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ABSTRACT 

Leaf samples analysis is a significant tool to acquire the actual nutrition information of 

crops. After that, farmers can adjust fertilization programs to prevent nutritional problems and 

improve the yield of crops.  Traditional way for leaf sampling is manual, and researchers need to 

go to the field and use paper hole punchers with a catch-tube to collect leaf samples. The 

temperature in summer is hot, and some crop like corn is difficult for researchers to walk through, 

therefore the manual way of leaf sampling is not a good option.   

In this thesis, an automatic method of leaf sampling is presented to solve the difficulty of 

leaf sampling. The contributions of this thesis are the following: (1) Build the end effector of leaf 

sampling device to punch and store leaf samples separately, (2) Train a neural network to detect 

the leaves with high horizontal level, (3) Combine point cloud data from depth camera and vison 

data from camera via the sensor fusion to get the leaf rolling angle and grasp point. The method in 

this thesis can produce a consistent leaf rolling angle estimate quantitatively and qualitatively on 

multiple corn leaves, especially on leave with multiple different angles.  
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CHAPTER 1: Introduction 

1.1 Motivation 

From the United Nations, the world population is increasing by around 1.13 percent per 

year and will grow from 7.4 billion in 2016 to 8.1 billion in 2025. By 2050, the world population 

is projected to reach 9.7 billion (UN, 2015). Urbanization will continue to develop at a rapid pace 

with the numerous income increases, and urban populations will make up about 70% of the world's 

population, compared to 49% today. To feed these increased populations, especially the richer 

population in the urban area, food production must increase by 70% (Tripathi et al., 2019). In order 

to solve this problem, the efficiency of food production should be improved in technical ways. 

Fertilization could produce higher yields to enhance crop reserve and buffer national food 

provision (Renard and Tilman, 2019). In practice, fertilizer programs should be changed in the 

different stages of plants according to nutritional condition of crops and soil to improve yield. Leaf 

sample analysis, frequently used after soil testing, is critical for the indication of nutrient status 

which tells us how well the plants get certain elements from soil-applied fertilizer and what 

elements it needs (Obreza et al., 1992). 

One way for traditional leaf sampling is manual, researchers need to go to the field and use 

paper hole punchers with a catch-tube to collect leaf samples. The operation is simple, but 

researchers need to take many tubes to isolate the sample. The temperature in summer is hot, and 

some crops like corn are difficult to walk through. Therefore, the manual way of leaf sampling is 

not a good option. Another way is using sampling machines to punch and isolate the leaf samples 

automatically. An example of these two ways can be seen in figure 1.1. From the picture, we can 

find this machine is bulky and heavy so that researchers still need to go to the field to bring the 

leaves back. Hence an automatic and flexible leaf sampling device is needed to solve the problem.  
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(a) paper hole punchers with a catch-tube                                 (b) sampling machine 

Figure 1.1: Two traditional ways for leaf sampling 

 

1.2 Related Work 

1.2.1 Automatic Harvesting of fruits 

 The mechanical design process for leaf sampling device and automatic harvesting device 

is same where the manipulator and end effector need to be designed according to the object we 

want to grasp. As shown in the figure 1.2, a manipulator with 5 DOF was designed to grasp the 

apple in the high position and avoid the obstacle in the process of approaching object apple. With 

the utilization of pneumatic devices, the spoon-shaped end effector can quickly change the open 

and close status. In the experiment, this apple harvesting system uses 15.4 s on average for the 

picking process and achieves a 77% success rate (De-An et al., 2011).  

For the harvesting of green pepper, an end effector was developed to grasp the stem of the 

fruit and cut it which is shown in the figure 1.3. In this way, this process doesn’t cause any harm 

to the fruit since all the operations are done at the stem position. The manipulator of the green 

pepper harvesting system is also in 5 DOF since it is enough to approach the object in the automatic 

harvesting of fruits and vegetables.  
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Figure 1.2: Apple harvesting system(De-An et al., 2011) 

 

 
(a) The 3D model in Solidworks 

 
(b) The end effector in the real system 

Figure 1.3: The end effector for green pepper harvesting (Bachche and Oka, 2013) 
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The automatic harvesting of rice, wheat, soybean, corn, rapeseed is already realized by the 

combine-harvester from John Deere. With the adoption of the CTS technology, cutting flow 

threshing cylinder and plate teeth longitudinal axial flow separation cylinder structure was 

developed to enhance the separation performance of the machine and reduce the rate of grain 

breakage. Compared to the fruit of these crops which are hard or possess a hard shell, other fruits 

and vegetables like apple and green pepper are softer and easily damaged which means the large 

agricultural machinery cannot be applied for the harvesting of these fruits. 

Low accuracy, low speed, and high cost are the main reasons of why automatic harvesting 

robot are not as popular as the large agricultural machinery. However, with the rapid development 

of machine vision, machine learning, and sensor fusion, automatic harvesting machinery are 

capable of detecting the fruit with high success rate. Ji et al. (2012) presented a real-time vision 

detection system where a segmentation method based on color feature and shape feature is applied 

to process filtered apple image. After that, a SVM classifier was utilized to classify apple in the 

segmented objects with 89% success rate. However, the recognition rate of fruits could be further 

improved by the application of neural networks. In the study of Jia et al. (2015), they used K-

means algorithm to segment apple from the background and utilize a radial basis function (RBF) 

neural networks which is optimized using genetic algorithm and least mean square algorithm for 

recognition.  For blocked and overlapping apple samples, the detection rates are 95.38% and 

96.17%, respectively. While for all kinds of apple samples, the detection rate can reach 96.95%.  

Compared to apple, the recognition of green pepper is harder since it has the same color with the 

background of leaves. In the study of Song et al. (2014), a bag-of-words (BoW) model is trained 

to extract features from images and produce frequency distribution as an input to the SVM 

classifier.  This method of image analysis can achieve a recognition rate of 96.5%. After the 
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detection of object, a flexible and robust manipulator is needed to approach the object rapidly after 

the detection of object to overcome the low speed of automatic harvesting robot. Considering the 

high cost of fruit harvesting robot, a more general end effector should be designed to grasp 

different kinds of fruits so that it could be mass produced to reduce the cost. There are still many 

significant works needed to be done on the manipulators and end effector in order to construct the 

intelligent farm in the future.  

 

1.2.2 Sensor Fusion 

 Sensor fusion is widely adopted in the autonomous driving field because the types of road 

scenarios in real urban environments are diverse and can change rapidly where only one kind of 

sensor is not capable of getting all the significant information from environment and keeping pace 

with the rate of road environment changing. Research shows that the autonomous driving system 

with more sensors for sensor fusion system benefits with better perception performance and the 

robustness of the planning solution (Kocić et al., 2018). For the safety of vehicle and pedestrian, 

sensor fusion is indispensable for the autonomous vehicle.  

The key sensors in the sensor fusion of autonomous driving system are camera, radar, and 

lidar. The autonomous vehicle generally has the largest number of cameras in the sensor list which 

are mounted on the different part of vehicles with different angles to achieve 360-degree 

observation of the environment. The high-resolution cameras can provide informative data for the 

machine learning and deep learning algorithm.  One shortcoming of cameras is that they consume 

a large amount of GPU memory in the deep-based detection algorithm, and the GPU with high 

memory is usually expensive.  

For Radar, the most important characteristic is that it can measure the speed of other objects  
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directly using the Doppler effect while camera and Lidar need several frames of data to calculate 

the speed. Another advantage is that radar is rarely affected by environmental factors and can 

operate in all weather conditions, such as complex light, rain and snow. Moreover, radar can 

measure objects in a longer distance than camera and Lidar. The drawback of Radar is that the 

resolution and accuracy of point cloud data from Radar are low which increases the difficulty of 

object classification. 

LiDAR is the abbreviation of Light Detection and Ranging which emits laser beams to 

detect the target's position. With the utility of laser beams, it can get point cloud data with high 

resolution and accuracy, but the operation of LiDAR is easily influenced by weather and 

atmosphere. The attenuation of laser is generally small in sunny weather, but dramatically 

increased in heavy rain, smoke, fog and other bad weather which greatly affect the spread distance. 

Moreover, the LiDAR which can produce high resolution point cloud data is extremely expensive. 

We can find that three different sensors have their own merit and drawback, thus sensor fusion is 

needed to take advantage of all merits from each sensor and make up for the weakness.  

The classification job using sensor fusion can be divided into two types: applying sensor 

fusion before the classification or applying sensor fusion after the classification. In the study of 

Gao et al. (2018), an object detection method which applied sensor fusion before the classification 

was proposed. Firstly, point cloud data after upsampling was projected to the image plane to 

produce a depth image. Then this depth image became the fourth channel of the RGB image, and 

a collection of new RGB-D images were fed into a deep convolutional neural network (CNN) for 

training. The process of producing this RGB-D image are shown in the figure 1.4. The 

classification results of this CNN can reach 100%, 100%, 98.6%, 88.6% and 97.2% at pedestrian, 

cyclist, car, truck and others, respectively. 
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Figure 1.4: The process of producing this RGB-D image (Gao et al., 2018) 

 

In another research of Xiao et al. (2015), a road detection method which applied sensor 

fusion after the classification was proposed. They first established the correlation between points 

from LiDAR and pixels in images using the intrinsic matrix and extrinsic matrix from the 

calibration. The fused result after projection is shown in figure 1.5. Then they trained boosted 

decision tree separately on image data and point cloud data for classification. After that, the two 

classification scores were fused to be the unary potentials of the corresponding pixel nodes to 

construct the conditional random field. The fused conditional random field can be easily solved 

with graph cut to predict the road area. In figure 1.6, green represents the predicted road areas, and 
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blue represents ground truths. The predicted result from fused CRF works best since the green area 

is almost overlapped with blue area.  

 
Figure 1.5: The fused result after projection (Xiao et al., 2015) 

 

 
(a) The result of basic pixel classifier 

 
(b) The results of pixel based CRF 

 
(c) The results of the proposed fused CRF 

Figure 1.6: The prediction results of road area (Xiao et al., 2015)  
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 The same sensor fusion technology can also be applied for recognition of fruits in the 

automated harvesting, and the exact 3D coordinates of detected objects can be obtained from point 

cloud data which benefits the future steps in automated harvesting. Tao and Zhou (2017) developed 

an automatic apple recognition method which applied sensor fusion before the classification. 

Depth camera termed Kinect v2 was used in this study to produce fused colored point cloud data, 

and an RGB-based region growing segmentation algorithm was used to get colored point cloud 

data of apple as dataset. Then they utilized an improved 3D descriptor (Color-FPFH) to extract 

color and 3D features from dataset and fed these features to a classifier based on the support vector 

machine (SVM) which was optimized by a genetic algorithm for training. This classifier is capable 

of predicting apple in 3D bounding box (fig. 1.7) with 92.3% accuracy.  

 
Figure 1.7: The prediction results of apple in 3D bounding box (Tao and Zhou, 2017) 

 

Eizentals and Oka (2016) proposed another method which applied sensor fusion before the 

classification to recognize the green pepper and estimate the 3D pose of stem for the next cutting 

step.  They first used a machine vision technology named image analysis block to segment the 

green pepper from the background of leaves. After that, they applied a coherent point drift (CPD) 
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algorithm to project the points from LiDAR to the image plane, and filtered the point cloud inside 

the recognition area to calculate the 3D coordinates of detected green pepper’s stem. The detection 

result and filtered point cloud are shown in figure 1.8, and we can find the detection result is not 

accurate enough where some leaves are mistakenly identified as green peppers. Hence, machine 

learning or deep learning method should be used for the recognition to obtain a more accurate 

consequence from the image.  

 

Figure 1.8: The detection result and filtered point cloud (Eizentals and Oka, 2016) 

 

1.3 Field Robotic System 

 A Field Robotic System, termed TerraSentia, was developed in the Distributed 

Autonomous Systems (DAS) Laboratory (Zhongzhong et al., 2020). The robot in the figure 1.9 is 

the second version of TerraSentia. This agricultural robot is designed to autonomously navigate 

between the rows of corn and collect information such as corn number, stem height and stem width 

for crop breeders, plant protection product developers, crop scientists, and field agronomists.  

This field robotic system is a four-wheel ground-based mobile robot, whose size is 30 cm 

tall × 50 cm long × 35 cm wide, with a 15 cm ground clearance, and weighs 6.5 kg. It is also 

equipped with a range of sensors. One real-time kinematic (RTK) GPS (ZED-F9P) has been 

mounted on the rear of the top of the robot. This module has multi-band RTK with fast convergence 

times and reliable performance and multi-band GNSS receiver which delivers centimeter level 
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accuracy in seconds. The 3D LiDAR (VLP-16) or depth camera (RealSense D435i) can also be 

installed on this place for the sensor fusion task. Two 2D LiDARs (Hokuyo UST-10LX) are 

installed on the top and trailing end of the robot respectively to acquire points from the horizontal 

plane and moving vertical plane. The resolution angle of the 2D LiDAR is 0.25°, the range of it is 

270° , and it measures data at 40Hz. Images are recorded with a USB board camera (ELP-

USBFHD01M-L21) mounted on the three sides of the robot to get information from the 

surrounding environment. The frame rate of the camera is 30 fps when the resolution is 1920 x 

1080 pixels, and the length size of the camera is 2 megapixels.  

 
Figure 1.9: The field robotic system, termed TerraSentia 
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1.4 Objectives  

The main objective of this thesis is to develop an automatic and robust method of leaf 

sampling in the field. A more flexible and smaller end effector should be designed to punch and 

store leaf samples separately in our leaf sampling device. The end effector with mechanical arm 

can be installed on the ground-based robot platform in our lab which can navigate automatically 

in the field. Furthermore, a deep based sensor fusion algorithm should be developed to choose 

object leaves, calculate the leaf rolling angle, and confirm grasp point.  

 

1.5 Overview 

 This paper is organized as follows: Chapter 2 explores the mechanical design of the leaf 

sampling manipulator according to the robotic leaf sampling requirements. Chapter 3 details the 

deep based detection of object leaves including the selection of neural network architecture and 

the preparation of dataset. Chapter 4 describes a sensor fusion algorithm which uses the intrinsic 

matrix and extrinsic matrix from the calibration for leaf rolling angle estimation and grasp point 

selection. Chapter 5 provides an overview of data collection and experimental leaf rolling angle 

measurement. Lastly, chapter 6 concludes the paper and suggests future work.  
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CHAPTER 2: Design of the Leaf Sampling Manipulator 

2.1 Robotic Leaf Sampling Requirements 

This leaf sampling project was proposed by Stasiewicz Food Safety Laboratory and we had 

a discussion with them to confirm Robotic Leaf Sampling Requirements below. The primary 

design plant is lettuce, however, there is no recorded lettuce data in our lab. Instead, we choose 

corn as the design plant for experiment since there is a mass of recorded data of corn at different 

stages in our lab.  

a. Take samples < 25 mm from edge of leaf. 

b. Collect circular leaf sample with 20 mm diameter.  

c. The end effector are capable of storing 20 samples per run. 

d. Object leaf surface angle relative to the ground is around 0° for the easy control of end 

effector, but the designed accessible leaf surface angle should be up to 90°.  

e. Each sample should be isolated and labeled with time and GPS information from the 

ROS system.  

f. The overall size of end effector with leaf samples storage part should be less than 20 cm 

x 20 cm x 20 cm.  

g. The end effector mass should be less than 2 kg. 

h. The end effector mass should be dismountable to get the leaf samples inside the storage 

part easily.  
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2.2 End Effector Design 

2.2.1 Punch Mechanism Design 

 For the automation of punching, a solenoid is applied to drive the punch. In order to punch 

the corn leaves successfully, we need to use the corn leaf thickness, PSS of corn leaves and leaf 

samples diameter to calculate the required punch force. Then we can use this punch force to select 

the appropriate type of solenoid. From table 2.1, the average corn leaf thickness with no shading 

treatment is 127.82 µm (Lihua et al., 2012). From table 2.2, the total average of Punch-and-Die 

Shear Strength (PSS) for leaf sheaths in different growth periods is 5.35 MPa. The leaf samples 

diameter is 20 mm according to the requirements in the section 2.1. 

Table 2.1: Leaf epidermal thickness and leaf thickness of corn under different shading treatment in greenhouse (Lihua et al., 2012) 

Shading Treatment Upper Epidermal Thickness/µm Lower Epidermal Thickness/µm Leaf Thickness/µm 

No 27.27± 2.15 20.80± 2.22 127.82± 9.12 

With 30% luminousness 25.89± 2.15 27.27± 2.15 27.27± 2.15 

With 10% luminousness 27.27± 2.15 27.27± 2.15 27.27± 2.15 

 

 

Table 2.2: Mean for PSS of leaf sheaths originating from different internodes of sugarcane stalk from different growth periods (October, 

November, and December 2010) (Mou et al., 2013) 

 Punch-and-Die Shear Strength (PSS)/MPa 

Internode October November December 

6 4.42 3.59 4.45 

5 4.89 4.21 4.98 

4 5.68 5.02 6.83 

3 5.48 4.91 7.13 

2 5.98 5.33 6.49 

1 5.65 5.15 6.18 

Total Average      5.35 

 

 After these three parameters are acquired, the punch force is calculated as follows: 

𝐹 =  𝜋𝑑𝑡(𝑃𝑆𝑆)                                                        (2.1) 

Where: 

 F = punch force (N) 

d = diameter of the leaf samples (m) 

 t = thickness of the corn leaves(m) 
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 PSS = punch-and-die shear strength (MPa) 

 The final result of punch force is 42.95 N which is equal to 154.47 oz. Based on this punch 

force, a sealed linear solenoid with 191 oz. force at 10% stroke length is selected to push the punch. 

The voltage of this sealed linear solenoid is 12 V while the power is 59 W. The mounting 

orientation can be any angle, horizontal, inverted or vertical which meets the requirement of 

rotating end effector to access the leaf with a large leaf surface angle relative to the ground. The 

size of this sealed linear solenoid (the unit is inch) is shown in the figure 2.1.  

 
Figure 2.1: The size of sealed linear solenoid (https://americas.rsdelivers.com) 

 

Furthermore, the punch is connected to the linear solenoid with shaft collar, then a bracket 

is designed to fix the combination of linear solenoid and punch (fig. 2.2). In practical work, the 

object leaf should be on the cutting plane for punching after the implementation of detection 

algorithm and the control of manipulator and end effector.  
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(a)                                                                                                        (b) 

Figure 2.2: Punch mechanism design 

 

2.2.2 Storage Assembly Design 

For the storage assembly (fig. 2.3), a 20x 21mm circular sample tray is designed to store 

leaf samples. This circular samples tray fits with a three-leaf screw shaft in the middle which is 

connected to a stepper in the bottom and can rotate at 18°. The round circular lid which is hinged 

with the bottom tray is on the top to cover the circular sample tray for the protection and isolation. 

The punch mechanism is combined with round circular lid and coaxially fit with one hole in the 

circular samples tray initially. The assembled end effector in the real world is shown in the figure 

2.4, and its working process has following steps: 

(1) Punch mechanism does the cutting job, and a leaf sample is forced into one hole in the 

sample tray 

(2) The stepper rotates 18° which drives the rotation of the three-leaf screw shaft and the 

sample tray, and now the punch mechanism is coaxially fit with a new hole. 
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(3) Repeat 20 times of step (1) and step (2) 

(4) Once a run is finished, researchers can lift the round circular lid, replace the circular 

samples tray with a new one, and start a new run again.   

  
(a)                                                                                                   (b) 

    
(c)  

Figure 2.3: Storage assembly design 

20 x 21 mm Circular Sample Tray 

 
Bottom Tray 

 

Three-leaf Screw Shaft 

Stepper 
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Figure 2.4: The assembled end effector in the real world 

 

Moreover, we need to calculate the estimated torque to confirm the type of stepper. The 

circular sample tray and bottom tray are 3D printed using polylactic acid (PLA). The sliding 

friction coefficient of PLA is 0.492 (Pawlak, W. 2018), the total mass of the circular samples tray 

and the three-leaf screw shaft is 0.71 kg, and the radius of circular samples tray is 0.1 m, therefore 

the torque can be estimated using the following equation: 

𝑀 =  
2

3
𝜇𝑚𝑔𝑟                                                        (2.2) 
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Where: 

 M = the torque of a disc to overcome friction (N·m) 

𝜇 = friction coefficient 

 m = mass of disk (kg) 

 g = gravity coefficient 

 r = diameter of disk (m) 

 The final result of torque is 0.22 N·m, thus a stepper motor (Nema 17 Stepper Motor) with 

0.46 N·m is selected since we need to take the break-out torque into consideration. The rotation 

angle for one step is 1.8°, thus 10 steps are needed for one rotation since the required rotation angle 

is 18°. The picture of stepper motor is shown below: 

 
Figure 2.5: Nema 17 stepper motor 

 

2.3 Future Work 

In this chapter, only end effector is designed while the appropriate manipulator is not 

selected yet, therefore the future work includes the design of manipulator for corn leaves, install 

the manipulator and end effector to the field robotic system in our lab, and test the whole leaf 

sampling process in the field.  
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CHAPTER 3: Detection of Object Leaves 

3.1 Selection of Neural Network Architecture 

There are diverse neural network architectures for the image processing currently benefited 

from the rapid development of deep learning technology in recent years. If you want to classify 

the object and generate the mask for instance segmentation in the meantime, Mask RCNN is a 

good option. It takes image as an input, pass it through a conv-net to get ROI proposals at multiple 

locations and scales, reshape the ROIs, and pass them through a fully connected network to do 

bounding box classification and mask predicting inside the ROI (Girshick, 2015; Ren et al., 2015; 

He et al., 2017). However, You Only Look Once (YOLOv3) is utilized in this thesis based on the 

following reasons: 

 Firstly, YOLOv3 uses a new approach compared to the prior neural network architectures 

such as Mask RCNN which utilize classifiers or localizers for the recognition. However, Yolov3 

use a totally different approach. It applies a single neural network to the full image which is the 

meaning of You Only Look Once. In this model, the input image is divided into regions and 

bounding boxes and probabilities are predicted for each region. The predicted probabilities then 

become the weight of these bounding boxes (Redmon and Farhadi, 2018). 

Secondly, YOLOv3 is extremely fast and accurate. As illustrated in figure 3.1, in mAP 

measured at .5 IOU, YOLOv3 is on par with Focal Loss but about 4x faster (Redmon and Farhadi, 

2018). IOU is the abbreviation of Intersection over Union which is equal to area of overlap divided 

by area of union for the predicted bounding box and the ground-truth bounding box.  In figure 3.1, 

the line of Yolov3 is very high and far to the left, so it is much faster and more accurate than other 

methods. Yolov3-spp can get 60.6 IOU score at 52 second. Moreover, user can easily tradeoff 

between speed and accuracy simply by changing the size of the model. For example, if fast speed 



21 

 

is more important, Yolov3-320 could be chosen. If best accuracy is more important, Yolov3-spp 

could be chosen.   

 
Figure 3.1: Speed/accuracy tradeoff on the mAP at .5 IOU (Redmon and Farhadi, 2018) 

 

3.2 Dataset 

In the detection process, an appropriate corn leaf should be selected at first. The corn leaves 

with high horizontal level are the perfect object since we do not need to rotor the end effector of 

the leaf sampler too much. A total of 1100 images are labeled, and 1000 images are randomly 

selected as the training dataset while the rest 100 images are the testing dataset. In the dataset, all 

corn leaves with high horizontal levels are labeled even though some part of leaves might be coved 

by other leaves. Figure 3.2 shows some examples of labeled picture. 



22 

 

 

 
Figure 3.2: Some examples of labeled picture 
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3.3 Training process 

Hyper-parameters are crucial for the training process and we need to adjust the hyper-

parameters according to the loss on training dataset and validation dataset. There are many tips on 

the adjustment of hyper-parameters. Firstly, we can decrease the number of epochs, using data 

augmentation, and using regularization to solve the overfitting problem. As indicated in figure 3.3, 

the overfitting problem is a phenomenon where the loss of training set will finally go to zero with 

increasing number of iterations, but the loss of validation set will decrease first and then increase.  

In this thesis, no validation dataset is divided since the limitation of labeled image quantity, thus 

the accuracy on testing dataset is used to substitute the loss on validation dataset. Moreover, if the 

oscillation amplitude of the loss curve is large and cannot converge to a stable value, we can try to 

decrease the initial learning rate or increase batch size. Lastly, we can choose different optimizers 

to control the output curves and final result. Using Adam optimizer can accelerate the convergence 

of the model, but using stochastic gradient descent (SGD) with a apposite learning rate can get a 

more accurate model on the testing dataset. The adjusted hyper-parameters for training are shown 

in the table 3.1.  

 

Fig. 3.3: Tendency of error for training set and validation set (https://www.sohu.com/a/276252380_473283) 
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Table 3.1: The adjusted hyper-parameters for training  

Category Hyper-parameters Value 

 

Normal 

Number of Epochs 200 

Batch Size 16 

Image Size 736 

 
 

Optimizer 

 

Name SGD 

Initial Learning Rate 0.001 

Momentum 0.9 

Regularization Coefficient 0.0005 
 

Learning Rate Scheduler 
Step Size 10 

Scale Coefficient 0.1 

 
 

Data augmentation 

Scale of Image Brightness 0.18 

Scale of Image Translate 0.12 

Image Scaling 

Probability of Horizontal Flip 

0.16 

0.5 

 

Data augmentation technology is applied in the training to enlarge the dataset since we 

only have 1000 images in the training dataset. In neural networks, images with minor changes, 

such as flips, translations, rotations, and scaling, are treated as different images. For instance (fig. 

3.4),  the corn leaves image after horizontal flip become a different image for YOLOv3.  However, 

not all data augmentation methods are effective for the data set, we need to determine the category 

based on our object to make sure not to add irrelevant data. In this research, we want to detect corn 

leaves with high horizontal level, thus the images should not be rotated since the leaf angle will 

change. Similarly, the hue and saturation of images should not be changed since the leaf color will 

not be green.  

     
Figure 3.4: An example of horizontal flip 
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 As illustrated in figure 3.5, the train loss and test accuracy are converged at last, and the 

average precision measured at .5 IOU threshold of 200th iteration is 71.10% which is a relatively 

low value in the image recognition field. Possible reasons are as follows: (1) The size of training 

dataset is not big enough even though augmentation technology is applied. (2) Transfer learning 

is not utilized since the trained weight from a related task is difficult to find. However, this 

accuracy is enough for the object detection in this thesis since there is no need to recognize all the 

corn leaves with high horizontal level in the environment if we merely want to choose some 

appropriate corn leaf for sampling.  

(a)                                                                                                                (b)  
Figure 3.5: Results of train loss and test accuracy 

 

3.4 Object Detection 

 The figure 3.6 below are the test results of using weight in 200th iterations. The results 

show that Yolov3 is very powerful even there are only 1000 images in the training dataset. It also 

works well when the environment is in high brightness condition or part of leaf is covered by other 

leaves. 
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(a) Normal condition 

 
(b) High brightness condition 

 
(c) Condition where part of leaf is coved by other leaves 

Figure 3.6: Test result from the trained YOLOv3 model 
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3.5 Future Work 

Transfer learning is a machine learning technique where a model trained on one task is re-

purposed and improved on a second related task through the learned knowledge inside the 

pretrained weight (Torrey and Shavlik, 2010). Transfer learning is a very useful technique when 

the size of training dataset is small. You can download the pretrained weight, freeze all the layers 

in the model except the last fully connected layer, and then start training the last layer using the 

pretrained weight. However, using the model pretrained on the COCO dataset (Lin et al., 2014) 

for the transfer learning, the train loss is high and the test accuracy is low which means no 

knowledge is distilled from the pretrained model for the detection of the corn leaves with high 

horizontal level. Therefore, future work includes finding the model pretrained on a large and 

related dataset and using this model to apply the transfer learning technology. If an appropriate 

pretrained model for our dataset is not available, more labeled data would be needed to further 

improve the model accuracy of detecting required object. Moreover, neural network architectures 

are updated in YOLOv4 (Bochkovskiy et al., 2020) and YOLOv5 (Jocher, 2020), thus our dataset 

can be fed into the new models to get better performance for horizontal leaves detection. 
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CHAPTER 4: Detection of Leaf Rolling Angle and Grasp Point 

4.1 Framework 

In this research, image data and 3D point cloud data are used for the sensor fusion. As 

illustrated in the framework (fig. 4.1), image data are first fed into YOLO network for object 

detection, then the corresponding 3D point cloud data are projected into the image plane. After 

that, only the points inside the bounding boxes are remained and the DBSCAN algorithm is used 

to cluster these residual points. Lastly, each cluster of points can be used to estimate leaf rolling 

angle and grasp point for the attitude control of end effector.  

 

Figure 4.1: Framework of sensor fusion method in this research 
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4.2 Calibration 

The following equations are required in order to project a 3D point 𝑋 in world coordinates 

to a point 𝑌 in the image plane: 

𝑘𝑌 = 𝑃𝑇velo 
𝑐𝑎𝑚𝑋                                                     (4.1) 

𝑃 =  (
α 𝛽 𝑐𝑢

0 γ 𝑐𝑣

0 0 1

    
0
0
0

)                                                 (4.2) 

𝑇velo 
𝑐𝑎𝑚 =  (

Rvelo 
𝑐𝑎𝑚 tvelo 

𝑐𝑎𝑚

0 1
)                                                  (4.3) 

Where: 

𝑋 = (𝑥, 𝑦, 𝑧, 1)𝑇, a 3D point in world coordinates (m) 

𝑌 = (𝑢, 𝑣, 1)𝑇, a 2D point in image plane (pixel) 

𝑘 =  normalized coefficient 

𝑃  = the intrinsic projection matrix of the camera 

𝑇velo 
𝑐𝑎𝑚 = the extrinsic matrix between Lidar coordinates and camera coordinates 

(𝑐𝑢, 𝑐𝑣) = the principal point where the optic axis intersects the image plane (pixel) 

Rvelo 
𝑐𝑎𝑚 = the rotation matrix between Lidar coordinates and camera coordinates 

tvelo 
𝑐𝑎𝑚 = the translation matrix between Lidar coordinates and camera coordinates 

Through the calibration of camera, 𝑃  which is intrinsic matrix can be calculated. Similarly, 

the extrinsic matrix 𝑇velo 
𝑐𝑎𝑚 can be computed via the joint calibration of camera and Lidar.  

 

4.2.1 Calibration of Camera 

In the calibration of camera, distortion coefficients are also considered since real lenses 

usually have some distortion, mostly radial distortion and slight tangential distortion. As shown in 

figure 4.1 and figure 4.2, the light is more curved away from the center of the lens than near the 
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center in radial distortion, and tangential distortion is caused when the camera plane and lens are 

unparallel.  

 

(a) No distortion                                                    (b) Positive radial distortion                            (c) Negative radial distortion 

Figure 4.1: An example of radial distortion 

 

 

Figure 4.2: An example of tangential distortion (taken from http://www.mathworks.com/help/vision/ug/camera-calibration.html) 

 

 Taking radial distortion and tangential distortion into consideration, the equation (4.1), (4.2) 

and (4.3) become following equations: 

(𝑥1, 𝑦1, 𝑧1)𝑇  = Rvelo 
𝑐𝑎𝑚(𝑥, 𝑦, 𝑧)𝑇 +  tvelo 

𝑐𝑎𝑚                                       (4.4) 

𝑥2 =  𝑥1/𝑧1, 𝑦2 =  𝑦1/𝑧1                                                 (4.5) 
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𝑥3 = 𝑥2
1+𝑘1𝑟2+𝑘2𝑟4+𝑘3𝑟6

1+𝑘4𝑟2+𝑘5𝑟4+𝑘6𝑟6
+ 2𝑝1𝑥2𝑦2 + 𝑝2(𝑟2 + 2𝑥2

2)                          (4.6) 

𝑦3 = 𝑦2
1+𝑘1𝑟2+𝑘2𝑟4+𝑘3𝑟6

1+𝑘4𝑟2+𝑘5𝑟4+𝑘6𝑟6 + 2𝑝2𝑥2𝑦2 + 𝑝1(𝑟2 + 2𝑦2
2)                          (4.7) 

(𝑢, 𝑣, 1)𝑇  =  (
α 𝛽 𝑐𝑢

0 γ 𝑐𝑣

0 0 1

) (𝑥3, 𝑦3, 1)𝑇                                     (4.8) 

Where: 

 𝑟2 =  𝑥2
2  + 𝑦2

2 

 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6 = radial distortion coefficients  

 𝑝1, 𝑝2 = tangential distortion coefficients 

In the camera calibration method from Zhang (2000), 𝑘4, 𝑘5 𝑎𝑛𝑑 𝑘6 are not modeled since 

they are usually slight. In this method, either the camera or the chessboard plane can be moved 

freely to get n images of chessboard plane under different orientations (fig. 4.3) where m feature 

points on the chessboard are detected, then the intrinsic projection matrix and remained distortion 

coefficients can be solved by minimizing the following equation using gradient descent method: 

∑ ∑ |𝑌𝑖,𝑗 − �̂�(𝑃 , 𝑅i, 𝑡i, 𝑋𝑖,𝑗)|2𝑚
𝑗=1

𝑛
𝑖=1                                          (4.9) 

Where: 

�̂�(𝑃 , 𝑅i, 𝑡i, 𝑋𝑖,𝑗) = the projection of point 𝑋𝑖,𝑗 in image i according to the equation (4.4) to 

equation (4.8) where the 𝑧 axis of chessboard plane is set to zero.  

𝑅i, 𝑡i = the rotation matrix and translation matrix between chessboard plane in image i and 

camera coordinates. 

The calibration results are shown below: 

𝑃1 =  (
654.98866183279665 0 662.02409727903864

0 639.94394769101689 394.28107906715690
0 0 1

) 
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𝐷1 =  ( −0.50423877743644596, −0.0015373510649772425, −0.048608818411876836,  

−0.0025829818360963387, 0.35058193751798555 ) 

𝑃2 =  (
612.547119140625 0 319.91510009765625

0 611.4494018554688 236.07823181152344
0 0 1

) 

𝐷2 =  (−0.434515956086, 0.156558117566, −0.00678458464834, 0.00792117520961, 0) 

Where: 

𝑃1, 𝐷1 = the intrinsic projection matrix and distortion coefficients of the USB board camera 

(ELP-USBFHD01M-L21). 𝐷1 =  (𝑘1, 𝑘2, 𝑝1, 𝑝2, 𝑘3). 

𝑃2, 𝐷2 = the intrinsic projection matrix and distortion coefficients of the RGB camera in 

RealSense D435i. 𝐷2 =  (𝑘1, 𝑘2, 𝑝1, 𝑝2, 𝑘3). 

   

   

Figure 4.3: Images of chessboard plane under different orientations 
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4.2.2 Joint Calibration of Camera and Lidar 

The camera-lidar calibration toolkit in Autoware (Kato et al., 2014) is used for the joint 

calibration of Camera and Lidar. As indicated in figure 4.4, the chessboard plane needs to be 

captured in both image and 3D point cloud data in the calibration process. The capture in image is 

automatically generated by the program, then the capture in 3D point cloud needs to be drew out 

by hand with the green circle, and the red points are captured points of the chessboard plane. The 

green circle contains at least two lines which form a plane where the calibration chessboard plane 

is located. The attitude of LIDAR can be inferred from the Angle of this plane, and the position of 

LIDAR can be calculated according to the position of these captured points, then the extrinsic 

matrix between Lidar coordinates and camera coordinates can be computed in the case where the 

intrinsic projection matrix of the camera is already known. The result of extrinsic matrix between 

Lidar coordinates and camera coordinates is shown below: 

𝑇velo 
𝑐𝑎𝑚 = (

−0.55984359921 −0.11251772247 0.82092320381
−8.28536642582 8.81032941671 −5.52960072206
−1.01082305669

0
−9.89736112145

0
−1.42549121322

0

    

5.17331840968
−3.82111782884
−5.99329646312

1

) 

 
Figure 4.4: One frame of captured chessboard plane in image and 3D point cloud 
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For RealSense D435i, the camera part and the depth camera part are integrated, thus the 

extrinsic matrix between depth camera coordinates and camera coordinates is fixed and provided 

by the RealSense. The result is shown below: 

𝑇depth 
𝑐𝑎𝑚 = (

0.999996185303 0.002035569865 0.001876220456
−0.00203593517 0.999997913837 0.000192823587
−0.00187582406

0
0.000196642708

0
0.999998211861

0

    

0.0147790554911
0.0001829413085
0.0002062431449

1

) 

 

4.3 Projection of Point Cloud data 

As indicated in the projection result of VLP-16 in the environment for calibration (fig. 4.5), 

the point cloud of chessboard is projected to the image plane accurately since the chessboard’s 

edges in image and projected point cloud are coincident.   

However, for the projection results of VLP-16 in corn field (fig. 4.6), the VLP-16 doesn’t 

work very well since the resolution is too low to identify corn leaves. That’s why RealSense D435i 

is used instead of VLP-16 in this research.  

 

Figure 4.5: Projection of point cloud from VLP-16 in the environment for calibration 
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Figure 4.6: Projection of point cloud from VLP-16 in the corn field 

For the Projection of point cloud from RealSense D435i in the corn field (fig. 4.7), the 

projected points have the same shape as the leaves in the bounding boxes which demonstrates the 

accuracy of extrinsic matrix. In figure 4.7(b), the black part is the missed points in measurement 

from depth camera, and for other part inside the bounding boxes, the color is whiter when the 

distance is larger. The point cloud data from depth camera is accurate when the distance is small, 

but the number of missed points is increasing when the distance become larger, thus the points 

whose distance is larger than the threshold is deprecated in the next DBSCAN algorithm. The 

residual point cloud inside the bounding boxes is shown in the figure 4.8. 

 
(a) 
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(b) 
Figure 4.7: Projection of point cloud from RealSense D435i in the corn field 

 

Figure 4.8: The residual point cloud inside the bounding boxes 

 

4.4 DBSCAN 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a pioneering 

density-based algorithm (Ester et al., 1996).  It can cluster 2D and 3D points in any shape and size 

since it is density-based. Moreover, it can also classify noise and outliers in datasets. However, the 
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initial DBSCAN needs to be improved in several aspects: (a) user needs to determine density 

parameter that is used to find neighboring points and minimum number of points to form a cluster.; 

(b) it is difficult for users to set density parameter and minimum number of points to form a cluster 

when datasets include points with varying densities; (c) and the computational cost is high (Khan 

et al., 2014).  

Many enhanced DBSCAN algorithm were proposed to overcome these shortcomings. For 

instance, in DCBRD (Fahim et al., 2006), clustering can be implemented efficiently without any 

input parameters from user. For datasets including points with varying densities, Liu et al. (2007) 

presented VDBSCAN which utilized K-distance plotting to calculate the density parameter 

automatically while the computational complexity was same as that of DBSCAN. GRIDBSCAN 

(Uncu et al., 2006) is also capable of dealing with various densities, but the time cost is expensive. 

In contrast, the time complexity of FDBSCAN (Liu, 2006) is linear which is much less than that 

of DBSCAN: O (n * log n). In this algorithm, kernel function is introduced to reduce the time 

complexity and improve the accuracy. Moreover, there are other modified DBSCAN algorithm 

which aim to improve the accuracy. EI-Sonbaty et al. (2004) provided an enhancement version of 

DBSCAN to get a better performance from large size of datasets using CLARANS (Ng and Han, 

1994) for the pre-processing of datasets. Mahran et al. (2008) presented a grid-based clustering 

algorithm to get higher accuracy with the utilization of high degree of parallelism.  

In this research, FDBSCAN (Liu, 2006) is used to cluster the residual point cloud inside 

the bounding boxes because of the fast speed and high accuracy and the pseudo-code is shown in 

Algorithm 1. In the clustering result (fig. 4.9), one color represents one cluster of data, and the 

algorithm works well on most part of the point cloud except the point cloud of overlapped leaves. 

After that, one cluster of data is selected based on a factor which is proportional to quantity of 
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points and inversely proportional to distance.  In this circumstance, the selected data is the purple 

cluster inside the red box in figure 4.9 whose front view and top view are shown in figure 4.10. 

 

Algorithm 1: FDBSCAN 

 

Input        : D → a dataset including n objects 

eps → the radius of confirming neighborhood of an object 

MinPts → density threshold of neighborhood 

Initialize   : C = NOISE 

    Output     :     (C1, …, CN) → a list of clusters based on density 

sort(D) 

foreach unvisited point P in dataset D do 

mark P as visited 

NeighborPts = all points within P's eps-neighborhood (including P) 

if sizeof(NeighborPts) < MinPts then 

mark P as NOISE 

else 

Cold = getfirstcoreId(NeighborPts) 

if Cold is not classified then 

        C = next cluster 

        add NeighborPts to cluster C 

else  

foreach point P' in NeighborPts do 

if P' is not visited then 

mark P' as visited 

NeighborPts' = all points within P's eps-neighborhood (including P') 

if sizeof(NeighborPts') >= MinPts then 

NeighborPts = NeighborPts joined with NeighborPts' 

                                            end 

                             end 

                             if P' is not yet member of any cluster then 

add P' to cluster C 

                             end 

                            end 

end 

end 

end 
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Figure 4.9: The clustering result obtained using DBSCAN  

 

                                (a) Front view 

 

 

(b) Top view 

Figure 4.10: Front view and top view of selected cluster in figure 4.9 
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4.5 Leaf Rolling Angle Detection and Grasp point Detection 

After object leaf is confirmed, leaf rolling angle needs to be calculated for the attitude 

control of end effector designed in the chapter 2. As illustrated in figure 4.11, selected leaf is 

slightly rolling and there are three different rolling angles in this leaf which are obvious in the 

point cloud of this leaf, thus point cloud data is used to compute the average rolling angles for 

these three parts.  

 

Figure 4.11: The correlation between selected leaf’s image and point cloud 

 

 Computing the leaf rolling angle is equal to computing the normal vector of point cloud 

surface which is usually implemented in two ways:   

(1) Using surface reconstruction technique to obtain the surface corresponding to the 

sampling points from dataset, then normal vector is calculated from the surface model. 

(2) Normal vector of Surface can be estimated directly from normal vectors of each point 

in point cloud dataset. 

In this research, the second method is chosen since it is much easier to implement. The 

normal vectors of a point can be approximated by calculating the normal vectors of the plane fitted 

according to the points in the neighborhood, thus the original problem is transformed into the least 

square plane fitting estimation problem presented as follow equation: 
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min
𝐴,𝐵,𝐶,𝐷

∑ (𝐴𝑥𝑖 + 𝐵𝑦𝑖 + 𝐶𝑧𝑖 + 𝐷)2𝑛
𝑖=1   s.t.  𝐴2 + 𝐵2 + 𝐶2 = 1                (4.10) 

Where: 

 𝑥𝑖 , 𝑦𝑖, 𝑧𝑖 = coordinates of points in the neighborhood 

 𝐴, 𝐵, 𝐶, 𝐷 = the coefficients of 3D plane 

 By taking the derivation, setting it equal to 0, and eliminating D in the equation set, the 

following linear system of equations can be obtained: 

𝑀 [
𝐴
𝐵
𝐶

] =  [

𝑥2̅̅ ̅ − �̅�2 𝑥𝑦̅̅ ̅ − �̅��̅� 𝑥𝑧̅̅ ̅ − �̅�𝑧̅

𝑥𝑦̅̅ ̅ − �̅��̅� 𝑦2̅̅ ̅ − �̅�2 𝑦𝑧̅̅ ̅ − �̅�𝑧̅

𝑥𝑧̅̅ ̅ − �̅�𝑧̅ 𝑦𝑧̅̅ ̅ − �̅�𝑧̅ 𝑧2̅̅ ̅ − 𝑧̅2
] [

𝐴
𝐵
𝐶

] = 0    s.t.  𝐴2 + 𝐵2 + 𝐶2 = 1      (4.11) 

Where: 

 𝑀 = covariance matrix 

 �̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  

 𝑥𝑦̅̅ ̅ =
1

𝑛
∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 , and the rest algebraic expressions are in a similar fashion. 

 In general, the covariance matrix is nonsingular, so there is no exact solution to the above 

equation, but PCA (Dunteman, 1989) can be used to obtain the estimated solution which is the 

normalized eigenvector corresponding to the minimum eigenvalue of the covariance matrix 𝑀. 

One plane can have two opposite directions as normal vectors, and either one could be correct 

without knowing the global structure of the geometry, thus origin is set as point of sight to orient 

the normal vectors. The normal vectors after unity of direction are shown in the figure 4.12.  

Then the angles between each normal vector and angle vector [0,1,0] are computed to get 

the leaf rolling angle distribution (fig. 1.13). We can assume this distribution is the mixture of 

several Gaussian distribution and use EM algorithm (Xuan et al., 2001) to get the average and 

variance of these Gaussian distribution where k-means algorithm (Wagstaff et al., 2001) is used 
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for the initialization. However, the right number k of clusters is not obvious, thus G-means 

algorithm is applied to automatically choose k. In this algorithm, k is initialized to 0, and k will 

keep increasing until the clusters assigned to each k-means center follow the Gaussian distribution. 

Anderson-Darling statistic test is utilized to detect whether the cluster around the center are 

sampled from Gaussian distribution.  The pseudo-code of k-means algorithm, G-means algorithm 

and EM algorithm are illustrated below. 

 

Algorithm 2: k-means 

 

Input        : X → a dataset including n objects 

k → number of clusters 

Initialize  : Iter = 0 

MaxIter = Maximum allowable iterations 

(μ𝑗)
𝑗=1

𝑘
 = randn(dimx, k) → initialize k centers randomly 

    Output     :     (𝑙𝑗)
𝑗=1

𝑘
 → a list of clusters 

(μ𝑗)
𝑗=1

𝑘
 → a list of centers 

while Iter < MaxIter do 

 foreach xi in X do 

         Compute 𝑑𝑖𝑐 = ||𝑥𝑖 − 𝜇𝑐||2 for 𝑐 = 1, … , 𝑘 

         𝑧𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐(𝑑𝑖𝑐) 

 end 

 Update clusters: 𝑙𝑗 = { 𝑥𝑖 ∣∣ 𝑧𝑖 = 𝑗 } 

 foreach 𝑙𝑗 do 

          Compute 𝜇𝑗 =
1

|𝑙𝑗|
∑ 𝑥𝑥∈𝑙𝑗

 

 end 

 Iter += 1 

    end 

 

Algorithm 3: G-means 

 

Input        : X → a dataset including n objects 

α → the confidence level 
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Initialize  : k = 1 

𝐶 =  {𝜇1} =  {�̅�}  

    Output     :     𝐶 = (𝜇𝑗)
𝑗=1

𝑘
 → a list of centers 

while True do 

(𝜇𝑗)
𝑗=1

𝑘
, (𝑙𝑗)

𝑗=1

𝑘
 = kmeans(X, k, C) 

foreach 𝑙𝑗 do 

if ADstat((𝑙𝑗)
𝑗=1

𝑘
) > α do 

             delete 𝜇𝑗 from C 

     randomly choose two centers from 𝑙𝑗 

     add these two centers to C 

k += 1 

end 

if length of C does not change do 

        break 

end 

end 

 

Algorithm 4: EM 

 

Input        : X → a dataset including n objects 

k → number of Gaussian components 

eps → improvement lower bound 

Initialize  : (𝜋𝑗)
𝑗=1

𝑘
= 1/𝑘 → the probability over jth Gaussian component 

(Σ𝑗)
𝑗=1

𝑘
= 𝐼 → the covariance matrix of jth Gaussian component 

(μ𝑗)
𝑗=1

𝑘
 given by k-means → the mean of jth Gaussian component 

𝑅 =  𝑂 → the responsibility matrix 

    Output     :     (𝜋𝑗)
𝑗=1

𝑘
, (Σ𝑗)

𝑗=1

𝑘
, (μ𝑗)

𝑗=1

𝑘
 → updated probability, covariance matrix and mean 

change = 2eps 

while change > eps do 

            for i in range(n) do 

for j in range(k) do 

        𝑝𝝁𝒋,𝚺𝒋
(𝑥𝑖) =

1

√(2π)𝑑|𝚺𝒋|

exp (−
1

2
(𝑥𝑖 − μ𝑗)

⊤
Σ−1(𝑥𝑖 − μ𝑗)) 
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                𝑅𝑖𝑗 = 𝑝θ( 𝑦𝑖 = 𝑗 ∣∣ 𝑥𝑖 ) =
𝑝θ(𝑦𝑖 = 𝑗, 𝑥𝑖)

𝑝θ(𝑥𝑖)
=

π𝑗𝑝μ𝑗,Σ𝑗
(𝑥𝑖)

∑ π𝑙𝑝𝝁𝒍,𝚺𝒍
(𝑥𝑖)

𝑘
𝑙=1

 

         end 

 end 

 for j in range(k) do 

                      π𝑗 ≔
∑ 𝑅𝑖𝑗

𝑛
𝑖=1

∑ ∑ 𝑅𝑖𝑗
𝑘
𝑙=1

𝑛
𝑖=1

=
∑ 𝑅𝑖𝑗

𝑛
𝑖=1

𝑛
 

                      μ𝑗 ≔
∑ 𝑅𝑖𝑗𝑥𝑖

𝑛
𝑖=1

∑ ∑ 𝑅𝑖𝑗
𝑘
𝑙=1

𝑛
𝑖=1

=
∑ 𝑅𝑖𝑗𝑥𝑖

𝑛
𝑖=1

𝑛π𝑗
 

                      Σ𝑗 ≔
∑ 𝑅𝑖𝑗(𝑥𝑖 − μ𝑗)(𝑥𝑖 − μ𝑗)

⊤𝑛
𝑖=1

𝑛π𝑗
 

 end 

change = max(norm(𝜇1𝑛𝑒𝑤 −  𝜇1𝑜𝑙𝑑 ), …,  norm(𝜇𝑘𝑛𝑒𝑤 − 𝜇𝑘𝑜𝑙𝑑 )) 

end 

 

Using the EM algorithms above, the obtained means are [68.16245498, 92.82219438, 

49.73753005], the obtained variances are [30.41397885, 66.67874526, 45.74359508], and the 

obtained weights are [0.41315852, 0.0973933, 0.48944817]. The regular density function of these 

three Gaussian components is shown in the figure 4.14. According to the calculation result, the 

average leaf rolling angles of the selected leaf are [68.16245498, 92.82219438, 49.73753005], and 

the obtained means, variances, and weights are fed into the Gaussian Mixture Model for the 

classification. As shown in the figure 4.15, the left and right clusters in the classification result 

from GMM model have some misclassified points since there might be similar angles in different 

part of leaves. This misclassification could be solved by using the DBSCAN algorithm again and 

then choosing the biggest cluster. Finally, the coordinates of grasp points are computed by 

averaging the coordinates of points in three chosen clusters, and the computed result is [(-

0.19778947, 0.11839437, 0.51080566), (-0.1522579, 0.11742342, 0.52530924), (-0.13044321, 

0.12841471, 0.52953533)]. The coordinates of best grasp point is (-0.19778947, 0.11839437, 

0.51080566) since the manipulation of end effector is easier for larger clusters in one leaf.   
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Figure 4.12: The normal vectors of selected point cloud 

 

 

Figure 4.13: The leaf rolling angle distribution 

 

Figure 4.14: The regular density function of three Gaussian components 
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Figure 4.15: The process of computing grasp point 

 

4.6 Future Work 

The point cloud of overlapped leaves cannot be separated by DBSCAN algorithm which 

can cause problems in the calculation of leaf rolling angle and grasp point. In order to avoid these 

problems, the labeled overlapped leaves in the existing dataset should be deleted, and another 

YOLOv3 model need to be trained to no longer detect overlapped leaves. 
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CHAPTER 5: Data Collection and Field Test 

5.1 Data Collection 

Most data were collected in the corn field outside the energy farm (St. Race, Urbana, 

Illinois) at the growing and mature stages of corn. After the corn withered, the plastic corn models 

in our lab are used for the data collection. The following experimental leaf rolling angle 

measurement is also conducted using the corn models.  

5.2 Experimental Leaf Rolling Angle Measurement 

 In this experiment, data were collected using the depth camera (RealSense D435i) installed 

on TerraSentia, then the data were fed into the pipeline to get the detection result and computed 

leaf rolling angle. After that, the detected leaves in the real world were found according to the 

detection result in the image, then a protractor was used to measure the leaf rolling angle (fig. 5.1). 

As indicated in the experimental result, totally 46 angles from 24 leaves were measured, and the 

root mean square error (RMSE) is 6.53 which is acceptable considering the error in the 

measurement process. The scatter diagram of measured angle and computed angle is shown in the 

figure 5.2.  

   
Figure 5.1: Leaf rolling angle measurement 
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Table 5.1: The experimental result of leaf rolling angle 
Leaf number Measured Angle/º Computed Angle/º 

1 2.60 6.73  

1 18.15 18.10  

1 36.00 37.74  

2 11.30 13.04  

2 46.15 44.25  

3 18.25 13.10  

3 41.90 41.41  

4 103.50 102.13  

4 162.15 155.85  

5 9.05 12.09  

6 46.15 40.37  

6 88.25 83.12  

7 30.15 31.49  

7 17.60 14.63  

8 11.20 15.20  

8 31.70 31.18  

9 13.50 10.74  

10 4.95 5.31  

10 9.65 8.79  

11 14.45 14.94  

11 9.50 9.63  

12 4.90 9.49  

13 50.15 52.23  

13 12.50 12.86  

14 6.40 6.94  

14 161.90 163.44  

15 94.75 93.61  

15 177.25 166.68  

16 51.10 48.37  

16 25.45 15.31  

17 153.10 139.08  

17 81.80 88.73  

18 19.95 22.42  

18 86.75 70.61  

19 54.05 38.52  

19 25.50 18.50  

20 50.15 44.36  

20 18.20 19.68  

21 20.85 17.49  

21 122.65 117.93  

22 58.85 51.06  

22 36.95 20.36  

22 126.25 111.06  
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23 1.85 8.51  

23 20.60 25.72  

24 19.75 17.72  

RMSE 6.53 

 

 

Figure 5.2: The scatter diagram of measured angle and computed angle 
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CHAPTER 6: Conclusion 

This thesis expanded on the process of developing an automatic method of leaf sampling 

in the field. In terms of hardware, the design of a novel end effector aimed at punching and storing 

leaf samples separately was presented in detail. In terms of software, an YOLOv3 model was well 

trained for the detection of leaves with high horizontal level. Moreover, a innovative pipeline using 

sensor fusion was developed to compute the leaf surface orientation and optimal punching position. 

In this pipeline, different sensors were calibrated to unified coordinate system, then the point cloud 

data were projected to the image plane to match detected leaves. With these isolated leaf point 

cloud inside the bounding boxes, FDBSCAN was utilized for clustering, and the normal vectors 

of each point in one cluster were calculated to get the leaf rolling angle distribution, then a 

Gaussian mixture model was applied to compute the multiple different rolling angles in one leaf. 

Finally, 46 rolling angles from 24 leaves were measured, and the RMSE is 6.5535 which is 

acceptable since there are also errors in the measurement process.  
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