248 research outputs found

    On-Demand Key Distribution for Mobile Ad-Hoc Networks

    Get PDF
    Mobile ad-hoc networks offer dynamic portable communication with little or no infrastructure. While this has many benefits, there are additional shortcomings specific to wireless communication that must be addressed. This research proposes gossip-based on-demand key distribution as a means to provide data encryption for mobile ad-hoc networks. This technique uses message keys to avoid encrypting and decrypting a message at every node. Other optimizations used include secure channel caching and joint rekey messages. The use of gossip makes the scheme robust to node failure. Experimental results show only a 15% increase in end-to-end delay with a node failure rate of 10%. The percentage of messages successfully delivered to nodes stays between 91-98% under the same 10% node failure rate. The network load is distributed to all nodes in the group preventing overload and single points of failure

    Models and Methods for Network Selection and Balancing in Heterogeneous Scenarios

    Get PDF
    The outbreak of 5G technologies for wireless communications can be considered a response to the need for widespread coverage, in terms of connectivity and bandwidth, to guarantee broadband services, such as streaming or on-demand programs offered by the main television networks or new generation services based on augmented and virtual reality (AR / VR). The purpose of the study conducted for this thesis aims to solve two of the main problems that will occur with the outbreak of 5G, that is, the search for the best possible connectivity, in order to offer users the resources necessary to take advantage of the new generation services, and multicast as required by the eMBMS. The aim of the thesis is the search for innovative algorithms that will allow to obtain the best connectivity to offer users the resources necessary to use the 5G services in a heterogeneous scenario. Study UF that allows you to improve the search for the best candidate network and to achieve a balance that allows you to avoid congestion of the chosen networks. To achieve these two important focuses, I conducted a study on the main mathematical methods that made it possible to select the network based on QoS parameters based on the type of traffic made by users. A further goal was to improve the computational computation performance they present. Furthermore, I carried out a study in order to obtain an innovative algorithm that would allow the management of multicast. The algorithm that has been implemented responds to the needs present in the eMBMS, in realistic scenarios

    A Survey on Cryptography Key Management Schemes for Smart Grid

    Get PDF
    A Smart grid is a modern electricity delivery system. It is an integration of energy systems and other necessary elements including traditional upgrades and new grid technologies with renewable generation and increased consumer storage. It uses information and communication technology (ICT) to operate, monitor and control data between the generation source and the end user. Smart grids have duplex power flow and communication to achieve high efficiency, reliability, environmental, economics, security and safety standards. However, along with unique facilities, smart grids face security challenges such as access control, connectivity, fault tolerance, privacy, and other security issues. Cyber-attacks, in the recent past, on critical infrastructure including smart grids have highlighted security as a major requirement for smart grids. Therefore, cryptography and key management are necessary for smart grids to become secure and realizable. Key management schemes are processes of key organizational frameworks, distribution, generation, refresh and key storage policies. Currently, several secure schemes, related to key management for smart grid have been proposed to achieve end-to-end secure communication. This paper presents a comprehensive survey and discussion on the current state of the key management of smart grids

    A Survey on Routing Protocols for Large-Scale Wireless Sensor Networks

    Get PDF
    With the advances in micro-electronics, wireless sensor devices have been made much smaller and more integrated, and large-scale wireless sensor networks (WSNs) based the cooperation among the significant amount of nodes have become a hot topic. “Large-scale” means mainly large area or high density of a network. Accordingly the routing protocols must scale well to the network scope extension and node density increases. A sensor node is normally energy-limited and cannot be recharged, and thus its energy consumption has a quite significant effect on the scalability of the protocol. To the best of our knowledge, currently the mainstream methods to solve the energy problem in large-scale WSNs are the hierarchical routing protocols. In a hierarchical routing protocol, all the nodes are divided into several groups with different assignment levels. The nodes within the high level are responsible for data aggregation and management work, and the low level nodes for sensing their surroundings and collecting information. The hierarchical routing protocols are proved to be more energy-efficient than flat ones in which all the nodes play the same role, especially in terms of the data aggregation and the flooding of the control packets. With focus on the hierarchical structure, in this paper we provide an insight into routing protocols designed specifically for large-scale WSNs. According to the different objectives, the protocols are generally classified based on different criteria such as control overhead reduction, energy consumption mitigation and energy balance. In order to gain a comprehensive understanding of each protocol, we highlight their innovative ideas, describe the underlying principles in detail and analyze their advantages and disadvantages. Moreover a comparison of each routing protocol is conducted to demonstrate the differences between the protocols in terms of message complexity, memory requirements, localization, data aggregation, clustering manner and other metrics. Finally some open issues in routing protocol design in large-scale wireless sensor networks and conclusions are proposed

    Scalable and Fault Tolerant Group Key Management

    Get PDF
    To address the group key management problem for modern networks this research proposes a lightweight group key management protocol with a gossip-based dissemination routine. Experiments show that by slightly increasing workload for the key update mechanism, this protocol is superior to currently available tree-based protocols with respect to reliability and fault tolerance, while remaining scalable to large groups. Java simulations show that the protocol efficiently distributes keys to large groups in the midst of up to 35 percent node failure rates. In addition, it eliminates the need for logical key hierarchy while preserving an overall reduction in rekey messages to rekey a group. The protocol provides a simple “pull” mechanism to ensure perfect rekeys in spite of the primary rekey mechanism’s probabilistic guarantees, without burdening key distribution facilities. Parameters for overlay management and gossip are improved to minimize rekey message traffic while remaining tolerant to node failure

    A Framework for Controlling Quality of Sessions in Multimedia Systems

    Get PDF
    Collaborative multimedia systems demand overall session quality control beyond the level of quality of service (QoS) pertaining to individual connections in isolation of others. At every instant in time, the quality of the session depends on the actual QoS offered by the system to each of the application streams, as well as on the relative priorities of these streams according to the application semantics. We introduce a framework for achieving QoSess control and address the architectural issues involved in designing a QoSess control laver that realizes the proposed framework. In addition, we detail our contributions for two main components of the QoSess control layer. The first component is a scalable and robust feedback protocol, which allows for determining the worst case state among a group of receivers of a stream. This mechanism is used for controlling the transmission rates of multimedia sources in both cases of layered and single-rate multicast streams. The second component is a set of inter-stream adaptation algorithms that dynamically control the bandwidth shares of the streams belonging to a session. Additionally, in order to ensure stability and responsiveness in the inter-stream adaptation process, several measures are taken, including devising a domain rate control protocol. The performance of the proposed mechanisms is analyzed and their advantages are demonstrated by simulation and experimental results

    A Robust, Distributed TGDH-based Scheme for Secure Group Communications in MANETs

    Get PDF
    Securing multicast communications in Mobile Ad Hoc Networks (MANETs) is now considered among the most challenging research directions in the areas of wireless networking and security. MANETs are emerging as the desired environment for an increasing number of commercial and military applications, addressing also a growing number of users. Security on the other hand, is now an indispensable requirement for these applications. However, the limitations of the dynamic, infrastructure-less nature of MANETs impose major difficulties in establishing a secure framework suitable for group communications. The design of efficient key management (KM) schemes for MANET is of paramount importance, since the performance of the KM functions (e.g. group key generation, entity authentication) imposes an upper limit on the efficiency and scalability of the whole secure group communication system. In this work, we contribute towards efficient, robust and scalable secure group communications for MANETs by extending the TGDH scheme to a novel distributed and topology aware protocol: DS-TGDH. Our aim is to modify TGDH so that: a) it is feasible in the most general resource-constrained flat MANET where no nodes with special capabilities may exist, b) it produces considerably lower overhead for the network nodes involved, c) it handles disruptions with low cost. To meet our objectives we consider in our design the underlying routing protocol, and we apply a distributed version of TGDH over a robust schedule, optimizing parameters of interest. We assume that members have already been authenticated and we focus on the design and analysis of the einforcedDS-TGDH. We compare our scheme with the original, w.r.t. this cross-layer consideration. Through our analysis and results we shed more insight on the actual feasibility of these protocols for MANETs and provide more realistic and aircomparison results that more accurately advocate the pros and cons of each protocol over the environment of interest

    Virtual Multicast

    Get PDF

    On Cloud-based multisource Reliable Multicast Transport in Broadband Multimedia Satellite Networks

    Get PDF
    Multimedia synchronization, Software Over the Air, Personal Information Management on Cloud networks require new reliable protocols, which reduce the traffic load in the core and edge network. This work shows via simulations the performance of an efficient multicast file delivery, which advantage of the distributed file storage in Cloud computing. The performance evaluation focuses on the case of a personal satellite equipment with error prone channels
    • …
    corecore