217 research outputs found

    Energy Efficient Design of Wireless Ad Hoc Networks

    Get PDF
    The concept of wireless is not new. When the packet switching technology, the fabric of the Internet was introduced by the Department of Defense, the ARPANET ,it understood the potential of packet switched radio technology to interconnect mobile nodes .The DARPA around early 70’s helped establish the base of ad hoc wireless networking. This is a technology that enables untethered wireless networking environments where there is no wired or cellular infrastructure. Wireless Ad hoc Networks since then is a fast developing research area with a vast spectrum of applications. Wireless sensor network systems enable the reliable monitoring of a variety of environments for both civil and military applications. The Energy efficiency continues to be a key factor in limiting the deployability of ad-hoc networks. Deploying an energy efficient system exploiting the maximum lifetime of the network has remained a great challenge since years. The time period from the instant at which the network starts functioning to the time instant at which the first network node runs out of energy, i.e. the network lifetime is largely dependent on the system energy efficiency. This thesis looks at energy efficient protocols, which can have significant impact on the lifetime of these networks. The cluster heads get drain out maximum energy in the wireless ad hoc networks. The proposed algorithm deals with minimizing the rate of dissipation of energy of cluster heads. The algorithm LEAD deals with energy efficient round scheduling of cluster head followed by allocation of nodes to the cluster heads maximizing network lifetime using ANDA

    Dense clustered multi-channel wireless sensor cloud

    Get PDF
    Dense Wireless Sensor Network Clouds have an inherent issue of latency and packet drops with regards to data collection. Though there is extensive literature that tries to address these issues through either scheduling, channel contention or a combination of the two, the problem still largely exists. In this paper, a Clustered Multi-Channel Scheduling Protocol (CMSP) is designed that creates a Voronoi partition of a dense network. Each partition is assigned a channel, and a scheduling scheme is adopted to collect data within the Voronoi partitions. This scheme collects data from the partitions concurrently and then passes it to the base station. CMSP is compared using simulation with other multi-channel protocols like Tree-based Multi-Channel, Multi-Channel MAC and Multi-frequency Media Access Control for wireless sensor networks. Results indicate CMSP has higher throughput and data delivery ratio at a lower power consumption due to network partitioning and hierarchical scheduling that minimizes load on the network

    On Clustering in Sensor Networks

    Get PDF

    Topology design and scheduling in STDMA based wireless ad hoc networks

    Get PDF
    Cataloged from PDF version of article.With current advances in technology, wireless networks are increasing in popularity. Wireless networks allow users the freedom to travel from one location to another without interruption of their communication activities. Ad hoc networks, a subset of wireless networks, allow the formation of a wireless network without the need for a base station. Since no fixed infrastructure is involved in the communication, the nodes of ad hoc networks can communicate with each other or can relay data to other nodes. With this flexibility, wireless ad hoc networks have the ability to form a network anywhere, at any time, as long as two or more wireless users are willing to communicate. Managing ad hoc networks is a significantly more difficult task than managing wireline networks. The network requirements should be met by combined efforts of all the mobile nodes themselves. The nodes of ad hoc networks often operate under severe constraints, such as limited battery power, variable link quality and limited shared bandwidth. In this study, the topology design issue in ad hoc wireless networks is investigated. We employ hierarchical routing where the network topology is composed of clusters interconnected via a root node. Cluster-based topologies are suitable for military services, an important application area for ad hoc networks. The common power control technique (COMPOW) is used in this thesis where all nodes transmit at the same power level. Nodes employ the spatial TDMA (STDMA) scheme in order to access the channel. An important task is how to produce a minimum STDMA frame length, and this problem is known to be NP complete. We develop a heuristic algorithm for generating the minimum STDMA frame length. A new interference model for ad hoc networks is proposed which utilizes a hypergraph model. The relationship between the frame length, number of clusters and the transmit power level are investigated through numerical examples using a 15- node network.Ergin, Sadettin AlpM.S

    Unified Role Assignment Framework For Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are made possible by the continuing improvements in embedded sensor, VLSI, and wireless radio technologies. Currently, one of the important challenges in sensor networks is the design of a systematic network management framework that allows localized and collaborative resource control uniformly across all application services such as sensing, monitoring, tracking, data aggregation, and routing. The research in wireless sensor networks is currently oriented toward a cross-layer network abstraction that supports appropriate fine or course grained resource controls for energy efficiency. In that regard, we have designed a unified role-based service paradigm for wireless sensor networks. We pursue this by first developing a Role-based Hierarchical Self-Organization (RBSHO) protocol that organizes a connected dominating set (CDS) of nodes called dominators. This is done by hierarchically selecting nodes that possess cumulatively high energy, connectivity, and sensing capabilities in their local neighborhood. The RBHSO protocol then assigns specific tasks such as sensing, coordination, and routing to appropriate dominators that end up playing a certain role in the network. Roles, though abstract and implicit, expose role-specific resource controls by way of role assignment and scheduling. Based on this concept, we have designed a Unified Role-Assignment Framework (URAF) to model application services as roles played by local in-network sensor nodes with sensor capabilities used as rules for role identification. The URAF abstracts domain specific role attributes by three models: the role energy model, the role execution time model, and the role service utility model. The framework then generalizes resource management for services by providing abstractions for controlling the composition of a service in terms of roles, its assignment, reassignment, and scheduling. To the best of our knowledge, a generic role-based framework that provides a simple and unified network management solution for wireless sensor networks has not been proposed previously

    Routing Protocols

    Full text link
    Wireless sensor are scarce resource so therefore Various Algorithms are there which are described in this paper.This paper contains algorithms which are location based ,hierarchical, data centric etc

    Design Simulation and Perfomance Analysis of Efficient Low Energy Adaptive Clustering Hierarchy Protocol in Wireless Sensor Network

    Get PDF
    Network life has been defined by the use of nodes to store, process and distribute information, which have restricted energy usage. In other words, all aspects of the node must be designed for extremely energy-efficient applications from sensor module to hardware and protocol. Diminished energy consumption by a factor of two will increase the system's overall utility by doubling the device life. In addition, the protocols should be robust against node failures, tolerant of defects and scalable to optimise device life to minimise energy dissipation. LEACH is the first protocol for network networks that utilises hierarchical routing to enhance network life. All nodes in a network are grouped into local cluster groups, with the cluster head being one node. Although all non-cluster head nodes transmit their data to the cluster head, the cluster head node collects data from all the cluster members, conducts data signal processing (e.g. , data aggregation) functions and transmits data to the remote baseline. As a cluster-head node, it thus takes much more resources than a non-cluster-head node. So all nodes that belong to the cluster lose communication power if a cluster-head node dies. In this research, we introduced clustering as a means of overcoming this energy efficiency problem. Detailed description on the process of LEACH protocols is available. The information on the simulation and the findings have also been discussed

    An energy-efficient spectrum-aware reinforcement learning-based clustering algorithm for cognitive radio sensor networks

    Get PDF
    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach
    corecore