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Abstract of thesis entitled: 

A Genetic Parallel Programming based Logic Circuit Synthe-

sizer 
Submitted by L A U Wai Shing 
for the degree of Master of Philosophy 

at The Chinese University of Hong Kong in November 2006 

Genetic Parallel Programming (GPP) is a novel Genetic Pro-

gramming paradigm. This thesis presents a G P P based Logic 

Circuit Synthesizer (GPPLCS) which is a combinational logic 

circuit learning system. G P P L C S can synthesize (evolve) opti-

mal logic circuits on Field Programmable Gate Arrays (FPGAs) 

given the truth table of a circuit as an input. It employs a Multi 

Logic Unit Processor (MLP) which is a multiple instruction-

stream multiple data-stream (MIMD), general-purpose register 

machine. Based on the parallel architecture of MLP, G P P L C S 

evolves genetic programs in parallel form (MLP programs). 

The G P P L C S has been improved in two different ways. First 

of all, we make use of hardware accelerator in the GPPLCS. 

A Multi M L P based G P P L C S ( M M G P P L C S ) is proposed so 

that the whole evolution can be sped up. M M G P P L C S is de-

signed to speed up the processes of both evolution and evalua-

tion of genetic parallel programs that represent combinational 

logic circuits. Moreover, a hardware based M L P has been imple-

mented in FPGAs. Experimental result shows that the speedups 

vary from 10 to 36 depending on applications. The second im-

provement is by making use of local search operators, FlowMap 

or D A O M a p . By integrating G P P L C S and FlowMap, a Hy-
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bridized G P P L C S (HGPPLCS) is developed. The H G P P L C S 

first evolves circuits in 2-input LookUp Table (LUT) circuit and 

then relies on FlowMap to give a 4-input L U T mapping solu-

tion. Experimental results show that both the L U T counts and 

the propagation L U T delays of the circuits collected are better 

than the original GPPLCS. In addition, by including D A O M a p 

as a local search operator, a novel memetic algorithm has been 

developed and used in a Memetic G P P L C S (MGPPLCS). G P P 

is first used for evolving a population of LUT-based circuits. 

D A O M a p is for optimization purpose while the G P P searches 

for the possible global optima locations (vicinity). D A O M a p 

acts as a greedy local search operator to return an optimum cir-

cuit for each individual in the G P P population. G P P keeps on 

evolving and the process continues until some certain stopping 

criteria are met. Experimental results show that circuits found 

using this approach contain smaller number of LUTs and L U T 

levels compared with existing approaches with a smaller number 

of tournaments. 

ii 



論文撮要 

本論文旨在設計、實踐及改善一個全新遺傳平行程式編寫邏輯電路合成器 

(GPPLCS)�它建基於一種新的遺傳平行程式編寫(GPP)�根據電路的真値表(truth 
table)，GPPLCS可以合成(演變)優化的邏輯電路給予可編程序鬧矩陣晶片(FPGAs) 
運作。它採用了一個多算術邏輯單元處理器(MLP) ’ MLP是一個多指令多數據 

(MIMD)�一般性用途的處理器，基於MLP的平行結構，GPP以平行形程式(MLP 
程式)來展開進化過程。 -

我們以兩種不同的改進方式改善GPP邏輯電路合成器。首先使用的是利用硬體 

加速，我們建議一個含有多個MLP的GPP邏輯電路合成器(MMGPPLCS)， 

MMGPPLCS旨在加快基因演變和遺傳平行程式的評估。此外，放置到FPGA的 

MLP上運行能加快遺傳平行程式的評估速度。實驗結果表明有10至36倍的加 

速。另一種方式是在基因演算法配搭上一個局部搜尋(Local Search)演算法，如 

FlowMap 或 DAOMap.混合了 FlowMap 的 GPPLCS (HGPPLCS)是用 GPPLCS 在 

發展雙輸入Lookup表（2-input LUT)邏輯電路後’然後依靠FlowMap產生4輸 

入Lookup表(4-input LUT)的邏輯電路。實驗結果表明，無論LUT的數目和邏 

輯電路的層數都比原來GPPLCS收集到的電路少。此外，把DAOMap作爲一個 

局部捜尋的工具放進GPPLCS便成爲了一個全新的Memetic GPPLCS 
(MGPPLCS)�GPP首先產生一組電路，然後DAOMap優化它們 ’ GPP會不斷 

捜索最佳地點的近鄰位�GPP不斷演變，直到某些標準達到。試驗結果表明 

MGPPLCS採用這種方法可在較短的時間找到一些較少LUT的數目和邏輯電路 

的層數的電路。 
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Chapter 1 

Introduction 

Field Programmable Gate Arrays (FPGAs) have become very 

popular for prototyping new designs of digital logic circuits. 

This is because the F P G A implementation of a design is rel-

atively easy, thus allowing logic verification to be performed 

early in the design process and reducing the turnaround time 

62]. This has further ramifications on the manufacturing costs. 

In implementing a design in FPGAs, the optimized logic descrip-

tion obtained during logic synthesis must be mapped onto the 

modules and routing resources available on a particular F P G A . 

The objective is to find the best mapping , in terms of number 

of modules required, onto the F P G A . Other factors, such as per-

formance, may also be considered. In this thesis, a synthesizer 

using genetic parallel programming (GPP) for F P G A technol-

ogy mapping problem - a Genetic Parallel Programming based 

Logic Circuit Synthesizer (GPPLCS) is presented. 

This chapter is organized as follows. An overview of the 

F P G A is given in Section 1.1. In Section 1.2, F P G A technol-

ogy mapping problem is described. The motivations and our 

contributions can be found in Sections 1.3 and 1.4 respectively. 

Finally, the thesis organization is given in Section 1.5. 

1 
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Figure 1.1: General Model of an FPGA which consists of Configurable Logic 
Blocks (CLBs), Input Output Blocks (lOBs) and routing resources 

1.1 Field Programmable Gate Arrays 

Field Programmable Gate Arrays (FPGAs) are a class of pro-

grammable hardware devices which consist of an array of Input 

Output Blocks (lOBs), Configurable Logic Blocks (CLBs) and 

routing resources. A simplified general model of an F P G A is 

shown in Figure 1.1. lOBs are responsible for connection be-

tween the CLBs logic and the outside world. A CLB is a basic 

unit of a logic function implementation in FPGAs. Routing re-

sources interconnect the CLBs and form connections between 

the CLBs and the lOBs. Some FPGAs may also contain on-

chip R A M . Figure 1.2 shows a 2-Slice Virtex-E CLB [2] which 

contains two logic cells. Each Logic Cell consists of a function 

generator in the form of a LookUp Table (LUT), a storage ele-

ment or Flip Flop (FF), internal Carry and Control Logic and 

registers. 
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Figure 1.2: 2-Slice Virtex-E CLB .. 

LUT-based FPGAs are a new generation of integrated cir-

cuit with an array of programmable logic blocks placed in an 

infrastructure of interconnections. Usually, fixed size LUTs are 

used among the whole F P G A chip and the size of every L U T is 

denoted by the number of inputs (A;), which is commonly chosen 

to be 4 or 5. A /c-input L U T (/c-LUT) can be used to imple-

ment any Boolean function of up to k variables. Every L U T 
is implemented by memory cells with k-hit address decoder. 
Any inputs to a Boolean function will be taken as an address to 

read the corresponding bit pre-loaded inside the memory cell. 

Therefore, a A;-LUT can be used to implement any A;-variable 

Boolean functions. Figure 1.3 shows a possible structure of a 

3-LUT. 

1.2 FPGA technology mapping problem 

A typical design flow for FPGAs consists of a number of steps. 
W e first synthesize the logic circuit from specification and then 
follow by logic optimization. Then, it is followed by technol-
ogy mapping and finally placement and routing. The aim of 
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Figure 1.4: FPGA mapping example 

F P G A technology mapping is to get a functionally equivalent 

L U T network based on a given Boolean circuit while placement 

and routing is to realize an implementation of the mapped L U T 

network. As a result, the objective of technology mapping is 

either to use a minimal chip area (i.e. area minimization) or to 

have a minimum circuit delay (i.e. depth minimization). The 

area is commonly indicated by the number of LUTs while the 

circuit delay is measured by the number of level of LUTs. 

Our definition of the F P G A technology mapping problem is 

slightly different from the one used by the Computer Aided De-

sign group. In their problem definition, the input to the F P G A 
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technology mapping problem is a Boolean Network which is 

modeled from a circuit. That means technology mapping ap-

plies on an existing circuit. W e believe that any existing circuits 

would hinder our GPPLCS from reaching a global optimum. 

Thus, we used a different definition. Our input to G P P L C S is 

a truth table of a circuit. As the truth table specifies the func-

tionality of a circuit only, circuits can be evolved freely in the 

GPPLCS. Thus, GPPLCS can be prevented from being trapped 

in a local optima. 

The output of our GPPLCS would be a network which is com-

posed of LUTs which performs the same function as stated in 

the input truth table. The number of inputs to L U T is bounded 

by a variable k. If the network is /c-bounded, all inputs of LUTs 
will be less than or equal to k. Clearly, /c-bounded network can 
be implemented by an F P G A using /c-LUTs as logic block. Fig-

ure 1.4 shows an example on this problem. This example can 

be implemented by 5 LUTs. 

The F P G A technology mapping problem is formulated as fol-

lows: 

• INPUT: A truth table of a circuit 

• O U T P U T : A /c-bounded network 

• Objectives: 

1. Minimize the number of LUTs used to map the circuit. 

2. Minimize the delay of the circuit mapping result. 

1.3 Motivations 

A Genetic Parallel Programming based Logic Circuit Synthe-

sizer (GPPLCS) is proposed in this thesis. It is motivated by 

the following two observations: 
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1. Traditionally, technology mapping problems are solved by 
deterministic algorithms like FlowMap [21] and D A O M a p 

13]. Although mapping solutions can be obtained in a 

short period of time, the qualities of the solutions are not 

the best. The application of stochastic algorithms like 

Genetic Parallel Programming (GPP), which are particu-

lary good at finding the global optimum to optimization 

problems, should be explored. Moreover, since G P P is a 

population-based search approach and has a strong opti-

mization capability, it can find more of the best solutions 

among the possible solutions. That means more than one 

mapping solutions can be found by GPP. 

2. Although G P P is good at locating the global optimum in 

optimization problems, G P P usually takes a long time for 

the computation. Some improvements are necessary to 

tackle this problem. 

A G P P L C S is therefore proposed and implemented to tackle 

the first problem. Some further improvements are made to the 

GPPLCS. By having an hardware implementation of the GP-

PLCS in FPGAs is one of a feasible ways to solve the efficiency 

problem. The other way is to include a non-genetic deterministic 

local search operator in the GPPLCS. These improvements are 

shown to be effective in significantly shortening the computation 

time. 

1.4 Contributions 

Firstly, the major contribution of our work is the design and 

implementation of a GPPLCS. The G P P L C S is used to design 

optimized combinational logic circuits with LUTs, which are the 

basic logic representation components in FPGAs. Designing an 

optimized lookup-table network is a non-trivial task. Based on a 
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Figure 1.5: The system block diagram of the GPPLCS 

tailor-made combinational logic evaluation engine, Multi Logic 

Unit Processor (MLP) and an Evolution Engine (EE) (see Fig-

ure 1.5), the GPPLCS successfully evolved high qualities multi-

level combinational logic circuits. The results are superior to 

other existing Genetic Programmings (GPs) and Genetic Algo-

rithms (GAs) systems. 

Secondly, we have successfully built a hardware evaluation 

engine on FPGAs. Based on the architecture of the MLP, a 

hardware based M L P on FPGAs has been designed and imple-

mented so that the evolution speed can be boosted. A G P P L C S 

with software version of the EE and the hardware based M L P 

were built to verify the effectiveness. 

Thirdly, further improvements have been achieved on the GP-

PLCS with the hardware assisted MLP. First of all, we have 

investigated the possibility of full scale hardware implementa-

tion of GPPLCS. As the execution time of the M L P and the E E 

are different, a special model of cooperation between the M L P 

and the E E are necessary in a hardware implementation of the 

G P P L C S in an F P G A . By including multi M L P with a single 

EE in a GPPLCS, it can reduce the waiting time of E E during 

an evaluation of evolved combinational logic circuit in the MLP. 
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The simulation shows that the model works fine in evolving logic 

circuits and is suitable for the implementation of the G P P L C S 

in FPGAs. 

Fourthly, we have included a local search operator in our GP-

PLCS. Based on existing deterministic algorithms for technol-

ogy mapping problems such as FlowMap and D A O M a p [13, 21], 

a Hybridized GPPLCS (HGPPLCS) and a Memetic G P P L C S 

(MGPPLCS) have been designed and implemented. The hy-

bridized G P P L C S make use of the population-based Genetic 

Parallel Programming (GPP) and FlowMap to evolve 4-LUT 

circuits. Since G P P is population-based, it has a number of 

individuals (circuits) that have the same function (i.e. many-to-

one genotype^-phenotype^ mapping). Thus, G P P can provide a 
number of different circuits as inputs to the FlowMap algorithm. 

In this way, FlowMap can return different mapping solutions so 

that a better solution can be obtained. 

Lastly, algorithms hybridize a non-genetic deterministic local 

search to refine the qualities of solutions with a genetic algorithm 

are called memetic algorithms [53]. This inspires an idea of using 

a local search operator in GPPLCS. By refining the individuals, 

local optima can be found more efficiently. During the process 

of evolution, D A O M a p keeps refining individuals so that more 

and more optima can be explored. This new G P P L C S with a lo-

cal search operator - D A O M a p becomes our memetic GPPLCS. 

Experimental result shows that the memetic G P P L C S evolve 

better circuits using smaller number of tournaments. 

Generally speaking, the memetic G P P L C S is the most effi-

cient and effective method to generate circuits. It requires fewer 

evaluations to identify higher quality solutions than GPP. Both 

iThis is the representation which consists of encoded codes (chromosomes) for the 
phenotype 

2The phenotype is the representation (as opposed to the genotype) which exhibits 
features that can be evaluated. The phenotype is the visible, behavioral expression of the 
genotype 
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the lookup table counts and the propagation delays of the cir-

cuits collected are better than those obtained by conventional 

design or evolved by G P P alone. 

1.5 Thesis Organization 

The rest of the thesis is organized as follows: 

Chapter 2 first presents the research background of this the-

sis. Then, it gives a thorough review on both deterministic 

and stochastic algorithms to technology mapping problem. Af-

terwards, a brief introduction of Genetic Parallel Programming 

(GPP) will be given. 

Chapter 3 presents a Genetic Parallel Programming based 

Logic Circuit Synthesizer (GPPLCS). G P P L C S is a G P P sys-

tem which comprises two core components, a Multi-Logic-Unit 

Processor (MLP) and an Evolution Engine (EE). The M L P is 

an evaluation engine to execute parallel genetic programs for 

fitness evaluation. The EE is a population-based evolutionary 

process which manipulates the population and performs genetic 

operators. 

Chapter 4 shows a design and implementation of a Multi 

Logic Unit Processor (MLP). The M L P is a hardware imple-

mentable evaluation engine to execute parallel genetic programs 

for fitness evaluation. With a cooperation of the software ver-

sion EE and the hardware based MLP, combinational circuits 

are evolved at a faster rate. Experimental results in terms of 

actual speedup ratio on several combinational logic circuits are 

presented. 

In Chapter 5, we describe a new model of cooperation be-

tween the M L P and the EE. This new model is designed for 

hardware implementation in FPGAs. The main contribution is 

to shorten the waiting time of EE during an evaluation of logic 

circuit programs in the M L P based on a pipeline concept. Sim-
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Illation results on several combinational circuits compared with 
the current G P P L C S are presented. 

Chapter 6 presents a hybridized GPPLCS. A system which 

integrates the GPPLCS and the FlowMap algorithm is pre-

sented. Experiments on several combinational logic circuits are 

presented. 

Chapter 7 gives a presentation of a memetic GPPLCS. By 

including a non-genetic local search operator - D A O M a p in GP-

PLCS, better circuits can be evolved with a smaller number 

of tournaments. Experimental result on several combinational 

logic circuits are given. 

Finally, Chapter 8 concludes this thesis with a summary of 

the issues addressed in this thesis and their contributions. It also 

suggests several directions for future research in our GPPLCS. 

• End of chapter. 



Chapter 2 

Background Study 

In Computer Aided Design (CAD) field, technology mapping 

problem is mainly tackled by deterministic algorithms. They are 

mainly network-flow-based algorithms which produce mapping 
solutions with optimal depth. Although there are no stochastic 

algorithms designed to tackle the technology mapping problem, 

some stochastic algorithms are designed for multi-level combi-

national logic circuit design. 

This chapter is organized as follows. A literature review on 

two deterministic network-flow-based algorithms (FlowMap and 

D A O M a p ) is given in Section 2.1. Section 2.2 is a literature re-

view on stochastic algorithms for multi-level combinational logic 

circuit design. Finally, a brief introduction of Genetic Parallel 

Programming is presented in Section 2.3. 

2.1 Deterministic approach to technology map-
ping problem 

In this section, we introduce two network-flow-based algorithms 

for the technology mapping problem. These algorithms guaran-

tee to produce mapping solutions with optimal depth. Therefore 

in the later design process, the wiring delays of the circuit are 

also optimized. 

11 
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2.1.1 FlowMap 

A circuit is modeled as a Boolean Network. There is a set of 

nodes PI representing the primary inputs (Pis) and another set 

of nodes P O representing the primary outputs (P〇s). All other 

nodes in the network are called internal nodes and these nodes 

are associated with specific functions. The function type of the 

internal nodes can be simple (AND, OR, N O T , X O R ) or com-

plex. Every wire in the circuit is represented by an edge between 

two nodes. All incoming edges to a node are called fanin of this 

node and all outgoing edges are called fanout; Nodes in PI has 

only fanouts while nodes in P O has only fanins. If the in-degrees 

of all nodes are less than or equal to k, the network is /c-bounded. 
Clearly k bounded network can be implemented by an F P G A 
using /u-input LookUp Tables (/c-LUTs) as logic block. 

FlowMap [21] is the first depth-optimal technology mapping 

algorithm developed. The algorithm will first apply Decompose 

Multi-Input Gate (DMIG) [14] to decompose the network into a 

network composed of small gates which have a smaller number 

of inputs (say 2). Experimental results show that small gates 

can be packed and grouped more efficiently than large input 

gates. The depth of the mapped network is the smallest when 

the original network was first decomposed into 2-input gates. 

After gate decomposition, the algorithm enters the labeling 
phase. The algorithm calculate a label l(t) for every node t in 
topological order. The label l(t) gives the minimum depth of any 
mapping solution of the subnetwork rooted at node t, denoted 
by Nt. Moreover, l(t) is either equal to the maximum label p of 
the nodes in fanin of t or one more than the maximum label. 
FlowMap first collapses all nodes with label p in Nt to get a 
new network N^. , then it continues to compute the maximum 

volume min-c lit of N[ using the classic network flow technique. 
If the cut size is less than or equal to k, the label l(t) is assigned 
to be p, otherwise l(t) = p+1, indicating a new L U T is used to 
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CO 

y 
Figure 2.1: Label Calculation in FlowMap 

map Nt. 
After label calculation, FlowMap starts A;-LUT generation 

with a list of P O nodes. It iteratively takes a non-PI nodes on 

the list and generate a L U T to implement the function for all the 

nodes with the same label. The fanins to this newly generated 

L U T is then put on the list. 

To illustrate the label calculation we show the network for 

the circuit in Figure 2.1. There are 6 Pis (from a to /) and 
1 P O {yl). For simplicity, we take k = ?> (i.e. 3-input LUT). 
Suppose we need to compute the label for node g% with p = 2 

(i.e label of gl is 2, l[gl) = 2) during the label phase. Thus we 
collapse the node g7 with g8 together and consider this collapsed 
node as the node sink. After addition of a dummy source node 
(src) connecting to all 5 PI nodes, we find a minimum cut on 
the network by network flow technique. Figure 2.2 shows the 

collapsed network and the graph for flow calculation. The min-

cut simply separates the sink node with all the other nodes, 
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Figure 2.2: Label Calculation in FlowMap (Cont’） 

which implies that nodes g7 and gS can be grouped together 
and implemented by a 3-LUT. Since the cut size equals to 3, 

the label of node g8 is 2, same as that of g7. 
FlowMap has a polynomial time complexity of 0{kmn) where 

n and m are the number of nodes and the number of edges in N. 
Therefore the algorithm is extremely fast even for large circuits 

with thousands of gates. 

2.1.2 DAOMap 

D A O M a p [13] which stands for Depth-optimal Area Optimiza-

tion of F P G A designs is an extension of FlowMap . The differ-

ence lies in the way of modeling and controlling node duplica-

tions so as to reduce area through the entire mapping process. 

First, a cut-enumeration-based method that consists of cut gen-

eration and cut selection is adopted. Cut generation traverses 

the network from Pis to POs, and combines subcuts on the 

fanin nodes of the target node to generate all the cuts on the 

target node (each cut represents one possible L U T implementa-

tion rooted on the target node). After all the cuts are generated, 

the network from POs to Pis is traversed and cuts to produce 

the L U T mapping result is selected. 
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In order to reduce area through the entire mapping process, 

three novel approaches to effectively model and control node du-

plications and reduce area through the entire mapping process 

are done in D A O M a p . First, the potential duplications during 

the cut generation procedure are considered so that the mapping 
solutions encoded in the cuts can consider duplication costs. 

This will help the cut selection procedure to make the right de-

cisions to cover the circuit with less node duplications from a 

global optimization point of view. Second after the timing con-

straint is determined (the longest optimal mapping delay of the 

network), the noncritical paths will be relaxed by searching the 

solution space which will consider both local and global opti-

mality information to minimize the mapping area. Third, an 

iterative cut selection procedure that further explores and per-

turbs the solution space is carried out to improve the solution 

quality. 

2.2 Stochastic approach 

Although there are no stochastic algorithms designed for tack-

ling technology mapping problems, there are some related work 

on multi-level combinational logic circuit design by bio-inspired 

methods. In addition, there are many different existing pheno-

type representations for combinational logic circuits. They are 

described in the following subsections. 

2.2.1 Bio-Inspired Methods for Multi-Level Combina-
tional Logic Circuit Design 

In this subsection, we summarize the current researches on bio-

inspired methods for multi-level combinational logic circuit de-

sign. 

• Simple Genetic Algorithms (SGA): It encodes a combina-
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tional logic circuit by using a fixed-length genotype [15, 16, 
17, 32, 49, 50, 55, 58, 59]. Standard genetic operators such 
as one-point crossover and bit mutation are used. 

• Variable-length Genetic Algorithms (VGA). It is an exten-
sion of S G A [33, 34, 35]. A genotype only encodes the 
effective part of the architecture bits of a combinational 
logic circuit. Comparing with SGA, the lengths of V G A 
genotypes are smaller. Thus, it is possible to grow larger 
circuits in a shorter evolution time with V G A . Special ge-
netic operators such as cut, splice [25] are used. 

• Standard GP. It uses a tree structure to represent an in-

dividual combinational logic circuit [4, 40]. Standard G P 

operators such as node mutation, sub-tree mutation and 

sub-branch crossover are used. The main drawback of this 

method is that only single-output combinational logic cir-

cuits can be evolved. It is because there is only one root 

node in each program tree. 

• Evolutionary Strategy (ES) are used to evolve combina-

tional logic circuits [37, 52]. It includes five steps: 1) ran-

domly initializes a population of 7 genotypes; 2) evaluates 

all genotypes; 3) copies the fittest genotype into a new pop-

ulation; 4) fills the remaining 7 — 1 places in the new popu-

lation by the mutated versions of the fittest genotype; and 

5) replaces the old population by the new one. The algo-

rithm repeats steps 2 to 5 until the termination criterion is 

achieved. 

• Ant Colony Algorithms (AGO). A G O is used to evolve logic 

circuits [3, 20]. It is a multi-agent system in which inter-

actions between low-level agents (ants) results in a meta-

heuristic behavior of the whole ant colony [24 . 
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• Particle Swarm Optimization (PSO). PS〇 is to evolve com-

binational logic circuits [19]. It simulates the movements 

of a flock of birds which seek for food (a global aim). It is 

a distributed algorithm that performs a multi-dimensional 

search [38 . 

• Genetic Algorithms with Simulated Annealing (GASA). It 

is a hybridization of a G A with Simulated Annealing (SA) 

18, 39]. In this algorithm, the G A locates good regions of 

the search space whereas the SA exploits these good regions 

in order to find the optima. 

• Case Injected Genetic Algorithms (CIGA). It combines a 

G A system with a Case-Based Reasoning (CBR) module 

45，46]. In the C B R , a case-base is built during G A search. 

Whenever the best individual is found, it will be stored in 

the case-base. The case-base can be reused to solve a new 

problem by injecting similar cases to the initial population 

of a new G A search. 

2.2.2 A Survey of Combinational Logic Circuit Repre-
sentations in stochastic algorithms 

Most of the existing phenotype representations for combina-

tional logic circuits adopt two-dimensional geometric structures. 

This subsection presents five typical geometries proposed and 

used by different groups of researchers. They are: 

• Programmable Logic Device (PLD) Structure. P L D struc-

ture is used to evolve logic circuits [29]. P L D is a class 

of reprogrammable logic devices, e.g. GAL16V8. Each 

P L D consists of a fused array and an Output Logic Macro 

Cells (OLMC) (see Figure 2.3). A fused array can be 

programmed to represent minterms of a Boolean function. 

Multiple minterms are connected to an O L M C in which 
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Figure 2.3: The structure of Programmable Logic Devices 

a multi-input O R gate is configured. This phenotype is 

designed to match the architecture bits of PLDs in a sum-

of-products form. 

• Cartesian G P (CGP) [51]. As shown in Figure 2.4, the 

phenotype is a two-dimensional array of cells. Each cell 

contains a logic gate with some inputs and outputs. All 

external inputs and gate outputs can be reused by their 

higher level (right-hand side) cells. The final outputs can 

be connected to any external inputs and/or cell outputs 

in any levels. A levels-back parameter is used to limit the 

maximum number of levels that a cell output can be reused 

by its higher level cells. 

• Louis's Two-Dimensional Gate Array. It is a two-dimensional 

gate array proposed by Louis [17, 45] (see Figure 2.5). The 

phenotype is a two-dimensional array of two-input logic 

gates. Except the first level gates (the left-most column in 

the figure), a gate G[i,j] gets its upper input from G[i,j.r 

and lower input from either G[i.l,j.l] or G[i+l,j.l]. The 

outputs of the circuit are always connected to the outputs 

of the highest level gates (the right-most column in the fig-

ure). This representation reduces the genotype length by 
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Figure 2.5: Louis's Two-Dimensional Gate Array-

restricting the connectivity of a circuit. 

• Torresen's Two-Dimensional Gate Array. Another two-

dimensional gate array is proposed by Torresen [58] (see 

Figure 2.6). It relaxes the restrictions imposed on Louis's 

phenotype. A gate's input can be connected to any gate 

output in its previous layer. 

• The Function-Based F P G A (F^PGA). It is a function-level 

Evolvable Hardware (EHW) proposed by Murakawa [54 

(see Figure 2.7). It is used to evolve hardware solutions 

for calculation intensive applications such as digital sig-

nal processing and data compression [54]. In an F^PGA, 

there are multiple layers of programmable floating-point 

processing units (PFUs) that can perform different high-
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Figure 2.7: The phenotype of F^PGA 

level mathematic functions (e.g. sine, cosine, etc.). The ar-
chitecture of F^PGA is similar to the Torresen's one. The 
main difference is that F^PGA shares all external inputs to 
all PFUs in all layers. 

2.3 Genetic Parallel Programming 

In this section, a brief introduction about Genetic Parallel Pro-
gramming will be given. 

Genetic Programming (GP) [31] is a robust method in Evo-
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lutionary Computation. There are many streams in G P like 

graph-based GP, stack-based GP, Cartesian GP, linear-tree and 

linear-graph G P and grammar-based GP. The two main streams 

in G P are standard G P [40] and linear-structured G P (linear 

GP) [6]. In standard GP, a genetic program is represented in a 

tree structure. In linear GP, a genetic program is represented in 

a linear list of machine code instructions or high-level language 

statements. A linear genetic program can be run on a target 

machine directly without performing any translation process. 

The Genetic Parallel Programming (GPP) paradigm pro-

posed by Cheang et. al. [43] is developed on the basis of linear 

GP. G P P is a novel linear G P paradigm that evolves paral-

lel programs of a Multiple Instruction-streams Multiple Data-

streams (MIMD) architecture with multiple Arithmetic-Logic-

Units (ALU). A genetic parallel program consists of a sequence 

of parallel-instructions. A parallel-instruction comprises multi-

ple sub-instructions that can perform multiple operations simul-

taneously in an execution step. G P P has been used to evolve 

compact parallel programs for different problems, such as nu-

meric function regression [43] and data classification problems 

9]. Figure 2.8 shows the framework of a G P P system. It con-

sists of two components, a Multi Logic Unit Processor (MLP) 

and an Evolution Engine (EE). The M L P is an execution engine 

for genetic program fitness evaluation. The E E manipulates the 

population of genetic programs, performs genetic operators such 

as mutation and crossover and decompiles the solution program 

to symbolic assembly and high-level language codes. The details 

of the M L P and the EE are presented in the subsequent section. 

2.3.1 Accelerating Phenomenon 

Experimental results show that G P P can evolve wide programs 

(more sub-instructions within a parallel-instruction) more ef-
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ficiently than narrow programs (less sub-instructions within a 

parallel-instruction). It is called the G P P accelerating phenom-

enon [44]. This phenomenon is particulary important and neces-

sary. Having more sub-instructions within a parallel-instruction 

means that circuits can be evolved by G P P with a smaller 

depth level and smaller number of lookup tables. As a result, a 

Genetic Parallel Programming based Logic Circuit synthesizer 

(GPPLCS) can developed based on GPP. 

2.4 Chapter Summary 

This chapter has given a literature review on two determinis-

tic network-flow-based algorithms, i.e. FlowMap and D A O M a p 

which are popular among Computer Aided Design community. 

Moreover, a literature review on stochastic algorithms for multi-

level combinational logic circuit design as well as five different 

phenotype representation of combinational logic circuit design. 

Finally, a brief introduction of Genetic Parallel Programming 

have been presented. 

• End of chapter. 



Chapter 3 

A GPP based Logic Circuit 
Synthesizer 

In this chapter, a Genetic Parallel Programming based Logic 

Circuit Synthesizer System (GPPLCS) is presented [10, 11’ 12 . 

There are two main cores, the Evolution Engine (EE) and the 

Multi Logic Unit Processor (MLP). The EE manipulates the 

population of genetic programs, performs genetic operators such 

as mutation and crossover. The M L P is an execution engine 

for genetic program fitness evaluation. Variable-length parallel 

program structure (MLP program) is used to represent combi-

national logic circuits in order to preserve introns in the early 

stage. Circuits are evolved by a dual-phase approach. The first 

phase is called design phase. G P P L C S aims at finding a 100% 

functional program. Only functional correctness of the genetic 

. programs are taken into consideration in this stage. Other qual-

itative factors like LookUp Table (LUT) count, propagation de-

lay and program size are not considered. Once a first correct 

genetic program is found by the GPPLCS, we proceed to the 

second phase, optimization phase. Another set of genetic opera-

tors together with an optimization-oriented fitness function are 

used to improve the qualities of the correct program. 

This chapter is organized as follows. The overall architecture 

of G P P L C S is described in Section 3.1. A detailed description 

24 
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Figure 3.1: The system block diagram of GPPLCS 

of the M L P is presented in Section 3.2. Then, both the genotype 

and phenotype of M L P program are discussed in Section 3.3 and 

3.4. It is followed by a detailed description of the EE in Section 

3.5. Finally, a chapter summary is given in Section 3.6. 

3.1 Overall system architecture 

Genetic Parallel Programming (GPP) is a linear G P paradigm 

that evolves parallel programs based on the MLP. Thus, par-

allel programs evolved are called M L P programs. G P P L C S is 

developed based on the GPP. It is a logic circuit synthesizer de-

signed for tackling technology mapping problem by a stochastic 

approach. It first takes a truth table of a circuit (training cases) 

as an input. The output is a mapping solution to the circuit 

in the L U T format. Although numbers of inputs to the L U T 

can be varied, they are chosen to be either 2 or 4. All com-

binational digital circuits presented are evolved by a two-stage 

(i.e. design and optimization stages) approach. Different sets 

of genetic operators including crossover, bit mutation and sub-

instruction swapping are used in different stages. In the design 

stage, the G P P L C S system aims at finding a 100% functional 

program (correct program). The raw fitness is given by the ratio 
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Figure 3.2: The 2-LUT MLP used by the GPPLCS 

of unsolved training cases. In the optimization stage, the raw 

fitness then puts emphasis on the L U T count, the propagation 

delay and the program length. In other words, the major ob-

jective of the optimization stage is reducing the L U T count and 

then the propagation delay. 

G P P L C S consists of two components, the EE and the MLP. 

The E E manipulates the genetic parallel programs and performs 

genetic operations. The M L P evaluates the genetic parallel pro-

grams to determine their fitness. Figure 3.1 shows the system 

block diagram of GPPLCS. The details of the E E and the M L P 

are presented in the subsequent sections. 

3.2 Multi-Logic-Unit Processor 

The M L P used in the GPPLCS is a general-purpose, tightly cou-

pled processor. It is used for executing Boolean circuits evolved 

in G P P L C S (i.e evaluation of genetic program in GPPLCS). 

Since G P P L C S can evolve circuits in either 2-input L U T (2-

LUT) format or 4-input L U T (4-LUT) format, the architecture 

of M L P is problem specific. The difference lies on the k-input 

logic units (A:-LoUs). 
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The M L P designed for evaluating circuits in 2-LUT format 

(2-LUT M L P ) is shown in Figure 3.2. It consists of 16-LoUs 

(L0-L15), 16 variable registers (reg[0]-reg[15]) and 16 constant 

registers (reg[16]-reg[31]). 

In the MLP, variable registers store intermediate values and 

program outputs; and constant registers store program inputs 

and constants. Each variable register can only be modified by 

a dedicated LoU (as shown in Figure 3.2, LoU[i] writes to reg[i 

only). Constant registers are preloaded by EE before execution 

of an M L P program. In each processor clock cycle, multiple 

LoUs take input values from registers and perform Boolean op-

erations concurrently. Then, all LoUs write single-bit results to 

their corresponding output variable registers. For example, the 

2-LUT M L P shown in Figure 3.2 can perform up to 16 differ-

ent operations concurrently, and 16 intermediate results can be 

carried forward to the subsequent parallel-instructions through 

the variable registers. 

Figure 3.3 shows the M L P designed for evaluating circuits in 

4-LUT format (4-LUT MLP). Similarly, the M L P consists of 32 

registers. R0-R15 are variable registers that store intermediate 

values and program outputs while R16-R31 are read-only regis-
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LoU[0] LoU[l] ... LoU [？] ... LoU[15] 
PI[0] SI[0,0] 5I[0,1] ~[… 5I[o}] ... SI[0;15]— 
PI[1] SI[1,0] SI[U] ~ ... Sljl:/] I ... 5I[1/15]— 

PI[i] I SI[t.O] I ！3I[U] ~I ... I SI['t',;;] ~| ... I SI[；:15]— 

1" 1 Linax 一 1 ] I S I [ L n ^ , x - l , 0 ] I S I [ L m a x - l , l ] | … | S I [ L m a x - 1 , / ] … | S I [ L m a > c - l , 1 5 ] | 

Figure 3.4: The genotype of a Lmax-P'^ (PI[0]-PI[LMyu^-l])’ 16-SI(SI[*,0j-
SI[*,15]) MLP program 

Table 3.1: Control-codes in 2-LUT circuits SI 

fields number of bits encoding 

function opcode 5 00000 - 01111 = bO - bF (see Figure 3.6) 

10000 - m i l = no operation, nop 

operand A 5 00000 - 11111 = input [0] - input [31] 

operand B 5 00000 - 11111 二 input [0] - input [31] 

Total 15 

ters that store program inputs and logic constants. A variable 

register can only be modified by a dedicated 4-LoUs (e.g. LO can 

write to RO only). 16 4-LoUs (L0-L15) perform logic operations. 

E E will preload the program inputs and the constants into the 

read-only registers before a parallel program is executed. 

3.3 The Genotype of a MLP program 

The individual representation of G P P L C S includes a sequence 

(LMAX) of parallel instructions (Pis). In each PI, there are 16 

sub-instructions (Sis). Figure 3.4 shows the genotype of an M L P 

program. The choice of LMAX depends on the problem difficulty. 

Normally, it is set to 25. Figure 3.5 shows the representation of 

Sis. 
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SI used in evolving 2-LUT ^ , . , ^ , . � 广•� � " 5-bit opcode 5-bit operand 5-bit operand circuits 

SI used in jwlvmg 4 LUT 17-bit opcode 5-bit operand 5-bit operand 5-bit operand 5-bit operand 

Figure 3.5: Representations of Sis in evolving 2-LUT and 4-LUT circuits 

Theoretically, G P P L C S can evolve circuits with any number 

of inputs of LUTs. The difference only lies on the encoding. 

Since G P P L C S currently evolves circuits in either 2-LUT or 4-

L U T format, encoding methods of Sis used are slightly different 

as each SI is used to resemble a LUT. For 2-LUT circuits, each 

SI consists of a 5-bit opcode (encoding at most 32 functions) 

and two 5-bit operands (encoding 32 choices of different inputs) 

(see Table 3.1). Since there are 16 Sis in a PI, a total of 240 

bits ((5+5+5) X 16) are used to encode a parallel-instruction. 

If LMAX is chosen to be 25 (25 Pis), the genotype may contain 

up to 6,000 (240 X 25) bits. 

For 4-LUT circuits, each SI consists of a 17-bit opcode and 

four 5-bit operands (see Table 3.2). The Boolean function of 

each SI is denoted by a four-digit hexadecimal number which 

represents the 16-bit memory contents of the 4-LUT. For exam-

ple, the SI with opcode bF6E0 means loading "0000 0111 0110 

1111" to the corresponding 4-LUT which can be treated as a 

16 to 1 multiplexer. The content of the corresponding 4-LUT is 

shown in Fig. 3.7. Similar to the 2-LUT circuits, if the max-

imum program length is 25 parallel-instructions, the genotype 

may contain up to 14,800 ((17+5+5+5+5) X 16 X 25) bits. 

G P P L C S can further be extended to evolve 6-LUT circuits. 

Each SI will consist of 65-bit opcode and six 5-bit operands. 
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inputs addresses 
function A _ _ 1 _ _ 0 _ _ ^ Boolean 
names B 1 0 1 0 expressions 2-LUT symbols 

— b o "o"o~~o""cr 0 0 — -

M 0 0 0 1 A T B 

b2 0 0 1 0 AB b^D-

b3 0 0 1 1 A ^ - O -
b4 0 1 0 0 A B s i j D -
1)5 0 1 0 1 B B-g>-

— b b ^ T T " o " A ㊉ B 

b7 0 1 1 1 AB bIEV 
b 8 ~ AB “ b = E > - — 
b9 1 0 0 1 A e B 

— b A T " m B B - ^ 
bB 1 0 1 1 A + B 
bC TT"o""o"" A — 
bP 1 1 0 1 A + B s j g ^ 

一bE r T T T A + B 
bF I 1 I 1 I 1 I 1 I 1 一 

Figure 3.6: Functions bO - bF used in 2-LUT circuits SI 

Table 3.2: Control-codes in 4-LUT circuits SI 

fields number of bits encoding 

function opcode 17 00...0 - 01...1 = bOOOO - hFFFF 

10...0 - 11...1 = no operation, nop 

operand A 5 00000 - 11111 = input [0] - input [31] 

operand B 5 00000 - 11111 = input[0] - input [31] 

operand C 5 00000 - 11111 = input [0] - input [31] 

operand D 5 00000 - 11111 input[0] - input [31] 

Total 37 
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lnput(4 Registers' value) Output 
OOTO 0 
oom 0 

0 

0 

moo 0 
^ 1 
^ 1 
^ 1 
^ 0 
Ôj 1 

^ 1 
0 

n^ 1 
nm 1 
mo 1 
mj 1 

Figure 3.7: The corresponding content of 4-LUT of the "bF6E0 r31 r27 r08 
r29 rOO" sub-instruction 

3.4 The Phenotype of a MLP program 

M L P programs are presented in parallel assembly form. Figure 

3.8 shows an optimized M L P program for 1-bit full adder in 2-

L U T format evolved by GPPLCS. It consists of two sections, 

the #data and #progi:am sections. The #data section defines 

constant, input and output Boolean variables. Before starting 

an execution, an M L P always initializes all variable registers 

(reg[0]-reg[15]) to logic 0. The constants: line in the #data sec-

tion initializes constant registers reg[16]-reg[21] to logic 0 and 

reg[22]-reg[28] to logic 1. The inputs: line defines input vari-

ables (Cin, A and B) and assigns them to constant registers 

(reg[29], reg[30] and reg[31]). The outputs: line defines output 

variables (Cout and S) and assigns them to variable registers 

(reg[0] and reg[l]). The #program section contains parallel-

instructions that perform Boolean operations. 

For example, the numbered lines in the #program section 
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#data 
constants: (rl6-r21)=0, (r二；：-r二8)=1 
inputs : (r：：9, r30, r 31) <= <Cin, A, B} 
outputs: (r00,r01)=>(Cout,S) 
#program 
00: b9 r2 9 r30 r04 
01: b8 r04 r30 rOO,b：： r04 r3丄 rl4 
02: b6 rl4 rOO r00,b9 r3丄 r04 rOl 

Figure 3.8: Optimized MLP program for 1-bit full adder in 2-LUT format 

A[丨.30] ~ J - i i y 
I "̂ J 勺 Coi;t[tOO] 

'-fTV— 
B[r31] I=s 乙J 

= > SCrOl] 

Figure 3.9: A 1-bit full adder in 2-LUT format 

in Figure 3.8 list out three parallel-instructions. For easy in-

terpretation, all nop sub-instructions in the original program 

are hidden. Each sub-instruction consists of three parts: 1) a 

function name {bO-bF or nop); 2) registers for input operands; 
and 3) an output register. For example, the b6 rl4 rOO rOO 

sub-instruction in parallel-instruction 02: performs b6 (XOR) 
on reg[14] and reg[0] and then writes the result back to reg[0 . 

Figure 3.9 shows the corresponding combinational logic circuit 

of the M L P program shown in Figure 3.8. 

The situation is similar in evolving circuits in 4-LUT format. 

Figure 3.10 shows a 2-bit full-adder in 4-LUT format evolved by 

the GPPLCS. Figure 3.11 shows the 2-bit full adder. Noticeably, 

three out of the four 4-LUTs can be replaced by 3-LUTs because 

they have one input set to a constant logic 0. 
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#data 
constants: <1：丄6—1-：2丄）=0, (r：：：： — 二：：6)=丄 
inputs ： < r27, r2 8, r：： 9, r30, r31) <= (Cin, M , AO, B丄，BO) 
outputs: (rOO,rOl,r02)=>(Cout,SI,SO) 
#program 
00: bF6E0 1-31 r27 r08 r：：̂  rOO 
01: b3AA4 rOO r28 r06 r30 r00,bCB9E rOO r23 r30 r21 rOl, 

b849E 1-31 r27 r31 r29 r02 

Figure 3.10: Optimized MLP program for 2-bit full adder in 4-LUT format 

nzzzzziziiî ^̂ iz m 
_ i ] 1 = — 

Cln[r27] J —— 
0 - g w 

A0[r29] c = > ~ 5 c = > Cout[rOO] 

S ^ I I ——^ 
0—I 

Figure 3.11: A 2-bit full-adder in 4-LUT format 

3.5 The Evolution Engine 

The Evolution Engine (EE) is responsible for manipulating the 

population, performing genetic operations, loading genetic pro-

grams to a M L P for fitness evaluations, calculating/reporting 

statistics and decompiling the evolved solution program to a 

symbolic parallel assembly program (MLP program). 

3.5.1 The Dual-Phase Approach 

In order to evolve a solution with GPP, enough spare space (for 

both parallel-instructions and sub-instructions) are necessary to 

be given in each genetic program for introns to be built up. In-

trons are non-effective instructions which do not contribute to 

the final output of a genetic program. Research results show 

that the existence of introns in genetic programs in the early 

and middle stage of a run can benefit evolution [5]. The exis-

tence of introns in the early and middle stages of a G P evolution 

is necessary. Introns are necessary to be in the genetic programs 
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until we find the first correct program. However, the first cor-

rect program is usually not an optimized solution in terms of 

quality measurements such as L U T count and the propagation 

delay. To tackle this problem, G P P L C S uses a dual-phase (de-

sign and optimization phases) approach with a dual-phase fit-

ness function.The dual-phase fitness function intends to improve 

the functionality of genetic programs before the first correct ge-

netic program is found. Whenever a correct genetic program 

is found, it changes its fitness calculation criteria to incorporate 

optimization-oriented measurements. Besides the dual-phase fit-

ness function, GPPLCS uses different set of genetic operators in 

the two phases. Details can be found in subsequent section. 

In the design phase, G P P L C S aims at finding a 100% func-

tional program (correct program). Its raw fitness is given by 

fdp — � 

where U is the number of unmatched training case and T is the 

total number of training cases. 

The design phase raw fitness /办 is used to evaluate the func-

tional fitness of a genetic program. If there is a partial correct 

genetic program, its fdp is greater than zero. /办 equals to zero 

only when all training cases are matched. After finding the first 

correct genetic program, the evolution will proceed to the opti-

mization phase to optimize correct genetic programs based on 

some optimization-oriented criteria. In the optimization phase, 

the raw fitness is given by 

, g d 1 L 1 
fop = — — + - j X ——+ — X 

Qrnax ^rnax 9max -^max ^maxQmax 

The optimization phase raw fitness fop of a correct genetic pro-

gram is calculated from three qualitative indicators: 1) the L U T 

count g (the number of normal sub-instructions) ； 2) the prop-

agation delay d\ and 3) the program length L (the number of 
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parallel-instructions). Since a genetic program consists of nop 
and introns, L represents the number of L U T levels in the logical 
circuit diagram but not the actual L U T delay in hardware. It is 

because nop and introns are not placed in real hardware so that 
their L U T delays are not counted. The ffmax,山腿 and Lmax 

are the maximum values allowed for the L U T count, the prop-

agation delay and the program length respectively. The main 

objective of the optimization phase is to reduce the L U T count 

and then the propagation delay. The last multiplication term in 

fop guides the evolution to shorten the lengths of correct genetic 

programs. Normally, a shorter program has greater chance to 

have smaller g and d values. -

By combining the two phases raw fitness functions (/办 and 

fop), the dual-phase fitness function of the whole evolution process 
is obtained. In the design phase (/办 > 0), /謂 is given by 

fraw = 1.0 + fdp 

In the optimization phase (/办=0), fraw is given by 

fraw — fop 

The constant 1.0 is used to distinguish the two phases. With 

this fitness function, a partially correct genetic program has an 

fraw greater than 1.0 whereas a correct genetic program has an 
fraw less than 1.0. In the design phase, whenever G P P L C S finds 
the first genetic program with an fraw equal to 1.0, it proceeds 

to the optimization phase. 

3.5.2 Genetic operators 

In this subsection, genetic operators used in G P P L C S are de-

scribed. 

• Genetic Programs Initialization: G P P L C S uses a binary 

string (genotype) to encode a M L P program (phenotype). 
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Figure 3.12: PI level crossover on two parents 

Before an evolution process, EE initializes all genetic pro-

grams in a population randomly. The number of PI {L : 
length) of a genetic program is chosen randomly between 

one to a predefined value (L丽:the maximum program 

length). Each bit in a genotype has equal chance to be 0 

or 1. 

• Tournament Selection: G P P L C S uses tournament selection 

to produce its offspring. In each tournament, a fixed num-

ber (tournament size) of genetic programs are randomly 

selected from the population to form a tournament set. Ac-

cording to their fitness, the two best genetic programs in 

the tournament set are selected as parents to produce two 

offspring. The tournament size controls the selection pres-

sure and affects the convergence rate. 

• PI level crossover: It is a two-point crossover to exchange 

two segments of PI from two parent M L P programs (see 

Figure 3.12). All sub-instructions in a parallel-instruction 

will always be kept as a whole. The probability to take this 

operator is Pxover-

• Bit Mutation: It mutates individual bits in the genotype of 

an M L P program based on a probability Pumut-

• SI swapping: It swaps two sub-instructions inside an M L P 

program based on a probability Psiswp (see Figure 3.13). 

It can pack more normal sub-instructions in less number 
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a 剛 alu[l] alu[15] 

PI[p]|SI[/，,0]|SI[jM]| • • • |SI[；U5 了 

^ ^ 

PI[ q ]|SI[ry,0]|SI[g;i]| • • • |SI[^y,15] 

Figure 3.13: An SI swapping in a single MLP program 

of parallel-instructions so as to increase the parallelism of 

M L P program. SI swapping is only used in the optimiza-

tion phase since it intends to improve the performance of a 

correct genetic program. 

• SI-Deletion: It simply replaces a normal sub-instruction 

with a nop sub-instruction based on a probability Psidei- It 

can delete inactive sub-instructions (introns) from a correct 

genetic program and therefore is only used in the optimiza-

tion phase. 

• Diversity Maintenance: In order to maintain the diversity 

of population, E E adopts an individual replacement tech-

nique similar to the pre-selection [47]. In each tournament, 

two children are bred and evaluated. Then, the better one 

is selected and compared with its parents. If its fitness is 

different from both of its parents, it will replace the worst 

individual in the tournament set. This approach avoids 

similar individuals filling up the population and hence in-

creases the diversity of search. 

• Dynamic Sample Weighting (DSW): For some problems, 
e.g. Boolean functions, the distribution of training samples 
in the sample space is biased. These biased samples usually 

cause premature convergence in Genetic Algorithms (GAs) 

and Genetic Programmings (GPs). D S W [8] is used to bal-

ance the contributions of training samples so that the di-
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versity of genetic programs can be increased. This operator 

is only used in the design phase. 

3.6 Chapter Summary 

This chapter has presented GPPLCS. Two core components of 

G P P L C S (MLP and EE) are described. The M L P is tightly-

coupled processor which is used to execute and evaluate genetic 

programs produced by EE. The genotype of a M L P program 

is a sequence of control-codes which can be executed on the 

corresponding M L P directly. The phenotype of a M L P program 

is a parallel assembly program. EE is an evolutionary process 

which performs genetic operators, loads genetic programs to the 

MLP, calculates/reports statistics and decompiles the solution 

parallel program to a symbolic parallel assembly program. 

Furthermore, G P P L C S uses a dual-phase evolutionary ap-

proach which divides the evolution into two sequential phases. 

Firstly, the leaning phase evolves correct genetic programs. Then, 

the optimization phase improves the qualities of correct genetic 

programs. A dual-phase fitness function is used to guide the 

evolution. 

• End of chapter. 



Chapter 4 

MLP in hardware 

This chapter presents a hardware-assisted Multi-Logic-Unit Proces-

sor (MLP). It is a hardware processor built on a Field Pro-

grammable Gate Array (FPGA). The purpose is to speed up 

the evaluation of genetic parallel programs (MLP programs) 

that represent combinational logic circuits. Six combinational 

logic circuit problems are presented to show the performance 

of the hardware-assisted Genetic Parallel Programming based 

Logic Circuit Synthesizer (GPPLCS). Experimental results show 

that the hardware M L P speeds up the evolutions over 10 times. 

For difficult problems such as the 7-bit majority selector, the 

speedup ratio can be up to 36. 

This chapter is organized as follows. Our motivation is de-

scribed in Section 4.1. Then, the hardware design and imple-

mentation of M L P is presented in Section 4.2. It is followed by 

experiments. Section 4.3 is on the experimental settings. The 

experimental results and evaluations are given in Section 4.4. 

Finally, Section 4.5 is a chapter summary. 

4.1 Motivation 

In the last decade, advances in F P G A [2] have made efficient 

Evolvable Hardware (EHW) [63] possible. E H W uses Evolu-

39 



CHAPTER 4. MLP IN HARDWARE 40 

tionary Algorithms to evolve hardware architecture extrinsically 

or intrinsically. One of the major usages of E H W is to design 

combinational logic circuits [19, 36, 52]. However, the impor-

tance of scalability of E H W has been recognized by several re-

searchers [27, 30]. It is a tough problem faced not only by E H W 

researchers, but by other researchers in the fields of evolution-

ary computation, artificial neural networks, and artificial intel-

ligence in general. 

Using hardware to increase the speed of evolution is one of 

possible ways to combat the high computational cost. F P G A 

has been adopted to speed up Genetic Algorithms (GAs) and 

Genetic Programming systems [28, 41, 48, 56]. The basic idea 

is to put the whole or a part of a G A or G P system in hardware 

so as to solve problems in a shorter time than a pure software 

system. 

A hardware assisted M L P is designed and implemented to 

speed up evaluation of genetic parallel programs in GPPLCS. 

The overall system of hardware assisted G P P L C S is exactly the 

same as the pure software G P P L C S in Chapter 3. The difference 

only lies on the MLP. Experiments on six combinational logic 

circuit problems (i.e. a 6-bit multiplexer, a 2-bit full-adder, 

a 3-bit comparator, a 6-bit priority selector, a 7-bit majority 

selector and a 2-digit binary coded decimal to binary decoder) 

were conducted to show the effectiveness of G P P L C S with the 

hardware MLP. Experimental results show that the hardware 

M L P speeds up the evolution by at least 10 times even for the 

easier problems which are less computation intensive. 

4.2 Hardware Design and Implementation 

This section presents the hardware design and implementation 

details of MLP. Fig. 4.1 shows the architecture of the core part 

of MLP. The 16 sub-instruction registers (SIR0-SIR15) store the 
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Figure 4.1: The architecture of the MLP core 

individual sub-instructions in the current parallel-instructions. 

The 16 processing elements (PE0-PE15) run sub-instructions 

and store results to their corresponding variable registers. The 

Control Unit (CU) decodes parallel-instructions and gives con-

trol signals to all M L P components. Due to the limited size of 

the inter-face bus between the C U and the host (64-bit only), 

more than one bus cycle are needed to transfer the evaluation 

results of all rows in a truth table to the host. 

In most cases, G P P L C S only uses the first eight variable reg-

isters (R0-R7) to store program outputs. Thus, M L P only needs 

to transfer the first eight variable registers to the host. In order 

to maximize the usage of the 64-bit interface bus, M L P is de-

signed to buffer eight sets of program outputs (of eight training 

cases). In this way, the evaluation results of the entire truth ta-

ble are passed to the host in burst mode. For example, if there 

are N rows in a truth table, it takes N/8 clock cycles to transfer 

all program outputs to the host. 

Fig. 4.2 shows a PE (PEi) which receives a sub-instruction 

from SIRi. It stores the result in the variable register Ri. The 

core of the PE is a 4-LUT. It takes two processor clock cycles for 

the PE to execute one sub-instruction. In the first cycle, four 

input registers are selected by four multiplexers (M1-M4), and 

their values are then latched into an Internal Operand Register 
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Figure 4.2: A Processing Element 

Table 4.1: Pilchard board features 
Field Details 

Host interface: DIMM interface (a 64-bit data bus and a 14-

bit address bus) 

Operating frequency: 100 MHz 

FPGA device: XCV1000E-HQ240-6 

OS supported: GNU/Linux 

(lOR). In the second cycle, the 4-LUT uses the four latched 

operands to look up one bit and stores the result into Ri. The 

lOR is used to pipeline the operations, i.e. selecting operands 

and looking up results, and to balance the long delay time on 

the route from the registers' outputs to the multiplexers' inputs. 

The M L P is implemented on a Pilchard board [42, 60] which 

is a high performance reconfigurable computing development en-

vironment employing an F P G A . The Pilchard board is plugged 

into a 133 M H z synchronous dynamic R A M Dual In-line Mem-

ory Modules (DIMMs) slot of a PC. The Pilchard board can 

achieve a very high data transfer rate by making use of the 

D I M M R A M interface of the PC. Its efficient interface and low 

cost make it suitable for implementing the MLP. Here are some 

major features of the Pilchard board: 

The F P G A used in the Pilchard board belongs to the Virtex-

E series. The M L P uses only 2,515 slices. It is about 20% of the 
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12,288 slices available in the F P G A . Moreover, only one (out of 

96) BlockRAM is used by the MLP. The critical path delay of 

the M L P is 9.965ns. Hence, it can operate at 100 MHz. 

The M L P is coded in Very High Speed Integrated Circuit 

Hardware Description Language (VHDL) [57] which is a stan-

dard language for describing the structure and function of inte-

grated circuits (ICs). 

4.3 Experimental Settings 

To investigate the performance of the GPPLCS, we have used 

the system to evolve networks for six combinational logic cir-

cuit problems in 4-input L U T format (see Table 4.2). Although 

the G P P L C S evolves circuits in dual-phase approach, all exper-

iments in this chapter are conducted with design phase only. It 

is because large proportion of execution time used in evolving 

circuits by the G P P L C S lies on the design phase. Moreover, 

only one independent run is necessary to show the effectiveness 

of the hardware assisted GPPLCS. 

Note that the 6-bit priority selector is to show the position of 

value，r which first appears starting from the least significant 

bit in the 6-bit input. If none of the bits is set to value '1', 

an extra output bit which shows the case of all zero value is 

responsible for this special case. Since we have got six input 

bits (Inputs - InputO), we need extra three bits to indicate the 

position. Therefore, there are 4-bit outputs. 

The 7-bit majority selector is to determine the majority value 

of the 7 bits inputs. If more than 4 bits have value '1', the output 

value will be '1'. Otherwise, the output bit will have value ’0’. 

In addition, the 2 digit Binary Coded Decimal (BCD) to Bi-

nary decoder is to decode the 2 B C D into binary value. B C D is 

the most common way of encoding decimal digits in computing 

and in electronic systems. In B C D , a digit is usually represented 
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Table 4.2: Six combinational logic circuit problems used in GPPLCS with 
the hardware assisted MLP. The Nin and Nout denote the numbers of inputs 
and outputs respectively. The Nrow (=2^''")denotes the number of rows in 
the truth tables . The N âse {=Nrow x A^out)denotes the total number of 
training cases • 

Name Description Nin Nout Nrow Ncase 

MUX 6-bit multiplexer 6 1 64 64 

ADD 2-bit full-adder 5 3 32 96 

CMP 3-bit comparator 6 3 64 192 

PRI 6-bit priority selector 6 4 64 256 

MAJ 7-bit majority selector 7 1 128 128 

BCD 2-digit Binary Coded 8 7 256 1792 
Decimal to Binary de-
coder 

by four (binary) bits, of which the leftmost (written convention-

ally) has value 8, and the remaining three have values 4, 2, and 

1. Only the combinations of these bits which, when summed, 

have values in the range 0-9 are valid. The decoder has got 

2 B C D . Thus, there will be 8-bit input which is correspond to 

value 0 - 99. The output value range 0-99 then needs 7 bits to 

represent its output values. 

All experimental settings are listed out in Table 4.3 below. 

In order to have a fair comparison in the performance between 

hardware-assisted G P P L C S and the pure software counterpart, 

evolutions of combinational logic circuits for the six combina-

tional logic circuit problems were run on the same host (i.e. 

the P C where a Pilchard board locates). The host in which the 

Pilchard board locates is a Pentium III 800 M H z P C with ASUS 

CUSL2-C motherboard. The Pilchard board relies on the P C to 

communicate. User can transfer data to the Pilchard board via 

the D I M M slot in the host PC. The PC host is chosen because 
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Table 4.3: Experimental settings used in GPPLCS with the hardware assisted 
MLP 

Design phase only 

maximum program length 25 parallel instructions (Pis) 
(-^max) 

initialization bit random, average 12.5 (Z/max/2) Pis 

selection method tournament (size二 10) 

4-LUT function set bOOOO, . . . , bFFFF, nop 

inputs ...只31 

outputs outputs： RQ . . . I?7VO„t-l 

constants logic 0, logic 1 

population size 2000 

termination(tmax) 40,000,000 tournaments 

PI crossover Prob. {Pxover) 0.1 

bit mutation Prob. {Pumut) 0.002 

Sub instruction (SI), swap- 0.0 
ping Prob. {Psiswp) 

SI. deletion Prob. {Psidd) 0.0 

Dynamic Sample Weight- 10,000 tournaments 
ing (DSW) (weights update 
freq.) 

preselection yes 

raw fitness the ratio of unsolved training cases ( = 
1.0 + fdp) 

success predicate all training cases solved (= 1.0 (i.e. 
fdp=0.0) 
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of the low level control required to mange the Pilchard board. 

W e tested the problems with both the hardware-assisted GP-

PLCS and the pure software GPPLCS. The time for each tour-

nament was recorded for comparison. 

4.4 Experimental Results and Evaluations 

Promising results are obtained for all the six combinational logic 

circuit problems. Table 4.4 summarizes the total elapsed times 

for the G P P L C S to evolve complete correct solutions with a pure 

software M L P and a hardware MLP. The tn and ts columns list 

out the execution times of the hardware-assisted G P P L C S and 

the pure software G P P L C S respectively. 

It can be seen that the speedup of hardware over software is 

significant. For the A D D , M U X and PRI problems, the speedups 

are more than 10 times. For the C M P and B C D problems, 

the speedups are more than 20 times. For the most difficult 

problem in our circuits evolved - M A J, the speedup can be up 

to 36. The C M P problem takes nearly 10 hours to complete 

with the pure software GPPLCS, but it only takes less than half 

an hour with the hardware-assisted GPPLCS. Thus, problems 

of different levels of difficulties gain different speedups. This 

is easily recognized because the more difficult the problems, the 

more tournaments (computational effort) are taken to complete. 

Fig. 6 shows the speedup curves for the six tested problems. In 

these figures, the X-axis is the number of tournaments taken 

while the Y-axis is the speedup ratio {ts/tn)-

Figures 4.3 and 4.4 show that the speedup ratios for the M U X 

and A D D problems increase steadily to around 10. These two 

problems are relatively simple. Thus, the required computa-

tional efforts to evolve solutions for them are not so large. Con-

versely, in Figures 4.5 ,4.6 and 4.8, the speedup ratios are less 

than five initially when the evolution takes only a few thousand 
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Table 4.4: Summary of experimental results in GPPLCS with hardware as-
sisted MLP 

Problems tfj ts speedup ratio 

(in sec) (in sec) [ts/tH) 

MUX 68 689 10.13 

ADD 346 3497 10.11 

CMP 1,575 31,983 20.30 

PRI 720 13,471 18.71 

MAJ 24,680 895,581 36.29 

BCD 11,608 280,269 24.14 
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Figure 4.3: The speedup ratio versus tournaments for MUX problem 
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Figure 4.4: The speedup ratio versus tournaments for ADD problem 
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Figure 4.5: The speedup ratio versus tournaments for CMP problem 
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Figure 4.6: The speedup ratio versus tournaments for PRI problem 
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Figure 4.7: The speedup ratio versus tournaments for MAJ problem 
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Figure 4.8: The speedup ratio versus tournaments for BCD problem 

tournaments. As the evolution completes more tournaments, 

the speedup ratio increases rapidly to 24 times. For the most 

difficult problem - M A J in our problem sets, the speedup can be 

up to 36 due to large computational efforts required. The result 

is shown in Figure 4.7. 

It is found that the speedup ratio increases with the number 

of tournaments taken in the evolution. It is obvious since execu-

tion time of each hardware evaluation is faster than that of each 

software evaluation by a certain theoretical limit. However, the 

speedup is not so high due to the overhead in the communica-

tion bus between the software EE and the hardware MLP. Thus, 

there is a small speedup ratio when the number of tournaments 

executed is small as the overhead occupies a larger proportion 

of execution time during the evolution than than fitness evalu-

ation. However, it is expected that the speedup ratio is higher 

in those problems which have a larger number of tournaments 

taken as fitness evaluation occupies the largest proportion of ex-

ecution time. For example, in the M U X problem, only 10-time 

speedup is obtained due to the small number of tournaments 

taken (52,286). However, 20-time speedup is found in the C M P 

problem which takes 2,398,865 tournaments. 36-time speedup 

is also found in the M A J problem which takes 34,006,503 tour-

naments. 
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4.5 Chapter Summary 

In this chapter, we have presented the design and implementa-

tion of a hardware-assisted G P P Logic Circuit Synthesizer (GP-

PLCS) prototype which uses a 4-LUT Multi-Logic-Unit Proces-

sor (MLP). The M L P uses a generic register machine architec-

ture which can represent any combinational logic circuits. More-

over, the architecture of the M L P is so simple that multiple 

MLPs can be placed in an F P G A . 

The hardware-assisted G P P L C S shows promising results in 

the speedup. With the help of hardware, GPPLCS achieves a 36-

time speedup at most in our tested problems. Furthermore, the 

speedup ratio increases with the number of tournament taken 

in solving the problems. It is particularly suitable for solving 

difficult problems. 

• End of chapter. 



Chapter 5 

Feasibility Study of Multi 
MLPs 

Although the circuits evolved by Genetic Parallel Programming 

based Logic Circuit Synthesizer (GPPLCS) are of good quali-

ties, it is computation intensive. As a result, implementation 

of G P P L C S in Field Programmable Gate Arrays (FPGAs) is 

proposed. The idea is to speed up the fitness evaluations. How-

ever, the current model is not suitable for the implementation. 

Two main components in GPPLCS, Evolution Engine (EE) and 

Multi Logic Unit Processor (MLP), are discovered either one is 

idle during the evolution. Thus, a Multi M L P Genetic Parallel 

Programming base Logic Circuit Synthesizer ( M M G P P L C S ) is 

proposed and presented for implementation in FPGAs in this 

chapter. Simulations are done to evaluate the effectiveness of 

our proposed architecture. 

This chapter is organized as follows. Section 5.1 gives our 

motivation. Then, our proposed architecture of M M G P P L C S 

is presented in Section 5.2. It is followed by experimental set-

tings in Section 5.3. Section 5.4 is the experimental result and 

evaluations. Finally, a chapter summary is found in Section 5.5. 
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5.1 Motivation 

As introduced in the previous chapter, G P P L C S is a dual phase 

fitness suitable for evolving LookUp Table (LUT) based circuits. 

In the design phase, G P P L C S aims at finding a 100 % correct 

genetic program. Once it is found, G P P L C S proceeds to the 

optimization phase. Other factors such as lookup table (LUT) 

count and L U T level count are taken into consideration in the 

optimization phase. It is discovered that design phase occupies a 

large proportion of computation time during the whole evolution 

process. Thus, we would like to seek help from implementation 

of G P P L C S in FPGAs to speed up the whole evolution process 

especially in design phase. 

In GPPLCS, there are two steps which are always repeated. 

They are the fitness evaluation and breeding stages. During 

breeding stage, the current population is used to form a new 

population by selecting the better programs and using the breed-

ing operators such as crossover and mutation to propagate and 

modify the programs. It is held in the EE. The programs are 

then evaluated to measure how fit they are. The two stages are 

repeated until either a pre-determined number of generations 

have been processed or an individual meets a pre-determined 

level of fitness. This is done in the MLP. It is discovered either 

E E or M L P is idle at any time. Thus, direct implementation 

of this model in FPGAs does not maximize the benefits of the 

parallelism in FPGAs. 

W e propose an M M G P P L C S for implementation in FPGAs 

which is based on the pipeline concept in hardware design. Im-

plementing algorithmic parallelism, or pipelining, is a frequently 

used technique in hardware design that reduces the number of 

clock cycles needed to perform complex operations. The idea is 

to execute the fitness evaluation (held in the M L P ) in parallel 

with the breeding stages of G P P L C S (done in the EE). In this 
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Figure 5.1: The system block diagram of MMGPPLCS 

way, both the M L P and the EE can be kept operating at full 

speed. 

5.2 Overall Architecture 

This section presents the design of the new architecture of GP-

PLCS for implementation in FPGAs. Figure 5.1 shows the block 

diagram of M M G P P L C S . It has one E E and several (up to n) 
MLPs (MLPl, MLP2, MLPn). The existence of several 

MLPs is to execute the fitness evaluation in parallel with the 

breeding operations. 

The breeding operations and fitness evaluation are the itera-

tive processes and their execution time are different. The time 

used in fitness evaluation is much longer than the one used in 

the breeding operation. Moreover, with the advance in FPGAs, 

it is possible to allow more MLPs within an F P G A . Thus, we 

propose to implement one EE and n MLPs in M M G P P L C S . 
E E can keep generating new children and then pass to MLPs 

for evaluation. Previous experiments done on circuits evolved 

by G P P show that the execution time of breeding operation in 

E E is 10 times faster than that of fitness evaluation in M L P 

including overhead. Thus, in our design, we employ 10 MLPs 

so that every children generated in E E can be evaluated in the 
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Figure 5.2: FIFO design 

M L P with no delay. 1:10 pipeline design can maximize the ad-

vantage of implementation in FPGAs. The algorithm can be 

found in Figure 5.3. 

In hardware design of the M M G P P L C S , we insert two FI-

FOs between EE and MLP, the EMFIFO and the MEFIFO. 

The purpose is to keep both E E and M L P running. For EE, 

they can keep evolving children from the population. Children 

is then placed in EMFIFO for fitness evaluation. Once one of 

the evaluation engines is ready, it can push one child from the 

EMFIFO for evaluation and place the fitness evaluation result 

in the MEFIFO. The process continues until a solution is found. 

Figure 5.2 shows our proposed design. In M M G P P L C S , evo-

lution are no longer based on up-to-date fitness evaluation of 

the population. Instead, cross breeding is among old and new 

generations as evaluation is done on different era child. Since it 

is different from the original flow of GPPLCS, a software sim-

ulation is necessary to evaluate the impact on GPPLCS. The 

simulation result is presented later. 
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5.3 Experimental settings 

Simulation of M M G P P L C S was done on six problems. W e first 

assume that ratio of execution time of the E E and that of M L P 

is 1 over 10. That means there are 10 MLPs and one EE in the 

M M G P P L C S . In our software simulation, there are 3 phases. 

First of all, it is the initialization. The first ten breeding opera-

tions without any fitness evaluations are done initially. This is 

to model the situation in the M M G P P L C S . Then, it comes to 

pipeline phase. A fitness evaluation is done on the first children 

generated. After the first fitness evaluation is done, the chil-

dren evaluated are determined whether it is discarded or not. 

If they are fitter than their parents, they replace their parents. 

As the breeding operation and fitness evaluation are expected 

to execute in parallel in this phase, the first fitness evaluation is 

followed by the eleventh breeding operations in our simulation. 

Indeed, we resumes original flow in the pipeline phase. That 

means a breeding operation is followed by a fitness evaluation. 

However, the fitness evaluation is not on the children which are 

just generated. Instead, the M L P evaluates the past children. 

The pipeline phase continues until a number of tournaments 

have been processed or an individual meets a pre-determined 

level of fitness (i.e. /办=0). The evolution is finished in the 

last phase. See Figure 5.3. 

The six problems are 2-bit full adder (ADD2), 6-bit com-

parator (CMP3), 4-to-l multiplexer (MUX6), 6-bit priority se-

lector (PSL6), 3-bit multiplier (MUL3) and 6-bit one's counter 

(0CN6). See Table 5.1. 

Note that the 6-bit priority selector is to show the position of 

value - 1 which first appears starting from the least significant 

bit in the 6-bit input. If none of the bits is set to value - 1, an 

extra output bit which shows the case of all zero value. Since we 

have got six input bits (Input5 - InputO), we need extra three 
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Table 5.1: Six combinational logic circuit problems used in the simulation. 
The Nin and Nout denote the numbers of inputs and outputs respectively. 
The Nrow (=2风n)denotes the number of rows in the truth tables . The Ncase 
(=Nrow X Â out) denotes the total number of training cages . 

Name Description Njn Nput N聊 Ncase 
ADD2 2-bit full-adder 5 3 ^ % 
CMP3 3-bit comparator 6 3 64 192 
MUX6 6-bit multiplexer 6 1 64 64 
PSL6 6-bit priority selector 6 4 64 256 
MUL3 3-bit multiplier 6 6 64 384 
0CN6 6-bit one's counter 6 3 64 192 

bits to indicate the position. Therefore, there are 4-bit outputs. 

In addition, the 6-bit one's counter is to calculate the number 

of value - 1 in the 6-bit inputs. Therefore, it requires 3-bit to 

represent the number in the output. 

All experimental settings are listed in Table 5.2 below. Hav-

ing investigated the difficulties of the six benchmark problems 

shown in Table 5.1, we set the maximum program length to 25 

Pis. This provides enough sub-instructions (for both effective 

operations and introns) to evolve correct programs. Hence, at 

most 400 (25 by 16) operations can be used to build a solution. 

As introduced before, the design phase occupies the largest pro-

portion of execution time during evolution. Thus, experiments 

conducted in the design phase only are sufficient to show the 

effectiveness of the M M G P P L C S . 

W e have also tried the six problems on the GPPLCS. The GP-

PLCS adopts the same experimental settings as M M G P P L C S 

which are shown in Table 5.2. To ensure a fair comparison be-

tween M M G P P L C S and GPPLCS, all evolutions of combina-

tional logic circuits for the six combinational logic circuit prob-

lems were run on the same P C configuration (Pentium 4 C P U 

2.80GHz with 512 M B R A M ) with 20 independent runs. 
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Algorithm MMGPPLCS in simulation 
Input: Truth table of circuits 
Output: Circuits in 4-LUT format 
1. Initialize population 
2. Evaluate population 
3. Perform 10 breeding operations: 
4. Tournament selection, Bit Mutation with Pumut and PI crossover with 

Pxover 

5. Evaluate the first children 
6. if fchiidren > fparents 八 children + parents 
7. then 
8. Replace parents with children 
9. else 
10. Discard children 
11. Perform breeding operations: 
12. Tournament selection, Bit Mutation with Pbtmut and PI crossover with 

Pxover 

13. Evaluate children 
14. if fchiidren > fparents A children + parents 
15. then 
16. Replace parents with children 
17. else 
18. Discard children 
19. if t < tmax 
20. then 
21. if fdp > 0 
22. then 
23. GOTO Step 11 
24. else 
25. Terminate 
26. else 
27. Terminate 
28. 

Figure 5.3: Algorithm of MMGPPLCS in simulation 



CHAPTER 5. FEASIBILITY STUDY OF MULTI MLPS 58 

Table 5.2: Experimental settings used in MMGPPLCS and GPPLCS 
Design phase only 

maximum program length 25 parallel instructions (Pis) 
( - ^ m a x ) 

initialization bit random, average 12.5 (I/^ax/2) Pis 

selection method tournament (s ize: 10) 

4-LUT function set bOOOO, bFFFF, nop 

inputs ...尺31 

outputs outputs: Ro . . . fiNont-l 

constants logic 0, logic 1 

population size 2000 

t e r m i n a t i o n ( 力 4 0 , 0 0 0 , 0 0 0 tournaments 

PI crossover Prob. (Pxover) 0.1 

bit mutation Prob. {Pbtmut) 0.002 

Sub instruction (SI), swap- 0.0 
ping Prob. (Psiswp) 

SI. deletion Prob. {Psidei) 0.0 

Dynamic Sample Weight- 10,000 tournaments 
ing (DSW) (weights update 
freq.) 

preselection yes 

raw fitness the ratio of unsolved training cases (= 
1.0 + U ) 

success predicate all training cases solved {= 1.0 (i.e. 
/dp 二 0.0) 
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Table 5.3: Number of tournaments (xlO®) needed by MMGPPLCS and GP-
PLCS in design phase on six problems (Average value) 

Version ADD2 CMP3 MUX6 PSL6 MUL3 0CN6 
M M G P P L C S E t o 009 8 3 . 3 2 9 . 9 7 
GPPLCS 0.50 1.80 0.08 0.47 81.94 9.84 

5.4 Experimental results and evaluations 

The proposed M M G P P L C S neither improves nor worsens the 

evolution process. Table 4.4 shows the average number of tour-

naments required in evolving six circuits in both the M M G P -

PLCS and the GPPLCS. The number of tournaments are ex-

pressed in 106) order of magnitude. 

Our objective of the simulation is to prove the pipeline phase 

works. Although the M M G P P L C S does not decrease the num-

ber of tournaments used in the whole evolution process, the 

M M G P P L C S is a feasible model for implementation in FPGAs. 

This multi MLPs with one EE can keep both M L P and EE run-

ning without being idle. The performance of the M M G P P L C S 

is similar to that of the GPPLCS. This is critical to the success 

of the M M G P P L C S . Executing parallel fitness evaluation with 

breeding operators without increasing number of tournaments 

can be found during the whole evolution process. As a result, 

the M M G P P L C S is a suitable for implementation in FPGAs. 

5.5 Chapter Summary 

The proposed M M G P P L C S has been shown to be a feasible 

model for implementation in FPGAs. Simulation results show 

that M M G P P L C S does not increase the number of tournaments 

during evolution of circuits. Since the performance of the M M G P -

PLCS is nearly the same as that of GPPLCS, the G P P L C S can 

be benefited from a hardware implementation by adopting a 
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model like M M G P P L C S to significantly increase the evaluation 
speed by orders of magnitude as shown in next chapter. 

• End of chapter. 



Chapter 6 

A Hybridized GPPLCS 

Based on Genetic Parallel Programming (GPP) [43] paradigm 

and a deterministic local search operator - FlowMap [21], a 

logic circuit synthesizing system integrating Genetic Parallel 

Programming based Logic Circuit Synthesizer (GPPLCS) and 

FlowMap, a Hybridized G P P L C S is developed. To show the ef-

fectiveness of the proposed HGPPLCS, six combinational logic 

circuit problems are used for evaluations. Each problem is run 

for 50 times. Experimental results show that both the lookup 

table counts and the propagation delays of the circuits collected 

are better than those obtained by conventional design or evolved 

by G P P L C S alone. For example, in a 6-bit one counter exper-

iment, we obtained combinational digital circuits with 8 four-

input lookup tables in 2 L U T level on average. It utilizes 2 

lookup tables and 3 L U T levels less than circuits evolved by 

G P P L C S alone. 

This chapter is organized as follows. Our motivation can be 

found in Section 6.1. Section 6.2 presents HGPPLCS. Experi-

mental settings can be found in Section 6.3. Section 6.4 presents 

results and discussions. Finally, section 6.5 concludes our work. 
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6.1 Motivation 

Although the qualities of evolved combinational digital circuits 

from G P P L C S are better than conventional designs, there is 

still room for improvement. Algorithms hybridize a non-genetic 

local search to refine the qualities of solutions with a genetic 

algorithm are called memetic algorithms [53]. This inspires an 

idea of using a local search operator in GPPLCS. Since G P P 

is population-based, it has a number of individuals (circuits) 

that performs the same function (i.e. many-to-one genotype-

phenotype mapping). Thus, G P P can provide a number of dif-

ferent circuits as inputs to the FlowMap algorithm. In this way, 

FlowMap can return different mapping solutions so that a bet-

ter solution can be obtained. Since FlowMap obtains a depth 

optimal mapping solutions when it is applied on 2-input lookup 

table (LUT) Boolean circuit, G P P L C S must first evolve circuits 

in 2-input L U T (2-LUT) and then relies on FlowMap to give 

a 4-LUT mapping solution. This new G P P L C S with a local 

search operator - FlowMap is the basic of our HGPPLCS. 

6.2 Overall system architecture 

FlowMap [21] is an LUT-based F P G A mapping algorithm for 

depth minimization guaranteeing depth-optimal mapping for 

a given input Boolean circuit. Since the working principle of 

FlowMap algorithm is not our focus, only a very brief descrip-

tion of FlowMap is given in this section. Details can be found 

in 2.1.1. A key step in FlowMap algorithm is to compute a 

minimum height K-feasible cut in a network, which is solved 

optimally in polynomial time based on network flow computa-

tion. FlowMap algorithm also effectively minimizes the number 

of LUTs by maximizing the volume of each cut and by several 

post-processing operations. It should be noted that FlowMap 
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Figure 6.1: HGPPLCS 

gets a better mapping solution when a 2-LUT Boolean circuit 

is given as an input. As a result, it gives an opportunity of 

adopting FlowMap in GPPLCS. 

Since FlowMap will return a depth optimal mapping solution 

for a 2-LUT Boolean circuit input, and hence is a very suitable 

tool to help G P P L C S to locate the local optimum. Since GP-

PLCS can provide a population of 2-LUT Boolean circuits with 

same functionality, FlowMap can give a best mapping solution 

among all the mapping solutions. 

H G P P L C S first evolves 2-LUT Boolean circuits. Then it 

chooses the best one among the population of the 2-LUT Boolean 

circuits as the input for the FlowMap. The FlowMap generate 

a 4-LUT mapping solution (see Figure 6.1). The synergy effect 

of G P P L C S and FlowMap in H G P P L C S is well established that 

evolutionary algorithms are not well suited to fine tuning greedy 

local search in complex combinatorial spaces and that hybridiza-

tion with other techniques can greatly improve the efficiency of 

search [22, 23, 26，61]. FlowMap can be applied to significantly 

improve G P P L C S by obtaining the local optimal circuits effi-

ciently and effectively (see Figure 6.2). The population-based 

G P P L C S provides FlowMap with a group of diversified Boolean 

circuits with the same functionality which cannot be obtained by 

any deterministic algorithms. In this way, a global optimal cir-

cuit can be evolved with the aid of the efficient local and global 

search power efficiency from FlowMap and G P P respectively. 
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Figure 6.2: FlowMap refines the fitness of individuals in GPPLCS 

6.3 Experimental settings 

H G P P L C S were evaluated on six problems the same used in 

Chapter 5. They are the 2-bit full adder (ADD2), 6-bit com-

parator (CMP3), 4-to-l multiplexer (MUX6), 6-bit priority se-

lector (PSL6), 3-bit multiplier (MUL3) and 6-bit one's counter 

(0CN6) (see Table 6.1). They are all benchmark Boolean prob-

lems that have been tried in other evolvable hardware approaches. 

All experimental settings are listed in Table 6.2 below. Hav-

ing investigated the difficulties of the six benchmark problems 

shown in Table 6.1, we set the maximum program length to 25 

Pis. This provides enough sub-instructions (for both effective 

operations and introns) to evolve correct programs. Hence, at 

most 400 (25 X 16) operations can be used to build a solution. 

It is important to note that, in the optimization stage, we force 

the system to optimize the size of the correct programs as much 

as possible. Thus, all runs terminate after 40,000,000 tourna-

ments which we believe it is large enough to evolve the circuits. 

Preliminary experiments have been done to show circuits can 
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Table 6.1: Six combinational logic circuit problems used in HGPPLCS. The 
Nin and Nout denote the numbers of inputs and outputs respectively. The 
Nrow (=2^'")denotes the number of rows in the truth tables . The Ncase 
{=Nrow X Â out) denotes the total number of training cases . 

Name Description Nin Nout Nrow Ncase 
ADD2 2-bit full-adder 5 3 ^ ^ 
CMP3 3-bit comparator 6 3 64 192 
MUX6 6-bit multiplexer 6 1 64 64 
PSL6 6-bit priority selector 6 4 64 256 
MUL3 3-bit multiplier 6 6 64 384 
0CN6 6-bit one's counter 6 3 64 192 

be evolved at most 40,000,000 tournaments in our benchmark 

problems. 

In order to show the effectiveness of HGPPLCS, we tried the 

same six problems on G P P L C S and FlowMap. However, we 

have not compared with any evolvable hardware techniques like 

Cartesian G P due to the different circuits evolved. They are 

in boolean gate form (i.e., 2-LUT) while we are focusing on 4-

L U T circuits. G P P L C S adopts the same experimental settings 

as H G P P L C S which are shown in Table 6.2. To ensure a fair 

comparison between H G P P L C S and GPPLCS, all evolutions 

of combinational logic circuits for the six combinational logic 

circuit problems are run on the same P C configuration (Pentium 

4 C P U 2.80GHz with 512 M B R A M ) with 50 independent runs. 

In addition, circuits are also evolved by dual phase approach. 

The only difference is in the types of circuits evolved. G P P L C S 

evolves the circuits with 4-LUT while H G P P L C S evolves the 

2-LUT type. Since the difficulty for evolving 2-LUT and 4-

L U T Boolean circuits in each problem are different, numbers of 

tournaments are not compared in this paper. 

Results from the FlowMap algorithm are collected from the 

experiments which were run on U C L A R A S P F P G A / C P L D 
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Technology Mapping and Synthesis Package [1]. Firstly, we 

used the ESPRESSO [7] to optimize the truth tables of the six 

Boolean problems into optimal (or near optimal) sum of product 

(SOP) forms. Then the resulting SOP expressions were passed 

to produce 4-LUT networks with FlowMap algorithm. 

6.4 Experimental results and evaluations 

From the 50 runs of the six individual problems, it is shown 

that H G P P L C S evolved the best circuits among the three meth-

ods (HGPPLCS, G P P L C S and FlowMap). Table 6.3 shows the 

best circuits collected from the three methods and Table 6.4 

indicates the successful rate of evolving circuits in H G P P L C S 

and GPPLCS. Since FlowMap depends heavily on the given in-

put circuits, the mapping solution will not be of a good quality 

if the input circuits provided are in a bad form (e.g in SOP 

forms). As FlowMap is a deterministic algorithm, the map-

ping solutions are always the same regardless of the number of 

times it is tried. Thus, mapping results by FlowMap are not 

shown in the charts about comparison between H G P P L C S and 

GPPLCS. Fig. 6.3 is the average values of the circuits evolved 

(in terms of 4-LUT count and L U T level) collected in the 50 

independent run of H G P P L C S and G P P L C S while Fig. 6.4 

is the best circuit evolved in the 50 runs of H G P P L C S and 

GPPLCS. Obviously, H G P P L C S successfully improves the GP-

PLCS. On the six problems, both the average number of L U T 

count and L U T level in the circuits evolved from H G P P L C S are 

smaller than that from GPPLCS. H G P P L C S outperforms GP-

PLCS. The circuits evolved by the H G P P L C S are better than 

that by the GPPLCS. In the 3-bit comparator problem (CMP3), 

the best circuit evolved from H G P P L C S is 1 4-LUT and 1 L U T 

level less than the one from GPPLCS. The circuit is shown in 

Fig. 6.5. 
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Table 6.2: Experimental settings used in HGPPLCS 
both design and optimization phases 

maximum program length 25 parallel instructions (Pis) 
{Ljnax) 
initialization bit random, average 12.5 (-i/max/^) Pis 
selection method tournament (size二 10) 
4-LUT function set bOOOO, . . . , bFFFF, nop 
2-LUT function set bO, . . . , bF, nop 
inputs R32-Nin . •.只31 
outputs outputs： Rq . .. Rnoui-1 
constants logic 0, logic 1 
population size 2000 
termination(imaa：) 40,000,000 tournaments 
PI crossover Prob. {Pxover) 0.1 

design phase optimization phase 
bit mutation Prob. {Pbtmut) 0.002 0.0 
Sub instruction (SI), swap- 0.0 0.5 
ping Prob.(尸s—p) 
SI. deletion Prob. (Psidei) 0.0 0.1 
Dynamic Sample Weight- 10,000 tournaments -
ing (DSW) (weights update 
freq.) 
preselection yes -
raw fitness the ratio of unsolved the ratio of LUT level 

training cases ( = 1 . 0 & LUT count (= /叩) 

+ fdp) 

success predicate all training cases optimize as much as 
solved {= 1.0 (i.e. possible (i.e. /叩 < 0) 
fdp=0.0) 
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Table 6.3: Best circuits collected from HGPPLCS, GPPLCS and FlowMap 
algorithm on six problems 

Version Type ADD2 CMP3 MUX6 PSL6 MUL3 0CN6 
HGPPLCS L U T 4 5 2 5 15 7 

Level 2 2 2 2 3 2 

GPPLCS L U T 4 6 2 5 15 6 
Level 2 3 2 3 4 3 

FlowMap L U T 1 6 S 3 U ^ 1 1 3 ^ 
Level 3 3 2 3 3 4 

Table 6.4: Successful rate of evolving circuit problems in HGPPLCS and 
GPPLCS 

Version ADD2 CMP3 MUX6 PSL6 MUL3 0CN6 
HGPPLCS 100% 100% 100% 100% 5 0 % 5 8 % 
GPPLCS 100% 100% 100% 100% 54% 100% 

It is found that the circuits evolved from H G P P L C S may have 

a greater number of 4-LUT count than the ones from GPPLCS. 

In the 6-bit one's counter problem (0CN6), although the best 

circuit evolved from H G P P L C S is 1 L U T level less than the one 

from GPPLCS, it utilizes 1 4-LUT more. The reason lies on the 

FlowMap algorithm. Since FlowMap only guarantees a depth 

optimal mapping solution on a given input circuit, the number 

of 4-LUT of the solution may not be smaller than the circuit 

found in GPPLCS. However, the depth of the circuit is always 

the smallest. 

H G P P L C S shows a perfect synergy between G P P L C S and 

FlowMap. The population based G P P L C S provides FlowMap 

with a group of diversified Boolean circuit with the same func-

tionality while FlowMap returns a better mapping solutions 

than GPPLCS. 

The successful rate of the H G P P L C S and the G P P L C S are 

nearly the same. From the rate shown in Table 6.4, it is found 

that the M U L 3 and 0 C N 6 problems are more difficult than 
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Average number of 4-LUT count and gate levels collected in 50 
independent run 

25 i 
j 

i 
‘ ：ii I • a v g Gate by H G P P L C S 

査 15 ； --—I n, avg Gate by G P P L C S 

I ‘ • avg Level by H G P P L C S 

1° ! J 1 I • a v g Level by G P P L C S 

A D D 2 C M P 3 MUX6 P S L 6 MUL3 0 C N 6 

Six Problems 

Figure 6.3: Average number of 4-LUT count and LUT level collected from 
HGPPLCS and GPPLCS on the six problems in 50 runs 
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Figure 6.4: Best number of 4-LUT and LUT level collected from HGPPLCS 
and GPPLCS on the six problems in 50 runs 
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Figure 6.5: The best 3-bit comparator evolved by the HGPPLCS 
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others. As H G P P L C S first evolves circuit in 2-LUT form and 

then relies on FlowMap to give a 4-LUT mapping, the searching 

space in H G P P L C S is much larger than those in G P P L C S which 

evolves 4-LUT instead. Thus, it is expected that the successful 

rate of H G P P L C S is lower or equal to that of GPPLCS. 

6.5 Chapter Summary 

In this chapter, we have presented a Hybridized Genetic Parallel 

Programming based Logic Circuit Synthesizer (HGPPLCS). It 

makes use of a Genetic Parallel Programming based Logic Cir-

cuit Synthesizer (GPPLCS) and the FlowMap algorithm. HGP-

PLCS applies a dual phase approach to evolve a 2-LUT circuit. 

Then the circuit is passed to FlowMap for further optimiza-

tion. Finally, FlowMap returns a depth optimal mapping so-

lution based on the given input circuit. Experimental results 

show that H G P P L C S improves the performance of G P P L C S in 

terms of qualities of circuits. The qualities of evolved circuits 

are the best among the three methods (HGPPLCS, G P P L C S 

and FlowMap). 

• End of chapter. 



Chapter 7 

A Memetic GPPLCS 

By including a deterministic local search operator - D A O M a p 

13] in Genetic Parallel Programming (GPP), a Memetic G P P 

based Logic Circuit Synthesizer (MGPPLCS) is developed. To 

show the effectiveness of the proposed M G P P L C S , six combi-

national logic circuit problems are used for evaluations. Each 

problem is run for 20 times. Experimental results show that 

M G P P L C S is both more efficient and effective than GPP. On 

average, M G P P L C S requires 1 order of magnitude fewer evalua-

tions to identify higher quality solutions. Both the lookup table 

counts and the propagation delays of the circuits collected are 

better than those obtained by conventional design or evolved 

by G P P alone. For example, in a 6-bit priority selector exper-

iment, we evolved combinational digital circuits with 5.1 four-

input lookup tables in 2 L U T level on average. It utilizes 2 

lookup tables and 1 L U T levels less than circuits evolved by 

G P P L C S alone. 

This chapter is organized as follows. Section 7.1 gives our 

motivation. M G P P L C S is presented in Section 7.2. The ex-

perimental settings can be found in Section 7.3. It is followed 

by experimental results and evaluations in Section 7.4. Finally, 

Section 7.5 is a chapter summary. 
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7.1 Motivation 

Evolutionary Algorithms (EAs) are a class of search and opti-

mization techniques that work on a principle inspired by nature: 

Darwinian Evolution. It is well established that hybridization 

with other techniques in EAs can greatly improve the efficiency 

of search. Algorithms hybridize a non-genetic local search to re-

fine the qualities of solutions with a genetic algorithm are called 

memetic algorithms [53]. This inspires the idea of using a de-

terministic local search operator in GPPLCS. 

D A O M a p algorithm [13] proposed by Prof. Jason Cong is a 

technology mapping algorithm for depth minimization in lookup 

table (LUT)-based F P G A designs, which is optimum for any K-

bounded Boolean network. D A O M a p can return a depth opti-

mal mapping solution with possible area optimization based on 

a given Boolean circuit. Thus, D A O M a p is an ideal local search 

operator for G P P so that it can improve G P P in both efficiency 

and effectiveness. Any individuals found in G P P can be refined 

by D A O M a p . A large number of evaluations can be saved to 

locate optima. Moreover, D A O M a p can force G P P to explore 

more optima by recording the previous optima found. This new 

G P P L C S with a local search operator - D A O M a p becomes the 

M G P P L C S . 

7.2 Overall system architecture 

Based on GPPLCS, a combinational logic circuit design system, 

M G P P L C S is developed. Basically, the architecture of G P P L C S 

and M G P P L C S are the same. The difference is the application 

of local search operator - D A O M a p in M G P P L C S . The core of 

the M G P P L C S system consists of an Evolution Engine (EE) and 

M L P (see Fig. 7.1). EE manipulates the genetic parallel pro-

grams and performs genetic and local search operations. M L P 
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Figure 7.1: The system block diagram of MGPPLCS 

is responsible for the genetic parallel programs evaluation. 

Similar to GPPLCS, all combinational digital circuits are 

evolved by a dual phase (i.e. design and optimization phases) 

approach. Different sets of genetic operators including crossover, 

bit mutation and sub-instruction swapping are used in different 

stages. In the design phase, the M G P P L C S system aims at 

finding a 100% functional program (correct program). The raw 

fitness is given by the ratio of unsolved training cases. In the op-

timization phase, the raw fitness then put emphasis on the L U T 

count, the propagation delay and the program length. In other 

words, the major objective of the optimization stage is reducing 

the L U T count and then the propagation delay. Obviously, we 

apply our local search operator in this phase. D A O M a p can be 

applied to significantly improve M G P P L C S by obtaining the lo-

cal optimal circuits efficiently and effectively (see Fig.7.2). The 

population-based M G P P L C S provides D A O M a p with a group of 

diversified Boolean circuits with same functionality which can-

not be obtained by any deterministic algorithms while D A O M a p 

returns the refined individuals (optima). In this way, a global 

optimal circuit can be evolved with efficiency and global search 

power from D A O M a p and E A respectively. 

However, it should be noted that refined individuals are not 

put back to the population. Since any introns will be removed 
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Figure 7.2: DAOMap refines the fitness of individuals in GPPLCS 

after the refinement, refined individuals would not benefit evolu-

tion. To some extent, refined individuals in a population would 

dominate and let G P P trap in a local optima. As a result, re-

fined individuals are not placed in the population. 

Instead, refined individuals serve as a similarity measure. Re-

fined individuals (optima) are recorded in terms of number of 

LUTs and LUT's level. Any newly evolved individuals will re-

tain only when it is different from the previous recorded optima 

in there two values. In each tournament, the M G P P L C S gener-

ates two new genetic programs (children). They are refined by 

D A O M a p . If a child is structurally equivalent to any of opti-

m u m found before (number of LUTs and LUT's level are found 

in the list), it will be discarded. This is to maintain a reasonable 

diversity in the search. In this way, it serves as a diversity mea-

sure and M G P P L C S can then be forced to evolve new optima. 

See Figure 7.3. 
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Algorithm MGPPLCS 

Input: Truth table of circuits 
Output: Circuits in 4-LUT format 
1. Initialize population 
2. Evaluate population 
3. if fdp > 0 / * design phase * / 
4. then 
5. Perform breeding operations: 
6. Tournament selection, Bit Mutation with Pumut and PI 

crossover with Pxover 

7. else / * optimization phase * / 
8. Perform breeding operations: 
9. Tournament selection, SI swapping with Psiswp̂  SI deletion with 

Psidel and PI crossover with Pxover 

10. Optimize circuits with D AO Map 
11. Evaluate children 
12. if fchildren > fparents 八 children ^ parents 
13. then 
14. Replace parents with children 
15. else 
16. Discard children 
17. if t < trnax 
18. then 
19. if Design phase 八/办 > 0 
20. then 
21. GOTO Step 3 
22. else 
23. if Optimization phase 
24. then 
25. GOTO Step 3 
26. else 

, 27. Terminate 
28. else 
29. Terminate 
30. 

Figure 7.3: Algorithm of MGPPLCS 
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Table 7.1: Six combinational logic circuit problems used in MGPPLCS. The 
Nin and Nout denote the numbers of inputs and outputs respectively. The 
Nrow denotes the number of rows in the truth tables . The Ncase 
(=Nrow X A^out)denotes the total number of training cases . 

Name Description Nin Nout Nrow Ncase 
ADD2 2-bit full-adder 5 3 ^ S 
CMP3 3-bit comparator 6 3 64 192 
MUX6 6-bit multiplexer 6 1 64 64 
PSL6 6-bit priority selector 6 4 64 256 
MUL3 3-bit multiplier 6 6 64 384 
0CN6 6-bit one's counter 6 3 64 192 

7.3 Experimental settings 

M G P P L C S was evaluated on the same six problems as in Chap-

ters 5 and 6 . They are 2-bit full adder (ADD2), 6-bit com-

parator (CMP3), 4-to-l multiplexer (MUX6), 6-bit priority se-

lector (PSL6), 3-bit multiplier (MUL3) and 6-bit one's counter 

(0CN6). (see Table 7.1). 

All experimental settings are listed in Table 7.2 below. Hav-

ing investigated the difficulties of the six benchmark problems 

shown in Table 7.1, we set the maximum program length to 25 

Pis. This provides enough sub-instructions (for both effective 

operations and introns) to evolve correct programs. Hence, at 

most 400 (25 X 16) operations can be used to build a solution. 

Noticeably, in the optimization stage, we force the system to 

optimize the size of the correct programs as much as possible. 

Thus, all runs terminate after 40,000,000 tournaments. 

In order to show the effectiveness of M G P P L C S , we tried 

the six problems on GPPLCS, D A O M a p and FlowMap. The 

G P P L C S adopt the same experimental settings as M G P P L C S 

which is shown in Table 7.2 except all runs terminate after 

40,000,000 tournaments. Moreover, no local search operator 

will be used in GPPLCS. To ensure a fair comparison between 
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M G P P L C S and GPPLCS, all evolutions of combinational logic 

circuits for the six combinational logic circuit problems are run 

on the same P C configuration (Pentium 4 C P U 2.80GHz with 

512 M B R A M ) with 20 independent runs. 

Results from D A O M a p and FlowMap algorithm are collected 

from the experiments which were run on U C L A R A S P F P G A / C P L D 

Technology Mapping and Synthesis Package [1]. Firstly, we 

used the ESPRESSO [7] to optimize the truth tables of the six 

Boolean problems into optimal (or near optimal) sum of product 

(SOP) forms. Then the resulting SOP expressions were passed 

to produce 4-input L U T networks with the D A O M a p algorithm 

as well as FlowMap algorithm. 

7.4 Experimental results and evaluations 

From the 20 runs of the six individual problems, it is shown that 

M G P P L C S evolved the best circuits among the four methods 

(MGPPLCS, GPPLCS, D A O M a p and FlowMap). Table 7.3 

shows the best circuits collected from the four methods while 

Table 7.4 shows the average value. Please note that all run are 

successful. That means we can evolve solutions in every run. 

Since D A O M a p and FlowMap are deterministic algorithms, the 

mapping solutions are always the same regardless of the number 

of times it is tried. Thus, the result will be the same in both 

tables. 

It is shown that M G P P L C S and G P P L C S outperform D A O M a p 

and FlowMap since they depend heavily on the given input cir-

cuits. The mapping solution will not be of a good quality if the 

input circuits provided are in a bad form (e.g. in SOP forms). 

Obviously, the M G P P L C S successfully improves the GPPLCS. 

On the six problems, both the average number of L U T count and 

LUT's level in the circuits evolved from M G P P L C S are smaller 

than that from GPPLCS. Moreover, the number of tournaments 
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Table 7.2: Experimental settings used in MGPPLCS 
both design and optimization phases 

maximum program length 25 parallel instructions (Pis) 
(Ljfiax) 
initialization bit random, average 12.5 {Lmax/‘^) Pis 
selection method tournament (size二 10) 
4-input LUT function set bOOOO, . . . , bFFFF, nop 
i n p u t s Ii32-Nin . . .丑 3 1 

outputs outputs： Rq . . . RNoui-I 
constants logic 0，logic 1 
population size 2000 

termination(i^ax) 40,000,000 tournaments 
PI crossover Prob. (Pxover) 0.1 

design phase optimization phase 
bit mutation Prob. (Pbtmut) 0.002 0.0 
Sub instruction (SI), swap- 0.0 0.5 
ping Prob. (Psiswp) 

SI. deletion Prob. (P—ei) 0.0 0.1 
DAOMap local search - yes 
Dynamic Sample Weight- 10,000 tournaments -
ing (DSW) (weights update 
freq.) 
preselection yes -
raw fitness the ratio of unsolved the ratio of LUT level 

training cases ( = 1 . 0 & LUT count (= /叩) 

+ fdp) 

success predicate all training cases optimize as much as 
solved (= 1.0 (i.e. possible (i.e. /叩 < 0) 
fdp=0.0) 
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Table 7.3: Best circuits collected from MGPPLCS, GPPLCS, DAOMap and 
FlowMap algorithm on six problems 

Version T ^ ADD2 CMP3 MUX6 PSL6 MUL3 0CN6 
MGPPLCS LUT 4 5 2 5 15 6 

Level 2 2 2 2 3 2 
Tournament (x 10^) 0.097 0.17 0.29 0.12 6.01 5.89 

GPPLCS LUT 4 6 2 6 15 6 
Level 2 3 2 3 4 3 
Tournament (x 10®) 8.72 4.81 5.05 4.51 99.40 13.39 

D A O M a p L U T W ^ 3 10 ^ 118 
Level 3 3 2 3 3 4 

FlowMap UJT 16 ^ 3 i T ^ 113 
Level 2 3 2 3 4 3 

Table 7.4: Circuits collected from MGPPLCS, GPPLCS, DAOMap and 
FlowMap on six problems (Average value) 

Version Type ADD2 CMP3 MUX6 PSL6 MUL3 O C T ^ 
MGPPLCS lAJT ^ 6.45 

Level 2 2.1 2.2 2 3.25 2.2 
Tournament (x 10^) 0.18 0.72 0.70 0.46 9.32 8.52 

GPPLCS LUT O ^ 4 1 m O 
Level 3 4.25 2.85 3 4.85 3 
Tournament (x 10^) 8.63 4.42 5.10 4.30 98.94 12.84 

DAOMap LOT ^ ^ 3 10 ^ 118 
(Deterministic Level 3 3 2 3 3 4 
algorithm) 
FlowMap LUT 16 ^ 3 11 ^ m ^ 
(Deterministic Level 2 3 2 3 4 3 
algorithm) 



CHAPTER 7. A MEMETIC GPPLCS 80 

I l [ r 3 0 ] r ~ ~ 

S l [ r 2 6 ] c = > S 
I3[r28] c i i ^ . ^ ~ ] 
S0[r27] 1 = | _ _ J 

I0[,-31] = I ^ 
I2[ i29] t = > 

Figure 7.4: 6-bit multiplexer evolved by the MGPPLCS 

used in M G P P L C S are always smaller than that in G P P L C S 

by 1 order of magnitude. Although M G P P L C S may not al-

ways get a better circuit than GPPLCS in all six problems, 

M G P P L C S performs well on average. In the 3-bit comparator 

problem (CMP3), the best circuit evolved from M G P P L C S is 1 

4-LUT and 1 L U T level less than the one from G P P L C S and so 

does the case in 6-bit priority selector (PSL6). Figure 7.4 shows 

the 3-bit multiplier. 

M G P P L C S shows a perfect synergy between G P P L C S and 

D A O M a p . The population based G P P L C S provides D A O M a p 

with a group of diversified Boolean circuits with the same func-

tionality while D A O M a p returns a better mapping solutions 

than GPPLCS. 

7.5 Chapter Summary 

In this chapter, we have presented a Memetic Genetic Parallel 

Programming Logic Circuit Synthesizer (MGPPLCS). It makes 

use of a Genetic Parallel Programming Logic Circuit Synthesizer 

(GPPLCS) and D A O M a p algorithm. M G P P L C S applies a two-

stage approach to evolve a 2-LUT circuit. During the second 

stage, a local search operator - D A O M a p is applied to refine in-

dividuals. Experimental results show that M G P P L C S improves 

the performance of GPPLCS. The qualities of evolved circuits 

are the best among the three methods (MGPPLCS, G P P L C S 

and DAOMap). 
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• End of chapter. 



Chapter 8 

Conclusion 

This thesis has presented a novel Genetic Parallel Programming 

based Logic Circuit Synthesizer (GPPLCS) designed for tackling 

technology mapping problems in the automatic logic circuit syn-

thesis optimization. It consists of two core components, an Evo-

lution Engine (EE) and a Multi Logic Unit Processor (MLP). 

The E E is responsible for the genetic operations, the control 

strategies and the application specific processes. The M L P is 

a general-purpose, multiple instruction-streams multiple data-

streams (MIMD) register machine which is implementable on 

modern commercial Field Programmable Gate Arrays (FPGAs). 

G P P evolves genetic programs in a specific parallel format (MLP 

programs). 

Four improvements have been proposed and implemented to 

improve the GPPLCS. In Chapter 4, a hardware design and im-

plementation of a Multi Logic Unit Processor (MLP) has been 

shown. In order to execute parallel genetic programs for fitness 

evaluation in hardware, the hardware based M L P has been pro-

posed and implemented. Experimental results show that evolv-

ing combinational logic circuits can be sped up with a cooper-

ation of software version E E and the hardware MLP. Speedup 

ratios varied from 10 to 36 are obtained in the hardware-assisted 

G P P L C S compared with the pure software version GPPLCS. 

In Chapter 5, a new model of cooperation between multi M L P 
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and EE have been proposed. This new architecture of GPPLCS 

( M M G P P L C S ) is designed for optimal logic circuit synthesis in 

FPGAs. It has one EE and several MLPs. Simulation results 

show that the performance of M M G P P L C S is nearly the same 

as that of the current G P P L C S in terms of the number of tour-

naments but expecting time for each tournament can be reduced 

significantly. 

In Chapter 6, a Hybridized GPPLCS (HGPPLCS) has been 

presented. By integrating the G P P L C S and the FlowMap al-

gorithm, better circuits can be found. W e first evolve circuits 

in 2-input lookup table (2-LUT) and rely on FlowMap to give 

circuits with a 4-LUT format. Experimental results show that 

both the lookup table counts and the propagation delays of the 

circuits collected are better than those obtained by conventional 

design or evolved by G P P L C S alone. 

W e have gone one step further in Chapter 7. A novel Memetic 

G P P L C S (MGPPLCS) has been proposed and implemented. 

D A O M a p is included in G P P L C S as a non-genetic local search 

operator. It is shown that better circuits with smaller number of 

LUTs and shorter propagation delay are evolved with a smaller 

number of tournaments. 

8.1 Future work 

This work can be improved or extended in two main directions. 

With the success of M M G P P L C S , a hardware implementa-

tion of G P P L C S is a feasible way to speed up the evolution 

process. A full-scale hardware based G P P L C S system can be 

implemented in the latest FPGAs for speeding up design phase. 

The increased clock rates (550 MHz) in the latest generation of 

F P G A , Virtex-5 compared with Virtex-E (133 MHz) in Pilchard 

enable us to achieve a faster hardware design of MLP. Since 

we have already got a hardware implemented MLP, we need to 
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design and implement a hardware evolution engine to perform 

genetic operations. 

Both H G P P L C S and M G P P L C S give us a possibility to solve 

some benchmark problems in technology mapping problems. In 

the current moment, it takes a few hours to evolve a solution 

program for difficult problems. With the speedup in both design 

phase and optimization phase, some large scale real life problems 

such as five-input X O R function in M C N C benchmark problems 

can be solved. 

• End of chapter. 
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