48,177 research outputs found

    VSCAN: An Enhanced Video Summarization using Density-based Spatial Clustering

    Full text link
    In this paper, we present VSCAN, a novel approach for generating static video summaries. This approach is based on a modified DBSCAN clustering algorithm to summarize the video content utilizing both color and texture features of the video frames. The paper also introduces an enhanced evaluation method that depends on color and texture features. Video Summaries generated by VSCAN are compared with summaries generated by other approaches found in the literature and those created by users. Experimental results indicate that the video summaries generated by VSCAN have a higher quality than those generated by other approaches.Comment: arXiv admin note: substantial text overlap with arXiv:1401.3590 by other authors without attributio

    ADBSCAN: Adaptive Density-Based Spatial Clustering of Applications with Noise for Identifying Clusters with Varying Densities

    Full text link
    Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering algorithm which has the high-performance rate for dataset where clusters have the constant density of data points. One of the significant attributes of this algorithm is noise cancellation. However, DBSCAN demonstrates reduced performances for clusters with different densities. Therefore, in this paper, an adaptive DBSCAN is proposed which can work significantly well for identifying clusters with varying densities.Comment: To be published in the 4th IEEE International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT 2018

    Tracking Target Signal Strengths on a Grid using Sparsity

    Get PDF
    Multi-target tracking is mainly challenged by the nonlinearity present in the measurement equation, and the difficulty in fast and accurate data association. To overcome these challenges, the present paper introduces a grid-based model in which the state captures target signal strengths on a known spatial grid (TSSG). This model leads to \emph{linear} state and measurement equations, which bypass data association and can afford state estimation via sparsity-aware Kalman filtering (KF). Leveraging the grid-induced sparsity of the novel model, two types of sparsity-cognizant TSSG-KF trackers are developed: one effects sparsity through â„“1\ell_1-norm regularization, and the other invokes sparsity as an extra measurement. Iterative extended KF and Gauss-Newton algorithms are developed for reduced-complexity tracking, along with accurate error covariance updates for assessing performance of the resultant sparsity-aware state estimators. Based on TSSG state estimates, more informative target position and track estimates can be obtained in a follow-up step, ensuring that track association and position estimation errors do not propagate back into TSSG state estimates. The novel TSSG trackers do not require knowing the number of targets or their signal strengths, and exhibit considerably lower complexity than the benchmark hidden Markov model filter, especially for a large number of targets. Numerical simulations demonstrate that sparsity-cognizant trackers enjoy improved root mean-square error performance at reduced complexity when compared to their sparsity-agnostic counterparts.Comment: Submitted to IEEE Trans. on Signal Processin
    • …
    corecore