
Wayne State University

Wayne State University Dissertations

1-1-2010

Unified Role Assignment Framework For Wireless
Sensor Networks
Manish Mahendra Kumar Kochhal
Wayne State University

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Kochhal, Manish Mahendra Kumar, "Unified Role Assignment Framework For Wireless Sensor Networks" (2010). Wayne State
University Dissertations. Paper 172.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/172?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages

UNIFIED ROLE-ASSIGNMENT FRAMEWORK FOR WIRELESS

SENSOR NETWORKS

by

MANISH M. KOCHHAL

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2010

MAJOR: COMPUTER ENGINEERING

Approved by:

Advisor Date

DEDICATION

To

All the teachers and masters from past, present, and future

ii

ACKNOWLEDGMENTS

I consider myself really fortunate to have Dr. Loren Schwiebert as my advisor,

guide, and a friend. Loren has been a wonderful advisor, providing me with support,

encouragement, and an endless source of ideas. His breadth of knowledge and his

enthusiasm for research amazes and inspires me. It was a wonderful experience to

work with Loren in several fields including Interconnection Networks, Mobile Ad

hoc Networks, Wireless Sensor Networks, Artificial Retina and Biomedical sensor

research. I thank him for all the time he has spent with me, discussing everything

from research to career choices, reading my papers, and advice on my research

progress. My life has been enriched professionally, intellectually and personally by

working with Loren.

I also thank the NSF, the computer science department, the electrical and com-

puter engineering department for funding my research and studies at Wayne State.

The Unified Role-based Assignment Framework for ad hoc Wireless Sensor Net-

works is joint work with Loren Schwiebert and Sandeep Gupta. I thank them for

many interesting discussions about sensor networks, ad hoc networks, and wire-

less radio in general. I would also like to thank Ayad Salhieh, Kamran Jamshaid,

Fernando Martincic, Yong Xi, and Changli Jiao for providing many insights and

detailed discussion about everything from Wireless Sensors, Security, Simulations

and even indian-arab-chinese-american cultural diversity.

I would like to thank my project leads/managers who permitted me to work on

my research during my office spare time. I also thank my colleague Dr. Venkatesh

Ramaswamy at Airvana in helping me understand the complexity of developing a

network model involving a number of diverging parameters. In that regard, I am

iii

very much indebted to Professor Daniel Grosu for providing insights into the com-

plexity of developing role-assignment algorithms for optimizing QoS and resource

utilization using Game Theory and Mechanism Design.

I am very thankful to Professor Dr. Santalucia for giving me an opportunity

to work with him to develop software for his research in Bio-Informatics. The

algorithms and techniques used as well as the volume of coding that we did in such

a short time helped me a lot in developing and honing my programming skills.

I am indebted to my parents Mahendra Kochhal and Sushma Kochhal for every-

thing that they have given to me. I thank them for the sacrifices they made so that

I could grow up in a learning environment. They have stood by me in everything I

have done, providing constant support, encouragement, and love.

I would also like to thank my younger brother Amit, who has always been ready

to motivate and encourage me in whatever endeavors I undertook. He seems to have

mature insights about many things in life both personal and professional which is

usually expected from an elder brother rather than a younger sibling.

I am grateful for the motivation and encouragement provided to me by my in-

laws Dr. Rajesh Diwakar and Dr. Shanti Suman Diwakar during my dissertation

writing phase. In that regard, I am also thankful to my brother-in-law Saurabh

Diwakar for his support and practical advice.

I am indebted to my wife Sonal for the sacrifices she made while I was busy

working at Airvana and at the same time finishing my dissertation. She has tirelessly

worked hard to keep my life simple at home so that I can continue focussing on my

dissertation. Considering that she herself was taking five courses as part of her

MBA program and at the same time nursing her pregnancy, I feel humbled by her

strength and simplicity. I am also thankful to this existence for awarding me with

iv

a son, Abhishal.

Finally, I would like to thank my teachers at the Advaita Meditation Center,

Dr. Ed Kowaloff, Dr. John Lehmann, Dr. Don Moir, Danae Wharton, and Lalla

Mchugh for introducing me to the world of meditation. In that regard, I am also

grateful for the wonderful opportunity to meditate with my classmates Marina Car-

boni, Mark Nohelty, and others. Their meditative presence and insights have helped

me remain relaxed and simultaneously be aware in my professional, academic, and

personal activities. I still cherish and remember the many interesting discussions

that gave me a chance to learn something new from all of you.

v

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Figures . ix

List of Tables . xii

Chapter – 1 Introduction . 1

1.1 Wireless Sensor Networks . 6

1.1.1 Technological drivers . 6

1.1.2 Applications: Civil, Medical, Industrial, and Military 7

1.1.3 System Overview: Hardware and Software 10

1.1.4 Constraints and Challenges 16

1.2 Research Motivation . 23

1.2.1 Hierarchy, Approximation, Aggregation, and Redundancy . . 23

1.2.2 Task and Roles . 24

1.2.3 Role Assignment . 28

1.2.4 Network organization: a static assignment of roles 29

1.2.5 Resource-based abstraction framework for coordination . . . 33

1.2.6 Rescue Mission: Uncertainty and Chaos 34

1.3 Research Contributions . 37

1.3.1 Role-based Hiearachical Self-Organization (RBHSO) 38

1.3.2 Unified Role-Abstraction Framework (URAF) 38

1.4 Dissertation Outline . 39

Chapter – 2 Related Work . 42

2.1 Sensor Network Organization Protocols 44

2.2 Cross Layer Approaches in Sensor Network Design 54

vi

2.3 Generic Sensor Network Protocol Abstractions 64

2.3.1 Motivations . 66

2.3.2 Generic Requirements . 69

2.3.3 A high level taxonomy: Abstractions, Programming Lan-
guages, Virtual Machines, Middleware 73

2.3.4 Survey of representative programming abstractions 75

2.4 Related role-based concepts in distributed systems 89

2.4.1 Role Abstraction . 90

2.4.2 Role Identification: Rules, Metrics, Utilities 91

2.4.3 Role Assignment (RA) techniques 92

2.5 Summary . 96

Chapter – 3 Role-based Hierarchical Self Organization for Wireless

Sensor Networks . 97

3.1 Self-organization preliminaries . 97

3.1.1 Elementary networked sensing concepts 98

3.1.2 Elementary network organization concepts 103

3.1.3 Steps to sensor network self organization 109

3.2 Design Philosophy . 111

3.2.1 CDS based Network Organization 114

3.2.2 Sensing Attributes or Metrics 119

3.2.3 Proposed self-organization Algorithm 124

3.3 Simulation . 131

3.4 Summary . 137

Chapter – 4 Unified Role-Assignment Framework for Wireless Sen-

sor Networks . 139

4.1 Motivation . 142

4.2 Role Abstraction Concepts . 146

4.2.1 Services . 146

4.2.2 Task and Task Graph (TG) 149

4.2.3 Roles . 154

4.2.4 Elementary and Complex Roles 155

4.2.5 Role Coordination Graph (RCG) 156

vii

4.2.6 Rules . 158

4.2.7 Role Assignment (RA) . 160

4.3 Domain specific models . 163

4.3.1 Concave Role Service Utility (RS–∆U) Model 163

4.3.2 Role Energy (R–∆E) Model 165

4.3.3 Role Execution Time (R-∆T) Model 167

4.4 Design of the framework . 168

4.4.1 URAF architecture overview 169

4.4.2 Role state machine . 174

4.4.3 Role Failures . 174

4.4.4 Role reassignment and load balancing 177

4.4.5 Role assignment strategies 177

4.5 URAF applications . 179

4.5.1 Multi-objective Role-Assignment: MERA 179

4.5.2 Energy-Latency (∆E-∆T) Minimization 181

4.5.3 Sensor Network Optimizations 183

4.6 Summary: Features and Limitations 185

Chapter – 5 Summary and Future Work 186

5.1 Summary . 187

5.1.1 Role-based Hierarchical Self Organization (RBHSO) 187

5.1.2 Unified Role Assignment Framework (URAF) 189

5.2 Future work . 191

Appendix – A Protocol Pseudocode 194

A.1 Role-Based Hierarchical Self Organization 194

References . 202

Abstract . 227

Autobiographical Statement . 229

viii

LIST OF FIGURES

Figure 1.1: (a) Resource constrained sensor node and (b) Sensor network
communication model. 2

Figure 1.2: Applications of Wireless Sensor Networks. 8

Figure 1.3: Basic architecture of a MICA2 sensor platform 12

Figure 1.4: Multi modal Sensor Boards1 13

Figure 1.5: (a) Mica2 mote, (b) Mica2Dot, (c) ZigBee-ready, IEEE 802.15.4-
compliant TelosB mote, (d) MIB510 Programming Board,
(e) Extreme Scale Stargate (XSS)2 14

Figure 1.6: (a) Traditional OSI model, (b) Layered communications ar-
chitecture for sensor networks3, and (c) Typical sensor net-
work infrastructure. 15

Figure 1.7: Hierarchically organized Radio Access Network (RAN) in
CDMA2000 . 25

Figure 1.8: Ad hoc Network4 . 26

Figure 1.9: Tree organization limits the role assignment of every child
to a forwarder and a parent to a router. 30

Figure 1.10: Cluster organization limits the role assignment of every clus-
ter member to a forwarder and a clusterhead to a router. . 31

Figure 1.11: Chain organization limits the role assignment of every par-
ticipating node to a forwarder. 32

Figure 1.12: Case for a Unified Role Assignment Framework (a) Sensor
network protocol stack and (b) Multi-objective {Resource,
QoS, Protocols} optimization dilemma. 34

Figure 1.13: Example cross application service to role mapping scenario 37

Figure 2.1: Middleware, Network Abstractions, and Protocol Layering. 44

Figure 2.2: Sensor Network Abstractions Taxonomy 74

Figure 3.1: Spatial group sensing concept. 99

Figure 3.2: Sensing-group dependency concept. 100

Figure 3.3: Tracking a mobile tank around neighboring sensing groups. 101

Figure 3.4: Hierarchical event processing for incremental global view. . 102

ix

Figure 3.5: Self-organized network architectures. 105

Figure 3.6: Example network organizations for (a) spine, (b) virtual
grid, (c) tree, (d) chain, (e) clustering, and (f) role-based
virtual zones. 106

Figure 3.7: Role-based Hierarchical Self-Organization for WSNs 113

Figure 3.8: Initial Marking Process on a sample ad hoc wireless network2 117

Figure 3.9: Three examples of dominating set reduction2 118

Figure 3.10: Sensing Proximity Concept with respect to a target 121

Figure 3.11: Sensing Coverage Approximation 122

Figure 3.12: Calculating Cumulative Sensing Coverage 123

Figure 3.13: An example 15 sensor nodes random deployment for tracking
an enemy tank . 125

Figure 3.14: Wireless sensor network after neighbor discovery stage . . . 126

Figure 3.15: Wireless sensor network after the marking stage 127

Figure 3.16: CDS hierarchy with sensor coordinator 128

Figure 3.17: Sensing Zone Formation . 129

Figure 3.18: Sensing Zone Organization 130

Figure 3.19: Our self organized infrastructure 131

Figure 3.20: 150 nodes with 15 sensing coordinators 132

Figure 4.1: Provisioning of Network Resources for Tracking Application
in WSNs . 147

Figure 4.2: Task Graph: Hierarchical organization as worker–manager
tasks. 150

Figure 4.3: Data Aggregation: (a) Hierarchical decomposition and (b)
Task Graph . 152

Figure 4.4: Role coordination graph for a data aggregation service . . . 157

Figure 4.5: Data Aggregation: Example network for role assignment. . 161

Figure 4.6: Role assignment snapshots: (a) Forwarder, (b) Sensor, (c)
Cacher, Processor, (d) Beaconer, Listener, and Router. . . 162

Figure 4.7: Sensor network organizations: (a) Tree, (b) Chain, and (c)
Cluster (or CDS) . 163

Figure 4.8: Marginal benefit to applications desiring sensing coverage . 164

x

Figure 4.9: Hypothetical energy profile of various roles. 166

Figure 4.10: Role Execution Time Model: Application service schedule . 168

Figure 4.11: Design architecture of the Unified Role Assignment Framework170

Figure 4.12: Role State Machine . 173

Figure 4.13: Monitoring Role failures: (a) Hierarchical Role-network or-
ganization and (b) Dominating roles acting as monitors for
roles at lower level. 175

xi

LIST OF TABLES

Table 3.1: Average group leader-member distances in Leach Protocol(d = 8)133

Table 3.2: Average group leader-member distances (d = 8) for our proposal133

Table 3.3: Average static sensor CSD 134

Table 3.4: Average leader CSDs . 135

Table 3.5: Current organized average sensor CSD for Leach protocol . . 135

Table 3.6: Current organized average sensor CSD for our proposal . . . 135

Table 3.7: Average group membership sizes (d = 8) 136

xii

1

Chapter 1 – Introduction

The ability of a network to provide efficient networking services in terms of

supporting diverging requirements such as the application-specified QoS and fair

network resource usage, while dynamically adapting to the problems in the network

is a very challenging and difficult issue. This problem becomes even more exacting

when the devices forming such a collaborative network are heterogeneous and are

crucially constrained in energy, computational, and communication capabilities.

The unpredictability of the wireless communication media adds a third dimension

to this challenge. In addition, the vision of having unattended and un-tethered

network operation makes it even more complicated to provide even basic network

activities like network discovery, network organization, routing, event monitoring,

data aggregation, and network management.

An example of such a network is an ad hoc deployed wireless sensor network

(WSN) that is envisioned to provide target sensing, data collection, information

manipulation, and dissemination in a single, distributed, and integrated networked

paradigm. Wireless sensor networks (WSNs) are made possible by the continuing

improvements in embedded sensor, VLSI, and wireless radio technologies. WSNs

have many possible applications in the scientific, medical, commercial, and military

domains. Examples of these applications include environmental monitoring, smart

homes and offices, surveillance, intelligent transportation systems, and many others.

Figure 1.1(a) shows a wireless sensor node that is crucially resource constrained

to single-handedly provide an accurate and detailed sampling of the in-situ environ-

2

ment. WSNs therefore pursue high sensing redundancy by deploying a large number

of sensors. For scalability concerns, such a large network is queried in an ad hoc

fashion by a remote base station for any interesting events. Neighboring sensors

that perceive change in physical readings around their area of coverage collaborate

with each other to reach a consensus in order to accept genuine events and discard

any spurious events. These readings are aggregated, compressed, and relayed multi-

hop by sensors en-route to a data collection point (or a sink) and then eventually

to a remote base station. Scalability concerns again dictate distributed protocol

solutions for providing these in-network services in a localized and resource-efficient

manner. Figure 1.1(b) highlights this fundamental sensor network communication

paradigm.

Base station

query

reply

(b)

Battery
Sensors

Memory Embedded
Processor

Transceiver

Limited Lifetime

8-bit, 10 MHz
Slow Computations

1Kbps -1Mbps,
3-100 Meters,

Lossy Transmissions
128KB -1MB

Limited Storage

66% of Total Cost
Requires Supervision

BatteryBattery
SensorsSensors

MemoryMemory Embedded
Processor
Embedded
Processor

TransceiverTransceiver

Limited LifetimeLimited Lifetime

8-bit, 10 MHz
Slow Computations

1Kbps -1Mbps,
3-100 Meters,

Lossy Transmissions

1Kbps -1Mbps,
3-100 Meters,

Lossy Transmissions
128KB -1MB

Limited Storage
128KB -1MB

Limited Storage

66% of Total Cost
Requires Supervision

66% of Total Cost
Requires Supervision

(a)

Figure 1.1: (a) Resource constrained sensor node and (b) Sensor network commu-
nication model.

One of the crucial design challenges in wireless sensor networks is energy effi-

ciency. This is because individual sensor nodes use a small battery as a power source

and re-charging or replacing batteries in a remote environment is not feasible. Thus,

to achieve a longer network lifetime, one has to tackle energy efficiency at all levels

3

of the sensor network infrastructure. Since the wireless radio is the primary energy

consumer in a sensor node, systematic management of network communications

becomes critical.

With the need to dynamically sense, monitor, and track multiple events or a sin-

gle event appearing randomly at different places in the sensor network, it becomes

necessary for several network services such as target detection and tracking, data

gathering, forwarding and routing sensing data to a data sink to simultaneously

compete for network resources. This calls for resource arbitration among services

which itself needs to be complemented by imperative inter-resource communications

among nodes, thus resulting in further degradation in application QoS by way of

increasing latency and decreasing network lifetime. Thus, distributed resource man-

agement is a complicated multi-dimensional problem. It needs to be collaboratively

and adaptively tackled across multiple services and nodes to support collective ar-

bitration of the use of local and remote resources. It also needs to identify protocol

scenarios where it can meet application-desired QoS and implement these solutions

efficiently. Similarly, in scenarios where desired requirements are mutually exclusive

and cannot be met, it should identify performance tradeoffs and implement these

as protocol contingencies.

In this dissertation, we propose a unified role based abstraction framework that

provides a common platform for protocols to coherently resolve important services

versus resources issues in terms of an adaptive organization and scheduling of net-

work resources. Our framework models application entities as roles and network

dynamics as changes in node capabilities. In other words, application services are

mapped as network roles played by local sensors with node resources used as rules

for role identification. The unified role-based abstraction framework thus logically

4

unifies both the tasks and the resources needed to execute these tasks as roles and

rules, respectively.

In distributed systems, network services are usually executed by a collection of

tasks operating over a set of resources locally provisioned around a certain k-hops

vicinity. We abstract the basic tasks and their principal resource requirements in

terms of elementary roles such as idler, sensor, cacher, processor, and transmitter,

which in turn correspond to the use of no resources, sensing, memory, and the ra-

dio transceiver resources, respectively. These roles, though abstract and implicit,

expose role-specific resource controls for load balancing by way of role assignment

and scheduling. This natural service to role mapping allows existing protocol so-

lutions to meet differing application requirements in terms of agreeable tradeoffs

or performance thresholds (if possible) without loss of generality. To the best of

our knowledge, a generic role-based framework that provides a simple and unified

network management solution has not been proposed previously.

The role-based abstraction framework revolves around the concept of nodes

assuming roles depending upon available resources to collaboratively provide ap-

plication services. For WSNs, the requirement of services basically stems from the

events being sensed locally by the sensors. One potential ramification of such a

requirement is that although the use of sensing resources is mostly pre-allocated at

the site of an event, the use of other resources such as processing and storage can

be offloaded to a later hop. This use of distant resources in a distributed fashion

gives rise to additional communication overhead. The role-abstraction framework

is extensible and supports composition of simpler roles into more complex user-

defined roles to enable a specific protocol solution of a certain service requirement.

In this dissertation, we consider an event monitoring service to be expressed in

5

terms of user-defined complex roles consisting of a region of sensing collaborators

that are managed by a sensing coordinator ; router roles organized as a group of

neighboring relays who forward information from these coordinators to a remote

base station. We develop adaptive and energy-efficient role-assignment protocols for

mapping such data-aggregation solutions to a set of resource-constrained wireless

sensor nodes forming a network.

This chapter highlights the fundamental concepts of hierarchy, approximation,

aggregation, and redundancy that are used to deal with complexities across large-

scale distributed systems. These concepts form the basis of our proposed role-

based framework. The use of a layered protocol stack for an embedded resource-

constrained communication system, though useful, has limitations in terms of the

interfaces it exposes to other layers. Chapter 1 emphasizes these limitations where

different protocols request diverging optimizations across layers. A cross-layer ap-

proach is thus warranted. Alternatively, a need for protocols to be made available

as independent and open entities is identified as the best approach.

The chapter then delves into the importance of the most basic requirement of

any network and that is the architectural organization of its communicating entities

or nodes. This analysis leads to the realization that a network organization is so

fundamental that any specific architectural imposition limits the communication

flexibility of nodes collaborating to execute various application services. We per-

ceive network organization as the partitioning of nodes into groups that allows the

network to meet two important network benefits of protocol scalability and local-

ization. From the network layer, we move to our proposed unified role framework

where we decompose services into tasks and assign these as roles to nodes in the

network. We then come full circle where we realize that the arrangement of roles

6

and the communication pattern among them determines the network organization.

Similarly, a specific network organization allows only a specific assignment of roles

in that architecture for any service.

We provide a detailed introduction to wireless sensor networks (WSNs), their

objectives, the technology enablers of such a system, and the constraints and chal-

lenges posed by various applications. We give an extreme example of a chemical

spill in an industrial facility manned with different types of sensors that detect fire,

storage of chemicals, and the health of its workers. We will explore how sensors in

the facility acquire roles in the network to support multiple mission-critical appli-

cations desiring various services at different QoS levels. Finally, we discuss in brief

our research contributions, motivations, and the organization of this dissertation.

1.1 Wireless Sensor Networks

1.1.1 Technological drivers

As technologies in hardware integration such as VLSI (Very Large Scale Inte-

gration), MEMS (Micro-Electro-Mechanical Systems), and low power radio advance

several new opportunities for embedded systems design emerge with diverse chal-

lenges and characteristics in contrast to the traditional desktop and server systems.

One of the most interesting applications of the embedded and networked design

systems are wireless sensor networks (WSNs). The networked sensor is principally

enabled by “Moore’s Law” pushing computing and storage into smaller, cheaper,

and lower-power units.

Additionally, trends such as complete systems on a chip (SOC), integrated low-

power communication, sensing devices that interact with the physical world, and

advances in battery technologies are equally significant. The combination of these

7

technologies along with ubiquitous connectivity to the Internet makes it possible

to envision embedded autonomous devices that unobtrusively interact with the

physical world and make this information available to remote servers and desktop

systems. The sensors will interact with the physical environment to detect light,

heat, position, movement, chemical presence, and so on. In each of these areas, the

technology is leading to significant developments that makes networked sensors an

exciting regime to apply systematic design methods.

1.1.2 Applications: Civil, Medical, Industrial, and Military

Wireless sensor networks have the following broad application objectives:

1. Reliable monitoring of a variety of environments.

2. Enable in-network information gathering and processing.

3. Integrate physical sensing and controlling capability with a communication-

oriented infrastructure, say Internet.

4. Support a variety of applications with varying levels of QoS across several

domains, hardware, and software (see figure 1.2).

An example of sensor networks used for civilian purposes could be smart homes

and offices. Here sensors could be deployed to control appliances and electrical

devices in the house. Sensors can be used to provide better lighting and heating in

office buildings. The Pentagon building has used sensors extensively in this regard.

Sensor networks can be used for medical purposes as well. Examples include

the use of biomedical sensors to monitor the glucose level, heart rate, and detect

cancers. In hospitals, a network of sensors on the body of the patient and in-

vivo can monitor the vital signs and record anomalies. An array of sensors on

8

Forest Conservation

Traffic Monitoring

Structural Monitoring

Volcano

Smart Hospitals

Smart Buildings

Battlefield Surveillance Smart Implants

Smart Factories

Precision Farming

In-Situ Sensor Network

 On-site
Base-station

 Back haul
 Network

`

 Remote Data
Processing Center

 IP Core
 Network

 Public
 Internet

Web Server

Database
 Server

Figure 1.2: Applications of Wireless Sensor Networks.

9

a chip can be implanted to substitute for and supplement a missing or defective

part of the body. The Artificial Retina Implant Project at Wayne State University

uses a retinal prosthetic sensor chip to allow the patient suffering from macular

degeneration of the retina to perceive limited vision. Similarly, sensors are used for

cochlear implants.

Remote deployment of military sensor networks can be used for tactical monitor-

ing of enemy troop movements. These networks provide opportunities for soldiers to

achieve situational awareness in terms of supporting real-time troop collaboration,

status exchange, and coordination.

Industrial applications of sensor networks include monitoring and controlling

agricultural crop conditions. In enterprise scale manufacturing and retail compa-

nies, sensor networks can be used to monitor inventory and support in-process parts

tracking. These networks can automatically report problems at various stages such

as in-plant manufacturing, packaging, and equipment maintenance. RFIDs (Radio

Frequency ID) are examples of sensor nodes used in retail shops as theft deterrent

and for customer tracing.

Figure 1.2 shows a number of applications of sensor networks. It also highlights

the elementary organization of the underlying sensor network infrastructure. For

certain application domains, sensors can be deployed randomly or placed in-situ in

a regular fashion. In the figure, we see a group of randomly deployed sensors self-

organizing themselves into a 2-level hierarchical network organization. The nodes at

the higher level form a backbone network to route queries and sensing data among

sensors and to the basestation. The on-site basestation has additional hardware,

uninterruptible power supply, and a powerful radio to communicate with the whole

network. In certain cases, a number of basestations can be deployed within and

10

on the perimeter of the network to facilitate better communication with the sensor

network.

The basestation acts as a gateway between the remote data processing center

and the sensor network. In case of applications similar to biological implants, the

sensor network, the basestation, and the data-processing facility are all in the same

location, that is, usually with the person who has the implant. In case of hazardous

and unpredictable environments, the back haul network acts as a transit network

to the offshore location where powerful computers mine the data collected from the

sensor network and maintain the relevant information in the database server. An

additional on-site web server makes this information available to the public via the

Internet.

1.1.3 System Overview: Hardware and Software

Wireless sensor networks have one fundamental requirement that is inherent

across innumerable applications domains. And that is the requirement to sense.

This requirement forms the basis for nodes to participate and form a network to

share this information. Thus, the choice of the hardware and software for any

sensing system is highly influenced by the characteristics of the sensing event, the

application level requirements for data collection from the network, and the nature

of the deployment environment. From a hardware perspective, typical sensor nodes

differ in terms of capabilities to include a low end on-chip processor, small mem-

ory, sensors along with analog-to-digital converters, and transceiver chips, all of

these assembled to form a tiny, programmable, application-specific, radio-equipped

sensing device.

Figure 1.3 highlights the basic architecture of the most popular Mica2 sensor

11

node platform from Crossbow Technology Inc. (CrossBow). Since the philosophy

was to have a sensor platform that forms a truly ad hoc network, the Mica2 was

equipped to be powered by 2 AA batteries. This resulted in the use of a low power

CPU and a wireless radio so as to increase the lifetime of the Mica2 mote. To

allow for sensing flexibility, a 51-bit I/O connector was provided on-board that is

reusable across software development, debugging, and deployment life-cycles. The

Mica2 mote, when mounted to a programming board, allows software developed

on the host computer to be downloaded and installed on the mote through a serial

port connecting the host computer and the programming board (refer to figure 1.5

(a) and (d)). Newer generations of the Mote platform allow for more novel ways of

code development and installation. Similarly, a JTAG host debugger connecting to

the Mica2 mote through the 51 pin I/O connector allows for real-time debugging

and code profiling.

Figure 1.4 shows a number of sensor boards that integrate custom sensors to

sense the physical environment for light, temperature, humidity, barometric pres-

sure, and sometimes even record live video. Figure 1.4 (d) shows a sensing board

that has both the sensors and actuators that can act upon certain environmental

conditions. The nodes are called XSMs (Extreme Scale Mote), and were designed

by The Ohio State University and CrossBow Technology for the DARPA Extreme

Scaling project, code-named “ExScal”. They feature a variety of sensors and ac-

tuators including a magnetometer, a microphone, four passive infrared receivers, a

photocell, a sounder, and feedback LEDs.

The application for which ExScal uses these high end sensors is to detect and

classify multiple intruder types over an extended perimeter. This would be ideal for

protecting an area that is too vast to be patrolled by human guards such as an oil

12

Chipcon CC1000
38K Baud

Manchester
915 Mhz ISM

2 AA Batteries

512 KB
External Flash

Memory

(16 bytes x 32768 rows)

On-board storage

UART2SPI Bus

51 pin I/O Connector

Status
LEDs

Sensors

JTAG

Programming Board

128 KB Instruction
EEPROM

4 KB Data
EEPROM

ATMEL ATmega 128L
 Microprocessor
 7.3827 MHz

On-board Low Power CPU

ADC 0..7
 UART 1
 I2C Bus

 On-board Radio

Figure 1.3: Basic architecture of a MICA2 sensor platform

pipeline or a national border. The XSM motes were organized under a second tier

of devices called Extreme Scale Stargates (XSS) (shown in figure 1.5(e)) running

the Intel Stargate platform. ExScal customized the stargates by adding an 802.11b

Wireless Networking card with requisite software, an external antenna, a housing

for the device, and a battery pack. The Stargates were placed strategically in the

topology such that most motes were able to communicate with a stargate. These,

tier-2 nodes ran a controller application that served to orchestrate the localization

and reprogramming services at Tier 1. They also facilitated retrieving data from

the motes to be analyzed on PCs (Tier 3).

Figure 1.5 shows a number of complete sensing system boards that integrate

custom sensors, TCP/IP, 802.11b, Zigbee, and serial protocol stacks.

aPhoto courtesy Crossbow Technology Inc. WWW link: http://www.xbow.com/
bPhoto courtesy of the ExScal project at The Ohio State University. WWW link: http:

13

(b) (d)

Extreme Scale MoteCCD Image Sensor

(c)

Ultrasonic Sensor

(a)

Figure 1.4: Multi modal Sensor Boardsa

A critical requirement of the networked sensor platform is the design of a soft-

ware architecture that bridges the gap between raw hardware capabilities and a

useful system. The demands here are numerous. It must be efficient in terms of

memory, processor, and power requirements, so that it falls within the constraints of

the hardware. It must also be agile enough to allow multiple applications to simul-

taneously use system resources such as communication, computation, and memory.

The extreme constraints of these devices makes it impractical to use legacy systems

(e.g. say UNIX).

TinyOS (Hill, 2000), a tiny micro-threaded operating system is a prototype plat-

form currently being developed at the University of California at Berkeley specifi-

cally for wireless sensors. TinyOS has the following features:

1. It is single threaded

2. It supports an open source development environment

3. It has a component-oriented programming language (NesC).

4. It’s design ideology is to sleep as often as possible to save power.

5. It supports high concurrency and is interrupt driven (no polling).

//cast.cse.ohio-state.edu/exscal/

14

(d)

USB PortRJ-45 Ethernet Port
JTAG Port

Serial RS-232
 Connector

(e)

(a) (b) (c)

Figure 1.5: (a) Mica2 mote, (b) Mica2Dot, (c) ZigBee-ready, IEEE 802.15.4-
compliant TelosB mote, (d) MIB510 Programming Board, (e) Extreme Scale Star-
gate (XSS)b

6. It allows only static memory allocation. In other words, no dynamic heap

memory allocation (malloc) and no function pointers are allowed.

Figure 1.6 highlights the difference between the proposed wireless sensor net-

work model (Bulusu, 2002) and the traditional OSI (Open Systems Interconnection)

model. The physical layers of both the models are significantly different. In the

OSI model the communicating entities do not have any restriction on power avail-

ability as they have a constant source of uninterrupted power supply. Even in cases

where cables are not possible (for example, wireless communication), recharging or

15

replenishing power is very manageable. As discussed earlier, this is not possible for

an ad hoc randomly deployed large scale sensor network. There are other physical

hardware and software differences between a sensor node and a typical personal

computer.

(a) (b) (c)

Figure 1.6: (a) Traditional OSI model, (b) Layered communications architecture
for sensor networksc, and (c) Typical sensor network infrastructure.

Figure 1.6(c) shows a sensor network deployed in a large unmanned area. The

sensor nodes self-organize to form an ad hoc network to monitor (or sense) tar-

get events, gather various sensor readings, manipulate this information, coordinate

among each other, and then disseminate the processed information to an interested

cThe protocols in this stack are minimal and relate fundamentally to sensor networks (Bulusu,
2002). Zigbee (ZigBee) is the name of a specification that standardizes an elaborate protocol
stack for distributed embedded devices forming a wireless personal area network (WPAN). The
standard consists of a suite of high level communication protocols using small, low-power digital
radios based on the IEEE 802.15.4 standard. ZigBee is targeted at RF applications that require
a low data rate, long battery life, and secure networking.

16

data-sink or a remote basestation. This dissemination of information typically

occurs over wireless links via other nodes using a multi-hop path (Estrin et al.,

1999) (Akyildiz et al., 2002). This inherent distributed and collective communica-

tion paradigm for ad hoc wireless sensor networks is significantly different from the

traditional point-to-point desktop to server communication model, which is quite

centralized in nature. Thus, layers 2, 3, and 4 are modified to support this ad

hoc collaborative communication model. These layers are also optimized for energy

usage, computational, and space complexity. Additionally, further customization

may be warranted by specific sensor network applications that wish to stream the

data into a PC-based monitoring application. Layers 5, 6, and 7 of the OSI layer

thus need to be modified (Raicu et al., 2002) to bridge this gap between the sen-

sor network platform and the conventional PC (with its underlying 802.11 wireless

Ethernet network or its wired 802.3 networks).

1.1.4 Constraints and Challenges

The characteristics of wireless sensor networks need to be understood in great de-

tail in order to develop efficient sensor network protocols that support collaborative

network monitoring with increased sensor network lifetime. These characteristics

are listed below:

1. Sensing application requirements

Biomedical applications (Schwiebert et al., 2001), for example, a glucose level

monitor or a retina prosthesis have special requirements with respect to the

sensor hardware and the operation capabilities. First, the sensors must be

bio-compatible to avoid any tissue damage. Second, in addition to being fault-

tolerant, energy efficient, and scalable, wireless networking solutions should

17

be ultra-safe and reliable. Also, in biomedical applications, sensors usually

sense some biological event and trigger some nerves or tissues in response to

control that event or generate another sequence of events. However, there

is no explicit feedback between sensors and the external application except

for certain periodic maintenance routines. These maintenance routines are

essentially an effort to find any faults in the sensor networks implanted in-

vivo. Thus, these requirements are application specific and are different for

diverse applications.

2. Security requirements

Sensor network applications, such as for biomedical, hazardous environment

exploration and military tracking are typical mission critical systems that are

highly security sensitive. Unfortunately, sensor networks are vulnerable to all

kinds of attacks, such as eavesdrop, jamming, and trojan horses. With con-

strained available resources, it is impossible to deal with all possible security

issues, however, some measures for expected attack must be provided.

3. In-network processing

Wireless sensor networks typically consist of a large number of nodes ran-

domly deployed to sense application specific physical phenomena. Due to

bandwidth constraints and the high error rate of wireless links, energy effi-

cient operation of sensor networks requires sensor nodes to relay in-network

aggregated sensing events to a remote basestation. Without in-network pro-

cessing of neighboring correlated sensing events, individual readings of each

sensor would have to be sent to the basestation, which is highly impractical

under the constraints discussed earlier. Also, by way of multi-hop communica-

tion, hop-by-hop reliability becomes more feasible as compared to traditional

18

end-to-end TCP-based reliability mechanisms.

4. Data centric processing

Data centric processing is an intrinsic characteristic of sensor networks. Sen-

sor data is no longer accessed by ID (or IP, as in the internet). It is more

natural to address the data through content, location, or constraints. The IDs

of the sensor nodes may not be of any interest to the application. The naming

schemes in sensor networks are often data-oriented. For example, an environ-

mental monitoring system requests the temperature readings through queries

such as “collect temperature readings in the region bounded by the rectangle

(x1, y1, x2, y2)”, instead of queries such as “collect temperature readings from

a set of nodes with the sensor net address x, y, and z”.

5. Network sensor platform (hardware and software)

Hardware capabilities determine the overall functionality of the sensor device.

A sensor node equipped with a GPS can act as a position estimating beacon for

other nodes without GPS. Similarly, nodes with higher processing capability

and higher battery power can serve as data sinks for their neighboring under-

privileged nodes. As mentioned earlier, the operating system determines the

real-time capability of concurrently harnessing the sensor hardware to its full

potential with low processing, low memory, and low energy.

6. High unpredictability

Sensor network applications are driven by environmental events, such as earth-

quakes and fire, anywhere anytime following an unpredictable pattern. Sensor

node failures are common due to these hostile environments. The radio media

shared by densely deployed nodes is subject to heavy congestion and jam-

19

ming. High bit error rate, low bandwidth, and asymmetric channels make

the communication highly unpredictable. Such unpredictability usually pre-

vents off-line design of system parameters. Online monitoring and feedback

control are required to provide a certain degree of QoS guarantee under such

situations.

7. Network makeup

(a) Homogeneous or heterogeneous sensor devices

The sensor network may consist of specialized nodes having special hard-

ware and software capabilities deployed randomly or deterministically

with other low end sensor devices. This heterogenous deployment may

be required by certain applications, where placement of the sensor nodes

is practical. An example of such an application may be monitoring a

high rise building for cracks and other critical hazards or faults.

(b) Random or controlled node placement

Biomedical sensor networks are examples of stationary wireless sensor

networks. In such a network, the placement of sensor nodes is controlled

and premeditated. A stationary sensor network normally has little or no

mobility. One can also decide in advance the number of neighbors a node

may have depending upon application requirements and the position of

the sensor (border or internal node) within the deployment. In contrast,

a tactical wireless sensor network deployed in a hostile area to track

enemy movements in the battlefield is characteristically required to have

a random deployment.

(c) Redundancy

20

The highly unpredictable nature of sensor networks necessitates a high

level of redundancy. Nodes are normally deployed with a high degree of

connectivity. With such redundancy, the failure of a single node has a

negligible impact on the overall capacity of the sensor network. High con-

fidence in data can also be obtained through the aggregation of multiple

sensor readings.

(d) Indoor or outdoor environments

Sensors deployed for building monitoring fall into the category of indoor

environment, whereas sensors deployed to monitor a parking lot facility

may be categorized as experiencing an outdoor radio environment. In

outdoor environment, there are minimum obstructions, and so the radio

signals do not experience as much loss in signal to noise ratio due to

reflections and multipath fading. This is not the case for indoor environ-

ments, where walls contribute to a drastic reduction in signal strength.

8. Sensor node or beacon density

Depending on the application scale, tens of thousands of sensors may be de-

ployed in a very large area. Examples of such an application would be deep

space probing and habitat monitoring. Network protocols for collaborative

monitoring need to adapt to the topology of the network, its density, and

redundancy in order to achieve energy efficiency. Sparser networks may need

special treatment to avoid a network partition due to several orphan nodes.

Initialization protocols (or neighbor discovery) for sensor networks usually

have one basic operation for position or location estimation. Sensor nodes

with pre-location information (for example, nodes with GPS capability) serve

as anchors (or beacons) to other nodes that use localized triangulations or

21

multilaterations to estimate their positions. A higher density of such beacon

nodes can significantly reduce localization errors (Bulusu, 2002) and hence the

subsequent determination of network parameters that could affect decisions

for other primary network operations.

9. Node mobility

There is an important difference between a stationary wireless sensor network

and a mobile ad hoc network. Network protocols for MANET are optimized

for QoS by optimizing the three important tasks of organization, routing, and

mobility management (ORM). For MANET, system performance is attributed

mostly to random node mobility rather than to the energy depletions caused

by the execution of various network protocols. However, for ad hoc sensor

networks, energy depletion is the primary factor in the connectivity degrada-

tion and the overall operational lifetime of the network. Therefore, for WSN

overall performance becomes highly dependent on the energy efficiency of the

algorithm.

Sensor node mobility makes wireless networking solutions extremely challeng-

ing. A mobile sensor network essentially becomes a special research challenge

in the field of mobile ad hoc networks (MANETs).

10. Time synchronization

The causality of detection of events is highly dependent upon the synchroniza-

tion of the clock among the nodes within the sensor network reporting such

an event. Also, most of the channel access schemes for providing collision

free medium access use a TDMA-based design. This TDMA scheme needs

efficient time synchronization among contending neighbors in order to avoid

22

collisions and hence save precious energy. Depending upon the application,

one may need fine-grained synchronization or coarse-grained synchronization.

Also, the granularity of the synchronization depends upon the scale of the

network and its deployment. Energy efficient distributed protocols are thus

needed for time synchronization.

11. Target event characteristics

Sensor networks are deployed to detect and report application specified in-

teresting events. In general, these target events may have spatial, temporal,

spatio-temporal, or absolute characteristics. By spatial, we mean that events

reported by sensors belonging to a common geographical region are similar

and strengthen the fault tolerance level of the report. A moving target is tem-

poral in nature and its detection may follow a predictable path. Depending

upon the speed of the target, its characteristics may change from temporal

to spatio-temporal. In some cases, the event may be a continuous event, for

example detecting the presence of a chemical gas is continuous as it diffuses

across the sensor network. On the other hand, intruder detection is a discrete

event where the sensor network may detect several intruders or the same in-

truder at different places and at different times in the network. Thus, the

target event characteristics fall broadly into these following categories:

(a) Event types,

(b) Event speed, and

(c) Event occurrence rate.

12. Sensor Network Models

Network simulation used for evaluating the performance of various sensor net-

23

work protocols may need to take into account various models for the following

fundamental sensor parameters:

(a) Radio propagation and energy models,

(b) Mobility model

(c) Event traffic model,

(d) Sensing coverage and exposure models, and

(e) Wireless bit error models

1.2 Research Motivation

We will now discuss the research motivations based on generic observations

on the solutions used to provide efficient sensing and routing services by wireless

sensor networks. The following subsections discuss specific solution aspects that

have influenced our design philosophy.

1.2.1 Hierarchy, Approximation, Aggregation, and Redundancy

It is very fascinating to realize that over these years with increasing complexity,

systems have become hierarchically organized with an approximate aggregation of

communication functionalities into several subsystems and components. For ex-

ample, the internet has become a loosely hierarchical structure of core routers,

DNS servers, gateways, and switches. Thus, the network functions via interaction

among components that perform specialized tasks suited to their placement in the

organization. In other words, the network intelligence is distributed in such a way

that every component or subsystem globally provides a limited set of communica-

24

tion functionality with purely approximate local network information albeit with

provisional reliability.

In such a distributed system, redundancy makes up for limited reliability by not

only having a number of alternative providers for a certain function but also having

an overlap among functions that providers can usually offer. For example, in the

internet a layer three router can also act as a switch and viceversa. Besides the

differences in physical links and associated protocol or messaging mechanisms, the

main difference across communication networks lies usually in the way this network

intelligence is distributed and maintained. For example, there could be a centralized

system that does the partitioning and assignment of tasks to network entities and

also tracks their performance. On the other hand, the network could do this almost

instantaneously and on an ad hoc basis. Of course, the latter provides challenges

and associated difficulties for maintaining guaranteed levels of quality of service

(QoS) among distributed tasks in the face of changing network dynamics.

1.2.2 Task and Roles

An example of a distributed system with centralized control and static assign-

ment of tasks is a hierarchically organized Radio-Access Network (RAN) that pro-

vides end-to-end voice and IP-based communication among cell phones in a CDMA

based cellular network (see figure 1.7). A RAN consists of a Radio Network Con-

troller (RNC) that communicates with a Radio Node (RN) that acts as a frontend

and handles the mobility of the mobile phone. A Packet Data Serving Node (PDSN)

acts as a backend access gateway providing simple IP and mobile IP services to mo-

bile phones in an IP network. The PDSN also acts as a client for Authentication,

Authorization, and Accounting (AAA) servers so that it can provide services only to

25

the subscribed mobiles and also differentiate among them based on their subscribed

service level agreements (SLAs).

RNC

AAA

PDSN

RAN

RN

RN

RN

 Core
Network

 Back haul
 Network

 IP Core
 Network

 Public
Internet

AAA

Figure 1.7: Hierarchically organized Radio Access Network (RAN) in CDMA2000

An example of a completely decentralized wireless network is an ad hoc wireless

network (see figure 1.8) and almost analogous to the cellular networks is the Mobile

Ad hoc Network (MANET). Another example is a Wireless ad hoc Sensor Network

(WSN) which is complementary to MANETs with the addition of a sensor and/or an

actuator along with a wireless radio, processor, memory, and a battery all integrated

into individual nodes deployed to provide sensing and monitoring services. A WSN

could be formed by tens to thousands of randomly deployed sensor nodes. The

sensor nodes then self-organize into an ad hoc network to monitor (or sense) target

events, gather various sensor readings, manipulate this information, coordinate with

each other, and then disseminate the processed information to an interested data-

sink or a remote base station. This dissemination of information typically occurs

26

over wireless links via other nodes using a multi-hop path.

13

Wireless node

Wireless link

Wireless radio (transmission & reception) range

1

2

3

4

5

6

7

8

9

10

11

12

Figure 1.8: Ad hoc Networkd

In contrast to a RAN, in an ad hoc network, the functions of event (or mobile)

tracking and monitoring, handling node mobility, routing, security, performance

measurement, and control are all handled collaboratively by participating commu-

nication entities or nodes. There is no static assignment of tasks to any particular

node. Moreover, this assignment is dynamically taken upon by nodes individually

based on the snapshot of the network context perceived locally in their neighbor-

hood. In an ad hoc network, it is very likely that all nodes are equal in terms of

their hardware and software capabilities. Thus, as opposed to a RAN, in an ad

hoc network, heterogeneity does not play a major role in task assignment except

27

to break any tie among two equally competing nodes suitable for the same task.

For example, if one node has more storage capability than the other and if they are

competing for caching routes, then obviously with all parameters being equal, the

one with larger spare memory should be selected to act as a router.

With reference to figure 1.8, nodes 4 and 5 can act as routers to route data from

1, 2, and 3 to the rest of the network. So, if both 4 and 5 have equal communication

capabilities in terms of route quality to 3 and the rest of the network and they also

have equal available battery power, then the only way to distinguish between them

is by other related routing requirements, such as route storage. On the other hand,

node 8 can cause network partition and eventual loss of communication among its

neighbors and the subnetworks associated with them. In this case, we have no choice

but to select 8 as the router to forward packets across these partitions. Of course,

over time node 8 will die due to energy dissipated by its radio for forwarding packets

destined to nodes other than itselfe. However, fortunately with node mobility (if

any) other nodes may come around the vicinity of 8 or 8 may move to some other

place. In this scenario, routing will be offloaded from 8 to the best node among these

new competing volunteers according to the criteria discussed above. The routing

task behaves differently under different local network scenarios or context. These

dynamics in the behavior of the task leads to a node and its neighbors acquiring

different roles at different times in the network.

dThe radio model assumed in this diagram is very simplistic. Wireless transmission and re-
ception ranges are practically asymmetric and randomly unidirectional based on environmental
vagaries, network conditions, and radio propagation characteristics.

eThe ad hoc network communication paradigm assumes a cooperative model where nodes are
not supposed to be selfish when it comes to forwarding packets for others. A form of cost-based
incentive mechanism in terms of virtual money (Blazevic et al., 2001) is usually established where
volunteers either buy or are rewarded for requested service by sellers or other obligated nodes,
respectively.

28

1.2.3 Role Assignment

The routing service as described requires nodes to collaboratively identify the

tasks or subtasks along the route where data gets forwarded. In other words, al-

though node 8 may be aware of routes from several sources to different destinations,

it needs other nodes along the path to relay the data to its next hop neighbor. Thus,

the routing service needs some nodes to perform the task of route computation and

storage whereas it needs others to simply forward along that computed route. For

example, source node 1 wants to communicate some information to the destination

node 12. There are several routes from node 1 to node 12 and the one that may be

selected most importantly depends upon the network knowledge available at each

node, and the quality of service (QoS) desired by and granted to source node 1 for

routing its packet to destination node 12. Assuming that node 8 is aware of the

route to node 12, a request to route from 1 is resolved by 8. Thus 8 acts as a router,

1 acts as a source, 12 acts as a receiver and other nodes along the chosen route

from 1 to 12 act as forwarders. The task executed by a node within a network at a

particular instant of time thus determines its behavior in terms of a “role” that it

takes to collaborate among its peers to execute a certain service.

The mapping of tasks to nodes or in other words role-assignment may be based

upon the QoS requested by node 1, say shortest path route to destination 12. Of

course, it also depends upon the available network resources that nodes are willing

to grant for this service. Assuming that the mission of the network is to satisfy QoS

by selecting and using the shortest possible route from node 1 to node 12, then it is

very likely that nodes along that path will not be available for long to sustain that

route. This is due to energy dissipated by the radio. In other words, forwarders

along the path will eventually die thus causing not only a network partition but

29

also a significantly reduced network lifetime. Thus, the assignment of roles has to

be dynamic as opposed to being static. We will see how the underlying network

organization architecture, by statically assigning roles, limits the flexibility of other

protocols above it.

1.2.4 Network organization: a static assignment of roles

Self-organization protocols usually organize a set of randomly deployed sensor

nodes into a logical controllable network infrastructure. Besides discovering the

links for each node, a self-organization protocol characterizes not only the relative

importance of links but also valuates the nodes responsible for managing those links.

A chain-based organization (see figure 1.11) logically organizes the network into

a long communication chain. The criteria for a node to be a part of the chain could

be high available energy or the shortest path route to a known destination. Nodes

that do not satisfy this criteria are not part of the chain. However, they could

join the chain if there comes a time when their neighboring chain node fails to

pass the selection criteria as discussed earlier. In a tree-based organization, certain

nodes are valued as parents whereas other’s are valued as children. Links may be

characterized as downstream/upstream to differentiate communication between a

parent to its children or vice versa (See figure 1.9). Similarly, for a cluster-based

organization, nodes with higher energy are valued as clusterhead whereas nodes in

the close vicinity of a clusterhead are known as cluster members (See figure 1.10).

This network organization then forms the basis for other protocols to perform

their optimizations. In other words, the design of the communication system is

essentially from bottom to top, with the network organization architecture acting

as an invariant framework upon which protocols dynamically optimize for desired

30

objectives and handle network variabilities. This bottom to top design that orga-

nizes the protocols into layers stacked above each other leads to rigidity where the

invariant behavior of one protocol layer along with the invariants of layers below it

cumulatively reduces the flexibility of an application to respond to several network

scenarios while simultaneously meeting desired performance requirements.

Source

1

2

3

5

6

7

8

9

13

S

10

11

12
DR

R

R R

R

R

4

Parent

Child

R

D Destination

RouterS

F Forwarder

Figure 1.9: Tree organization limits the role assignment of every child to a forwarder
and a parent to a router.

An example could be the competition between protocols that are developed

for shortest path routing and the protocols that are designed to conserve energy

and increase network lifetime. An energy-conservation protocol usually works by

adaptively changing the duty-cycle of unused or idle local node resources to save

energy. One way would be to identify sensors that are redundant with respect to

the area of sensing coverage and then turn these OFF completely to increase the

cumulative lifetime of the network. This obviously is inconsistent with protocols

31

Source

1

2

3

5

7

9

13
11

12

10

S

F

R

R

6

8

R
F

D

Cluster

R

Clusterhead

4

Cluster member

R

D Destination

RouterS

F Forwarder

Figure 1.10: Cluster organization limits the role assignment of every cluster member
to a forwarder and a clusterhead to a router.

that need these same nodes to be made available to meet specific service objectives

such as a shortest route to a destination (as discussed earlier).

Another energy conservation approach would be turn those sensors OFF that

are redundant with respect to the established shortest path route to the destination.

However, an event tracking protocol that needs high sensing fidelity at various times

and at different places within the network may be at odds with this energy saving

decision. This is because some sensors that would have been able to detect an

event with high sensing degrees have now been turned OFF because they were not

assigned as forwarders along the already established shortest path route.

A self-organization protocol may similarly base its organizational decision to

logically identify a certain node as a parent (or a clusterhead) and the other as a

child (or a cluster member) according to a specific performance metric that conforms

32

Source

1

2

3

5

6

8

9

13

S

F

F

F 10

11

12

F

F

D
F

4

7

Nonchain node

Chain node

R

D Destination

RouterS

F Forwarder

Figure 1.11: Chain organization limits the role assignment of every participating
node to a forwarder.

neither to the shortest path routing protocol nor to the high fidelity event tracking

protocol. And all of these are definitely at odds with the energy conservation

protocol. It is thus obvious that simple logical abstractions such as cluster, tree, or

chain lack detailed control flexibility across sensor network resources and protocols.

We therefore need a framework that can serve as a common foundation to express

resources in terms of standard units across services, applications, and protocols. All

the requirements both from the application in terms of desired QoS and from the

network in terms of resource availability and fairness can then be bargained and

arbitrated in terms of these units. The strategy that provides the maximum utility,

if available, could then be implemented by coordination across protocols running on

this common framework. This motivates the need for a resource-based coordination

framework across all heterogeneous resources and applications.

33

1.2.5 Resource-based abstraction framework for coordination

Let us consider the hypothetical sensor network protocol stack shown in fig-

ure 1.12(a), where protocols at different layers provide layer-specific services. Also

shown are the network functions such as energy management and security that need

cross-layer optimization. We represent the problem of multi-protocol coordination

for QoS and resource optimizations as a problem in 3 dimensions. As shown in fig-

ure 1.12(b), the point(s) where all these objectives are satisfied within the network

in a localized and efficient manner is essentially signified as a dilemma representing

the nature of the problem (usually NP-complete). However, it motivates the need

for an adaptive control framework that promotes cross-layer protocol collaboration

to map approximate solutions under established tradeoffs. With this recognition of

tradeoffs a mutually agreeable objective could be satisfied if the framework allows

this coordination to be modeled as an interplay of resources. This implies that

the framework would fall short if it only allows diverging application requirements

to converge to clear tradeoffs but makes it difficult to coordinate to achieve this

common objective.

An efficient task-based abstraction is needed that allows network protocols to be

modeled as a flexible and ordered placement of a collection of tasks. This needs to be

complemented by a resource-based abstraction that permits the cost of the tasks to

be evaluated in terms of the set of resources locally provisioned around a certain k-

hops vicinity. Since use of any resource requires power from the local battery, energy

consumption can serve as a common scale for evaluating tasks complexity. Similarly,

the use of distributed resources requires imperative inter-task communications and

this can also be taken into account by node energy dissipation. A union of these

two abstractions results in a framework where nodes collaborate for a service by

34

(a)

Middleware
Application Query Resolution

External Database
Network Status

Transport
Reliable Connection Management

Maintaining Link Congestion Status
Prioritized Traffic Management S

E
C
U
R
I
T
Y

Network
Self (Re)Organization Protocols

Routing and Topology Control
In-Network Data Processing

Data Dissemination
Storage and Caching

Medium Access Control
Location & Time Synchronization

Neighbor Discovery Schemes
Node Scheduling Schemes
Channel Access Schemes

Physical
Radio Communication

Sensing Hardware
Actuation Circuit
Signal Processing

E
N
E
R
G
Y

M
A
N
A
G
E
M
E
N
T

(b)

Resources

QoS

Protocols

Unified Adaptive
 Framework

?

Figure 1.12: Case for a Unified Role Assignment Framework (a) Sensor network
protocol stack and (b) Multi-objective {Resource, QoS, Protocols} optimization
dilemma.

valuating the utility derived from satisfying application desired QoS. This utility

is comparable across heterogeneous services, tasks, nodes, and resources. Nodes

calculate their utilities based on the energy required to execute the subtasks or

roles comprising the service. Depending upon application requirements and resource

availability, tasks are (re)assigned to nodes that maximize this utility.

1.2.6 Rescue Mission: Uncertainty and Chaos

One of the interesting examples that illustrates most of the role mapping issues

under cross layer design and multiple application scenarios is the deployment of

35

sensors in an industrial facility. Consider a heterogeneous deployment of sensors

in and around a chemical plant that manufactures hazardous chemicals (see fig-

ure 1.13). The network of deployed sensors facilitates rescue missions during fire,

chemical spill, and emergency medical scenarios. The rescuers have different mis-

sions in each of these scenarios and their applications may demand different services

at varying QoS requirements. During disasters it may be impossible to have a cen-

tralized arbitration scheme to avoid contention for resources among applications

through prioritized access to the sensor network resources.

In the example, we see several applications demanding services from the sensor

network in real time. The events that are driving these applications are also very

dynamic. Failure of nodes is expected in such a drastic and challenging rescue

scenario. Although during the passive state sensors at various plant domains formed

an initial organization, the current volatile situation demands changes in protocol

functionality. Network and application dynamics dictate these changes in protocol

behavior in real time. With the flexible abstraction features supported by the

generic role-based framework, it becomes easy for applications to perform such

adaptation and evolution for activities like organization, event tracking, collecting

network status, deploying new nodes, etc. In fact the possibilities evolve as the

role-based middleware unambiguously maps dynamic application configurations by

way of elementary tasks and required node resource capabilities.

From this chemical spill example, we have identified the following fundamental

role types: (1) Router or Backbone role; (2) Sensing coordinator role; (3) Sensing

collaborator role; (4) Gateway or Bordercast role; (5) Beacon or Anchor role; (6)

Shadow role; (7) Follower role; (8) Reserve role; (9) Source or Sink role; and (10)

Sensing-region role. Some roles, as their names suggest, provide services that are

36

self-explanatory. However, roles like the reserve role, shadow role, and follower

role need further explanation. Since energy efficiency and network lifetime are the

main concerns in sensor networks, many energy-conservation protocols have been

proposed that turn off sensors that are redundant from several aspects including

network sensing and communication coverage. These sleeping sensor nodes act

as reserves for future activities. These reserve roles become important as multiple

applications simultaneously demand services from the sensor network. Shadow roles

are required in situations where a single sensor or a relatively small group of sensors

holds vital state information required for the stable functioning of sensing regions

that are either static or migrate as events move around the sensor network. These

roles are also important for data storage and caching as they act as replication

storage facilities for critical state information. For events that migrate across the

sensor network, e.g. a moving enemy tank, the sensing region that is formed for

detecting, aggregating, and relaying sensor readings also needs to be mobile. Group

sensing mobility differs from individual node mobility that is typical in mobile

ad hoc networks (MANETs). Instead, sensing group (re)organization has to be

repeated at every detection point of the migrating event so consistent real-time

reporting of event characteristics is possible. Protocols that form such migrating

sensing groups in-sync with mobile events belong to a special class of event detection

and tracking protocols for wireless sensor networks. Typically these event tracking

protocols work toward a pro-active selection of follower nodes that in the near

future organize a sensing region per their prediction modeling of event dynamics

(direction and speed).

37

CheckSecurity
ReDeploy

NetworkStatus

TrackChemicalSpill

TrackFires

ReOrganize

TrackPersonnel

Figure 1.13: Example cross application service to role mapping scenario

1.3 Research Contributions

In this dissertation, our main goal is to generalize specific sensing and networking

characteristics and use this to develop a unified resource abstraction mechanism for

localized and collaborative resource arbitration, coordination, and control. We pur-

sue this by first identifying common sensing and networking characteristics among

competing application-specific protocol solutions. We abstract these performance

characteristics into a set of networking and sensing metrics. To that effect, we have

developed a set of sensing metrics that serve as a framework for our sensing Quality

of Service (or sQoS). This agenda is then realized in the following components,

which together form the research contribution of the thesis.

38

1.3.1 Role-based Hiearachical Self-Organization (RBHSO)

We use sensing and networking metrics to understand the flexibility of the un-

derlying network organization to execute services as an allocation of specific tasks

collaboratively executed as local network roles. To that end, we have developed

a Role-based Hierarchical Self-Organization (RBSHO) protocol as an initial archi-

tecture for self-organization for wireless sensor networks (Kochhal et al., 2003).

We study the flexibility of our organization with a popular cluster-based protocol

(LEACH).

1.3.2 Unified Role-Abstraction Framework (URAF)

We extend our RBSHO algorithm to develop a Unified Role-Assignment Frame-

work (URAF) to model application services as roles played by local in-network sen-

sor nodes with sensor capabilities used as rules for role identification. The URAF

design philosophy incorporates concepts of aggregation, hierarchy, approximation,

and redundancy to develop generic roles for elementary tasks and use these to com-

pose complex roles that abstract protocol specific interactions among nodes. We

abstract these complex protocol task interactions in the spatial and temporal do-

main by way of role-coordination graphs that highlight this need for dependency

and subsequent coordination among roles. Using an example domain-specific em-

pirical model for energy consumption, we profile the use of various node resources

such as radio, sensing, battery, memory, and computation for both elementary and

complex roles. This role-service load profiling in terms of energy allows nodes to

pursue application load balancing by way of an adaptive assignment and schedul-

ing of roles to nodes. For example, with declining network resources roles become

more adaptive as they evolve toward less energetic types. In this scenario, a node

39

attempts to extend its remaining lifetime by arbitrating services to a much larger

pool of neighbors. This facilitates reconfiguration and the subsequent reassignment

of complex roles to a number of simpler roles.

The URAF can be implemented as a Role-based Middleware (RBMW) that al-

lows applications to quantify service requirements and tradeoffs either as a simple

or as weighted sum of utilities and points in QoS space. The RBMW then maps

these requirements in terms of a specific assignment of roles to nodes. To limit the

problem space, we concentrate on energy-efficient role-assignment for data aggre-

gation services in a heterogeneous sensor network. The RBMW incorporates load

balancing protocols across roles, nodes, and services in terms of pairwise neigh-

borhood role-exchange, role-mergers, and role-redirection. The RBMW behavior is

dictated by its underlying role state machine that considers several scenarios for

roles such as message arrival, sensing events, and neighboring role-context changes.

The state machine also allows roles at a higher level to pursue execution scheduling

of local and neighboring roles among nodes in the network. The URAF assumes

the availability of protocols to provide and share cross-layer network information

among nodes to pursue role assignment, scheduling, and load balancing.

1.4 Dissertation Outline

The rest of this dissertation is organized as follows:

Chapter 2 outlines the related work in terms of cross-layer optimizations achieved

by protocols at various layers to meet desired QoS requirements. We will also discuss

several network organization protocols along with our proposed role-based hierar-

chical self-organization protocol that forms the basis for our role-based framework.

We understand the concept of tasks and roles from various perspectives including

40

sensor networks, multi-agent systems (MAS) and its challenging application toward

robots playing soccer. We also analyze existing heuristics which formulate the role-

assignment (RA) for data-aggregation as a capacity-based facility location problem

(CFLP). We also analyze RA algorithms that recursively minimize for a set of met-

rics using the concept of local domination and elimination among a connected set

of nodes. We also consider analogous algorithms based on micro-economic theo-

ries such as Game Theory and Mechanism design that have been applied to sensor

networks where the utility is to minimize energy consumption. We also consider ex-

isting software abstraction frameworks and middleware for wireless sensor networks.

Most of these abstractions are either application specific or service specific.

Chapter 3 focuses on the design philosophy of our Role Based Hierarchical Self-

Organization (RBHSO) protocol that forms a hierarchical connected dominating

set (CDS) network organization for wireless sensor networks. In this network hi-

erarchy, we also assign specific roles (or tasks) to sensors based on their physical

wireless connectivity and sensing characteristics. The chapter provides an in-depth

analysis of the prominent characteristics of the sensing phenomena. These sensing

concepts forms the basis of our proposed sensing based metrics, such as the sensing

proximity value (SPV), the cumulative sensing proximity value (CSPV) and cumu-

lative sensing degree (CSD). We have also discussed relevant connected dominating

set (CDS) concepts. We use both the sensing and CDS-based network metrics to

form a self-organized sensor network that establishes a network-wide infrastructure

consisting of a hierarchy of backbone nodes, and sensing zones that include sensor

coordinators and sensing collaborators (or sensing zone members). We demonstrate

the effectiveness of our design through theoretical analysis and simulation.

Chapter 4 considers the design of our unified role-based assignment framework

41

(URAF) that serves as a common platform to map multiple applications and services

across heterogeneous sensor network deployment. It implements the concepts of

hierarchy, aggregation, redundancy, and approximation to abstract an application

service in terms of a hierarchical organization of roles assigned to neighbors such that

their collaborative execution meets the desired QoS. The QoS is modeled in terms

of utilities that uses two domain specific models such as the role-energy model and

the concave role-resource service utility model to measure the use of resources by

roles over time in terms of energy. Using these two models, a specific configuration

of roles could be considered to meet the desired energy and time requirements. If

the application desired requirements cannot be met then the framework proposes

to meet the QoS that is currently possible. With this, the framework allows the

middleware to pursue two objectives, translate the desired requirements to the

number of in-network roles needed and the energy expended by their execution

for the desired service time. The number of roles that meets the agreed upon

QoS between the application and the network is then used as input by the role-

assignment algorithms (RA). We also discuss specific role properties such as role-

coordination graph, role failures monitoring and repair, role-load balancing, role-

state machine, and role-execution scheduling.

We wrap up our discussion in chapter 5 by giving an overview of the accom-

plishments of our work, and providing a glimpse of our future work and direction.

42

Chapter 2 – Related Work

In this chapter, we discuss several research solutions related to network self-

organization and sensor network abstractions for ad hoc wireless sensor networks.

These research solutions will be discussed considering the following prevalent sensing

and wireless networking aspects:

• WSNs are ad hoc and nodes have heterogeneous capabilities,

• Most of the nodes are battery powered,

• Services are requested by an end user. These services usually relate to an

event of interest being detected, monitored, tracked, and communicated by

sensors within the network to the user.

• The QoS desired for a particular service includes not only efficient sensing

requirements but also energy conservation such that the lifetime of the network

is not deprecated significantly.

In regards to these aspects, several research challenges need to be addressed

and the solutions incorporate optimization at a specific layer in the protocol stack.

However, since energy conservation is also important, any layer-specific optimiza-

tion needs to incorporate trade offs between competing performance requirements.

Such tradeoffs usually involve maintaining, sharing, and adaptively controlling spe-

cific protocol parameters across layers in the protocol stack. This is referred to in

the research literature as cross-layer optimization. This adaptive cross-layer opti-

43

mization is generalized into specific network abstractions such that they provide

control interfaces for higher layers.

A further generalization of network abstractions is possible by way of a mid-

dleware that accepts service specifications and QoS requirements and translates it

into appropriate control to the network abstraction at a lower level. Sensor pro-

gramming languages provide generic programming constructs that allow flexible

programming with network abstractions for application programmers to implement

a generic middleware. In order to generalize across different sensor network plat-

forms (both hardware and software), a middleware can also be replaced by a virtual

machine. Figure 2.1 highlights these concepts at a high level in terms of sensor net-

work middleware that incorporates specific network abstractions. These abstrac-

tions in turn incorporate shared cross layer information to map applications across

heterogeneous sensor network platforms.

This chapter is organized as follows. The first section discusses several self-

organization solutions with particular concentration on topics such as hierarchical

self-organization, network metrics used to elicit such an organization, the message

complexity of the algorithm, and the evaluation of the organized network in terms

of several architectural metrics. We compare and contrast these solutions with

our role-based hierarchical Self-Organization (RBHSO) approach. The next section

discusses in brief several cross-layer techniques that consider both energy-efficiency

and sensing performance together. This section will provide several generic insights

into strategies used to operate an ad hoc wireless sensor network in a heterogeneous

deployment and under energy constraints. The third section discusses specific net-

work abstractions that use these generic strategies and provide a software frame-

work. The fourth section discusses the generic application of roles in distributed

44

Applications/ServicesMonitorEvent

TrackEvent

NetworkStatus

{Service, QoS}

URAF, Database, Region−based

APIsMiddleware

Application Middleware

Virtual Machine (Optional)

Programming Languages

Network Abstractions

In−order Delivery
Flow & Congestion Control Transport Protocols

Position & Time Synch
Data Storage & Aggregation

Query Processing
Sensing Protocols

Network ProtocolsNetwork (Re)Organization
Routing, Adaptive Topology

Channel Access Schemes
Node Scheduling Schemes

MAC Layer Protocols

S
h

a
re

d
 N

e
tw

o
rk

 S
ta

tu
s

A
cr

o
ss

 L
a

ye
rs

Heterogeneous
Hardware

Communication, Sensing, Actuation
Memory, CPU, A/D, Battery

Sensor Network

Figure 2.1: Middleware, Network Abstractions, and Protocol Layering.

systems with specific emphasis on role-assignment techniques for wireless sensor

networks. We finally conclude by summarizing the existing work and highlighting

future challenges in the area of sensor network self-organization, sensor network

abstraction frameworks, and cross-layer approaches.

2.1 Sensor Network Organization Protocols

Self-organization in distributed systems is a natural outcome of specific inter-

action among network components on a microscopic level such that their emergent

45

global behavior at the macroscopic level yields desired application performance.

Sometimes it is not possible to predict in advance any unintended emergent behav-

iors that may be undesirable. Similarly, sometimes changing network dynamics may

make some previously desired behavior suboptimal and hence may dictate appro-

priate and suitable adaptations to a new required emergent behavior. To minimize

or eliminate such undesired effects, interacting protocols or components may be

guided by specific design strategies that map as local rules intended to yield desired

global behaviors. The initial self-organization protocol that forms the basic orga-

nizational structure for WSNs may thus need further adaptation by the following

network functions that run on top of this structure:

1. Communication scheduling,

2. Topology control for forming structures,

3. Time synchronization,

4. Data dissemination and aggregation,

5. Task organization and placement,

6. Software configuration and updates,

7. Energy conservation,

8. Fault detection and repair, and

9. Security and resistance against malicious attacks.

Some of these network functions are generic (e.g. routing), some are applica-

tion dependent (e.g. data aggregation and query dissemination), some are context

46

dependent (e.g. energy-aware task assignment), and some are dependent upon the

environment (e.g. event sensing and actuation). The dynamic nature of sensor net-

works makes it difficult to support a priori design of optimal behaviors to implement

these network functions. Thus, there is a need to investigate self-organizing tech-

niques that could enable a network to shape its own behaviors to adapt and evolve

to changing network dynamics and application requirements.

From a layered perspective, it can be observed that these specific network func-

tions also reflect a hierarchy of abstractions. The initial field deployment results in

a fundamental abstraction in terms of available physical resources. The subsequent

network self-organization then results in formation of a collective that allows these

distributed resources to be managed and shared as common resources. This ini-

tial organization serves as the reference for other functions to shape this collective

behavior to support additional levels of abstraction in terms of topology, energy,

tasks, events or data, and faults.

The problem of self organization (or self configuration) has been a hot topic of

research in wireless ad hoc networks including mobile and stationary sensor net-

works. Self organization involves abstracting the communicating entities into an

easily controllable network infrastructure. Cluster or connected dominating set

(CDS), tree, grid, or mesh based organizations are typical. An excellent discussion

of various algorithms supporting cluster-based organizations is furnished in (Steen-

strup et al., 2000). A much earlier survey of self-organization techniques in 1986

for wireless networks has been furnished by Robertazzi and Sarachik (Robertazzi

and Sarachik, 1986). However, this survey considers solutions to resolve basic issues

related to the physical characteristics and limitations of wireless networks instead

of issues that arise from the pervasive and large scale ad hoc deployment of WSNs.

47

In mobile ad hoc networks, self organization essentially involves maintaining

some form of network organization to support routing infrastructure in the pres-

ence of random uncontrollable node mobility. Some relevant research in this area

include the ZRP protocol (Haas et al., 2002), and the terminodes protocol (Blazevic

et al., 2001). For mobility management, ZRP uses zones that are similar to clusters

whereas the terminodes protocol uses the concept of self organized virtual regions.

Routing in both these approaches involves two different schemes, a proactive rout-

ing scheme for nodes within a local virtual-region or zone, and a reactive scheme for

nodes located in remote virtual-regions or zones. Since in mobile-ad hoc networks

the availability of the network is dependent on each user’s discretion, an incentive

for cooperation by way of virtual money called nuglets is employed in terminodes.

Sohrabi, Pottie, et al. (Sohrabi et al., 2000) (Sohrabi and Pottie, 1999) (Clare

et al., 1999) have introduced in detail the problem of self organization in wireless

sensor networks. They point out the differences in various related wireless network

models (e.g.

MANET, Cellular networks, Bluetooth, and HomeRF) and the WSN with respect

to the desired network performance objectives. (Clare et al., 1999) gives a detailed

description of the top-level design components of a self organization protocol for

WSN. (Sohrabi and Pottie, 1999) (Sohrabi et al., 2000) propose a self organization

protocol for WSN forms a flat topology as opposed to a hierarchical organization.

The self organizing algorithm includes a suite of protocols designed to meet the var-

ious phases of network self organization. There is one protocol (SMACS) that forms

a joint TDMA-like schedule (similar to LCA (Baker and Ephremides, 1981)) for the

initial neighbor-discovery phase and the channel-assignment phase. Other protocols

(like EAR, SAR, SWE, and MWE) take care of mobility management, multi-hop

48

routing, and the necessary signaling and data-transfer tasks in local cooperative

information processing.

Subramanian and Katz (Subramanian and Katz, 2000) propose a self con-

figuration architecture that leads to a hierarchical network with address auto-

configuration and a number of other useful properties. Their self organizing algo-

rithm lists four phases of operation. These are the discovery phase, organizational

phase, maintenance phase, and self reorganization phase. Chevallay et al. (Cheval-

lay et al., 2002) build on this architecture by proposing a hierarchical cluster-based

organization of a network of wireless sensors. The clusterhead election is based

primarily on the energy level and processing capability of each sensor node.

Mirkovic et al. (Mirkovic et al., 2001) organize a large-scale sensor network

by maintaining a dynamic multicast tree-based forwarding hierarchy that allows

multiple sinks to obtain data from a (sensor) source. Their algorithm does not

need a globally unique ID for every participating sensor node. Thus address auto-

configuration is not one of their self organization objectives as it is for (Subramanian

and Katz, 2000) and (Chevallay et al., 2002). The RBHSO algorithm assumes the

existence of a globally unique ID for each sensor node.

Krishnan and Starobinski (Krishnan and Starobinski, 2003) present two algo-

rithms that produce clusters of bounded size and low diameter by having nodes

allocate local growth budgets to neighbors. Unlike the expanding ring approach

(Ramamoorthy et al., 1987), their algorithms do not involve the initiator (or clus-

terhead) in each round and do not violate the specified upper bound on the cluster

size at any time, thus having a low message overhead as compared to (Ramamoorthy

et al., 1987). The RBHSO protocol uses localized communication among neighbors

during the self organization phase. In order to limit the membership of the sensing

49

zones as well as the number of sensing zones, our algorithm uses two specified min-

imum and maximum sensing zone membership limits. However, in the final stages

of the algorithm, orphan nodes will join any nearest neighboring sensor coordinator

or a sensing zone member. This is done to cover the maximum possible number of

nodes in the organized hierarchy.

Ni et al. (Ni et al., 1999) consider the clustered broadcast protocol where they

emphasize the importance of highly uniform clustering with low overlap. In this

protocol, the broadcast message is relayed from cluster-head to cluster-head, which

then broadcast the message to their followers. In a clustering with few clusterheads

and large cluster sizes, the clusters have minimal overlap and provide the best

coverage of the network with the fewest clusters. Hence, the number of repeated

broadcast transmissions over any area will be small, thus reducing the amount of

transmission collisions and channel contention, allowing communications to become

faster, more efficient and more reliable.

On the other hand, a poor clustering with much cluster overlap and many

cluster-heads loses much of the benefits of clustering as transmissions will be re-

peated in areas of overlap with significant channel contention. This has repercus-

sions for other efficient protocols that rely on having a network partitioned into

clusters of uniform size. Some examples of these protocols include routing proto-

cols (Krishna et al., 1997) (Thaler and Ravishankar, 1998), protocols for reliable

broadcast (Ni et al., 1999) (Pagani and Rossi, 1997), data aggregation (Heinzelman

et al., 2000) (Xu et al., 2003), and query processing (Estrin et al., 1999).

Chan and Perrig propose an emergent clustering algorithm known as ACE (Chan

and Perrig, 2004), that results in highly uniform cluster formation that can achieve a

packing efficiency close to hexagonal tiling. By using the self-organizing properties

50

of three rounds of feedback between nodes, the algorithm induces the emergent

formation of clusters that are an efficient cover of the network, with significantly

less overlap than the clusters formed by existing algorithms. The algorithm is scale-

independent i.e. it completes in time proportional to the deployment density of the

nodes regardless of the overall number of nodes in the network. ACE requires no

knowledge of geographic location and requires only a small constant communication

overhead. ACE is an example of the power and flexibility of emergent algorithms

(defined in (Fisher and Lipson, 1999)) in large-scale distributed systems.

In the case of a random sensor deployment scenario, there is essentially a di-

chotomous scenario where on one hand, we need almost total independence between

sensing zones, and on the other we also want to reliably track moving events among

neighboring clusters of sensors. Our RBHSO algorithm is a localized algorithm that

requires a constant number of three iterative rounds of message exchanges among

neighbors. Our algorithm selects sensor coordinators or clusterheads deterministi-

cally, with shorter average distances between sensing zone or cluster members and

the sensor coordinator or the clusterhead. Similar to ACE, our algorithm tries

to minimize overlap between neighboring sensing zones. We feel that the overlap

among neighboring sensing zones actually reflects the dependency for events occur-

ring at the border of the sensing zones. This dependency among neighboring sensing

zones can be effectively used to detect and track moving targets and communicate

it effectively across clusters or sensing zones. However, the desired amount of sens-

ing dependency is still an open issue and is application dependent. To minimize

inter-cluster communication and avoid the clusterhead becoming a communication

hotspot, nodes that are at the border of 1 or more clusters can be assigned the role

of a gateway or bordercast sensor role where they gossip this information across

51

clusters with minimal overhead.

(Olariu et al., 2004) develop a lightweight clustering protocol that organizes a

large number of sensor nodes into a multi-hop, collision free and adaptive communi-

cation infrastructure. After the infrastructure is constructed, the protocol pursues

energy efficiency by letting sensors sleep and wake up randomly in the leader elec-

tion phase. The sensors that wake up the earliest are elected to be cluster leaders.

In this way, the leaders are allowed to be elected evenly in the area. Their network

infrastructure isolates clusters to reduce power interference by assigning different

frequency channels to neighboring clusters. The protocol is complemented by a

collision resolution mechanism that avoids power interference between neighboring

leaders by having them send neighbor discovery beacons at different times. In the

cluster, the leader schedules the routine transmission and reception of events. Un-

predictable events are handled by the wake up mechanism. The role-energy model

that complements our RBHSO protocol supports energy management at the gran-

ularity of the tasks executed by roles and the resources it consumes. Our approach

evens the energy consumption of the sensing zones by limiting its membership and

also including only those sensors that contribute significantly to the sensing quality

of any event in its zone or group. However, our RBHSO algorithm assumes the

existence of a MAC protocol to resolve collisions among neighboring transmissions.

Our algorithm does not necessarily warrant the use of separate frequency channels

to roles as is needed in the clustering protocol. Thus RBHSO protocol avoids the

need for complex radio hardware in sensors.

Self-organization algorithms usually converge to a desired structure or organiza-

tion within a certain number of rounds of local communication among its neighbors.

The convergence of most of the algorithms are bound by certain performance pa-

52

rameters such as node degree, sensing coverage or exposure, cluster size, number

of cluster heads, average inter cluster and intra cluster distance, remaining energy

or number of communication rounds among neighbors, etc. The best scenario is

to have the self-organization algorithm converge to a critical equilibrium where it

meets the desired requirements. Sometimes this equilibrium may be of a fragile

nature and may itself need to be bounded by a upper and lower margin around the

equilibrium point or the threshold.

Krishnamachari et al. (Krishnamachari et al., 2003) reported phase transitions

in wireless networks, identifying a critical threshold of node density that leads to

global connectivity. Below the threshold a network will not connect whereas above

the threshold a network generates interference and wastes energy. Krishnamachari

suggests that phase-transition analysis could help to select design parameters that

enable a self-organizing wireless network to reach a desirable operating point. How-

ever, such a study needs to not only account for the conditions that existed during

the initial organization but also incorporate changing conditions that can dynam-

ically disturb equilibrium and induce periods of instability, or drive a system into

oscillation or chaos. Self-reorganization and maintenance protocols need to be able

to forecast and analyze these conditions so that complementary mechanisms could

be developed that resist and deal with these conditions effectively.

Mills (Mills, 2007) provides a detailed survey of similar aspects of self-organization

protocols for other higher layer protocols that optimize for energy while simulta-

neously: sharing processing and communication capacity in terms of data gather-

ing (Xu et al., 2006) and query dissemination (Wang et al., 2004), synchronizing

time (Werner-Allen et al., 2005) (Ganeriwal et al., 2003) (Hong et al., 2004); config-

uring software components; adapting behavior associated with routing (Braginsky

53

and Estrin, 2002), with disseminating (Intanagonwiwat et al., 2000) and querying

for information, and resisting attacks (Boonthum et al., 2006) (Ye et al., 2004) (Yu

and Liu, 2005) (Jamshaid and Schwiebert, 2004). The objective of these research

proposals clearly fall outside the scope of our dissertation. However, the underlying

network architecture optimized by these protocols for a specific service are the stan-

dard cluster-based designs or a tree based architecture. We discuss the relationship

between these basic network architectures and our RBHSO protocol in the next

chapter where we highlight its design philosophy.

Our Role-Based Hierarchical Self-Organization (RBHSO) protocol identifies the

need for organizing a sensor network according to the tasks appropriate for each

sensor node based on their initial deployment in the network. Past research in

group-based (or hierarchical) sensor networks have ignored the possibility of uti-

lizing both the physical communication and sensing characteristics to assign roles

to sensor nodes. First, this may be partly due to the assumption that such a hi-

erarchical organization may be too static (or rigid) to be reorganized with respect

to the ultimate traffic pattern that may run on top of this self-organized network

architecture. Second, concentrating specific responsibilities on specific nodes could

result in such nodes becoming easy targets for faults, thus making such a hierarchi-

cal network inherently less fault tolerant. However, with sufficient network density,

both of these problems can be resolved efficiently by systematically rotating roles

among neighboring nodes in a localized manner without much overhead. We de-

velop this role-rotation concept to pursue load balancing among neighbors. In this

regard, we have developed several role assignment algorithms that are a part of our

Unified Role Assignment Framework (URAF).

54

2.2 Cross Layer Approaches in Sensor Network Design

In this section, we discuss several existing application specific cross-layer pro-

tocol designs and optimizations that jointly optimize and trade off specific perfor-

mance metrics over others in a balanced way by exploiting the collaborative nature

of WSNs and its correlation characteristics across layers. In general, cross-layer ap-

proaches are motivated by the following three reasons (Melodia et al., 2005): (1) the

stringent resource capabilities of sensor nodes, (2) the significant overhead of lay-

ered protocols, and (3) the need for application-aware coupling of specific low power

optimizations at relevant layers with the event-centric communication protocols.

Recent research on cross-layer optimization techniques (Song and Hatzinakos,

2007) (Rowe et al., 2008) (Royo et al., 2007) (Fang and McDonald, 2004) (van

Hoesel et al., 2004) (Vuran et al., 2005) have identified specific joint optimization

across protocol layers that are especially important for an energy efficient and ap-

plication specific design of sensing and communication protocols for WSNs. Thus,

for example a cross-layer optimization to select a best possible node for a particular

role (say, a sensing coordinator) in the network may include exploiting the follow-

ing observations among neighboring sensors: spatiotemporal correlation of sensor

readings, node heterogeneity at the hardware level, along with other environmental

characteristics such as wireless channel conditions, link quality, sensing coverage,

and network redundancy. In other words, the communication protocols devised for

WSNs that focus on cross-layer design techniques usually result in either the com-

plete fusion or replacement or modification of several specific network layers in the

classical open system interconnection (OSI) network stack. With this there exists

several possibilities of disruptions in the protocol layer abstractions, and hence pre-

caution (Kawadia and Kumar, 2004) is advised with the cross-layer techniques as

55

it may decrease the level of software modularity across well defined interfaces and

between software processes such as design and development. This causes difficulty

in further design improvements and innovations as it increases the risk of instabil-

ity caused by unintended functional dependencies, which are not easily visible in a

non-layered architecture.

Since a wireless sensor network is a synthesis of several technologies across do-

mains such as wireless, sensing, battery, and low power operations, it becomes

necessary to design and validate models for all these technologies for practical ap-

plications in a heterogeneous deployment. Accordingly, the broadcast and asym-

metric nature of the wireless channel for simple communication primitives such as

flooding is investigated through testbed experiments in (Ganesan et al., 2002). It is

observed that the performance predicted using unit disk graph models for flooding

are not realistic as they are simplistic and do not account for the effect of wireless

channels. Similarly, in (Zuniga and Krishnamachari, 2004), it is found that the

radio models that assume a perfect reception within circular radio range coverage

can be misleading in the performance evaluations of communication protocols as

they ignore the existence of transitional regions in low power links. With this non

conformity between theoretical communication models and practical observations,

guidelines for physical-layer-driven protocol and algorithm design are investigated

in (Shih et al., 2001). In general, research studies that identify such issues strongly

advocate that the communication protocols for WSN be re-evaluated using practical

models and through experiments to account for the wireless channel properties.

Another popular cross-layer design for efficient protocols considers interdepen-

dency across layers. For example, interdependency between local contention and

end-to-end congestion call for adaptive cross layer mechanisms for efficient data

56

delivery in (Vuran et al., 2005). Similarly, the interdependency of sensing obser-

vations across time and space also known as spatiotemporal correlation is another

significant characteristic of sensor networks that can be exploited for further energy

savings in WSNs (Kochhal et al., 2004) (Vuran et al., 2004).

A simpler approach to cross-layering is to develop protocols that simply share

information across layers for better decisions. In this regard, most of the energy-

aware sensor network protocols (both for communication and sensing) assume the

availability of contextual information maintained vertically across layers as shown

in figure 2.1. X-lisa (Merlin and Heinzelman, 2006) proposes such an information

sharing protocol architecture for sensor networks that can support existing protocols

while simultaneously providing a platform for advanced cross-layer improvements.

This architecture supports different services and data structures for providing in-

formation that can be shared among all layers of the protocol stack for increased

network performance. As an example, the authors implement X-lisa, a network-

aware adaptation of the channel probing MAC protocols that reduce idle listening

by contextually matching the schedule used for probing to the current network

conditions (Merlin and Heinzelman, 2007).

We now discuss the cross-layer principles in terms of interactions among physical

(PHY), medium access control (MAC), network (both routing and organization),

application sensing, and transport layers:

• MAC + PHY: In this joint optimization approach, the objective is usually

energy savings (Haapola et al., 2005) by scheduling nodes ON and OFF as per

specific communication and sensing correlation (Tian and Georganas, 2002)

among nodes in the network. In general, the following techniques have been

applied:

57

1. Node scheduling as per redundant sensing coverage: S-MAC (Ye et al.,

2002b) is a MAC protocol that puts nodes into periodic sleep mode

for energy conservation. Each node is free to choose its own listen/sleep

schedules and broadcast the schedule to all its one-hop neighbors. Similar

energy efficient MAC layer designs for general sensor networks can be

found in T-MAC (Dam and Langendoen, 2003), SIFT (Jamieson et al.,

2003), and CC-MAC (Vuran and Akyildiz, 2006).

2. Node scheduling as per redundant connectivity : Span (Chen et al., 2001)

is a distributed randomized power-saving technique where nodes make

local decisions on whether to sleep or to join a forwarding backbone

as a coordinator. Each node bases its decision on an estimate of how

many of its neighbors will benefit from it being awake and the amount

of energy available to it. Span integrates with the IEEE 802.11 MAC

protocol and tries to preserve both capacity and network connectivity

while minimizing energy consumption. Similar energy efficient topol-

ogy control and management optimizations have been proposed in (Ra-

manathan and Rosales-Hain, 2000) (Wattenhofer et al., 2001) (Schurgers

et al., 2002) and are integrated with sensing redundancy by several hy-

brid MAC protocols (Chang and Chang, 2008) (Warrier et al., 2008) for

sensor networks.

• MAC + Network: Because MAC level protocols have a very narrow view of

the network, the main approach followed by such energy-efficient protocols

has been to turn off radios that are not actively transmitting or receiving

packets. Since there is a certain amount of time involved in turning radios

back on when they are needed, MAC protocols typically trade off network

58

delay for energy conservation. Energy efficient MAC and routing protocols

can be used together to increase energy conservation.

1. Contention aware or receiver-based routing : This is a very popular ap-

proach where the next hop is chosen as a function of the contention in the

neighborhood. Receiver-based routing has been proposed to optimize the

energy efficiency, latency, and multi hop performance of the routing algo-

rithm (Skraba et al., 2004), (Zorzi and Rao, 2003). Similarly, in (Ferrara

et al., 2005), the routing decision is a result of successive competitions

at the MAC layer. In other words, the next hop is selected based on a

weighted progress factor and the transmit power is increased successively

until the most efficient node is found. Moreover, similar on-off schedules

are utilized for energy efficiency as discussed earlier.

2. Joint scheduling and routing scheme: The general advantage of this ap-

proach is to turn OFF nodes that are not used for the routing service.

Also, since WSNs are characterized by multiple flows from closely lo-

cated nodes to a single sink, it becomes necessary for routing protocols

to mitigate potential interfering routes in their route establishment. If

the traffic is periodic as in the case of sensing applications that monitor

periodically, the nodes can form distributed on-off schedules for each flow

in the network while the routes are established such that the nodes are

awake only when necessary. Since the traffic is periodic, the schedules

are then maintained to favor maximum efficiency. Such a technique is

proposed in (Sichitiu, 2004) for periodic traffic in WSNs. The usage of

on-off schedules using a TDMA scheme and topological information in

a cross-layer routing and MAC framework is also investigated (van Hoe-

59

sel et al., 2004). Another approach (Pantazis et al., 2009) that aims to

conserve energy while minimizing end-to-end packet delay uses a similar

TDMA-based scheduling scheme that balances energy-saving and end-

to-end delay. This balance is achieved by an appropriate scheduling of

the wake up intervals, to allow data packets to be delayed by only one

sleep interval for the end-to-end transmission from the sensors to the

gateway.

3. Interference aware routing : In (Fang and McDonald, 2004), the interfer-

ence effect of the broadcast nature of MAC on routing is investigated.

This MAC interference between routes is minimized by implementing the

use of node codewords that indicate the interference level of nodes and

each packet contains a route indicator for route establishment.

4. Network organization and topology management : Network organization

and topology control algorithms use specific inter layer correlations and

redundancies along with application level hints to support a customized

topology for meeting application requirements. LEACH (Heinzelman

et al., 2000) is an energy-aware cluster head selection mechanism for en-

vironmental monitoring sensor networks that is customized to support

continuous and periodic monitoring. As discussed earlier, the topology

of an ad hoc network plays a key role in the performance of networking

services such as scheduling of transmissions, routing, flooding, and broad-

casting. Xu (Xu et al., 2003) (Xu, 2002) proposes two topology control

protocols (GAF and CEC) that extend the lifetime of dense ad hoc net-

works while preserving connectivity by turning off redundant nodes. Bao

and Garcia-Luna-Aceves (Bao and Garcia-Luna-Aceves, 2003) propose

60

another topology management algorithm that constructs and maintains

a backbone topology based on a minimal dominating set (MDS) of the

network. Using only transmission control techniques for controlling the

sensor network topology, both centralized (Tseng et al., 2003) and dis-

tributed (Kubisch et al., 2003) approaches have been proposed. In order

to improve management efficiency across topology control, media access

control, and routing, a unified cross-component power management ar-

chitecture for wireless sensor network is proposed in (Xing et al., 2009).

• App + MAC: With this approach, the MAC layer is customized specifically

to meet application objectives of efficient sensing, event monitoring, and tar-

get tracking. Such an application specific approach is limited to the domain

to which it is applied and hence it is not universal. The Low Energy Self-

Organizing Protocol (LESOP) (Liang and Dimitrios, 2007) for target tracking

in dense wireless sensor networks is a two-layer Embedded Wireless Intercon-

nect (EWI) architecture platform that is adopted for high protocol efficiency,

where direct interactions between the application layer and the MAC layer

are exploited. In this approach, the transport and network layers are excluded

to simplify the protocol stack. A lightweight yet efficient target localization

algorithm is then implemented, with a QoS knob employed in the application

layer that controls the tradeoff between the target tracking error and network

energy consumption.

• App + Network: Brooks et al. propose location centric CSP (Collaborative

Signal Processing) approaches for target tracking sensor networks in (Brooks

et al., 2003) and (Moore et al., 2003), where a selected region instead of

an individual sensor node is activated. The approach uses local sharing of

61

robust statistics that summarize local events. Local collaboration extracts

detection information such as time, velocity, position, heading and target type

from the summary statistics. Groups of nodes used for local collaboration

are determined dynamically at run time. Local collaboration information is

compared with a list of tracks in the immediate vicinity. A variation on

the nearest-neighbor algorithm associates detections to tracks. Zhang et al.

propose an optimized tree reconfiguration scheme for target tracking (Zhang

and Cao, 2004) adapted at the network layer but shaped by the tracking

application requirements.

• Network + PHY: By solving the throughput optimization problem into two

sub-problems: multi-hop flow routing at the network layer and power alloca-

tion at the physical layer, the authors (Yuan et al., 2005) propose a cross-layer

optimization of network throughput for multi-hop wireless networks. The

throughput is a function of the per-link data flow rates, which in turn de-

pends on the link capacities and hence, the per-node radio transceiver power

level. On the other hand, the power allocation problem is a function of the

interference as well as the link rate. Based on this solution, a CDMA/OFDM

based solution is provided such that the power control and the routing are

performed in a distributed manner. In (Seada et al., 2004), new forwarding

strategies for geographic routing are proposed based on the results in (Zuniga

and Krishnamachari, 2004). The authors provide expressions for the optimal

forwarding distance for networks with automatic repeat request (ARQ) and

without ARQ. The forwarding algorithms require the determination of the

packet reception rate of each neighbor in order to select the next hop and

construct routes accordingly.

62

• Transport + PHY: In (Chiang, 2005), a cross-layer optimization solution for

power control and congestion control is considered. Based on this framework,

a cross-layer communication protocol based on CDMA is proposed, where

the transmission power and the transmission rate is controlled. However, the

proposed solutions apply only to CDMA-based wireless multi-hop networks,

which may not apply to WSNs as CDMA technology is not currently feasible

with battery powered sensor nodes.

• 3-Layer Solutions: In addition to the proposed protocols that focus on pair-

wise cross-layer interaction, more general cross-layer approaches among three

protocol layers exist.

1. TRANSPORT +MAC + PHY: In (Madan et al., 2005), the optimization

of transmission power, transmission rate, and link schedule for TDMA-

based WSNs is proposed. The optimization is performed to maximize

the network lifetime, instead of minimizing the total average power con-

sumption.

2. NETWORK + MAC + PHY: In (Cui et al., 2005), joint routing, MAC,

and link layer optimization is proposed. The authors consider a variable-

length TDMA scheme and MQAM modulation. The optimization prob-

lem considers energy consumption that includes both transmission en-

ergy and circuit processing energy. Based on this analysis, it is shown

that single-hop communication may be optimal in some cases where the

circuit energy dominates the energy consumption instead of transmission

energy.

3. App + Network + MAC: In (Choe et al., 2009), an integrated and adap-

63

tive cross-layer data reporting scheme is proposed that supports infor-

mation quality of service in terms of good throughput performance and

stable data reporting at the end system. This is done by efficiently

controlling data reporting functions in communication layers considering

parameters from other layers. The main work of this paper focuses on the

QoS-aware data reporting tree construction scheme, called QRT, and the

QoS-aware node scheduling scheme, called QNS. QRT constructs a data

reporting tree based on the conditions of the end-to-end delay and the

traffic load to find data reporting paths from each cluster head, which

has already collected data from its cluster members, to a sink. QNS

schedules a certain number of nodes that are selected based on the QoS

requirements in a cluster to report data to its cluster head in a collision-

free manner.

Tian and Ekici (Tian and Ekici, 2007) propose an application-independent

task mapping and scheduling solution in multi-hop homogeneous WSNs,

Multi-hop Task Mapping and Scheduling (MTMS), that provides real-

time guarantees. Using their proposed application model, the multi-hop

channel model, and the communication scheduling algorithm, computa-

tion tasks and associated communication events are scheduled simulta-

neously. The Dynamic Voltage Scaling (DVS) algorithm is presented to

further optimize energy consumption. A similar optimization known as

EcoMapS (Energy-constrained Task Mapping and Scheduling) that in-

corporates channel modeling, concurrent task mapping, communication

and computation scheduling, and sensor failure handling algorithms is

proposed in (Tian et al., 2007).

64

The Unified Role Assignment Framework (URAF) uses the concept of roles

which are tasks that are assigned to nodes in the network by way of rules. Rules

are metrics that identify performance requirements for any node and/or its neighbor

to be assigned a task (or a set of subtasks). The assignment of tasks to nodes and

their subsequent scheduling and execution is done at a layer above the network layer.

The metrics that are elicitepd from nodes for role-assignment may come from any

layer below the URAF abstraction layer. So, the framework assumes the existence

of a vertical cross-layer information data base that is maintained and updated by re-

spective layers. In that sense, the URAF layer is not intrusive and does not involve

special modification or customization of lower layers except addition of interfaces

to share the available information at each layer. However, specific customizations

that are expected by applications at other layers may be possible only by providing

customized protocol stacks that interface with the unified role-assignment frame-

work. In other words, we leave the application specific optimization of the behavior

of roles and their execution details to the programmer. These application specific

cross-layer protocol optimizations are abstracted as specialized roles (with their

respective rules for control) in the unified role assignment framework.

2.3 Generic Sensor Network Protocol Abstractions

In this section, we will discuss existing research on generic sensor network proto-

col abstractions. As mentioned earlier, a generic protocol abstraction is essentially

a framework that hides application specific optimizations of both individual layers

as well as across layers and exposes them to the application layer by way of control

interfaces provided as the middleware. In general, sensor network protocols are cus-

tomized to exploit both the application and the domain specific correlations to gain

65

the maximum benefit. These benefits are usually in terms of energy savings, track-

ing efficiency in terms of delay and information quality, etc. Such customizations

usually result in these protocols embodying very different assumptions about net-

work stack composition and, as such, having limited inter-operability. It has been

suggested (Culler et al., 2005) that, in principle, wireless sensor networks would ben-

efit from a unifying abstraction and that if the architecture has a “narrow waist”

(as does the Internet architecture), then it could effectively decouple many aspects

of the application software from the underlying customizations at specific protocol

layers and differing sensor network platforms (operating systems and hardware).

Such a decoupling would be of great benefit given the rapid technological advances

in the sensor networks arena, particularly in heterogeneous deployments.

This section is organized as follows. We first briefly discuss the motivations

for a generic network abstractions for wireless sensor networks. These motivations

broadly fall under the application development and deployment flexibilities made

available to a domain expert to program a heterogeneous wireless sensor network

across diverse applications and deployment environments. The second subsection

discusses the generic requirements that can be minimally desired by any abstrac-

tion. In general, due to the application-specific utility of wireless sensor networks,

the flexibilities required from an abstraction may differ widely. Some may require

maximal control for the use and allocation of sensor network resources both at

the node level and at the network level, and across services and tasks executed

within the network. On the other hand, domain experts would still want all of

this but with minimal programming language complexity. Such tradeoffs are still

being explored by the research community and the variety of existing network ab-

stractions proposed and still under active development offer testimony of the fact

66

that there are complex research issues still open in this area of active research.

In the third subsection, we develop a taxonomy of network abstractions to better

understand the classes of solutions at a high level. Using this taxonomy, we briefly

discuss representative network abstractions for every class of solutions. We also

identify to which class of network abstractions our unified role-assignment abstrac-

tion framework (URAF) belongs. In this process, we identify the features of URAF

abstractions and its limitations.

A detailed discussion that surveys the recent programming abstractions as ap-

plicable to the field of wireless sensor networks and their application requirements

is provided by Mottola and Picco (Mottola and Picco, 2010) and Sugihara and

Gupta (Sugihara and Gupta, 2008).

2.3.1 Motivations

Software architectures for networked sensors are typically concurrent and event

driven. However, event triggered programming models are not natural for program-

mers. This is because applications have to be written as explicit state machines,

which are difficult to understand and maintain. Hence sensor networks are noto-

riously difficult to program, given that they encompass the complexities of both

distributed and embedded systems. To address these problems, there is a need for

application developers to access generic network abstraction interfaces in the form

of programming language constructs. Besides programming flexibilities, we identify

the following motivations for generic programming abstractions for wireless sensor

networks:

• Programming incentives: Usually it is expected that the application developer

for a wireless sensor network application is more conversant with the domain

67

knowledge than low level protocol details. Such domain experts need a gen-

eral purpose programming language that provides similar goals to higher level

programming for desktop and server regimes. These are usually: flexibility,

ease of development and debugging, and portability. However, since sensor

networks are resource constrained and highly customized across protocol lay-

ers, it becomes necessary that such programming languages be as natural a

fit for sensor networks as possible while significantly improving software pro-

ductivity, quality, and also the production of efficient, resource constrained

code.

• Modularized and adaptable interfaces across heterogeneous systems and di-

verse applications: With the diversity of wireless sensor network applications

and the facilities provided by network abstractions, it becomes necessary that

network abstractions be modularized and act as building blocks with each

other. In other words, no single abstraction may be completely generic such

that it supports all the requirements expected by any application across di-

verse domains and heterogeneous platforms. In such scenarios, a coherent

framework can be developed by programming requisite abstractions to col-

laborate with each other such that it supports the programming flexibilities

desired by any application (Mottola and Picco, 2010).

• Cross layer optimization flexibility: As discussed in the earlier section on cross-

layer optimization, sensor network applications can greatly benefit from the

ability to manipulate cross-layer protocol functionalities in order to minimize

resource usage while meeting another performance metric (Akyildiz et al.,

2002). Sensor network abstractions provide low level hooks (or interfaces)

to programmers along with specific usage templates for varying performances

68

across for all scenarios.

• Standardization: A generic network abstraction can provide standardized ca-

pabilities across all stages of sensor systems development and deployment. In

general:

1. Application conception and requirements elicitation: A generic network

abstraction by way of its interfaces, its programming flexibility and also

by its adaptation capabilities across other abstractions eases the way sys-

tem requirements can be generated and mapped for a certain application.

Standardization of network abstractions in terms of these requirements

reduces the learning curve of developers and also reduces the time to

deployment.

2. Application development: With the availability of a generic set of stan-

dardized performance templates for every abstraction that hides opti-

mization across layers, development and debugging become easier. Also

a varying set of code-metrics including but not limited to the number of

lines of code (LOCs) are available to identify the complexity of the de-

velopment process and planning can be done accordingly for subsequent

stages.

3. Deployment and support: By supporting generic and standardized de-

bugging and testing strategies across network abstractions, post deploy-

ment support becomes less cumbersome. In other words, defects can be

clearly identified either in requirements or in the implementation. In

either case, mapping and resolving both kinds of defects is easier when

standardized sets of abstractions are used. Comparison and documen-

69

tation of application performance across domains and differing scenarios

becomes concise and effective. This paves the way for developers to

gather experience from prior deployments and reduce errors.

2.3.2 Generic Requirements

The requirements from a network abstraction need to be considered from differ-

ent perspectives. These are application demands, architectural adaptability, level

of programming abstraction, level of resource control in terms of cross layer solu-

tions, and other generic distributed systems requirements such as fault tolerance

and reliability. We discuss these briefly:

• Application demands: Sensing applications may demand the following ser-

vices from the sensor network: sense or monitor a particular region, track an

event across a region, or sense and react under certain conditions. The services

can be executed periodically or they may be event triggered. Nodes may be

heterogeneous and adorned with differing capabilities for sensing, communi-

cation, computation, storage, and energy (battery powered or uninterrupted).

The network deployment may be static and regular or mobile with random

placement. The communication pattern may be many-to-many or many-to-

one. The former is the case for sense-and-react applications whereas the latter

is for sense-only applications such as data collection. The quality of sensing

desired may be based upon both the information quality and confidence mea-

sured in terms of both the number of samples and the number of sensors in

agreement with these samples. In addition to these, network abstractions

may need to consider the energy consumption for all activities needed to exe-

cute the service and optimize the use of resources such that application QoS

70

is satisfied without significant depreciation in network lifetime. All of these

need to be made available as open interfaces for flexible control by application

developers without significant development and debugging overhead.

• Architectural adaptability: A network abstraction that interfaces with proto-

cols across layers and brings up control interfaces for tweaking by application

developers needs to adapt to both its evolution as well to its collaborative

usage with other protocol abstractions. The evolution of an abstraction is

more related to its software architecture in terms of its interaction with other

protocols across layers. A vertical abstraction that interfaces with every layer

through simple and generic interfaces is considered to be the least intrusive

approach. It gives both the protocol stack and the cross-layer abstraction to

evolve independently of each other as long as the provider-subscriber interface

between these two respective software subsystems are maintained. A horizon-

tal abstraction between an application and the layer below either does not

give much control or it achieves higher control flexibility only by intrusively

interacting with all layers. In any case, as discussed earlier, cross layer opti-

mizations, are usually not portable and a network abstraction ends up getting

tied to a specific protocol stack and is not generic. Hence network abstrac-

tions need to tradeoff between the amount of control flexibility they want to

open up for programming and its need to be portable and collaborative with

other abstractions based on different protocol stacks.

• Level of programming abstraction: At one extreme, low level programming

platforms and languages make programming cumbersome and error-prone. At

the other extreme, declarative approaches greatly facilitate programming but

restrict what can be done. In both cases, additional limitations include lack of

71

support for concurrency, difficulties in changing applications, and insufficient

abstractions from low-level details. To address some or all of these limitations

a virtual machine (VM), which is a platform-independent programming ab-

straction, is developed for heterogeneous sensor platforms and applications.

Low level programming leaves the responsibility of message communication to

the programmer whereas in the case of declarative approaches (as well as in

VM abstractions), the programmer is either shielded from message handling

or messages are higher abstractions for the final data that is collected glob-

ally or regionally across neighbors. Thus, data sharing in low-level languages

needs to be managed at the node level whereas for other higher level abstrac-

tions it is addressed at the neighborhood, region, or network level. Similar

trends apply for both the computation scope and the communication aware-

ness. A programmer using a low-level abstraction can assign computation at

the node level and is aware of link level communications. On the other hand

at higher abstractions the computation is assigned to a group or region and

the communication awareness is implicit such that the programmer is com-

pletely oblivious of links, neighbors, and even routing. At such a declarative

level of abstraction, the sensor network is usually viewed as a database and

the programming is more similar to SQL.

• Cross layer hooks for fine-grained resource control: Resource allocation and

scheduling at node, neighbor, group or network level requires knowledge of

information maintained at various layers in the protocol stack. With WSNs

deploying nodes that are battery powered, preserving network lifetime gets

introduced as one of the important criteria to be optimized along with ap-

plication objectives. The lifetime of an ad hoc network is measured usually

72

in terms of the time when there is a significant hole or partition in the net-

work such that a majority of the nodes are unreachable. Network abstractions

provide specific open interfaces for metrics they are optimizing for a certain

application. A low-level abstraction is basically an operating-systems level

abstraction and the optimization is more related to the way basic services

such as process or task scheduling, timers, memory, and device management

are implemented. A declarative abstraction as mentioned earlier provides re-

source control at a very high level in terms of the number of samples for a query

resolution, number of such queries initiated within an interval, and the period-

icity or longevity of the queries. Thus, declarative approaches are not suitable

for fine-grained resource control although specific underlying cross-layer op-

timizations may have been abstracted away from the application developer.

Usually these hidden optimizations relate to the way the query is dissemi-

nated to nodes in the network, the way replies are collected and aggregated

from neighbors and transmitted back to the sink.

• Generic distributed systems requirements: These relate to the general prob-

lems in distributed systems where continuous coordination for the use of

shared resources is required to be achieved without any conflicts or dead-

locks. These challenges are related to fault-tolerance. Specific examples of

related problems include consensus problems, Byzantine fault tolerance, and

self-stabilization. All these problems need to be efficiently resolved in terms of

space, time, and communication complexity for sensor networks, and handled

effectively by application developers controlling the use of a set of program-

ming abstractions.

73

2.3.3 A high level taxonomy: Abstractions, Programming Languages, Virtual Ma-

chines, Middleware

For ease of understanding, we have classified existing sensor network protocol

abstractions in a layered manner resembling standardized protocol stacks. As seen

in figure 2.2, the taxonomy includes both generic as well as specific (or non-portable)

sensor network abstractions. The specific abstractions are basically cross-layer pro-

tocol optimizations that are relevant only for a specific application and context that

include a specific deployment environment, hardware, and software capabilities. As

these are non-portable and application specific, the solutions fall under the category

of cross-layer optimizations that we discussed in section 2.2.

The current trend is toward a thin, flexible, simple, and high level yet control-

rich generic programming abstraction. The taxonomy shown in figure 2.2 represents

a range of abstractions from the lowest OS/instruction level that are programmed

by threads/functions or virtual machines (VMs) to the highest network and/or mid-

dleware programmed at a macro level. Depending upon the level of abstraction,

programmers will have the ability to address the fundamental operations such as

communication, computation, and data access (and sharing) within a specific pro-

gramming paradigm supported by the abstraction. The programming constructs

supported by several programming paradigms allow a programmer to represent the

individual elements of a program such as variables, functions, or steps that compose

a computation i.e. assignments, and iterations. A survey of the state of the art in

network abstractions (Mottola and Picco, 2010) reveals three major programming

paradigms:

1. Imperative: Here the programming constructs require the programmer to deal

with state and event driven programming at node level. At another end, the

74

Context oriented optimizations

Group Level Organizational Level

Logical group level

Network Level

Generic Abstractions

Sensor Network Programming Abstractions

Platform level VM Instruction level

Node level Link Level

Neighborhood level

Declarative Programming

Middleware/Macro Programming level

Domain specific non−portable

High level
Application specific

Platform/Technology specific
Low level

OS level Programming Thread/Functional Programming

Figure 2.2: Sensor Network Abstractions Taxonomy

75

imperative approach has been considered to include sequential programming

where the programmer instead views the system as a network and is not

required to get into lower level event handling and state transitions.

2. Declarative: Here the programmer describes the application processing with-

out actually specifying how it is accomplished. Declarative approaches include

functional, rule-based, SQL-like, and other special purpose language mecha-

nisms.

3. Hybrid: this is a combination of the above programming paradigms.

In the next subsection we will discuss representative examples of network abstrac-

tions for each category identified in the taxonomy shown in figure 2.2. In particular,

we will discuss the flexibilities offered by the framework both in terms of ease of pro-

gramming and the richness of the abstractions in providing appropriately grained

high to low level resource control.

2.3.4 Survey of representative programming abstractions

Node level abstractions

The lowest level abstraction is essentially a node level programming model that

is abstracted by an operating system such as TinyOS (Hill et al., 2000) or a node-

level programming language above it. TinyOS is the most widely used operating

system in wireless sensor network applications. It is written in nesC (Gay et al.,

2003), which is a variant of C. It is a component based OS allowing modular pro-

gramming. Using two types of components, modules and configurations, along

with commands and event based interfaces, a programmer is given the flexibility to

wire different components together. This is done by connecting interfaces used by

76

components to interfaces provided by others. In the former case, the component

(known as the user) using the command interface of other components (known as

providers) is required to implement the event handlers for the respective providers.

In this way, nesC supports encapsulation between modules as programmers are

freed from being aware of whether modules are implemented in hardware or soft-

ware. However, as the level of abstraction is very low and since TinyOS excludes

blocking operations, even simpler programs need to deal with the rigorously event-

based programming approach. The communication primitives in nesC are provided

by the set of Active Messages (AM) interfaces. In Active Messages, messages are

tagged with an identifier that specifies which component must process them upon

reception. Since nesC is non-blocking, programmers are forced to deal directly with

message parsing, serialization, packet buffering, and even scheduling and handling

unreliable 1-hop/broadcast transmissions and receptions. The mechanisms imple-

menting AM interfaces are usually tied to a specific MAC layer (Ye et al., 2002b)

and radio chip (Polastre et al., 2004). Although a lot of sensor APIs are provided

for different types of sensor hardware, interfaces for actuators are still evolving. In

summary, although a raw level of control is provided to the programmer, this level

of abstractions entails higher application development and debugging complexity.

The complexity introduced at the node level programming by TinyOS/nesC are

resolved by other abstractions in a number of ways. First, in order to overcome un-

reliable communication for both 1-hop unicast and broadcast, a suite of multi-hop

protocols for data collection and dissemination (Intanagonwiwat et al., 2000) (Ye

et al., 2002a) have been developed atop the Active Messages interface. In order

to reduce or eliminate the complexity of state/event based asynchronous program-

ming, additional software engineering by adding more layers for extending the event

77

model has been proposed. T2 (Levis et al., 2005b) is a new version of TinyOS that

provides a new abstraction boundary that supports a telescoping abstraction for

application programming. This is a hybrid approach consisting of horizontal de-

composition for the lower level to support various types of hardware devices and

vertical decomposition to support higher level platform independent functionality

for various hardware platforms. Another prior approach is SNACK (Greenstein

et al., 2004) that provides reusable service libraries for programmers to combine for

building applications. Services in SNACK are similar to configurations in nesC but

are more customizable through the availability of parameterizable configurations.

Thread based abstractions eliminate the asynchronous event-driven and non-

blocking related complexity of nesC by supporting statically allocated threaded

blocking execution contexts. The event driven model is more suitable for allowing

the microcontroller to sleep as much as possible, thereby achieving energy efficiency.

Although thread abstraction often simplifies the programs significantly, its major

limitation is its need for static allocation of per-thread stack which is often too

expensive in terms of memory space. A number of thread based programming

abstractions have been reported in the research literature. Thread-based abstrac-

tions include Fiber (Welsh and Mainland, 2004), Mantis OS (Bhatti et al., 2005),

TinyThread (Mccartney and Sridhar, 2006), Protothreads (Dunkels et al., 2006),

and Y-Threads (Nitta et al., 2006). These differ in terms of the number of features

provided such as lightweight concurrency support, preemptive time-sliced multi-

threading, cooperative multithreading, and efficient per-thread stack (or stackless)

allocations.

78

Virtual machine based abstractions

Virtual machines based programming abstractions for sensor networks not only

provide platform independence and isolation but also node/network reprogram-

ming by way of dynamically injecting new codes into each on-site node. There are

interpreter-based virtual machines that are customized for a specific application

in order to reduce the number of instructions (or the size of the assembly code)

transmitted to each node. This reduces the communication overhead and hence

minimizes energy usage. Maté (Levis and Culler, 2002) and ASVM (Levis et al.,

2005a) are stack-oriented application-specific virtual machines implemented on top

of TinyOS. On the other hand Melete (Yu et al., 2006) extends Maté by supporting

multiple concurrent applications. Additionally, VMStar (Koshy and Pandey, 2005)

is a virtual machine that supports the dynamic update of the system software such

as the VM itself along with updates to the application code.

At a higher level of abstraction i.e. the middleware, a virtual machine can fur-

ther reduce the code size in addition to realizing the benefits of specific application

customizations. Examples of middleware level VMs include Impala (Liu and Mar-

tonsi, 2003) and SensorWare (Boulis et al., 2003). Impala is a middleware designed

for the ZebraNet project (Juang et al., 2002) and its modular design supports easy

and efficient on-the-fly reprogramming via a wireless channel. SensorWare uses Tcl-

based control scripts as the reprogramming language and uses a high-end hardware

platform as compared to Maté/ASVM.

A virtual machine provides platform-independent execution models for applica-

tion development. TML (Token Machine Language) (Newton et al., 2005) is one

such intermediate language that provides a distributed token machine (DTM) as

the execution model where each node sends and receives tokens to/from other nodes

79

and the associated token handler is executed upon receiving a token. TML along

with its DTM execution model semantically supports a much higher level program-

ming constructs compared to the low-level constructs provided by nesC. TML thus

seems to make programming much simpler for domain experts.

Group level abstractions

Group level abstractions relinquish node-level resource control to gain lower

complexity in application development. Resource control at the node level requires

the programmer to trade off specific node operations such as computation, com-

munication, and storage for energy savings. As discussed earlier, the development

complexity at the node level requires high technical expertise not only at the do-

main level but also at the platform level. Group level abstractions reduce all these

operations to shared computation and data sharing. The programmer is now made

completely agnostic of the communication complexities. The formation of the group

and its maintenance is managed by a lower level group management protocol.

Group level abstractions can thus be classified based upon how groups are

formed. In the survey by Mottola and Picco (Mottola and Picco, 2010) and Sugi-

hara and Gupta (Sugihara and Gupta, 2008), group based abstractions in general

have been classified into neighborhood based abstractions and logical based abstrac-

tions. The neighborhood abstraction is based on physical wireless proximity usually

within 1-hop or within direct radio range. The logical abstraction is based upon

some logical relationship among members in a group such as required node features

in terms of types of sensors and/or actuators. However such a logical relationship

among requisite sensors is also complemented by those sensor readings that are in

certain conformance (agreement or otherwise) to an event that is being monitored

80

or tracked.

Physical proximity-based group abstraction is essentially a representation of the

localized nature of distributed protocols that are typical of applications executed

in an ad hoc wireless sensor network. It fits well with the broadcasting nature of

wireless communication and enables efficient communication within the group. In

essence, physical neighborhood represents an abstraction that is one level below

the organized network architecture. With this abstraction, the programmer gets

an extra flexibility to organize the network according to the requirements of the

application. However, with this level of abstraction, group management in the

presence of node and event mobility becomes challenging and entails higher logical

complexity for the programmer. Maintenance of collective state and its eventual

migration across groups in case of target tracking also adds to the complexity.

Logical group based abstractions on the other hand are dynamic and much

broader than neighborhood based abstractions that are based on physical closeness.

Instead, a logical group uses higher level logical properties that include the type of

nodes, sensor inputs about the dynamic and ambient environment, and the volatility

of group membership. Logical groups are addressed by way of indirections which

refer to the event they are currently monitoring or tracking. In other words, events

determine the creation, movement, and the persistence of a group. Node attributes

that are relevant to the event at hand are logically exported across nodes (multi-

hop) and are logically made available as group level attributes. Group formation is

essentially a sort of predicate that is run across nodes in the vicinity of the event

and these predicates specify required group properties or attributes. A dynamic and

distributed group management protocol revolving around these logical attributes is

supported by the programming abstraction and the programmer needs to simply

81

identify required logical group properties for an application desired event.

The unifying link abstraction for WSNs (Polastre et al., 2005) is one of the

neighborhood based lower layer thin waist architectures that abstracts a broad

range of link-layer technologies (B-MAC on mica2 and IEEE 802.15.4 on Telos)

and supports a wide variety of network protocols and while avoiding significant loss

of efficiency. This is done by exposing sets of packets, exerting simple reliability

and urgency controls, adapting to congestion and loss after concerted effort, and

by cooperating in neighbor management and schedule formation. Network protocol

designs can thus be done at a fairly high level by application developers without

concentrating on link specifics. Moreover, these protocol optimizations are agnostic

on the underlying link layer technology. The authors provide experimental evidence

of power-aware network protocols expressed in terms of their link layer abstractions

being mapped efficiently to very different link-level power management mechanisms.

Abstract Regions (Welsh and Mainland, 2004) and Hood (Whitehouse et al.,

2004) provide a higher level neighborhood based abstraction compared to the link

based abstraction. The programming interface of Abstract Regions provides neigh-

borhood discovery, variable sharing via a Linda-like (Gelernter, 1985) tuple space,

and also MPI-like reduction operations. In Abstract Regions, groups are defined

either topologically (e.g. n hops), geographically (e.g. k-nearest neighbor), or by

their combinations. Hood defines a similar set of operations as Abstract Regions,

but uses a one-hop neighbor as the sole option for group definition. Abstract Re-

gions also provides a way to tune the tradeoff between resource consumption and

accuracy in its runtime component.

Kairos (Gummadi et al., 2005) supports a centralized and imperative program-

ming language as extensions to the Python language where constructs are provided

82

to iterate through the neighbors of a given node, and communication occurs by

reading or writing shared variables at specific nodes. The application processing

is expressed as pairwise interactions between neighboring nodes which in a way

resembles the high-level localized behavior of generic sensor network algorithms.

Another approach for sharing data is based on the popular tuple space abstraction

known as Linda (Gelernter, 1985). A tuple space is a shared memory space where

different processes read/write data in the form of tuples. TeenyLime (Costa et al.,

2007) using the tuple-based abstraction, supports an asynchronous programming

model similar to nesC atop TinyOS. This means that Teeny-Lime operations are

non-blocking and return their results through a callback. Tuples are shared among

nodes within radio range. In addition to Linda’s operations to insert, read, and

withdraw tuples, reactions allow for asynchronous notifications when data of inter-

est appears in the shared tuple space. Similarly, capability-based tuples are also

provided that enable on-demand sensing that reduces energy consumption by avoid-

ing the need to keep sensed information up to date in the shared tuple space in the

absence of data consumers. TeenyLime constructs have been used and extended

to develop not only stand-alone applications but also system level services such as

routing protocols. This has been demonstrated by the real-world deployment used

to monitor heritage buildings by Ceriotti et al. (Ceriotti et al., 2009).

Snlog (Chu et al., 2007) is a rule-oriented declarative approach inspired by log-

ical programming constructs such as predicates, tuples, facts, and rules. Similar

to the format of records specified by tables in relational databases, predicates in

SnLog specify schemas for data as ordered sequences of fields. Tuples represent the

actual data which are similar to instantiated records in database tables. Facts are

particular tuples that are instantiated at system start-up, whereas rules express the

83

actual processing. Distributed executions are described using a location specifier

which maps to a node hosting a tuple and/or a rule. To support low-level resource

control, nesC code can be linked to the rule engine. Similar to TeenyLime, Snlog

has been used at different levels of the protocol stack, to implement services such

as target tracking and routing.

EnviroTrack (Abdelzaher et al., 2004) is a logical group-based programming ab-

straction specifically for target-tracking applications. Its underlying object-based

programming framework known as EnviroSuite (Luo et al., 2006) uses objects to

represent physical entities in the environment. In other words, addresses are as-

signed to physical events and a one-to-one mapping between objects and physical

entities are maintained as they move in the environment. A group is a collection of

sensors that sense the event and are thus uniquely responsible for its corresponding

object representation. A leader is elected among members of the group sensing the

moving target and this leader is responsible for collecting data from group members,

performing necessary computations, and also managing group management in the

presence of event mobility. Similar to Abstract Regions and Hood, EnviroSuite also

supports relevant data sharing and aggregation facilities. Additionally, it provides

a sophisticated distributed group management protocol based on routing trees, to

maintain objects bound to a fixed set of nodes and a mechanism to support objects

mapped to moving entities.

Logical Neighborhoods (Mottola and Picco, 2006) is a programming abstraction

that allows a programmer to define a node’s neighborhood based on the logical

properties of the nodes in the network instead of their physical position. In other

words, a node is logically represented in terms of several node attributes it exports

to its neighbors. These attributes include both static (e.g. node type) and dynamic

84

properties (e.g. sensor readings). A logical neighborhood is defined using predi-

cates over node templates. Nodes periodically disseminate their logical profile, that

is, their list of current attribute-value pairs. To avoid flooding the entire system,

the underlying protocol exploits the redundancy among similar profiles to limit the

spreading of information. The definition of Logical Neighborhoods is supported by

a declarative programming language called Spidey. Spidey provides programmers

with predicate based constructs to identify logical neighborhoods that are based on

a certain set of attributes such as the number of hops and the desired communica-

tion costs. Spidey provides communication APIs within the logical neighborhood

and also an efficient routing mechanism. Programmers interact with the nodes

in a logical neighborhood that mimics the traditional broadcast-based communi-

cation. Instead of the nodes within radio range, however, the message recipients

are the nodes matching a given neighborhood definition. Therefore, programmers

still reason in terms of neighboring relations, but retain control over how these are

established. Logical Neighborhoods is suited to the highly heterogeneous and de-

centralized scenarios typical of sense-and-react applications, where the processing

often revolves around programmer-defined subsets of nodes.

ATaG (Bakshi et al., 2005) is a programming model that has its core program-

ming notions based on abstract task and abstract data. A task is a logical entity

encapsulating the processing of one or more data items, which represent the in-

formation. Different copies of the same task may run on different nodes. The

flow of information between tasks is specified declaratively with abstract channels

connecting a data item to the tasks that produce or consume it. The code in a

task is written in an imperative language, and relies on a shared data pool for

local communication, allowing tasks to output data or to be notified when some

85

data of interest becomes available. It thus features a hybrid programming interface

wherein the communication among tasks executed on separate nodes is described

in a declarative manner whereas the local node computation is expressed using an

imperative language. ATaG enables programmers to express multi-stage incremen-

tal data-centric processing. In general, ATaG is suited to applications that employ

both sensors and actuators. In such scenarios, complex operations are needed on

the sensed data from various sources for the actuators to make a decision. The

programming abstraction supports a compiler that processes input such as the de-

scription of tasks and channels, flow of data associated to them, and the location

of the nodes. Using this information, the compiler outputs an optimal allocation of

tasks to nodes. ATaG however is limited and requires the programmer to support

a appropriate routing scheme for the specific application and target environment.

The Generic Role Assignment (GRA) (Frank and Romer, 2005) (Frank and

Romer, 2006) abstraction supports a declarative programming language that allows

roles to be identified among neighbors in the network based on a certain set of pro-

grammer specified logical attributes. It is a language specific extension of the Role

Based Hierarchical Self Organization protocol (RBHSO) (Kochhal et al., 2003) and

in essence supports dynamic self-configuration of WSN according to programmer-

specified requirements. Similar to RBHSO, GRA considers a role specification as

a list of role-rule pairs. For each role, the corresponding rule describes the condi-

tions for the role to be assigned to the local node. Rules are expressed as boolean

predicates referring to the properties of the node considered. To account for chang-

ing node properties and network dynamics, the role specifications are periodically

re-evaluated and are also initiated dynamically whenever the role or properties of

neighbors change. Similarly, distributed protocols are provided to trigger role re-

86

evaluation based on topology changes. GRA however leaves the concerns of lower-

level data collection and dissemination to other complementary solutions. Hence

GRA does not support complete application development and is expected to be

used in conjunction with other approaches.

Finally, there are other related logical group based programming abstractions

such as Regiments (Newton andWelsh, 2004) (Newton et al., 2007), RuleCaster (Bischoff

and Kortuem, 2007), Spatial Programming (Borcea et al., 2004), snBench (Ocean

et al., 2004), and Virtual Nodes (Ciciriello et al., 2006). The survey by Mottola

and Picco (Mottola and Picco, 2010) discusses these abstractions in relation to both

the programming language taxonomy and the programming abstraction taxonomy

with particular emphasis to their applicability across several application domains

and sensor network platforms.

Network/Macro level abstractions

Network level abstractions considers programming at a macro level that is higher

than group, node, or link-level abstractions. Since applications on sensor networks

are data-oriented, the database approach is an intuitive abstraction at the macro

level. TinyDB (Madden et al., 2005), Cougar (Bonnet et al., 2000) (Yao and Gehrke,

2002), SINA (Shen et al., 2001), MiLAN (Heinzelman et al., 2004), and DSWare (Li

et al., 2004) are the representative macro-level programming abstractions from the

research literature that we will briefly discuss in this section.

TinyDB and Cougar are two of the earliest examples of high-level database

oriented abstractions for sensor network programming. They allow users to issue

queries in a declarative SQL-like language. A routing tree spanning all nodes in the

network is maintained and is used to route queries injected from the base station.

87

The routes are then decorated with meta-data to provide information on the type

and nature of data sensed by nodes in a specific portion of the tree. To achieve

energy efficiency, Cougar pushes selection operations to the sensor nodes so that

they can reduce the amount of data to be collected. TinyDB, on the other hand,

interleaves data sampling and transmission scheduling at different levels of the tree

to minimize power consumption without affecting the quality of the reported data.

SINA extends the SQL programming interface for the database abstraction by

allowing users to explicitly embed tasks for nodes in the network. This is achieved

by way of embedding scripts written in an imperative language called SQTL (Sensor

Querying and Tasking Language) in the SQL query. This hybrid approach therefore

supports greater programming flexibility by allowing more complex collaborative

tasks.

MiLAN provides programmers of health monitoring applications the flexibility

to trade system lifetime for data quality. In MiLAN, an application submits a query

with a QoS requirement, where the QoS of a variable is a function of the specific

sensors used to compute the variable’s value. In other words, QoS is defined by

the level of predefined reliability with which each sensor can measure some basic

attributes. In order to accommodate changing application requirements over a

period of deployment, MiLAN models these changes in terms of a state machine

with different QoS requirements associated with different states. In response to an

application query with the QoS based on the desired quality of data, MiLAN creates

an execution plan that involves creating a routing tree rooted at the source and a

feasible set of sensors. This subset of nodes is computed such that they collectively

provide a QoS greater than or equal to the minimum acceptable by the application

while simultaneously maximizing energy efficiency.

88

DSWare is a message passing QoS-aware middleware that is geared toward real-

time applications for detection of sporadic events. Programmers are provided with

a form of publish/subscribe (Eugster et al., 2003) SQL constructs that specify sub-

scriptions expressing the characteristics of the phenomena of interest and register

them with DSWare. The user is then notified upon the occurrence of an event by

way of another higher level notion of events which allows programmers to infer the

occurrence of a phenomenon from raw sensor observations. For example, an event

can be defined as the composition of two physical sub-events occurring within a

specific time interval. Similar to QoS support in MiLAN, DSWare has a notion of

confidence about event detection that fine tunes the relationships among sub-events,

that is, their relative importance or fitness to a pattern. DSWare also supports real-

time semantics where users can specify the time constraint in terms of the latency

until getting a notification after detecting an event. Subscriptions are propagated

in the network and a routing tree is built as a consequence that connects the base

station to the relevant sensor nodes. To minimize energy consumption, DSWare

eliminates redundant transmissions for subscriptions to the same data by merging

routing paths leading to different base stations. It also takes advantage of differ-

ing subscription rates and supports real-time delivery of event notifications by way

of the earliest-deadline-first scheduling mechanism. An alternative, energy aware

scheduling technique is also provided for events with relaxed delivery constraints.

Comparison of URAF with other abstractions

The Unified Role Assignment Framework (URAF) can support a GRA like

declarative programming language for its role selection mechanism which is ab-

stracted by way of rules. However, URAF gives the programmer flexibility to log-

89

ically address a region of roles as a complex role. This aspect is similar to Logical

Neighborhoods where the programmer is agnostic of the node-level communications.

In other words, the set of roles within a region that are abstracted as complex roles

can span any number of hops and the hop-by-hop communication among nodes is

hidden from the programmer. The task make up for any role is a lower level control

flexibility that the programmer can exercise. This role-based task composition is

similar to the ATaG compiler that requires the programmer to specify both the data

and the tasks that operate upon it. In essence, the data-oriented nature of sensing

applications imposes upon the programmer a greater complexity if there was a need

to program the behavior of a role in terms of task and data. The level of resource

control is limited only to the level of fine-grained resource usage estimation of any

role both at the node and network level. Data sharing among nodes is accomplished

through message passing. Role execution by way of tasks is non-blocking and is

taken care of by a generic role-state machine that is hidden from the programmer.

Services are scheduled in terms of roles where there are specific slots allocated for

service requests, service execution by way of roles, and role feedback (or repair).

Currently, a periodic schedule limits the use of the URAF framework to sense-only

applications that require periodic monitoring. Moreover, a definitive domain de-

pendent model is needed for both the role-execution time and its resource usage in

order for URAF to be resource aware both in terms of time and energy.

2.4 Related role-based concepts in distributed systems

In this section, we discuss the concept of roles as jobs or tasks assigned to workers

or agents in a distributed multi-agent systems (MAS). In general, roles represent

the task assigned to an entity or agent in a MAS system. Specific MAS-oriented

90

examples include AI based role formulation and assignment for RoboCup (Stone

and Veloso, 1999), P2P organization and structuring for content management and

retrieval (Victor, 2004), and role organization and assignment in WSNs (Vinyals

et al., 2010).

2.4.1 Role Abstraction

A role-based abstraction is a logical abstraction of a transient task assigned to

an entity in a distributed system. Besides task assignment or placement, a role also

captures the behavior of the task according to local network situation. In general,

such a behavior depends upon a specific application domain. For example, in case

of RoboCup where robots coordinate among each other to play soccer, the roles

abstracted include defender, forwarder, attacker, blocker, etc.

The assignment and the transient behavior of the roles is dependent upon the

optimality of an entity in the distributed system to play a certain role such that

overall team performance is improved and the end goal of producing a win becomes

feasible. A role allocation algorithm thus involves an optimal allocation of a set of

roles to robots such that the team of players stand a greater chance to score a goal

against the opponent and win the game.

Similar abstractions are modeled for WSNs depending upon the application. For

example, in the case of static wireless sensor deployment, besides the remote sink

role, other topology-based roles include the cluster head, cluster members, cluster

gateway, and a hierarchical regional cluster (that acts as a router) for cluster heads

in a specific region. For a specific service, additional application specific roles could

be deployed. For example, for monitoring and data aggregation, roles such as

sensing collaborator, sensing coordinator or data aggregator may also be assigned.

91

In case of node or event mobility, specific roles could be defined that include route

manager and track manager, respectively.

2.4.2 Role Identification: Rules, Metrics, Utilities

The identification of roles can be based upon a specific rule that incorporates

either an individual or a weighted set of performance metrics expected of that

role. Since role formulations are in essence a priori knowledge based (both domain

and application specific) requirements for a certain task, their criteria for selection

are also implicit in the role expression. In other words, the conditions needed

for a role assignment, reassignment (or repair), and removal are part of its role

specification (Tambe, 1997). Usually, distributed systems use a set of rules where

each rule specifies a certain criteria in terms of a desired performance metric. These

rules are then ordered as per the relative importance for a specific role. At times all

the rules can be grouped into a single rule representing a weighted set of metrics.

In this case, the weights specify the importance of a certain performance criteria

over another for the selection of a specific entity for a role.

Utility is one of the unifying concepts from economics, game theory, and oper-

ations research that allows an entity (across all application domains) to somehow

internally estimate the value (or cost) of executing an action. It is variously called

fitness, valuation, and cost. With multi-robot research, the calculation of utility can

vary from sophisticated planner-based methods (Botelho and Alami, 1999) to sim-

ple situational sensing-based metrics (Gerkey and Matarić, 2002). In the RoboCup

domain, it is common to compute utility as the weighted sum of several factors,

such as distance to target position, distance from the ball, and whether the team is

on offense or defense. A similar utility estimation based on appropriate application

92

domain specific metrics is also carried out in every task or role-allocation algorithms

for wireless sensor networks (Byers and Nasser, 2000).

2.4.3 Role Assignment (RA) techniques

The assignment of roles benefits from global information, however, due to the

real-time communication constraints, role assignment problems need to be solved in

a distributed manner with local information. In general, solutions to classical cov-

erage, clustering, and in-network data aggregation problems in wireless sensor net-

works are essentially distributed role assignment problems. The coverage problem

in wireless sensor networks can be modeled as the “art gallery problem” (Rourke,

1987), which can be stated as determining the minimum number of guards required

to cover the interior of an art gallery. Accordingly, it has been shown to be an

NP-hard problem for wireless sensor networks as well (Slijepcevic and Potkonjak,

2001). Another well known problem related to sensor networks is the “facility lo-

cation problem” (Drezner and Hamacher, 2004), where a set of facilities needs to

be optimally placed in order to minimize transportation costs. This problem is also

similar to covering an area in a WSN with the minimum set of sensor nodes for

both sensing and forwarding.

The typical communication paradigm for wireless sensor networks considers a

group of nodes sensing the environment, collaborating with each other to discard

spurious events, and then forwarding and aggregating the genuine sensing data

enroute in a multi-hop manner toward the remote sink or base station. This under-

lying sensor network paradigm entails nodes in the network playing different roles

per local requirements. These requirements manifest from both the application and

the network. Applications for wireless sensor networks require sensing, monitoring,

93

and tracking services to be optimized along with network lifetime. These sensing

related services are resolved as role assignment for both optimal sensing coverage

and data aggregation. The network related requirements include the application

specific topological organization of the nodes in the system. This role-based struc-

turing of the underlying network imposes specific requirements from routing and

network maintenance. In general, energy efficiency is the single most important

requirement for role assignment in an ad hoc wireless sensor network.

Role assignment assumes that nodes are aware of the generic role specification

and the criteria for their selection. This is followed by an initial static role assign-

ment for neighbor discovery. In this neighbor discovery process, nodes exchange

their properties. These properties are part of the role specification discussed ear-

lier. The neighbor discovery process is run periodically and also on-demand with

nodes joining and leaving the network. This is then followed by a role assignment

phase, which assigns roles for meeting a specific application requirement. Role

assignments are re-evaluated proactively (that is periodically) or reactively in re-

sponse to changes in node properties or sensing event dynamics. Both distributed

and centralized solutions exist for role assignment.

The role-based hierarchical self-organization (RBHSO) (Kochhal et al., 2003)

protocol employs the use of rules that elicit the list of metrics a node should recur-

sively compete with in order for it to be locally dominating among its peers for a

particular role. These rules are used to efficiently self-organize a network hierar-

chy with specific assignment of roles (or tasks) to sensors based on their physical

wireless connectivity and sensing characteristics (Kochhal et al., 2004). It extends

the hierarchical connected dominating set (CDS) construction algorithm to set up

a hierarchical self-organization architecture that establishes a network-wide infras-

94

tructure consisting of a hierarchy of backbone nodes, and sensing zones that include

sensor coordinators, and sensing collaborators (or sensing zone members).

TinyCubus (Marrón et al., 2005) incorporates a role specification algorithm

defined by a generic specification language. A set of rules defines the necessary

conditions for the assignment of roles. To assign roles to sensor nodes, it is necessary

to take into account role specification and sensor node properties. For TinyCubus,

role specification is a list of rule pairs. For each possible role, the associated rule

specifies the conditions for assigning this role. All nodes in the network have a

copy of the same role specification. An instance of the role assignment algorithm

is executed in each node of the network, triggered by property and role changes on

nodes in the neighborhood, the algorithm evaluates the rules contained in the role

specification. If a rule evaluates to true, the associated role is assigned. Similar

techniques to generalize the role-assignment process have been proposed in (Frank

and Romer, 2005).

DFuse (Kumar et al., 2003) is a framework for distributed data fusion that con-

siders the problem of maximizing network lifetime for data aggregation using role

assignment. It uses a tree-based organization in which parent nodes with higher

energy act as data collectors. The network is optimized periodically through role

migration. The algorithm has three main phases: (1) näıve tree building where

the root node urges to its neighbors to create sub-trees. This process is repeated

recursively until tree build stops at the leaf nodes (data producer nodes), (2) opti-

mization phase where every node hosting a fusion point role is responsible for either

continuing to play that role or transferring the role to one of its neighbors. This

decision is taken solely by the fusion node based upon local information, and (3)

maintenance phase which repeats periodically and executes the optimization phase

95

to allow nodes to change their role in accordance with change in node or network

properties.

The research presented in (Bhardwaj and Chandrakasan, 2002) generalizes bounds

for data aggregation in sensor networks with specified topology and source move-

ment. These bounds were derived by employing the formalism of feasible role as-

signments (FRAs). The idea is based upon the fact that there are only a finite set

of assignments of roles to nodes that allow sensing in a non-redundant manner. A

computationally intensive offline linear programming technique was used to finalize

an FRA among all possible FRAs such that network lifetime is maximized. How-

ever their technique is based on a class of role assignment problems that permit

a transformation to linear programs based on network flows that can be solved in

polynomial time. It is therefore important to realize that not all role assignment

(RA) problems can be similarly transformed. However it is applicable to several

practical RA problems for pure routing, non-hierarchical and constrained hierarchi-

cal aggregation, multiple or moving sources, and sources with specified trajectories.

A similar centralized solution presented in (de Souza and Mateus, 2006) proposes

solutions maximizing system lifetime for data aggregation in WSNs. This work

presents an optimization model and a genetic algorithm for solving coverage and

routing by way of role assignment. This joint optimization problem is modeled as a

mixed-integer linear programming problem, that can be solved through optimization

software available in the market (CPLEX). A heuristic technique based on genetic

algorithms was also proposed as an alternative. In (Dasgupta et al., 2003), topology-

aware role placement for maximizing system lifetime for monitoring applications has

been proposed. The RA algorithm is based on a distributed implementation of the

force-directed/potential-field based approaches in robotics/graph drawing (Battista

96

et al., 1999).

2.5 Summary

In summary, currently the research in wireless sensor networks is oriented toward

a cross-layer programming abstraction that allows programmers to perform resource

control for expressing energy-efficient network services. The concept of roles allows

a programmer to deal with the assignment and scheduling of tasks to nodes or

group of nodes in the network. We have proposed the Role-based Hierarchical Self-

Organization as the underlying network architecture that allows programmers to

construct an application specific architecture based on a newly developed sensing

metric known as sQoS.

Programmers will find it difficult to trade off ease of programmability with

the difficulty of using low-level cross-layer controls for achieving the desired perfor-

mance. This is because of the multi-domain application of wireless sensor networks.

Also, with the availability of a multitude of sensor network platforms (both hard-

ware and software) and a variety of algorithms in the literature for efficient per-

formance of several sensor network services, it is unmanageable even for a domain

expert to achieve programming tractability. Under these conditions, it is expected

that for every application domain and sensor platform, a set of templates can be

standardized for a variety of network sizes and application performance levels. This

should relieve programmers of the technical domain expertise, and will also give

them a starting template of a recommended algorithm and parameters to tweak for

a specific application. Future research efforts will be aimed at the standardization

of service templates for heterogeneous sensor networks.

97

Chapter 3 – Role-based Hierarchical Self Organization

for Wireless Sensor Networks

Recently research efforts in wireless sensor networks have focussed on ideas in-

volving the possibility of coordinating the activities and reports of a large collection

of tiny sensor devices. Efficiently self-organizing a network hierarchy with specific

assignment of roles (or tasks) to sensors based on their topological wireless connec-

tivity and sensing characteristics is an important and challenging problem. In this

chapter, we extend the hierarchical connected dominating set (CDS) construction

algorithm, proposed by Jie Wu, to develop our role-based hierarchical self organiza-

tion (RBHSO) algorithm for wireless sensor networks. The resulting self-organized

sensor network establishes a network-wide infrastructure consisting of a hierarchy

of backbone nodes, and sensing zones that include sensor coordinators, and sensing

collaborators (or sensing zone members). We demonstrate the effectiveness of our

design through simulations.

3.1 Self-organization preliminaries

In this section, we discuss the elementary concepts of network self organiza-

tion as applicable to the regime of wireless sensor networks. These concepts serve

as the necessary foundation for understanding developments in the area of sen-

sor network self organization. For ease of understanding, we have classified these

basics into sensing and network organization concepts. We also formalize the nec-

essary steps (or protocols) that fall under the unified umbrella of sensor network

98

self-organization.

The sensing concepts also known as the sensing phenomenon (Kochhal et al.,

2004) are concerned with the characteristics of the sensors, the events to be detected,

and their topological manifestations both in the spatial and the temporal domains.

For example, it is obvious that sensors in close proximity to each other should

have correlated readings. A temporal dual of this observation implies that sensor

readings among neighboring sensors also have some correlation within some nearby

time intervals. In addition to supporting the properties associated with the sensing

phenomenon, it is also necessary to support hierarchical event processing in order to

have an incremental comprehensive global view of an area of deployment at different

levels of the self-organized network hierarchy.

As mentioned earlier, self-organization involves abstracting the communicating

sensor nodes into an easily controlled network infrastructure. Cluster, connected

dominating set (CDS), tree, grid, or mesh-based organizations are typical. We

provide some insights into these organizations for use in wireless sensor networks.

3.1.1 Elementary networked sensing concepts

The sensing phenomena mentioned earlier relate to the natural property of sen-

sors sensing events collaboratively as well as individually in a group. Figures 3.1,

3.2, 3.3, and 3.4 illustrate these sensing concepts of wireless sensor network orga-

nization for target detection and/or tracking. In the following discussion, we use

the terms sensing groups and sensing zones interchangeably.

Figure 3.1 illustrates that the sensing capability of sensors sensing events collab-

oratively and/or individually in a group depends essentially on the sensitivity of the

sensors with respect to the target event. The sensitivity of a sensor diminishes with

99

Virtual Sensing Group (or Zone)

Figure 3.1: Spatial group sensing concept.

increasing distance of the sensor from the target. This sensitivity can be charac-

terized theoretically by sensor models that are based on two concepts. One is that

the sensing ability (coverage) diminishes with increasing distancea. Second is that

noise bursts diminish the sensing ability but this effect of noise can be minimized

by allowing sensors to sense over longer time periods (more exposure). Several al-

gorithms based on the above sensitivity model have been developed that formulate

the exposure and coverage properties of sensor networks. These algorithms use

traditional computational geometry based structures like the Voronoi diagram and

the Delaunay triangulation (Meguerdichian et al., 2001b) (Meguerdichian et al.,

2001a) to compute sensing coverage and exposure. However, distributed versions

of these algorithms are challenging and computationally intensive, and hence are

impractical for use during the initial network organization phase.

In general, self-organization protocols usually employ the concept of redundant

sensing in order to account for fault tolerant sensing in the presence of environmen-

tal vagaries. By redundant sensing, we mean that an observation of the presence

of a nearby target event (i.e. a tanka in figure 3.1) should be supported not only

100

by one sensor but also by a group of neighboring sensors (Varshney, 1996) (Dyck,

2002). This requires selection of a group of neighboring sensors that can take sole

responsibility of any event appearing within their region or group. The selection

of sensors to form such a group requires quantifying relative proximity distances

of each and every neighboring sensor. It also requires an intelligent discrimination

between near and far sensors to avoid grouping sensors from distant locations.

Sensing Zone 1

Sensing Zone 2

Sensing Zone 3 Sensing Zone 4

Preliminary Sensing Zone Based Organization

Shared Sensing Zone
 Dependency

Sensing Dependency
 Anchors

Sensor Nodes Randomly Deployed

Figure 3.2: Sensing-group dependency concept.

Figures 3.2 and 3.3 illustrate the sensing zone dependency situation during track-

ing by sensing zones formed around a mobile enemy tank. Specifically, here we are

discussing an initial network organization that statically forms sensing-zones in an-

ticipation of the occurrence of any future event. In the case of a random sensor

deployment scenario it is not possible to precisely control and place sensors so that

aThe sensing range may depend upon the dimensions of the observed target, e.g. a seismic
sensor can detect a tank at a greater distance than it can detect a soldier on foot. For ease of
discussion, we assume the sensing range to be the same for targets of similar dimensions (Slijepcevic
and Potkonjak, 2001). However, in general for an application specific sensor deployment, nodes are
assumed to be pre-configured for desired targets in terms of their sensing signatures or readings. In
the case of on-demand target detection and tracking, the application is free to provide respective
target sensing signatures in its queries.

101

x

y

time
(0,0,0)

movement in (x,y,t) space

Figure 3.3: Tracking a mobile tank around neighboring sensing groups.

they end up in groups having no overlap with neighboring sensor groups. This

means that although an attempt was made to form stand-alone sensing groups

(or zones) that independently take responsibility for detecting and tracking events,

there are some overlapping regions where collaboration among neighboring sensing

groups may be needed. However, the boundary nodes in each region can also serve

as anchors for tracking events moving from one neighboring region to another. This

is essentially a dichotomous scenario because on one hand we need independence

between neighboring sensing zones but on the other hand, we also want to efficiently

track events moving across neighboring sensing zone boundaries. An event mon-

itoring and tracking algorithm that runs on top of such a self organized network

would have to analyze this dependency and utilize it to its best advantage. This

can be done by either identifying neighboring dependent sensing zones and allowing

collaboration among them for events moving around their neighborhood or track-

ing applications can dynamically specify an on-demand incremental reorganization

of a new sensing zone around the moving event as it crosses the old sensing-zone

102

Hierarchical Event Processing

Incremental Global View

Figure 3.4: Hierarchical event processing for incremental global view.

boundaries. The EnviroTrack project (EnviroTrack: an Enviromental Program-

ming Paradigm for Sensor Networks) (Abdelzaher et al., 2004) (Blum et al., 2003)

that were pursued at University of Virginia as a proof-of-concept implementation

that supports such application specified sensing-group network (re)organization for

tracking in a physical environment.

Figure 3.4 illustrates event processing at various levels of a hierarchical sensor

organization. It can be seen that as we go higher in the hierarchy fewer nodes are

involved in event processing. However, as we go up the hierarchy, we also lose detail

about the event(s). This is because wireless communication is an overhead in terms

of draining energy. Also, due to the small form factor of the sensors, memory is

also a crucial resource and hence a lot of information cannot be maintained by an

individual sensor or a small group of sensors. If we assume that the sensors selected

for the upper levels of the hierarchy are powerful in terms of both communication

energy as well as memory, the problem is still not resolved, due to scalability issues.

103

However, any feedback from the sensing application about the granularity of mon-

itoring would help in reducing overheads in information gathering and processing.

In any case, hierarchical processing motivates the concept for distributed gathering,

caching, and processing of sensing events where certain nodes in the hierarchy are

assigned appropriate roles (Kochhal et al., 2004) (Kochhal et al., 2003) according

to their capability in the current network organization.

3.1.2 Elementary network organization concepts

The primary objectives of this section are to categorize several elementary net-

work organization architectures and discuss some relevant approximation algorithms

that can be extended by self organization protocols.

Figure 3.5 shows a simple classification of various network architectures that can

be employed by self-organization protocols. This classification is not complete, as

there could be certain combinations of different network architectures. However, it

provides the principal categories under which several current implementations could

be studied and analyzed. Self-organization protocols could be either proactive or

reactive. In other words, protocols could organize the sensor network statically in

preparation for any future event or they could dynamically configure the network

around any current event of interest. Additionally, self organizing protocols could

pursue either a difficult to maintain hierarchical manifestation of the above net-

work architectures or they could simply satisfy requests with their corresponding

flat manifestations. Figure 3.6 provides a visual blueprint for elementary network

architectures such as the chain, tree, spine, virtual grid, and role-based virtual

regions. We will then discuss the typical algorithmic aspects of these network for-

mations for general wireless ad hoc networks. This facilitates easier comprehension

104

and analysis of those sensor network organization protocols that extend or modify

these algorithms in order to meet various sensing application requirements. However

there are certain concepts that are common across all these network organizations.

In all these organizations, nodes adopt certain performance metrics for selecting

neighbor(s) in their local network formation heuristics. These performance met-

rics could be minimum distance, minimum energy, minimum transmission power,

maximum/minimum node degree, delay, bandwidth, etc. Some of these metrics

may be used collectively in some particular order (depending upon priority) to

break ties among several eligible competitors. In order to have an optimally ideal

neighbor selection scheme for self-organization, nodes may require complete global

state information of the network. However, in an ad hoc network, nodes that ex-

ecute distributed algorithms for localized self-organization do not have the luxury

of gathering, maintaining, and using complete network knowledge. As mentioned

earlier, this is because there are tradeoffs among storage capability, communication

costs, computational capability, and time to completion. This effectively results in

nodes maintaining network state information for only 2 to 3-hop neighbors. Using

this information, nodes execute local decisions to select neighbors to form a global

self-organized network.

The chain based organization is one of the simplest ways of organizing network

communication, where nodes farther from the base station initiate chain formation

with their nearest neighbor. The idea is to gather and fuse all the data from every

node by forming a chain among them. A leader is then selected from the chain to

transmit the fused data to the basestation. However, building a chain to minimize

its total length is similar to the traveling salesman problem, which is known to be

intractable. A greedy chain formation algorithm (S. Lindsey, 2002), when pursued

105

Chain

Self-Organized Network Architectures
(Proactive or Reactive & Flat or Hierarchical Implementations)

Tree

Grid
(Location Aware)

CDS
(Connected Dominating Set)

Clustering Virtual Backbone
(spine)

Role-based
organization

Virtual Region
(mesh)

Figure 3.5: Self-organized network architectures.

recursively for every node, results in a data gathering chain oriented toward the base

station. As we will discuss later, self-organization algorithms for sensor networks

usually include certain sensing metrics too in order to form an optimal organization

that is efficient from both the sensing (Kochhal et al., 2004) (Inanc et al., 2003) and

the networking perspectives (Singh et al., 1998) (Salhieh and Schwiebert, 2002).

The tree type of network formation is similar to the chain and can be considered

as an extension of the chain based mechanism. Tree type network organizations,

utilize the multipoint connectivity nature of the wireless medium, where one source

can be heard simultaneously by several nearby receivers that act as its children. If

both the sender and receiver scheduling are made collision-free, then a tree-based

network organization can support both broadcast or multicast (i.e. dissemination

of information from a central node) and convergecast (i.e. gathering of information

toward a central node) communication paradigms across all application domains

(Annamalai et al., 2003). A considerable amount of research work is available for

106

(b) (c)

(e)

Cluster 1

Cluster 2

Cluster 3
Cluster 4

Cluster 5

1

2

4

3 11

19
18 20

6

5 8

9

7

12

13 10

Sensing Group

Sensing
Coordinator

Backbone
or

Router

Virtual
Backbone

Sensing
Collaborator

(f)

(a)

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Virtual
Backbone

(d)

Figure 3.6: Example network organizations for (a) spine, (b) virtual grid, (c) tree,
(d) chain, (e) clustering, and (f) role-based virtual zones.

107

constructing multicast trees (Ballardie et al., 1993) (Estrin et al., 1998) for dynamic

wireless ad hoc networks (Adelstein et al., 1999) (Gupta and Srimani, 1999). Al-

gorithms for generating multicast trees typically must balance the goodness of the

generated tree, execution time, and the storage requirements. Several cost metrics

such as delay, communication costs, etc. are used to generate cost-optimal multi-

cast trees. However, this gives rise to the well-known Steiner Tree problem, which is

NP-complete (Winter, 1987). Instead heuristics are used to generate ”good” rather

than optimal trees. This is still an active area of research.

Cluster-based organizations (refer to figure 3.5 (e)) partition the entire network

into groups called clusters. Each cluster is formed by selecting some nodes based

upon some quality metric such as connectivity or distance (Chen et al., 2002) (Amis

et al., 2000) (Steenstrup et al., 2000) as cluster members and a group leader, known

as the clusterhead, is also selected using some metric such as the node that has max-

imum energy to manage that cluster. These clusterheads, when connected, form a

virtual backbone or spine as in figure 3.6(b) (Sivakumar et al., 1998) (Chen et al.,

2001) or a connected dominating set (CDS) of nodes. Related to clustering is the

problem of finding a minimum connected dominating set (MCDS) of the nodes,

which is NP-complete. An MCDS satisfies two properties: (1) each node is either

a backbone node or is one hop from a backbone node, and (2) the backbone nodes

are connected. There are several approximation algorithms (Guha and Khuller,

1996) available in the literature that engineer virtual backbone based network con-

figurations satisfying the MCDS properties. Of particular importance is Wu’s (Wu

and Li, 1999) (Wu, 2002) distributed and localized algorithms for constructing a

hierarchical connected dominating set. This algorithm is inherently distributed and

simple in nature. Ideally, it requires only local information and a constant number

108

of iterative rounds of message exchanges among neighboring hosts. The algorithm

for CDS formation involves a dominating set reduction process and some elimina-

tion rules based on quality metrics that are executed by nodes locally to identify

their dominating neighbors. The dominating set reduction process, when executed

recursively by an already existing set of dominating nodes, produces a domination

hierarchy. Dominating nodes at any level of the hierarchy can serve as local network

coordinators for nodes in the next lower level of the hierarchy. Figure 3.6(f) shows

a role-based hierarchical CDS organization of nodes, where the lower level of nodes

form the cluster, whereas upper levels of dominating nodes can be used for rout-

ing or hierarchical information processing. Accordingly, nodes at every level of the

domination hierarchy assume respective roles in the network depending upon the

quality metrics used for role selection at that level (Kochhal et al., 2004) (Kochhal

et al., 2003).

Finally, if nodes have location information (e.g., using GPS), then virtual grid

based organizations (Xu et al., 2001) (Ye et al., 2002a) typically configure the net-

work by partitioning the area of deployment into uniform grids also known as a

mesh. From each grid, a dominating node is chosen using some selection rules.

Dominating nodes from each grid, when connected, form a virtual backbone, which

can then be used for gathering or forwarding information from one geographic re-

gion to another. The grid-based organization allows an implicit and simple naming

system by having grids (regions) in the network be addressed by their relative geo-

graphic locations. Thus, it avoids the complex and non-scalable address generation

mechanisms for individual nodes that are densely deployed in a very large area.

However, the efficiency of such an organization depends critically on location accu-

racy and network partitioning schemes.

109

3.1.3 Steps to sensor network self organization

Self-organization or self-configuration is one of the basic initial steps toward

an ad hoc deployment of wireless sensors. The network deployment as mentioned

earlier may be done deterministically or randomly. In any case, the objective is to

have nodes discover their neighbors, establish their positions, and form an easily

manageable network architecture. All these self organization activities have to

be performed in a localized and distributed manner with high energy efficiency

and little or no communication overhead. Moreover, the self organized network

infrastructure should be adaptive and resilient to be easily reorganized with respect

to the ultimate traffic pattern that may run on top of it.

Following the self-organization steps as extended from (Subramanian and Katz,

2000) (Chevallay et al., 2002) forms the complete basis for any self-organization

algorithm for ad hoc wireless sensor networks:

1. Network Discovery or Initialization Phase

(a) Each node discovers its set of neighbors,

(b) Depends on communication transmission radius (Txmax), and

(c) Random or deterministic initial channel scheduling for neighbor discov-

ery.

2. Coarse Grained Estimation Phase

(a) Location estimation and

(b) Time synchronization.

3. Organizational Phase

110

(a) Formation of a hierarchical or flat network organization with the help of

local group formations,

(b) Performing group reorganization if necessary,

(c) Generation of addresses for nodes,

(d) Generation of the routing table at every node,

(e) Generation of broadcast or multicast trees and graphs within a group,

(f) Merger of broadcast trees and graphs when groups are aggregated to

form hierarchical networks,

(g) Establish medium access control schemes both for intra-group and inter-

group communication, and

(h) Establish key setup schemes for secure communication.

4. Maintenance Phase

(a) Active or passive monitoring e.g., by “I am Alive” messaging,

(b) Network quality evaluation schemes such as connectivity and sensing

coverage,

(c) Maintenance of routing tables,

(d) Maintenance of broadcast infrastructure,

(e) Fine-grained tuning of network parameters such as location and network

time,

(f) Topology control schemes to maximize network throughput and spectral

reuse or network capacity (Chen et al., 2001) (Schurgers et al., 2002)

(Santi, 2003), and

111

(g) Energy conservation schemes for increased network longevity using dy-

namic node scheduling (Tian and Georganas, 2002) (Xu et al., 2001).

5. Self-Reorganizing Phase

(a) Redeployment leading to discovery of new node neighbors and

(b) Fault detection and recovery schemes under node or link failure and

group partitions.

In general, the steps listed above can also be considered as services provided by

self-organization protocols for wireless sensor networks. This means that some of

these services may be optional whereas some are fundamental to any algorithm that

self-organizes the sensor network. Thus, steps 1 and 3 are necessary. On the other

hand, steps 2, 4, and 5 are optional and can be developed separately. Location

estimation protocols are generally referred to as self-configuring localization proto-

cols. Network time synchronization can be considered orthogonal and implemented

separately without regard to any specific network design or architecture. Simi-

larly, the maintenance phase can be implemented separately as a suite of network

management protocols.

3.2 Design Philosophy

Wireless sensor network operations include data discovery, which is achieved by

way of sensing application specified target events. Additionally, the sensor network

needs to process this information in a distributed manner and then forward it to

an interested data sink or a remote base station. These sensor network tasks can

be managed individually by a sensor node or they may be collaborated upon by

112

several nodes simultaneously. An intuitive analysis of the sensor network activities

leads to mapping tasks to roles as follows:

1. Sensing Collaborator

2. Sensing Coordinator

3. Routing or Backbone Nodes

Since all sensor nodes in the network are deployed to collaboratively sense target

events, all nodes assume the role of a sensing collaborator. However, some of these

nodes are also requested to assume the role of either a routing node or a sensing

coordinator. The routing role, as the name suggests, supports a network-wide rout-

ing functionality for both application specific sensing queries and the sensing data

gathered by the sensors. A sensing application may need to query for a target event

in a certain interested region of sensor network deployment. On the other hand,

target events sensed by some sensors in a certain region may need to be solicitepd by

some other sensors acting as data sinks or sensor coordinators. These sensor coordi-

nators not only take the responsibility of coordinating the sensing activities in their

neighboring region (also known as a sensing zone) but also aggregate and forward

the information to any remote data sink or the base station. The task of coordi-

nation is not a simple one and it is also not a short term job. In order to provide

instantaneous sensing and reporting capability (dependent upon sensing applica-

tions) each sensor coordinator may need to systematically rotate its responsibilities

transparently among neighboring nodes without much communication overhead. A

hierarchical network organization would also be needed to provide scalability for a

dense deployment of a large number of sensors.

113

Sensing Zone with sensor-coordinator,
sensing-collaborators, and backbone nodes

Level-0 to Level-1 backbone

Level-1 to Level-2 backbone

Sensor Coordinator

Sensing nodes

Level-1 Backbone node

Level-2 Backbone node

Sensing Zone Membership

Figure 3.7: Role-based Hierarchical Self-Organization for WSNs

114

Figure 3.7 illustrates these design principles of our protocol. A two-level CDS

hierarchy is shown to support routing infrastructures throughout the network. One

advantage of having multiple levels of hierarchy is that as the hierarchy increases

fewer nodes are involved in routing, which leads to paths with fewer hops within

the network. Depending upon the requirements of the sensing application as well

as the topology of the sensor network deployment, one may be able to provide

certain levels of guarantees with respect to routing queries or routing data to the

base station. Thus, it would be desirable that the reorganization phase of the self

configuring algorithm preserve the lifetime of these higher level hierarchy nodes and

hence preserve the capability of providing prompt delivery of services in the face of

changing sensor network traffic patterns.

In the next section, we will be briefly outlining the CDS construction algorithm

proposed in (Wu and Li, 1999) (Wu, 2002).

3.2.1 CDS based Network Organization

Cluster-based organizations partition the entire network into groups (or clus-

ters). Each cluster is formed by selecting some nodes based upon some quality

metric (say connectivity or distance) (Chen et al., 2002) (Amis et al., 2000) as clus-

ter members and a group leader (known as the cluster-head) is also selected (using

some metric, say maximum energy) to manage that cluster. These cluster-heads,

when connected, form a virtual backbone (or spine) or a set of connected dominat-

ing nodes. Related to clustering is the problem of finding a minimum connected

dominating set (MCDS) of the nodes. An MCDS satisfies three properties: (1)

each node is either a backbone node or is connected (one hop) to a backbone node,

(2) the backbone nodes are connected and (3) minimum set of nodes are involved

115

to form such a virtual backbone. Ephremides et al. (Baker and Ephremides, 1981)

first tried to introduce a backbone-like structure in wireless networks. Guha and

Khuller (Guha and Khuller, 1996) firstly used the MCDS problem in general graphs

to model the problem of computing a minimum size virtual backbone in heteroge-

neous wireless networks. Since a smaller size virtual backbone is expected to have

less control overhead in terms of messages and reduced interference, the size of

the CDS is considered as one of the major quality criteria in the literature. Since

computing the MCDS is a well-known NP-hard problem, all of the existing work

propose approximation algorithms.

In our proposal, we will be using the distributed localized algorithm for con-

structing a hierarchical connected dominating set (CDS) presented in (Wu and Li,

1999) (Wu, 2002). Our main reason for selecting this algorithm is its inherent

distributed and simple nature. Ideally, it requires only local information and a con-

stant number of iterative rounds of message exchanges among neighboring hosts.

The algorithm for CDS formation involves two processes, the marking process and

the dominating set reduction process. We also assume the following network model.

Network Model

We represent the ad hoc wireless network by a simple graph G = (V,E), where

V represents a set of wireless nodes and E represents a set of edges. An edge

between host pairs (v, u) indicates that both hosts v and u are within each others,

wireless transmitter ranges and the wireless links are bidirectional. We assume that

all the wireless nodes are homogeneous, i.e., their wireless transmitter ranges are

the same. In other words, if there is a edge e = (v, u) in E, it indicates that u is

within v’s range and v is within u’s range. Thus, the corresponding graph is an

116

undirected graph also known as a unit graph, in which connections to hosts are

determined by their geographical distances.

Marking Process

The marking process as described in (Wu and Li, 1999) (Wu, 2002) is a localized

algorithm in which hosts interact with others only in a restricted vicinity. Each host

performs exceedingly simple tasks such as maintaining and propagating information

markers. Collectively, these hosts achieve a desired global objective, i.e., finding

a small connected dominating set. The marking process marks every vertex in

a given connected and simple graph, G = (V,E). m(v) is a marker for vertex

v ∈ V , which is either T (marked) or F (unmarked). Initially, it is assumed that

all the vertices are unmarked and that each vertex v has its open neighbor set as

N(v) = {u | (v, u) ∈ E}. The marking process can thus be summarized as follows:

1. Initially, assign marker F to each v in V .

2. Each v exchanges its open neighbor set N(v) with all its neighbors.

3. Each v assigns its marker m(v) to T if there exist two unconnected neighbors.

In the example depicted in figure 3.8, N(u) = {v, y}, N(v) = {u, w, y}, N(w) =

{v, x}, N(y) = {u, v}, and N(x) = {w}. After step 2 of the marking process, vertex

u has N(v) and N(y); v has N(u), N(w), and N(y); w has N(v) and N(x); y has

N(u) and N(v); and x has N(w). Based on step 3, only vertices v and w are marked

T .

117

x

Unmarked Node Marked Node

y
u

v w

Figure 3.8: Initial Marking Process on a sample ad hoc wireless networkb

Dominating Set Reduction Process

In order to reduce the connected dominating set (CDS) generated from the

marking process, two rules are proposed. Assuming that each vertex v in G′ is

assigned a distinct ID, id(v), it then calculates its closed neighbor set N [v] as

N [v] = N(v)
⋃

v.

Rule 1 : Consider two vertices v and u in G′. If N [v] ⊆ N [u] in G and id(v) <

id(u), change the marker of v to F if node v is marked. I.e. G′ is changed to G′−v.

Rule 2 : Assume that u and w are two marked neighbors of vertex v in G′. If

N(v) ⊆ N(u) ∪ N(w) in G and id(v) = min{id(v), id(u), id(w)}, then change the

marker of v to F .

In Figure 3.9(a), since N [v] < N [u], vertex v is removed from G′ if id(v) < id(u)

and vertex u is the only dominating node in the graph. In 3.9(b), since N [v] =

N [u], either v or u can be removed from G′. To ensure one and only one node

is removed, the node with the smallest ID is removed. Finally, in figure 3.9(c),

N(v) ⊆ N(u) ∪ N(w) applies. If id(v) = min{id(v), id(u), id(w)}, vertex v can be

removed from G′ based on Rule 2.

118

fig (c)

uv v u u v w

fig (a) fig (b)

Figure 3.9: Three examples of dominating set reductionb

In (Wu and Li, 1999) (Wu, 2002), the above rules were extended to include a

combination of metrics like energy level (EL) and node degree (ND) along with ID

to break ties. In this chapter, we will be discussing our proposed sensing-based

metrics, which can also be incorporated into the rules for dominating set reduction.

Hierarchical Dominating Sets

The dominating set reduction process can be reapplied on an already reduced

dominating set of nodes to generate another set of dominating nodes. This process

can be repeated until no further reductions are possible. (Wu and Li, 1999) (Wu,

2002) also introduce the concept of dominating ratio (DR), which is the ratio of

the size of the resultant dominating set to the size of the original network. Clearly,

0 < DR ≤ 1. A small DR corresponds to a small dominating set. Unfortunately,

the minimum dominating ratio is not known a priori. For our protocol, the sensing

application can specify the desired DR and the self-organization algorithm will try

in a best-effort manner to get a reduced hierarchy matching that DR, although it

cannot be guaranteed, as it depends upon the network topology whose deployment

cannot be controlled precisely.

bExample figure reproduced with permission from (Wu and Li, 1999) (Wu, 2002).

119

3.2.2 Sensing Attributes or Metrics

Sensing Model

A sensor is a device that produces a measurable response to a change in a

physical condition, such as temperature, light, voice, or magnetic field. We assume

the same sensing model as that of (Meguerdichian et al., 2001b) (Meguerdichian

et al., 2001a). We also assume that the sensing region of a sensor is a circle with

the sensing rangeb specified as SR distance units.

Sensing Coverage Approximation

Figure 3.10 shows three sensors (say, seismic sensors) reporting the detection of

a target event (say, an enemy tank) in a battlefield scenario. Since the tank is at

a variable sensing proximity or distance (also denoted as SPV) from each of the

sensors, the degree of fault tolerance sensing (denoted as CSD) for this event is

proportional to the cumulative proximity of the three sensors to the target eventb.

In order to comprehend the maximum cumulative fault tolerant sensing capability of

these three sensors, it may be necessary to calculate the amount of shared coverage

overlap between these sensors. The sensing coverage is approximated as a circle

with sensing range as its radius. Thus, the problem of finding the cumulative

sensing coverage is transformed into finding the overlapping sectors between the

neighboring sensors, which is a complicated approximation as discussed earlier. We

simplify this approximation by dividing the circular sensing area of each sensor into

square sensing cells. The dimension of the sensing cell determines the closeness of

the coverage approximation. The sensing cell dimension (denoted as d) is also known

as the application specified sensing accuracy. We assume that the three sensors, S1,

S2, and S3, know the positions of each other. Thus calculating combined sensing

120

coverage would amount to finding the common overlapping sensing cells among the

neighbors and also subsequently updating these sensing cell’s cumulative sensing

proximity values (denoted as CSPV) by accounting for the relative distance of

the neighboring sensors to the cell(s) in question. In other words, CSDS1,S2,S3
=

K × f(3, d, overlap), where K is some sensing constant for the sensors (in our case,

K = 1), and f is the function that calculates the cumulative sensing degree (CSD)

by accounting for the number of cooperating sensors, the sensing cell dimension

(d), and the cumulative sensing proximity value (CSPV) of the overlapping sensing

cells between them. Figures 3.11 and 3.12 illustrate the approximation used in our

sensing coverage calculations. In the next sections, we will be defining in detail the

SPV , CSPV , and CSD sensing parameters.

Sensing Proximity Value (SPV)

SPV for a sensing cell denotes how close that cell is to a particular sensor. The

SPV may vary from the best value of 1 to some max value, say SPVmax (dependent

upon sensing range SR). The lower the value of SPV for a cell, the better its sensing

performance or sensitivity. For calculating the SPV of a sensing cell i for a sensor

node, say n, we need the location of the sensor n i.e. (xn, yn), the sensing range,

SR, and the application specified sensing accuracy, d. We calculate the minimum

distance between the sensor n and the center of its closest sensing cell and denote

it as dcsmin.

dcsmin = d/
√
2

bThe sensing range may depend upon the dimensions of the observed target, e.g. a seismic
sensor can detect a tank at a larger distance than it can detect a soldier on foot. For ease of
discussion, we assume the sensing range to be same for both the tank and the soldier (Slijepcevic
and Potkonjak, 2001). We can modify our self organizing algorithm based on the sensing range
for a given application.

121

Figure 3.10: Sensing Proximity Concept with respect to a target

We also calculate the distance between the sensor node and the center of the

square sensing cell i with coordinates as (xcell, ycell) and denote it as dcs.

dcs =
√

(xn − xcell)2 + (yn − ycell)2

Finally, SPV is calculated as the ratio of dcs to dcsmin and is rounded to the

nearest integer.

SPVi ≈ ddcs/dcsmine

In order to evaluate the cumulative sensing coverage of a shared region com-

monly monitored by neighboring sensors, we introduce two more sensing parame-

ters, cumulative sensing proximity value (CSPV) of a sensing cell and the cumulative

sensing degree (CSD) of a sensor node.

122

21

2

4

3

4

4

4

5

6 6 6

6

6

6
7

88 8

8

8

8

8

9

10

10 10

10�Sensing Cell

Sensor Node

SR����d

d

Sensing Cell

Sensing Region

Sensing Proximity Value (SPV)

x

y

SR Sensing Range

d Sensing Cell Dimension

Figure 3.11: Sensing Coverage Approximation

Cumulative Sensing Proximity Value (CSPV)

CSPV for a sensing cell is the cumulative SPV of all the overlapping sensing

cells from the neighboring nodes covering that cell. Thus, if SPVx is the SPV of

sensing cell x and if n sensing cells having SPV values SPV1, SPV2, SPV3, ..., SPVn

overlap with cell x, then CSPVx is calculated using the reciprocal reduction tech-

nique which is formulated as

CSPVx = SPVx −
n

∑

i=1

1/SPVi

123

21

2

4

3

4

4

4

5

6 6 6

6

6

6
7

88 8

8

8

8

8

9

10

10 10

10

SR x

y

21

2

4

3

4

4

4

5

6 6 6

6

6

6
7

88 8

8

8

8

8

9

10

10 10

10

SR x

y

21

2

4

3

4

4

4

5

6 6 6

6

6

6
7

88 8

8

8

8

8

9

10

10 10

10

SR x

y

4

5.25 = 6 - (1/4 + 1/2)

Sensor Node i

Sensor Node j

Sensor Node k
���������6

2

Original Sensing Cell
Overlapping Sensing Cells
 from j and k

CSPV

Figure 3.12: Calculating Cumulative Sensing Coverage

Thus, the more sensing cells overlap, the lower the final value of CSPV . Moreover,

if cells having equal SPV values (say spv = y) overlap, then a total reduction

of y will be adjusted toward the final CSPV value only if y or more cells overlap.

Finally, the CSPV value is always adjusted to be within the range of 1 and SPVmax.

Cumulative Sensing Degree (CSD)

CSD describes the degree of cumulative fault tolerant sensing for a common

area monitored collaboratively by some sensors. We calculate the sensing coverage

of a sensor node as the average sum of the CSPV s of all sensing cells covering its

sensing area. Ideal sensing coverage would imply that all the CSPV values for the

124

sensing cells of a sensor are 1 (i.e., each sensor node is covered by the maximum

possible neighbors), whereas solitary sensing coverage would mean just the average

of the sum of CSPV s of a sensor node having no neighbors. Finally, CSD is

calculated as percentage coverage and is given by the formula:

CSDsensor = (1.0− ((avg(
∑

CSPV s)− ideal)/(solitary − ideal)))× 100

3.2.3 Proposed self-organization Algorithm

We assume the existence of a neighbor discovery stage that precedes our self-

organizing algorithm. In this stage, each sensor acquires knowledge of its neighbors

and their positions. An example of 15 sensor nodes deployed in a hostile area

to detect military tanks is shown in figure 3.13, which after neighbor discovery

forms the network shown in figure 3.14. We construct a CDS hierarchy using the

hierarchical CDS construction algorithm outlined in section 3.2.1. We also use the

following metrics in order, along with the rules to break the ties. These metrics are

energy level (EL), sensing-based metric known as CSD, connectivity-based metric

or node degree (ND), and finally ID of the sensor node to break the tie. During the

initial marking process, each sensor node exchanges one-hop neighbor information

with its neighbors. This results in sensors gathering two-hop neighbor information,

and also their corresponding location information. Figure 3.15 shows the CSD

of the sensors and also the result of the initial marking process. The percentage

CSD value calculated during the initial marking process is used in the subsequent

hierarchical dominating set reduction processes. Figure 3.16 shows the 3-level CDS

hierarchy formed after performing the dominating set reduction three times.

Our objective of having sensing zones is to have a self-sufficient collaborative

group of sensor nodes that need as few sensing inputs as possible from sensors

125

8

12

3

6

10

1

2

4

9

7

1511

13

5 14

Randomly Deployed Wireless Sensor Nodes (15 Nodes)

Base-station

Figure 3.13: An example 15 sensor nodes random deployment for tracking an enemy
tank

outside the group to reach consensus on any target events sensed. Such a group

organization would need to be coordinated by a sensor coordinator. The sensor

coordinator is that sensor node that has the maximum percentage coverage in the

neighborhood. This implies that the chances of an event being detected by a sensing

zone in its region coordinated by a node with higher CSD would be higher than

any of its neighboring sensing zones. The sensor coordinator would then initiate a

consensus among its sensor collaborators to rule out the possibility of a spurious

event or noise. This leads us to another interesting Sensing QoS metric for a sensing

zone that can be specified as the minimum percentage coverage or CSD of a certain

region of WSN deployment. Figure 3.17 illustrates all these sensing zone concepts.

From figure 3.16, we can see that as we go up the CDS hierarchy the number

of dominating nodes reduces. We can naively select the dominating nodes at any

126

Base-station

Wireless Sensor Network (15 Nodes)

8

12

3

6

10

1

2

4

9

7

15

11

13

5
14

Figure 3.14: Wireless sensor network after neighbor discovery stage

higher level of the hierarchy to act as sensor coordinators. But as mentioned earlier,

dominating nodes in the CDS hierarchy are essentially used as backbone nodes to

route application specific sensing queries to the sensors and/or sensing data from the

sensors to a data sink. An intuitive suggestion is to select sensor coordinators from

the lowest level of the CDS hierarchy, level 0. We also know that the hierarchical

dominating reduction process is a recursive process that uses marked nodes (or

dominating nodes or backbone nodes) from the previous level to form the next level

of the hierarchy. This means that our suggestion to use level-0 marked nodes as

sensor coordinators has to be revised to include only those level-0 marked nodes

that get removed during the dominating set reduction process to form level 1. In

other words, our self-organization algorithm chooses sensor coordinators from level

0 marked nodes (but level 1 unmarked) as these nodes will not be acting as backbone

127

Base-station

Marking and Coverage Calculation (%CSD)
 for an example 15 node WSN

8

12

6

1

4

9

7

15

11

13

5
14

3

12 10

1

2

9

7
13

11

6

43.18 %

32.41 %

61.36 %

25.0 %

27.27 %

44.44 %

26.39 %

27.78 %

36.81 %

47.22 %

44.44 %

33.7 %

43.52 %

21.88 %

13.19 %

Level-0 Marked Node

Level-0 Marked Neighbors

xx.yy % Cumulative Sensing Degree (in percentage)

Figure 3.15: Wireless sensor network after the marking stage

nodes in upper levels of the CDS hierarchy. We note one more advantage of selecting

sensor coordinators from level 0 marked nodes (and level 1 unmarked). They are

the majority of available nodes in comparison to any other levels. Thus, we have

a bigger pool of nodes from which we can select sensor coordinators. In order to

have sensor coordinators at level 0, i.e., nodes with maximum percentage CSD, the

algorithm uses an adaptive sensing-based metric. This means that during level 0

marking (or dominating set reduction) we eliminate those nodes (during tie breaker

stage) that have the lower percentage CSD. This results in all level 0 dominating

(or marked) nodes as nodes that have maximum percentage CSD within their

one-hop neighborhood. Finally, from level 1 onwards, we eliminate those nodes

that have the higher percentage CSD, which again leaves higher percentage CSD

marked nodes at level 0 (but level 1 unmarked). The overall effect is that we make

128

Base-station

3-level CDS hierarchy with 1 sensor-coordinator

8

4

15

13

5
14

3

12 10

1

2

9

7
13

11

6

43.18 %

32.41 %

61.36 %

25.0 %

27.27 %

44.44 %

26.39 %

27.78 %

36.81 %

47.22 %

44.44 %

33.7 %

43.52 %

21.88 %

13.19 %

Level-0 Marked Node (10 nodes marked)

CDS Back-bone (or spine)

xx.yy % Cumulative Sensing Degree (in percentage)

Level-1 Marked Node (6 nodes marked)

Level-2 Marked Node (5 nodes marked)

�� Sensor Coordinator (level-0 marked node)

Figure 3.16: CDS hierarchy with sensor coordinator

sure that during both level 0 and level 1 marking, all the unmarked nodes at level

1 (but level 0 marked) have the maximum possible percentage CSD. This leaves a

larger crowd of eligible sensor coordinators as level 0 nodes who are not dominating

at any other higher level. Figure 3.18 shows the selected sensor coordinators.

In order to reduce from a list of probable sensor coordinators, we select only

those nodes that have a higher percentage CSD than their level 0 marked (and

level 1 unmarked) neighbors. If there is a tie, then we break it by the number of

marked level 1 neighbors an eligible sensor coordinator may have. If there is still

a tie, then we use sensor node ID as the final tie-breaker. An eligible sensor co-

ordinator that passes the above three selection criteria would then advertise to its

neighbors with its maximum percent CSD value. Sensors hearing this advertise-

ment join the nearest soliciting sensor coordinator. However, in order to limit the

129

Sensing Region abstracted by a Sensing-Zone
CSDmin = 40.04% (QoS Sensing value)

Sensor-Coordinator (CSD = 66.5%)

40.2%

40.2%

40.2%

55.75%

48.23%
46.3%

45.47%

45.24% 43.33%

40.04%

42.98%

47.15%

Percentage Change in CSD solicited is approximately 30%

Figure 3.17: Sensing Zone Formation

overhead of sensing zone coordination and maintenance, we limit the group mem-

bership within a certain minimum and maximum number of sensor collaborators

(or sensing zone members). Sensing zones with less than the specified minimum

sensing zone membership will merge with neighboring accepting sensing zones. The

reverse case applies for zones having membership larger than the maximum. In this

case, sensor coordinators of these crowded sensing zones will ask distant members

to find another neighboring sensing zone. These dismissed sensor nodes will join

their nearest neighboring accepting sensing coordinator or sensing zone member.

A sensor coordinator would accept a node as its zone member only if it has some

space left to accommodate that node. Finally, all those nodes that were refused

zone membership by their respective neighboring sensor coordinators due to zone

size problems are considered as orphan nodes. Similarly, all those nodes who could

not find any neighboring sensor coordinators due to a limited number of neighbors

(or with sparse connectivity) will also consider themselves as orphan nodes. These

130

Base-station

A Sensing zone with sensor-coordinator and its members (unmarked nodes and CDS nodes)

8
4

15
13

5
14

3

12

10

1

2

9

7
13

11

6

43.18 %

32.41 %

61.36 %

25.0 %

27.27 %

44.44 %

26.39 %

27.78 %

36.81 %

47.22 %

44.44 %

33.7 %

43.52 %

21.88 %

13.19 %

Level-0 Marked Node (10 nodes marked)

Sensor Coordinator and its sensing-zone members

Level-1 Marked Node (6 nodes marked)

Level-2 Marked Node (5 nodes marked)

����� Sensor Coordinator (level-0 marked node)

Sensing-Queries and Sensing-Data flow

Figure 3.18: Sensing Zone Organization

131

Figure 3.19: Our self organized infrastructure

orphan nodes will finally join any closest sensor coordinator or sensing zone mem-

ber who would ultimately acquiesce to their join demands. The pseudocode of the

self-organizing algorithm is outlined in appendix A.1.

3.3 Simulation

The role-based hierarchical self-organization protocol has been simulated using

Java (JDK 1.3). The simulator can also be used to view the topology generated

by the initial self-organization algorithm. A comparison between Leach and our

approach is possible if we have the same number of clusters or sensing zones. To

achieve this, the simulator takes the number of sensing zones generated from our

132

Figure 3.20: 150 nodes with 15 sensing coordinators

133

Table 3.1: Average group leader-member distances in Leach Protocol(d = 8)

Leach
Network size Mean Standard deviation

MaxDist MinDist AvgDist MaxDist MinDist AvgDist
100 (300x300) 80.81 17.02 47.11 9.73 3.05 4.49
300 (600x600) 90.70 18.50 52.14 6.93 2.46 3.16

600 (1400x1400) 228.24 27.98 121.28 21.57 2.85 9.08
1000 (2200x2200) 443.24 32.54 219.53 58.27 3.43 23.89

Table 3.2: Average group leader-member distances (d = 8) for our proposal

Our Protocol
Network size Mean Standard deviation

MaxDist MinDist AvgDist MaxDist MinDist AvgDist
100 (300x300) 74.64 12.02 41.36 6.67 1.93 2.72
300 (600x600) 80.65 12.53 43.80 6.61 1.42 2.48

600 (1400x1400) 144.81 17.52 73.94 10.65 1.89 4.42
1000 (2200x2200) 150.16 18.52 76.83 11.75 1.73 5.17

protocol as input to the cluster based protocol. The simulator assumes no packet

collisions. It also assumes that there are no packet errors during transmission and

reception. In other words, we assume a perfect wireless channel. Figures 3.19 and

3.20 show the results of an example simulation run with the following simulation

parameters:

1. Number of nodes = 150.

2. Maximum X, Y boundary coordinates of region of WSN deployment = 400

meters.

3. Maximum wireless radio range and sensing range = 64 meters.

4. Application specified sensing accuracy (d) = 8 meters.

We have performed 100 simulation runs on four different topologies:

1. 100 nodes in an area of 300 × 300 meters.

134

Table 3.3: Average static sensor CSD

Average static node CSDs

Network size d Mean Standard deviation
MaxCSD MinCSD AvgCSD MaxCSD MinCSD AvgCSD

8 29.27 14.08 22.54 2.19 1.59 1.46
100 (300x300) 12 59.85 32.39 47.64 3.02 2.80 2.44

16 80.09 47.59 66.43 2.87 3.65 2.56
8 26.47 12.96 20.46 1.37 1.08 1.03

300 (600x600) 12 55.81 29.97 44.48 2.66 2.04 2.17
16 75.93 44.11 62.34 2.01 2.42 2.02
8 12.91 1.52 7.20 0.51 0.34 0.38

600 (1400x1400) 12 29.70 4.89 18.21 1.13 0.88 0.80
16 45.16 9.14 28.93 1.36 1.26 0.96
8 11.27 1.08 5.96 0.53 0.25 0.34

1000 (2200x2200) 12 26.59 3.52 15.57 1.15 0.75 0.79
16 41.42 7.26 25.67 1.21 1.10 1.06

2. 300 nodes in an area of 600 × 600 meters.

3. 600 nodes in an area of 1400 × 1400 meters.

4. 1000 nodes in an area of 2200 × 2200 meters.

For all topologies, we have set the radio range and the sensing range to 64

meters. The minimum and maximum sensing zone (or cluster) membership size is

set to 4 and 12, respectively. Finally, the application specified sensing accuracy or

the sensing cell dimension (d) is set to values 8, 12, and 16 for the above simulation

scenarios. Tables 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7 compare our protocol with the

Leach-based protocol.

During the analysis of the simulation results, we will be using the terms clusters

or sensing zones or groups interchangeably. From tables 3.1 and 3.2, it can be

seen that our self organizing protocol organizes sensors into sensing zones with less

distance variation compared to Leach. Moreover this distance variation becomes

more pronounced as the topology becomes more sparse with an increasing number

of nodes deployed in a larger area. Since the Leach protocol selects the clusterheads

135

Table 3.4: Average leader CSDs

Average Leader CSD
Network size d Leach Our Protocol

Mean Std dev Mean Std dev
8 12.77 1.91 16.53 1.49

100 (300x300) 12 28.45 4.47 35.79 2.64
16 41.52 5.00 51.21 3.86
8 11.50 1.06 15.07 0.89

300 (600x600) 12 26.46 1.95 33.83 1.67
16 39.07 2.91 49.14 1.91
8 4.95 0.68 10.46 0.54

600 (1400x1400) 12 13.17 1.41 24.79 1.04
16 21.49 2.05 38.05 1.26
8 3.13 0.59 9.51 0.48

1000 (2200x2200) 12 9.80 1.49 23.06 1.14
16 16.52 2.32 35.90 1.29

Table 3.5: Current organized average sensor CSD for Leach protocol

Leach
Network size d Mean Standard deviation

MaxCSD MinCSD AvgCSD MaxCSD MinCSD AvgCSD
8 21.02 4.14 9.98 2.34 1.12 1.29

100 (300x300) 12 44.22 11.02 22.89 3.78 2.66 2.92
16 60.93 17.10 33.88 5.08 3.59 3.68
8 18.77 3.09 8.42 1.71 0.63 0.66

300 (600x600) 12 40.20 8.36 20.16 2.68 1.33 1.20
16 57.87 13.31 30.32 3.91 1.84 1.75
8 9.66 0.16 3.66 0.72 0.11 0.29

600 (1400x1400) 12 23.43 0.47 10.13 1.39 0.29 0.62
16 36.36 0.95 16.79 1.71 0.48 0.85
8 9.21 0.01 2.53 0.85 0.01 0.23

1000 (2200x2200) 12 23.02 0.08 7.48 1.21 0.05 0.44
16 36.30 0.08 13.18 1.86 0.13 0.72

Table 3.6: Current organized average sensor CSD for our proposal

Our Protocol
Network size d Mean Standard deviation

MaxCSD MinCSD AvgCSD MaxCSD MinCSD AvgCSD
8 21.85 5.07 11.60 1.94 0.95 1.14

100 (300x300) 12 46.45 12.98 26.48 3.57 1.96 2.24
16 63.98 20.41 38.95 4.37 2.64 2.72
8 20.29 4.01 10.08 1.04 0.57 0.58

300 (600x600) 12 43.98 11.10 23.90 2.21 1.17 1.30
16 61.26 17.87 35.86 2.52 1.60 1.38
8 11.40 0.78 5.17 0.52 0.18 0.35

600 (1400x1400) 12 26.62 2.69 13.91 1.01 0.51 0.70
16 40.87 5.25 22.82 1.23 0.90 0.87
8 10.08 0.64 4.40 0.48 0.14 0.29

1000 (2200x2200) 12 24.43 2.25 12.40 1.04 0.46 0.72
16 37.93 4.60 20.98 1.13 0.93 0.95

136

Table 3.7: Average group membership sizes (d = 8)

Average Membership
Network size Leach Our Protocol

Mean Std dev Mean Std dev
100 (300x300) 10.66 1.11 10.82 1.07
300 (600x600) 10.93 0.78 10.72 0.65

600 (1400x1400) 21.18 2.74 13.35 1.01
1000 (2200x2200) 46.28 9.23 16.77 3.86

randomly rather than deterministically, most of the times this results in suboptimal

selection of clusterheads. This in turn results in situations where sensors having

distant soliciting clusterheads will extend their radio range in order to join any

nearby less crowded clusters. It should be noted that the objective of any self

organizing algorithm is to abstract the random topology into an easily controllable

network infrastructure. Thus, any group based self organizing algorithm will try in

a best effort manner to include each sensor node in at least one group. In pursuing

such a goal, Leach ends up having larger group memberships than our approach.

This can be clearly observed from table 3.7, where the average group size for our

approach remains within 20 members whereas for Leach it may be up to 55 members

as network size increases from 100 to 1000 sensors.

Tables 3.3, 3.4, 3.5, and 3.6 analyze the effectiveness of our organization and

Leach with regard to the cumulative sensing degree (CSD) metric. Table 3.3 shows

the mean of the maximum, minimum, and average CSD of a sensor node assuming

that it has all its neighbors in its group. We compare these static CSD values

with the current CSD values obtained after the groups have been formed by the

self organizing algorithm. It can be seen from tables 3.5 and 3.6 that our protocol

always results in sensor nodes retaining most of their static CSD values, whereas

Leach results in an appreciable loss in node CSD due to suboptimal selection of

137

clusterheads. However this difference is negligible because Leach has orphan nodes

select any nearby distant suboptimal clusterhead in order to be registered in some

group. Table 3.4 shows the mean of the average CSD values of the clusterheads

or the sensor coordinators (also referred to here as leaders). It can be clearly seen

that due to deterministic leader selection our self organizing protocol has higher

average leader CSD values than Leach. One interesting result in all these tables

is the dependency of our CSD approximation on the sensing cell dimension (or

application specified sensing accuracy) d. In general, it is observed that lower

values of d yield a better CSD approximation.

3.4 Summary

In this chapter, we present a role-based hierarchical self organization algorithm

for wireless sensor networks. The algorithm groups sensors into sensing zones that

are coordinated by a sensor coordinator. We also propose a sensing based metric

CSD (known as Cumulative Sensing Degree) to form sensing zones. In order to form

a hierarchy of back bone nodes we extend the CDS formation algorithm proposed

in (Wu and Li, 1999) (Wu, 2002). The resulting self organized network consists of

sensing zones that are connected to each other by a hierarchy of backbone nodes.

The simulation results show how a randomized cluster based organization per-

forms worse as network size increases. Since our algorithm selects sensor coordi-

nators deterministically, we have shorter distances between sensing zone members

and the sensor coordinator. From figure 3.20 it can be seen that there is still some

overlap between neighboring sensing zones. The amount of overlap among neigh-

boring sensing zones reflects the need for collaboration for events occurring at the

border of the sensing zones. For targets or events that migrate across sensing zones,

138

this overlap of sensing area among sensing collaborators reporting to two or more

sensing coordinators is very useful and necessary. However, the size of the member-

ship in this area of overlap among sensing zones needs to be controlled adaptively

with moving events and changing network dynamics, if one needs to minimize radio

communication overhead in these areas.

Our algorithm is a first step toward network organization after neighbor dis-

covery. In the next chapter we generalize our role-based organization technique to

implement a role-assignment framework (URAF) that unifies both the maintenance

and the reorganization phase (similar to (Subramanian and Katz, 2000)) of a com-

plete self-organization algorithm for wireless sensor networks. In most of the previ-

ous research literature it is assumed that a hierarchical organization is too static (or

rigid) to be reorganized with respect to the ultimate traffic pattern that may run on

top of this self organized network architecture. It is also believed that concentrating

specific responsibilities on specific nodes will result in such nodes becoming likely

points of failure, thus making such a hierarchical network inherently less fault toler-

ant. However with sufficient network density, the unified role-assignment framework

(URAF) can support efficient solutions that systematically rotate or (re)assign roles

among neighboring nodes in a localized manner without much overhead.

139

Chapter 4 – Unified Role-Assignment Framework for

Wireless Sensor Networks

In this chapter, we conceptualize a generic role-based assignment framework.

This framework is an extension of the Connected Dominating Set (CDS) based

reduction technique introduced in chapter 3. We have used this technique to iden-

tify specific roles in a role-based hierarchical network organization (RBHSO). The

technique employs the use of rules that elicit the list of metrics a node should re-

cursively compete with in order for it to be locally dominating among its peers for

a particular role.

The use of a particular metric for the selection of a specific role is design depen-

dent and is most importantly influenced by the application requirements expected

of that role and the environmental characteristics within which the role is supposed

to deliver. In other words, not every instantiation of a specific role using the same

set of rules may be enough for all applications.

With changing environmental and network dynamics, it becomes difficult for

an end-user or the network operator to envision and implement clear-cut strategies

incorporating trade-offs among diverging (if not converging) application require-

ments. This problem is not only limited to application solutions that execute as

roles in the network. It could manifest for any higher layer protocol solution that is

based upon certain cross-layer optimizations for protocols at the lower layers. The

Unified Role-Assignment Framework (URAF) is a generic and flexible platform that

supports implementation of custom strategies such as topological role assignment

140

for task mapping, role scheduling for dynamic resource management, and role re-

assignment for node load balancing. In case of ad hoc wireless sensor networks,

conserving energy while meeting delay requirements simultaneously are the set of

diverging parameters that applications usually optimize.

The scope of this chapter is limited to the features provided by the framework.

The framework gives the flexibility and the responsibility to the end-user to use

these features to come up with a specific solution in terms of roles and rules. The

framework is not a solution unto itself. However, two different protocol solutions

based upon the same implementation of the role-based framework can be compared

and analyzed.

The chapter is organized as follows: We first provide the motivation for a role-

based framework. The next section discusses the design aspects of the unified

role-based assignment framework (URAF). It provides an introduction to the ba-

sic controls or interfaces provided by the URAF. These serve as tuning knobs for

applications to embed specific service requirements for further customizations. In

particular, we discuss the following:

1. Hierarchical decomposition of an application service to tasks and then to

roles. We abstract inter-task coordination in terms of a hierarchical task-

graph. These tasks (or sub-tasks), when executed distributively by nodes in

the network, require hierarchical coordination and management. This is rep-

resented in terms of two way handshake based coordination among manager

roles and worker roles. A role-coordination graph represents these coordina-

tions in terms of message exchanges among roles.

2. We use domain specific models such as the role-energy model (R–∆E) and the

role-execution time model (R–∆T) to abstract the measurement of energy and

141

time-based performance metrics for individual roles.

3. We propose rules that are used as role-controls for role assignment, failure

monitoring, feedback, and role-reassignment for load balancing and/or repair.

4. We elicit a network model for unifying the use of node resources in terms of a

common metric, that is, energy. We use this model to profile the load imposed

upon a node by a role in terms of the energy usage per unit time.

5. We assume the existence of a concave role service utility (RS–∆U) model for

the domain for which sensor network services are being optimized. This model

is an abstraction of a general observation from real life sensor networks. In

general, it is observed that the marginal benefit of assigning additional re-

sources (in terms of roles) beyond a certain point does not result in any

meaningful improvement in service quality. This model is needed to under-

stand the initial number of roles with which the role assignment algorithms

begins in order to achieve the desired performance in the network.

6. We also assume the existence of basic protocol layer functionalities such as

channel access or wireless media scheduling schemes for communication, flow

control, transport level reliability schemes, security, position estimation, time

synchronization, sensing, actuation, processing using A/D converters and the

on-chip CPU, data storage and caching. In other words, we assume the exis-

tence of open network interfaces up to layer four along with a repository that

shares interesting cross layer information.

The third section provides a high level architecture of the framework. This

section correlates several features of the framework into specific components. This

142

serves as a reference to unite all the features that the framework supports. A high

level algorithm lists the basic steps for any application service to be mapped in

terms of roles and executed in-network.

In the fourth section, we consider a generic role-based formulation of the prob-

lem of minimum resource usage and minimum performance delay for any sensor ap-

plication. With this, we investigate role-assignment (RA) requirements for energy

minimization of individual and multiple services running among the same set of sen-

sor network nodes. Specifically, we consider algorithms for Minimum Total Energy

RA (MTERA) and Multi-Service Minimum Energy Role Assignment (MSMERA)

requirements. These problems when resolved in terms of an optimal assignment of

roles to nodes is essentially equivalent to computing the MCDS (Guha and Khuller,

1996) which is a well-known NP-hard problem. A combinatorial scheme that solves

both the MTERA and MSMERA problems distributively is difficult and an opti-

mal solution to this problem is NP-complete. We propose a number of techniques

that fine-tune our generic rule-based RA algorithms (based on the CDS technique).

We propose a novel technique that is a hybrid approach known as the Cooperative

Redundant Coalitional Role-Assignment (CRC-RA) with iterative pruning. We

conclude this section by evaluating the generic and flexible nature of the framework

(URAF) toward implementing other practical sensor application requirements.

Finally, we conclude the chapter by summarizing the features and limitations of

the Unified Role Assignment Framework.

4.1 Motivation

The design of the framework builds upon fundamental aspects of large-scale

distributed systems such as organization, hierarchy, aggregation, redundancy, and

143

approximation. In the following discussion, we use the terms functions, tasks, or

roles interchangeably. The framework uses these concepts in the following broad

manner:

1. Organization: The network organizational architecture provides a framework

for decomposing a global optimization problem into a set of local optimiza-

tion problems with controlled interactions among them. The organizational

architecture or structure acts as an underlying overlay such that it not only

determines the patterns of network communication activity but also controls

relationships among neighbors participating to perform a service. This overlay

exploits locality by structuring the deployed network into manageable network

partitions. Nodes belonging to a particular sector or partition thus limit both

their information exchange and the resulting load experienced to within that

partition.

For example, in chapter 3, the role-based hierarchical organization (RBHSO)

provides the basic infrastructure to support localized services, resource shar-

ing, and collaboration. It also promotes scalability in the presence of a large

number of sensor nodes and target events.

2. Hierarchy: Nodes are organized into a hierarchical network such that the

control is done by nodes at higher levels for nodes below them that execute

specific protocol tasks. This service control responsibility can be assigned in-

crementally and recursively to nodes at higher levels of the hierarchy. This

hierarchical coordination mechanism is contextually dependent upon node

density and the number of target events present in the network. In chapter 3,

the RBHSO algorithm is evaluated against a randomized cluster based orga-

144

nization for different network sizes, the number of sensing zones (or clusters),

and the overlap among them.

For example, if the monitoring area is small, and events are infrequent, only

a few sensing nodes may need to be made available to monitor and track an

event. In this case, a hierarchical organization where sensing nodes at the

lower level of hierarchy report to some sensing manager at the higher level

would be overkill both in terms of communication overhead and monitoring

requirements. For this scenario, a peer-to-peer single level coordination archi-

tecture may be sufficient. On the other hand, if the monitoring area is large

and the events are many and frequent, and the sensing resources are scarce,

a multi-level hierarchy may be more appropriate.

3. Aggregation: Collaboration among nodes in the neighborhood pursuing a

specific mission signifies an aggregate or a group (of members) that acts as

a single entity to execute an application desired service. In other words, if

a service or a task can be expressed as an aggregation of specific functions,

a single node or a set of multiple nodes in the vicinity can undertake any

combination of these functions such that their collaborative execution accom-

plishes the service or task. This collaborative function assignment to nodes

can change over time. The optimal functional decomposition of any service

is highly dependent upon the domain and the underlying network topology.

Moreover, in order to reduce hot spots or functional disparity among nodes,

it is necessary that the load be balanced among nodes executing specific task

functions. It is also necessary that any functional load and the aggregation

of these be empirically expressed in terms of a common metric, say energy

used per unit time. Such a metric can serve as common yardstick for load

145

balancing protocols to balance the average load among nodes.

4. Redundancy: Fault tolerant network protocols usually require redundancy

both in terms of functions and their assignment to nodes. In other words,

critical functions should be replicated in advance. Critical functional state

updates should also be cached redundantly across nodes. Redundant nodes

should be made available in the vicinity of critical roles (tasks or functions)

such that the network can dynamically anticipate a failure and also repair

itself. This allows nodes to quickly detect neighbor failures instead of waiting

for a status response to a query, thus supporting dynamic and transparent

adaptation to repairs.

5. Approximation: It is difficult to gather and disseminate complete network

information to all nodes in the network. This is not feasible due to the large

communication overhead, storage, processing, and energy constraints. More-

over, network state changes are very dynamic and contextual. Most of local

state changes may not be useful to remote nodes in the network in compari-

son to the overhead involved in communicating these. Moreover, by the time,

the information is received and processed at any node in the network, the in-

formation has already become stale and irrelevant. Thus, approximate state

information along with locality should be considered in the reasoning neces-

sary to make effective coordination decisions among nodes collaborating to

perform a service.

The concept of approximation is most valuable for characterizing the general

performance characteristics of a global service that has been partitioned to a

set of local tasks and is assigned to different nodes in the network. In this

146

case, for additive or multiplicative metrics such as delay, energy, etc. the global

performance is approximately equivalent to some aggregate function (such as

addition or multiplication) of performance expected of nodes participating to

perform that service. This property is also useful to fault-tolerant and resource

adaptive protocols that use approximation to predict task performance and

failures.

4.2 Role Abstraction Concepts

In this section, we discuss the following abstraction ideas conceptually:

• A service is composed of several tasks or subtasks that are cumulatively exe-

cuted by nodes in the network,

• A role is a topological abstraction of tasks (and/or subtasks) and its subse-

quent node-level execution,

• A role-coordination graph (RCG) represents the topological organization and

coordination among roles for a certain service,

• Rules abstract specific role requirements expected of any node executing that

role, and

• Role assignment (RA) is the process by which nodes collaboratively and lo-

cally assign roles among themselves.

4.2.1 Services

Wireless sensor networks require several network services such as neighbor dis-

covery, localization, time synchronization, network self-organization, data aggrega-

tion, storage, event detection, monitoring, tracking, and reporting. These network

147

services are usually executed locally and in a distributed fashion among a group of

neighboring nodes each one collaboratively executing a task or a set of tasks for

that service.

Service provisioning in networking terms usually requires the provisioning of net-

working elements for specific tasks within the network such that their collaborative

participation over time cumulatively delivers the desired service. The networking

elements here refer to the use of various node and network resources such as sensors,

radio, memory, cpu, and storage. In addition to distributed provisioning, there is

need for accounting, management, and load balancing of network resources among

services. A hierarchical network organization allows both control and service func-

tions to be managed and executed in a scalable, localized, and distributed manner.

Collaborating Sensors

Track Manager

Router

Route Manager

Regional Route Manager
Route Manager

Base Station −− Tracking Application

Route Manager

Sensing
Aggregator

Router
Router

Aggregator
Sensing

Router

Sector Manager

Sector Manager

Sector Manager

Sector Manager

Route Manager

Sensing Coordinator

Idle Sensors

Figure 4.1: Provisioning of Network Resources for Tracking Application in WSNs

Figure 4.1 shows a tracking application executed by select nodes in the wireless

148

sensor network (WSN). At the network organization level, the sensor nodes are

grouped into sectors that are managed by the sector manager. Every sector man-

ager is hierarchically connected to nodes that act as sensing aggregators and/or

routers. In other words, depending upon the proximity of a node to a region where

sensing events are being monitored, a node that was acting as router can assume

a data-centric role such as a sensing aggregator. The routers in turn are managed

hierarchically by route managers. At a regional level, there could be a regional

route manager (RRM) that manages several neighboring route managers. Since in

WSNs the sensing event data is location-centric, it aids mapping of tasks such as

sensing coordinators, sensing collaborators, and sensing aggregators in the vicinity

of an event. A sensing coordinator manages the sensors within its sector and passes

information to the sector manager or a sensing aggregator. Sensors that participate

in sensing and monitoring an application-desired event act as sensing collaborators

and they dynamically elect among themselves a sensing coordinator for coordina-

tion and management of the sensing activity or task. A sensing aggregator can

collaborate among several sector managers to monitor and track an event moving

across neighboring sectors. Sensing aggregators for different regions in turn report

to a higher level node known as the track manager in this hierarchical organization

of the tracking service. A remote base station could query this track manager at

desired intervals and this data is eventually consumed by the tracking application

for further processing. Nodes that do not participate in providing this service are

idle and redundant. Such idle nodes can be managed effectively to repair failures

at different levels in the hierarchy by a sensing coordinator or sector manager or

route manager or track manager.

The Unified Role Assignment Framework (URAF) supports specific abstractions

149

that are based on the above-mentioned concepts of network organization, hierarchy,

approximation, aggregation, and redundancy to manage the topological partition

and mapping of several functions (or tasks) for any application service. These ab-

stractions are flexible to capture and unite both the low level resource requirement

of any elementary task and the high level topological organization and coordination

of such resources for their effective management across services and nodes in the

network. This section highlights the network level topological abstraction of the

tracking service. In the next section, we generalize the high-level hierarchical de-

composition of services to tasks to form an intermediate and low-level abstraction

known as task graphs.

4.2.2 Task and Task Graph (TG)

The task-based abstraction is a low-level resource based approximation. In other

words, the task abstraction requires that a service be hierarchically decomposed

to its elementary tasks such that these tasks at the lowest level approximate the

principal resource required to execute it. This service to task decomposition is then

organized and managed by a hierarchical organization of worker–manager tasks.

Figure 4.2 shows a generic organization of tasks and their management. At the

lowest level, the subtasks, say Ta1,2,3, interrelated to a task say Ta, approximate

the use of resources, 1, 2, and 3. These subtasks are then managed by its next

level manager, say task Tamanager. This is recursively continued for management of

unrelated tasks at the next level, say Ta and Tb, to get the Tabmanager until we get

the Tab...zmanager. This hierarchical decomposition known as a task graph, represents

a centralized organization that spans hierarchically from a parent to its children.

In practical situations, such a clear-cut service decomposition and organization is

150

not possible and is also not recommended for ad hoc networks. This is because

of the overhead involved in constructing and maintaining such a multi-level task

hierarchy. At best, a two to three level hierarchy such as the one organized in the

RBHSO architecture described in chapter 3 is recommended.

ab Manager

Tb1 Tb2 Tb3

Tb Manager
Ta Manager

Ta1 Ta2 Ta3

Tcd Manager

Tc Manager

Tc1 Tc2 Tc3

Td Manager

Td1 Td2 Td3

Tmn Manager

Tm Manager

Tm1 Tm2 Tm3

Tn Manager

Tn1 Tn2 Tn3

Tab...z Manager

Tyz Manager

Tz Manager

Tz1 Tz2 Tz3

Ty Manager

Ty1 Ty3Ty2

T

Figure 4.2: Task Graph: Hierarchical organization as worker–manager tasks.

In addition to expressing the worker–manager relationship between the various

sub tasks and their associated parent task for a certain service, a task graph should

also account for the various dependencies and redundancies among neighboring

tasks. Tambe (Tambe, 1997) in his research on flexible coordination framework

among group members has identified three primitive inter-task relationships such

as (1) AND-combination, (2) OR-combination, and (3) task dependency.

For example, symbolically a [SERV ICE] could be expressed in terms of m dif-

ferent tasks {T1, T2, T3, . . . , Ti, . . . , Tm} along with their specific inter-relationships.

Among these tasks, some tasks may be redundant and some may be necessary,

whereas some tasks are dependent on each other temporally, spatially, or topo-

logically. Thus, if all the tasks were necessary, the service could be expressed

151

as [SERV ICE] ⇔ ∧n

i=1 Ti. On the other hand, we could have [SERV ICE] ⇔
∨n

i=1 Ti. We could have Ti → Tj which means Tj is directly dependent on Ti. This

directed dependency relationship, when perceived temporally, would imply that Ti

needs to be executed first so that Tj can execute next. From the spatial or topo-

logical perspective, it implies that the nodes executing both Ti and Tj can either

be the same node or they should be in the neighborhood. When both Ti and Tj

are dependent on each other in a way that there is no need to maintain specific

causal ordering for scheduling their execution, then they are said to be reflectively

dependent, Ti
 Tj .

In summary, a task graph represents the following:

1. Service decomposition in terms of tasks and subtasks,

2. Specific temporal, spatial, and topological inter-dependencies among tasks,

and

3. Inter-task coordination abstraction in terms of hierarchical worker–manager

organization.

Such a hierarchical task graph allows a seamless and transparent mapping of

any service to any hierarchical network organization such as a tree or a cluster. For

battery powered sensor nodes in a wireless sensor network, this results in energy

savings as the state maintained for these network organizations can be iteratively

reused for any necessary task assignments and their subsequent adaptations de-

pending upon application requirements or available energy. In the next subsection,

we consider an example partitioning and task graph organization of a data aggre-

gation service. We discuss the ability of the framework to embed a domain specific

application requirement of a data aggregation service on such a task graph.

152

Example task graph for a data aggregation service

In figure 4.3(a), we see that the data aggregation service is hierarchically par-

titioned into tasks and subtasks until no further decomposition is possible. For

example, at the topmost level of the hierarchy the data aggregation service consists

of the coordination among the following tasks such as sensing coordination, routing,

and data collection by node(s) acting as sink(s). Similarly, each of these tasks are

again partitioned into subtasks, with the task at the immediate higher level act-

ing as a coordinator for lower level subtasks. For example, the sensing coordination

task at the higher level is essentially a coordination among sensing, fusion, and data

forwarding subtasks at the lower level of the hierarchy. Eventually, such a recursive

partitioning of tasks into a hierarchy continues until the task(s)/subtask(s) at the

lowest level cannot be further subdivided.

(b)

[Data Aggregation]

[Sensing]

[Fusion]

[Sensing Coordination]

[Process][Store]

[Forwarding]

[Sink]

[Listen]

[Routing]

[Listen][Transmit]

[Forwarding]

Tasks and subtask partitions

(a)

[Data Aggregation]

[Sensing]

[Fusion]

[Forwarding]
[Forwarding]

[Listen]

[Sensing Coordination] [Sink][Routing]

[Listen][Transmit]
[Process][Store]

AND−combination

OR−combination

Directed Dependency

Reflective Dependency

Figure 4.3: Data Aggregation: (a) Hierarchical decomposition and (b) Task Graph

In figure 4.3(b), we see observe the following:

• [DataAggregation]⇔ [SensingCoordination]
∧

[Routing]
∧

[Sink] which means

153

that the service needs all the 3 tasks of sensing coordination, routing, and a

sink.

• [SensingCoordination] → [Routing] → [Sink] implies that the order of exe-

cution is sensing coordination, then routing, and then finally sink.

• The [Fusion] subtask consists of tasks [Store] and [Process] in an OR rela-

tionship, which means that the raw sensor readings may not need any process-

ing and can directly be transmitted or they need to be stored and processed

further before being forwarded to the next hop toward the sink.

• Both [Store] and [Process] subtask(s) do not seem to have a stringent causality-

based scheduling requirements; They can be executed in any order. We will

discuss role scheduling later.

A task graph representation makes it feasible to understand different ways by

which a network can be tweaked to embed domain-specific objectives of a certain

service. This is usually done by identifying and targeting only the relevant tasks or

subtasks in the task graph that are concerned with delivering this specific service

requirement. For example, it is easy for an application to specify the sensing fault-

tolerance of a data aggregation service by specifying that it needs a minimum of, say,

5 sensors to cumulatively agree on genuine sensing events and/or discard spurious

ones. From the perspective of a hierarchical partitioning of tasks into subtasks, such

an objective can be taken care of by a regional sensing coordinator that verifies that

it has at least 5 sensors reporting about any event.

Similar analogies apply to other tasks such as [Fusion] and [Routing] that can

be tweaked for energy optimizations implemented by way of data compression and

the sensing and monitoring periodicity expected by the service. Any application

154

information specified in this way allows the wireless sensor network to pursue in-

creased energy savings, as it can then map these task partitions to appropriately

sized groups within the vicinity of a sensing event. The URAF assumes the existence

of domain-specific models that account for the tweaking of specific parameters with

regard to general performance metrics such as energy and delay. We will discuss

such models in a later section in this chapter.

4.2.3 Roles

A role is an abstract specification of the set of activities an individual sensor or

a subgroup of sensors undertakes in the service of the group’s overall activity. Thus,

for example if the data aggregation service as shown in figure 4.3 were mapped to a

region consisting of some number of nearby sensors, then the task(s) or subtask(s)

executed by a node individually or together with its neighbors would determine

their interaction in terms of their respective role(s).

In other words, there could be some set of nodes pursuing sensing coordination

activity whereas a neighboring region would perform the routing task to route

data from the sensing coordination region to the sink node(s). Within the sensing

coordination region, one of the node may act as a sensing leader or coordinator

for that region, whereas others would act as sensing collaborator(s) executing tasks

such as [Sensing] and [Forwarding]. The sensing coordinator may perform the

tasks of [Fusion] to fuse data from the sensing collaborators and [Forwarding] to

relay the processed information with hop-by-hop routing toward the sink. Thus, a

role constrains a group member, say vi (or a subgroup V ′ of deployed network V) to

some subtask Tvi of the overall service [T] a group of sensors may execute. In other

words, role-abstraction is the concept of a time-extended “role” representing the

155

behavior of a transient task. This behavioral interaction among roles is controlled

by the role state machine described later.

4.2.4 Elementary and Complex Roles

We have identified the following elementary roles that represent fundamental

tasks executed by a node within a sensor network. These fundamental tasks also

represent the principal resources used by them during execution. These are:

1. ON: Node turned ON and is idle

2. OFF: Node completely turned OFF to save energy

3. Sense: Sensor role, S

4. Process: Processor role, P

5. Store: Node storing data in its memory, M

6. Transmit: Transmitter role, T

7. Listen: Role for listening to packets, L

These elementary task-based role abstractions allow for more complex roles com-

positions. For example, the forwarder role is basically composed of a listener and a

transmitter role. Similarly, we have also formulated other complex roles:

1. Forwarder: This role consists of a transmitter and a listener i.e. F ⇔ T
∧

L

2. Router: This role consists of a series of forwarders i.e. R⇔ ∨n

i=1 F
i

3. Aggregator: This role needs both the memory and the processor roles i.e.

A⇔M
∧

P

156

4. Sensing Collaborator: Role similar to tree children/leaves or a cluster member,

denoted by Sm i.e. Sm ⇔ (S
∧

P)
∧

(T → L). This role transmits the sensor

readings and it listens for coordination.

5. Sensor Coordinator: Role similar to a tree root/parent or a cluster head,

denoted by Sh i.e. Sh ⇔ (
∨n

i=1 S
i
m)

∨m

j=1 F
j

6. Sensing Region: Region represented by the whole cluster or tree, denoted

by Sr i.e. Sr ⇔ ((
∨n

i=1 S
i
m)

∧

Sh)
∨

R or Sr ⇔ ((
∨n

i=1 S
i
m)

∧

Sh)
∨m

j=1 F
j.

Alternatively, if there are several sub-clusters or subtrees, then the sensing

region could also consist of several sub regions that could be defined by the

expression, Sr ⇔
∨l

k=1((
∨n

i=1 S
i
m)

∧

Sk
h)

∨m

j=1 F
j).

7. Target Tracking: Roles include track manager, sector manager, and sector,

where the track manager is hierarchically at a higher level than sector man-

agers. Thus, track managers keep track of event(s) moving through neigh-

boring sectors with the respective sector managers collaborating via the track

manager.

4.2.5 Role Coordination Graph (RCG)

Figure 4.4 shows the role-coordination graph for the data aggregation service.

The coordination graph shows the roles organized in a hierarchy with the sensing

collaborators (Sm) and the forwarders (F) being at the lowest level of the hierarchy.

The sensing coordinator (Sh) is hierarchically dominating as it manages the sensing

collaborators to perform data aggregation. Similarly, the router role (R) is also

hierarchically dominating over the forwarders that relay the data to the sink. The

use of hierarchy in a role-coordination graph (as shown in figure 4.4), allows roles

157

8

FhS

mS

mS

mS mS

mS

mS

��
��
��

��
��
��

F
��
��
��

��
��
��

F
��
��
��

��
��
��

F Sink

R

mS

DAG−REQ
7.

DAG−REP
8.

RREQ/RINFO
3.

RREP/RINFO−ACK
4.

FRA/RRA−ACK
5.

RRA/FRA−ACK
6.

SH−RA/SM−RA−ACK, S−SCHED/S−DATA−ACK

Messages:

1.

SM−RA/SH−RA−ACK, S−DATA/S−SCHED−ACK2.

1

1

1

1

1

2 2

2

2
2

2

2

1

1

3
3 3

3

4
4

4 4

5

6 6
6

6

5
5

55

5 55 5 57
��
��
��

��
��
��

Figure 4.4: Role coordination graph for a data aggregation service

at a higher level in the hierarchy to provide coordination information to roles at a

lower level in the hierarchy. This coordination information is communicated among

roles by way of two way handshake message mechanisms.

For example, within the sensing region consisting of a sensing coordinator and

several sensing collaborators, bidirectional communication capability among them

is necessary. This is required in order to exchange both the sensing data (S −

DATA/S−DATA−ACK) and coordination control information (S−SCHED/S−

SCHED−ACK). The control messages, that is S−SCHED/S−SCHED−ACK,

usually include the coordination scheduling scheme for sampling and gathering sens-

ing information. The S −DATA/S −DATA− ACK message exchanges between

Sm and Sh eliminate spurious sensing events and reinforce genuine sensing events.

158

The role assignment control messages propagate a node’s capability for a particular

role by way of the role− RA message and an assignment to it by its neighbors in

the form of the role−RA−ACK message. Figure 4.4 shows such an assignment for

all the roles in the hierarchy. The query for a route to a destination is done among

forwarders and routers by way of the Route–Request (RREQ) and Route–Reply

(RREP) handshake. Similarly information about new routes is forwarded between

the dominating router and the forwarders by way of the Route–Info (R − INFO)

and the Route–Info–Ack (R − INFO − ACK) handshake. The sink or the base

station queries is responded to by the sensing coordinator (Sh) by way of the Data-

Aggregation-Request/Reply (DAG− REQ/DAG−REP) handshake.

The role-coordination graph (RCG) is thus the message level abstraction of the

coordination mechanism among worker and manager roles organized in a hierarchy.

This message-based coordination detail provides insights into the ramifications of

a particular topological organization of roles in the network. With energy being

the most important constraint in ad hoc wireless sensor networks, an empirical

evaluation of the control overhead of mapping different role-graph configurations

is possible. A prior analysis using this technique will serve to identify practical

application requirements vis-a-vis the actual node deployment in terms of network

size and capabilities. In the next section, we analyze generic rules for several roles.

4.2.6 Rules

The topological assignment of roles to a single node or a group of nodes is done

by iteratively identifying the best node(s) among competing nodes in terms of re-

sources needed to execute a role. We abstract the assignment or selection of roles

by way of rules. We denote rule
[1...l]
role as the set of l rules used to assign a role. Rule

159

sets select nodes per specified role-resource requirements. Thus rules involve quan-

titatively qualifying requisite resource capabilities in terms of node connectivity,

energy, sensors and sensing redundancy for a specific role. The assignment of roles

by way of rules is respectively defined as an explicit ordered list of desired resource

requirements. We propose the following rules for the elementary roles discussed

earlier:

• Sensor: We select the best node(s) for the sensor role using the following rules:

(1) Sensor type, (2) Desired event detection tolerance (that is the number of

sensors reporting the event), (3) Maximum energy available, (4) Nominal node

degree (1 or more), and (5) Higher node ID.

• Forwarder: We select the best node(s) for the forwarder role using the fol-

lowing rules: (1) Non-redundant connectivity to disjoint nodes as neighbors,

(2) Minimum distance, (3) Good link quality, (4) Maximum energy available,

and (5) Higher node ID.

• Router: Among forwarders that connect two disjoint neighbors, we select the

one that has connectivity to the maximum number of forwarders for the router

role using the following rules: (1) Is a forwarder, (2) Maximum connectivity

to disjoint forwarders, (3) Minimum hop connectivity, (4) Maximum energy

available, and (5) Higher node ID.

• Processor: Among certain nodes that detect or sense the desired event and

their k-hop neighbors (k ≤ 3) that have free processing resources, we select

the best nodes for the processor role using the following rules: (1) Available

processor, (2) Higher processing speed, (3) Maximum energy available, (4)

Requisite k-hop connectivity with roles like {S, C}, and (5) Higher node ID.

160

• Cacher: Among certain nodes that sense or detect the desired event and their

k-hop neighbors (k ≤ 3) that have free memory storage, we select the best

nodes for the processor role using the following rules: (1) Available storage

space, (2) Storage type, (3) Maximum energy available, (4) Requisite k-hop

connectivity with roles like {S, C}, and (5) Higher node ID.

• Transmitter/Listener: Among nodes that assume roles like S, C, P , we need

to select roles like T , L for scheduled communication among other roles using

the following rules: (1) Is assigned a sensor, cacher, or processor role, (2)

Maximum energy available, (3) Requisite k-hop connectivity with roles like

{F,R}, and (4) Higher node ID.

In practical role configurations, we usually formulate complex roles and assign

these to nodes instead of the elementary roles. This is because the elementary roles

when assigned to nodes would require additional manager roles for coordination

and management. Such an approach is overkill and is only used to elicit resource

requirements for complex roles. It is also used to calculate the load imposed by a

complex role on a node. This is accounted for as energy dissipated for respective

combination of elementary roles for the time the role was assigned to the node.

These rules have to be applied recursively to remove redundancy and to achieve

a minimum possible number of dominators that have the best resources to assume

appropriate roles. Nodes that are not assigned any role in this selection process

sleep to save energy.

4.2.7 Role Assignment (RA)

We extend the CDS based domination and elimination technique to have a

generic scheme for recursive role assignment. This technique was discussed in chap-

161

ter 3 and was used to architect a role-based hierarchical organization (RBHSO).

Following are the essential steps of the role-assignment process:

1. The role-assignment process starts by having sensors interact with others only

in their local vicinity. This step is the neighbor discovery process and is used

to identify the 1-hop neighbors for any node.

2. Each node performs very simple tasks such as maintaining and propagating

information about relevant resource qualities. In this step, a node announces

its initial capability for a certain role or roles by evaluating their respective

rules and it awaits similar role announcements from its neighbors.

3. A greedy and recursive selection of the dominating nodes for a certain role with

corresponding elimination of redundant nodes using the same rules results in

the mapping of appropriate resource-specific roles at each iteration.

z

ev

u v

y

w x

t

Figure 4.5: Data Aggregation: Example network for role assignment.

For example, in order to map a data aggregation service to a network of 7

sensor nodes in the vicinity of an event ‘ev ’ with node z as the sink shown in

figure 4.5, the first step results in nodes exchanging their resource capabilities.

With this exchange, nodes come to know of their 1-hop neighbors and their resource

capabilities. They also come to know who is in proximity to the event ev and/or the

162

sink. In figure 4.6, we consider snapshots of the step-by-step mapping of elementary

roles in the following order: F → S → (C, P) → (B,L). With the knowledge of

complex role formulation in terms of elementary roles, the final step would involve

assigning Sm, Sh, F , and R.

(a)

evS

C

B L

S

C

B L

F

C P

S

C P

F

R

F

C P

R

F

B L

y

w xu v

z

t

(d)

ev

S

C

S

C

F

C P

FF

C P

S

C P

F

y

w

z

u v

t

(c)

x

evS

S

F

S

F

F F

y

w x

t
z

u v

(b)

ev F F

F

F

y

w x

z

u v

t

Figure 4.6: Role assignment snapshots: (a) Forwarder, (b) Sensor, (c) Cacher,
Processor, (d) Beaconer, Listener, and Router.

Depending upon which role is selected and/or eliminated, it can be seen from

figure 4.7 that the underlying topological organization adapts to changes in roles

assumed by nodes. Thus for a tree-based organization shown in figure 4.7(a), nodes

v, t, and z perform additional tasks compared to nodes u, y, w, and x. In other

words, although nodes u, v, and y detect an event ‘ev ’, only v takes an additional

responsibility of forwarding the combined sensing data to its parent t and then

eventually to sink z. Another case could be where all the nodes (except node u and

sink node z) share equal responsibilities of aggregating and forwarding sensing data

resulting in a chain-based organization shown in figure 4.7(b). Node u could also

rotate responsibilities with y to perform network load balancing. This would result

in the reorganization of the chain as y → u→ v → · · · → z. In a cluster (or CDS)

based organization shown in figure 4.7(c), nodes v and t perform additional tasks of

163

cluster coordination and inter-cluster routing. Since the link between v and t serves

as a critical backbone for communication among nodes 2-hop apart, load balancing

is limited to controlling cluster membership and coordination.

(c)

ev

u v

y

w x

t
z

ev

u v

y

w x

t
z

ev

u v

y

z
t

w

x

(a) (b)

Figure 4.7: Sensor network organizations: (a) Tree, (b) Chain, and (c) Cluster (or
CDS)

4.3 Domain specific models

To accommodate generic as well as specific domain dependencies, we propose

models that incorporate these observations and simplify empirical evaluations of

several role compositions for a particular service. We have identified three such

models in the subsequent subsections.

4.3.1 Concave Role Service Utility (RS–∆U) Model

The capability of both the network and the domain in which it is deployed to

meet requirements specified by sensor network applications is a hard problem to

solve. In other words, it is technically not possible for any ad hoc network to keep

itself current with the available resources at any point in time. As discussed earlier

164

in section 4.1, it is not recommended to pursue an approach toward collecting,

maintaining, and forwarding such global network information to the remote base

station where services are usually requested from. This limitation complicates the

problem of role assignment wherein the initial seed to the algorithm, that is the

number of roles needed to execute the service, is missing. With the initial input

to the role assignment algorithm missing, the convergence of the heuristics that

optimize to meet an application requirement is not limited. The role-assignment

heuristic thus needs to play with an artificial limit on the number of iterations.

At times such an artificial limit may result in suboptimal assignment of roles to

nodes in the network. It also makes the end-to-end performance evaluation of

service delivery unreliable. With a change in the deployment domain, the solution

becomes domain dependent and experimental. We propose a domain dependent

model that approximates the resource requirements for meeting a specific service

metric in terms of roles. With any change in domains, the URAF framework needs

to update this model and the remaining components can remain unaltered.

Se
ns

in
g

C
ov

er
ag

e
(%

 C
SD

)

3 6 9 12 15 18

Allocated Sensing Resources (# sensors)

21 24 27 30 33

20%

40%

60%

80%

100%

Gradient

Figure 4.8: Marginal benefit to applications desiring sensing coverage

165

From the classical economic theories for resource allocation, it is observed that

computing optimal resource allocations from sets of utility functions or service qual-

ity estimates is a linearly constrained non-linear optimization problem. In order

to make the problem tractable, economic frameworks such as Game Theory and

Mechanism Design constrain these utility functions to be concave. When applied to

wireless sensor networks, it means that the marginal benefit of assigning additional

resources e.g. sensors, network links, to a role configuration declines steadily and/or

approaches zero: adding resources beyond some point does not result in meaningful

improvement of service quality. From figure 4.8, we can see that the sensing capa-

bilities (measured in terms of sensing coverage or cumulative sensing degree) does

not really increase beyond a certain threshold. In the hypothetical concave domain

model for sensing coverage utility versus the number of sensors, we see that to get

100% coverage, the number of sensor nodes needed is approximately 14. Similarly,

one can develop models for communication latency versus number of hops, which

may help in identifying the number of forwarders or routers needed to route data

to the sink.

4.3.2 Role Energy (R–∆E) Model

The role-energy model abstracts the domain-specific energy dissipation of ele-

mentary and complex role executions within a single node. With the role-based ab-

straction incorporating the in-network locality-based relationship between resources

and tasks it becomes necessary to calculate the load imposed by a role on a node

per unit time in terms of energy. In other words, the role assumed by node v at

any time t (represented here as rolet(v)) can be perceived as the state of a node at

time t.

166

Energy

m

S
h

���
���
���
���
���

���
���
���
���
���

M

���
���
���
���
���

���
���
���
���
���

P

���
���
���
���
���
���

���
���
���
���
���
���

S

����
����
����
����
����

����
����
����
����
����

L

����
����
����
����
����
����

����
����
����
����
����
����

T

����
����
����
����
����
����

����
����
����
����
����
����

OFF

ON

Role Complexity

Elementary Roles Complex Roles

S

Figure 4.9: Hypothetical energy profile of various roles.

In order to profile the energy usage for each role, we need to analyze the local

resources used by a role on a node including energy for performing a certain service.

In order to account for unused resources by a role, we need to consider the fact

that in smart low power sensor devices, it is possible to put predominantly unused

resources into a low power mode where they draw less current. We account for

temporary use of extra resources by accommodating them as relevant complex roles

running at low power for that time. Thus complex roles can be used to account for

additional power draw for both the used and unused resources for the respective

time intervals.

We assume an energy model that can provide us with the cost per unit time

for using the various sensor node actions (Shnayder et al., 2004). Thus, an energy

model could specify the following costs:

1. con: Cost of turning ON a sensor node

2. coff : Cost of turning OFF a sensor node

167

3. cidle: Cost of an idle sensor node

4. cs: Sensing Cost

5. cp: Processing Cost

6. cm: Memory storage Cost

7. ct: Transmission Cost

8. cl: Listening or receiving Cost

With this cost model, we can easily approximate the energy profile of various

roles. A hypothetical energy profile is shown in figure 4.9.

4.3.3 Role Execution Time (R-∆T) Model

The role-execution time model determines the approximate time needed for a

standalone task to execute on an idle node. Thus, an execution-time model could

specify the following ∆Ts for the elementary roles:

1. ∆T on : Time interval for turning ON a sensor node

2. ∆T off : Time interval for turning OFF a sensor node

3. ∆T s : Time interval for detecting an event

4. ∆T p : Time interval for processing data in bits/second at a specific CPU clock

rate (in Mhz)

5. ∆Tm : Time interval for storing data in flash memory in bytes/second

6. ∆T t : Time interval for transmitting data on the radio transceiver at a specific

bit rate

168

Total Service Polling Period

T Texecution Tfeedback

Trole−max

Service Control Application Services Service Results

assignment

Figure 4.10: Role Execution Time Model: Application service schedule

7. ∆T l : Time interval for listening to or receiving data on the radio transceiver

at a specific bit rate

Since complex roles are assigned to nodes in the network, one can determine

the number of slots needed to execute such a role on a node. The determination

of the maximal number of slots needed for any role, sets the time slice for role

execution, role assignment and role feedback. This limits the minimum interval

an application can poll the network for services such as sensing, monitoring, and

tracking. Figure 4.10 shows the determination of the service scheduling period

based on the maximum time required for any standalone complex role (designated

here as ∆T role−max) to execute on a node.

4.4 Design of the framework

In this section, we discuss the architecture of the role assignment framework as

it unites the several aspects of the role-based abstraction along with the domain

specific models discussed earlier. The model allows the collection and maintenance

of several task, role, and service-related metrics of a node and its k-hop neighbor-

hood, where it is recommended that k ≤ 3 to limit message overhead and memory

requirements. Such a central repository of state information and tuning interfaces

169

abstracted from specific role-abstraction levels would enable the role-assignment al-

gorithm to incorporate relevant state attributes as rules in the assignment of roles

to nodes. It would also allow roles to control or tune to the desired behavior in

response to undesirable local node/network events. This is known as role load bal-

ancing and it is pursued as role reassignment to repair role failures. We will discuss

role failures and role load balancing later in this section.

4.4.1 URAF architecture overview

Figure 4.11 shows the high level design architecture of the unified role-abstraction

framework (URAF) in conjunction with a middleware (RBMW) that maps appli-

cation specified services and expected QoS onto an ad hoc wireless sensor network

with heterogeneous node capabilities.

The design of the framework is modular such that each module provides higher

levels of network abstractions to the modules directly interfaced with it. For ex-

ample, at the lowest level, we have API’s that interface directly with the physical

hardware. The resource usage and accounting module maintains up-to-date in-

formation on node and neighbor resource specifications and their availability. As

discussed earlier, complex roles are composed of elementary roles and these are ex-

ecuted as tasks on the node. The state of the role execution at any point in time

is cached by the task status table for that complex role. At the next higher ab-

straction, we calculate and maintain the overall role execution time and the energy

dissipated by the node in that time. The available energy is thus calculated and

cross checked against remaining battery capacity. There is another table that mea-

sures and maintains the failure/success of a role for every service schedule or period.

This is used to calculate the load imposed by the service at different time intervals.

170

R
o

le
−

b
a

se
d

 M
id

d
le

w
a

re

o
r

F
a

ilu
re

M
e

tr
ic

s

BatteryR
e

so
u

rc
e

U
sa

g
e

A
cc

o
u

n
tin

g

T
a

sk

S
ta

tu
s

R
o

le

E
xe

cT
im

e
S

ta
te

Avail.
Energy

�
�
�

�
�
�

�
�
�
�����

��������

�
�
�

�
�
�

�
�
�
�����

��������

��
��
��

��
��
��

�
�
�
�����

����������

��
��
��

��
��
��

�
�
�
�����

����������

�
�
�

�
�
�

�
�
�
�����

��������

Domain−specific Role−Energy Model

Performance
Role

Parameters
Config

Role
Assignment Algorithms

Protocols

Role−Service Load Balancing

Tx/Rx Sense (S) Cache (C)Actuate (A) Process (P)

Sensor Network
Applications/ServicesMonitorEvent

TrackEvent

NetworkStatus

Multi Service
Load Balancing Concave Role−Services Utility Model

Domain/Application Specific

Elementary
Tasks/Roles

Radio Sensors Actuators Processor Memory

{Service, QoS}

R
o

le
 (

n
o

n
)P

e
rf

o
rm

a
n

ce

Heterogeneous
Hardware

U
n

ifi
e

d
R

o
le

−
A

b
st

ra
ct

io
n

 F
ra

m
e

w
o

rkj k

ON/OFF

S
h

a
re

d
 C

ro
ss

−
L

a
ye

r
N

e
tw

o
rk

 S
ta

tu
s

Service Load Metrics

Role Execution State Machine and Scheduler

Coordinator Sink Gateway Router Tracker

Complex Roles with Coordination Graph

Services Scheduler and State Machine

{Service, Utility}

Roles Rules

Figure 4.11: Design architecture of the Unified Role Assignment Framework

171

Role load balancing protocols try to balance the load across nodes in the network

considering the energy dissipated per unit time by a node across services. Role load

balancing protocols kicks off the role-assignment protocol to reassign roles in the

network for balancing the load and avoiding hot spots. Similar strategies apply for

multi-service load balancing where services are run for uniform energy usage. The

domain specific RS–∆U model provides initial inputs for the number of roles needed

to meet an application requirement. With eventual degradation of the overall net-

work lifetime, the model serves to provide the minimum number of roles needed to

run the service on a best-effort basis.

The role based middleware layer can be implemented on the end user or op-

erator side of the network. In other words, the domain specific model for service

performance in terms of specific role formulations should be maintained and up-

dated by the operator or the client of the network (i.e. the base station or the sink).

A minimal server side of the RBMW interface can reside on every node in the ad

hoc wireless sensor network. The server side interface is responsible for keeping the

client up-to-date with how a service is performing in the network with a specific

role composition that is currently being executed by a set of nodes in the network.

Depending upon whether the network currently is in final deployment stage or pre-

liminary experimental stages, the server nodes can be configured to log messages

to the client (or the base station) at greater or minimal debugging severity levels

respectively. The multi service load balancing component of RBMW could reside

anywhere in the network. In other words, this component can be executed by spe-

cialized roles in the network that act as higher level managers for a specific region

that is involved with executing multiple services. A minimal server side interface of

this component can be implemented by appropriate worker nodes that are assigned

172

multiple roles for executing multiple services.

The URAF should be implemented completely by nodes in the network. To

minimize the complexity of translating {Service, Utility} request from the RS–

∆U model into appropriate roles and rules, the URAF framework can combine

the model, the request specification, and the roles/rules into appropriate domain-

specific service templates that maintain a mapping of QoS to utility to an appro-

priate set of roles and rules that can meet the desired requirement. These three

templates, {Service, QoS} → {Service, Utility} → {roles, rules} can be comple-

mented by an internal mapping to an appropriate role-behavior template repre-

sented as role-coordination graphs (RCGs). In other words, {Service, QoS} →

{Service, Utility} → {roles, rules} → {role, RCG}. A further generalization is

possible by including a specific role-assignment strategy along with the {role, RCG}

template. In other words, role-assignment strategies for different role configurations

can be done in a different way. Similar approaches for role-reassignment protocols

for load balancing can be conceived for different role configurations or RCGs re-

sponsible for executing different services.

The operational measurements in terms of specific performance attributes across

different layers in the stack, need to be measured and maintained by node and their

neighbors uniquely for respective domains. The role energy model is also domain

specific and it depends upon the hardware platform and the composition of tasks for

a specific role. Since the simple roles are fundamental formulation of the role-based

abstraction, these do not change with time. Their respective role energy profile also

do not change with time. Hence the role energy model is the invariant that is the

same and is programmed exactly for all nodes before deployment. Depending upon

the flexibility of the high level programming language, the end programmer can be

173

init−done

DORMANT

DISABLED

ServiceControl

ServiceExecution ServiceReport

ROLE SUCCESS ROLE FAILURE

ROLE FEEDBACK

ROLE INIT

Recvd Service Request

RA Algorithm

done RA

Executing Roles

execution complete

execution incomplete

ROLE ASSIGN

ROLE EXECUTE

Turned ON

SUCCESS

Permanent Node Failure

start schedule

Initializing Role Schedule

Repair Role Failure

Idle

RA Failure

Figure 4.12: Role State Machine

given the flexibility to control role configurable parameters that are published in

the {role, rule} template. However, providing controls for role execution and its

state machine entails a higher programming complexity and domain expertise from

a programmer. Similar is the case for the procedure used to measure the operational

performance that is maintained in a cross-layer status table. With the multi domain

application of sensor networks, a minimal expectation is to have these measurement

procedures documented by a standard committee. Only domain experts or system

engineers should be given programming controls to design a modified measurement

procedure for a specific performance metric.

174

4.4.2 Role state machine

The role state machine handles the behavior of the node as it goes through the

process of executing a service through a periodic service schedule that consists of

service feedback, service execution, and service reporting states. Within service

execution, nodes formulate an application scheduling interval. In this interval, roles

are initialized, assigned, and executed. The role execution stage then enters the

feedback stage where the success or failure is reported at the time of service control.

If the failure is irreversible or permanent, then the role state machine is permanently

disabled else a repair is initiated which again kicks off the role-assignment process.

If there is a role-assignment failure then the node decides to gracefully eliminate

itself from participating in service execution and the role state machine transitions

to the dormant state. Figure 4.12 shows the generic role state machine for any

complex role that is to be executed as part of some service.

4.4.3 Role Failures

A wireless sensor network can be subject to several node or network variabilities.

Some of these variabilities are temporary and these are usually caused by changes

in the environment and/or network conditions. Of these temporary node/link fail-

ures, some of them may become permanent. Additionally, the software that guides

the behavior of the node executing a particular role for a certain service has several

constraints and dependencies. Mostly, constraints that are due to local state de-

pendency among neighboring roles are usually temporal, spatial, and topological in

nature. For example, a dependent role can fail to share vital state information with

its dominating (or peer) role within a certain time duration. This failure, though

local, can affect other dominating roles at a higher level in the hierarchical role

175

(b)

Level 0 role (per node)

Redundant Role

Level 1 role (per subteam or subgroup)

Level 2 role (per team or a group)

subteam #1

subteam #4

subteam #2
subteam #3

Team or group

(a)

AND−combination

OR−combination
Reflective Dependency

Directed Dependency

r111
r112

r113

r121 r122

123r
r132

r131

r13

r1

r11 r12

Figure 4.13: Monitoring Role failures: (a) Hierarchical Role-network organization
and (b) Dominating roles acting as monitors for roles at lower level.

organization of a certain service. In the worst-case scenario, if the failure cannot

be contained, its propagation can bring the whole service to a virtual halt.

Figure 4.13(a) shows an example mapping of a certain application service to a

hierarchical role-based network organization. Figure 4.13(b) shows how dominating

roles at a higher level in the hierarchy can act as monitors (Tambe, 1997) to track

a groupmate’s role performance or infer their role non-performance. For example,

roles at a higher level can not only predict energy consumption of roles below but

also act as arbitrators for fairness. However, it should be noted that accurately

determining role performance is not easy as it is partly domain dependent and it

may involve sharing a lot of contextual state information among roles. Depending

upon the application requirements, the advantages of making a quick decision in

a dynamically changing wireless sensor network based on approximate monitoring

176

quiet outweighs the overhead of delaying a decision based on the determination of

an accurate value.

Figure 4.13(b) shows roles organized in terms of their dependencies. Intuitively,

role failures in such an organization can occur in the following scenarios:

1. In an AND-combination where any sensor or subgroup fails in its role. For

example, if one of the node(s) executing r11, r12 or r13 fails, then the role r1

fails.

2. An OR-combination when all the group members are role-dependent on a

single individual or a single subgroup. For example, if roles r111 and r113 both

fail then role r11 will fail. The role r112 is a redundant role and its failure will

not affect the success of role r11. However, role r112 can serve as a replacement

when one of its equivalent roles r111 or r113 fail.

3. In a role dependency failure, where rolej is dependent on rolei (rolei → rolej),

failure of rolei would mean that rolej cannot execute. For example, if role

r131 fails, then role r13 cannot execute. Also, since role r13 is also similarly

dependent on role r132, a candidate role say, rx has to be determined such

that r132 → rx → r13.

In the all these scenarios, a group or subgroup reconfiguration may be clearly

warranted. This reconfiguration may involve determining and announcing candi-

date nodes for critical role substitution and deleting non-critical, conflicting, and

redundant roles depending upon desired application requirements. A reactive ap-

proach where non-performing roles detect their failures and also determine and

announce a candidate for role substitution would be preferable to a proactive one

where neighbors periodically detect and correct each other’s failures. Also, care

177

has to be taken to ensure that repairs or new role assignments for critical roles be

confined to the local context of individual roles or sensors to avoid any global side

effects.

4.4.4 Role reassignment and load balancing

Load balancing is pursued by the following two techniques. Both of them result

in a repeated execution of the role-assignment algorithm. Hence, repetitive load

balancing might be costly in a resource-constrained wireless sensor network and at

times may outweigh the savings achieved by load balancing.

1. Pairwise Local Neighborhood Role Exchange: In this scheme, neighbors ex-

change roles according to their capabilities.

2. Pairwise Local Neighborhood Role Evolution: If the first scheme fails to find

a replacement neighbor for a load intensive role, the node splits the complex

roles into several simpler roles and role exchange is then pursued among nodes

in the k-hop vicinity. A similar approach applies where disparate roles merge

into a complex role and is assigned to the lowest loaded neighbor.

4.4.5 Role assignment strategies

The abstraction of services and the mapping criteria to nodes in terms of roles

and rules respectively lends the URAF framework to support a variety of other

role-assignment strategies. Here are the following role-assignment strategies:

1. Redundant (or naive) role-assignment technique: In this technique, given the

number of roles and the geographic location where they should be assigned,

178

the strategy is to allow nodes to take over roles without any further arbitra-

tion. This algorithm is quite fast as it converges in O(1). However, it is not

guaranteed that it achieves the requisite service performance. Usually this

technique should be used to compare the performance of other RA strategies

at various points in the network lifetime.

2. Greedy recursive dominating set based reduction technique: We have used this

technique to organize a randomly deployed sensor network into a hierarchical

role-based organization. Typically, such a technique should be used right after

neighbor discovery and network (re)deployment. With such an organization,

the network already has a list of dominators for assignment to load intensive

roles. The candidate set for service-based role assignment is thus reduced and

the role-assignment algorithm can converge (if possible) in fewer iterations.

3. Utility based role assignment by way of ranking: Given a global objective func-

tion that has to be optimized by a sensor network, suitable local role-utility

functions are designed such that each sensor while “selfishly” optimizing its

own local role-utility functions leads to sensors assuming roles that when col-

laboratively executed results in optimizing the desired global objective. A

sensor’s utility for a role can in fact be affected by the overall assignment of

roles to sensors. The state-of-the-art for capturing inter-related utilities of

this kind is the “Markov Decision Process”, which is somewhat difficult to

solve quickly enough for dynamic networks such as WSNs (especially when

sensors have partial observability about the global network conditions are

considered). Optimal role-assignment solutions that require higher overall

optimal utility is impossible. This problem is similar to optimal schedul-

ing. Usually utility based role assignment algorithms are modeled on Game

179

Theoretic and/or Mechanism design based strategies that require that Nash

Equilibrium is achieved at the termination of the algorithm, where there is no

role that a node can assume to maximize its utility. A common problem with

dynamic role assignment is that small changes in utility estimates can cause

roles to be reassigned very frequently, often in an oscillating fashion. Thus,

the solution is to explicitly consider the cost of role transition in the utility

computation, which will tend to induce a degree of hysteresis. This is usually

done by adding a fixed amount of utility to the sensor retaining its current

role.

4.5 URAF applications

4.5.1 Multi-objective Role-Assignment: MERA

An optimal algorithm for RA needs to map the services in such a way that

it can simultaneously meet a number of objectives. For energy-constrained sensor

networks, the most important objective is to have a minimum energy role assign-

ment (MERA). As roles could be mapped to a single or a group of nodes, the

MERA problem essentially translates to the minimization of the number of roles

that are correspondingly being mapped to a topological organization that not only

minimizes the number of flows among the roles but also leads to shortest paths

communication among them. In other words, the solution to the MERA problem

depends upon the following factors:

1. Minimum number of roles for a service,

2. Minimum number of nodes per role for a service,

180

3. Minimum dependency among roles that results in minimizing communication

flows,

4. Shortest path connectivity among roles,

5. Minimum number of messages exchanged during any RA round, and

6. Minimum number of such RA rounds per service mapping.

The MERA problem is a MCDS problem where a set of dominators with desired

properties need to identified in such a way that they form a minimum set. Also

the dominators need to form a minimum connected backbone such that the non-

dominator nodes are having at least one dominating node as their neighbor. Guha

and Khuller (Guha and Khuller, 1996) firstly used the MCDS problem in general

graphs to model the problem of computing a minimum size virtual backbone in

heterogeneous wireless networks. Since a smaller size virtual backbone is expected

to have less control overhead in terms of messages and reduced interference, the size

of the CDS is considered as one of the major quality criteria in the literature. Since

computing the MCDS is a well-known NP-hard problem, a combinatorial scheme

that solves the MERA problem distributively is difficult and an optimal solution to

this problem is NP-complete.

A centralized approach that solves for this many parameters using Linear/Dynamic

Programming would anyways become suboptimal with minor changes in network

dynamics. In order to adapt to these changes, such a centralized algorithm would

have to be repeated a number of times thus making it prohibitively expensive both

in terms of the role-reassignment overhead and its cost to gather updated network

state information. Moreover, the problem of optimal role-assignment to meet de-

sired service quality (QoS) is a problem that is domain specific and it needs detailed

181

and specific inputs in terms of service specifications that specify some of the above

factors. In other words, factors 1, 2, and 3 can be generalized depending upon the

type of service, its domain, and the network deployment on which it runs. Some

or all of these can be specified by the base station application as inputs to the

distributed RA algorithm. Thus, nodes need not waste energy solving for these

parameters using partial network information.

In a random sensor network deployment, it is not necessary that having a min-

imum number of roles assigned to a minimum number of sensor nodes would guar-

antee minimization of the total energy expended in the execution of the service. For

example, in a cluster-based organization, it is a well-known observation that having

fewer clusterheads may result in cluster members expending a lot of energy to per-

form a long-haul communication to its nearest clusterhead. Similarly, minimizing

dependency among roles would result in specialization of existing lightweight sim-

pler roles to more complex roles that are more heavy-weight in terms of energy as

they localize more tasks in their individual roles. In other words, some of these fac-

tors are in tradeoff with each other and it is difficult to find an optimal point where

they converge. Also, such a point, if it exists, would change with the dynamics of

the application and the underlying network on which it runs.

4.5.2 Energy-Latency (∆E-∆T) Minimization

The RA algorithm for ∆E-∆T minimization, though NP-complete, can be mod-

eled as follows:

Let us model a network of N nodes by an undirected graph G = (V,E), where

V is the set of nodes (vertices) and E is the set of links (edges). An edge between

host pairs (v, u) indicates that both hosts v and u are within each others wireless

182

transmitter ranges. The corresponding undirected graph also known as a unit graph,

thus has connections to hosts depending on their geographic distances.

For some node v, let us also denote R(v) as its local set of resources consisting of

er(v) its remaining energy resource, sr(v) its sensing resources, mr(v) its available

memory resources, rr(v) its radio resource, and pr(v) its processing resources; For

battery-powered sensors, use of free resources is dependent upon available energy.

Simply put, R(v) = {sr(v)∪mr(v)∪ rr(v)∪pr(v)}⋂er(v). Let us denote, rolet(v)

as the role assumed by node v at time t. As discussed earlier, a role can also be

perceived as the state of a node at time t. Finally, we denote rule
[1...l]
role as the set

of l rules used to assign a role. Rule sets select nodes per specified role-resource

requirements.

Let us consider an arbitrary service involving n nodes {1, 2, 3, . . . , n} assuming

m different roles {role1, role2, role3, . . . , rolei, . . . , rolem} in the vicinity of k hops

for a time interval ∆T and if total loadrole∆T (v) for a node v was normalized as the

use of resources (R) with respect to energy, erR∆T (v), then how does one minimize

total energy expended and execution time for a particular network service.

loadrole∆T =
R
∑

r

err∆T where r ∈ {sr,mr, rr, pr} (4.1)

⇒ loadservice∆T =
m
∑

i=1

loadrolei∆T (4.2)

∴ loadservice∆T =
n

∑

v=1

R
∑

r

err∆T (v) (4.3)

183

4.5.3 Sensor Network Optimizations

The URAF lends itself to further optimization by incorporating the following

general observations or experiences with sensor network applications. Utility-based

modeling of optimization objectives that incorporate these observations have been

considered for sensor networks by Byers and Nasser (Byers and Nasser, 2000). Simi-

lar approaches using weights and rules have been proposed in the research literature

that we discussed in section 2.4 of chapter 2.

1. Energy dissipation increases with the number of sensors participating for a

certain service. The URAF can support this in a number of ways either by

reducing the number of roles or the number of nodes per role or both.

2. Not all subsets of sensors of a given size are created equal. In other words, two

sensing regions with the same number of sensors are not necessarily equivalent

from the perspective of their sensing capabilities. A rule based upon the CSD

(Cumulative Sensing Degree) discussed in chapter 3 can be incorporated in

the selection of the sensing collaborator.

3. Not all nodes need to contribute data to the computation and therefore nodes

can conserve energy so that data aggregation can be performed over larger

periods of time. Role scheduling along with assignment of the sensor and

aggregator roles can be tweaked to meet this objective.

4. For most applications, it is not necessary to have the most highly optimized

output at a given time step. Performing a small number of high quality sensing

operations is not beneficial compared to completing a large number of com-

putations over longer time scales. Fusing data from the maximum number of

184

sensors is a short-sighted approach in a power constrained environment. All of

these can be achieved by the appropriate organization of worker and manager

roles and the relationship among them for the data aggregation service in the

role-coordination graph.

5. If a sensing region (or sector) is too large and contains many sensors, then the

communication channel used by the sector manager may become saturated,

affecting both the manager and any other local nodes that use the same chan-

nel. If the sector is too small, then track managers may spend excessive effort

sending information to different sector managers as its target moves through

the environment. The URAF can support this observation by an appropri-

ate domain specific model for the role-execution time model. This model can

make sure that complex roles involving significant coordination messages are

spread out over a longer schedule. Limiting specific role groups such as within

the sector during the role assignment process by way of rules can also support

this observation.

6. As the number of sensors (roles) in each sector increase there is a correspond-

ing marked increase in disparity of sharing responsibilities among sensors.

This is because few roles are communicating much more than their peers.

Thus, as the sector sizes scale, specialized nodes (or roles) become “hotspots”

of activity. The URAF has a domain specific role energy model that accounts

for the load imposed by a role on a node in terms of energy. The role state ma-

chine initiates the role reassignment whenever load imbalance occurs among

nodes. Limits to actionable load imbalance can be set as thresholds that act

as hysteresis to avoid repetitive role reassignment.

185

4.6 Summary: Features and Limitations

The Unified Role Assignment Framework has decomposed the problem of re-

source management into a number of sub-problems. These include role formulation

for a service, its assignment strategy in terms of rules (that are based on metrics or

utilities), its reassignment scenarios, and finally its scheduling for service execution.

The URAF abstracts away domain related dependencies, attributed largely to

the heterogeneous sensor network platforms deployed in different environments, to

domain specific models. There are models for role energy usage and the execution

time needed for it to run on a node without blocking. There is also a model that

a role designer or the network programmer may need to decide the composition

of roles for services that are to be executed by the wireless sensor network. This

model requires detailed in-field experimentation that involves measuring the service

performance with various role compositions and role node assignments.

In general, with battery powered ad hoc wireless sensor network, pursuing energy

conservation or network lifetime along with end-to-end delay are the two guiding

factors for efficiently managing network resources. The domain specific role service

utility model is therefore considered as a concave model wherein addition of extra

resources (in terms of roles) beyond a certain point is not going to give the end

user an appreciable increase in service performance (measured in terms of energy

efficiency and end-user delay). The closeness of these three models to the reality

of the domain, controls the leverage the programmer can get by using the APIs

provided by the URAF. This, along with the way the lower layers measure metrics

that are used as rules for role assignment, limit the practicality of the framework

in a real deployment.

186

Chapter 5 – Summary and Future Work

The research in wireless sensor networks is currently oriented toward a cross-

layer programming abstraction that allows programmers to perform appropriate

fine-grained or coarse-grained energy efficient resource control using expressive pro-

gramming language constructs and APIs. In that regard, we have identified the

role-based service paradigm for wireless sensor networks. The concept of roles al-

lows a programmer to deal with the assignment and scheduling of tasks to nodes

or group of nodes in the network. We have proposed the Role-based Hierarchical

Self-Organization (RBHSO) protocol as the underlying network architecture that

allows programmers to construct an application specific architecture based on ap-

propriate sensing and networking metrics. This concept of role-based organization

is then extended to provide a generic framework where domain specific properties

are abstracted away by three models: the role energy model, the role execution time

model, and the role service utility model. The service formulation in terms of roles,

its assignment, scheduling, and load balancing are further generalized by the frame-

work as programming interfaces. The language for such a programming abstraction

and the implementation of the framework (both its domain specific parts and its

generic components) are left as a software engineering exercise for the future.

The rest of the chapter is organized as follows. We summarize our RBHSO

protocol and the generic Unified Role Assignment Framework (URAF). We conclude

the chapter with a discussion on directions for future research.

187

5.1 Summary

In this section, we summarize the design philosophy and the contributions of our

role-based hierarchical self organization and the unified role assignment framework.

5.1.1 Role-based Hierarchical Self Organization (RBHSO)

The RBHSO protocol aims to implement a hierarchical network architecture

that is customized for distributed sensing applications for ad hoc wireless networks.

It considers the use of local information that is attributed in part to the limita-

tion of the distributed, ad hoc, and wireless nature of the network to implement

a CDS based algorithm that uses 1-hop neighborhood information exchanged over

three rounds of neighboring communication. Using the recursive domination and

elimination scheme based on appropriate application metrics, such as network con-

nectivity, sensing coverage, and available energy, the RBHSO algorithm forms a hi-

erarchy of selected high energy, high cumulative network and sensing degree nodes

called dominators. The RBHSO algorithm also ends up partitioning the network

into sets of sensing regions each having a set of dominators readily available for re-

gion maintenance, collaborative sensing, data aggregation and routing to a remote

basestation or neighboring sink.

Additionally, the RBHSO protocol also delineates specific tasks necessary to

perform the whole end-to-end user desired sensing service. The RBHSO protocol

identifies dominators for specific tasks such as collaborative sensing, sensing coordi-

nation, and routing. A dominator node selected for any task thus ends up playing

a certain ‘role’ in the network. The network is thus abstracted from the lowest

level of 1-hop connectivity to a higher abstraction level consisting of a hierarchy

of routers that connect regional dominators acting as sensing coordinators, which

188

in turn arbitrate the collaborative sensing and data aggregation activity among its

regional members known as sensing collaborators.

Since a hierarchical CDS based organization is similar to clustering, we com-

pare our approach to one of the popular clustering protocol known as LEACH. We

identify specific topological metrics such as size of the clusters, the number of clus-

ter heads, average distance between cluster member to its leader, average sensing

coverage (translated as sensing degree) offered by any cluster or a sensing region

(in RBHSO architecture). Simulation results confirm that an application specific

organization geared toward optimal fault tolerant sensing with reduced energy con-

sumption, require that the organization protocol be deterministic instead of being

random (as it is in LEACH).

With increasing network sizes, it became clear that traditional clustering ap-

proaches where the number of clusters is predetermined or cluster selection is based

on some random notion of ID or highest available energy does not necessary result

in a balanced organization. We realize that a balanced organization is one that

uses to its advantage the redundancy in both sensing degree and connectivity to

construct an application specific organization that can satisfy sensing requirements

while simultaneously saving redundant nodes for future use such that eventual net-

work partitioning is delayed as much as possible. In this regard, we also realize

the limitations of our RBHSO protocol that puts a threshold into the number of

rounds of message exchange along with the constraint of exchanging only 1-hop

neighbor information. These limitations constrain the ability of RBHSO protocol

to consistently form a balanced network organization for larger and random network

deployments, although it performs better, in terms of some of the metrics discussed

earlier, when compared to a randomized clustering protocol such as LEACH.

189

5.1.2 Unified Role Assignment Framework (URAF)

The QoS perception at the end user of a wireless sensor network is mainly mea-

sured in terms of sensing fidelity of the readings relayed to it and and the ability

of the network to provide these sensing and relaying services with lower power con-

sumptions. At times, depending upon the nature of the sensing application, periodic

or otherwise, delay expectations also become one of the QoS requirements. At the

end user level, the service specification is simply the type of service desired and the

varying levels of QoS, the user is willing to tolerate at different times during the

service execution. Hence, user level specifications are usually declarative. Between

the end user and the actual sensor network platform, the developer or the pro-

grammer of the sensor network desires a much higher programming expressibility

and flexibility without its accompanying programming complexity, debugging, and

maintenance. In essence, there is a need for an efficient cross-layer programming

abstraction that allows programmers to perform an appropriate level of resource

control depending upon their actual domain expertise while still being able to use

simple constructs to support energy-efficient network services. We feel that the

concept of roles allows natural and adaptively expressive constructs for a program-

mer to deal with sensor network programming according to their level of comfort.

In this regard, we extend the RBHSO protocol to develop a Unified Role Abstrac-

tion Framework (URAF) to model application services as roles performed by local

in-network sensor nodes with sensor capabilities used as rules for role identification.

We discussed the underlying networking concepts of aggregation, hierarchy, ap-

proximation, and redundancy upon which the URAF is based. We use these con-

cepts to develop generic roles for elementary tasks and use these to compose complex

roles that abstract protocol specific interactions among nodes. We abstract these

190

complex protocol task interactions in the spatial and temporal domains by way of

role-coordination graphs that highlight this need for dependency and subsequent

coordination among roles. Using an example domain-specific empirical model for

energy consumption, we profile the use of various node resources such as radio,

sensing, battery, memory, and computation for both elementary and complex roles.

This role service load profiling in terms of energy allows nodes to pursue application

load balancing by way of an adaptive assignment and scheduling of roles to nodes.

For example, with declining network resources roles become more adaptive as they

evolve toward less energetic types. In this scenario, a node attempts to extend its

remaining lifetime by arbitrating services to a much larger pool of neighbors. This

facilitates reconfiguration and the subsequent reassignment of complex roles to a

number of simpler roles.

The URAF can be implemented as a Role-based Middleware (RBMW). The

components that are part of the framework can be implemented according to the

flexibilities provided by the platform, both hardware and software. The basic design

of the components and the functionalities used and/or provided to other components

within the framework have been discussed. This allows a language designer to

support appropriate declarative constructs for roles, rules, metrics, role assignment,

and scheduling. The end user can also be given declarative constructs to specify

application service requirements and tradeoffs either as a simple or as weighted sum

of utilities and points in QoS space. The RBMW can then map these requirements

in terms of a specific assignment of roles to nodes. The RBMW can also incorporate

example load balancing strategies outlined by the framework across roles, nodes,

and services in terms of pairwise neighborhood role exchange, role mergers, and role

redirection.

191

5.2 Future work

With regard to the experiences gained while designing the solutions and under-

standing their limitations for both the RBHSO protocol and the URAF framework,

we feel the research could progress further in a number of directions:

• A hybrid hierarchical organization architecture seems relevant for very large

scale sensor networks (VLSNs). These are networks with hundreds of thou-

sands of sensors deployed in a very large area (maybe a city block or even

larger). In such an architecture, several levels of hierarchy could be organized

with dominators at alternate levels in the hierarchy acting as routers. These

routers could be organized in a tree like fashion that are rooted to the nearest

proximal sink. Dominators above such routers could be organized in a virtual

backbone and can be addressed on a larger regional basis (akin to blocks in

the city). The lower three levels of the organization could be similar to the

RBHSO architecture where sensors are grouped into sensing regions that are

coordinated by sensing coordinators, which then report to sector (or regional)

managers. In tracking applications, these managers, in addition to perform-

ing data aggregation from several regions, could also coordinate the tracking

service to several nearby sensing regions.

• Micro-economic optimization approaches such as utility based decision mak-

ing, game theory, and mechanism design are alternative role assignment tech-

niques that should be explored in detail in the context of wireless sensor

networks. In that regard, domain specific studies are needed to understand

the capability of the system to meet application objectives specified by a com-

bination of performance metrics as points in the QoS space. Multi-objective

192

specification can be generalized by a QoS specification expressed in terms of a

weighted set of utilities. Similar to the three models proposed in the URAF,

specific models should be abstracted for other QoS metrics for each domain.

The measurement of QoS metrics at different layers of the sensor network

protocol stack need to be studied and also generalized for every application

service deployed in their respective domains. These are problems that have

not been addressed within the sensor network community. One reason for

this is the lack of wide scale technology adoption both the academia and the

industry, and the absence of detailed studies for all such deployments.

• Sensor network programming is a difficult proposition if the programming

abstraction has to support both ease of programmability and the ability to

support low-level cross-layer controls for achieving the desired performance.

This is because of the multi-domain application of wireless sensor networks.

We feel the role-based service paradigm is very relevant to supporting pro-

gramming at different domain expertise levels. Future research efforts can be

directed toward developing a generic role programming language for network

abstractions that implement the URAF.

• With the availability of a multitude of sensor network platforms (both hard-

ware and software) and a variety of algorithms in the literature for efficient

performance of several sensor network services, it is unmanageable even for a

domain expert to achieve programming tractability. Under these conditions,

it is expected that for every application domain and sensor platform, a set

of templates can be standardized for a variety of network sizes and appli-

cation performance levels. This should relieve programmers of the technical

domain expertise, and will also give them a starting template of a recom-

193

mended algorithm and parameters to tweak for a specific application. Future

research efforts will be aimed at the standardization of service templates for

heterogeneous sensor networks.

• Similar to the ubiquitous Internet, the generic role-based framework could

serve as a foundation for seamless integration of large-scale sensor societies.

Several new roles could be identified that allow inter-societal service interac-

tions. For example, we could draw an analogy between sensor networks and

human society, where government officials stand for administrative roles, po-

lice for security roles, the post office for message delivery, etc. The possibilities

are endless and left only to the imagination of the researchers. Standardiza-

tion efforts are thus warranted in the WSN arena for the universal adoption

of roles.

• A long-term goal would be to provide a cross-platform portable middleware

library for a variety of sensor network applications. In the future, as major

advancements are made in the fields of circuit integration, microprocessors,

memory, and battery power, we envision that an embedded virtual machine

that interprets the role-based middleware to the native hardware language

will make our vision possible. Also, as multiple applications use a universal

language for service specifications, it paves the way for future standardiza-

tion efforts and a unified framework for concurrent application specification,

development, and deployment.

194

Appendix A – Protocol Pseudocode

A.1 Role-Based Hierarchical Self Organization

Algorithm A.1.1: NetworkInitialization(myId, radioRange)

comment:Discover node neighbors

global mySensingRange, sensingAccuracy,myCSD

(x, y)← estimateNodePosition()

sendHelloMessage(radioRange)

while waitForHelloRspTimeout()

do

if rcvdHelloRspEvt(helloRspMsg)

then nbrs[i]← getNbrFromHelloRsp(helloRspMsg)

i← i+ 1

return (nbrs,myCSD)

195

Algorithm A.1.2: markingProcess(myId, radioRange, nbrs)

comment: Localized node marking process

amIMarked← false

sendNbrInfoMsg(nbrs)

while waitForNbrInfoRspTimeout()

do

if rcvdNbrInfoRspEvt(nbrInfoRspMsg)

then nbrs[i].nbrs← getNbrNbrs(nbrInfoRspMsg)

i← i+ 1

while i > 0 & amIMarked = false

do

if canConnectTwoNbrs(myId, nbrs[i].nbrs)

then

amIMarked← true

exit

i← i− 1

return (amIMarked)

196

Algorithm A.1.3: useReductionOne(myId, amIMarked, nbrs)

comment: Reduction one to eliminate (level-0) markers

amIR1Dominating ← false

if amIMarked = true

then while i > 0 & amIR1Dominating = false

do

if myNbrsIncludeNbrsOf(i) = true

then

comment: Break tie in order:

brokeT ie← useEnergyRule(myEnergy) or

useConnectivityRule(myNodeDegree) or

useIdRule(nbrId)

if brokeT ie = true amIR1Dominating ← true

exit

i← i− 1

if amIR1Dominating = true sendR1InfoMsg(nbrs)

return (amIR1Dominating)

197

Algorithm A.1.4: useReductionTwo(myId, amIR1Dominating, nbrs)

comment: Reduction two to eliminate level-1 dominators

amIL2Dominating ← false

if amIR1Dominating = true

then while i > 0 & amIR2Dominating = false

do

if myTwoNbrsIncludeNbrsOf(i) = true

then

comment: Break tie in order:

brokeT ie← useEnergyRule(myEnergy) or

useConnectivityRule(myNodeDegree) or

useIdRule(nbrId)

if brokeT ie = true amIR2Dominating ← true

exit

i← i− 1

if amIR2Dominating = true sendR2InfoMsg(nbrs)

return (amIR2Dominating)

198

Algorithm A.1.5: domSetReduction(myId, radioRange, nbrs)

comment:Dominating set reduction process

amIDominating ← false

if nbrs not = 0

then amIMarked← markingProcess(myId, radioRange, nbrs)

if amIR1Dom = true

then amIR1Dom← useReductionOne(myId, amIMarked, nbrs)

if amIR1Dom = true

then amIR2Dom← useReductionTwo(myId, amIR1Dom, nbrs)

if amIR2Dom = true

then

amIDominating ← true

comment: Send Domination Info to Neigbors

sendDomInfoMsg(amIDominating, nbrs)

return (amIDominating)

199

Algorithm A.1.6: amIProbableSensorCoordinator(myId, nbrs)

comment:Algorithm to select among dominators a sensing coordinator

amICoordinator ← false

amIDominating ← domSetReduction(myId, radioRange, nbrs)

if amIDominating = TRUE

then while i > 0 & amICoordinator = false

do

if haveNbrsAsDominators(i) = true

then

comment: Break tie in order:

brokeT ie← useEnergyRule(myEnergy) or

useCumulativeSensingDegreeRule(myCSD) or

useIdRule(nbrId)

if brokeT ie = true amICoordinator ← true

exit

i← i− 1

if amICoordinator = true

then

comment: Send Sensing Coordination Info to Neighbors

sendScoordInfoMsg(amICoordinator, nbrs)

return (amICoordinator)

200

Algorithm A.1.7: formSensingZone(myId, nbrs)

comment: Procedure to form sensing zones

amICoordinator ← amIProbableSensorCoordinator(myId, nbrs)

solicitMembersForSensingZone(myId,myCSD)

if no members solicited

then joinNearestSensorCoordinator(myId)

if sensing zone members less than specified minimum membership

then

findNeighboringSensingZone()

if found neighboring sensing zone

then mergeWithNeighboringSensingZone()

else dissolveSensingZone()

if I am still orphan

then joinAnyNeighboringSensorCoordinator()

or joinAnyNeighboringSensingZoneMember()

201

Algorithm A.1.8: main(myId, nbrs)

comment:Main RBHSO procedure

main

for each sensor ∈ S

do

local amImarked, amICoordinator

local currentHierarchyLevel, LevelsMarked

amImarked← false

amISensorCoordinator ← false

myNeighbors← NetworkInitialization(myId, radioRange)

myCSD ← estimateCumulativeSensingDegree()

currentHierarchyLevel← 0

markme← markingProcess()

currentHierarchyLevel← 1

while I do not get the same set of dominating neighbors

do

markme← domSetReduction()

if markme == true

then LevelsMarked[currentHierarchyLevel]← true

if currentHierarchyLevel == 1

then formSensingZone()

currentHierarchyLevel← currentHierarchyLevel + 1

202

References

T. Abdelzaher, B. Blum, Q. Cao, et al. EnviroTrack: Towards an Environmental

Computing Paradigm for Distributed Sensor Networks. In ICDCS, Tokyo, Japan,

March 2004.

F. Adelstein, G. Richard, and L. Schwiebert. Building dynamic multicast trees in

mobile networks. In ICPP Workshop on Group Communication, pages 17–22,

September 1999.

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless Sensor

Networks: A Survey. Computer Networks (Elsevier), March 2002.

A. D. Amis, R. Prakash, T. H. P. Vuong, and D. T. Huynh. Max-Min D-Cluster For-

mation in Wireless Ad Hoc Networks. In Proceedings of IEEE INFOCOM’2000,

Tel Aviv, March 2000.

V. Annamalai, S. K. S. Gupta, and L. Schwiebert. On tree-based convergecasting

in wireless sensor networks. In IEEE Wireless Communications and Networking

Conference, volume 3, pages 1942–1947, March 2003.

D. J. Baker and A. Ephremides. The Architectural Organization of a Mobile Radio

Network via a distributed algorithm. IEEE Transactions on Communications,

COM-29(11):1694–1701, November 1981.

203

A. Bakshi, V. Prasanna, J. Reich, and D. Larner. The Abstract Task Graph:

A methodology for architecture-independent programming of networked sensor

systems. In Workshop on End-to-end Sense-and-respond Systems (EESR’05),

2005.

A. Ballardie, P. Francis, and J. Crowcroft. Core Based Trees (CBT). In ACM

SIGCOMM, pages 85–95, September 1993.

L. Bao and J.J. Garcia-Luna-Aceves. Topology Management in Ad Hoc Networks.

In 4th ACM International Symposium on Mobile Ad hoc Networking and Com-

puting (MOBIHOC 2003), Annapolis, MD, USA, June 2003.

G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice

Hall, 1999.

M. Bhardwaj and A. Chandrakasan. Bounding the Lifetime of Sensor Networks via

Optimal Role Assignments. In INFOCOM, 2002.

S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruenwald,

A. Torgerson, and R. Han. MANTIS OS: An embedded multithreaded operating

system for wireless micro sensor platforms. Mobile Network Applications, 10(4):

563–579, 2005.

U. Bischoff and G. Kortuem. A state-based programming model and system for

wireless sensor networks. In Proceedings of the 5th International Conference on

Pervasive Computing and Communications, 2007.

L. Blazevic, L. Buttyan, S. Capkun, S. Giordano, J. Hubaux, and J. Le Boudec.

Self-organization in mobile ad-hoc networks: the approach of terminodes. IEEE

Communications Magazine, 39(6):166–174, June 2001.

204

B. Blum, P. Nagaraddi, A. Wood, T. Abdelzaher, S. Son, and J. Stankovic. An

Entity Maintenance and Connection Service for Sensor Networks. In MobiSys,

San Francisco, CA, May 2003.

P. Bonnet, J. Gehrke, and P. Seshadri. Querying the physical world. IEEE Personal

Communications, 7(5):10–15, 2000.

C. Boonthum, I.B. Levinstein, S. Olariu, L. Wang, and Q. Xu. Assurance-aware

Self-organization of Sensor Networks. In Proceedings of the IASTED International

Conference on Networks and Communication Systems (NCS-2006), Chiang Mai,

Thailand, 2006.

C. Borcea, C. Intanagonwiwat, P. Kang, U. Kremer, and L. Iftode. Spatial program-

ming using smart messages: Design and implementation. In Proceedings of the

24th International Conference on Distributed Computing Systems (ICDCS’04),

2004.

S. C. Botelho and R. Alami. M+: a scheme for multi-robot cooperation through

negotiated task allocation and achievement. In Proceedings of the IEEE Inter-

national Conference on Robotics and Automation (ICRA’99), pages 1234–1239,

1999.

A. Boulis, C.-C. Han, and M. B. Srivastava. Design and implementation of a

framework for efficient and programmable sensor networks. In Proceedings of

the 1st International Conference on Mobile Systems, Applications and Services

(MobiSys’03), pages 187–200, 2003.

D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In Pro-

205

ceedings of the 1st ACM International Workshop on Wireless Sensor Networks,

pages 22–31, 2002.

R. Brooks, P. Ramanathan, and A. Sayeed. Distributed target classification and

tracking in sensor networks. In Proceedings of the IEEE, volume 91, pages 1163–

1171, August 2003.

N. Bulusu. Self-Configuring Localization Systems. PhD thesis, University of Cali-

fornia, Los Angeles (UCLA), 2002.

J. Byers and G. Nasser. Utility-based decision-making in wireless sensor networks.

In Proceedings of the 1st ACM international symposium on Mobile ad hoc net-

working and computing, pages 143–144, 2000.

M. Ceriotti, L. Mottola, G. Picco, A. Murphy, S. Guna, M. Corrá, M. Pozzi,

D. Zonta, and P. Zanon. Monitoring heritage buildings with wireless sensor

networks: The Torre Aquila deployment. In Proceedings of the 8th International

Symposium on Information Processing in Sensor Networks (IPSN’09), 2009.

H. Chan and A. Perrig. ACE: An emergent algorithm for highly uniform cluster

formation. In Proceedings of the 1st European Workshop on Wireless Sensor

Networks (EWSN), pages 154–171, 2004.

C. Chang and H. Chang. Energy-aware node placement, topology control and mac

scheduling for wireless sensor networks. Computer Networks: The International

Journal of Computer and Telecommunications Networking, 52(11):2189–2204,

2008. ISSN 1389-1286. doi: http://dx.doi.org/10.1016/j.comnet.2008.02.028.

B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An Energy-Efficient

206

Coordination Algorithm for Topology Maintenance in Ad hoc Wireless Networks.

In Proceedings of MobiCom 2001, pages 70–84, July 2001.

G. Chen, F. Garcia, J. Solano, and I. Stojmenovic. Connectivity Based k-hop

Clustering in Wireless Networks. In Proceedings of the IEEE Hawaii Int. Conf.

System Science, Jan 2002.

C. Chevallay, R. E. Van Dyck, and T. A. Hall. Self-organization Protocols for

Wireless Sensor Networks. In Thirty Sixth Conference on Information Sciences

and Systems, March 2002.

M. Chiang. Balancing transport and physical layers in wireless multihop networks:

jointly optimal congestion control and power control. 23(1):104–116, Jan 2005.

H. J. Choe, P. Ghosh, and S. K. Das. Cross-layer design for adaptive data report-

ing in wireless sensor networks. In IEEE International Conference on Pervasive

Computing and Communications (PerCom’09), 2009.

D. Chu, L. Popa, A. Tavakoli, J. Hellerstein, P. Levis, S. Shenker, and I. Stoica. The

design and implementation of a declarative sensor network system. In Proceed-

ings of the 5th International Conference on Embedded Networked Sensor Systems

(SenSys’07), 2007.

P. Ciciriello, L. Mottola, and G.P. Picco. Building virtual sensors and actuator over

Logical Neighborhoods. In Proceedings of the 1st International ACM Workshop

on Middleware for Sensor Networks (MidSens’06), 2006.

L. P. Clare, G. J. Pottie, and J. R. Agre. Self-Organizing Distributed Sensor Net-

works. In Proc. SPIE, Unattended Ground Sensor Technologies and Applications,

volume 3713, pages 229–237, 1999.

207

P. Costa, L. Mottola, A. Murphy, and G. Picco. Programming wireless sensor

networks with the TeenyLime middleware. In Proceedings of the 8th International

USENIX/ACM Conference on Middleware, 2007.

CPLEX. CPLEX Online. URL www.cplex.com.

CrossBow. Crossbow technology inc.: smart sensors in silicon, san jose, california.

URL http://www.xbow.com/.

S. Cui, R. Madan, A. Goldsmith, and S. Lall. Joint routing, mac, and link layer op-

timization in sensor networks with energy constraints. In IEEE ICC 05, volume 2,

pages 725–729, May 2005.

D. Culler, P. Dutta, C. T. Ee, R. Fonseca, J. Hui, P. Levis, J. Polastre, S. Shenker,

I. Stoica, G. Tolle, and J. Zhao. Towards a sensor network architecture: Lowering

the waistline. In International Workshop on Hot Topics in Operating Systems

(HotOS), 2005.

T. Dam and K. Langendoen. An adaptive energy-efficient MAC protocol for wire-

less sensor networks. In Proceedings of ACM 1st International Conference on

Embedded Networked Sensor Systems (SenSys03), pages 171–180, Nov. 2003.

K. Dasgupta, M. Kukreja, and K. Kalpakis. Topology-aware placement and role

assignment for energy-efficient information gathering in sensor networks. In Pro-

ceedings of the eight IEEE International Symposium on Computers and Commu-

nications, 2003.

F. S. H. de Souza and G. R. Mateus. Exact and heuristic approaches for role

assignment problem in wireless sensor networks, 2006.

208

Z. Drezner and H. W. Hamacher. Facility location: applications and theory.

Springer-Verlag, Berlin, 2004. ISBN 3540213457.

A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Protothreads: Simplifying event-

driven programming of memory-constrained embedded systems. In Proceedings of

the 4th International Conference on Embedded Networked Sensor Systems (Sen-

Sys’06), pages 29–42, 2006.

R. E. Van Dyck. Detection performance in self-organized wireless sensor networks.

In IEEE International Symposium on Information Theory, Lausanne, Switzer-

land, June 2002.

EnviroTrack: an Enviromental Programming Paradigm for Sensor Networks. En-

viroTrack Homepage. URL http://www.cs.virginia.edu/\texttilde{ll4p}/

EnviroTrack/.

D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges:

Scalable coordination in sensor networks. In ACM MOBICOM’99, 1999.

D. Estrin et al. Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol

Specification. RFC 2362, Internet Engineering Task Force, June 1998.

P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of

Publish/Subscribe. ACM Computing Surveys, 2(35), 2003.

Y. Fang and A.B. McDonald. Dynamic Codeword Routing (DCR): A Cross-Layer

Approach for Performance Enhancement of General Ad Hoc Routing. In Proceed-

ings of the First IEEE International Conference of Sensor and Ad Hoc Commu-

nication Networks (SECON), Santa Clara, California, pages 255–263, October

2004.

209

D. Ferrara, L. Galluccio, A. Leonardi, G. Morabito, and S. Palazzo. MACRO:

An Integrated MAC/Routing Protocol for Geographical Forwarding in Wireless

Sensor Networks. In IEEE Infocom, pages 1770–1781, March 2005.

D. A. Fisher and H. F. Lipson. Emergent Algorithms: A New Method for Enhancing

Survivability in Unbounded Systems. In Proceedings of the Hawaii International

Conference On System Sciences, January 1999.

C. Frank and K. Romer. Algorithms for generic role assignment in wireless sen-

sor networks. In Proceedings of the 3rd International Conference on Embedded

Networked Sensor Systems (SenSys’05), 2005.

C. Frank and K. Romer. Solving generic role assignment exactly. In Proceedings of

the 14th International Workshop on Parallel and Distributed Real-Time Systems

(WPDRTS’06), 2006.

S. Ganeriwal, R. Kumar, and M. Srivastava. Timing-sync protocol for sensor net-

works. In ACM Conference on Embedded Networked Sensor Systems (SenSys),

pages 138–149, November 2003.

D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker. An

empirical study of epidemic algorithms in large scale multihop wireless networks.

Technical Report TR-795, Intel Research, February 2002.

D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC

language: A holistic approach to networked embedded systems. In In PLDI03:

Proceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation, 2003.

210

D. Gelernter. Generative communication in Linda. ACM Computing Surveys, 7(1),

1985.

B. P. Gerkey and M. J. Matarić. Sold!: Auction methods for multi-robot coordina-

tion. IEEE Transactions on Robotics and Automation, 18:758–768, 2002.

B. Greenstein, E. Kohler, and D. Estrin. A sensor network application construction

kit (SNACK). In Proceedings of the 2nd International Conference on Embedded

Networked Sensor Systems (SenSys’04), pages 69–80, 2004.

S. Guha and S. Khuller. Approximation algorithms for connected dominating sets.

Technical Report 3660, Univ. of Maryland Inst. for Adv. Computer Studies, Dept.

of Computer Science, Univ. of Maryland, College Park, June 1996.

R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming wireless sensor

net- works using Kairos. In Proceedings of the 2nd International Conference on

Distributed Computing in Sensor Systems (DCOSS’05), 2005.

S. K. S. Gupta and P. K. Srimani. An adaptive protocol for reliable multicast

in mobile multi-hop radio networks. In IEEE Workshop on Mobile Computing

Systems and Applications, pages 111–122, 1999.

J. Haapola, Z. Shelby, C. Pomalaza-Raez, and P. Mahonen. Cross-layer energy

analysis of multi-hop wireless sensor networks. In EWSN, pages 33–44, 2005.

Z.J. Haas, M.R. Pearlman, and P. Samar. The Zone Routing Protocol (ZRP)

for Ad Hoc Networks. Internet Draft draft-ietf-manet-zone-zrp-04.txt, Internet

Engineering Task Force, July 2002.

211

W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-Efficient Commu-

nication Protocol for Wireless Microsensor Networks. In International Conference

on System Sciences, January 2000.

W. Heinzelman, A. Murphy, H. Carvalho, and M. Perillo. Middleware to Support

Sensor Network Applications. IEEE Network Magazine Special Issue, Jan 2004.

J. Hill. A software architecture supporting networked sensors. Master’s thesis,

University of California at Berkeley, 2000.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architec-

ture directions for networked sensors. In In ASPLOS-IX: Proceedings of the 9th

International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 93–104, 2000.

Y-W. Hong, L. F. Cheow, and A. Scaglione. A simple method to reach detec-

tion consensus in massively distributed sensor networks. In Proceedings of the

International Symposium on Information Theory, pages 250–255, 2004.

M. Inanc, M. Magdon-Ismail, and B. Yener. Power Optimal Connectivity and

Coverage in Wireless Sensor Networks. Technical Report 03–06, Rensselaer Poly-

technic Institute, Dept. of Computer Science, Troy, New York, 2003.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scal-

able and robust communication paradigm for sensor networks. In Proceedings

of ACM/IEEE International Conference on Mobile Computing and Networking,

Boston, MA, USA, pages 56–67, August 2000.

K. Jamieson, H. Balakrishnan, and Y. C. Tay. Sift: A MAC protocol for event-driven

212

wireless sensor networks. Technical Report MIT-LCS-TR-894, Massachusetts

Institute of Technology, 2003.

K. Jamshaid and L. Schwiebert. Seken (secure and efficient key exchange for sensor

networks). In IEEE Performance Computing and Communications Conference

(IPCCC), April 2004.

P. Juang, H. Oki, Y. Wang, M. Martonsi, L. S. Peh, and D. Rubenstein. Energy effi-

cient computing for wildlife tracking: Design tradeoffs and early experiences with

ZebraNet. In Proceedings of the 10th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS-X’02),

pages 96–107, 2002.

V. Kawadia and P. R. Kumar. A Cautionary Perspective on Cross Layer Design.

submitted to IEEE Wireless Communication Magazine, 2004.

M. Kochhal, L. Schwiebert, and S. K. S. Gupta. Role-based hierarchical self orga-

nization for ad hoc wireless sensor networks. In WSNA, San Diego, CA, USA,

pages 98–107, September 2003.

M. Kochhal, L. Schwiebert, and S. K. S. Gupta. Integrating sensing perspectives for

better self organization of ad hoc wireless sensor networks. Journal of Information

Science and Engineering, 20(3), May 2004.

J. Koshy and R. Pandey. VMSTAR: Synthesizing scalable runtime environments for

sensor networks. In Proceedings of the 3rd International Conference on Embedded

Networked Sensor Systems (SenSys’05), pages 234–254, 2005.

P. Krishna, N. H. Vaidya, M. Chatterjee, and D. Pradhan. A cluster-based approach

213

for routing in dynamic networks. ACM SIGCOMM Computer Communication

Review, 27(2):49–65, April 1997.

B. Krishnamachari, S. Wicker, R. Bejar, and C. Fernandez. On the complexity of

distributed self-configuration in wireless networks. Telecommunication Systems,

22(1-4):33–59, 2003.

R. Krishnan and D. Starobinski. Message-Efficient Self-Organization of Wireless

Sensor Networks. In IEEE WCNC 2003, 2003.

M. Kubisch, H. Karl, A. Wolsz, L. Zhong, and J.Rabaey. Distributed Algorithms

for Transmission Power Control in Wireless Sensor Networks. In IEEE Wireless

Communications and Networking Conference (WCNC), New Orleans, LA, March

2003.

R. Kumar, M. Wolenetz, B. Agarwalla, J. Shin, P. Hutto, A. Paul, and U. Ra-

machandran. DFuse: A Framework for Distributed Data Fusion. In SenSys, Los

Angeles, CA, USA, pages 114–125, Nov. 2003.

P. Levis and D. Culler. Maté: A tiny virtual machine for sensor networks. In

Proceedings of the 10th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOSX’02), pages 89–95,

2002.

P. Levis, D. Gay, and D. Culler. Active sensor networks. In Proceedings of the 2nd

USENIX/ACM Symposium on Networked Systems Design and Implementation

(NSDI’05), 2005a.

P. Levis, D. Gay, V. Handziski, J.-H Hauer, B. Greenstein, M. Turon, J. Hui,

K. Klues, C. Sharp, R. Szewczyk, J. Polastre, P. Buonadonna, L. Nachman,

214

G. Tolle, D. Culler, and A. Wolisz. T2: A second generation os for embedded

sensor networks. Technical Report TKN-05-007, Telecommunication Networks

Group, Technische Universitat Berlin, Berlin, Germany, 2005b.

S. Li, Y. Lin, S. Son, J. Stankovic, and Y. Wei. Event detection services using data

service middleware in distributed sensor networks. Telecommunication Systems,

26(2), 2004.

S. Liang and H. Dimitrios. A cross-layer architecture of wireless sensor networks for

target tracking. IEEE/ACM Transactions on Networking (TON), 15(1):145–158,

2007. ISSN 1063-6692. doi: http://dx.doi.org/10.1109/TNET.2006.890084.

T. Liu and M. Martonsi. Impala: A middleware system for managing autonomic,

parallel sensor systems. In Proceedings of the Ninth ACMSIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP’03), pages 107–118,

2003.

L. Luo, T. Abdelzaher, T. He, and J. Stankovic. EnviroSuite: An environmentally

immersive programming framework for sensor networks. IEEE Transactions on

Embedded Computing Systems, 5(3), 2006.

R. Madan, S. Cui, S. Lall, and A. Goldsmith. Cross-layer design for lifetime maxi-

mization in interference-limited wireless sensor networks. In IEEE INFOCOM05,

volume 3, pages 1964–1975, March 2005.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: an ac-

quisitional query processing system for sensor networks. ACM Transactions on

Database Systems, 30(1):122–173, 2005.

215

P. J. Marrón, A. Lachenmann, D. Minder, J. Hähner, R. Sauter, and K. Rothermel.

Tinycubus: A flexible and adaptive framework for sensor networks. In Proceedings

of the Second European Workshop on Wireless Sensor Networks (EWSN’05),

2005.

W. P. Mccartney and N. Sridhar. Abstractions for safe concurrent programming in

networked embedded systems. In Proceedings of the 4th International Conference

on Embedded Networked Sensor Systems (SenSys’06), pages 167–180, 2006.

S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava. Cover-

age Problems in Wireless Ad-Hoc Sensor Networks. In IEEE INFOCOM ’01,

volume 3, pages 1380–1387, April 2001a.

S. Meguerdichian, F. Koushanfar, G. Qu, and M. Potkonjak. Exposure In Wireless

Ad Hoc Sensor Networks. In ACM SIGMOBILE (Mobicom), pages 139–150, July

2001b.

T. Melodia, M. C. Vuran, and D. Pompili. The state of the art in cross-layer

design for wireless sensor networks,in. In Proceedings of EuroNGI Workshops on

Wireless and Mobility, Springer Lecture Notes on Computer Science, LNCS 388,

2005.

C. J. Merlin and W. B. Heinzelman. X-lisa: A cross-layer information-sharing archi-

tecture for wireless sensor networks. Technical Report, University of Rochester,

CS dept., December 2006.

C. J. Merlin and W. B. Heinzelman. Network-aware adaptation of mac scheduling

for wireless sensor networks. In In Proc. 3rd Conf. on Distributed Computing in

Sensor Systems (DCOSS07 Poster Session), June 2007.

216

K. L. Mills. A Brief Survey of Self-Organization in Wireless Sensor Networks. Wire-

less Communications and Mobile Computing (WCMC), 7:823–834, May 2007.

J. Mirkovic, G. P. Venkataramani, S. Lu, and L. Zhang. A Self Organizing approach

to Data Forwarding in Large Scale Sensor Networks. In IEEE International

Conference on Communications (ICC’01), Helsinki, Finland, June 2001.

J. Moore, T. Keiser, R. Brooks, S. Phoha, D. Friedlander, J. Koch, A. Reggio, and

N. Jacobson. Tracking targets with self-organizing distributed ground sensors. In

IEEE Areospace Conference, pages 2113–2123, 2003.

L. Mottola and G. Picco. Logical neighborhoods: A programming abstraction for

wireless sensor networks. In Proceedings of the 3rd International Conference on

Distributed Computing in Sensor Systems (DCOSS’06), pages 150–168, 2006.

L. Mottola and G. P. Picco. Programming Wireless Sensor Networks: Fundamental

Concepts and State of the Art. ACM Computing Surveys (to appear), 2010.

R. Newton and M. Welsh. Region streams: Functional macroprogramming for

sensor networks. In Proceedings of the 1st International Workshop on Data Man-

agement for Sensor Networks, 2004.

R. Newton, Arvind, and M. Welsh. Building up to macroprogramming: An inter-

mediate language for sensor networks. In Proceedings of the 4th International

Symposium on Information Processing in Sensor Networks (IPSN’05), pages 37–

44, 2005.

R. Newton, G. Morrisett, and M. Welsh. The Regiment macroprogramming system.

In Proceedings of the 6th International Symposium on Information Processing in

Sensor Networks (IPSN’07), 2007.

217

S. Ni, Y. Tseng, Y. Chen, and J. Chen. The Broadcast Storm Problem in a mobile

ad hoc network. In in Proceedings of MOBICOM, pages 151–162, August 1999.

C. Nitta, R. Pandey, and Y. Ramin. Y-threads: Supporting concurrency in wireless

sensor networks. In Proceedings of the 2nd International Conference on Dis-

tributed Computing in Sensor Systems (DCOSS’06), pages 169–184, 2006.

M. Ocean, A. Bestavros, and A. Kfoury. snBench: Programming and virtualization

framework for distributed multitasking sensor networks. In Proceedings of the 2nd

International Conference on Virtual Execution Environments (VEE’06), 2004.

S. Olariu, Q. Xu, and A.Y. Zomaya. An energy-efficient self-organization proto-

col for wireless sensor networks. In Intelligent Sensors, Sensor Networks and

Information Processing Conference (ISSNIP), pages 55–60, December 2004.

E. Pagani and G. P. Rossi. Reliable Broadcast in Mobile Multihop Packet Networks.

In Proceedings of the Annual ACM/IEEE International Conference on Mobile

Computing and Networking (MobiCom), pages 34–42, 1997.

N. A. Pantazis, D. D. Vergados D. J. Vergados, and C. Douligeris. Energy efficiency

in wireless sensor networks using sleep mode tdma scheduling. 7(2):322–343,

March 2009.

J. Polastre, J. Hill, and D. Culler. Versatile low power media access for wireless

sensor networks. In Proceedings of 2nd International Conference on Embedded

Networked Systems (SENSYS), 2004.

J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I. Stoica. A

unifying link abstraction for wireless sensor networks. In Proceedings of the 3rd

218

international conference on Embedded networked sensor systems (SenSys’05), San

Diego, CA, USA, pages 76–89, 2005.

I. Raicu, O. Richter, L. Schwiebert, and S. Zeadally. Using wireless sensor networks

to narrow the gap between low-level information and context-awareness. In Inter-

national Conference on Computers and Their Applications, pages 209–214, April

2002.

C. V. Ramamoorthy, A. Bhide, and J. Srivastava. Reliable Clustering Techniques

for Large, Mobile Packet Radio Networks. In Proceedings of IEEE INFOCOM’87,

pages 218–226, 1987.

R. Ramanathan and R. Rosales-Hain. Topology Control of Multihop Wireless Net-

works Using Transmit Power Adjustment. In Proceedings of IEEE INFOCOM

2000, Tel-Aviv, Israel, March 2000.

T. G. Robertazzi and P. E. Sarachik. Self-Organizing Communication Networks.

IEEE Communications, 24(1):28–33, 1986.

J. Ó Rourke. Art Gallery Theorems and Algorithms. Oxford University Press,

Oxford, 1987. ISBN 0195039653.

A. Rowe, R. Mangharam, and R. Rajkumar. RT-link: A global time synchronized

link protocol for sensor networks. Ad hoc Networks, Elsevier, 6(8):1201–1220,

2008.

F. Royo, T. Olivares, and L. Orozco. A synchronous engine for wireless sensor

networks. Wireless Sensor and Actor Networks, IFIP, Springer, 248(40):107–

118, 2007.

219

C. S. Raghavendra S. Lindsey. PEGASIS: Power Efficient GAthering in Sensor

Information Systems. In IEEE Aerospace Conference, March 2002.

A. Salhieh and L. Schwiebert. Power aware metrics for wireless sensor networks.

In IASTED International Conference on Parallel and Distributed Computing and

Systems, pages 326–331, November 2002.

P. Santi. Topology Control in Wireless Ad Hoc and Sensor Networks. In submission

to ACM Comp. Surveys, 2003.

C. Schurgers, V. Tsiatsis, and M. Srivastava. STEM: Topology Management for

Energy Efficient Sensor Networks. In IEEE Aerospace Conference, pages 78–89,

March 2002.

L. Schwiebert, S. K. S. Gupta, J. Weinmann, A. Salhieh, M. Kochhal, and G. Auner.

Research challenges in wireless networks of biomedical sensors. In MOBICOM,

Rome, Italy, pages 151–165, July 2001.

K. Seada, M. Zuniga, A. Helmy, and B. Krishnamachari. Energy-efficient forward-

ing strategies for geographic routing in lossy wireless sensor networks. In ACM

SenSys’04, November 2004.

C. Shen, C. Srisathapornphat, and C. Jaikaeo. Sensor information networking

architecture and applications. In IEEE Personal Communications, pages 52–59,

Aug. 2001.

E. Shih, S.-H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chandrakasan.

Physical layer driven protocol and algorithm design for energy- efficient wireless

sensor networks. In Proceedings of the ACM MobiCom 2001, Rome, Italy, July

2001.

220

V. Shnayder, M. Hempstead, B. Chen, G. Werner-Allen, and M. Welsh. Simulating

the power consumption of large-scale sensor network applications. In Proceedings

of the Second ACM Conference on Embedded Networked Sensor Systems (Sen-

Sys’04), Baltimore, MD, November 2004.

M. L. Sichitiu. Cross-Layer Scheduling for Power Efficiency in Wireless Sensor

Networks. In Proceedings of INFOCOM 2004, Hong Kong (PRC), March 2004.

S. Singh, M. Woo, and C. S. Raghavendra. Power aware routing in mobile ad hoc

networks. In in Proceedings of MOBICOM, pages 181–190, 1998.

R. Sivakumar, B. Das, and V. Bharghavan. An Improved Spine-based Infrastruc-

ture for Routing in Ad hoc Networks. In IEEE Symposium on Computers and

Communications ’98, Athens, Greece, June 1998.

P. Skraba, H. Aghajan, and A. Bahai. Cross-layer optimization for high density sen-

sor networks: Distributed passive routing Decisions. In Ad-Hoc Now, Vancouver,

July 2004.

S. Slijepcevic and M. Potkonjak. Power Efficient Organization of Wireless Sen-

sor Networks. In IEEE International Conference on Communications (ICC’01),

Helsinki, Finland, pages 472–476, June 2001.

K. Sohrabi and G. Pottie. Performance of a Novel Self-Organization Protocol for

Wireless Ad hoc Sensor Networks. In 50th IEEE Vehicle Technology Conference,

The Netherlands, September 1999.

K. Sohrabi, J. Gao, V. Ailawadhi, and G. Pottie. Protocols for Self Organization of a

Wireless Sensor Network. In IEEE Personal Communication Magazine, volume 7,

pages 16–27, October 2000.

221

L. Song and D. Hatzinakos. A cross-layer architecture of wireless sensor networks for

target tracking. IEEE/ACM Transactions on Networking (TON), 15(1):145–158,

2007. ISSN 1063-6692. doi: http://dx.doi.org/10.1109/TNET.2006.890084.

M. Steenstrup, B. Beranek, and Newman. Ad hoc Networking, chapter Cluster-

Based Networks, pages 75–135. Addison-Wesley, first edition, December 2000.

ISBN 0201309769.

P. Stone and M. Veloso. Task Decomposition, Dynamic Role Assignment, and

Low-Bandwidth Communication for Real-Time Strategic Teamwork. Artificial

Intelligence, 110:241–273, 1999.

L. Subramanian and R. H. Katz. An architecture for building self-configurable

systems. In IEEE/ACM Workshop on Mobile Ad Hoc Networking and Computing

(MobiHOC 2000), Boston, August 2000.

R. Sugihara and R. K. Gupta. Programming models for sensor networks: A survey.

ACM Transactions on Sensor Networks (TOSN), 4(2), March 2008.

M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Research,

7:83–124, 1997.

D. G. Thaler and C. V. Ravishankar. Distributed Top-Down Hierarchy Construc-

tion. In Proceedings of IEEE INFOCOM, pages 693–701, 1998.

D. Tian and N. D. Georganas. A Coverage-Preserving Node Scheduling Scheme for

Large Wireless Sensor Networks. In Proceedings of ACM Workshop on Wireless

Sensor Networks and Applications (WSNA’02), Atlanta, October 2002.

Y. Tian and E. Ekici. Cross-layer collaborative in-network processing in multi-hop

wireless sensor networks. 6(3):297–310, March 2007.

222

Y. Tian, E. Ekici, and F. Ozguner. Cluster-based information processing in wireless

sensor networks: An energy-aware approach. 7(7):893–907, September 2007.

Y.-C Tseng, Y.-N Chang, and B.-H Tzeng. Energy Efficient Topology Control for

Wireless Ad hoc Sensor Networks. In 23rd International Conference on Dis-

tributed Computing Systems Workshops (ICDCSW’03), Providence, Rhode Is-

land, USA, May 2003.

L. van Hoesel, T. Nieberg, J. Wu, and P. J. M. Havinga. Prolonging the lifetime

of wireless sensor networks by cross-layer interaction. IEEE Communications, 11

(6):78–86, December 2004.

P. K. Varshney. Distributed Detection and Data Fusion. Springer-Verlag, New York,

1996. ISBN 0387947124.

L. Victor. Scaling up multi-agent systems through organizational structuring. InWI

’04: Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web

Intelligence, pages 5–5, Washington, DC, USA, 2004. IEEE Computer Society.

ISBN 0-7695-2100-2. doi: http://dx.doi.org/10.1109/WI.2004.125.

M. Vinyals, J. A. Rodriguez-Aguilar, and J. Cerquides. A survey on sensor networks

from a multiagent perspective. The Computer Journal, 2010. URL http://

comjnl.oxfordjournals.org/cgi/content/abstract/bxq018v1.

M. C. Vuran and I. F. Akyildiz. Spatial Correlation-based Collaborative Medium

Access Control in Wireless Sensor Networks. IEEE/ACM Transactions on Net-

working (TON), June 2006.

M. C. Vuran, O. B. Akan, and I. F. Akyildiz. Spatio-Temporal Correlation: Theory

223

and Applications for Wireless Sensor Networks. Computer Networks Journal

(Elsevier), 45(3):245–261, June 2004.

M. C. Vuran, V. B. Gungor, and O. B. Akan. On the interdependency of congestion

and contention in wireless sensor networks. In Proceedings of SENMETRICS, July

2005.

H. Wang, K. Yao, G. Pottie, and D. Estrin. Entropy-based sensor selection heuristic

for target selection. In Proceedings of Information Processing in Sensor Networks

(IPSN), pages 36–45, 2004.

I. Warrier, A. Aia, J. Min, and M. L. Sichitiu. Z-mac: a hybrid mac for wireless

sensor networks. pages 511–524, June 2008.

R. Wattenhofer, Li Li, P. Bahl, and Yi-Min Wang. Distributed Topology Control

for Power Efficient Operation in Multihop Wireless Ad Hoc Networks. In Pro-

ceedings of the Twentieth Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM), Anchorage, Alaska, April 2001.

M. Welsh and G. Mainland. Programming sensor networks with abstract regions.

In USENIX/ACM Symposium on Network Systems Design and Implementation,

2004.

G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal. Firefly-inspired

sensor network synchronicity with realistic radio effects. In ACM Conference on

Embedded Networked Sensor Systems (SenSys), pages 142–153, 2005.

K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: A neighborhood ab-

straction for sensor networks. In Proceedings of the 2nd International Conference

on Mobile Systems, Applications, and Services (MobiSys’04), pages 99–110, 2004.

224

P. Winter. Steiner Problem in Networks: A Survey. Networks, 17(2):129–167, 1987.

J. Wu. Handbook of Wireless and Mobile Computing, chapter Dominating Set Based

Routing in ad hoc wireless networks, pages 425–450. John Wiley, 1st edition, Feb.

2002. ISBN 0471419028.

J. Wu and H. Li. On calculating connected dominating set for efficient routing in

ad hoc wireless networks. In Proceedings of the 3rd International Workshop on

Discrete Algorithms and Methods for Mobile Computing and Communications,

pages 7–14, August 1999.

G. Xing, M. Sha, G. Hackmann, K. Klues, O. Chipara, and C. Lu. Towards unified

radio power management for wireless sensor networks. Wireless Communications

and Mobile Computing, 9(3):313–323, 2009. ISSN 1530-8669. doi: http://dx.doi.

org/10.1002/wcm.v9:3.

H. Xu, L. Huang, J. Wu, Y. Wang, J. Wang, and X. Wang. Lecture Notes in Com-

puter Science: Mobile Ad-hoc and Sensor Networks, chapter Self Organization

Data Gathering for Wireless Sensor Networks, pages 650–661. Springer Berlin,

Heidelberg, November 2006. ISBN 03029743.

Y. Xu. Adaptive Energy Conservation Protocols for Wireless Ad hoc Routing. PhD

thesis, University of Sourthern California (USC), 2002.

Y. Xu, J. Heidemann, and D. Estrin. Geography Informed Energy Conservation for

Ad hoc Routing. In ACM/IEEE International Conference on Mobile Computing

and Networking, pages 70–84, July 2001.

Y. Xu, S. Bien, Y. Mori, J. Heidemann, and D. Estrin. Topology control protocols

to conserve energy inwireless ad hoc networks. Technical Report 6, University of

225

California, Los Angeles, Center for Embedded Networked Computing, January

2003. submitted for publication.

Y. Yao and J. Gehrke. The Cougar approach to in-network query processing in

sensor networks. ACM Special Interest Group on Management Of Data (SIG-

MOD’02), 31(3), 2002.

F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A two-tier data dissemination model

for large-scale wireless sensor networks. In International Conference on Mobile

Computing and Networking (MobiCOM), pages 148–159, September 2002a.

F. Ye, H. Luo, S. Lu, and L. Zhang. Statistical en-route filtering of injected false

data in sensor networks. IEEE Journal on Selected Areas in Communications, 23

(4):839–850, 2004.

W. Ye, John Heidemann, and Deborah Estrin. An Energy Efficient mac protocol

for Wireless Sensor Networks. In IEEE INFOCOM, New York, USA, pages 3–12,

June 2002b.

W. Yu and K. Liu. Attack-resistant cooperation stimulation in autonomous ad

hoc networks. IEEE Journal on Selected Areas in Communications, 23(12):2260–

2271, 2005.

Y. Yu, L. J. Rittle, V. Bhandari, and J. B. Lebrun. Supporting concurrent ap-

plications in wireless sensor networks. In Proceedings of the 4th International

Conference on Embedded Networked Sensor Systems (SenSys’06), pages 139–152,

2006.

J. Yuan, Z. Li, W. Yu, and B. Li. A cross-layer optimization framework for multicast

226

in multi-hop wireless networks wireless internet. In Proc. WICON 05, pages 47–

54, July 2005.

W. Zhang and G. Cao. Optimizing tree reconfiguration for mobile target tracking

in sensor networks. In IEEE INFOCOM, pages 2434–2445, 2004.

ZigBee. The zigbee alliance. URL http://www.zigbee.org.

M. Zorzi and R. Rao. Geographic random forwarding (GeRaF) for ad hoc and sensor

networks: multihop performance. IEEE Transactions on Mobile Computing I, 2

(4):337–348, December 2003.

M. Zuniga and B. Krishnamachari. Analyzing the transitional region in low power

wireless links. In Proceedings of IEEE SECON, pages 517–526, October 2004.

227

ABSTRACT

UNIFIED ROLE-ASSIGNMENT FRAMEWORK FOR

WIRELESS SENSOR NETWORKS

by

MANISH M KOCHHAL

August 2010

Advisor: Dr. Loren Schwiebert

Major: Computer Engineering

Degree: Doctor of Philosophy

Wireless sensor networks are made possible by the continuing improvements

in embedded sensor, VLSI, and wireless radio technologies. Currently, one of the

important challenges in sensor networks is the design of a systematic network man-

agement framework that allows localized and collaborative resource control uni-

formly across all application services such as sensing, monitoring, tracking, data

aggregation, and routing.

The research in wireless sensor networks is currently oriented toward a cross-

layer network abstraction that supports appropriate fine or course grained resource

controls for energy efficiency. In that regard, we have designed a unified role-based

service paradigm for wireless sensor networks. We pursue this by first developing

a Role-based Hierarchical Self-Organization (RBSHO) protocol that organizes a

228

connected dominating set (CDS) of nodes called dominators. This is done by hier-

archically selecting nodes that possess cumulatively high energy, connectivity, and

sensing capabilities in their local neighborhood. The RBHSO protocol then assigns

specific tasks such as sensing, coordination, and routing to appropriate dominators

that end up playing a certain ‘role’ in the network.

Roles, though abstract and implicit, expose role-specific resource controls by

way of role assignment and scheduling. Based on this concept, we have designed a

Unified Role-Assignment Framework (URAF) to model application services as roles

played by local in-network sensor nodes with sensor capabilities used as rules for

role identification. The URAF abstracts domain specific role attributes by three

models: the role energy model, the role execution time model, and the role service

utility model. The framework then generalizes resource management for services

by providing abstractions for controlling the composition of a service in terms of

roles, its assignment, reassignment, and scheduling. To the best of our knowledge,

a generic role-based framework that provides a simple and unified network manage-

ment solution for wireless sensor networks has not been proposed previously.

Keywords: Wireless sensor networks (WSNs), sensing metrics, roles, rules, net-

work organization, role assignment, role scheduling, and generic control interfaces

or abstractions.

229

AUTOBIOGRAPHICAL STATEMENT

Manish Kochhal is currently a Ph.D. candidate in the Networking Wireless Sen-

sors Laboratory (NeWS Lab) in the Department of Computer Science at Wayne

State University. He received his MS degree in Computer Engineering from Wayne

State University, Detroit, Michigan and his BE degree in Electronic Engineering

from University of Bombay, Bombay, India. He is also currently working as a Senior

Software Engineer at Airvana Inc., Chelmsford, MA. His areas of research interests

include QoS support in wireless networks and developing efficient communication

protocols for large scale embedded systems.

Manish is a member of IEEE and ACM. He can be reached at manishk@wayne.edu.

	Wayne State University
	1-1-2010
	Unified Role Assignment Framework For Wireless Sensor Networks
	Manish Mahendra Kumar Kochhal
	Recommended Citation

	PhDThesis.dvi

