35 research outputs found

    Performance Analysis of Different Optimization Algorithms for Multi-Class Object Detection

    Get PDF
    Object recognition is a significant approach employed for recognizing suitable objects from the image. Various improvements, particularly in computer vision, are probable to diagnose highly difficult tasks with the assistance of local feature detection methodologies. Detecting multi-class objects is quite challenging, and many existing researches have worked to enhance the overall accuracy. But because of certain limitations like higher network loss, degraded training ability, improper consideration of features, less convergent and so on. The proposed research introduced a hybrid convolutional neural network (H-CNN) approach to overcome these drawbacks. The collected input images are pre-processed initially through Gaussian filtering to eradicate the noise and enhance the image quality. Followed by image pre-processing, the objects present in the images are localized using Grid Guided Localization (GGL). The effective features are extracted from the localized objects using the AlexNet model. Different objects are classified by replacing the concluding softmax layer of AlexNet with Support Vector Regression (SVR) model. The losses present in the network model are optimized using the Improved Grey Wolf (IGW) optimization procedure. The performances of the proposed model are analyzed using PYTHON. Various datasets are employed, including MIT-67, PASCAL VOC2010, Microsoft (MS)-COCO and MSRC. The performances are analyzed by varying the loss optimization algorithms like improved Particle Swarm Optimization (IPSO), improved Genetic Algorithm (IGA), and improved dragon fly algorithm (IDFA), improved simulated annealing algorithm (ISAA) and improved bacterial foraging algorithm (IBFA), to choose the best algorithm. The proposed accuracy outcomes are attained as PASCAL VOC2010 (95.04%), MIT-67 dataset (96.02%), MSRC (97.37%), and MS COCO (94.53%), respectively

    A Review of the Family of Artificial Fish Swarm Algorithms: Recent Advances and Applications

    Full text link
    The Artificial Fish Swarm Algorithm (AFSA) is inspired by the ecological behaviors of fish schooling in nature, viz., the preying, swarming, following and random behaviors. Owing to a number of salient properties, which include flexibility, fast convergence, and insensitivity to the initial parameter settings, the family of AFSA has emerged as an effective Swarm Intelligence (SI) methodology that has been widely applied to solve real-world optimization problems. Since its introduction in 2002, many improved and hybrid AFSA models have been developed to tackle continuous, binary, and combinatorial optimization problems. This paper aims to present a concise review of the family of AFSA, encompassing the original ASFA and its improvements, continuous, binary, discrete, and hybrid models, as well as the associated applications. A comprehensive survey on the AFSA from its introduction to 2012 can be found in [1]. As such, we focus on a total of {\color{blue}123} articles published in high-quality journals since 2013. We also discuss possible AFSA enhancements and highlight future research directions for the family of AFSA-based models.Comment: 37 pages, 3 figure

    A comprehensive study on modern optimization techniques for engineering applications

    Get PDF
    Rapid industrialization has fueled the need for effective optimization solutions, which has led to the widespread use of meta-heuristic algorithms. Among the repertoire of over 600, over 300 new methodologies have been developed in the last ten years. This increase highlights the need for a sophisticated grasp of these novel methods. The use of biological and natural phenomena to inform meta-heuristic optimization strategies has seen a paradigm shift in recent years. The observed trend indicates an increasing acknowledgement of the effectiveness of bio-inspired methodologies in tackling intricate engineering problems, providing solutions that exhibit rapid convergence rates and unmatched fitness scores. This study thoroughly examines the latest advancements in bio-inspired optimisation techniques. This work investigates each method’s unique characteristics, optimization properties, and operational paradigms to determine how revolutionary these approaches could be for problem-solving paradigms. Additionally, extensive comparative analyses against conventional benchmarks, such as metrics such as search history, trajectory plots, and fitness functions, are conducted to elucidate the superiority of these new approaches. Our findings demonstrate the revolutionary potential of bio-inspired optimizers and provide new directions for future research to refine and expand upon these intriguing methodologies. Our survey could be a lighthouse, guiding scientists towards innovative solutions rooted in various natural mechanisms

    Antenna S-parameter optimization based on golden sine mechanism based honey badger algorithm with tent chaos

    Get PDF
    This work proposed a new method to optimize the antenna S-parameter using a Golden Sine mechanism-based Honey Badger Algorithm that employs Tent chaos (GST-HBA). The Honey Badger Algorithm (HBA) is a promising optimization method that similar to other metaheuristic algorithms, is prone to premature convergence and lacks diversity in the population. The Honey Badger Algorithm is inspired by the behavior of honey badgers who use their sense of smell and honeyguide birds to move toward the honeycomb. Our proposed approach aims to improve the performance of HBA and enhance the accuracy of the optimization process for antenna S-parameter optimization. The approach we propose in this study leverages the strengths of both tent chaos and the golden sine mechanism to achieve fast convergence, population diversity, and a good tradeoff between exploitation and exploration. We begin by testing our approach on 20 standard benchmark functions, and then we apply it to a test suite of 8 S-parameter functions. We perform tests comparing the outcomes to those of other optimization algorithms, the result shows that the suggested algorithm is superior. © 202

    Improved Spiral Dynamics and Artificial Bee Colony Algorithms with Application to Engineering Problems

    Get PDF

    Improvements on the bees algorithm for continuous optimisation problems

    Get PDF
    This work focuses on the improvements of the Bees Algorithm in order to enhance the algorithm’s performance especially in terms of convergence rate. For the first enhancement, a pseudo-gradient Bees Algorithm (PG-BA) compares the fitness as well as the position of previous and current bees so that the best bees in each patch are appropriately guided towards a better search direction after each consecutive cycle. This method eliminates the need to differentiate the objective function which is unlike the typical gradient search method. The improved algorithm is subjected to several numerical benchmark test functions as well as the training of neural network. The results from the experiments are then compared to the standard variant of the Bees Algorithm and other swarm intelligence procedures. The data analysis generally confirmed that the PG-BA is effective at speeding up the convergence time to optimum. Next, an approach to avoid the formation of overlapping patches is proposed. The Patch Overlap Avoidance Bees Algorithm (POA-BA) is designed to avoid redundancy in search area especially if the site is deemed unprofitable. This method is quite similar to Tabu Search (TS) with the POA-BA forbids the exact exploitation of previously visited solutions along with their corresponding neighbourhood. Patches are not allowed to intersect not just in the next generation but also in the current cycle. This reduces the number of patches materialise in the same peak (maximisation) or valley (minimisation) which ensures a thorough search of the problem landscape as bees are distributed around the scaled down area. The same benchmark problems as PG-BA were applied against this modified strategy to a reasonable success. Finally, the Bees Algorithm is revised to have the capability of locating all of the global optimum as well as the substantial local peaks in a single run. These multi-solutions of comparable fitness offers some alternatives for the decision makers to choose from. The patches are formed only if the bees are the fittest from different peaks by using a hill-valley mechanism in this so called Extended Bees Algorithm (EBA). This permits the maintenance of diversified solutions throughout the search process in addition to minimising the chances of getting trap. This version is proven beneficial when tested with numerous multimodal optimisation problems

    Real time tracking using nature-inspired algorithms

    Get PDF
    This thesis investigates the core difficulties in the tracking field of computer vision. The aim is to develop a suitable tuning free optimisation strategy so that a real time tracking could be achieved. The population and multi-solution based approaches have been applied first to analyse the convergence behaviours in the evolutionary test cases. The aim is to identify the core misconceptions in the manner the search characteristics of particles are defined in the literature. A general perception in the scientific community is that the particle based methods are not suitable for the real time applications. This thesis improves the convergence properties of particles by a novel scale free correlation approach. By altering the fundamental definition of a particle and by avoiding the nostalgic operations the tracking was expedited to a rate of 250 FPS. There is a reasonable amount of similarity between the tracking landscapes and the ones generated by three dimensional evolutionary test cases. Several experimental studies are conducted that compares the performances of the novel optimisation to the ones observed with the swarming methods. It is therefore concluded that the modified particle behaviour outclassed the traditional approaches by huge margins in almost every test scenario

    Feature Selection for Document Classification : Case Study of Meta-heuristic Intelligence and Traditional Approaches

    Get PDF
    Doctor of Philosophy (Computer Engineering), 2020Nowadays, the culture for accessing news around the world is changed from paper to electronic format and the rate of publication for newspapers and magazines on website are increased dramatically. Meanwhile, text feature selection for the automatic document classification (ADC) is becoming a big challenge because of the unstructured nature of text feature, which is called “multi-dimension feature problem”. On the other hand, various powerful schemes dealing with text feature selection are being developed continuously nowadays, but there still exists a research gap for “optimization of feature selection problem (OFSP)”, which can be looked for the global optimal features. Meanwhile, the capacity of meta-heuristic intelligence for knowledge discovery process (KDP) is also become the critical role to overcome NP-hard problem of OFSP by providing effective performance and efficient computation time. Therefore, the idea of meta-heuristic based approach for optimization of feature selection is proposed in this research to search the global optimal features for ADC. In this thesis, case study of meta-heuristic intelligence and traditional approaches for feature selection optimization process in document classification is observed. It includes eleven meta-heuristic algorithms such as Ant Colony search, Artificial Bee Colony search, Bat search, Cuckoo search, Evolutionary search, Elephant search, Firefly search, Flower search, Genetic search, Rhinoceros search, and Wolf search, for searching the optimal feature subset for document classification. Then, the results of proposed model are compared with three traditional search algorithms like Best First search (BFS), Greedy Stepwise (GS), and Ranker search (RS). In addition, the framework of data mining is applied. It involves data preprocessing, feature engineering, building learning model and evaluating the performance of proposed meta-heuristic intelligence-based feature selection using various performance and computation complexity evaluation schemes. In data processing, tokenization, stop-words handling, stemming and lemmatizing, and normalization are applied. In feature engineering process, n-gram TF-IDF feature extraction is used for implementing feature vector and both filter and wrapper approach are applied for observing different cases. In addition, three different classifiers like J48, Naïve Bayes, and Support Vector Machine, are used for building the document classification model. According to the results, the proposed system can reduce the number of selected features dramatically that can deteriorate learning model performance. In addition, the selected global subset features can yield better performance than traditional search according to single objective function of proposed model

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area
    corecore