
A Genetic Parallel
Programming based Logic

Circtiit Synthesizer
I
LAU, Wai Shing

. — • — • .

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

© T h e Chinese University of Hong Kong

November 2006

The Chinese University of Hong Kong holds the copyright of this thesis. Any
person(s) intending to use a part or whole of the materials in the thesis in
a proposed publication must seek copyright release from the Dean of the
Graduate School.

A / 統 系 書 圓 、 " ^ 、

Q 3 Ml 18)i)
UNIVERSITY 1 鋪

Ngĵ M-IBRARy SYSTEMy^^

Thesis/Assessment Committee

Professor Ng Kam Wing (Chair)

Professor Leung Kwong Sak (Thesis Supervisor)

Professor Lee Kin Hong (Thesis Supervisor)

Professor Wu Yu Liang, David (Committee Member)

Abstract of thesis entitled:

A Genetic Parallel Programming based Logic Circuit Synthe-

sizer
Submitted by L A U Wai Shing
for the degree of Master of Philosophy

at The Chinese University of Hong Kong in November 2006

Genetic Parallel Programming (GPP) is a novel Genetic Pro-

gramming paradigm. This thesis presents a G P P based Logic

Circuit Synthesizer (GPPLCS) which is a combinational logic

circuit learning system. G P P L C S can synthesize (evolve) opti-

mal logic circuits on Field Programmable Gate Arrays (FPGAs)

given the truth table of a circuit as an input. It employs a Multi

Logic Unit Processor (MLP) which is a multiple instruction-

stream multiple data-stream (MIMD), general-purpose register

machine. Based on the parallel architecture of MLP, G P P L C S

evolves genetic programs in parallel form (MLP programs).

The G P P L C S has been improved in two different ways. First

of all, we make use of hardware accelerator in the GPPLCS.

A Multi M L P based G P P L C S (M M G P P L C S) is proposed so

that the whole evolution can be sped up. M M G P P L C S is de-

signed to speed up the processes of both evolution and evalua-

tion of genetic parallel programs that represent combinational

logic circuits. Moreover, a hardware based M L P has been imple-

mented in FPGAs. Experimental result shows that the speedups

vary from 10 to 36 depending on applications. The second im-

provement is by making use of local search operators, FlowMap

or D A O M a p . By integrating G P P L C S and FlowMap, a Hy-

i

bridized G P P L C S (HGPPLCS) is developed. The H G P P L C S

first evolves circuits in 2-input LookUp Table (LUT) circuit and

then relies on FlowMap to give a 4-input L U T mapping solu-

tion. Experimental results show that both the L U T counts and

the propagation L U T delays of the circuits collected are better

than the original GPPLCS. In addition, by including D A O M a p

as a local search operator, a novel memetic algorithm has been

developed and used in a Memetic G P P L C S (MGPPLCS). G P P

is first used for evolving a population of LUT-based circuits.

D A O M a p is for optimization purpose while the G P P searches

for the possible global optima locations (vicinity). D A O M a p

acts as a greedy local search operator to return an optimum cir-

cuit for each individual in the G P P population. G P P keeps on

evolving and the process continues until some certain stopping

criteria are met. Experimental results show that circuits found

using this approach contain smaller number of LUTs and L U T

levels compared with existing approaches with a smaller number

of tournaments.

ii

論文撮要

本論文旨在設計、實踐及改善一個全新遺傳平行程式編寫邏輯電路合成器

(GPPLCS)�它建基於一種新的遺傳平行程式編寫(GPP)�根據電路的真値表(truth
table)，GPPLCS可以合成(演變)優化的邏輯電路給予可編程序鬧矩陣晶片(FPGAs)
運作。它採用了一個多算術邏輯單元處理器(MLP) ’ MLP是一個多指令多數據

(MIMD)�一般性用途的處理器，基於MLP的平行結構，GPP以平行形程式(MLP
程式)來展開進化過程。 -

我們以兩種不同的改進方式改善GPP邏輯電路合成器。首先使用的是利用硬體

加速，我們建議一個含有多個MLP的GPP邏輯電路合成器(MMGPPLCS)，

MMGPPLCS旨在加快基因演變和遺傳平行程式的評估。此外，放置到FPGA的

MLP上運行能加快遺傳平行程式的評估速度。實驗結果表明有10至36倍的加

速。另一種方式是在基因演算法配搭上一個局部搜尋(Local Search)演算法，如

FlowMap 或 DAOMap.混合了 FlowMap 的 GPPLCS (HGPPLCS)是用 GPPLCS 在

發展雙輸入Lookup表（2-input LUT)邏輯電路後’然後依靠FlowMap產生4輸

入Lookup表(4-input LUT)的邏輯電路。實驗結果表明，無論LUT的數目和邏

輯電路的層數都比原來GPPLCS收集到的電路少。此外，把DAOMap作爲一個

局部捜尋的工具放進GPPLCS便成爲了一個全新的Memetic GPPLCS
(MGPPLCS)�GPP首先產生一組電路，然後DAOMap優化它們 ’ GPP會不斷

捜索最佳地點的近鄰位�GPP不斷演變，直到某些標準達到。試驗結果表明

MGPPLCS採用這種方法可在較短的時間找到一些較少LUT的數目和邏輯電路

的層數的電路。

iii

Acknowledgement

I would like to express my appreciation to my supervisors Pro-

fessor K.S. Leung and Professor K.H. Lee for their invaluable

advice and guidance during my research study. Besides, I would

like to thank Professor K.W. Ng for his suggestions in my re-

search.

During my Master of Philosophy study, I have also benefited

from a lot of people. M y peers in our Evolutionary Computation

study group, Li Gang, Ar Ho, Ar Man, Dr. Liang Yong and Dr.

Ivan Cheang, have given me a lot of invaluable comments and

suggestions in my past 2 years.

Last but not least, I would like to express my gratitude to

my family for their support and love throughout my life.

iv

This work is dedicated to my parents.

XV

Contents

Abstract i

Acknowledgement iv

1 Introduction 1
1.1 Field Programmable Gate Arrays 2

1.2 F P G A technology mapping problem 3

1.3 Motivations 5

1.4 Contributions 6

1.5 Thesis Organization 9

2 Background Study 11
2.1 Deterministic approach to technology mapping

problem 11

2.1.1 FlowMap 12

2.1.2 D A O M a p 14

2.2 Stochastic approach 15

2.2.1 Bio-Inspired Methods for Multi-Level Com-

binational Logic Circuit Design 15

2.2.2 A Survey of Combinational Logic Circuit

Representations in stochastic algorithms . 17

2.3 Genetic Parallel Programming 20

2.3.1 Accelerating Phenomenon 22

2.4 Chapter Summary 23

vi

3 A GPP based Logic Circuit Synthesizer 24
3.1 Overall system architecture 25

3.2 Multi-Logic-Unit Processor 26

3.3 The Genotype of a M L P program 28

3.4 The Phenotype of a M L P program 31

3.5 The Evolution Engine 33

3.5.1 The Dual-Phase Approach 33

3.5.2 Genetic operators 35

3.6 Chapter Summary 38

4 MLP in hardware 39
4.1 Motivation 39

4.2 Hardware Design and Implementation 40

4.3 Experimental Settings 43

4.4 Experimental Results and Evaluations 46

4.5 Chapter Summary 50

5 Feasibility Study of Multi MLPs 51
5.1 Motivation 52

5.2 Overall Architecture 53

5.3 Experimental settings 55

5.4 Experimental results and evaluations 59

5.5 Chapter Summary 59

6 A Hybridized GPPLCS 61
6.1 Motivation 62

6.2 Overall system architecture 62

6.3 Experimental settings 64

6.4 Experimental results and evaluations 66

6.5 Chapter Summary 70

7 A Memetic GPPLCS 71
7.1 Motivation 72
7.2 Overall system architecture 72

vii

7.3 Experimental settings 76

7.4 Experimental results and evaluations 77
7.5 Chapter Summary 80

8 Conclusion 82
8.1 Future work 83

Bibliography 85

viii

List of Figures

1.1 General Model of an F P G A which consists of

Configurable Logic Blocks (CLBs), Input Output

Blocks (lOBs) and routing resources 2

1.2 2-Slice Virtex-E C L B 3

1.3 Schematic of a SRAM-based 3-LUT 4

1.4 F P G A mapping example 4

1.5 The system block diagram of the G P P L C S 7

2.1 Label Calculation in FlowMap 13

2.2 Label Calculation in FlowMap (Cont’） 14

2.3 The structure of Programmable Logic Devices . . 18

2.4 The phenotype used in Cartesian G P 19

2.5 Louis's Two-Dimensional Gate Array 19

2.6 The phenotype proposed by Torresen 20

2.7 The phenotype of F ^ P G A 20

2.8 The framework of a G P P system [12] 21

3.1 The system block diagram of G P P L C S 25

3.2 The 2-LUT M L P used by the G P P L C S 26

3.3 The 4-LUT M L P used by the G P P L C S 27

3.4 The genotype of a L m a x - ^ 1 (PI[0]-PI[Lm^x-1]),

16-SI(SI[*,0]-SI[*,15]) M L P program 28

3.5 Representations of Sis in evolving 2-LUT and 4-

L U T circuits 29
3.6 Functions bO - bF used in 2-LUT circuits SI . . . 30

ix

3.7 The corresponding content of 4-LUT of the "bF6E0

r31 r27 r08 r29 rOO" sub-instruction 31

3.8 Optimized M L P program for 1-bit full adder in

2-LUT format 32

3.9 A 1-bit full adder in 2-LUT format 32

3.10 Optimized M L P program for 2-bit full adder in

4-LUT format 33

3.11 A 2-bit full-adder in 4-LUT format 33

3.12 PI level crossover on two parents 36

3.13 An SI swapping in a single M L P program 37

4.1 The architecture of the M L P core 41

4.2 A Processing Element 42

4.3 The speedup ratio versus tournaments for M U X

problem 47

4.4 The speedup ratio versus tournaments for A D D

problem 47

4.5 The speedup ratio versus tournaments for C M P

problem 48

4.6 The speedup ratio versus tournaments for PRI

problem 48

4.7 The speedup ratio versus tournaments for M A J

problem 48

4.8 The speedup ratio versus tournaments for B C D

problem 49

5.1 The system block diagram of M M G P P L C S 53

5.2 FIFO design 54

5.3 Algorithm of M M G P P L C S in simulation 57

6.1 H G P P L C S 63
6.2 FlowMap refines the fitness of individuals in GP-

PLCS 64

XV

6.3 Average number of 4-LUT count and L U T level

collected from H G P P L C S and G P P L C S on the

six problems in 50 runs 69

6.4 Best number of 4-LUT and L U T level collected

from H G P P L C S and GPPLCS on the six prob-

lems in 50 runs 69

6.5 The best 3-bit comparator evolved by the HGP-

PLCS 69

7.1 The system block diagram of M G P P L C S 73
7.2 D A O M a p refines the fitness of individuals in GP-

PLCS 74
7.3 Algorithm of M G P P L C S •. . . 75
7.4 6-bit multiplexer evolved by the M G P P L C S . . . 80

xi

List of Tables

3.1 Control-codes in 2-LUT circuits SI 28
3.2 Control-codes in 4-LUT circuits SI 30

4.1 Pilchard board features 42

4.2 Six combinational logic circuit problems used in

G P P L C S with the hardware assisted MLP. The

Nin and Nout denote the numbers of inputs and

outputs respectively. The Nrow (=2风")denotes

the number of rows in the truth tables . The

Ncase {=Nrow X Â oui)denotes the total number of

training cases 44

4.3 Experimental settings used in G P P L C S with the

hardware assisted M L P 45

4.4 Summary of experimental results in G P P L C S with

hardware assisted M L P 47

5.1 Six combinational logic circuit problems used in

the simulation. The Nin and N — denote the

numbers of inputs and outputs respectively. The

Nrow (=2风")denotes the number of rows in the

truth tables . The Ncase {=Nrow x Nout)denotes
the total number of training cases 56

5.2 Experimental settings used in M M G P P L C S and

G P P L C S 58

xii

5.3 Number of tournaments (x lO” needed by M M G P -

PLCS and G P P L C S in design phase on six prob-

lems (Average value) 59

6.1 Six combinational logic circuit problems used in

H G P P L C S . The Nin and Nout denote the num-

bers of inputs and outputs respectively. The TV卿

(=2风卞enotes the number of rows in the truth

tables . The Ncase {=Nrow x Â out)denotes the to-

tal number of training cases 65

6.2 Experimental settings used in H G P P L C S 67

6.3 Best circuits collected from H G P P L C S , G P P L C S

and FlowMap algorithm on six problems 68

6.4 Successful rate of evolving circuit problems in HGP-

PLCS and G P P L C S 68

7.1 Six combinational logic circuit problems used in

M G P P L C S . The N饥 and Nout denote the num-

bers of inputs and outputs respectively. The TV謂

(d e n o t e s the number of rows in the truth

tables . The Ncase {=Nrow X A^ouOdenotes the to-

tal number of training cases 76

7.2 Experimental settings used in M G P P L C S 78

7.3 Best circuits collected from M G P P L C S , GPPLCS,

D A O M a p and FlowMap algorithm on six problems 79

7.4 Circuits collected from M G P P L C S , GPPLCS, D A O M a p

and FlowMap on six problems (Average value) . . 79

xiii

List of Abbreviations

• ALU: Arithmetic Logic Units

• AGO: Ant Colony Algorithms

• CAD: Computer Aided Design

• CGP: Cartesian Genetic Programming

• GIGA: Case Injected Genetic Algorithms

• CLBs: Configurable Logic Blocks

• CU: Control Unit

• D S W : Dynamic Sample Weighting

• EE: Evoluiton Engine

• E H W : Evolable Hardware

• ES: Evolutionary Strategy

• FF: Filp Flop

• F^PGA: Functional-based Field Programmable Gate Array

• FPGA: Field Programmable Gate Array

• GAs: Genetic Algorithms

• GASA: Genetic Algorithms with Simulated Annealing

• GPs: Genetic Programmings

xiv

• GPP: Genetic Parallel Programming

• GPPLCS: Genetic Parallel Programming based Logic Cir-

cuit Synthesizer

• HGPPLCS: Hybridized Genetic Parallel Programming based
Logic Circuit Synthesizer

• ICs: Integrated Circuits

• lOBs: Input Output Blocks

• lORs: Internal Operand Registers

• /c-LoUs: /u-input logic units .

• LUT: Lookup Table

• A:-LUT: A;-input LookUp Table

• M I M D : Multiple Instruction-streams Multiple Data-streams

• MLP: Multi Logic Unit Processor

• M G P P L C S : Memetic Genetic Parallel Programming based

Logic Circuit Synthesizer

• M M G P P L C S : Multi M L P Genetic Parallel Programming

based Logic Circuit Synthesizer

• O L M C : Output Logic Macro Cell

• PFU: Programmable floating-point processing units

• PE: Processsing Element

• PI: Primary Input

• Pis: Parallel Instructions

• PLD: Programmable Logic Device

XV

• P〇：Primary Output

• PS〇： Particle Swarm Optimization

• SGA: Simple Genetic Algorithms

• Sis: Sub Instructions

• SIR: Sub Instructions Registers

• VGA: Variable-length Genetic Algorithms

• VHDL: Very High Speed Integrated Circuit Hardware De-

scription Language

xvi

List of Symbols

• d: the propagation delay

• dmax: the maximum value allowed for propagation delay

參 fraw'. raw fitness

參 fdp: fitness in the design phase

• fop： fitness in the optimization phase

• g: the number of LookUp Table count (the number of nor-
mal sub-instructions (SI))

• gmax: the maximum value allowed for number of LookUp
Table count

• L: length of Parallel Instructions (Pis)

• Lmax- Maximum length of Parallel Instructions

• tmax' Maximum tournaments allowed

• Pxover'- PI crossover Probability

• Pbtmut: Bit Mutation Probability

• Psiswp'- SI swapping Probability

• Psidei SI deletion Probability

xvii

Chapter 1

Introduction

Field Programmable Gate Arrays (FPGAs) have become very

popular for prototyping new designs of digital logic circuits.

This is because the F P G A implementation of a design is rel-

atively easy, thus allowing logic verification to be performed

early in the design process and reducing the turnaround time

62]. This has further ramifications on the manufacturing costs.

In implementing a design in FPGAs, the optimized logic descrip-

tion obtained during logic synthesis must be mapped onto the

modules and routing resources available on a particular F P G A .

The objective is to find the best mapping , in terms of number

of modules required, onto the F P G A . Other factors, such as per-

formance, may also be considered. In this thesis, a synthesizer

using genetic parallel programming (GPP) for F P G A technol-

ogy mapping problem - a Genetic Parallel Programming based

Logic Circuit Synthesizer (GPPLCS) is presented.

This chapter is organized as follows. An overview of the

F P G A is given in Section 1.1. In Section 1.2, F P G A technol-

ogy mapping problem is described. The motivations and our

contributions can be found in Sections 1.3 and 1.4 respectively.

Finally, the thesis organization is given in Section 1.5.

1

CHAPTER 1. INTRODUCTION 2

lOB

Ram

CLB CLB CLB

R ^ ^ ^ P ^ ^ I R
lOB a CLB CLB CLB a lOB

m ^ ^ ^ ^^^^^ m

CLB CLB CLB
一 U __JjH —— ——ui__

Routing resources ,

Ram I -

lOB

Figure 1.1: General Model of an FPGA which consists of Configurable Logic
Blocks (CLBs), Input Output Blocks (lOBs) and routing resources

1.1 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are a class of pro-

grammable hardware devices which consist of an array of Input

Output Blocks (lOBs), Configurable Logic Blocks (CLBs) and

routing resources. A simplified general model of an F P G A is

shown in Figure 1.1. lOBs are responsible for connection be-

tween the CLBs logic and the outside world. A CLB is a basic

unit of a logic function implementation in FPGAs. Routing re-

sources interconnect the CLBs and form connections between

the CLBs and the lOBs. Some FPGAs may also contain on-

chip R A M . Figure 1.2 shows a 2-Slice Virtex-E CLB [2] which

contains two logic cells. Each Logic Cell consists of a function

generator in the form of a LookUp Table (LUT), a storage ele-

ment or Flip Flop (FF), internal Carry and Control Logic and

registers.

CHAPTER 1. INTRODUCTION 3

oi'UT courr
小 木

It.出 r~~ i~»YB

LUT 一 Ĉrryi D^O—> YO 山T _ t —_f̂ l̂ . G2 > CoHici 7 CiMilrol ^̂ YQ
01 > I , , I Q1> I I

BY > L™iJ By> LEJ
今 *B

> _ _ L f 4 > _ L
p , > 一 $p I F3 > &P I C LUr — CarrvA D Q —> xo Z ^ - LUT ——Cairyl 一一 ^ o > 们 F2 > Ccolrol .p ，拟 Conlr4 ^̂ ^ »�
Fl >1__I I I Fl：!I__I I I

> >

BX > 1 t ^ BX> 1
SIC4 1 0

A K
CIN CiH

Figure 1.2: 2-Slice Virtex-E CLB ..

LUT-based FPGAs are a new generation of integrated cir-

cuit with an array of programmable logic blocks placed in an

infrastructure of interconnections. Usually, fixed size LUTs are

used among the whole F P G A chip and the size of every L U T is

denoted by the number of inputs (A;), which is commonly chosen

to be 4 or 5. A /c-input L U T (/c-LUT) can be used to imple-

ment any Boolean function of up to k variables. Every L U T
is implemented by memory cells with k-hit address decoder.
Any inputs to a Boolean function will be taken as an address to

read the corresponding bit pre-loaded inside the memory cell.

Therefore, a A;-LUT can be used to implement any A;-variable

Boolean functions. Figure 1.3 shows a possible structure of a

3-LUT.

1.2 FPGA technology mapping problem

A typical design flow for FPGAs consists of a number of steps.
W e first synthesize the logic circuit from specification and then
follow by logic optimization. Then, it is followed by technol-
ogy mapping and finally placement and routing. The aim of

CHAPTER 1. INTRODUCTION 4

~ RAM cell 一

> — R A M cell 一

” I 一 RAM cell —
a n>

——RAM cell —

b""“ ^ ~~ f
q — RAM cell — •

C— s. -
Q — R A M cell 一

一 RAM cell 一

RAM cell

Figure 1.3: Schematic of a SRAM-based 3-LUT

�

！cr ^^��

H L J L---------------------j I

Figure 1.4: FPGA mapping example

F P G A technology mapping is to get a functionally equivalent

L U T network based on a given Boolean circuit while placement

and routing is to realize an implementation of the mapped L U T

network. As a result, the objective of technology mapping is

either to use a minimal chip area (i.e. area minimization) or to

have a minimum circuit delay (i.e. depth minimization). The

area is commonly indicated by the number of LUTs while the

circuit delay is measured by the number of level of LUTs.

Our definition of the F P G A technology mapping problem is

slightly different from the one used by the Computer Aided De-

sign group. In their problem definition, the input to the F P G A

CHAPTER 1. INTRODUCTION 5

technology mapping problem is a Boolean Network which is

modeled from a circuit. That means technology mapping ap-

plies on an existing circuit. W e believe that any existing circuits

would hinder our GPPLCS from reaching a global optimum.

Thus, we used a different definition. Our input to G P P L C S is

a truth table of a circuit. As the truth table specifies the func-

tionality of a circuit only, circuits can be evolved freely in the

GPPLCS. Thus, GPPLCS can be prevented from being trapped

in a local optima.

The output of our GPPLCS would be a network which is com-

posed of LUTs which performs the same function as stated in

the input truth table. The number of inputs to L U T is bounded

by a variable k. If the network is /c-bounded, all inputs of LUTs
will be less than or equal to k. Clearly, /c-bounded network can
be implemented by an F P G A using /c-LUTs as logic block. Fig-

ure 1.4 shows an example on this problem. This example can

be implemented by 5 LUTs.

The F P G A technology mapping problem is formulated as fol-

lows:

• INPUT: A truth table of a circuit

• O U T P U T : A /c-bounded network

• Objectives:

1. Minimize the number of LUTs used to map the circuit.

2. Minimize the delay of the circuit mapping result.

1.3 Motivations

A Genetic Parallel Programming based Logic Circuit Synthe-

sizer (GPPLCS) is proposed in this thesis. It is motivated by

the following two observations:

CHAPTER 1. INTRODUCTION 6

1. Traditionally, technology mapping problems are solved by
deterministic algorithms like FlowMap [21] and D A O M a p

13]. Although mapping solutions can be obtained in a

short period of time, the qualities of the solutions are not

the best. The application of stochastic algorithms like

Genetic Parallel Programming (GPP), which are particu-

lary good at finding the global optimum to optimization

problems, should be explored. Moreover, since G P P is a

population-based search approach and has a strong opti-

mization capability, it can find more of the best solutions

among the possible solutions. That means more than one

mapping solutions can be found by GPP.

2. Although G P P is good at locating the global optimum in

optimization problems, G P P usually takes a long time for

the computation. Some improvements are necessary to

tackle this problem.

A G P P L C S is therefore proposed and implemented to tackle

the first problem. Some further improvements are made to the

GPPLCS. By having an hardware implementation of the GP-

PLCS in FPGAs is one of a feasible ways to solve the efficiency

problem. The other way is to include a non-genetic deterministic

local search operator in the GPPLCS. These improvements are

shown to be effective in significantly shortening the computation

time.

1.4 Contributions

Firstly, the major contribution of our work is the design and

implementation of a GPPLCS. The G P P L C S is used to design

optimized combinational logic circuits with LUTs, which are the

basic logic representation components in FPGAs. Designing an

optimized lookup-table network is a non-trivial task. Based on a

CHAPTER 1. INTRODUCTION 7

M L P program in parallel assembly truth table

r ^ rn
training ——

decompile

I expected o u t p u t !

I J evaluated

(^ p ^ l a t i ^ evaluate ^ ^ ^ ^ o u ^ u t ^ ^ TO

fitness S n

T I r ^ ^
G E N E T I C OPERATIONS:- ‘ ；̂；：；；；；；；：；；；；̂ genotype ‘ — • I ^ ^ U t U •
mutation, crossover, individuals ^ ^ ^ ^ ^
selection, etc... ^ ^ _ _ _

Evolution Engine (EE) Multi-Logic-Unit Processor (MLP)

Figure 1.5: The system block diagram of the GPPLCS

tailor-made combinational logic evaluation engine, Multi Logic

Unit Processor (MLP) and an Evolution Engine (EE) (see Fig-

ure 1.5), the GPPLCS successfully evolved high qualities multi-

level combinational logic circuits. The results are superior to

other existing Genetic Programmings (GPs) and Genetic Algo-

rithms (GAs) systems.

Secondly, we have successfully built a hardware evaluation

engine on FPGAs. Based on the architecture of the MLP, a

hardware based M L P on FPGAs has been designed and imple-

mented so that the evolution speed can be boosted. A G P P L C S

with software version of the EE and the hardware based M L P

were built to verify the effectiveness.

Thirdly, further improvements have been achieved on the GP-

PLCS with the hardware assisted MLP. First of all, we have

investigated the possibility of full scale hardware implementa-

tion of GPPLCS. As the execution time of the M L P and the E E

are different, a special model of cooperation between the M L P

and the E E are necessary in a hardware implementation of the

G P P L C S in an F P G A . By including multi M L P with a single

EE in a GPPLCS, it can reduce the waiting time of E E during

an evaluation of evolved combinational logic circuit in the MLP.

CHAPTER 1. INTRODUCTION 8

The simulation shows that the model works fine in evolving logic

circuits and is suitable for the implementation of the G P P L C S

in FPGAs.

Fourthly, we have included a local search operator in our GP-

PLCS. Based on existing deterministic algorithms for technol-

ogy mapping problems such as FlowMap and D A O M a p [13, 21],

a Hybridized GPPLCS (HGPPLCS) and a Memetic G P P L C S

(MGPPLCS) have been designed and implemented. The hy-

bridized G P P L C S make use of the population-based Genetic

Parallel Programming (GPP) and FlowMap to evolve 4-LUT

circuits. Since G P P is population-based, it has a number of

individuals (circuits) that have the same function (i.e. many-to-

one genotype^-phenotype^ mapping). Thus, G P P can provide a
number of different circuits as inputs to the FlowMap algorithm.

In this way, FlowMap can return different mapping solutions so

that a better solution can be obtained.

Lastly, algorithms hybridize a non-genetic deterministic local

search to refine the qualities of solutions with a genetic algorithm

are called memetic algorithms [53]. This inspires an idea of using

a local search operator in GPPLCS. By refining the individuals,

local optima can be found more efficiently. During the process

of evolution, D A O M a p keeps refining individuals so that more

and more optima can be explored. This new G P P L C S with a lo-

cal search operator - D A O M a p becomes our memetic GPPLCS.

Experimental result shows that the memetic G P P L C S evolve

better circuits using smaller number of tournaments.

Generally speaking, the memetic G P P L C S is the most effi-

cient and effective method to generate circuits. It requires fewer

evaluations to identify higher quality solutions than GPP. Both

iThis is the representation which consists of encoded codes (chromosomes) for the
phenotype

2The phenotype is the representation (as opposed to the genotype) which exhibits
features that can be evaluated. The phenotype is the visible, behavioral expression of the
genotype

CHAPTER 1. INTRODUCTION 9

the lookup table counts and the propagation delays of the cir-

cuits collected are better than those obtained by conventional

design or evolved by G P P alone.

1.5 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 first presents the research background of this the-

sis. Then, it gives a thorough review on both deterministic

and stochastic algorithms to technology mapping problem. Af-

terwards, a brief introduction of Genetic Parallel Programming

(GPP) will be given.

Chapter 3 presents a Genetic Parallel Programming based

Logic Circuit Synthesizer (GPPLCS). G P P L C S is a G P P sys-

tem which comprises two core components, a Multi-Logic-Unit

Processor (MLP) and an Evolution Engine (EE). The M L P is

an evaluation engine to execute parallel genetic programs for

fitness evaluation. The EE is a population-based evolutionary

process which manipulates the population and performs genetic

operators.

Chapter 4 shows a design and implementation of a Multi

Logic Unit Processor (MLP). The M L P is a hardware imple-

mentable evaluation engine to execute parallel genetic programs

for fitness evaluation. With a cooperation of the software ver-

sion EE and the hardware based MLP, combinational circuits

are evolved at a faster rate. Experimental results in terms of

actual speedup ratio on several combinational logic circuits are

presented.

In Chapter 5, we describe a new model of cooperation be-

tween the M L P and the EE. This new model is designed for

hardware implementation in FPGAs. The main contribution is

to shorten the waiting time of EE during an evaluation of logic

circuit programs in the M L P based on a pipeline concept. Sim-

CHAPTER 1. INTRODUCTION 10

Illation results on several combinational circuits compared with
the current G P P L C S are presented.

Chapter 6 presents a hybridized GPPLCS. A system which

integrates the GPPLCS and the FlowMap algorithm is pre-

sented. Experiments on several combinational logic circuits are

presented.

Chapter 7 gives a presentation of a memetic GPPLCS. By

including a non-genetic local search operator - D A O M a p in GP-

PLCS, better circuits can be evolved with a smaller number

of tournaments. Experimental result on several combinational

logic circuits are given.

Finally, Chapter 8 concludes this thesis with a summary of

the issues addressed in this thesis and their contributions. It also

suggests several directions for future research in our GPPLCS.

• End of chapter.

Chapter 2

Background Study

In Computer Aided Design (CAD) field, technology mapping

problem is mainly tackled by deterministic algorithms. They are

mainly network-flow-based algorithms which produce mapping
solutions with optimal depth. Although there are no stochastic

algorithms designed to tackle the technology mapping problem,

some stochastic algorithms are designed for multi-level combi-

national logic circuit design.

This chapter is organized as follows. A literature review on

two deterministic network-flow-based algorithms (FlowMap and

D A O M a p) is given in Section 2.1. Section 2.2 is a literature re-

view on stochastic algorithms for multi-level combinational logic

circuit design. Finally, a brief introduction of Genetic Parallel

Programming is presented in Section 2.3.

2.1 Deterministic approach to technology map-
ping problem

In this section, we introduce two network-flow-based algorithms

for the technology mapping problem. These algorithms guaran-

tee to produce mapping solutions with optimal depth. Therefore

in the later design process, the wiring delays of the circuit are

also optimized.

11

CHAPTER 2. BACKGROUND STUDY 12

2.1.1 FlowMap

A circuit is modeled as a Boolean Network. There is a set of

nodes PI representing the primary inputs (Pis) and another set

of nodes P O representing the primary outputs (P〇s). All other

nodes in the network are called internal nodes and these nodes

are associated with specific functions. The function type of the

internal nodes can be simple (AND, OR, N O T , X O R) or com-

plex. Every wire in the circuit is represented by an edge between

two nodes. All incoming edges to a node are called fanin of this

node and all outgoing edges are called fanout; Nodes in PI has

only fanouts while nodes in P O has only fanins. If the in-degrees

of all nodes are less than or equal to k, the network is /c-bounded.
Clearly k bounded network can be implemented by an F P G A
using /u-input LookUp Tables (/c-LUTs) as logic block.

FlowMap [21] is the first depth-optimal technology mapping

algorithm developed. The algorithm will first apply Decompose

Multi-Input Gate (DMIG) [14] to decompose the network into a

network composed of small gates which have a smaller number

of inputs (say 2). Experimental results show that small gates

can be packed and grouped more efficiently than large input

gates. The depth of the mapped network is the smallest when

the original network was first decomposed into 2-input gates.

After gate decomposition, the algorithm enters the labeling
phase. The algorithm calculate a label l(t) for every node t in
topological order. The label l(t) gives the minimum depth of any
mapping solution of the subnetwork rooted at node t, denoted
by Nt. Moreover, l(t) is either equal to the maximum label p of
the nodes in fanin of t or one more than the maximum label.
FlowMap first collapses all nodes with label p in Nt to get a
new network N^. , then it continues to compute the maximum

volume min-c lit of N[using the classic network flow technique.
If the cut size is less than or equal to k, the label l(t) is assigned
to be p, otherwise l(t) = p+1, indicating a new L U T is used to

CHAPTER 2. BACKGROUND STUDY 13

CO

y
Figure 2.1: Label Calculation in FlowMap

map Nt.
After label calculation, FlowMap starts A;-LUT generation

with a list of P O nodes. It iteratively takes a non-PI nodes on

the list and generate a L U T to implement the function for all the

nodes with the same label. The fanins to this newly generated

L U T is then put on the list.

To illustrate the label calculation we show the network for

the circuit in Figure 2.1. There are 6 Pis (from a to /) and
1 P O {yl). For simplicity, we take k = ?> (i.e. 3-input LUT).
Suppose we need to compute the label for node g% with p = 2

(i.e label of gl is 2, l[gl) = 2) during the label phase. Thus we
collapse the node g7 with g8 together and consider this collapsed
node as the node sink. After addition of a dummy source node
(src) connecting to all 5 PI nodes, we find a minimum cut on
the network by network flow technique. Figure 2.2 shows the

collapsed network and the graph for flow calculation. The min-

cut simply separates the sink node with all the other nodes,

CHAPTER 2. BACKGROUND STUDY 14

Figure 2.2: Label Calculation in FlowMap (Cont’）

which implies that nodes g7 and gS can be grouped together
and implemented by a 3-LUT. Since the cut size equals to 3,

the label of node g8 is 2, same as that of g7.
FlowMap has a polynomial time complexity of 0{kmn) where

n and m are the number of nodes and the number of edges in N.
Therefore the algorithm is extremely fast even for large circuits

with thousands of gates.

2.1.2 DAOMap

D A O M a p [13] which stands for Depth-optimal Area Optimiza-

tion of F P G A designs is an extension of FlowMap . The differ-

ence lies in the way of modeling and controlling node duplica-

tions so as to reduce area through the entire mapping process.

First, a cut-enumeration-based method that consists of cut gen-

eration and cut selection is adopted. Cut generation traverses

the network from Pis to POs, and combines subcuts on the

fanin nodes of the target node to generate all the cuts on the

target node (each cut represents one possible L U T implementa-

tion rooted on the target node). After all the cuts are generated,

the network from POs to Pis is traversed and cuts to produce

the L U T mapping result is selected.

CHAPTER 2. BACKGROUND STUDY 15

In order to reduce area through the entire mapping process,

three novel approaches to effectively model and control node du-

plications and reduce area through the entire mapping process

are done in D A O M a p . First, the potential duplications during

the cut generation procedure are considered so that the mapping
solutions encoded in the cuts can consider duplication costs.

This will help the cut selection procedure to make the right de-

cisions to cover the circuit with less node duplications from a

global optimization point of view. Second after the timing con-

straint is determined (the longest optimal mapping delay of the

network), the noncritical paths will be relaxed by searching the

solution space which will consider both local and global opti-

mality information to minimize the mapping area. Third, an

iterative cut selection procedure that further explores and per-

turbs the solution space is carried out to improve the solution

quality.

2.2 Stochastic approach

Although there are no stochastic algorithms designed for tack-

ling technology mapping problems, there are some related work

on multi-level combinational logic circuit design by bio-inspired

methods. In addition, there are many different existing pheno-

type representations for combinational logic circuits. They are

described in the following subsections.

2.2.1 Bio-Inspired Methods for Multi-Level Combina-
tional Logic Circuit Design

In this subsection, we summarize the current researches on bio-

inspired methods for multi-level combinational logic circuit de-

sign.

• Simple Genetic Algorithms (SGA): It encodes a combina-

CHAPTER 2. BACKGROUND STUDY 16

tional logic circuit by using a fixed-length genotype [15, 16,
17, 32, 49, 50, 55, 58, 59]. Standard genetic operators such
as one-point crossover and bit mutation are used.

• Variable-length Genetic Algorithms (VGA). It is an exten-
sion of S G A [33, 34, 35]. A genotype only encodes the
effective part of the architecture bits of a combinational
logic circuit. Comparing with SGA, the lengths of V G A
genotypes are smaller. Thus, it is possible to grow larger
circuits in a shorter evolution time with V G A . Special ge-
netic operators such as cut, splice [25] are used.

• Standard GP. It uses a tree structure to represent an in-

dividual combinational logic circuit [4, 40]. Standard G P

operators such as node mutation, sub-tree mutation and

sub-branch crossover are used. The main drawback of this

method is that only single-output combinational logic cir-

cuits can be evolved. It is because there is only one root

node in each program tree.

• Evolutionary Strategy (ES) are used to evolve combina-

tional logic circuits [37, 52]. It includes five steps: 1) ran-

domly initializes a population of 7 genotypes; 2) evaluates

all genotypes; 3) copies the fittest genotype into a new pop-

ulation; 4) fills the remaining 7 — 1 places in the new popu-

lation by the mutated versions of the fittest genotype; and

5) replaces the old population by the new one. The algo-

rithm repeats steps 2 to 5 until the termination criterion is

achieved.

• Ant Colony Algorithms (AGO). A G O is used to evolve logic

circuits [3, 20]. It is a multi-agent system in which inter-

actions between low-level agents (ants) results in a meta-

heuristic behavior of the whole ant colony [24 .

CHAPTER 2. BACKGROUND STUDY 17

• Particle Swarm Optimization (PSO). PS〇 is to evolve com-

binational logic circuits [19]. It simulates the movements

of a flock of birds which seek for food (a global aim). It is

a distributed algorithm that performs a multi-dimensional

search [38 .

• Genetic Algorithms with Simulated Annealing (GASA). It

is a hybridization of a G A with Simulated Annealing (SA)

18, 39]. In this algorithm, the G A locates good regions of

the search space whereas the SA exploits these good regions

in order to find the optima.

• Case Injected Genetic Algorithms (CIGA). It combines a

G A system with a Case-Based Reasoning (CBR) module

45，46]. In the C B R , a case-base is built during G A search.

Whenever the best individual is found, it will be stored in

the case-base. The case-base can be reused to solve a new

problem by injecting similar cases to the initial population

of a new G A search.

2.2.2 A Survey of Combinational Logic Circuit Repre-
sentations in stochastic algorithms

Most of the existing phenotype representations for combina-

tional logic circuits adopt two-dimensional geometric structures.

This subsection presents five typical geometries proposed and

used by different groups of researchers. They are:

• Programmable Logic Device (PLD) Structure. P L D struc-

ture is used to evolve logic circuits [29]. P L D is a class

of reprogrammable logic devices, e.g. GAL16V8. Each

P L D consists of a fused array and an Output Logic Macro

Cells (OLMC) (see Figure 2.3). A fused array can be

programmed to represent minterms of a Boolean function.

Multiple minterms are connected to an O L M C in which

CHAPTER 2. BACKGROUND STUDY 18

—

tH>o—— OLMC
‘ ‘ ；： ‘ ‘~ ‘~！！ ‘ ^

； 二 _ ！ _ W

ftise nnay 一 ： ；T OR ~ 与

Figure 2.3: The structure of Programmable Logic Devices

a multi-input O R gate is configured. This phenotype is

designed to match the architecture bits of PLDs in a sum-

of-products form.

• Cartesian G P (CGP) [51]. As shown in Figure 2.4, the

phenotype is a two-dimensional array of cells. Each cell

contains a logic gate with some inputs and outputs. All

external inputs and gate outputs can be reused by their

higher level (right-hand side) cells. The final outputs can

be connected to any external inputs and/or cell outputs

in any levels. A levels-back parameter is used to limit the

maximum number of levels that a cell output can be reused

by its higher level cells.

• Louis's Two-Dimensional Gate Array. It is a two-dimensional

gate array proposed by Louis [17, 45] (see Figure 2.5). The

phenotype is a two-dimensional array of two-input logic

gates. Except the first level gates (the left-most column in

the figure), a gate G[i,j] gets its upper input from G[i,j.r

and lower input from either G[i.l,j.l] or G[i+l,j.l]. The

outputs of the circuit are always connected to the outputs

of the highest level gates (the right-most column in the fig-

ure). This representation reduces the genotype length by

CHAPTER 2. BACKGROUND STUDY 19

c c c … c
• L 1,1 ^ U ^ 1,3 ^ l.m u

3 — f c f c ~ f c … f c p

B —— Itl ——
• • • _• - 叙 • ；mi

一 ： ： ：守：： 一
f r f c f c … f c ~

11,1 u.i n.m
cell i

Figure 2.4: The phenotype used in Cartesian GP

" ^ G [l， l] | - ^ G [1 . 2] [|r^G[1.3] ^

I irlG[2,l] [JfljGfIsi] - I
^ I 云

"T|G[3,1] G[3,2] P|I:|G[3,3] ——-

Figure 2.5: Louis's Two-Dimensional Gate Array-

restricting the connectivity of a circuit.

• Torresen's Two-Dimensional Gate Array. Another two-

dimensional gate array is proposed by Torresen [58] (see

Figure 2.6). It relaxes the restrictions imposed on Louis's

phenotype. A gate's input can be connected to any gate

output in its previous layer.

• The Function-Based F P G A (F^PGA). It is a function-level

Evolvable Hardware (EHW) proposed by Murakawa [54

(see Figure 2.7). It is used to evolve hardware solutions

for calculation intensive applications such as digital sig-

nal processing and data compression [54]. In an F^PGA,

there are multiple layers of programmable floating-point

processing units (PFUs) that can perform different high-

CHAPTER 2. BACKGROUND STUDY 20

— L G 二 = : LG 二 二 ： LG 一 i = ： LG 一

f — I LG n 二 =1 LG n 二 =1 LG 广 ：：二：! LG 广？
^ T5
？ C
'X • • • _ 一

• • • •

LG ~ = ： LG = : LG 一 ：: = : LG 一
layer 1 layer 2 layer i layer ii

Figure 2.6: The phenotype proposed by Torreseii

llTi l̂llllll p |-H||||||[[lllllll [96 1—
i:三 PFU PFU i:::::::三 ; ; ; ： P F U
——(ex SIN) ĵUmĤ]̂ - - - -

X~-Tl- 1 ~41 p ~ _ ^ ~-
= U ：：：： PFU W^ PFU 三 三 PFU
S (fx . COS) fflfffffl - - - -
i/t — _ 11111111 I

Y -— —— 3 ~-lj| 8 — 1. 9S ~-
三 PFU PFU ::::::::三• • • :::::::: PFU

-••- (ex. ADD) ĤHHp̂ :::::::: 二 ：::: ：：

——n^ ——m\\\\ P _ _ 9 9 一

：：：：PFU PFU 。：:::::三 [P F U
5 ~4|||| no 一 100 - o

i::三 PFU ：：：：：；；•： PFU 三 三 PFU — z |

feed back ^̂

Figure 2.7: The phenotype of F^PGA

level mathematic functions (e.g. sine, cosine, etc.). The ar-
chitecture of F^PGA is similar to the Torresen's one. The
main difference is that F^PGA shares all external inputs to
all PFUs in all layers.

2.3 Genetic Parallel Programming

In this section, a brief introduction about Genetic Parallel Pro-
gramming will be given.

Genetic Programming (GP) [31] is a robust method in Evo-

CHAPTER 2. BACKGROUND STUDY 21

Evolution Engine (EE)

expected

^^ : I operaucGs “ ‘

(pôâOD)''̂^ decompile — istl'̂ly'̂
•

mpun , outputs nx oa die MAP diicctly ̂

a _ 1 -
-HI II 1.3 :、 I ieg[vVl] 1

‘ ： 3 艺

一 I ,, P.A ： 一

alu[r] I
__(I I) t^H 'S iea[(j-l)>' >v-l；

.. r"^ ： }：
• [— (r e g K M - D v y]

a h i M] ^ 1

t — ^ ?
, • • f regCv]

crossbar a-I J ：
switching- I ' S ’

network |,eg[-.-c-l]
points 二- registers

^ H z IN I …|z|N|
stanis-flags

Miilti-ALU Processor (MAP)

Figure 2.8: The framework of a GPP system [12]

CHAPTER 2. BACKGROUND STUDY 22

lutionary Computation. There are many streams in G P like

graph-based GP, stack-based GP, Cartesian GP, linear-tree and

linear-graph G P and grammar-based GP. The two main streams

in G P are standard G P [40] and linear-structured G P (linear

GP) [6]. In standard GP, a genetic program is represented in a

tree structure. In linear GP, a genetic program is represented in

a linear list of machine code instructions or high-level language

statements. A linear genetic program can be run on a target

machine directly without performing any translation process.

The Genetic Parallel Programming (GPP) paradigm pro-

posed by Cheang et. al. [43] is developed on the basis of linear

GP. G P P is a novel linear G P paradigm that evolves paral-

lel programs of a Multiple Instruction-streams Multiple Data-

streams (MIMD) architecture with multiple Arithmetic-Logic-

Units (ALU). A genetic parallel program consists of a sequence

of parallel-instructions. A parallel-instruction comprises multi-

ple sub-instructions that can perform multiple operations simul-

taneously in an execution step. G P P has been used to evolve

compact parallel programs for different problems, such as nu-

meric function regression [43] and data classification problems

9]. Figure 2.8 shows the framework of a G P P system. It con-

sists of two components, a Multi Logic Unit Processor (MLP)

and an Evolution Engine (EE). The M L P is an execution engine

for genetic program fitness evaluation. The E E manipulates the

population of genetic programs, performs genetic operators such

as mutation and crossover and decompiles the solution program

to symbolic assembly and high-level language codes. The details

of the M L P and the EE are presented in the subsequent section.

2.3.1 Accelerating Phenomenon

Experimental results show that G P P can evolve wide programs

(more sub-instructions within a parallel-instruction) more ef-

CHAPTER 2. BACKGROUND STUDY 23

ficiently than narrow programs (less sub-instructions within a

parallel-instruction). It is called the G P P accelerating phenom-

enon [44]. This phenomenon is particulary important and neces-

sary. Having more sub-instructions within a parallel-instruction

means that circuits can be evolved by G P P with a smaller

depth level and smaller number of lookup tables. As a result, a

Genetic Parallel Programming based Logic Circuit synthesizer

(GPPLCS) can developed based on GPP.

2.4 Chapter Summary

This chapter has given a literature review on two determinis-

tic network-flow-based algorithms, i.e. FlowMap and D A O M a p

which are popular among Computer Aided Design community.

Moreover, a literature review on stochastic algorithms for multi-

level combinational logic circuit design as well as five different

phenotype representation of combinational logic circuit design.

Finally, a brief introduction of Genetic Parallel Programming

have been presented.

• End of chapter.

Chapter 3

A GPP based Logic Circuit
Synthesizer

In this chapter, a Genetic Parallel Programming based Logic

Circuit Synthesizer System (GPPLCS) is presented [10, 11’ 12 .

There are two main cores, the Evolution Engine (EE) and the

Multi Logic Unit Processor (MLP). The EE manipulates the

population of genetic programs, performs genetic operators such

as mutation and crossover. The M L P is an execution engine

for genetic program fitness evaluation. Variable-length parallel

program structure (MLP program) is used to represent combi-

national logic circuits in order to preserve introns in the early

stage. Circuits are evolved by a dual-phase approach. The first

phase is called design phase. G P P L C S aims at finding a 100%

functional program. Only functional correctness of the genetic

. programs are taken into consideration in this stage. Other qual-

itative factors like LookUp Table (LUT) count, propagation de-

lay and program size are not considered. Once a first correct

genetic program is found by the GPPLCS, we proceed to the

second phase, optimization phase. Another set of genetic opera-

tors together with an optimization-oriented fitness function are

used to improve the qualities of the correct program.

This chapter is organized as follows. The overall architecture

of G P P L C S is described in Section 3.1. A detailed description

24

CHAPTER 3. A GPP BASED LOGIC CIRCUIT SYNTHESIZER 25

MLP program in parallel assembly truth table r ^ ^ I n
decompile t ^ c a s ^ ^ ^ ^ ^ / ^ "

I expected ou t pu t !

章 evaluated

(^ p u l a l i c ^ ^ ^ ^ ^ ^ ^ evaluate ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ <2. T 1 r ^ ^
G E N E T I C Ol 'bRATlONS：. ‘ genotype ‘ -•|4-LUt|- - »
mutation, crossover, i n d i v i d u a l s ^ ^ ~

sclcction, ctc... ^ ^ ^ z

Evolution Engine (EE) Multi-Logic-Unit Processor (MLP)

Figure 3.1: The system block diagram of GPPLCS

of the M L P is presented in Section 3.2. Then, both the genotype

and phenotype of M L P program are discussed in Section 3.3 and

3.4. It is followed by a detailed description of the EE in Section

3.5. Finally, a chapter summary is given in Section 3.6.

3.1 Overall system architecture

Genetic Parallel Programming (GPP) is a linear G P paradigm

that evolves parallel programs based on the MLP. Thus, par-

allel programs evolved are called M L P programs. G P P L C S is

developed based on the GPP. It is a logic circuit synthesizer de-

signed for tackling technology mapping problem by a stochastic

approach. It first takes a truth table of a circuit (training cases)

as an input. The output is a mapping solution to the circuit

in the L U T format. Although numbers of inputs to the L U T

can be varied, they are chosen to be either 2 or 4. All com-

binational digital circuits presented are evolved by a two-stage

(i.e. design and optimization stages) approach. Different sets

of genetic operators including crossover, bit mutation and sub-

instruction swapping are used in different stages. In the design

stage, the G P P L C S system aims at finding a 100% functional

program (correct program). The raw fitness is given by the ratio

CHAPTER 3. A GPP BASED LOGIC CIRCUIT SYNTHESIZER 26

32

_ i e g [0]
• p-B

« • « •

i i l ^ f c l B L。U[15] -4^reg[15]-4^

32-to-l multiplexers • * r constant J •
registers I J

single-bit registers

Figure 3.2: The 2-LUT MLP used by the GPPLCS

of unsolved training cases. In the optimization stage, the raw

fitness then puts emphasis on the L U T count, the propagation

delay and the program length. In other words, the major ob-

jective of the optimization stage is reducing the L U T count and

then the propagation delay.

G P P L C S consists of two components, the EE and the MLP.

The E E manipulates the genetic parallel programs and performs

genetic operations. The M L P evaluates the genetic parallel pro-

grams to determine their fitness. Figure 3.1 shows the system

block diagram of GPPLCS. The details of the E E and the M L P

are presented in the subsequent sections.

3.2 Multi-Logic-Unit Processor

The M L P used in the GPPLCS is a general-purpose, tightly cou-

pled processor. It is used for executing Boolean circuits evolved

in G P P L C S (i.e evaluation of genetic program in GPPLCS).

Since G P P L C S can evolve circuits in either 2-input L U T (2-

LUT) format or 4-input L U T (4-LUT) format, the architecture

of M L P is problem specific. The difference lies on the k-input

logic units (A:-LoUs).

CHAPTER 3. A GPP BASED LOGIC CIRCUIT SYNTHESIZER 27

(VrV rVrV “ �� S �

• • jMiToUHZr^I �‘
Ld . H • I ^

I ： p L15 R15 f ：

r R16 •
_ _ . _ \j

constants < ' 丫
&inputs R31 |j

. , . , 32 bits single-bit registers

Figure 3.3: The 4-LUT MLP used by the GPPLCS

The M L P designed for evaluating circuits in 2-LUT format

(2-LUT M L P) is shown in Figure 3.2. It consists of 16-LoUs

(L0-L15), 16 variable registers (reg[0]-reg[15]) and 16 constant

registers (reg[16]-reg[31]).

In the MLP, variable registers store intermediate values and

program outputs; and constant registers store program inputs

and constants. Each variable register can only be modified by

a dedicated LoU (as shown in Figure 3.2, LoU[i] writes to reg[i

only). Constant registers are preloaded by EE before execution

of an M L P program. In each processor clock cycle, multiple

LoUs take input values from registers and perform Boolean op-

erations concurrently. Then, all LoUs write single-bit results to

their corresponding output variable registers. For example, the

2-LUT M L P shown in Figure 3.2 can perform up to 16 differ-

ent operations concurrently, and 16 intermediate results can be

carried forward to the subsequent parallel-instructions through

the variable registers.

Figure 3.3 shows the M L P designed for evaluating circuits in

4-LUT format (4-LUT MLP). Similarly, the M L P consists of 32

registers. R0-R15 are variable registers that store intermediate

values and program outputs while R16-R31 are read-only regis-

CHAPTER 3. A GPP BASED LOGIC CIRCUIT SYNTHESIZER 28

LoU[0] LoU[l] ... LoU [？] ... LoU[15]
PI[0] SI[0,0] 5I[0,1] ~[… 5I[o}] ... SI[0;15]—
PI[1] SI[1,0] SI[U] ~ ... Sljl:/] I ... 5I[1/15]—

PI[i] I SI[t.O] I ！3I[U] ~I ... I SI['t',;;] ~| ... I SI[；:15]—

1" 1 Linax 一 1] I S I [L n ^ , x - l , 0] I S I [L m a x - l , l] | … | S I [L m a x - 1 , /] … | S I [L m a > c - l , 1 5] |

Figure 3.4: The genotype of a Lmax-P'^ (PI[0]-PI[LMyu^-l])’ 16-SI(SI[*,0j-
SI[*,15]) MLP program

Table 3.1: Control-codes in 2-LUT circuits SI

fields number of bits encoding

function opcode 5 00000 - 01111 = bO - bF (see Figure 3.6)

10000 - m i l = no operation, nop

operand A 5 00000 - 11111 = input [0] - input [31]

operand B 5 00000 - 11111 二 input [0] - input [31]

Total 15

ters that store program inputs and logic constants. A variable

register can only be modified by a dedicated 4-LoUs (e.g. LO can

write to RO only). 16 4-LoUs (L0-L15) perform logic operations.

E E will preload the program inputs and the constants into the

read-only registers before a parallel program is executed.

3.3 The Genotype of a MLP program

The individual representation of G P P L C S includes a sequence

(LMAX) of parallel instructions (Pis). In each PI, there are 16

sub-instructions (Sis). Figure 3.4 shows the genotype of an M L P

program. The choice of LMAX depends on the problem difficulty.

Normally, it is set to 25. Figure 3.5 shows the representation of

Sis.

CHAPTER 3. A GPP BASED LOGIC CIRCUIT SYNTHESIZER 29

SI used in evolving 2-LUT ^ , . , ^ , . � 广•� � " 5-bit opcode 5-bit operand 5-bit operand circuits

SI used in jwlvmg 4 LUT 17-bit opcode 5-bit operand 5-bit operand 5-bit operand 5-bit operand

Figure 3.5: Representations of Sis in evolving 2-LUT and 4-LUT circuits

Theoretically, G P P L C S can evolve circuits with any number

of inputs of LUTs. The difference only lies on the encoding.

Since G P P L C S currently evolves circuits in either 2-LUT or 4-

L U T format, encoding methods of Sis used are slightly different

as each SI is used to resemble a LUT. For 2-LUT circuits, each

SI consists of a 5-bit opcode (encoding at most 32 functions)

and two 5-bit operands (encoding 32 choices of different inputs)

(see Table 3.1). Since there are 16 Sis in a PI, a total of 240

bits ((5+5+5) X 16) are used to encode a parallel-instruction.

If LMAX is chosen to be 25 (25 Pis), the genotype may contain

up to 6,000 (240 X 25) bits.

For 4-LUT circuits, each SI consists of a 17-bit opcode and

four 5-bit operands (see Table 3.2). The Boolean function of

each SI is denoted by a four-digit hexadecimal number which

represents the 16-bit memory contents of the 4-LUT. For exam-

ple, the SI with opcode bF6E0 means loading "0000 0111 0110

1111" to the corresponding 4-LUT which can be treated as a

16 to 1 multiplexer. The content of the corresponding 4-LUT is

shown in Fig. 3.7. Similar to the 2-LUT circuits, if the max-

imum program length is 25 parallel-instructions, the genotype

may contain up to 14,800 ((17+5+5+5+5) X 16 X 25) bits.

G P P L C S can further be extended to evolve 6-LUT circuits.

Each SI will consist of 65-bit opcode and six 5-bit operands.

CHAPTER 3. A GPP BASED LOGIC CIRCUIT SYNTHESIZER 30

inputs addresses
function A _ _ 1 _ _ 0 _ _ ^ Boolean
names B 1 0 1 0 expressions 2-LUT symbols

— b o "o"o~~o""cr 0 0 — -

M 0 0 0 1 A T B

b2 0 0 1 0 AB b^D-

b3 0 0 1 1 A ^ - O -
b4 0 1 0 0 A B s i j D -
1)5 0 1 0 1 B B-g>-

— b b ^ T T " o " A ㊉ B

b7 0 1 1 1 AB bIEV
b 8 ~ AB “ b = E > - —
b9 1 0 0 1 A e B

— b A T " m B B - ^
bB 1 0 1 1 A + B
bC TT"o""o"" A —
bP 1 1 0 1 A + B s j g ^

一bE r T T T A + B
bF I 1 I 1 I 1 I 1 I 1 一

Figure 3.6: Functions bO - bF used in 2-LUT circuits SI

Table 3.2: Control-codes in 4-LUT circuits SI

fields number of bits encoding

function opcode 17 00...0 - 01...1 = bOOOO - hFFFF

10...0 - 11...1 = no operation, nop

operand A 5 00000 - 11111 = input [0] - input [31]

operand B 5 00000 - 11111 = input[0] - input [31]

operand C 5 00000 - 11111 = input [0] - input [31]

operand D 5 00000 - 11111 input[0] - input [31]

Total 37

CHAPTER 3. A GPP BASED LOGIC CIRCUIT SYNTHESIZER 31

lnput(4 Registers' value) Output
OOTO 0
oom 0

0

0

moo 0
^ 1
^ 1
^ 1
^ 0
Ôj 1

^ 1
0

n^ 1
nm 1
mo 1
mj 1

Figure 3.7: The corresponding content of 4-LUT of the "bF6E0 r31 r27 r08
r29 rOO" sub-instruction

3.4 The Phenotype of a MLP program

M L P programs are presented in parallel assembly form. Figure

3.8 shows an optimized M L P program for 1-bit full adder in 2-

L U T format evolved by GPPLCS. It consists of two sections,

the #data and #progi:am sections. The #data section defines

constant, input and output Boolean variables. Before starting

an execution, an M L P always initializes all variable registers

(reg[0]-reg[15]) to logic 0. The constants: line in the #data sec-

tion initializes constant registers reg[16]-reg[21] to logic 0 and

reg[22]-reg[28] to logic 1. The inputs: line defines input vari-

ables (Cin, A and B) and assigns them to constant registers

(reg[29], reg[30] and reg[31]). The outputs: line defines output

variables (Cout and S) and assigns them to variable registers

(reg[0] and reg[l]). The #program section contains parallel-

instructions that perform Boolean operations.

For example, the numbered lines in the #program section

CHAPTER 3. A GPP BASED LOGIC CIRCUIT SYNTHESIZER 32

#data
constants: (rl6-r21)=0, (r二；：-r二8)=1
inputs : (r：：9, r30, r 31) <= <Cin, A, B}
outputs: (r00,r01)=>(Cout,S)
#program
00: b9 r2 9 r30 r04
01: b8 r04 r30 rOO,b：： r04 r3丄 rl4
02: b6 rl4 rOO r00,b9 r3丄 r04 rOl

Figure 3.8: Optimized MLP program for 1-bit full adder in 2-LUT format

A[丨.30] ~ J - i i y
I "̂ J 勺 Coi;t[tOO]

'-fTV—
B[r31] I=s 乙J

= > SCrOl]

Figure 3.9: A 1-bit full adder in 2-LUT format

in Figure 3.8 list out three parallel-instructions. For easy in-

terpretation, all nop sub-instructions in the original program

are hidden. Each sub-instruction consists of three parts: 1) a

function name {bO-bF or nop); 2) registers for input operands;
and 3) an output register. For example, the b6 rl4 rOO rOO

sub-instruction in parallel-instruction 02: performs b6 (XOR)
on reg[14] and reg[0] and then writes the result back to reg[0 .

Figure 3.9 shows the corresponding combinational logic circuit

of the M L P program shown in Figure 3.8.

The situation is similar in evolving circuits in 4-LUT format.

Figure 3.10 shows a 2-bit full-adder in 4-LUT format evolved by

the GPPLCS. Figure 3.11 shows the 2-bit full adder. Noticeably,

three out of the four 4-LUTs can be replaced by 3-LUTs because

they have one input set to a constant logic 0.

CHAPTER 3. A GPP BASED LOGIC CIRCUIT SYNTHESIZER 33

#data
constants: <1：丄6—1-：2丄）=0, (r：：：： — 二：：6)=丄
inputs ： < r27, r2 8, r：： 9, r30, r31) <= (Cin, M , AO, B丄，BO)
outputs: (rOO,rOl,r02)=>(Cout,SI,SO)
#program
00: bF6E0 1-31 r27 r08 r：：̂ rOO
01: b3AA4 rOO r28 r06 r30 r00,bCB9E rOO r23 r30 r21 rOl,

b849E 1-31 r27 r31 r29 r02

Figure 3.10: Optimized MLP program for 2-bit full adder in 4-LUT format

nzzzzziziiî ^̂ iz m
_ i] 1 = —

Cln[r27] J ——
0 - g w

A0[r29] c = > ~ 5 c = > Cout[rOO]

S ^ I I ——^
0—I

Figure 3.11: A 2-bit full-adder in 4-LUT format

3.5 The Evolution Engine

The Evolution Engine (EE) is responsible for manipulating the

population, performing genetic operations, loading genetic pro-

grams to a M L P for fitness evaluations, calculating/reporting

statistics and decompiling the evolved solution program to a

symbolic parallel assembly program (MLP program).

3.5.1 The Dual-Phase Approach

In order to evolve a solution with GPP, enough spare space (for

both parallel-instructions and sub-instructions) are necessary to

be given in each genetic program for introns to be built up. In-

trons are non-effective instructions which do not contribute to

the final output of a genetic program. Research results show

that the existence of introns in genetic programs in the early

and middle stage of a run can benefit evolution [5]. The exis-

tence of introns in the early and middle stages of a G P evolution

is necessary. Introns are necessary to be in the genetic programs

CHAPTER 3. A GPP BASED LOGIC CIRCUIT SYNTHESIZER 34

until we find the first correct program. However, the first cor-

rect program is usually not an optimized solution in terms of

quality measurements such as L U T count and the propagation

delay. To tackle this problem, G P P L C S uses a dual-phase (de-

sign and optimization phases) approach with a dual-phase fit-

ness function.The dual-phase fitness function intends to improve

the functionality of genetic programs before the first correct ge-

netic program is found. Whenever a correct genetic program

is found, it changes its fitness calculation criteria to incorporate

optimization-oriented measurements. Besides the dual-phase fit-

ness function, GPPLCS uses different set of genetic operators in

the two phases. Details can be found in subsequent section.

In the design phase, G P P L C S aims at finding a 100% func-

tional program (correct program). Its raw fitness is given by

fdp — �

where U is the number of unmatched training case and T is the

total number of training cases.

The design phase raw fitness /办 is used to evaluate the func-

tional fitness of a genetic program. If there is a partial correct

genetic program, its fdp is greater than zero. /办 equals to zero

only when all training cases are matched. After finding the first

correct genetic program, the evolution will proceed to the opti-

mization phase to optimize correct genetic programs based on

some optimization-oriented criteria. In the optimization phase,

the raw fitness is given by

, g d 1 L 1
fop = — — + - j X ——+ — X

Qrnax ^rnax 9max -^max ^maxQmax

The optimization phase raw fitness fop of a correct genetic pro-

gram is calculated from three qualitative indicators: 1) the L U T

count g (the number of normal sub-instructions) ； 2) the prop-

agation delay d\ and 3) the program length L (the number of

CHAPTER 3. A GPP BASED LOGIC CIRCUIT SYNTHESIZER 35

parallel-instructions). Since a genetic program consists of nop
and introns, L represents the number of L U T levels in the logical
circuit diagram but not the actual L U T delay in hardware. It is

because nop and introns are not placed in real hardware so that
their L U T delays are not counted. The ffmax,山腿 and Lmax

are the maximum values allowed for the L U T count, the prop-

agation delay and the program length respectively. The main

objective of the optimization phase is to reduce the L U T count

and then the propagation delay. The last multiplication term in

fop guides the evolution to shorten the lengths of correct genetic

programs. Normally, a shorter program has greater chance to

have smaller g and d values. -

By combining the two phases raw fitness functions (/办 and

fop), the dual-phase fitness function of the whole evolution process
is obtained. In the design phase (/办 > 0), /謂 is given by

fraw = 1.0 + fdp

In the optimization phase (/办=0), fraw is given by

fraw — fop

The constant 1.0 is used to distinguish the two phases. With

this fitness function, a partially correct genetic program has an

fraw greater than 1.0 whereas a correct genetic program has an
fraw less than 1.0. In the design phase, whenever G P P L C S finds
the first genetic program with an fraw equal to 1.0, it proceeds

to the optimization phase.

3.5.2 Genetic operators

In this subsection, genetic operators used in G P P L C S are de-

scribed.

• Genetic Programs Initialization: G P P L C S uses a binary

string (genotype) to encode a M L P program (phenotype).

CHAPTER 3. A GPP BASED LOGIC CIRCUIT SYNTHESIZER 36

paieut 1 parent 2 ciiild 丨 chiki 2
11 ^ 111 MpUM 111 A 111 LjjJtJl

PIS < 國 I X 闘 ! ~ 一 1 1 2 1 ^ H
I I ‘ I I I 、 ； ，

Figure 3.12: PI level crossover on two parents

Before an evolution process, EE initializes all genetic pro-

grams in a population randomly. The number of PI {L :
length) of a genetic program is chosen randomly between

one to a predefined value (L丽:the maximum program

length). Each bit in a genotype has equal chance to be 0

or 1.

• Tournament Selection: G P P L C S uses tournament selection

to produce its offspring. In each tournament, a fixed num-

ber (tournament size) of genetic programs are randomly

selected from the population to form a tournament set. Ac-

cording to their fitness, the two best genetic programs in

the tournament set are selected as parents to produce two

offspring. The tournament size controls the selection pres-

sure and affects the convergence rate.

• PI level crossover: It is a two-point crossover to exchange

two segments of PI from two parent M L P programs (see

Figure 3.12). All sub-instructions in a parallel-instruction

will always be kept as a whole. The probability to take this

operator is Pxover-

• Bit Mutation: It mutates individual bits in the genotype of

an M L P program based on a probability Pumut-

• SI swapping: It swaps two sub-instructions inside an M L P

program based on a probability Psiswp (see Figure 3.13).

It can pack more normal sub-instructions in less number

CHAPTER 3. A GPP BASED LOGIC CIRCUIT SYNTHESIZER 37

a 剛 alu[l] alu[15]

PI[p]|SI[/，,0]|SI[jM]| • • • |SI[；U5 了

^ ^

PI[q]|SI[ry,0]|SI[g;i]| • • • |SI[^y,15]

Figure 3.13: An SI swapping in a single MLP program

of parallel-instructions so as to increase the parallelism of

M L P program. SI swapping is only used in the optimiza-

tion phase since it intends to improve the performance of a

correct genetic program.

• SI-Deletion: It simply replaces a normal sub-instruction

with a nop sub-instruction based on a probability Psidei- It

can delete inactive sub-instructions (introns) from a correct

genetic program and therefore is only used in the optimiza-

tion phase.

• Diversity Maintenance: In order to maintain the diversity

of population, E E adopts an individual replacement tech-

nique similar to the pre-selection [47]. In each tournament,

two children are bred and evaluated. Then, the better one

is selected and compared with its parents. If its fitness is

different from both of its parents, it will replace the worst

individual in the tournament set. This approach avoids

similar individuals filling up the population and hence in-

creases the diversity of search.

• Dynamic Sample Weighting (DSW): For some problems,
e.g. Boolean functions, the distribution of training samples
in the sample space is biased. These biased samples usually

cause premature convergence in Genetic Algorithms (GAs)

and Genetic Programmings (GPs). D S W [8] is used to bal-

ance the contributions of training samples so that the di-

CHAPTER 3. A GPP BASED LOGIC CIRCUIT SYNTHESIZER 38

versity of genetic programs can be increased. This operator

is only used in the design phase.

3.6 Chapter Summary

This chapter has presented GPPLCS. Two core components of

G P P L C S (MLP and EE) are described. The M L P is tightly-

coupled processor which is used to execute and evaluate genetic

programs produced by EE. The genotype of a M L P program

is a sequence of control-codes which can be executed on the

corresponding M L P directly. The phenotype of a M L P program

is a parallel assembly program. EE is an evolutionary process

which performs genetic operators, loads genetic programs to the

MLP, calculates/reports statistics and decompiles the solution

parallel program to a symbolic parallel assembly program.

Furthermore, G P P L C S uses a dual-phase evolutionary ap-

proach which divides the evolution into two sequential phases.

Firstly, the leaning phase evolves correct genetic programs. Then,

the optimization phase improves the qualities of correct genetic

programs. A dual-phase fitness function is used to guide the

evolution.

• End of chapter.

Chapter 4

MLP in hardware

This chapter presents a hardware-assisted Multi-Logic-Unit Proces-

sor (MLP). It is a hardware processor built on a Field Pro-

grammable Gate Array (FPGA). The purpose is to speed up

the evaluation of genetic parallel programs (MLP programs)

that represent combinational logic circuits. Six combinational

logic circuit problems are presented to show the performance

of the hardware-assisted Genetic Parallel Programming based

Logic Circuit Synthesizer (GPPLCS). Experimental results show

that the hardware M L P speeds up the evolutions over 10 times.

For difficult problems such as the 7-bit majority selector, the

speedup ratio can be up to 36.

This chapter is organized as follows. Our motivation is de-

scribed in Section 4.1. Then, the hardware design and imple-

mentation of M L P is presented in Section 4.2. It is followed by

experiments. Section 4.3 is on the experimental settings. The

experimental results and evaluations are given in Section 4.4.

Finally, Section 4.5 is a chapter summary.

4.1 Motivation

In the last decade, advances in F P G A [2] have made efficient

Evolvable Hardware (EHW) [63] possible. E H W uses Evolu-

39

CHAPTER 4. MLP IN HARDWARE 40

tionary Algorithms to evolve hardware architecture extrinsically

or intrinsically. One of the major usages of E H W is to design

combinational logic circuits [19, 36, 52]. However, the impor-

tance of scalability of E H W has been recognized by several re-

searchers [27, 30]. It is a tough problem faced not only by E H W

researchers, but by other researchers in the fields of evolution-

ary computation, artificial neural networks, and artificial intel-

ligence in general.

Using hardware to increase the speed of evolution is one of

possible ways to combat the high computational cost. F P G A

has been adopted to speed up Genetic Algorithms (GAs) and

Genetic Programming systems [28, 41, 48, 56]. The basic idea

is to put the whole or a part of a G A or G P system in hardware

so as to solve problems in a shorter time than a pure software

system.

A hardware assisted M L P is designed and implemented to

speed up evaluation of genetic parallel programs in GPPLCS.

The overall system of hardware assisted G P P L C S is exactly the

same as the pure software G P P L C S in Chapter 3. The difference

only lies on the MLP. Experiments on six combinational logic

circuit problems (i.e. a 6-bit multiplexer, a 2-bit full-adder,

a 3-bit comparator, a 6-bit priority selector, a 7-bit majority

selector and a 2-digit binary coded decimal to binary decoder)

were conducted to show the effectiveness of G P P L C S with the

hardware MLP. Experimental results show that the hardware

M L P speeds up the evolution by at least 10 times even for the

easier problems which are less computation intensive.

4.2 Hardware Design and Implementation

This section presents the hardware design and implementation

details of MLP. Fig. 4.1 shows the architecture of the core part

of MLP. The 16 sub-instruction registers (SIR0-SIR15) store the

CHAPTER 4. MLP IN HARDWARE 41

32
\

• S I R O K • P E O \ »

n
S 《 S l R l 《 P E l I —

2. . •

— ^ ~ ^ SIR15 \ • PE15 — A ~ • 4 \ read-only registers

control slgniis

Figure 4.1: The architecture of the MLP core

individual sub-instructions in the current parallel-instructions.

The 16 processing elements (PE0-PE15) run sub-instructions

and store results to their corresponding variable registers. The

Control Unit (CU) decodes parallel-instructions and gives con-

trol signals to all M L P components. Due to the limited size of

the inter-face bus between the C U and the host (64-bit only),

more than one bus cycle are needed to transfer the evaluation

results of all rows in a truth table to the host.

In most cases, G P P L C S only uses the first eight variable reg-

isters (R0-R7) to store program outputs. Thus, M L P only needs

to transfer the first eight variable registers to the host. In order

to maximize the usage of the 64-bit interface bus, M L P is de-

signed to buffer eight sets of program outputs (of eight training

cases). In this way, the evaluation results of the entire truth ta-

ble are passed to the host in burst mode. For example, if there

are N rows in a truth table, it takes N/8 clock cycles to transfer

all program outputs to the host.

Fig. 4.2 shows a PE (PEi) which receives a sub-instruction

from SIRi. It stores the result in the variable register Ri. The

core of the PE is a 4-LUT. It takes two processor clock cycles for

the PE to execute one sub-instruction. In the first cycle, four

input registers are selected by four multiplexers (M1-M4), and

their values are then latched into an Internal Operand Register

CHAPTER 4. MLP IN HARDWARE 42

R0..R31 C H S \ » A

\ • \ »• \ • B 办

2 P -V—T̂ \ <'UZ> R1
-iURnU* 知 c H "-v

! ill Liugyu^LU^D I
\ 5 \ 5 \ 5 V \ leiopoKte] \ I

5 1 R . P / / / / 2 ^

Figure 4.2: A Processing Element

Table 4.1: Pilchard board features
Field Details

Host interface: DIMM interface (a 64-bit data bus and a 14-

bit address bus)

Operating frequency: 100 MHz

FPGA device: XCV1000E-HQ240-6

OS supported: GNU/Linux

(lOR). In the second cycle, the 4-LUT uses the four latched

operands to look up one bit and stores the result into Ri. The

lOR is used to pipeline the operations, i.e. selecting operands

and looking up results, and to balance the long delay time on

the route from the registers' outputs to the multiplexers' inputs.

The M L P is implemented on a Pilchard board [42, 60] which

is a high performance reconfigurable computing development en-

vironment employing an F P G A . The Pilchard board is plugged

into a 133 M H z synchronous dynamic R A M Dual In-line Mem-

ory Modules (DIMMs) slot of a PC. The Pilchard board can

achieve a very high data transfer rate by making use of the

D I M M R A M interface of the PC. Its efficient interface and low

cost make it suitable for implementing the MLP. Here are some

major features of the Pilchard board:

The F P G A used in the Pilchard board belongs to the Virtex-

E series. The M L P uses only 2,515 slices. It is about 20% of the

CHAPTER 4. MLP IN HARDWARE 43

12,288 slices available in the F P G A . Moreover, only one (out of

96) BlockRAM is used by the MLP. The critical path delay of

the M L P is 9.965ns. Hence, it can operate at 100 MHz.

The M L P is coded in Very High Speed Integrated Circuit

Hardware Description Language (VHDL) [57] which is a stan-

dard language for describing the structure and function of inte-

grated circuits (ICs).

4.3 Experimental Settings

To investigate the performance of the GPPLCS, we have used

the system to evolve networks for six combinational logic cir-

cuit problems in 4-input L U T format (see Table 4.2). Although

the G P P L C S evolves circuits in dual-phase approach, all exper-

iments in this chapter are conducted with design phase only. It

is because large proportion of execution time used in evolving

circuits by the G P P L C S lies on the design phase. Moreover,

only one independent run is necessary to show the effectiveness

of the hardware assisted GPPLCS.

Note that the 6-bit priority selector is to show the position of

value，r which first appears starting from the least significant

bit in the 6-bit input. If none of the bits is set to value '1',

an extra output bit which shows the case of all zero value is

responsible for this special case. Since we have got six input

bits (Inputs - InputO), we need extra three bits to indicate the

position. Therefore, there are 4-bit outputs.

The 7-bit majority selector is to determine the majority value

of the 7 bits inputs. If more than 4 bits have value '1', the output

value will be '1'. Otherwise, the output bit will have value ’0’.

In addition, the 2 digit Binary Coded Decimal (BCD) to Bi-

nary decoder is to decode the 2 B C D into binary value. B C D is

the most common way of encoding decimal digits in computing

and in electronic systems. In B C D , a digit is usually represented

CHAPTER 4. MLP IN HARDWARE 44

Table 4.2: Six combinational logic circuit problems used in GPPLCS with
the hardware assisted MLP. The Nin and Nout denote the numbers of inputs
and outputs respectively. The Nrow (=2^''")denotes the number of rows in
the truth tables . The N âse {=Nrow x A^out)denotes the total number of
training cases •

Name Description Nin Nout Nrow Ncase

MUX 6-bit multiplexer 6 1 64 64

ADD 2-bit full-adder 5 3 32 96

CMP 3-bit comparator 6 3 64 192

PRI 6-bit priority selector 6 4 64 256

MAJ 7-bit majority selector 7 1 128 128

BCD 2-digit Binary Coded 8 7 256 1792
Decimal to Binary de-
coder

by four (binary) bits, of which the leftmost (written convention-

ally) has value 8, and the remaining three have values 4, 2, and

1. Only the combinations of these bits which, when summed,

have values in the range 0-9 are valid. The decoder has got

2 B C D . Thus, there will be 8-bit input which is correspond to

value 0 - 99. The output value range 0-99 then needs 7 bits to

represent its output values.

All experimental settings are listed out in Table 4.3 below.

In order to have a fair comparison in the performance between

hardware-assisted G P P L C S and the pure software counterpart,

evolutions of combinational logic circuits for the six combina-

tional logic circuit problems were run on the same host (i.e.

the P C where a Pilchard board locates). The host in which the

Pilchard board locates is a Pentium III 800 M H z P C with ASUS

CUSL2-C motherboard. The Pilchard board relies on the P C to

communicate. User can transfer data to the Pilchard board via

the D I M M slot in the host PC. The PC host is chosen because

CHAPTER 4. MLP IN HARDWARE 45

Table 4.3: Experimental settings used in GPPLCS with the hardware assisted
MLP

Design phase only

maximum program length 25 parallel instructions (Pis)
(-^max)

initialization bit random, average 12.5 (Z/max/2) Pis

selection method tournament (size二 10)

4-LUT function set bOOOO, . . . , bFFFF, nop

inputs ...只31

outputs outputs： RQ . . . I?7VO„t-l

constants logic 0, logic 1

population size 2000

termination(tmax) 40,000,000 tournaments

PI crossover Prob. {Pxover) 0.1

bit mutation Prob. {Pumut) 0.002

Sub instruction (SI), swap- 0.0
ping Prob. {Psiswp)

SI. deletion Prob. {Psidd) 0.0

Dynamic Sample Weight- 10,000 tournaments
ing (DSW) (weights update
freq.)

preselection yes

raw fitness the ratio of unsolved training cases (=
1.0 + fdp)

success predicate all training cases solved (= 1.0 (i.e.
fdp=0.0)

CHAPTER 4. MLP IN HARDWARE 46

of the low level control required to mange the Pilchard board.

W e tested the problems with both the hardware-assisted GP-

PLCS and the pure software GPPLCS. The time for each tour-

nament was recorded for comparison.

4.4 Experimental Results and Evaluations

Promising results are obtained for all the six combinational logic

circuit problems. Table 4.4 summarizes the total elapsed times

for the G P P L C S to evolve complete correct solutions with a pure

software M L P and a hardware MLP. The tn and ts columns list

out the execution times of the hardware-assisted G P P L C S and

the pure software G P P L C S respectively.

It can be seen that the speedup of hardware over software is

significant. For the A D D , M U X and PRI problems, the speedups

are more than 10 times. For the C M P and B C D problems,

the speedups are more than 20 times. For the most difficult

problem in our circuits evolved - M A J, the speedup can be up

to 36. The C M P problem takes nearly 10 hours to complete

with the pure software GPPLCS, but it only takes less than half

an hour with the hardware-assisted GPPLCS. Thus, problems

of different levels of difficulties gain different speedups. This

is easily recognized because the more difficult the problems, the

more tournaments (computational effort) are taken to complete.

Fig. 6 shows the speedup curves for the six tested problems. In

these figures, the X-axis is the number of tournaments taken

while the Y-axis is the speedup ratio {ts/tn)-

Figures 4.3 and 4.4 show that the speedup ratios for the M U X

and A D D problems increase steadily to around 10. These two

problems are relatively simple. Thus, the required computa-

tional efforts to evolve solutions for them are not so large. Con-

versely, in Figures 4.5 ,4.6 and 4.8, the speedup ratios are less

than five initially when the evolution takes only a few thousand

CHAPTER 4. MLP IN HARDWARE 47

Table 4.4: Summary of experimental results in GPPLCS with hardware as-
sisted MLP

Problems tfj ts speedup ratio

(in sec) (in sec) [ts/tH)

MUX 68 689 10.13

ADD 346 3497 10.11

CMP 1,575 31,983 20.30

PRI 720 13,471 18.71

MAJ 24,680 895,581 36.29

BCD 11,608 280,269 24.14

12「

10 - z

I：： Z
0 I ‘ ‘ ‘ ‘ 1

0 10000 20000 30000 40000 50000 60000

Tournaments

Figure 4.3: The speedup ratio versus tournaments for MUX problem

12「

10 — _ - - • - • - - - • ^

w 4 、------- -.

2 / ……
0 I ‘ —' ‘ ‘ ‘ 1

0 100000 200000 300000 400000 500000 600000

Tournaments

Figure 4.4: The speedup ratio versus tournaments for ADD problem

CHAPTER 4. MLP IN HARDWARE 48

25 . . ；

3 I ‘ I •

I '0 -
W ‘ _ ‘

5 ： ： I

0 ̂ ‘ ‘ ‘ ‘ ‘ ‘
0 500000 1000000 1500000 2000000 2500000 3000000

Tournaments

Figure 4.5: The speedup ratio versus tournaments for CMP problem

20 _

丨 ^^^^^一
16 • • - - , - — —

1 / ；
t'o 7 i

'、L
2 T - -

0 I ‘ ‘ ‘ ‘ ‘ ‘

0 200000 400000 600000 800000 1000000 1200000

Tournaments

Figure 4.6: The speedup ratio versus tournaments for PRI problem

40 r

35 V

30 ..--.- • •- -.

•S 25 •

2

§•20
I '5 .

10 •

0 L— ‘ ‘ ‘ ‘
0 10000000 20000000 30000000 40000000

Tournaments

Figure 4.7: The speedup ratio versus tournaments for MAJ problem

CHAPTER 4. MLP IN HARDWARE 49

30 r . .

25 • ： ； ^ i ： S 20 -…-- - -十 -…
2 ‘ _
I 15 丨 ：
！丨0.--…------1——^

5 - r ,

0 I ‘ ‘ ‘

0 5000000 10000000 15000000

Tournaments

Figure 4.8: The speedup ratio versus tournaments for BCD problem

tournaments. As the evolution completes more tournaments,

the speedup ratio increases rapidly to 24 times. For the most

difficult problem - M A J in our problem sets, the speedup can be

up to 36 due to large computational efforts required. The result

is shown in Figure 4.7.

It is found that the speedup ratio increases with the number

of tournaments taken in the evolution. It is obvious since execu-

tion time of each hardware evaluation is faster than that of each

software evaluation by a certain theoretical limit. However, the

speedup is not so high due to the overhead in the communica-

tion bus between the software EE and the hardware MLP. Thus,

there is a small speedup ratio when the number of tournaments

executed is small as the overhead occupies a larger proportion

of execution time during the evolution than than fitness evalu-

ation. However, it is expected that the speedup ratio is higher

in those problems which have a larger number of tournaments

taken as fitness evaluation occupies the largest proportion of ex-

ecution time. For example, in the M U X problem, only 10-time

speedup is obtained due to the small number of tournaments

taken (52,286). However, 20-time speedup is found in the C M P

problem which takes 2,398,865 tournaments. 36-time speedup

is also found in the M A J problem which takes 34,006,503 tour-

naments.

CHAPTER 4. MLP IN HARDWARE 50

4.5 Chapter Summary

In this chapter, we have presented the design and implementa-

tion of a hardware-assisted G P P Logic Circuit Synthesizer (GP-

PLCS) prototype which uses a 4-LUT Multi-Logic-Unit Proces-

sor (MLP). The M L P uses a generic register machine architec-

ture which can represent any combinational logic circuits. More-

over, the architecture of the M L P is so simple that multiple

MLPs can be placed in an F P G A .

The hardware-assisted G P P L C S shows promising results in

the speedup. With the help of hardware, GPPLCS achieves a 36-

time speedup at most in our tested problems. Furthermore, the

speedup ratio increases with the number of tournament taken

in solving the problems. It is particularly suitable for solving

difficult problems.

• End of chapter.

Chapter 5

Feasibility Study of Multi
MLPs

Although the circuits evolved by Genetic Parallel Programming

based Logic Circuit Synthesizer (GPPLCS) are of good quali-

ties, it is computation intensive. As a result, implementation

of G P P L C S in Field Programmable Gate Arrays (FPGAs) is

proposed. The idea is to speed up the fitness evaluations. How-

ever, the current model is not suitable for the implementation.

Two main components in GPPLCS, Evolution Engine (EE) and

Multi Logic Unit Processor (MLP), are discovered either one is

idle during the evolution. Thus, a Multi M L P Genetic Parallel

Programming base Logic Circuit Synthesizer (M M G P P L C S) is

proposed and presented for implementation in FPGAs in this

chapter. Simulations are done to evaluate the effectiveness of

our proposed architecture.

This chapter is organized as follows. Section 5.1 gives our

motivation. Then, our proposed architecture of M M G P P L C S

is presented in Section 5.2. It is followed by experimental set-

tings in Section 5.3. Section 5.4 is the experimental result and

evaluations. Finally, a chapter summary is found in Section 5.5.

51

CHAPTER 5. FEASIBILITY STUDY OF MULTI MLPS 52

5.1 Motivation

As introduced in the previous chapter, G P P L C S is a dual phase

fitness suitable for evolving LookUp Table (LUT) based circuits.

In the design phase, G P P L C S aims at finding a 100 % correct

genetic program. Once it is found, G P P L C S proceeds to the

optimization phase. Other factors such as lookup table (LUT)

count and L U T level count are taken into consideration in the

optimization phase. It is discovered that design phase occupies a

large proportion of computation time during the whole evolution

process. Thus, we would like to seek help from implementation

of G P P L C S in FPGAs to speed up the whole evolution process

especially in design phase.

In GPPLCS, there are two steps which are always repeated.

They are the fitness evaluation and breeding stages. During

breeding stage, the current population is used to form a new

population by selecting the better programs and using the breed-

ing operators such as crossover and mutation to propagate and

modify the programs. It is held in the EE. The programs are

then evaluated to measure how fit they are. The two stages are

repeated until either a pre-determined number of generations

have been processed or an individual meets a pre-determined

level of fitness. This is done in the MLP. It is discovered either

E E or M L P is idle at any time. Thus, direct implementation

of this model in FPGAs does not maximize the benefits of the

parallelism in FPGAs.

W e propose an M M G P P L C S for implementation in FPGAs

which is based on the pipeline concept in hardware design. Im-

plementing algorithmic parallelism, or pipelining, is a frequently

used technique in hardware design that reduces the number of

clock cycles needed to perform complex operations. The idea is

to execute the fitness evaluation (held in the M L P) in parallel

with the breeding stages of G P P L C S (done in the EE). In this

CHAPTER 5. FEASIBILITY STUDY OF MULTI MLPS 53

MLP program in parallel assembly truth tabic 1. , 1

r T T ： : x n r
1 cxpcclcd output •

_ J evaluated

(^ p u l a l i ^ ^ ^ ^ ^ ^ evaluate ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ t|

I f咖 ss • ^—^ I /
t \

GENETIC OPERATIONS:- | 广 genotype — ^ 4-LUl|—

mutation, crossover, sclcction, ctc MLP progranv^^_ ^ ^ ^ ^ ^ ^ ^ ^ ^ I I |

LOCAL SEARCH OPERATOR: i n d i v i d u a l s ^ ^ ^ ^ ^ ^ ^

DAOMap I •
Evolution Engine (EE) MuUi-Logic-Unit Processors (MLPs)

Figure 5.1: The system block diagram of MMGPPLCS

way, both the M L P and the EE can be kept operating at full

speed.

5.2 Overall Architecture

This section presents the design of the new architecture of GP-

PLCS for implementation in FPGAs. Figure 5.1 shows the block

diagram of M M G P P L C S . It has one E E and several (up to n)
MLPs (MLPl, MLP2, MLPn). The existence of several

MLPs is to execute the fitness evaluation in parallel with the

breeding operations.

The breeding operations and fitness evaluation are the itera-

tive processes and their execution time are different. The time

used in fitness evaluation is much longer than the one used in

the breeding operation. Moreover, with the advance in FPGAs,

it is possible to allow more MLPs within an F P G A . Thus, we

propose to implement one EE and n MLPs in M M G P P L C S .
E E can keep generating new children and then pass to MLPs

for evaluation. Previous experiments done on circuits evolved

by G P P show that the execution time of breeding operation in

E E is 10 times faster than that of fitness evaluation in M L P

including overhead. Thus, in our design, we employ 10 MLPs

so that every children generated in E E can be evaluated in the

CHAPTER 5. FEASIBILITY STUDY OF MULTI MLPS 54

/ MEFIFO w

” ，. Multi Logic Unit

E ， _ n Processors

Engine (MLPs)

EMFIFO

Figure 5.2: FIFO design

M L P with no delay. 1:10 pipeline design can maximize the ad-

vantage of implementation in FPGAs. The algorithm can be

found in Figure 5.3.

In hardware design of the M M G P P L C S , we insert two FI-

FOs between EE and MLP, the EMFIFO and the MEFIFO.

The purpose is to keep both E E and M L P running. For EE,

they can keep evolving children from the population. Children

is then placed in EMFIFO for fitness evaluation. Once one of

the evaluation engines is ready, it can push one child from the

EMFIFO for evaluation and place the fitness evaluation result

in the MEFIFO. The process continues until a solution is found.

Figure 5.2 shows our proposed design. In M M G P P L C S , evo-

lution are no longer based on up-to-date fitness evaluation of

the population. Instead, cross breeding is among old and new

generations as evaluation is done on different era child. Since it

is different from the original flow of GPPLCS, a software sim-

ulation is necessary to evaluate the impact on GPPLCS. The

simulation result is presented later.

CHAPTER 5. FEASIBILITY STUDY OF MULTI MLPS 55

5.3 Experimental settings

Simulation of M M G P P L C S was done on six problems. W e first

assume that ratio of execution time of the E E and that of M L P

is 1 over 10. That means there are 10 MLPs and one EE in the

M M G P P L C S . In our software simulation, there are 3 phases.

First of all, it is the initialization. The first ten breeding opera-

tions without any fitness evaluations are done initially. This is

to model the situation in the M M G P P L C S . Then, it comes to

pipeline phase. A fitness evaluation is done on the first children

generated. After the first fitness evaluation is done, the chil-

dren evaluated are determined whether it is discarded or not.

If they are fitter than their parents, they replace their parents.

As the breeding operation and fitness evaluation are expected

to execute in parallel in this phase, the first fitness evaluation is

followed by the eleventh breeding operations in our simulation.

Indeed, we resumes original flow in the pipeline phase. That

means a breeding operation is followed by a fitness evaluation.

However, the fitness evaluation is not on the children which are

just generated. Instead, the M L P evaluates the past children.

The pipeline phase continues until a number of tournaments

have been processed or an individual meets a pre-determined

level of fitness (i.e. /办=0). The evolution is finished in the

last phase. See Figure 5.3.

The six problems are 2-bit full adder (ADD2), 6-bit com-

parator (CMP3), 4-to-l multiplexer (MUX6), 6-bit priority se-

lector (PSL6), 3-bit multiplier (MUL3) and 6-bit one's counter

(0CN6). See Table 5.1.

Note that the 6-bit priority selector is to show the position of

value - 1 which first appears starting from the least significant

bit in the 6-bit input. If none of the bits is set to value - 1, an

extra output bit which shows the case of all zero value. Since we

have got six input bits (Input5 - InputO), we need extra three

CHAPTER 5. FEASIBILITY STUDY OF MULTI MLPS 56

Table 5.1: Six combinational logic circuit problems used in the simulation.
The Nin and Nout denote the numbers of inputs and outputs respectively.
The Nrow (=2风n)denotes the number of rows in the truth tables . The Ncase
(=Nrow X Â out) denotes the total number of training cages .

Name Description Njn Nput N聊 Ncase
ADD2 2-bit full-adder 5 3 ^ %
CMP3 3-bit comparator 6 3 64 192
MUX6 6-bit multiplexer 6 1 64 64
PSL6 6-bit priority selector 6 4 64 256
MUL3 3-bit multiplier 6 6 64 384
0CN6 6-bit one's counter 6 3 64 192

bits to indicate the position. Therefore, there are 4-bit outputs.

In addition, the 6-bit one's counter is to calculate the number

of value - 1 in the 6-bit inputs. Therefore, it requires 3-bit to

represent the number in the output.

All experimental settings are listed in Table 5.2 below. Hav-

ing investigated the difficulties of the six benchmark problems

shown in Table 5.1, we set the maximum program length to 25

Pis. This provides enough sub-instructions (for both effective

operations and introns) to evolve correct programs. Hence, at

most 400 (25 by 16) operations can be used to build a solution.

As introduced before, the design phase occupies the largest pro-

portion of execution time during evolution. Thus, experiments

conducted in the design phase only are sufficient to show the

effectiveness of the M M G P P L C S .

W e have also tried the six problems on the GPPLCS. The GP-

PLCS adopts the same experimental settings as M M G P P L C S

which are shown in Table 5.2. To ensure a fair comparison be-

tween M M G P P L C S and GPPLCS, all evolutions of combina-

tional logic circuits for the six combinational logic circuit prob-

lems were run on the same P C configuration (Pentium 4 C P U

2.80GHz with 512 M B R A M) with 20 independent runs.

CHAPTER 5. FEASIBILITY STUDY OF MULTI MLPS 57

Algorithm MMGPPLCS in simulation
Input: Truth table of circuits
Output: Circuits in 4-LUT format
1. Initialize population
2. Evaluate population
3. Perform 10 breeding operations:
4. Tournament selection, Bit Mutation with Pumut and PI crossover with

Pxover

5. Evaluate the first children
6. if fchiidren > fparents 八 children + parents
7. then
8. Replace parents with children
9. else
10. Discard children
11. Perform breeding operations:
12. Tournament selection, Bit Mutation with Pbtmut and PI crossover with

Pxover

13. Evaluate children
14. if fchiidren > fparents A children + parents
15. then
16. Replace parents with children
17. else
18. Discard children
19. if t < tmax
20. then
21. if fdp > 0
22. then
23. GOTO Step 11
24. else
25. Terminate
26. else
27. Terminate
28.

Figure 5.3: Algorithm of MMGPPLCS in simulation

CHAPTER 5. FEASIBILITY STUDY OF MULTI MLPS 58

Table 5.2: Experimental settings used in MMGPPLCS and GPPLCS
Design phase only

maximum program length 25 parallel instructions (Pis)
(- ^ m a x)

initialization bit random, average 12.5 (I/^ax/2) Pis

selection method tournament (s ize: 10)

4-LUT function set bOOOO, bFFFF, nop

inputs ...尺31

outputs outputs: Ro . . . fiNont-l

constants logic 0, logic 1

population size 2000

t e r m i n a t i o n (力 4 0 , 0 0 0 , 0 0 0 tournaments

PI crossover Prob. (Pxover) 0.1

bit mutation Prob. {Pbtmut) 0.002

Sub instruction (SI), swap- 0.0
ping Prob. (Psiswp)

SI. deletion Prob. {Psidei) 0.0

Dynamic Sample Weight- 10,000 tournaments
ing (DSW) (weights update
freq.)

preselection yes

raw fitness the ratio of unsolved training cases (=
1.0 + U)

success predicate all training cases solved {= 1.0 (i.e.
/dp 二 0.0)

CHAPTER 5. FEASIBILITY STUDY OF MULTI MLPS 59

Table 5.3: Number of tournaments (xlO®) needed by MMGPPLCS and GP-
PLCS in design phase on six problems (Average value)

Version ADD2 CMP3 MUX6 PSL6 MUL3 0CN6
M M G P P L C S E t o 009 8 3 . 3 2 9 . 9 7
GPPLCS 0.50 1.80 0.08 0.47 81.94 9.84

5.4 Experimental results and evaluations

The proposed M M G P P L C S neither improves nor worsens the

evolution process. Table 4.4 shows the average number of tour-

naments required in evolving six circuits in both the M M G P -

PLCS and the GPPLCS. The number of tournaments are ex-

pressed in 106) order of magnitude.

Our objective of the simulation is to prove the pipeline phase

works. Although the M M G P P L C S does not decrease the num-

ber of tournaments used in the whole evolution process, the

M M G P P L C S is a feasible model for implementation in FPGAs.

This multi MLPs with one EE can keep both M L P and EE run-

ning without being idle. The performance of the M M G P P L C S

is similar to that of the GPPLCS. This is critical to the success

of the M M G P P L C S . Executing parallel fitness evaluation with

breeding operators without increasing number of tournaments

can be found during the whole evolution process. As a result,

the M M G P P L C S is a suitable for implementation in FPGAs.

5.5 Chapter Summary

The proposed M M G P P L C S has been shown to be a feasible

model for implementation in FPGAs. Simulation results show

that M M G P P L C S does not increase the number of tournaments

during evolution of circuits. Since the performance of the M M G P -

PLCS is nearly the same as that of GPPLCS, the G P P L C S can

be benefited from a hardware implementation by adopting a

CHAPTER 5. FEASIBILITY STUDY OF MULTI MLPS 60

model like M M G P P L C S to significantly increase the evaluation
speed by orders of magnitude as shown in next chapter.

• End of chapter.

Chapter 6

A Hybridized GPPLCS

Based on Genetic Parallel Programming (GPP) [43] paradigm

and a deterministic local search operator - FlowMap [21], a

logic circuit synthesizing system integrating Genetic Parallel

Programming based Logic Circuit Synthesizer (GPPLCS) and

FlowMap, a Hybridized G P P L C S is developed. To show the ef-

fectiveness of the proposed HGPPLCS, six combinational logic

circuit problems are used for evaluations. Each problem is run

for 50 times. Experimental results show that both the lookup

table counts and the propagation delays of the circuits collected

are better than those obtained by conventional design or evolved

by G P P L C S alone. For example, in a 6-bit one counter exper-

iment, we obtained combinational digital circuits with 8 four-

input lookup tables in 2 L U T level on average. It utilizes 2

lookup tables and 3 L U T levels less than circuits evolved by

G P P L C S alone.

This chapter is organized as follows. Our motivation can be

found in Section 6.1. Section 6.2 presents HGPPLCS. Experi-

mental settings can be found in Section 6.3. Section 6.4 presents

results and discussions. Finally, section 6.5 concludes our work.

61

CHAPTER 6. A HYBRIDIZED GPPLCS 62

6.1 Motivation

Although the qualities of evolved combinational digital circuits

from G P P L C S are better than conventional designs, there is

still room for improvement. Algorithms hybridize a non-genetic

local search to refine the qualities of solutions with a genetic

algorithm are called memetic algorithms [53]. This inspires an

idea of using a local search operator in GPPLCS. Since G P P

is population-based, it has a number of individuals (circuits)

that performs the same function (i.e. many-to-one genotype-

phenotype mapping). Thus, G P P can provide a number of dif-

ferent circuits as inputs to the FlowMap algorithm. In this way,

FlowMap can return different mapping solutions so that a bet-

ter solution can be obtained. Since FlowMap obtains a depth

optimal mapping solutions when it is applied on 2-input lookup

table (LUT) Boolean circuit, G P P L C S must first evolve circuits

in 2-input L U T (2-LUT) and then relies on FlowMap to give

a 4-LUT mapping solution. This new G P P L C S with a local

search operator - FlowMap is the basic of our HGPPLCS.

6.2 Overall system architecture

FlowMap [21] is an LUT-based F P G A mapping algorithm for

depth minimization guaranteeing depth-optimal mapping for

a given input Boolean circuit. Since the working principle of

FlowMap algorithm is not our focus, only a very brief descrip-

tion of FlowMap is given in this section. Details can be found

in 2.1.1. A key step in FlowMap algorithm is to compute a

minimum height K-feasible cut in a network, which is solved

optimally in polynomial time based on network flow computa-

tion. FlowMap algorithm also effectively minimizes the number

of LUTs by maximizing the volume of each cut and by several

post-processing operations. It should be noted that FlowMap

CHAPTER 6. A HYBRIDIZED GPPLCS 63

GPP

Evolution Eng ine- | | 1 2 " LUT 4 -LUT

Genetic Operators: Crossover, Mult i - A L U Processor (M A P) - circuits eircmts

Mutation etc Programs Evaluation | “ ~ ； ！ ！ |
I j f^ F lowMap Optimization

Figure 6.1: HGPPLCS

gets a better mapping solution when a 2-LUT Boolean circuit

is given as an input. As a result, it gives an opportunity of

adopting FlowMap in GPPLCS.

Since FlowMap will return a depth optimal mapping solution

for a 2-LUT Boolean circuit input, and hence is a very suitable

tool to help G P P L C S to locate the local optimum. Since GP-

PLCS can provide a population of 2-LUT Boolean circuits with

same functionality, FlowMap can give a best mapping solution

among all the mapping solutions.

H G P P L C S first evolves 2-LUT Boolean circuits. Then it

chooses the best one among the population of the 2-LUT Boolean

circuits as the input for the FlowMap. The FlowMap generate

a 4-LUT mapping solution (see Figure 6.1). The synergy effect

of G P P L C S and FlowMap in H G P P L C S is well established that

evolutionary algorithms are not well suited to fine tuning greedy

local search in complex combinatorial spaces and that hybridiza-

tion with other techniques can greatly improve the efficiency of

search [22, 23, 26，61]. FlowMap can be applied to significantly

improve G P P L C S by obtaining the local optimal circuits effi-

ciently and effectively (see Figure 6.2). The population-based

G P P L C S provides FlowMap with a group of diversified Boolean

circuits with the same functionality which cannot be obtained by

any deterministic algorithms. In this way, a global optimal cir-

cuit can be evolved with the aid of the efficient local and global

search power efficiency from FlowMap and G P P respectively.

CHAPTER 6. A HYBRIDIZED GPPLCS 64

/ 广R^efmed b y \ \
/ / FlowMap \ \

\\ \
t � � � F o u n d by / \

� G P P L C S /

Figure 6.2: FlowMap refines the fitness of individuals in GPPLCS

6.3 Experimental settings

H G P P L C S were evaluated on six problems the same used in

Chapter 5. They are the 2-bit full adder (ADD2), 6-bit com-

parator (CMP3), 4-to-l multiplexer (MUX6), 6-bit priority se-

lector (PSL6), 3-bit multiplier (MUL3) and 6-bit one's counter

(0CN6) (see Table 6.1). They are all benchmark Boolean prob-

lems that have been tried in other evolvable hardware approaches.

All experimental settings are listed in Table 6.2 below. Hav-

ing investigated the difficulties of the six benchmark problems

shown in Table 6.1, we set the maximum program length to 25

Pis. This provides enough sub-instructions (for both effective

operations and introns) to evolve correct programs. Hence, at

most 400 (25 X 16) operations can be used to build a solution.

It is important to note that, in the optimization stage, we force

the system to optimize the size of the correct programs as much

as possible. Thus, all runs terminate after 40,000,000 tourna-

ments which we believe it is large enough to evolve the circuits.

Preliminary experiments have been done to show circuits can

CHAPTER 6. A HYBRIDIZED GPPLCS 65

Table 6.1: Six combinational logic circuit problems used in HGPPLCS. The
Nin and Nout denote the numbers of inputs and outputs respectively. The
Nrow (=2^'")denotes the number of rows in the truth tables . The Ncase
{=Nrow X Â out) denotes the total number of training cases .

Name Description Nin Nout Nrow Ncase
ADD2 2-bit full-adder 5 3 ^ ^
CMP3 3-bit comparator 6 3 64 192
MUX6 6-bit multiplexer 6 1 64 64
PSL6 6-bit priority selector 6 4 64 256
MUL3 3-bit multiplier 6 6 64 384
0CN6 6-bit one's counter 6 3 64 192

be evolved at most 40,000,000 tournaments in our benchmark

problems.

In order to show the effectiveness of HGPPLCS, we tried the

same six problems on G P P L C S and FlowMap. However, we

have not compared with any evolvable hardware techniques like

Cartesian G P due to the different circuits evolved. They are

in boolean gate form (i.e., 2-LUT) while we are focusing on 4-

L U T circuits. G P P L C S adopts the same experimental settings

as H G P P L C S which are shown in Table 6.2. To ensure a fair

comparison between H G P P L C S and GPPLCS, all evolutions

of combinational logic circuits for the six combinational logic

circuit problems are run on the same P C configuration (Pentium

4 C P U 2.80GHz with 512 M B R A M) with 50 independent runs.

In addition, circuits are also evolved by dual phase approach.

The only difference is in the types of circuits evolved. G P P L C S

evolves the circuits with 4-LUT while H G P P L C S evolves the

2-LUT type. Since the difficulty for evolving 2-LUT and 4-

L U T Boolean circuits in each problem are different, numbers of

tournaments are not compared in this paper.

Results from the FlowMap algorithm are collected from the

experiments which were run on U C L A R A S P F P G A / C P L D

CHAPTER 6. A HYBRIDIZED GPPLCS 66

Technology Mapping and Synthesis Package [1]. Firstly, we

used the ESPRESSO [7] to optimize the truth tables of the six

Boolean problems into optimal (or near optimal) sum of product

(SOP) forms. Then the resulting SOP expressions were passed

to produce 4-LUT networks with FlowMap algorithm.

6.4 Experimental results and evaluations

From the 50 runs of the six individual problems, it is shown

that H G P P L C S evolved the best circuits among the three meth-

ods (HGPPLCS, G P P L C S and FlowMap). Table 6.3 shows the

best circuits collected from the three methods and Table 6.4

indicates the successful rate of evolving circuits in H G P P L C S

and GPPLCS. Since FlowMap depends heavily on the given in-

put circuits, the mapping solution will not be of a good quality

if the input circuits provided are in a bad form (e.g in SOP

forms). As FlowMap is a deterministic algorithm, the map-

ping solutions are always the same regardless of the number of

times it is tried. Thus, mapping results by FlowMap are not

shown in the charts about comparison between H G P P L C S and

GPPLCS. Fig. 6.3 is the average values of the circuits evolved

(in terms of 4-LUT count and L U T level) collected in the 50

independent run of H G P P L C S and G P P L C S while Fig. 6.4

is the best circuit evolved in the 50 runs of H G P P L C S and

GPPLCS. Obviously, H G P P L C S successfully improves the GP-

PLCS. On the six problems, both the average number of L U T

count and L U T level in the circuits evolved from H G P P L C S are

smaller than that from GPPLCS. H G P P L C S outperforms GP-

PLCS. The circuits evolved by the H G P P L C S are better than

that by the GPPLCS. In the 3-bit comparator problem (CMP3),

the best circuit evolved from H G P P L C S is 1 4-LUT and 1 L U T

level less than the one from GPPLCS. The circuit is shown in

Fig. 6.5.

CHAPTER 6. A HYBRIDIZED GPPLCS 67

Table 6.2: Experimental settings used in HGPPLCS
both design and optimization phases

maximum program length 25 parallel instructions (Pis)
{Ljnax)
initialization bit random, average 12.5 (-i/max/^) Pis
selection method tournament (size二 10)
4-LUT function set bOOOO, . . . , bFFFF, nop
2-LUT function set bO, . . . , bF, nop
inputs R32-Nin . •.只31
outputs outputs： Rq . .. Rnoui-1
constants logic 0, logic 1
population size 2000
termination(imaa：) 40,000,000 tournaments
PI crossover Prob. {Pxover) 0.1

design phase optimization phase
bit mutation Prob. {Pbtmut) 0.002 0.0
Sub instruction (SI), swap- 0.0 0.5
ping Prob.(尸s—p)
SI. deletion Prob. (Psidei) 0.0 0.1
Dynamic Sample Weight- 10,000 tournaments -
ing (DSW) (weights update
freq.)
preselection yes -
raw fitness the ratio of unsolved the ratio of LUT level

training cases (= 1 . 0 & LUT count (= /叩)

+ fdp)

success predicate all training cases optimize as much as
solved {= 1.0 (i.e. possible (i.e. /叩 < 0)
fdp=0.0)

CHAPTER 6. A HYBRIDIZED GPPLCS 68

Table 6.3: Best circuits collected from HGPPLCS, GPPLCS and FlowMap
algorithm on six problems

Version Type ADD2 CMP3 MUX6 PSL6 MUL3 0CN6
HGPPLCS L U T 4 5 2 5 15 7

Level 2 2 2 2 3 2

GPPLCS L U T 4 6 2 5 15 6
Level 2 3 2 3 4 3

FlowMap L U T 1 6 S 3 U ^ 1 1 3 ^
Level 3 3 2 3 3 4

Table 6.4: Successful rate of evolving circuit problems in HGPPLCS and
GPPLCS

Version ADD2 CMP3 MUX6 PSL6 MUL3 0CN6
HGPPLCS 100% 100% 100% 100% 5 0 % 5 8 %
GPPLCS 100% 100% 100% 100% 54% 100%

It is found that the circuits evolved from H G P P L C S may have

a greater number of 4-LUT count than the ones from GPPLCS.

In the 6-bit one's counter problem (0CN6), although the best

circuit evolved from H G P P L C S is 1 L U T level less than the one

from GPPLCS, it utilizes 1 4-LUT more. The reason lies on the

FlowMap algorithm. Since FlowMap only guarantees a depth

optimal mapping solution on a given input circuit, the number

of 4-LUT of the solution may not be smaller than the circuit

found in GPPLCS. However, the depth of the circuit is always

the smallest.

H G P P L C S shows a perfect synergy between G P P L C S and

FlowMap. The population based G P P L C S provides FlowMap

with a group of diversified Boolean circuit with the same func-

tionality while FlowMap returns a better mapping solutions

than GPPLCS.

The successful rate of the H G P P L C S and the G P P L C S are

nearly the same. From the rate shown in Table 6.4, it is found

that the M U L 3 and 0 C N 6 problems are more difficult than

CHAPTER 6. A HYBRIDIZED GPPLCS 69

Average number of 4-LUT count and gate levels collected in 50
independent run

25 i
j

i
‘ ：ii I • a v g Gate by H G P P L C S

査 15 ； --—I n, avg Gate by G P P L C S

I ‘ • avg Level by H G P P L C S

1° ! J 1 I • a v g Level by G P P L C S

A D D 2 C M P 3 MUX6 P S L 6 MUL3 0 C N 6

Six Problems

Figure 6.3: Average number of 4-LUT count and LUT level collected from
HGPPLCS and GPPLCS on the six problems in 50 runs

Best circuits (in terms of number of 4-LUT count and gate levels)
collected in 50 independent run

14 - ——

^ 10 - - a best Gate by HGPPLCS

I g [ED best Gate by G P P L C S

^ - i • b e s t Level by H G P P L C S

6 J | l l ^ I • best Level by G P P L C S |

4丨丨 fc.lLhlhh
A D D 2 C M P 3 MUX6 P S L 6 MUL3 0 C N 6

Six Problems

Figure 6.4: Best number of 4-LUT and LUT level collected from HGPPLCS
and GPPLCS on the six problems in 50 runs

o H ^

A 2 [r 2 6] I n m Q i = ^ ^ A = B [r 0 1]

A l [r 2 7] c = 5 玄 O
B 2 [r 2 9] i
B l [r 3 0] c = ^ f - \ CTi

‘ ~ a ' = > A > B [r i) 2]

§ "7=
m

一 T l

^ 5E
A 0 [r 2 8] ! = = > — > (z = : = > A < B [r i) 0]
B 0 [r 3 1] L Z S

Figure 6.5: The best 3-bit comparator evolved by the HGPPLCS

CHAPTER 6. A HYBRIDIZED GPPLCS 70

others. As H G P P L C S first evolves circuit in 2-LUT form and

then relies on FlowMap to give a 4-LUT mapping, the searching

space in H G P P L C S is much larger than those in G P P L C S which

evolves 4-LUT instead. Thus, it is expected that the successful

rate of H G P P L C S is lower or equal to that of GPPLCS.

6.5 Chapter Summary

In this chapter, we have presented a Hybridized Genetic Parallel

Programming based Logic Circuit Synthesizer (HGPPLCS). It

makes use of a Genetic Parallel Programming based Logic Cir-

cuit Synthesizer (GPPLCS) and the FlowMap algorithm. HGP-

PLCS applies a dual phase approach to evolve a 2-LUT circuit.

Then the circuit is passed to FlowMap for further optimiza-

tion. Finally, FlowMap returns a depth optimal mapping so-

lution based on the given input circuit. Experimental results

show that H G P P L C S improves the performance of G P P L C S in

terms of qualities of circuits. The qualities of evolved circuits

are the best among the three methods (HGPPLCS, G P P L C S

and FlowMap).

• End of chapter.

Chapter 7

A Memetic GPPLCS

By including a deterministic local search operator - D A O M a p

13] in Genetic Parallel Programming (GPP), a Memetic G P P

based Logic Circuit Synthesizer (MGPPLCS) is developed. To

show the effectiveness of the proposed M G P P L C S , six combi-

national logic circuit problems are used for evaluations. Each

problem is run for 20 times. Experimental results show that

M G P P L C S is both more efficient and effective than GPP. On

average, M G P P L C S requires 1 order of magnitude fewer evalua-

tions to identify higher quality solutions. Both the lookup table

counts and the propagation delays of the circuits collected are

better than those obtained by conventional design or evolved

by G P P alone. For example, in a 6-bit priority selector exper-

iment, we evolved combinational digital circuits with 5.1 four-

input lookup tables in 2 L U T level on average. It utilizes 2

lookup tables and 1 L U T levels less than circuits evolved by

G P P L C S alone.

This chapter is organized as follows. Section 7.1 gives our

motivation. M G P P L C S is presented in Section 7.2. The ex-

perimental settings can be found in Section 7.3. It is followed

by experimental results and evaluations in Section 7.4. Finally,

Section 7.5 is a chapter summary.

71

i

CHAPTER 7. A MEMETIC GPPLCS 72

7.1 Motivation

Evolutionary Algorithms (EAs) are a class of search and opti-

mization techniques that work on a principle inspired by nature:

Darwinian Evolution. It is well established that hybridization

with other techniques in EAs can greatly improve the efficiency

of search. Algorithms hybridize a non-genetic local search to re-

fine the qualities of solutions with a genetic algorithm are called

memetic algorithms [53]. This inspires the idea of using a de-

terministic local search operator in GPPLCS.

D A O M a p algorithm [13] proposed by Prof. Jason Cong is a

technology mapping algorithm for depth minimization in lookup

table (LUT)-based F P G A designs, which is optimum for any K-

bounded Boolean network. D A O M a p can return a depth opti-

mal mapping solution with possible area optimization based on

a given Boolean circuit. Thus, D A O M a p is an ideal local search

operator for G P P so that it can improve G P P in both efficiency

and effectiveness. Any individuals found in G P P can be refined

by D A O M a p . A large number of evaluations can be saved to

locate optima. Moreover, D A O M a p can force G P P to explore

more optima by recording the previous optima found. This new

G P P L C S with a local search operator - D A O M a p becomes the

M G P P L C S .

7.2 Overall system architecture

Based on GPPLCS, a combinational logic circuit design system,

M G P P L C S is developed. Basically, the architecture of G P P L C S

and M G P P L C S are the same. The difference is the application

of local search operator - D A O M a p in M G P P L C S . The core of

the M G P P L C S system consists of an Evolution Engine (EE) and

M L P (see Fig. 7.1). EE manipulates the genetic parallel pro-

grams and performs genetic and local search operations. M L P

CHAPTER 7. A MEMETIC GPPLCS 73

MLP program in parallel assembly truth labic

r Z J Z J n r n

I c x p c c t c d output •

J evaluated

.""""^N I I outputs 2
(popu l a t i om ^ ^ ^ ^ ^ ^ evaluate ^ ^ ^ ^ ^ ^ H B ^ H ^ ^ ^ H H B H H B H B B B I 召 • •

^ r ^ I I——I I
t I “ “ 4-LU-f-» 钱

GENETIC OPERATIONS:- | genotype 4 - L U l l — ^

mulalion, crossover, sclcclioii, clc M L P programN^_ ^ ^ ^ ^ ^ ^ ^ ^ I I
LOCAL SEARCH OPERATOR: i n d i v i d u a l s ^ ^ ^ ^ ^ ^ ^ ^

DAOMap I

Evolution Engine (EH) Mulli-Logic-Unii Processor (MLP)

Figure 7.1: The system block diagram of MGPPLCS

is responsible for the genetic parallel programs evaluation.

Similar to GPPLCS, all combinational digital circuits are

evolved by a dual phase (i.e. design and optimization phases)

approach. Different sets of genetic operators including crossover,

bit mutation and sub-instruction swapping are used in different

stages. In the design phase, the M G P P L C S system aims at

finding a 100% functional program (correct program). The raw

fitness is given by the ratio of unsolved training cases. In the op-

timization phase, the raw fitness then put emphasis on the L U T

count, the propagation delay and the program length. In other

words, the major objective of the optimization stage is reducing

the L U T count and then the propagation delay. Obviously, we

apply our local search operator in this phase. D A O M a p can be

applied to significantly improve M G P P L C S by obtaining the lo-

cal optimal circuits efficiently and effectively (see Fig.7.2). The

population-based M G P P L C S provides D A O M a p with a group of

diversified Boolean circuits with same functionality which can-

not be obtained by any deterministic algorithms while D A O M a p

returns the refined individuals (optima). In this way, a global

optimal circuit can be evolved with efficiency and global search

power from D A O M a p and E A respectively.

However, it should be noted that refined individuals are not

put back to the population. Since any introns will be removed

CHAPTER 7. A MEMETIC GPPLCS 74

O
个/Refined b X ^

J/Refinedby \ \ [� � \\
/ / DAOMap \ \ 、、、Found by \

/ / \ \ 'MGPPLCS、

H X \
C、、--、Found by /

MGPPLCS

W

Figure 7.2: DAOMap refines the fitness of individuals in GPPLCS

after the refinement, refined individuals would not benefit evolu-

tion. To some extent, refined individuals in a population would

dominate and let G P P trap in a local optima. As a result, re-

fined individuals are not placed in the population.

Instead, refined individuals serve as a similarity measure. Re-

fined individuals (optima) are recorded in terms of number of

LUTs and LUT's level. Any newly evolved individuals will re-

tain only when it is different from the previous recorded optima

in there two values. In each tournament, the M G P P L C S gener-

ates two new genetic programs (children). They are refined by

D A O M a p . If a child is structurally equivalent to any of opti-

m u m found before (number of LUTs and LUT's level are found

in the list), it will be discarded. This is to maintain a reasonable

diversity in the search. In this way, it serves as a diversity mea-

sure and M G P P L C S can then be forced to evolve new optima.

See Figure 7.3.

CHAPTER 7. A MEMETIC GPPLCS 75

Algorithm MGPPLCS

Input: Truth table of circuits
Output: Circuits in 4-LUT format
1. Initialize population
2. Evaluate population
3. if fdp > 0 / * design phase * /
4. then
5. Perform breeding operations:
6. Tournament selection, Bit Mutation with Pumut and PI

crossover with Pxover

7. else / * optimization phase * /
8. Perform breeding operations:
9. Tournament selection, SI swapping with Psiswp̂ SI deletion with

Psidel and PI crossover with Pxover

10. Optimize circuits with D AO Map
11. Evaluate children
12. if fchildren > fparents 八 children ^ parents
13. then
14. Replace parents with children
15. else
16. Discard children
17. if t < trnax
18. then
19. if Design phase 八/办 > 0
20. then
21. GOTO Step 3
22. else
23. if Optimization phase
24. then
25. GOTO Step 3
26. else

, 27. Terminate
28. else
29. Terminate
30.

Figure 7.3: Algorithm of MGPPLCS

CHAPTER 7. A MEMETIC GPPLCS 76

Table 7.1: Six combinational logic circuit problems used in MGPPLCS. The
Nin and Nout denote the numbers of inputs and outputs respectively. The
Nrow denotes the number of rows in the truth tables . The Ncase
(=Nrow X A^out)denotes the total number of training cases .

Name Description Nin Nout Nrow Ncase
ADD2 2-bit full-adder 5 3 ^ S
CMP3 3-bit comparator 6 3 64 192
MUX6 6-bit multiplexer 6 1 64 64
PSL6 6-bit priority selector 6 4 64 256
MUL3 3-bit multiplier 6 6 64 384
0CN6 6-bit one's counter 6 3 64 192

7.3 Experimental settings

M G P P L C S was evaluated on the same six problems as in Chap-

ters 5 and 6 . They are 2-bit full adder (ADD2), 6-bit com-

parator (CMP3), 4-to-l multiplexer (MUX6), 6-bit priority se-

lector (PSL6), 3-bit multiplier (MUL3) and 6-bit one's counter

(0CN6). (see Table 7.1).

All experimental settings are listed in Table 7.2 below. Hav-

ing investigated the difficulties of the six benchmark problems

shown in Table 7.1, we set the maximum program length to 25

Pis. This provides enough sub-instructions (for both effective

operations and introns) to evolve correct programs. Hence, at

most 400 (25 X 16) operations can be used to build a solution.

Noticeably, in the optimization stage, we force the system to

optimize the size of the correct programs as much as possible.

Thus, all runs terminate after 40,000,000 tournaments.

In order to show the effectiveness of M G P P L C S , we tried

the six problems on GPPLCS, D A O M a p and FlowMap. The

G P P L C S adopt the same experimental settings as M G P P L C S

which is shown in Table 7.2 except all runs terminate after

40,000,000 tournaments. Moreover, no local search operator

will be used in GPPLCS. To ensure a fair comparison between

CHAPTER 7. A MEMETIC GPPLCS 77

M G P P L C S and GPPLCS, all evolutions of combinational logic

circuits for the six combinational logic circuit problems are run

on the same P C configuration (Pentium 4 C P U 2.80GHz with

512 M B R A M) with 20 independent runs.

Results from D A O M a p and FlowMap algorithm are collected

from the experiments which were run on U C L A R A S P F P G A / C P L D

Technology Mapping and Synthesis Package [1]. Firstly, we

used the ESPRESSO [7] to optimize the truth tables of the six

Boolean problems into optimal (or near optimal) sum of product

(SOP) forms. Then the resulting SOP expressions were passed

to produce 4-input L U T networks with the D A O M a p algorithm

as well as FlowMap algorithm.

7.4 Experimental results and evaluations

From the 20 runs of the six individual problems, it is shown that

M G P P L C S evolved the best circuits among the four methods

(MGPPLCS, GPPLCS, D A O M a p and FlowMap). Table 7.3

shows the best circuits collected from the four methods while

Table 7.4 shows the average value. Please note that all run are

successful. That means we can evolve solutions in every run.

Since D A O M a p and FlowMap are deterministic algorithms, the

mapping solutions are always the same regardless of the number

of times it is tried. Thus, the result will be the same in both

tables.

It is shown that M G P P L C S and G P P L C S outperform D A O M a p

and FlowMap since they depend heavily on the given input cir-

cuits. The mapping solution will not be of a good quality if the

input circuits provided are in a bad form (e.g. in SOP forms).

Obviously, the M G P P L C S successfully improves the GPPLCS.

On the six problems, both the average number of L U T count and

LUT's level in the circuits evolved from M G P P L C S are smaller

than that from GPPLCS. Moreover, the number of tournaments

CHAPTER 7. A MEMETIC GPPLCS 78

Table 7.2: Experimental settings used in MGPPLCS
both design and optimization phases

maximum program length 25 parallel instructions (Pis)
(Ljfiax)
initialization bit random, average 12.5 {Lmax/‘^) Pis
selection method tournament (size二 10)
4-input LUT function set bOOOO, . . . , bFFFF, nop
i n p u t s Ii32-Nin . . .丑 3 1

outputs outputs： Rq . . . RNoui-I
constants logic 0，logic 1
population size 2000

termination(i^ax) 40,000,000 tournaments
PI crossover Prob. (Pxover) 0.1

design phase optimization phase
bit mutation Prob. (Pbtmut) 0.002 0.0
Sub instruction (SI), swap- 0.0 0.5
ping Prob. (Psiswp)

SI. deletion Prob. (P—ei) 0.0 0.1
DAOMap local search - yes
Dynamic Sample Weight- 10,000 tournaments -
ing (DSW) (weights update
freq.)
preselection yes -
raw fitness the ratio of unsolved the ratio of LUT level

training cases (= 1 . 0 & LUT count (= /叩)

+ fdp)

success predicate all training cases optimize as much as
solved (= 1.0 (i.e. possible (i.e. /叩 < 0)
fdp=0.0)

CHAPTER 7. A MEMETIC GPPLCS 79

Table 7.3: Best circuits collected from MGPPLCS, GPPLCS, DAOMap and
FlowMap algorithm on six problems

Version T ^ ADD2 CMP3 MUX6 PSL6 MUL3 0CN6
MGPPLCS LUT 4 5 2 5 15 6

Level 2 2 2 2 3 2
Tournament (x 10^) 0.097 0.17 0.29 0.12 6.01 5.89

GPPLCS LUT 4 6 2 6 15 6
Level 2 3 2 3 4 3
Tournament (x 10®) 8.72 4.81 5.05 4.51 99.40 13.39

D A O M a p L U T W ^ 3 10 ^ 118
Level 3 3 2 3 3 4

FlowMap UJT 16 ^ 3 i T ^ 113
Level 2 3 2 3 4 3

Table 7.4: Circuits collected from MGPPLCS, GPPLCS, DAOMap and
FlowMap on six problems (Average value)

Version Type ADD2 CMP3 MUX6 PSL6 MUL3 O C T ^
MGPPLCS lAJT ^ 6.45

Level 2 2.1 2.2 2 3.25 2.2
Tournament (x 10^) 0.18 0.72 0.70 0.46 9.32 8.52

GPPLCS LUT O ^ 4 1 m O
Level 3 4.25 2.85 3 4.85 3
Tournament (x 10^) 8.63 4.42 5.10 4.30 98.94 12.84

DAOMap LOT ^ ^ 3 10 ^ 118
(Deterministic Level 3 3 2 3 3 4
algorithm)
FlowMap LUT 16 ^ 3 11 ^ m ^
(Deterministic Level 2 3 2 3 4 3
algorithm)

CHAPTER 7. A MEMETIC GPPLCS 80

I l [r 3 0] r ~ ~

S l [r 2 6] c = > S
I3[r28] c i i ^ . ^ ~]
S0[r27] 1 = | _ _ J

I0[,-31] = I ^
I2[i29] t = >

Figure 7.4: 6-bit multiplexer evolved by the MGPPLCS

used in M G P P L C S are always smaller than that in G P P L C S

by 1 order of magnitude. Although M G P P L C S may not al-

ways get a better circuit than GPPLCS in all six problems,

M G P P L C S performs well on average. In the 3-bit comparator

problem (CMP3), the best circuit evolved from M G P P L C S is 1

4-LUT and 1 L U T level less than the one from G P P L C S and so

does the case in 6-bit priority selector (PSL6). Figure 7.4 shows

the 3-bit multiplier.

M G P P L C S shows a perfect synergy between G P P L C S and

D A O M a p . The population based G P P L C S provides D A O M a p

with a group of diversified Boolean circuits with the same func-

tionality while D A O M a p returns a better mapping solutions

than GPPLCS.

7.5 Chapter Summary

In this chapter, we have presented a Memetic Genetic Parallel

Programming Logic Circuit Synthesizer (MGPPLCS). It makes

use of a Genetic Parallel Programming Logic Circuit Synthesizer

(GPPLCS) and D A O M a p algorithm. M G P P L C S applies a two-

stage approach to evolve a 2-LUT circuit. During the second

stage, a local search operator - D A O M a p is applied to refine in-

dividuals. Experimental results show that M G P P L C S improves

the performance of GPPLCS. The qualities of evolved circuits

are the best among the three methods (MGPPLCS, G P P L C S

and DAOMap).

CHAPTER 7. A MEMETIC GPPLCS 81

• End of chapter.

Chapter 8

Conclusion

This thesis has presented a novel Genetic Parallel Programming

based Logic Circuit Synthesizer (GPPLCS) designed for tackling

technology mapping problems in the automatic logic circuit syn-

thesis optimization. It consists of two core components, an Evo-

lution Engine (EE) and a Multi Logic Unit Processor (MLP).

The E E is responsible for the genetic operations, the control

strategies and the application specific processes. The M L P is

a general-purpose, multiple instruction-streams multiple data-

streams (MIMD) register machine which is implementable on

modern commercial Field Programmable Gate Arrays (FPGAs).

G P P evolves genetic programs in a specific parallel format (MLP

programs).

Four improvements have been proposed and implemented to

improve the GPPLCS. In Chapter 4, a hardware design and im-

plementation of a Multi Logic Unit Processor (MLP) has been

shown. In order to execute parallel genetic programs for fitness

evaluation in hardware, the hardware based M L P has been pro-

posed and implemented. Experimental results show that evolv-

ing combinational logic circuits can be sped up with a cooper-

ation of software version E E and the hardware MLP. Speedup

ratios varied from 10 to 36 are obtained in the hardware-assisted

G P P L C S compared with the pure software version GPPLCS.

In Chapter 5, a new model of cooperation between multi M L P

82

CHAPTER 8. CONCLUSION 83

and EE have been proposed. This new architecture of GPPLCS

(M M G P P L C S) is designed for optimal logic circuit synthesis in

FPGAs. It has one EE and several MLPs. Simulation results

show that the performance of M M G P P L C S is nearly the same

as that of the current G P P L C S in terms of the number of tour-

naments but expecting time for each tournament can be reduced

significantly.

In Chapter 6, a Hybridized GPPLCS (HGPPLCS) has been

presented. By integrating the G P P L C S and the FlowMap al-

gorithm, better circuits can be found. W e first evolve circuits

in 2-input lookup table (2-LUT) and rely on FlowMap to give

circuits with a 4-LUT format. Experimental results show that

both the lookup table counts and the propagation delays of the

circuits collected are better than those obtained by conventional

design or evolved by G P P L C S alone.

W e have gone one step further in Chapter 7. A novel Memetic

G P P L C S (MGPPLCS) has been proposed and implemented.

D A O M a p is included in G P P L C S as a non-genetic local search

operator. It is shown that better circuits with smaller number of

LUTs and shorter propagation delay are evolved with a smaller

number of tournaments.

8.1 Future work

This work can be improved or extended in two main directions.

With the success of M M G P P L C S , a hardware implementa-

tion of G P P L C S is a feasible way to speed up the evolution

process. A full-scale hardware based G P P L C S system can be

implemented in the latest FPGAs for speeding up design phase.

The increased clock rates (550 MHz) in the latest generation of

F P G A , Virtex-5 compared with Virtex-E (133 MHz) in Pilchard

enable us to achieve a faster hardware design of MLP. Since

we have already got a hardware implemented MLP, we need to

CHAPTER 8. CONCLUSION 84

design and implement a hardware evolution engine to perform

genetic operations.

Both H G P P L C S and M G P P L C S give us a possibility to solve

some benchmark problems in technology mapping problems. In

the current moment, it takes a few hours to evolve a solution

program for difficult problems. With the speedup in both design

phase and optimization phase, some large scale real life problems

such as five-input X O R function in M C N C benchmark problems

can be solved.

• End of chapter.

Bibliography

:1] UCLA RASP FPGA/CPLD Technol-
ogy Mapping and Synthesis Package.
http://ballade.cs.ucla.edu/software_release/rasp/htdocs/.

2] Virtex E Platform FPGAs: Introduction and Overview, Xil-
inx,Inc. 2002.

3] M . Abd-El-Barr, S. M . Sait, B. A. B. Sarif, and U. Al-Saiari.

A modified ant colony algorithm for evolutionary design

of digital circuits. In R. Sarker, R. Reynolds, H. Abbass,

K. C. Tan, B. McKay, D. Essam, and T. Gedeon, editors,

Proceedings of the 2003 Congress on Evolutionary Compu-
tation CEC2003, pages 708-715, Canberra, 8-12 Dec. 2003.
IEEE Press.

4] A. H. Aguirre, B. P. Buckles, and C. A. C. Coello. A genetic

programming approach to logic function synthesis by means

of multiplexers. In Evolvable Hardware, pages 46-53. IEEE
Computer Society, 1999.

5] P. J. Angeline. Two self-adaptive crossover operators for

genetic programming. In P. J. Angeline and K. E. Kinnear,

Jr., editors, Advances in Genetic Programming 忍,chapter 5,

pages 89-110. MIT Press, Cambridge, M A , USA, 1996.

6] W . Banzhaf, P. Nordin, R. E. Keller, and F. D. Fran-

cone. Genetic Programming An Introduction: On the

85

http://ballade.cs.ucla.edu/software_release/rasp/htdocs/

BIBLIOGRAPHY 86

Automatic Evolution of Computer Programs and Its Appli-
cations. Heidelberg and San Francisco CA, resp., 1998.

•7] R. K. Brayton, G. D. Hachtel, C. T. McCullen, and A. L.

Sangiovanni-Vincentelli. Logic Minimization Algorithms for
VLSI Synthesis. Kluwer.

8] S. M . Cheang, K. H. Lee, and K. S. Leung. Applying sam-

ple weighting methods to genetic parallel programming. In

R. Sarker, R. Reynolds, H. Abbass, K. C. Tan, B. McKay,

D. Essam, and T. Gedeon, editors, Proceedings of the 2003
Congress on Evolutionary Computation CEC2003, pages

928-935, Canberra, 8-12 Dec. 2003. IEEE Press.

9] S. M . Cheang, K. H. Lee, and K. S. Leung. Evolving data

classification programs using genetic parallel programming.

In R. Sarker, R. Reynolds, H. Abbass, K. C. Tan, B. McKay,

D. Essam, and T. Gedeon, editors, Proceedings of the 2003
Congress on Evolutionary Computation CEC2003, pages

248-255, Canberra, 8-12 Dec. 2003. IEEE Press.

10] S. M . Cheang, K. H. Lee, and K. S. Leung. Designing

optimal combinational digital circuits using a multiple logic

unit processor. In M . Keijzer, U.-M. O'Reilly, S. M . Lucas,

E. Costa, and T. Soule, editors, Genetic Programming 7th
European Conference, EuroGP 2004, Proceedings, volume
3003 of LNCS, pages 23-34, Coimbra, Portugal, 5-7 Apr.
2004. Springer-Verlag.

11] S. M . Cheang, K. H. Lee, and K. S. Leung. Use of genetic

parallel programming to design multi-output combinational

logic circuits. In 2nd Intl. Conf. Artificial Intelligence in
Engineering and Technology (ICAIET'2004), Proceedings,
pages 828-835, 2004.

BIBLIOGRAPHY 87

12] S. M . Cheang, K. S. Leung, and K. H. Lee. Genetic parallel

programming: Design and implementation. Evolutionary
Computation, pages 129-156, 2006.

13] D. Chen and J. Cong. DAOmap: a depth-optimal area opti-

mization mapping algorithm for F P G A designs. In ICC AD,
pages 752-759, 2004.

14] K.-C. Chen, J. Cong, Y. Ding, A. B. Kahng, and P. Traj-

mar. DAG-map: Graph-based F P G A technology mapping

for delay optimization. IEEE Design & Test of Computers,
9(3):7-20, 1992.

15] C. A. Coello, A. D. Christiansen, and A. H. Aguirre. Us-

ing genetic algorithms to design combinational digital cir-

cuits. In Smart Engineering Systems: Neural Networks,
Fuzzy Logic and Evolutionary Programming, pages 391-396,
1996.

16] C. A. Coello, A. D. Christiansen, and A. H. Aguirre. Auto-

mated design of combinational logic circuits using genetic

algorithms. In Int. Conf. Artificial Neural Nets and Genetic
Algorithms (ICANNGA97), pages 335-338, 1997.

17] C. A. Coello, A. D. Christiansen, and A. H. Aguirre. Use

of evolutionary techniques to automate the design of com-

binational circuits. In Int. J. Smart Engineering System
Design, pages 299-314, 2000.

18] C. A. C. Coello, E. Alba, G. Luque, and A. H. Aguirre.
Comparing different serial and parallel heuristics to design
combinational logic circuits. In Evolvable Hardware, pages
3-12. IEEE Computer Society, 2003.

19] C. A. C. Coello, E. H. Luna, and A. H. Aguirre. Use of

particle swarm optimization to design combinational logic

BIBLIOGRAPHY 88

circuits. In A. M . Tyrrell, P. C. Haddow, and J. Torre-

sen, editors, Evolvable Systems: From Biology to Hardware,
Fifth International Conference, ICES 2003, volume 2606
of LNCS, pages 398-409, Trondheim, Norway, 17-20 Mar.
2003. Springer-Verlag.

20] C. A. C. Coello, R. L. Zavala, B. M . Garcia, and A. H.

Aguirre. Ant colony system for the design of combinational

logic circuits. 2000.

21] J. Cong and Y. Ding. Flowmap: An optimal technology

mapping algorithm for delay optimization in lookup-table

based F P G A designs. Jan. 13 1994.

'22] J. C. Culberson. On the futility of blind search: An algo-

rithmic view of "No free lunch". Evolutionary Computation,
6(2):109-127, 1998.

23] L. Davis, editor. Handbook of Genetic Algorithms. Van

Nostrand Reingold, 1991.

24] M . Dorigo and G. Di Caro. The ant colony optimization
meta-heuristic. In D. Corne, M . Dorigo, and F. Glover,
editors, New Ideas in Optimization, pages 11-32. McGraw-
Hill, London, 1999.

25] D. E. Goldberg, K. Deb, H. Kargupta, and G. Harik. Rapid,
accurate optimization of difficult problems using fast messy
genetic algorithms. In Proceedings of the Fifth International
Conference on Genetic Algorithms, pages 56-64, San Ma-
teo, CA, 1993. Morgan Kaufman.

26] D. E. Goldberg and S. Vossner. Optimizing global-local

search hybrids. In GECCO, pages 220-228, 1999.

BIBLIOGRAPHY 89

27] H. Hemmi, J. Mizoguchi, and K. Shimohara. Development

and evolution of hardware behaviors. Lecture Notes in Com-
puter Science, 1062:250-265, 1996.

28] M . I. Heywood and A. N. Zincir-Heywood. Register based

genetic programming on F P G A computing platforms. In

R. Poli, W . Banzhaf, W . B. Langdon, J. Miller, P. Nordin,

and T . C. Fogarty, editors, Proceedings of the Third Euro-
pean Conference on Genetic Programming (EuroGP-2000),
volume 1802 of LNCS, pages 44-59, Edinburgh, Scotland,
2000. Springer Verlag.

29] T. Higuchi, H. Iba, and B. Manderick. Evolvable hardware.

In Massively Parallel Artificial Intelligence, pages 399-421.
MIT Press, Combridege, M A , 1994.

30] T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, and
T. Furuya. Evolving hardware with genetic learning: A
first step toward building a darwin machine. In Proc. 2nd
Int. Conf. Simulation Adaptive Behavior (SAB92), pages

417-424, 1992.

31] H. Hirsh, W . Banzhaf, J. R. Koza, C. Ryan, L. Spector, and
C. Jacob. Genetic programming. IEEE Intelligent Systems,
15(3):74-84, May-June 2000.

32] J.-H. Hong and S.-B. Cho. MEH: Modular evolvable
hardware for designing complex circuits. In R. Sarker,
R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam,
and T. Gedeon, editors, Proceedings of the 2003 Congress
on Evolutionary Computation CEC2003, pages 92-99, Can-
berra, 8-12 Dec. 2003. IEEE Press.

33] H. Iba, M . Iwata, and T. Higuchi. Gate-level evolvable

hardware: empirical study and application. In Evolution-

BIBLIOGRAPHY 90

ary Algorithms in Engineering Applications, pages 259-276,
1997.

34] H. Iba, M . Iwata, and T. Higuchi. Machine learning ap-

proach to gate-level evolvable hardware. Lecture Notes in
Computer Science, 1259:327-343, 1997.

35] I. Kajitani, T. Hoshino, M . Iwata, and T. Higuchi. Variable

length chromosome G A for evolvable hardware. In Inter-
national Conference on Evolutionary Computation, pages

443-447, 1996.

36] T. Kalganova. An extrinsic function-level evolvable hard-

ware approach. In R. Poli, W . Banzhaf, W . B. Langdon,

J. F. Miller, P. Nordin, and T. C. Fogarty, editors, Genetic
Programming, Proceedings of EuroGP'2000^ volume 1802 of
LNCS, pages 60-75, Edinburgh, 15-16 Apr. 2000. Springer-
Verlag.

37] T. Kalganova, J. F. Miller, and T. C. Fogarty. Some as-

pects of an evolvable hardware approach for multiple-valued

combinational circuit design. In M . Sipper, D. Mange, and

A . Perez-Uribe, editors, Evolvable Systems: From Biology
to Hardware Second International Conference, ICES ,98,
volume 1478 of LNCS, pages 78-89, Lausanne, Switzerland,
Sept. 23-25 1998. Springer-Verlag.

38] J. Kennedy and R. C. Eberhart. Particle swarm optimiza-

tion. In Proc. of the IEEE Int. Conf. on Neural Networks,
pages 1942-1948, Piscataway, NJ, 1995. IEEE Service Cen-

ter.

39] S. Kirkpatrick, C. D. Gelatt, and M . P. Vecchi. Optimiza-

tion by simulated annealing. Science, 220:671-680, 1983.

BIBLIOGRAPHY 91

40] J. R. Koza. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. M I T Press,

Cambridge, M A , USA, 1992.

41] J. R. Koza, F. H. Bennett III, J. L. Hutchings, S. L. Bade,

M . A. Keane, and D. Andre. Rapidly reconfigurable field-

programmable gate arrays for accelerating fitness evaluation

in genetic programming. In J. R. Koza, editor, Late Break-
ing Papers at the 1997 Genetic Programming Conference,
pages 121-131, Stanford University, CA, USA, 13—16 July

1997. Stanford Bookstore.

42] P. Leong, M . Leong, O. Cheung, T. Tung, C. Kwok,

M . Wong, and K. Lee. Pilchard - a reconfigurable com-

puting platform with memory slot interface. In 8th Annual
IEEE Symposium on Field Programmable Custom Comput-
ing Machines, FCCM, 2001, 2001.

43] K. S. Leung, K. H. Lee, and S. M . Cheang. Evolving

parallel machine programs for a Multi-ALU processor. In

D. B. Fogel, M . A. El-Sharkawi, X. Yao, G. Greenwood,

H. Iba, P. Marrow, and M . Shackleton, editors, Proceed-
ings of the 2002 Congress on Evolutionary Computation
CEC2002, pages 1703-1708. IEEE Press, 2002.

44] K. S. Leung, K. H. Lee, and S. M . Cheang. Parallel pro-

grams are more evolvable than sequential programs. In E. C.

C. Ryan, T. Soule, M . Keijzer, E. Tsang, R. Poli, editor,

Proceedings of the Sixth European Conference on Genetic
Programming (EuroGP-2003), volume 2610 of LNCS, pages
107-118, Essex, U K , 2003. Springer Verlag.

45] S. J. Louis. Genetic Algorithms as a Computational Tool
for Design. PhD thesis, Department of Computer Science,
Indiana University, Aug. 1993.

BIBLIOGRAPHY 92

46] S. J. Louis. Genetic learning for combinational logic design.

Soft Com/put, 9(l):38-43, 2005.

47] S. W . Mahfoud. Crowding and preselection revisited. Tech-

nical Report IlliGAL Report No 92004, University of Illi-

nois, Urbana, 1992.

48] P. Martin. A pipelined hardware implementation of genetic

programming using FPGAs and Handel-C. In J. A. Foster,

E. Lutton, J. Miller, C. Ryan, and A. G. B. Tettamanzi,

editors, Genetic Programming, Proceedings of the 5th Eu-
ropean Conference, EuroGP 2002, volume 2278 of LNCS,
pages 1-12, Kinsale, Ireland, 3-5 Apr. 2002. Springer-

Verlag.

'49] J. F. Miller. An empirical study of the efficiency of learning

boolean functions using a cartesian genetic programming

approach. In W . Banzhaf, J. Daida, A. E. Eiben, M . H.

Garzon, V. Honavar, M . Jakiela, and R. E. Smith, editors,

Proceedings of the Genetic and Evolutionary Computation
Conference, volume 2, pages 1135-1142, Orlando, Florida,
USA, 13-17 July 1999. Morgan Kaufmann.

50] J. F. Miller and P. Thomson. Aspects of digital evolution:

Evolvability and architecture. In A. E. Eiben, T. Back,

M . Schoenauer, and H.-P. Schwefel, editors, Parallel Prob-
lem Solving from Nature - PPSN F, pages 927-936, Berlin,

1998. Springer. Lecture Notes in Computer Science 1498.

51] J. F. Miller and P. Thomson. Cartesian genetic program-

ming. In R. Poli, W . Banzhaf, W . B. Langdon, J. Miller,

P. Nordin, and T. C. Fogarty, editors, Proceedings of
the Third European Conference on Genetic Programming
(EuroGP-2000), volume 1802 of LNCS, pages 121-132, Ed-
inburgh, Scotland, 2000. Springer Verlag.

BIBLIOGRAPHY 93

52] J. F. Miller and V. K. Vassilev. Principles in the evolution-

ary design of digital circuits 一 part I, Oct. 28 2000.

53] P. Moscato. On evolution, search, optimization, genetic al-

gorithms and martial arts: Towards memetic algorithms.

Technical Report C3P 826, Caltech Concurrent Computa-

tion Program, California Institute of Technology, Pasadena,

CA, 1989.

54] M . Murakawa, S. Yoshizawa, I. Kajitani, and T. Furuya.

Hardware evolution at function level. Lecture Notes in
Computer Science, 1141:62-71, 1996.

55] A. Nicholson. Evolution and learning for digital circuit de-
sign, Apr. 17 2000.

56] B. Shackleford, G. Snider, R. J. Carter, E. Okushi, M . Ya-

suda, K. Seo, and H. Yasuura. A high-performance,

pipelined, FPGA-based genetic algorithm machine. Genetic
Programming and Evolvable Machines, 2(l):33-60, 2001.

57] K . Shahill. VHDL for Programmable Logic. Addison Wes-
ley, 1998.

58] J. Torresen. Scalable evolvable hardware applied to road

image recognition. In Evolvable Hardware, pages 245-252.
IEEE Computer Society, 2000.

59] J. Torresen. A scalable approach to evolvable hardware.
Genetic Programming and Evolvable Machines, 3(3):259-

282, 2002.

60] K. H. Tsoi. Pilchard user reference (vl.O). 2004.

61] D. H. Wolpert and W . G. Macready. No free lunch theo-
rems for optimization. IEEE Transactions on Evolutionary
Computation, l(l):67-82, Apr. 1997.

BIBLIOGRAPHY 94

62] Xilinx. Programmable logic design quick start handbook.

2006.

63] X. Yao and T. Higuchi. Promises and challenges of evolv-

able hardware. IEEE Transactions on Systems, Man, and
Cybernetics, Part C, 29(l):87-97, 1999.

List of Publications

1. W.S. Lau, G. Li, K.H. Lee, K.S. Leung and S.M. Cheang:

Multi-logic-Unit Processor: A Combinational Logic Circuit

Evaluation Engine for Genetic Parallel Programming,

Proceedings of the 8th European Conference on Genetic

Programming, Lecture Notes in Computer Science, Vol.

3447, pp. 167-177, Springer, 30 March - 1 April 2005.

2. W.S. Lau, K.H. Lee and K.S. Leung:

A Hybridized Genetic Parallel Programming Logic Circuit
Synthesizer,

Proceedings of the 8th annual conference on Genetic and
Evolutionary Computation, pp. 839 - 846, Seattle, Wash-
ington, USA.

95

- f

J . •

- • - • • }

. . - -

‘ . . f

, - *

. . . . - .

- , • -

. . / 、 ： . 」 ， ： ‘ . • 、 一 . ，

’ ‘ . . , . ， ： c n r 、

、 . - / ; 途 - ：̂ . - v . - •

1 . . . - 、 i - r . 、

. ‘ • ” • -

. . . . 复 . ： ： ： ： ： / , . .

. . . . A . , r . . - .

.. . ！

. . - ； 、 ： . . 、 . - ： ： • . .

、 . ， • , . 、 • . . 、 .

• . -

- . - - • - ‘

• V

- . .

、 , • • . - • .

• , t •

• # • • . .

- . . — — ’ • - • - •

> • - •

. - . . . 、 . .

, . . . - : . . . 、 ：

. ” • V . ’

“) > • . , . : : 、 . " • , • . . : . . ： . . .

CUHK Libraries

__l_lll l l l
0 0 4 3 6 6 7 0 9

