Elements.

Each element connects within a parameterizable array with the necessary hardware for the
complete functionality of all of the instruction set. Finally it has been synthesized and
modified to meet the time constraints, achieving to generate an array of 12x12 with problem-
free timings.

1

Resum

Durant aquest projecte he descrit i simulat un Array de Multiprocessadors per emular Spiking
Neural Networks en una nova arquitectura. Finalment ho he sintetitzat per implementar-ho
sobre una FPGA i comprovar el correcte funcionament.

Els principal bloc descrit és l’Element de Processament, el qual conté diversos elements que
permeten processar l’algoritme neuronal. A dins trobem l’ALU, que permet realitzar càlculs,
un banc de registres per desar valors, un LFSR per generar números pseudoaleatoris, la
memòria de dades per guardar paràmetres i les memòries associatives, que permeten una
interconnexió dinàmica entre elements de processament.

Cada element es connecta dins d’un array parametritzable amb el hardware necessari per a la
completa funcionalitat del l’arquitectura. S’han realitzat simulacions i depurat d’errors fins
aconseguir un correcte funcionament de tot el set d’instruccions. Finalment s’ha sintetitzat i
s’ha modificat per complir les restriccions temporals, aconseguint generar un array de 12x12
PEs sense problemes temporals.

2

Resumen

Durante este proyecto he descrito y simulado un array de Multiprocesadores para emular
Spiking Neural Networks en una nueva arquitectura. Finalmente lo he sintetizado para im-
plementarlo sobre una FPGA y comprobar el correcto funcionamiento.

El principal bloque descrito es el Elemento de Procesado, que contiene diversos elementos
que permiten procesar el algoritmo neuronal. Dentro encontramos la ALU, que permite re-
alizar cálculos, un banco de registros para guardar valores, un LFSR para generar números
pseudoaleatorios, la memoria de datos para guardar parámetros y las memorias asociativas,
que permiten una interconexión dinámica entre elementos de procesado.

Cada elemento se conecta dentro de un array parametrizable con el harware necesario para
la completa funcionalidad de todo el set de instrucciones. Finalmente se ha sintetizado y se
ha modificado para cumplir las restricciones temporales, conseguiendo generar un array de
12x12 sin problemas temporales.

3

I want to dedicate this project and thank my parents, Linda and Lluis, for their encourage-
ment. They always supported me during this time and gave me forces to continue on.

4

Acknowledgements

This work would not have been possible without the inestimable and unconditional help of
my supervisors: Mireya Zapata and Jordi Madrenas. Their advice and guidance, all the
technical support and their immense experience have taught and guided me constantly and
faithfully to the end. Thank you very much.

I also want to thank the work done by the group of the DSP-FPGA course, Llorenç Manonelles,
Javier Pérez and David Torres. Thanks for choosing final work of that course I decided I
would do this project about SNN.

Finally, I want to thank Jordi Vives for encouragement and help me with the document in
LATEX.

5

Revision history and aproval record

Revision Date Purpose

0 19/11/2016 Document creation

1 19/12/2016 Document revision

2 09/01/2017 Document revision

3 13/01/2017 Document revision

Document distribution list

Name E-mail

Sergi Juan Moreno sergijuan93@gmail.com

Mireya Zapata Rodŕıguez mireya.zapata@upc.edu

Jordi Madrenas Boadas jordi.madrenas@upc.edu

Written by: Reviewed and approved by:

Date 15/01/2017 Date 15/01/2017

Name Sergi Juan Name Mireya Zapata
Jordi Madrenas

Position Project author Position Project supervisors

6

Table of contents

1 Introduction 11
1.1 Goals of the project . 11
1.2 Requirements and specifications of the project 12
1.3 Background . 13
1.4 Work plan . 13

2 State of the art 15
2.1 Neural networks . 15
2.2 Spiking Neural Networks . 16
2.3 Implementations of SNN . 16
2.4 Spiking Neural-network Architecture for Versatile Applications 17

3 Project development 19
3.1 VHDL description . 19

3.1.1 Components provided . 19
3.1.2 Implemented components . 20
3.1.3 Simulations . 27

3.2 Synthesis and Implementation . 30
3.2.1 Main problems found . 31
3.2.2 Slack time of setup . 33

4 Results 35

5 Budget 39

6 Conclusions and future development 40

Bibliography 41

7

Glossary 42

Appendices 43

A Set of instructions 44

B Integrate and fire algorithm 46

8

List of Figures

1.1 Xilinx Kintex-7 FPGA KC705 Evaluation Kit. Source: Xilinx website 12
1.2 Work Breakdown Structure . 14
1.3 Gantt diagram . 14

2.1 Neuron parts. Source: ”Anatomy and Physiology” by the US National Cancer
Institute’s Surveillance . 15

2.2 SNAVA architecture block diagram [7] . 18

3.1 Multiprocessor Array block diagram . 21
3.2 Read and Reset spike circuit located inside each PE 22
3.3 Spike distribution of 8x8 Multiprocessor Array 24
3.4 Processor Element block diagram . 25
3.5 Floorplanning of a 10x10 array with an entire row in white color 26
3.6 Waveform exemple of the Registers simulation executing the opcodes: LDALL,

RST, SET and SWAP . 28
3.7 Arithmetic opcodes test . 29
3.8 Integrate and fire algorithm simulation . 30
3.9 Screenshot of the faulty paths by a setup slack in a 10x10 array 31
3.10 Scrheenshot of VIVADO windows with the Report Timing summary report . 32
3.11 Screenshot of a critical path of a 10x10 array 32
3.12 Detail of the double clock cycle for execute MUL and MULS opcodes 34
3.13 Detail of the discontinuous spike distribution and the spike valid signal . . . 34

4.1 Percentage of the utilization between HEENS and SNAVA at 10x10 array . . 36
4.2 Floorplanning of the 12x12 Multiprocessor Array with AER interface 37
4.3 Topology of all spiking to one . 38
4.4 Waveform membrane potential when the neuron generates a spike 38

A.1 Set of instuctions (opcodes) . 45

9

List of Tables

1.1 Milestones of the project . 14

4.1 Total of resources, total utilzation by a 12x12 array and utilization by one PE 36
4.2 Comparsion of the utilization between the previous and the current PEs resources 37

5.1 Project cost . 39

10

Chapter 1

Introduction

The purpose of this project is to develop in VHDL an evolvable, modular and scalable bio-
inspired architecture. It will be able to emulate dynamic Spiking Neural Networks (SNN)
using an array of Processing Elements (PEs) with a Single Instruction Multiple Data (SIMD)
processing scheme. The project is carried out at the Advanced Hardware Architectures
(AHA) Research Group of the Electronics Engineering Department.

1.1 Goals of the project

Describe and implement a resizeable array of PE with the capability of computing neural
and synaptic algorithms using instructions received from a single Control Unit (Sequencer).

Create the proper interface between the Multiprocessor Array and the Sequencer to allow
the correct communication and flow control of the algorithm computed in each PE.

Implement all the new operation codes (opcodes) at the PE and ALU components to achieve
a full functionality of all the system.

Include an associative synaptic memory of Block RAMs and a spike register in each proces-
sor to optimize area resources, implement the virtualization capability and support dynamic
connectivity.

Synthesize the final design and implement it on a Xilinx Kintex-7 FPGA KC705 Evaluation
Kit (see figure 1.1).

11

Figure 1.1: Xilinx Kintex-7 FPGA KC705 Evaluation Kit. Source: Xilinx website

1.2 Requirements and specifications of the project

This project starts from a previous architecture called SNAVA, described in XX. In this
project, a more efficient Processing Element array in terms of functionality and resource oc-
cupancy is pursued. This array forms part of the new architecture called HEENS (”Hardware
Emulator of Evolvable Neural Systems”).

The new architecture, Hardware Evolved Emulator Neural System (HEENS), will be versa-
tile and it will allow us to load and run via software different models of neurons and change
their synaptic interconnection dynamically without resynthesizing the project.

Resizeable array (number of PE and all the necessary connections for proper operation) based
on only two parameters, number of rows and columns, with a range of 1 to 31. Depending
on the resources of the FPGA, it will be possible to implement arrays with different sizes.

Full modular architecture allows the virtualization of PE up to seven neurons in addition of
the main layer. This means that if we have a 10 x 10 array, this neural network will be able
to emulate up to 800 neurons. Also, each PE supports up to 100 local synapses and 32 global
synapses (coming form external multiprocessors)

12

1.3 Background

The study of neural networks and the brain has fascinated many people. Over time models
have been developed to simulate the neuronal processes which occur in a biological brain.
There have been more and more realistic architectures that help us to understand biological
processes, such as make decisions and visual recognition, and facilitate the study of neural
computation.

SNAVA is the starting point of the new HEENS architecture. It has been developed in the
previous years by the Advanced Hardware Architecture group of the Department of Electron-
ics Engineering. Both supervisors, Mireya Zapata and Jordi Madrenas, gave me the main
initial ideas and first versions of the rest of the components to start with the Multiprocessor
Array implementation. This fact implies that the coordination between all parts is essential
to achieve a functional system.

This new architecture includes some new capabilities of synaptic interconnections, also, a
better utilization of FPGA area resources thanks to new Associative Memories developed by
my supervisors. The part of the new architecture related with my project started with some
preliminary work carried out during the final project of the DSP-FPGA course, in the last
semester. In that project some VHDL components began to be developed.

1.4 Work plan

The Multiprocessor Array project consists of two stages: VHDL description and simulation
with QuestaSIM and implementation with Vivado. In both parts it is necessary to run sim-
ulations and check the correct functioning of the components described. After both parts is
delivered the correspondent milestone.

The table 1.1 shows the milestones, with the expected deliverable date and the real date, of
the two stages plus the final test with the HEENS architecture loaded on the FPGA. Below
are located the breakdown structure with the Work Packages listed (table 1.2) and the Gantt
diagram with the main tasks distributed along the semester (figure 1.3).

13

Short title Milestone/Deliverable Exp. date Real date

VHDL Description Compiled source code 14/10/2016 04/11/2016

Successful implementation .bit file 11/11/2016 23/12/2016

Testing with simple Inte-
grate and Fire algorithm

Computing results 05/12/2016 09/01/2017

Table 1.1: Milestones of the project

WP 1 Doc. State-of-the-art

WP 2 Hardware description 1

WP 3 Hardware description 2

WP 4 Implementation

WP 5 Documentation

Figure 1.2: Work Breakdown Structure

Figure 1.3: Gantt diagram

14

Chapter 2

State of the art

Neural networks are studied since many years ago, not only for understanding the biological
functioning of the brain itself and their learning mechanisms, but also to create systems that
can recognize objects, take decisions, learn and interact with objects and humans.

2.1 Neural networks

A biological neural network is characterized by millions of cells interconnected between them.
Each cell, called neuron, has three differentiate parts (see figure 2.1): dendrites (input connec-
tions), a cell body with the nucleus, and the axon (output connections). The electrochemical
impulse from one neuron is propagated, through the axon, to more than a hundred of neurons
up to ten thousand, by connections called synapses.

An Artificial Neural Network (ANN) is a set of interconnected elements in a similar way as
neurons in a biological brain. The study of these architectures allows us to start to understand
how brain carry out some process, such as decision, visual recognition or remembering things.

Figure 2.1: Neuron parts. Source: ”Anatomy and Physiology” by the US National Cancer
Institute’s Surveillance

15

We can differentiate three generations of ANNs:

• First Generation:
The first generation is based on McCulloch-Pitts [1] neurons as computational elements.
In terms of processing, each element generates only digital outputs from digital inputs
also from other elements or from the outside. In this generation are entering threshold
circuit models, Boltzmann Machines [2] and Hopfield Nets [3].

• Second Generation:
The second generation is characterized by an activation function used to generate con-
tinuous output, therefore, work with analog signals that determine the output value
of the subsequent neurons. An example are sigmoid function (σ(y) = 1

(1+e−y)) and
saturated linear function π (π(y) = y for 0 ≤ y ≤ 1, π(y) = 0 for y < 0 and π(y) = 1
for y > 1). With thresholds and combinational circuits, these processing units (analog
interface) can generate boolean answers and interact with units of the first generation
(digital interface).

• Third Generation:
Finally we have the third generation, the Spiking Neural Networks (SNNs), much closer
to real biological neurons. This is the model used in this project and it is described in
the following. [4]

2.2 Spiking Neural Networks

SNNs are the third generation of Neural Networks, as indicated before. They are charac-
terized by incorporating the time concept in operation model. In contrast to other models,
each neuron generates a unique spike (pulse) only when its membrane potential reaches a
given threshold and not transmits data in every processing cycle. This feature makes the
SNN model more realistic and similar to brain mechanism, allowing us to study better how
the learning process works.

2.3 Implementations of SNN

Inside the category of SNN, there are different architectures in order of the number of neurons
and synapses, algorithms, and the hardware where these are emulated. There are realistic
models to emulate the neuron behaviour that require complex processor units to carry out
the algorithms. On the other hand, there are models with a lighter computational load, like

16

”integrate an fire” model, which can be implemented on small chips with a lot of simple
neurons with a fixed number of synapses. An example of each are:

SpiNNaker is a low-power parallel neuromorphic supercomputer. It is developed at the
University of Manchester in the UK. The system consists of more than 60 thousand
processors with 18 cores each one, reaching more than a million cores in total. Each
processor has the capacity to addresses other neurons to form synapses. [5]
Our approach is similar to Spinnaker, although we focus on much more compact pro-
cessing elements and fast Address Event Representation (AER) for spike transmission.

TrueNorth, launched by IBM in 2011, has a 64x64 array of neurosynaptic cores with 256
neurons each one, reaching a million neurons in total. Every neuron is connected
to another 256 neurons. This supports huge networks, but limitations arise in the
oversimplified neural model and the connectivity problem.[6]

2.4 Spiking Neural-network Architecture for Versatile
Applications

SNAVA is an evolution of a previous architecture, Ubichip, which was developed during the
Perplexus project, an IST-FET FP6 European research project. With SNAVA, substantial
improvements were achieved, for example, a greater number of PEs, virtualized neurons, or
the ability to vary the number of synapses independently for each neuron1.

This architecture is characterized by a scalable and resizeable implementation which can
allow us to emulate Spiking Neural Networks (SNN). Being inspired by the mechanisms of
brain biology, SNAVA facilitates an experimental approach to the study of neural dynamics.

It consists of a Multiprocessor Array with Single Instruction Multiple Data (SIMD) units,
or Processing Elements (see figure 2.2). The processor was modified from the previous ar-
chitecture and, among other improvements, was added the capability of emulate more than
one neuron thanks to virtualization concept. The array is controlled by the Sequencer, which
sends the instructions of the algorithm loaded in the Instruction BRAM. The Address-Event
Representation (AER) Module brings the capability of interconnect more FPGAs in a ring
topology to increase the number of neurons emulated.

1A comparison between the two architectures can be found at the Ph.D. thesis ”Efficient multiprocessing
architectures for Spiking Neural Networks emulation devices based on configurable”[7].

17

The SNAVA architecture had hardware non used from the previous version, this meant that
its design was not optimal, occupying more resources and consuming more energy unneces-
sarily. The instruction set is used to program the neural algorithm by Assembler language.
The array, although the dimensions of 10x10 PEs, did not have pipeline registers and this
may cause sporadic bugs when signals didn’t arrive on time. Synaptic connections were
made by means of combinational logic, being forced to maintain a predefined topology. This
produced very long synthesis times and inconvenience for connectivity changes.

Figure 2.2: SNAVA architecture block diagram [7]

18

Chapter 3

Project development

This project is a part of the HEENS architecture, which is still being developed during this
semester. The Multiprocessor Array project development is divided in two parts. The first
one is focused on describing all components in VHDL and simulating the correct behaviour
using QuestaSim. The second part is to implement these components doing the synthesis
and the implementation using Vivado to obtain the ”.bit” file to load and run it on the FPGA.

In contrast to SNAVA, the components of the new implemented architecture had been de-
scribed again, which is optimized in concordance with the instruction set improved. The
Associative Memory [8] allows dynamic synaptic connections and reduces a lot the time of
synthesis. In addition, with a similar array dimensions, pipeline registers have been added
to prevent slacks of setup (as discussed later).

3.1 VHDL description

The main goal of this part is to describe all components to generate the Multiprocessor Array
with PEs and all the other components inside. Also, after each modification, it is necessary
to check the correct logical operation of the whole system and test the set of instructions
forcing extreme cases to detect possible bugs and unexpected results.

3.1.1 Components provided

The following components, provided by both supervisors, and the Multiprocessor Array im-
plemented in this project (explained in detail at 3.1.2 Described Components section)
conforms the whole HEENS architecture. Each component is an evolution of the previous

19

one, from SNAVA, in order to solve problems of resource utilization, optimize instruction set
and improve the system scalability.

Top entity

As its name says, this component includes all the other entities and allows the connection
between the whole system and the FPGA.

Sequencer

This is the controller of the whole system. It’s in charge to read the algorithm loaded, manage
the control signals and syncronize the Multiprocessor Array with the AER System.

Address-Event Representation (AER)

To make the system scalable it is necessary to manage spike communications between FPGA
boards. The AER interface allows to transmit this spikes through a ring topology allowing
the interconnection of 126 Kintex7 plus a master one, a PicoZed Z030.

Block Memories

In every PE also there are three memories implemented with Block RAMs to save the synapses
with other neurons (associative memory) and input spikes (local and global memories). All
of them are inside this component and are one of the improvements to achieve a bigger array
than the 10x10 of the previous architecture.

3.1.2 Implemented components

In this project the following components are compiled and simulated using QuestaSIM. The
waveform generated in each simulation is very useful to check the operation codes and the
expected results for all the signals involved in the process. The components described in this
project are:

Multiprocessor Array

It consists in n Multiprocessor Rows (each one with m Processing Elements inside). Is de-
scribed using a generate loop with prefixed parameters; by this way the array can be resizeable
(until fill all the FPGA) changing only the number of rows and columns from the definition
package.

20

There are two communication buses, one for data and another one for memory address, to
transmit data to all units and load configurations. The capability to activate only one PE
by enable signals allows to preconfigure parameters of each neuron separately. Also, there
are control signals to synchronize all the execution between PEs and the Sequencer. The
combinational logic at the end of the rows and columns allows generated spikes to flow out
from all the PEs.

Figure 3.1: Multiprocessor Array block diagram

21

Figure 3.2: Read and Reset spike circuit located inside each PE

As shown in the figure 3.1, the blocks of the Multiprocessor Rows are expanded to see the
complete structure with its connections.

The operation of the HEENS architecture is separated into four modes: initialization, con-
figuration, execution and distribution. These modes are alternated throughout the process
to perform the neuron network emulation.

Initialization takes place only at the beginning and is controlled by the Address-Event
Representation (AER) system. In this mode, AER System sends a ChipID and the
RingSize to all FPGAs. First one allows the identification of each node at the trans-
mission bus, and the second value determines the total number of FPGAs connected.
Instruction memory is also configured with the algorithm that will be executed at the
Multiprocessor Array.

Setup mode is in charge to write the memories located inside the PEs. To do it, an address
bus enables each processor individually to load the network topology definition and the
neural parameters and synapses of the algorithm to be emulated.

Execution of the neural algorithm starts once the entire array is set. In this mode the Se-
quencer sends the instructions to all processors at the same time. All of them calculate
the membrane potential in function of the input spikes, synapses and initial configura-
tion. After each execution loop, the Sequencer enables the distribution signal. Then,

22

spikes generated by each PE are processed and forwarded to the other processors to
start once the loop. The first processor in the first row (row 0 and column 0) is the
one with higher priority, so if it have a spike, will be the first to leave the array and
reset (combinational circuit at figure 3.2). Then, the following processors of the same
row will continue to transmit spikes when all the previous ones were cleaned. Once the
entire first row is empty, the next one is enabled and the sequence starts again. This
cycle is repeated to empty the multiple layers of virtualization and does not end until
the sequencer disable the distribution signal. Figure 3.3 is an example of the complete
process of spike distribution. At the simulation there are several signals involved, but
the most significant are the addresses of the spikes of rows and columns (blue) signal
with spikes codified (green) and control signals (yellow), which allow an ordered output.
The last ones enable a row each time and the processors with a spike to be distributed,
one by one.

Distribution stage is when the spikes are distributed to the other FPGAs via bus AER,
and then, to all the associative memories to emulate the synaptic behaviour of neurons.

Multiprocessor Row

This component implements every row of PEs inside the Array. It is generated, also by
generate loop, in a new instantiation to make easier the utilization of pipeline registers to
manage time slacks afterwards. It also depends on the parameters of the package definitions,
allowing to resize the number of columns changing only the correspondent value.

Inside this component there are the m PEs with corresponding connections to configure, send
data and read generated spikes. During the implementation process, due to the dimensions
and the complexity of a 12x12 array, pipeline registers were added to neutralize the slack
time errors (see 3.2.2 Slack time of setup section).

23

Figure 3.3: Spike distribution of 8x8 Multiprocessor Array

Processing Element (PE)

Is the basic processing unit of the array. It is responsible for emulating the behaviour of a
neuron and, if virtualitation is enabled, the same PE will emulate a maximum of 8 different
neurons, each with own parameters and synapses.

As we see at figure 3.4, the internal components correspond to a Harvard type architecture:
ALU, Registers, Memory and communication buses. The HEENS architecture is able to run
several models of SNN and it have to compute various functions and algorithms needed to
achieve an approximation to neurons behaviour.

24

Figure 3.4: Processor Element block diagram

Arithmetic Logic Unit (ALU)

As its name indicates, this component carries out all the arithmetic operations (addition,
subtraction and multiplication) and movements (right and left shifting, circular shifting, set
to ones or zeros...) required to execute the algorithm.

Thanks to the parallelism allowed by the FPGA, it is possible to describe the component in
order to calculate all the operations at the same time and then taking only the requested
value by the opcode. This solution is optimal in terms of processing time but it increments
considerably the energy consumption and the space used.

The figure 3.5 shows the space occupied (in white color) by all the components of one row
of PEs. More specifically, all the connections of the opcode signal inside the ALU’s combi-
national logic.

25

Figure 3.5: Floorplanning of a 10x10 array with an entire row in white color

Block Registers

Is a simple component with 16 registers (8 visible plus 8 shadowed registers) of 16 bits each
one. The utility is similar to a cache memory of a personal computer: load and read values
in function of the instructions received and the results of the ALU. The fact of having visible
and shadowed registers allows us to load important values in the second ones and load the
needed value on the correspondent visible registers to use it in a new execution loop.

LFSR

This component is implemented inside the PE. It is in charge of generate pseudorandom
numbers by shifting its 64 registers. The functionality is to emulate neural noise.

RAMs

Is used to store the parameters of each emulated neuron and the seed to initialize the LFSR.
Also are stored some processed values from the Block Register to load them later.

26

3.1.3 Simulations

During the description and simulation phase, several changes were made to improve the func-
tionality and solve issues detected. Most of them were related with the arithmetic operations
of the ALU, improvements on the operation codes (opcodes) set and the freeze functionality1.

All the programs executed by the Multiprocessor Array (neural algorithm and test programs)
are written in Assembler and compiled to generate the data that will be load an executed
(see appendices B Integrate and fire algorithm to an example of a simple neural model).
Dummy codes can help to debug the components by simulating a controlled behaviour. Once
the execution is finished, QuestaSIM can show a waveform diagram that helps to find the
primary malfunction. To solve these issues is necessary to modify all the involved functions
and adapt the other components to keep the consistency between the interconnected signals.

Registers behaviour test

An example of a waveform obtained by simulating the project with a testing code is the
figure 3.6, which shows the value of the register signals after do a simulation. In function
of the opcode value (yellow signal), the selected register (green signals) loads a value from
inputs (blue signals), reset to 0 or set to 1 the selected bit and swap the value with the same
shadow register.

1Set of opcodes that provide the capability to exclude neural algorithm sections, allowing the implemen-
tation of conditional statements of the emulated model. This is necessary because of the SIMD architecture
employed, with many PEs dispatching the same instruction from a single sequencer.

27

Figure 3.6: Waveform exemple of the Registers simulation executing the opcodes: LDALL,
RST, SET and SWAP

ALU behaviour test

The ALU is one the most complex component of the system. It is necessary that always
works well even in extreme cases. That is why were created several test codes to verify all
operations related to this component (arithmetic, shift registers, comparison...). Figure 3.7
shows a sequence of a simulation using all arithmetic opcodes (ADD, SUB, MUL, MULS,
AND, OR, INV and XOR) with different numbers to test the extreme cases.

28

Figure 3.7: Arithmetic opcodes test

Freeze functionality test

The operation of the freeze can be seen in figure 3.8. The image shows a detail of the freeze
LIFO stack (green signals) and nofreeze binary value (blue signal) that indicates if any freeze
condition has been met. The LIFO stack is where are keep all the condition results. If one
of them is positive, the code between the ”if” and ”end if” should not been executed, so is
pushed 1 in the stack. The registers are only enabled when there are all zeros in this stack,
otherwise they remain disabled. With the opcode ”UNFREEZE”, the last value is pulled,
doing the same as the ”end if” in a condition function.

29

Figure 3.8: Integrate and fire algorithm simulation

3.2 Synthesis and Implementation

In order to program the FPGA with the .bit file of all the implementation, first of all it is
necessary to include a clock block and modify some lines of the top component to prepare the
interface between the FPGA and the whole system. Then, the project can be synthesized.
During this process, Vivado checks the compliance with all the constrains in function of the
board used and other issues related with time execution latches (not detected in the simu-
lation with QuestaSIM). Also the utilization of the FPGA and its resources (Block RAM,
Registers, LUTs...) are computed.

The next step is the implementation. This process requires a lot of time because the computer
generates all the components to be placed on the FPGA, with all the connections. It takes
into account the distance between registers and calculates the worst delay in a signal between

30

two registers to determine if there are time problems. Due to the large amount of time it
takes for the synthesis and implementation, the first tests should be done with an array of
reduced dimensions. Tests carried out on the FPGA can reveal errors which do not appear
in the simulations.

3.2.1 Main problems found

The problems to be solved in this part were related with time constrains. Due to the main
characteristic of the VHDL hardware describing language, all the values (signals processed by
combinational circuits and saved with registers) have a time dependence. In other words, if
a signal (real wire between two registers) is too long across the FPGA or it depends of many
cascaded combinational circuits (each logic component have an specific time of response),
the time needed by the destination register to load the next value when the clock arrives
is too short or negative (slack time of setup2), it may cause incorrect data capture and/or
metastability and, therefore, computational problems.

Vivado detects critical paths of signals involved in opcode lines from the Sequencer to the
memory registers, crossing the ALU and, in special, the multiplier module. Then, it shows
the time constrain that is violated and the extra time required, as it is shown at figure 3.9.

Figure 3.9: Screenshot of the faulty paths by a setup slack in a 10x10 array

Using the Floorplanning view, its possible to see the physical paths, affected by slack time,
through the FPGA. An example is shown at the figure 3.10. Also, its very helpful to use the
critical path option (see figure 3.11) to see all the blocks involved (blue signal).

2There are three types of slacks: setup, hold and pulse width. The first occurs when the signal comes too
close to clock pulse (or later). The second appears when the signal changes before the period required for
charging value. The third slack indicates that the clock waveform meets all the requirements.

31

Figure 3.10: Scrheenshot of VIVADO windows with the Report Timing summary report

Figure 3.11: Screenshot of a critical path of a 10x10 array

32

3.2.2 Slack time of setup

The best way to solve problems of timing is using pipeline registers. Reduce the frequency
under 125 MHz is not optimal because the rest of the system has not problems and the
architecture must work at selected frequency.

But the most important consequence of using pipeline registers inconsistently is the desyn-
chronization between components, in other words, all the pipelined signals will arrive one
or more clocks later to the other component (depending on the number of registers added).
Because of that, it’s necessary to be very careful and apply pipeline registers to all the signals
coming from the same component and taking in account the delay generated of all the output
signals that depend on the previous ones.

In total, during the implementation, three pipeline points must be added to ensure the
constraints compliance of the slack time of setup:

Input signals

All the input signals from the sequencer (opcode, data, address and control signals) have to
be pipelined because opcode signal was a very critical path (adding more than a half of a
clock period).

This modification causes a general delay of one clock in all the array, but it isn’t important
if all the input signals are synchronized.

Multiplication opcodes

Both operands of the multiplication unit inside the ALU also need to be pipelined to achieve
the minimum time required to carry out the multiplication.

The addition of a register before the multiplier unit is very sensitive because it affects only
to the multiplication opcode. The delay causes a desynchronization between operations and
it forces to modify the Sequencer behaviour only in the multiplying case.

The solution adopted was to increment one clock the opcode duration of MUL and MULS
instructions and modify the enable logic to allow the write process only during the second
period clock. This modification can be observed at the simulation of the figure 3.12.

33

Figure 3.12: Detail of the double clock cycle for execute MUL and MULS opcodes

Spike distribution

During the spike distribution, due to the big size of the array, is necessary to add one clock
delay before the activation of the next row. This causes a discontinuity during the spikes
distribution that has been solved by modifying the combinational circuit of the spike valid
signal. The discontinuity is clearly visible at the simulation waveform of the figure 3.13.

Figure 3.13: Detail of the discontinuous spike distribution and the spike valid signal

34

Chapter 4

Results

After the simulations and tests carried out, it is verified that the PEs are working properly,
spikes are correctly read from the array and the subsequent feedback to carry out several cy-
cles. Although some components may be more optimized and the system may be tested with
various interconnected FPGAs in a ring topology, the Multiprocessor Array of the HEENS
architecture meets the specifications described in the introduction.

The new architecture using Block RAMs instead of registers for synaptic interconnects opti-
mizes the utilization of the FPGA resources and allows to implement a bigger Multiprocessor
Array. The previous version array achieved a 10x10 PEs and the main limitation was the
utilization of registers. With the HEENS architecture using Block RAMs, the array achieve
a dimension of 12x12 PEs. Taking in account the maximum virtualization layers (8 neurons
by PE), the total number of emulated neurons is 1,152 in each FPGA. Finally, assuming that
the AER System supports 126 chips connected in a ring topology, the potential number of
neurons reaches 145,152.

Moreover, the utilization of Block RAMs is the new limitation on the used FPGA, reaching
almost a 100 % of them. At the table 4.1 is shown the utilization of HEENS architecture
in a full FPGA and the number of resources used by one Process Element. Also there is a
comparative between SNAVA and HEENS architectures implementing a 10x10 Multiproces-
sor Array (figure)4.1).

The instruction set has also been modified. The improvement allows to execute faster (in less
cycles) some usual actions. This is vital to reduce the among of time of the entire algorithm
or program a more extensive one without increasing the duration of the execution.

35

Resources Total Used by array [%] Used by PE

Slice LUTs 203800 88.60 1,245

Slice Registers 407600 18.78 512

F7 Muxes 101900 7.09 50

F8 Muxes 50950 2.27 8

Slice 50950 96.01 418

LUT as Logic 203800 88.53 1,245

LUT as memory 64000 0.22 0

LUT Flip Flop Pairs 203800 90.16 1,308

Block RAM Tile 445 97.64 3

DSPs 840 17.14 1

Bonded IOB 500 0.60 0

BUFGCTRL 32 12.50 0

MMCME2 ADV 10 10.00 0

BSCANE2 4 25.00 0

Table 4.1: Total of resources, total utilzation by a 12x12 array and utilization by one PE

0 10 20 30 40 50 60 70 80 90 100

BRAMs

LUTs

Flip-Flops

13

79

22

68

61

63

SNAVA HEENS

Figure 4.1: Percentage of the utilization between HEENS and SNAVA at 10x10 array

36

The improvement also reduces in more than 90 % the time required to synthesize and imple-
ment all the components. This is because the connections are defined in Block RAMs and is
faster to generate huge memory blocks than interconnect a lot of isolated registers to generate
only one of them. Before, with the SNAVA architecture, the synthesis and implementation
process could take more than 18 hours, but now, using HEENS, is completed in not more
than 30 minutes (i.e. 9:33 min. for synthesis and 20:26 min. for implementation), as shown
on the table 4.2.

Process SNAVA HEENS

Synthesis 17:35 00:10

Implementation 00:39 00:20

Total time 18:14 00:30

Table 4.2: Comparsion of the utilization between the previous and the current PEs resources

As an interesting fact, the figure 4.2 shows the maximum occupancy of the FPGA, in blue
color. Only a few small areas near corners are free, except two central regions, which are
dedicated to another unused functionality.

Figure 4.2: Floorplanning of the 12x12 Multiprocessor Array with AER interface

Integrate and fire is one of the most used models for emulation SNN. It is based on the mem-
brane potential computing in function of the receiver spikes through the synapses predefined.
Running this algorithm (included at Appendix B Integrate and Fire) and showing the
membrane potential, at the waveform of the figure 4.4 can be observed a spike generated by
a neuron. In this case, the programmed topology is all the neurons spiking to the neuron at
position row 0 and column 0, as is shown on image 4.3, so the spike generated is from this one.

37

Figure 4.3: Topology of all spiking to one

Figure 4.4: Waveform membrane potential when the neuron generates a spike

38

Chapter 5

Budget

Budget items e/item Amortization Time Budget [e]

Xilinx Kintex 7 KC705 1,600 e 3 years 3 months 133

QuestaSIM University Licence 1,550 e 1 year 6 months 755

Vivado Academic Licence Free - - 0

RRHH 8 e/h - 720 hours 5,760

Total 6,648

Table 5.1: Project cost

The total budget for this project is 6,648 e.

39

Chapter 6

Conclusions and future
development

Compared to the previous SNAVA architecture, the HEENS architecture optimizes the FPGA
resources and allows to implement more Process Elements in one chip (44 % of improvement).
Also reduces the necessary time to implement all the components; that is very important be-
cause modifications of the design can be changed and tested faster. With the virtualization
layers and the ring topology (outside the work of this scope) thanks to the scalable capability,
the number of emulated neurons can be significantly higher than the previous architecture.

To increase the number of neurons, Block RAM memories would be optimized to use less
resources by each PE and allow the implementation of more of them. Another improvement
is to reform the ALU, because it is an extremely complex component and has many com-
binational circuits that limit the maximum frequency (increases the slacks time). A more
drastic solution is to use another FPGA with more resources.

It very is important to describe all the components optimized to reduce delays between
registers and prevent timing slacks, very frequently due to the complexity and longitude of
signals between registers, in particular, between each PE and the Sequencer.

40

Bibliography

[1] Zhang, Ling, and Bo Zhang. ”A geometrical representation of McCulloch-Pitts neural
model and its applications.” IEEE Transactions on Neural Networks 10.4 (1999): 925-
929.

[2] Hinton, Geoffrey E., and Terrence J. Sejnowski. ”Learning and releaming in Boltzmann
machines.” Parallel distributed processing: Explorations in the microstructure of cogni-
tion 1 (1986): 282-317.

[3] Floreen, Patrik, and Pekka Orponen. ”On the computational complexity of analyzing
Hopfield nets.” Complex Systems 3.6 (1989): 577-587.

[4] Wolfgang Maass, ”Networks of Spiking Neurons: The Third Generation of Neural Net-
works Models”. Institute for Theoretical Computer Science, Technische Universität Graz,
Graz, Austria. 1997.

[5] T. Sharp, F. Galluppi, A. Rast, and S. Furber, “Power-efficient simulation of detailed
cortical microcircuits on SpiNNaker”. Journal of Neuroscience Methods, 2012.

[6] Ewan Nurse, Benjamin S. Mashford, Antonio Jimeno Yepes, Isabell Kiral-Kornek, Ste-
fan Harrer, and Dean R. Freestone. 2016. ”Decoding EEG and LFP signals using
deep learning: heading TrueNorth”. In Proceedings of the ACM International Con-
ference on Computing Frontiers (CF ’16). ACM, New York, NY, USA, 259-266. DOI:
https://doi.org/10.1145/2903150.2903159

[7] Giovanny Sánchez Rivera, “Efficient multiprocessing architectures for Spiking Neural
Network emulation based on configurable devices” Ph.D. dissertation. Advanced Hard-
ware Architectures (AHA) Research Group of the Electronics Engineering Department,
Universitat Politècnica de Catalunya, Barcelona, Spain, 2014.

[8] Mireya Zapata and Jordi Madrenas, “Compact Associative Memory for AER Spike
Decoding in FPGA-Based Evolvable SNN Emulation”. Electronics Engineering Depart-
ment, Universitat Politècnica de Catalunya, Barcelona, Spain.

41

Glossary

• AER: Address-Event Representation

• ALU: Arithmetic Logic Unit

• ANN: Artificial Neural Network

• FPGA: Field Programmable Gate Array

• HEENS: Hardware Evolved Emulator Neural System

• LFSR: Linear Feedback Shift Register

• Opcode: Operation code

• PE: Processor Element

• SIMD: Single Instruction Multiple Data

• SNAVA: Spiking Neural-network Architecture for Versatile Applications

• SNN: Spiking Neural Network

• VHDL (VHSIC + HDL): ”Very High Speed Integrated Circuit” + ”Hardware Descrip-
tion Language”

42

Appendices

43

Appendix A

Set of instructions

The opcodes (operation codes) are the instruction set used to carry out the execution of
the entire algorithm. There are some categories depending on the purpose of the order, ie,
arithmetic, movements, freeze, sequencer, registers, but all of them always are sent to all the
components.

The name of the opcodes is used to create the programs in Assembler that will be executed
by the Processing Elements. Then, when it is compiled, the name is translated to its binary
number of 6 bits and, with other data, is sent through the communication bus.

Also, the name is used instead of the binary code in the VHDL files to avoid having to change
the binary code associated with the opcode if it is moved to another position of the table
(figure A.1).

44

Figure A.1: Set of instuctions (opcodes)
45

Appendix B

Integrate and fire algorithm

;16 Neurons, 16 Synapses
define synapses 15
define neurons_virtualized 0

.DATA

DMEM1="0000EF7D" ;DMEM
POT1="000003E8"
THETA1="0000E380" ;THETA
VREST1="0000E188"
CERO = "00000000"
UNO="00000001"
DOS="00000002"
CTE_1="00000007" ;CTER Refractory time
CTETP="0000F448"

.CODE
GOTO MAIN

; --
; ***************************** PROCEDURES BEGIN ***************************
; --------------------------- MEMBRANE VALUE -------------------------------
.MEMBRANE_VALUE
;------ Vi <-- Vres + (1-Si(t))*(Vi(t)-Vres)*(Kmem) + SUM_WEIGHTS ----------

46

LDALL R4,DMEM1 ;R4 <-- DECAY DONATOR 1
LDALL R5,VREST1 ;R5 <-- Vres1
SWAPS R0 ;R0 <-- SR0 = Si
MOVR R3 ;R3 <-- Si
SWAPS R0 ;SR0_2 <-- R0 = Si

;-------------------- R2 <-- (1-Si(t))*(Vi(t)-Vres)*(Kmem) -----------------
MOVA R3 ;R0 <-- R3 = Si
RTR
FREEZEC ;IF (Si = 0) THEN R2 <-- ((1)*(Vi(t)-Vres)*(Kmem)

SWAPS R6 ;R6 <-- SR6_2 = Vi
MOVA R6 ;R0 <-- R6 = Vi
SUB R5 ;R0 <-- Vi - Vres
MULS R4 ;R0 <--(Vi(t)-Vres) * (Kmem) --MZ
MOVR R2 ;R2 <--(Vi(t)-Vres) * (Kmem)

UNFREEZE
MOVA R3
RTR
FREEZENC ;IF (Si = 1) THEN R2 <-- ((0)*(Vi(t)-Vres)*(Kmem) = 0

RST R2 ;R2 <-- ((0)*(Vi(t)-Vres)*(Kmem)
UNFREEZE
MOVA R2 ;R0 <-- (Vi(t)-Vres)*(Kmem)
ADD R5 ;R0 <-- Vres1 + (1-Si(t))*(Vi(t)-Vres)*(Kmem)
SWAPS R2 ;R2 <-- SR2_2 = SUM_WEIGHTS
ADD R2 ;R0 <-- (Vres1 or Vres2)+(1-Si(t))*(Vi(t)-Vres)*(Kmem)+

;SUM_WEIGHTS
MOVR R6 ;R6 <-- Vres1+(1-Si(t))*(Vi(t)-Vres)*(Kmem)+SUM_WEIGHTS
SWAPS R6 ;SR6 <-- R6 = Vi
RST R2 ;SUM_WEIGHTS <-- 0
SWAPS R2 ;SR2_2 <-- R2 = SUM_WEIGHTS

RET
; --
; ----------------------------- SYNAPSE LOAD -------------------------------

.SYNAPSE_LOAD

LOADSP
;ACC <-- BRAM(BP,15:1) & Spike_reg(BP) : Sj

47

;R1 <-- BRAM(BP,31:16) : Wij
RET
; --
; --------------------------- SYNAPTIC WEIGHT ------------------------------
.SYNAPTIC_WEIGHT

RTR ; C <-- Sj
FREEZENC ;IF (Sj = 1) THEN R0 <-- wji = Aji * P

MOVA R1 ; R0 <-- Wij
SWAPS R2 ;R2 <-- SR2_2 = sumW
ADD R2 ;SR0 <-- wji = Sj * P
MOVR R2 ;R2 <-- wji = Sj * P
SWAPS R2 ;SR2_2 <-- R2 = sumW

UNFREEZE
RET
;---
; --------------------------- SYNAPSE_SAVE ---------------------------------
.SYNAPSE_SAVE
; THE SYNAPTIC PARAMETERS GO TO BUFFER 32 bits

RST R0
STORESP

RET
; --
; ---------------------------- SPIKE UPDATE --------------------------------
.SPIKE_UPDATE

RST R0
; SWAPS R0 ;R0 <-- SR0 = Si
; RTR
; RTL

MOVR R2 ;R2 <-- Si has been reset = 0
LDALL R3,THETA1 ;R3 <-- THETA1 = "0000F060" THRESHOLD VOLTAGE
SWAPS R6 ;R6 <-- SR6_2 = Vi
MOVA R6
SWAPS R6 ;SR6_2 <-- R6 = Vi
SUB R3 ;R0 <-- Vi - (THETA1)
RTL ; Vi - (THETA1) > 0 ?

48

FREEZEC
SWAPS R4 ;R4 <-- SR4 = Tref

RST R0
XOR R4
SWAPS R4
FREEZENZ ; IF (Z = 1) THEN Tref=0 and Si is set

RST R0
BITSET CERO
MOVR R2

; LDALL R3,UNO
; MOVA R2
; ADD R3
; MOVR R2

LDALL R4,CTE_1 ;CTE_1 = 7
SWAPS R4 ;Load again in SR4 initial refractory time

UNFREEZE
UNFREEZE
MOVA R2 ;R0 <-- Si
SWAPS R0 ;SR0_2 <-- R0 = Si

RET
; --
; ------------------------------- REFRACTORY P -----------------------------
.REFRACTORY_P

SWAPS R4 ;R4 <-- SR4 = Tref
MOVA R4
RTR
MOVR R4
SWAPS R4 ;SR4 <-- R4 = Tref

RET
; --
; ------------------------ENABLE SPIKES PROPAGATION-------------------------
.SPIKES_ENABLE

SWAPS R0
MOVR R2 ; R2 <-- Si
SWAPS R0
MOVA R2 ; R0 <== Spikes
STOREPS

49

RET

; --
; **************************** PROCEDURES END ******************************
; ************************** MAIN PROGRAMME BEGIN **************************
.MAIN

LDALL R6,VREST1 ; Vi<-Vrest
SWAPS R6

.ALG_LOOP
GOSUB MEMBRANE_VALUE
LOOP synapses ;synaptic loop

GOSUB SYNAPSE_LOAD
GOSUB SYNAPTIC_WEIGHT
GOSUB SYNAPSE_SAVE

ENDL
GOSUB SPIKE_UPDATE
GOSUB REFRACTORY_P
GOSUB SPIKES_ENABLE
SPKDIS

GOTO ALG_LOOP
; **************************** MAIN PROGRAMME END **************************

50

	Introduction
	Goals of the project
	Requirements and specifications of the project
	Background
	Work plan

	State of the art
	Neural networks
	Spiking Neural Networks
	Implementations of SNN
	Spiking Neural-network Architecture for Versatile Applications

	Project development
	VHDL description
	Components provided
	Implemented components
	Simulations

	Synthesis and Implementation
	Main problems found
	Slack time of setup

	Results
	Budget
	Conclusions and future development
	Bibliography
	Glossary
	Appendices
	Set of instructions
	Integrate and fire algorithm

