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Wireless sensor networks enable dense sensing of the environment, offering unprecedented op-
portunities for observing the physical world. This paper addresses two key challenges in wireless
sensor networks: in-network storage and distributed search. The need for these techniques arises
from the inability to provide persistent, centralized storage and querying in many sensor networks.
Centralized storage requires multi-hop transmission of sensor data to internet gateways which can
quickly drain battery-operated nodes.

Constructing a storage and search system that satisfies the requirements of data-rich, scientific
applications is a daunting task for many reasons: (a) the data requirements are large compared to
available storage and communication capacity of resource-constrained nodes, (b) user requirements
are diverse and range from identification and collection of interesting event signatures to obtaining
a deeper understanding of long-term trends and anomalies in the sensor events, and (c) many
applications are in new domains where a priori information may not be available to reduce these
requirements.

This paper describes a lossy, gracefully degrading storage model. We believe that such a model
is necessary and sufficient for many scientific applications since it supports both progressive data
collection for interesting events as well as long-term in-network storage for in-network querying
and processing. Our system demonstrates the use of in-network wavelet-based summarization and
progressive aging of summaries in support of long-term querying in storage and communication-
constrained networks. We evaluate the performance of our linux implementation and show that it
achieves: (a) low communication overhead for multi-resolution summarization, (b) highly efficient
drill-down search over such summaries, and (c) efficient use of network storage capacity through
load-balancing and progressive aging of summaries.

Categories and Subject Descriptors: C.ZDMPUTER-COMMUNICATION NETWORKS ]: Sensor Net-
works; H.3.4 [NFORMATION STORAGE AND RETRIEVAL ]: Systems and SoftwareBistributed Sys-
tems

Additional Key Words and Phrases: Wireless Sensor networks, Data storage, Wavelet processing,
Multi-resolution storage, Data aging, Drill-down query
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1. INTRODUCTION

One of the key challenges in wireless sensor networks istthiage and querying of use-
ful sensor data, broadly referred to as data management.teFimneuseful sensor data

is application-specific and has different meaning in ddférapplication scenarios. For
instance, in a target tracking application, users are ésted in detecting vehicles and
tracking their movement. Here, useful sensor data congptisget detections (timestamp
and location) as well as their tracks. In a structural mairigpapplication such addsden
([Xu et al. 2004]), scientists are interested in spatiogieral analysis of sensor data, such
as, vibrations measured at different points of a buildingesponse to an excitation over a
period of time. This requires access to vibration event dateesponding to periods when
the building is excited. Data management captures the mpactrum of how useful data
is handled in a sensor network, and addresses three keyansest

—Where is data stored in a network? Is it stored locally aheansor node (local storage),
in a distributed manner within the network (distributedrat®) or at the edge of the
network at the base-station (centralized storage)?

—How are queries routed to stored data? Can we use attribfitbe search to make it
efficient?

—How can the network deal with storage limitations of indival sensor nodes?

Many schemes have been proposed for data management im setgorks. The main
ideas are summarized along the axes of communication extfiar data storage and com-
munication required for query processing in Figure 1. TharBgdepicts a fundamental
tradeoff between centralized storage and local storagamnAtextreme is a conventional
approach of centralized data management where all usefsbsdata is transmitted from
sensors to a central repository that has ample power analgetaesources. This task is
communication intensive (and hence energy intensive) duitithtes querying. Queries
over this data are handled at the central location and inownergy cost to the sensor
network. Centralized storage is appropriate for low-data,rsmall-scale sensor networks
where there are infrequent events. As the useful data ratedses, and the network scale
grows, centralized storage is not feasible in sensor nésaaue the power constraints on
sensor nodes. Aggregate costs of transmitting the data asex$tation can quickly drain
power on all nodes in the network. Nodes that are closer tbalse-station are especially
impacted due the need to relay data from many other nodegindtwork. Thus, deal-
ing with power constraints requires alternate approadhegsitivolves storing sensor data
within the sensor network and performing query processmthis distributed data store.

Many parameters are at work in determining which data mamagéscheme best suits
an application. Is the deployment short-term or long-te\vif?at are the energy, storage
and processing resources on sensor nodes? What kind oésjaee posed on the data
and with what frequency? How much useful sensor data is gesebby the network?
What in-network data processing is appropriate for thewettsta? Dealing with the wide
range of requirements and constraints in sensor netwocksres a family of solutions.
These solutions are different from distributed storageesys in wide-area networks in
two respects. First, energy and storage limitations intcednore stringent communication
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Fig. 1. Taxonomy of data storage solutions

constraints. Second, data in sensor networks exhibitgosggahporal correlations, which
can be exploited in the storage, processing and queryingtaf d

Our goal is to provide storage and search for raw sensor dakata-intensive scientific
applications. We believe that long-term data storage dmnieatwill complement event-
driven sensor network development. Sensor network de@oysrinvolve two interacting
phases. One phase involves enabling the scientific comyniordetermine how events can
be reliably detected from distributed data. The secondepimslves using these events to
trigger the sensor network such that the communicationirespents can be significantly
reduced.

Constructing a storage and search system that satisfieed@ements of data-rich,
scientific applications is a daunting task as the storaggimements are large compared to
available storage and communication capacity of resococstrained nodes. Clearly, it
is impossible for a sensor network to provide lossless,gters storage and querying that
a centralized wired system can provide. Our more modest tuakefore, is to provide a
lossy, progressively degrading storage model. We believe that such a model might be nec-
essary and sufficient for many scientific applications foo teasons. First, a gracefully
degrading storage model enablegugry and collect approach for fresh data where users
can precisely query recent data and selectively decide poritant data snippets that can
then be collected losslessly for persistent offline storggecond, older data can be ex-
pected to be useful for identifyingng-term patterns, and anomalous occurrences. Thus,
older data can be stored more lossily, but with sufficientlifigéo satisfy such long-term
queries.

How do we provide distributed, progressively degrading storage in a sensor network?
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The key idea behind our system is spatio-temporal sumntamizave construct multi-
resolution summaries of sensor data and store them in thweorlein a spatially and
hierarchically decomposed distributed storage struatptamized for efficient querying.
Summaries are generated in a multi-resolution manneresponding to different spatial
and temporal scales. Queries on such data are posed in-dalkil manneri.e they are
first processed on coarse, highly compressed summariesspomnding to larger spatio-
temporal volumes, and the approximate result obtaineddd tsfocus on regions in the
network are most likely to contain result set data. MulSeleition summaries are aged to
provide a gracefully degrading storage model.

1.1 Contributions

Our main contributions are three-fold.

Novel Wavelet-based Distributed Data Summarization Systaes: Data aggregation
is a critical building block of sensor network systems. Wealeped a distributed wavelet-
based summarization [Ganesan et al. 2003; Ganesan et 2l}) 200cedure that is very
useful for sensor network data. Our summarization proedunovel in two respects.
From a distributed storage systems perspective, the usatafagigregation that exploits
spatio-temporal correlation is novel. While there are mdisgributed storage systems
designed for the internet, these deal with uncorrelatedl fitemovies, and do not exploit
correlations between them. Furthermore, the use of wavébetleal with sensor data
in a spatially distributed setting is an interesting apatiimn of wavelet transforms. We
implement this codec on two different platforms, large senwdes (Ipags) and small
sensor nodes (Motes).

Drill-down Query Processing: We empirically evaluate the use of drill-down query
processing over multi-resolution data storage and showhilgh query accuracy (within
85%) at very low overhead (5% of the network) can be achieVhdse results demonstrate
the use of our system for query processing.

Optimization-based Graceful Data Aging: The key contribution of this work is build-
ing a data-aging framework that can deal with storage lioits in manner that provides a
gracefully degrading query interface to users. We fornealie notion of storage in a dis-
tributed multi-resolution hierarchy, including data suamimation and query processing.
We construct an optimization procedure that determinestibrage allocation at nodes in
the network between different levels of resolution. Thisimjzation procedure can be
used to construct a training-data based strategy for grbstfrage degradation. In the
absence of training data, we propose a greedy scheme thatcased to determine the
storage allocation.

The remainder of this paper is organized as follows. In 8a@j we survey research that
relates to our work. Section 4 provides a overview of the itgcture of DIMENSIONS,
and describe the many usage models that it can support feoisartwork applications.
In Section 3, we outline the design goals of our system and meigle an architectural
overview in Section 4. Section 5 provides a formal desaipf the aging problem.
System implementation and performance results over agtaion dataset are provided
in Section 6. Section 7 describes one of the usage modelg alystem, multi-resolution
data collection as part of a sensor network system for stradhealth monitoring. A mote
implementation and performance over a structural vibrediataset is discussed as part of
this work. Section 8 discusses some future extensions tavotk. Finally, we conclude
in section 9 with a discussion of how our system satisfiestiyesis.
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2. RELATED WORK

Figure 1 shows four solutions for distributed storage arsdcte We discuss related work
that address these different problems.

2.1 Centralized Storage and Search

The conventional approach to storing time series data iste hll sensing nodes feed all
of their data to a central repository external to the sensimgronment. In a network of
n nodes, this cost is on the order of the diameter of the netfarkeach piece of data
sent, or0(y/n). Queries over this data incur no additional cost to the neymecause the
data is already resident on storage external to the netwidtéte, however, that queries
initiated from within the network, perhaps by in-networkwation mechanisms, will incur
O(y/n).) Centralized storage may be appropriate for low-data satall-scale sensor net-
works. For instance, consider a target-tracking systemishdetecting infrequent targets
(once an hour), and generating event tuples, with the eypet timestamp and location
of detection. The data is very small, and the event rate is l@mce centralized storage
might be reasonable for a network of a hundred nodes tratisghdtata over 2-3 hops to
a base-station. As the event or useful data rate increasgsha network scale increases,
centralized storage is not always feasible in sensor n&sadue to the aggregate and bot-
tleneck costs of transmitting all data towards a networkway, potentially over multiple
hops.

2.2 Local Storage and Geographical Search

At the lower right of the spectrum shown in Figure 1 is a fubgal storage scheme where
all useful sensor data is stored locally on each node andeguare routed to locations
where the data is stored. Since data is stored locally atehsirsy nodes that produced
them, there is no communication cost involved in constngcthe distributed store. How-
ever, in-network search and query processing can potmitialur high energy cost. Be-
cause data can reside anywhere in the network, a query thatraud explicitly constrain
the physical search space must be flooded to all storage nmottesnetwork, which costs
O(n), wheren is the number of nodes in the network. Responses are senttbabk
source of the query at a cost©f /n) (since the network diameter is approximatefy).

If only a few queries are issued during the lifetime of a nelwyanswering these queries
might involve little communication cost. A large number afdtled queries that each in-
volves significant communication, however, can drain a netis energy reserves.

Many of the initial ideas pursued within the context of Diest Diffusion [Intanagonwi-
wat et al. 2000] followed such a paradigm. Sources publigtettents that they detect, and
sinks with interest in specific events can subscribe to tegsats. The Directed Diffu-
sion substrate routes queries to specific locations if tleryglias geographic information
embedded in it (eg: find temperature in the south-west quad@nd if not, the query is
flooded throughout the network.

There are three drawbacks of such a scheme. First, for guibia¢ are not geograph-
ically scoped, search cosD(n)) might be prohibitive for large networks with frequent
gueries. Second, queries that process spatio-tempokeale@t edges) need to perform
significant distributed data processing each time a qugygsed which can be expensive.
Third, these techniques need to be enhanced to deal withggtdimitations on sensor
nodes.
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Application Sensors Expected Data Rates | Data Require-
ments Per
Year
Building Health | Accelerometer 30 minutes vibration 8Gb
Monitoring [Kohler ] data per day
Micro-climate Moni- | Temperature, Light| 1 sam-| 40Mb
toring Precipitation, Pres; ple/minute/sensor
sure, Humidity
Habitat Monitoring | Acoustic, Video 10 minutes of audig 1 Gb
and 5 mins of videg
per day

Table l. Data Requirement estimates for Scientific Appiorat

2.3 Local storage with Distributed Indexing

Distributed indexing addresses search issues in the looege mechanism described
above. Recent research has seen a a growing body of work anmthxing schemes
for sensor networks [Ratnasamy et al. 2002][Greensteih 2083][Li et al. 2003]. These
techniques differ in the aggregation mechanisms used reubasely based on the idea of
geographic hashing and structured replication. One suigxing scheme is DCS[Ratnasamy
et al. 2002], that provides a hash function for mapping freené¢ name to location. DCS
constructs a distributed storage structure that groupstguegether spatially by their
named type. Names are considered to be arbitrary keys toaste fanction and are the
basic unit of categorization.

A node that detects an event stores the event at the mirrsegtito its location. A search
using structured replication would begin with the root,a#asl to its four children, descend
to each of the children’s four children, and so forth. DCSsusteuctured replication to
register the existence of events at replicated rendezvaiessn The communication cost to
store a datum i®(1/n); and the costs to send a query and retrieve data are@agh).

In traditional databases, a table is indexed in order todsppecommon queries. Like-
wise, DCS indexes its data, but does so in a manner that isizetil for communication
instead of latency. When a network administrator knows@hwhich dimensions a query
will be casta priori, an indexing scheme can be employed that spatially orgaudiaia so
that a query need not visit more than a single site to be gatisfi

Distributed index of features in Sensornets (DIFS [Gresingtt al. 2003]) and Multi-
dimensional Range Queries in Sensor Networks (DIM [Li e2803]) extend the data-
centric storage approach to provide spatially distributiedarchies of indexes to data. In
these two techniques, the storage atom is a high-level #vatis described with attributes
that each have associated numerical values.

3. DESIGN GOALS OF DATA STORAGE IN SENSOR NETWORKS

The storage requirements for sensing applications diffdely in their data-rates and stor-
age needs. Table | shows a cross-section of applicationshairddata requirements. In
this section, we describe the main design goals of a dis&ibstorage and search for these
applications.
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Energy Efficient: Energy efficiency is critical to any system component design
for sensor networks, and a storage system is no exceptioargiefficiency generally
depends on the amount of data communicated and other pataseath as efficiency of
the duty-cycling scheme and the traffic patterns in the nekwia our storage system, we
will focus on limiting the amount of data communicated.

Long-term Storage: One of the major benefits of centralized storage over a digtd
wireless sensor network storage is the ability to providelialnle and persistent long-term
storage capability. Scientists, in particular, are relatto let data be discarded for energy
or other reasons, since this data could be valuable for shadiies. To provide an effective
service for such applications and users, we have to provisienadce that can compete
with centralized storage by providing a long-term persisstorage and data processing
capability. The key criteria for persistent storage tedbgpin sensor networks is power
consumption and cost. The most attractive technology ttsabfith these criteria is Flash
memory. In addition to low cost, the power requirements dftflenemory are at least an
order of magnitude less than communication.

Multi-Resolution Data Storage: A fundamental design goal is the ability to extract
sensor data in a multi-resolution manner from a sensor mktw8uch a facility is very
useful in storage designed for sensor data for multiplearesiga) it allows users to look at
low-resolution data from a larger region cheaply, beforeidiag to obtain more detailed
and potentially more expensive datasets, and (b) compmtdsgeresolution sensor data
from large number of nodes can often be sufficient for spinporal querying to obtain
statistical estimates of a large body of data [Vitter et 804].

Balanced, Distributed Data Storage: Design goals of distributed storage systems
such as [Kubiatowicz et al. 2000][Rowston and Druschel 2@@designing scalable,
load-balanced, and robust systems, are especially imgddaresource constrained dis-
tributed sensor networks. We have as a goal that the systimdes communication and
computation load of querying and multi-resolution dataaotion from the network. In
addition, it should leverage distributed storage resato@rovide a long-term data stor-
age capability. Robustness is critical given individuadheuability of sensor nodes. Our
system shares design goals of sensor network protocolsdhgiensate for vulnerability
by exploiting redundancy in communication and sensing.

Robustness to Failure: An outdoor deployment of cheap sensor nodes is clearly sus-
ceptible to node and hardware failures due to the vagari¢seofveather. The unpre-
dictabilities of the environment are likely to reflect in ahéer probability of nodes being
permanently or temporarily disconnected and completelgastially losing their stored
data. Thus, reliability schemes become an important desigeern, and such schemes
should be designed such that data is not lost even in themresé a high failure proba-
bility.

Graceful Data Aging: To enable long-term storage given limited storage capacity
the system should to provide a mechanism to age data. Thig @gbcedure should be
utility-basedi.e., it should age data that is not useful to the user while retgidiata that is
potentially useful for querying. The aging procedure sbdé graceful and data quality
should degrade slowly rather than abruptly over time to jpl®wusers with a more useful
sensor network.

Exploiting Correlations in Sensor Data: Correlations in sensor data can be expected
along multiple axes: temporal, spatial and between meltggnsor modalities. These
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correlations can be exploited to reduce communication amge requirements. The
storage structure should be able to adapt to the correlatiaracteristics of sensor data.

4. ARCHITECTURE DESCRIPTION

We describe the architecture of our system in four partsth@hierarchical processing
that constructs lossy multi-resolution summaries, (b)rtheing protocol that construct a
distributed hierarchy to enable summarization at diffelayers, (c) the expected usage of
these summaries through drill-down queries, and (d) the aiging scheme that determines
how summaries should be discarded, given node storage eeugits.

Summarization and data aging are periodic processes, épatr every epoch. The
choice of an epoch is application-specific, for instanceiseérs of a micro-climate mon-
itoring network ([Hamilton ]) would like to query data at tleed of every week, then a
reasonable epoch would be a week. In practice, an epochdshblglast be long enough to
provide enough time for local raw data to accumulate for iefficsummarization.

4.1 Multi-Resolution Summarization

Our goal is to construct a system that can support a wide rahgeeries for patterns in
data. Therefore, we use a summarization technique thahirghky applicable, rather than
optimizing for a specific query. Wavelets have well-undaost properties for data com-
pression and feature extraction and offer good data remtuethile preserving dominant
features in data for typical spatio-temporal datasetsd[&ad Bopardikar 1998][Vetterli
and Kovacevic 1995]). As sensor networks mature and theiliGgtions become better
defined, more specialized summaries can be added to the/fafmiulti-resolution sum-

maries maintained in such a framework.

Hierarchical construction (shown in Figure 2) using watslavolves two components:
temporal and spatial summarization of data.

Temporal Summarization: The first phasetemporal summarization, has low energy
overhead since it involves only computation overhead ahglsisensor node, and incurs
no communication overhead. The first step towards congtigiatmulti-resolution hierar-
chy, therefore, consists of each node reducing the timessdata as much as possible by
exploiting temporal redundancy in the signal and aprioawledge about signal character-
istics. By reducing the temporal data-stream to includg potentially interesting events,
the communication overhead of spatial decomposition isiged. In general, significant
benefit can be expected from merely temporal processingtitte cost.

Consider the example of a multi-resolution hierarchy fdtding health monitoring (Ta-
ble I). Such a hierarchy is constructed to enable queryidgiata extraction of time-series
signals corresponding to interesting vibration events [Bleal signal processing involves
two steps: (a) Each node performs simple real-time filtetingxtract time-series that may
represent interesting events. The filtering could be a snaphplitude thresholding i.e.
events that cross a pre-determined signal-to-noise r&iB)(threshold. The thresholding
yields short time-series sequences of building vibratiaitg These time-series snippets
are compressed using wavelet subband coding to yield a seguleat capture as much
energy of the signal as possible, given communication, cdatipn or error constraints.

Spatial Summarization: The spatial summarization phase constructs a hierarchical
grid-based overlay over the node topology, and uses spatiporal wavelet compression
to re-summarize data at each level. Figure 2 illustrateitstruction: at each higher level
of the hierarchy, summaries encompass larger spatialssdaleare compressed more, and
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Fig. 2. Hierarchy Construction

are therefore more lossy. At the highest level (level 2), ona few nodes have a very
lossy summary for all data in the network.

Spatial summarization can be very useful in either highlgredeployed networks where
there is a significant amount of spatial redundancy, or gdaretworks. In other instances,
the reduction in total data size as a result of spatial sunzatéon is less than that of
temporal summarization. However, it still plays an impottgart in reducing sensor data
sizes. In the instance of building health monitoring, sdegummarization may involve
jointly processing correlated vibration data detected-aximate sensor nodes.

4.2 Distributed Quad Trees

While summaries at different spatial and temporal scalesbeagenerated using wavelet
processing, such hierarchical summarization will needeteabled by appropriate rout-
ing and clustering techniques that aggregate data andsstarea hierarchical manner.
The routing framework that we use to enable the summarizatialata at various spatio-
temporal scales is called a Distributed Quad Tree (DQT),athafter the quad-tree data
structure that is frequently used in information retrig¥shng et al. 1997].

Distributed Quad Tree (DQT) is loosely based on the notiostnfctured replication
introduced in Data-Centric Storage (DCS [Ratnasamy et0dl1D. Structured replication
performs geographic hashes to specific locations and rdatago these locations instead
of explicitly selecting clusterheads. Data is routed tortbéde closest to the hashed location
using a variant of the GPSR protocol [Karp and Kung 2000]. sTgriocedure is cheap
from an energy perspective since it precludes the need fomamication that is usually
involved in a clusterhead election procedure.

DQT adds load-balancing to such a hashing and clusteringnseh Such a load bal-
ancing scheme is essential when individual storage capaninodes is not substantial.
Clearly, a simple hierarchical arrangement as shown inrEiguistributes load quite un-
evenly. For instance, if no load-balancing were done, thhést level clusterhead (level 2)
is responsible for all the coarsest resolution data. In adgemeous network, a node that
is elected to be the root has no more storage than any otherindtle network, hence,

Submitted to ACM Transactions on Storage, Vol. V, No. N, AR€05.



10

Query is first addressed
to root of hierarchy.

= Coarsest View
Query is processed on available view o (Level 2)
data and is forwarded to the quadran
that is most likely to satisfy the que|

Finer View

A.% [ ] (Level 1)
/
/4

° Finest View (Raw Data)
(Level 0)

Fig. 3. Drill-down Querying

such a procedure leads to uneven storage distribution.

Our approach to deal with this problem is a simple probdhilisad-balancing mecha-
nism, whereby each node assumes the role of a clusterhead kval for a limited time
frame. After each such time frame, a different node is praisgibally chosen to perform
the role. As a result of such a load-balancing proceduregégonsibility of being a clus-
terhead is shared among different nodes. The performansecbfa scheme depends on
the node distribution, with uniform distribution of load &nregular setting. Our scheme
is similar to load-balancing schemes proposed in the GAFdiXal. 2001] and ASCENT
[Cerpa and Estrin 2002] protocols.

4.3 Drill-Down Querying

Drill-down queries on distributed wavelet summaries caamuatically reduce the cost of
search. By restricting search to a small portion of a larga dtore, such queries can
reduce processing overhead significantly. The term doWxa query is borrowed from
the data mining literature, where drill-down queries haeerbused to process massive
amounts of data. These queries operate by using a coarseasyrama hint to decide
which finer summaries to process further.

Our use of drill-downs is in a distributed context. Queriesiajected into the network
at the highest level of the hierarchy, and processed on ae&phighly compressed sum-
mary corresponding to a large spatio-temporal volume. €kalt of this processing is an
approximate result that indicates which regions in the nétvare most likely to provide
a more accurate response to the query. The query is forwandeaides that store sum-
maries for these regions of the network, and processed oe detniled views of these
sub-regions. This procedure continues until the queryuseehto a few nodes at the low-
est level of the hierarchy or until an accurate enough rés@ittund at some interior node.
This procedure is shown in Figure 3, where a drill-down quefprwarded over a logical
hierarchy to the quadrants that are most likely to satisfy it
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Fig. 4. Long term storage

4.4 Networked Data Aging

Hierarchical summarization and drill-down querying addrehallenges isearching for
features in distributed sensor data. Providing a long-tstonage and query processing
capability requires storing summaries for long deploynpenmtods. In storage-constrained
networks (Table 1), however, resources have to be allocftedtoring new summaries
by discarding older ones. The goal of networked data agimmuinsystem is to discard
summaries such that network storage resources are effjaigifized, and graceful quality
degradation over time is achieved. In other words, our walttresses the problem of
apportioning the limited storage capacity in the networtadeen different summaries.

We define the length of time for which a summary is stored imistevork as thege of
a summary. Each summary represents a view of a spatial araa fpoch, and its aging
renders such a view unavailable for query processing. Btauirce, storing only the highest
level (level 2) summary in Figure 4, provides a condensed dgiresentation of the entire
network and consequently low storage overhead compareatkeicsimmaries, but may not
offer sufficiently accurate query responses. Storing al lewwimmary (finer) in addition
to the level 2 one, enables an additional level of drill-dpaumd offers better accuracy, but
incurs more storage overhead. Figure 4 shows a typicalriostaf gracefully degrading
storage, the coarsest summary being stored for the longgstf time, and subsequent
lower level summaries being stored for progressively ghditne periods.

The networked data aging algorithms provide a storagetjoanitig between different
summaries for each individual node such that the resultabigallocation matches user
requirements. This algorithm weighs three factors: (a)dibributed storage resources in
the network, (b) the storage requirements of different sanes, and (c) the incremental
qguery benefit obtained by storing the summary.
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4.5 Usage Models

A distributed multi-resolution storage infrastructurdiwsystem components as described
above benefits search and retrieval of datasets that espéital correlation, and applica-
tions that use such data. In this section, we briefly dessdiee of the different applica-
tions that this system can be used for.

Long-term Storage: DIMENSIONS provides long-term storage to applicationd tha
are willing to sacrifice data fidelity for the ability to pralgé long-term storage. Long term
storage is provided by exploiting the fact that thresholdeselet coefficients lend them-
selves to good compression benefit [Rao and Bopardikar [\g&8}rli and Kovacevic
1995]. The rationale in balancing the need to retain detalktasets for multi-resolution
data collection and to provide long-term storage is thatigrstists were interested in de-
tailed datasets, they would extract it within a reasonatilerval (weeks). Long-term stor-
age is primarily to enable querying for long-term spatioyeral patterns, for which it is
sufficient to store summaries that retain key features &f.dahus, the wavelet compres-
sion threshold is aged progressively, lending older datarégressively better compres-
sion, but retaining key features of data.

Querying for Spatio-Temporal features: The hierarchical organization of data can
be used to search for spatio-temporal patterns efficientlyeducing the search space.
Spatial features such as edges or discontinuities are tamdior many applications as
well as systems components. Detecting edges is importaapfdications like geographic
routing, localization and beacon placement. By progredgiquerying for the specific
features, communication overhead of searching for featoam be restricted to only a
few nodes in the network. Temporal patterns can be effigienteried by drilling down
the wavelet hierarchy by eliminating branches whose waweelefficients do not partially
match the pattern, thereby reducing the number of nodeseglier

Multi-Resolution Data Collection: Multi-resolution data extraction can proceed along
the hierarchical organization by first extracting and arialy low-resolution data from
higher level clusterheads. This analysis can be used tonohigh-resolution data from
sub-regions of the network if necessary. There are manuyrmistances under which such
progressive data gathering might be useful. One instamealgime monitoring of events
of a bandwidth constrained network where all data cannobraeed from the network
in real-time. In such an instance, a compressed summargafdta can be communicated
in real-time with the rest of the data being collected in mealtime when the bandwidth
utilization is less (Wisden [Xu et al. 2004]).

Approximate Querying of Wavelet Coefficients: Summarized coefficients that result
from wavelet decomposition have been found to be excelnapproximate querying
[Chakrabarti et al. 2001][Vitter et al. 1998], and to obtatatistical estimates from large
bodies of data. Often, good estimates for counting queftitsierstein et al. 2003][Zhao
et al. 2002]) can be obtained from higher level wavelet coieffits (range sum queries
[Vitter et al. 1998]). coefficients at higher levels of thecdmposition are often effective
in capturing many interesting features in the original datae hierarchy is aged progres-
sively, with more compressed coefficients being storeddogér periods of time. Queries
that mine patterns over long time-scales are executed aothpressed coefficients rather
than the original dataset.

Network Monitoring:  Network monitoring data is another class of datasets that ex
hibits high correlation. Consider wireless packet thrqughdata: throughput from a spe-
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Symbol Parameter

S Local storage constraint

f(t) User-specified aging function

g(t) Provided step function

i Size of each summary communicated from|a

levels clusterhead to a levél+- 1 clusterhead.
Raw data is not communicated

R; Total data communicated in the network be-
tween levek and leveli + 1

S Storage allocated to a levélclusterhead for
storing summaries from level— 1

ci Compression ratio at level

Age; Aging Parameter for level, i.e,, duration in

the past for which a level — 1 summary is
available at a level clusterhead

N Number of nodes in the network

Ié} Resolution bias of the greedy algorithm

Table Il. Parameters for the Aging Problem

cific transmitter to two receivers that are spatially proaimare closely correlated; sim-
ilarly, throughput from two proximate transmitters to a cifie receiver are closely cor-

related. DIMENSIONS serves two purposes for these dataggtghey can be used to
extract aggregate statistics with low communication carstl, (b) discontinuities represent
network hotspots, deep fades or effects of interferencéhwdire important protocol pa-

rameters, and can be easily queried.

5. AGING PROBLEM

Having discussed the architectural components and usagdelsnof our system, we now
address the core question in distributed storage: How dodsmode age summaries such
that that network can provide a long-term storage capwgilit

The storage allocation problem arises due to the finite géotapacity at each node.
When a node’s local storage is filled up, then, for each newnsairy that needs to be
stored at a sensor node, a decision needs to be made aboutatdéd discard in order to
create storage space for the new summary. In this sectigorile the criteria to consider
while designing an aging strategy, formalize the aging [enwband describe an efficient
optimization-based solution.

5.1 Aging Problem Formulation

Consider a network witliv nodes placed in a regular grid structure, over whicéhlavel
(k <log, N) multi-resolution hierarchy is constructed. The netwsrkdmogeneous, and
each node samples sensor data at a ratelgftes per epoch, and has storage capasity,
which is partitioned among summaries at different resohi

The goal of this analysis is to identify how the storage cépadt each nodeS, can be
partitioned among summaries at different resolutions.rdeoto derive the aging scheme,
we use the fact that the system provides a load-balancinganém that distributes data
approximately equally between nodes in the network. Tloeegfin the analysis, we will
assume perfect load-balancing,, each node has identical amount of storage allocated to
data at each resolution. We also assume that the networkadecfly dyadic gridj.e., a
square with sid@?, wherei is an integer.
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5.2 Communication overhead

The communication rate at levelis given byr;, which determines the communication
between a clusterhead at levend a clusterhead at leveH 1. Raw, uncompressed
sensor data has rate ro corresponds to temporally compressed data which is tratesmi

to a clusterhead at level 1 from a level 0 node. Similarjyfor i > 1 corresponds to
communication overhead from levigb leveli+1. The rate-; depends on the compression
ratio chosen for a summary at leviek;, defined as the ratio between size of compressed
data transmitted from a clusterhead at leiv& one at level + 1, and the total amount
off raw data that the level quadrant generates. The relation between ngteand the
compression ratio that it correspondsdg,is thus:

4i'y

Ci

ri = (1)
since there ard’ nodes within each quadrant at level i, each generatibis, whose
data is compressed by a factgiby the clusterhead for the quadrant.
To compute the total amount of data communicated in theeenétwork from levef to
leveli + 1, R;, we use the fact that there af¥s:+ N~ clusterheads at level Thus,

R; = rjdlosa N1 ()

In this paper, we will assume that the compression ratiod tlagrefore, the rates, have
been appropriately chosen for the sensor data being stuligatactice, the relationship
between lossy compression and query performance would detaded study with the
sensor dataset in question. Our goal, however, is to obpgproariate aging parameters
for a given choice of rates;.

5.3 Query quality

Drill-down queries over this network can proceed hieraralty until summaries are avail-
able for the requested data. For instance, in the case otweBhierarchy as shown in
Figure 4, if only the coarsest summary is available, the gitegminates at the root, if both
the coarsest and finer summaries are available, it ternsiaatevel 1, and so on. We define
the query accuracy if a drill-down terminates at lev& beg;. Thus, in the hierarchy in
Figure 4, the query accuracy if only the coarsest resoluti@queried isz., if the coarsest
and finer resolutions are queriedjis and if all resolutions including raw data are queried
is qo. In practice,gg > ¢1 > ... > qx, i.€., query quality increases with more drill-down
levels since finer data is being queried.

5.4 Storage Overhead

The amount of storage required at any level is related toata amount of data commu-
nicated to it from the lower level. For instance, a level 2stduhead receives summaries
from four level 1 clusterheads, stores these summariesufard queries, and generates
summaries of its own that are sent to level 3. We defijraes the amount of data that a each
node in the network allocates for summaries from lavelhe per-epoch network-wide
storage requirement for summaries from leiéd R;, which is the total amount of data
communicated from levelto leveli + 1 in the network.
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5.5 Approximating user-specified aging function

Let f(t) be a monotonically decreasing user-specified aging fumetidch represents how
much error a user is willing to accept as data ages in the mktv&uch a function can be
provided by a domain expert who has an idea of the usage patéthe sensor network
deployment. The solid curve in Figure 5 is one instance ofisufunction, in which the
user would like 90% query accuracy for data that is only a waldkand 30% accuracy
for data that is over a year old, with a monotonically dedrepaccuracy in between these
two times.

We wish to approximate the user-defined aging function uaisigp functiong(t), that
represents query degradations due to summaries being ageshown in Figure 5, the
steps correspond to time instants at which summaries oftaiceesolution are aged from
the network. We represent this age of each summanydsy.

Since each node allocatesdata to level summaries and there afé nodes in the net-
work, the total networked storage allocated to data froralleis N s;. The total storage re-
quired for leveli summaries isk;, given by Equation 2. Assuming perfect load-balancing,
the age of summaries generated at lévsi

R, m

Age of the raw datadge, ..., is a special case, since it is not communicated at all. If
sraw Storage slots are allocated to each node for locally geedteatd stored raw data, the
age of raw datadge,.q., = %

The cost function that we choose is tipaality difference, qdiff (¢), that represents the
difference between the user-specified aging function aadathieved query accuracy at
time ¢ (shown in Figure 6). The objective is tainimize the quality difference over all
time. Theminimum error aging problem can, thus, be defined as follows.

Find the ages of summaries, Age;, at different resolutions such that the the maximum
quality difference is minimized.

Age; = Vi>1 3)

Mino<i<r (Maz (qdiff) (1)) (4)

under constraints:
Drill-Down Congtraint: Queries are spatio-temporal and strictly drill-dovise,, they
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terminate at a level where no summary is available for theigstgd temporal duration
of the query. In other words, it is not useful to retain a sumyna a lower level in the
hierarchy if a higher level summary is not present, sinceghgannot be used by drill-
down queries.

Ageiy1 > Age; 0<i <k (5)

Sorage Constraint: Each node has a finite amount of storage, which limits the size
of summaries of each level that it can store. The number ofnsames of each level
maintained at a nod%{—i) is an integer variable, since a node cannot maintain ai st
number of summaries.

Yo<i<ksi < S
S integer variable
47‘1‘

Additional Congtraints: In formulating the above problem, we consider only drillagio
gueries and a network of homogeneous devices with idergicedge limitations.

Our formulation can be extended to deal with different senstwork deployments and
queries. Forinstance, queries may look at intermediatesanms directly, without drilling
down. Previous research has proposed a tiered model fayrsdgsloyments ([et al 2001]),
where nodes at higher tiers have more storage and energyrcesdhan nodes at lower
tiers. Some of these constraints can be added in a straiglatfd manner to the above
optimization problem.

For a monotonically decreasing user-specified aging fanctjdiff needs to be evalu-
ated only at a few points (as shown in Figure 6). The pointeesponds to the agedge;,
for each of the summaries in the network. As can be seen, the vhqdiff at all other
points is greater than or equal to the value at these points.

The minima of a maxima in Equation 4 can be easily linearizaethtroducing a new
parametey:

Mino<i<n {1} (6)
Qiff(Age) < p Vi %

The complexity of the resulting optimization procedureasgs on the form of the user-
specified aging functionf (¢). For instance, iff (¢) is a linear function of time, the opti-
mization can be solved using a standard linear solver suljh smve.

5.6 Choosing an Aging Strategy

The constraint-optimization problem presented in Sechidnis straightforward to solve
when all parameters are known. This brings up an importaastipn: How does one
design an aging strategy with limited a priori information?

Figure 7 shows different options that might be possible ddjmg on the availability of
prior datasets for the application. In traditional wirethsar networks, the entire dataset
would be available centrally, and could potentially be usedonstruct an optimal aging
strategy using the above-mentioned constraint-optincizagaroceduré

IThe size of the dataset and the latency in estimating paesesing the entire dataset could preclude optimal
aging even in a wired instance of the problem.
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Fig. 7. Aging algorithms that operate on different levelsgiriori information.

Distributed scenarios such as wireless sensor networlesthavperate with less infor-
mation due to the overhead of centralized data collectiosome scientific applications, a
data gathering phase might precede full-fledged deploy(eemt James Reserve [Hamil-
ton ]), potentially providing training datasets. In othases, there might be available data
from previous wired deployments (e.g.: Seismic Monitorjkghler ]). These datasets
can be used to train sensor calibration, signal processidgraour case, aging, parame-
ters prior to deployment. The usefulness of a training place depends greatly on how
well the training set represents the raw data for the aligorlieing evaluated. For instance,
if the environment at deployment has deviated considerfabiy its state during the train-
ing period, these parameters will not be effective. Ultiehgta training procedure should
be on-line to continuously adapt to operating conditions.

Systems, sometimes, have to be deployed without training aiad with little prior
knowledge of operating conditions. For instance, [Intamagwat et al. 2000] describes
sensor network deployments in remote locations such astfora the absence of training
datasets, we will have to design data-independent hexgigiiage summaries for long-
term deployment.

We design algorithms for aging in two cases: with trainingadand without training
data. For the case when prior datasets are available, wehaseptimization problem
to compute aging parameters, both for a baseline, omniss@eme that uses full in-
formation, and for a training-based scheme that operates lomited training set. For
deployments where no prior data is available, we describbeedy aging strategy.

5.6.1 Omniscient Algorithm. An omniscient scheme operates on the entire dataset,
and thus, has full knowledge of the query error obtained biirdy down to different
levels of the hierarchy. The scheme, then, computes thegagiategy by solving the
optimization function, presented in Section 5.1, for eaabry type. The pseudo-code
for such a scheme is shown in Algorithm 1. Omniscience comesast that makes
it impractical for deployment for two reasons: (a) it usel ¢lobal knowledge, which
in a distributed sensor network is clearly impossible, andt(determines optimal aging
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Level (2) Rate from level i to | Sorage required per- | s; (with greedy algo- | Age;
level ¢ + 1 (r;) epoch for data at level | rithm 3 = 1)
i (4r;)
Raw 1024 1024 0 0
0 (finest) 64 256 256 4
1 (finer) 16 64 128 32
2 (coarsest) 8 32 128 256
Table Ill. Example of a greedy algorithm for a 16 node network

parameters for each query separately, whereas in praaticiegice of aging parameters
would need to satisfy all possible queries together.

Algorithm 1 Omniscient Algorithm Pseudocode
for Each query in Q in set of QueryTypde
q; = Query accuracy for Q obtained from entire dataset
Solve constraint-optimization in Section 5.1
end for

5.6.2 Training-based Algorithm. The training scheme differs from the omniscient scheme
in two ways: (a) data corresponding to a brief training pgtrfochosen for determining ag-
ing parameters, rather than the entire dataset, and (bpk gihoice of aging parameters
is determined for all query types being studied.

Ideally, the choice of a training period should be such thafgarameters extracted from
training set is typical of the data that is sensed duringesysteployment. Often, however,
practical limitations such as deployment conditions, eger, communication bandwidth
and personnel limit the amount of training data.

Unlike the omniscient idealized algorithm, the trainindn@me cannot choose aging
parameters per-query. In a practical deployment, a sinigffeadion scheme would be
required to perform well for a variety of queries. Therefaifee training scheme uses
the error for different queries to compute a weighted cutiudaerror metric as shown
in Algorithm 2. The cumulative error can be fed to the optiatian function to evaluate
aging parameters for different summaries.

Algorithm 2 Training Algorithm Pseudocode

Require: : Q: Set of all query types

Require: w;: Weight for query type

Require: E;: Error for query type from the training set

[* Evaluate weighted cumulative error over all query typés *
o Yicqwilh

GEIer .

Solve constraint-optimization in Section 5.1
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Fig. 10. Resource allocation schemkig. 11. Resource allocation scheme
where medium-term storage is achieveghere short-term storage is achieved with
with medium accuracy for queries ovehigh accuracy over old data.

old data.

5.6.3 Greedy Algorithm. We now describe a simple greedy procedure that can be used
in the absence of prior datasets. The greedy procedurenassigjghts to summaries ac-
cording to a measure of expected importance of each resoligtivards drill-down queries,
represented by the parametesolution bias/). Algorithm 3 shows the greedy allocation
procedure: when available storage is larger than the sizheofmallest summary, the
scheme tries to allocate summaries starting with the cebose. The ratio of the coars-
est summaries to summaries that are i levels finergareFor instance, in a three-level
hierarchy (Table 1ll), a resolution bias of two means thatdeery coarse summary that is
stored, two of finer, and four of the finest summaries are gtedhto be allocated. The
resolution bias parameter is used to control how graduadlywuld like the step function
(in Figure 5) to decay.

The greedy allocation procedure specifies how the per-nadengeters:; are deter-
mined for each resolution levél The networked age of each summary is determined from
s; using Equation 3. For instance, consider a greedy allatatith resolution bias of 1 in
a 64-node network with parameters provided in Table IlI. fEtezre three levels in such a
hierarchy, with every node storing raw data, 16 clusterbeddevel 1 storing summaries
transmitted from 64 clusterheads at level 0, 4 at level Zrgjosummaries from 16 level
1 clusterheads, and 1 clusterhead at level 3 storing suragi@om 4 clusterheads at level
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Algorithm 3 Greedy Algorithm Pseudocode
Require: N: number of nodes in the network
Require: k: number of levels
Require: r;: the size of a summary at leval
Require: w;: Weight for query type
while at least the smallest summary can fit into the remaining geosaacelo
Assign Summaries starting from the coarsest
for leveli = k down to 1do
if storage is availablthen
allocate3*~* summaries of level
end if
end for
end while

2. Consider an instance where the local storage capacity2isibits and the sizes of each
summary are as shown in Table Ill. The greedy allocation reehallocates summaries
starting with the coarsest level as shown in Figure 8. Nadégtorage is allocated in units
of 4r; since there are four clusterheads at lév@#nding data to eacht 1 clusterhead. In
the first pass, one of each summary except raw data is althéatne second, one coarsest
and one finer summary is allocated, and in the third and foortk coarsest summary is
allocated. Thus, a total of 128 bytes for coarsest, 128 Hgieiner, and 256 bytes for
finest summary are allocated at each node. The age of sunsnaararious levels can be
computed using the parameters provided in Table 11l on Hqn& For instancedge is
4:% = 250 = 4 epochs.

The resulting aging sequence is shown in Figure 10. Thetnegulllocation favors the
coarsest summary more than the finer ones. Thus, the netwgpksgs long-term querying
(256 epochs), but with higher error for queries that delte wider data. Raw data is
aged very quickly, therefore, queries after four epochébvélunable to query raw data.
Similarly, other allocations can be considered under thees@source limitations. Figure 9
shows an allocation that balances favors duration oveildethereas the allocation in
Figure 11 favors detail over duration.

6. EXPERIMENTAL EVALUATION

In this section, we describe the implementation of longatetorage and aging on a linux-
based network emulation platform, Emstar ([Girod et al. AP0 Since available dense
wireless sensor network datasets lack sufficient tempaoxhbpatial richness, we chose a
geo-spatial precipitation dataset [Widmann and C.Brédindrfor our performance studies.
The dataset provides daily precipitation for the PacifictNaest from 1949 to 1994, with
50km resolution. It comprises a 15 x 12 grid of daily pre@pdn data for forty five years,
where adjacent grid points are 50 kilometers apart.

Some features of the dataset were interesting from a sysegformance evaluation
perspective. First, the dataset involved a reasonably tiomg-history, which would be
useful for analyzing a data summarization algorithm. Initoit, since precipitation is
likely to have annual cycles, many years of data would previsiwith sufficient temporal
redundancy to test our data summarization techniquesulbip. Second, the data had
a reasonable spatial scale (15x12) which would enable usgiore both processing and
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guerying techniques over a spatial area. Finally, manguifit queries could be evaluated
over the dataset due to its spatial and temporal richness. ifidludes temporal queries
such as averages, maxima and minima, as well as spatiakequarch as edges. Thus,
while both the spatial and temporal sampling are much lohan tvhat we would expect
in a typical sensor network deployment, this dataset hassalgd exhibits spatio-temporal
correlations, both of which are useful to understand anduata our algorithms. In all
our experiments, we replayed this dataset. While such patiad datasets are readily
available, further research has to be done to understandlif datasets are representative
of sensor datasets such as at James Reserve ([Hamilton ]).

6.1 Ipaq Wavelet Codec Implementation

The wavelet codec software is based on a high-performaasform-based image codec
for gray-scale images (freeware written by Geoff Davis ([i23). We extended this coder
to perform 3D wavelet decomposition to suit our applicatidfor our experiments, we
use a 9/7 wavelet filter, uniform quantizer, arithmetic aamled near-optimal bit allocator.
The 9/7 filter is one of the best known for wavelet compressaon especially for images.
While the suitability of different filters to sensor data u@gs further study, this gives us a
reliable initial choice of wavelet filter.

Since the spatial scale of the dataset is 15x12, it is noitflea® use wavelet processing
along the spatial axis. In practice, a grid of size, at le@s82 would be required before
spatial wavelet processing can be expected to be effe€idrehe given dataset, therefore,
multi-resolution datasets were constructed by repeateddeal processing.

Communication overhead over a multi-resolution hieraiistgoverned by the rates;,
that are determined as shown in Equation 1. We do not addregsdoblem of finding the
optimalr; for a given dataset. Our objective is to choose a represemntat of parameters
that determine the communication overheiagl, the compression ratios at each levg],
and the amount of data per epoeh such that the rates; increase slowly with the level
of the hierarchy.

We select the parameters as follows:

— = 3epochs x 365samples/epoch * 2bytes/sample = 2190bytes. To construct sum-
maries, we used an epoch of three yaasthe summary construction process repeats
every three years. The choice of a large time-period wasdlthettemporal infrequency
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Hierarchylevel | Num Cluster- | Compressioh Rate (r;) Total
(2) heads (V) Ratio Data
(Ners)
Raw 180 1 2190 ¢) 394.2K
Otol 180 5.97 367.1 66.08K
1to2 48 11.91 689.1 33.08K
2t03 12 23.46 1400.1 16.8K
3t04 4 50.9 2933.5 11.73K

Table IV. Communication Rate per Level

of samples. Each node in the network would have 1095 sampla®tess every three
years, enough to offer reasonable temporal compressiogfiben a typical deploy-
ment, where nodes generate more data, the epoch would besmotkr.

—co ¢ e ez =612 : 24 : 48. Compression ratios should be chosen such
that the exponential effect of aggregating data is mitiga@ur choice of compression
parameters has two features that mitigate the increasdan @ temporal compression
ratio of 6 means that approximately 367 bytes are commueddat each node at level 0,
instead of 2190 bytes, and (b) the compression ratios iereg a factor of two instead
of four (in Equation 1), thus, data implosion towards thetisdess severe.

The total communication overhead for summaries at each iewhown in Table IV.
The first row (Raw data) corresponds to uncommunicated dEta. results from the
codec were within 4% the input compression parameters. fBinelard deviation results
from the fact that the dimensions of the grid are not penjetyhdic (power of two) and
therefore, some clusterheads aggregate more data thas.othe

6.2 Drill-down Query Performance

We use the summarized data constructed by wavelet compnetssevaluate the perfor-
mance of drill-down queries.

6.2.1 Query Types. Our implementation considers four types of queries (showfar
ble V) that involve different extents of spatio-temporabpessing that evaluate both ad-
vantages and limitations of wavelet compression. Theseiggiean be classified into
different categories corresponding to the spatial and teaifscales that they process as
shown in Figure 14. The GlobalYearlyEdge and LocalYearlghlgueries explore features
for which wavelet processing is typically well suited. ThaMqueries (GlobalDailyMax,
GlobalYearlyMax) looks at the Max values at different temgd@cales. The GlobalYear-
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Type Query

GlobalDailyMax What is the maximum daily precipitation for year X?

GlobalYearlyMax | What is the maximum annual precipitation for year X?

LocalYearlyMean | What is the mean annual precipitation for year X at locati¢h Y
GlobalYearlyEdge| Find nodes along the boundary between low and high pretitareas for year X

Table V. Spatio-temporal queries posed on Precipitatiora

o 9
T 3 _ Edge
o Z DailyMax’
n = YearlyMax
<
T
Q
n
5
z Not evaluated PerNodeMea
2
=

Daily Yearly
Temporal Scale

Fig. 14. Classification of Spatio-temporal Queries

lyMax query looks at the maximum yearly precipitation in #gire network, while the
GlobalDailyMax queries for the daily global maximum.

Both the LocalYearlyMean query and the two Max queries apeggsed as regular drill-
down queries. The query is processed on the coarsest suninaoynpute the quadrant
to drill-down, and is forwarded to the clusterhead for thadpant. The GlobalYearlyEdge
query tries to find nodes in the network through which an edgses, and involves a more
complex drill-down sequence. This query is first processethb highest-level cluster-
head, which has a summary covering the spatial extent ofrttieeenetwork. The cluster-
head uses a standard canny edge detector to determine ghanétdgstored summary, and
fills a bitmap with the edge map. The query and the edge bitmathan forwarded to all
guadrants that the edge passes through. The cluster-fmats$e quadrants run a canny
detector on their data, and update the edge bitmap with a exaret version of the edge.
The drill-down stops when no edge is visible, and the edgedjtis passed back up, and
combined to obtain the answer to the query.

6.2.2 Query Performance. We now evaluate the performance of drill-down queries
over the multi-resolution dataset constructed as destabeve. Our goal in this section
is to demonstrate the search features of the system andquoekim that multi-resolution
storage can be useful for a broad variety of queries.

To evaluate performance, each of the queries shown in TabMad posed over the
dataset. For yearly queries (GlobalYearlyEdge and and &bYaarlyMax), there were 45
instances each, since there are 45 years of data. For thalBkilyMax query, the results
are averaged over 16801 instances (one for each day), ar@ldbalYearlyMean, the
gueries were averaged over 8100 queries (180 nodes x 45.years

The query accuracy for a drill-down query that terminatds\a! : (¢;) is measured as

Submitted to ACM Transactions on Storage, Vol. V, No. N, AR€05.



24
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Fig. 15. Query error decreases as they drill-down to lowezl¢eof hierarchy. Summaries at lower levels typically
contribute less to reducing query error than higher leveimaries.

the fraction erroi.e., the difference of the measured drill-down result and thé nesault
over raw data over the real result (measured - real/reafurBil5 shows the variation of
query quality for queries defined in Table V for differentdév of drill-down.

Performance for LocalYearlyMean, GlobalYearlyMax and a@ailyMax queries are
very similar, as shown in Figure 15. All of them have an errbd©-50% if only the
coarsest (level 4) summaries are queries, but reduce yapidin the drill-down proceeds
to the lowest level. Even one or two levels of drill-down sfgrantly improve error, for
instance, querying level 3 in addition to level 4 reducesreim under 20%, and querying
level 2 as well reduces error to less than 5%.

For the GlobalYearlyEdge query, we measure error as thédracf nodes missed from
the real edge. This query exhibits a different trend froneotjueries, with lower error by
guerying the coarsest level, and less benefit due to furtiileddwns. Thus, in Figure 15,
the error is 15% when only the coarsest (level 4) summaregaeried. The error reduces
to 11% with an additional level of drilldown, however, fuethdrill-downs do not improve
the result. This trend is consistent with what one would ekxf@ edge detection, the edge
is more visible in a lower resolution (and consequentlyhbiglevel) view, and becomes
more difficult to observe at lower levels of the hierarchy.altarger network, with more
levels, improvement might be observed using drill-down.dié\dnally, a more relaxed
definition of query error can be considered, for instancéy andes that are not nearest
neighbors of the real edge are considered erroneous. Tleeeedy is seen to be less than
2% with such a definition.

The communication overhead of in-network processing ofehgueries is extremely
low as well. Even with false positives, the total query owarth of a GlobalYearlyEdge
query is less than 10% of the network. Other drill-down gesuch as GlobalYearlyMax
and LocalDailyMax drill-down query only around 5% of the wetk. This performance
results from hierarchical processing of queries, and fomntueries that require a single
answer (mean,max,min), the overhead is adlyog,N) (one branch probed per level),
i.e., only around 5% of the network is queried for the result.
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Level GlobalYearlyMax GlobalDailyMax LocalYearlyMean GlobaarlyEdge Cumulative
till Training
which Error
drilled
down

Omniscient | Training Omniscient | Training Omniscient | Training Omniscient | Training
1 1.6% 1.2% 3.2% 6.6% 1.0% 1.0% 11.2% 7.5% 5.4%
2 5.5% 5.0% 7.2% 8.9% 5.9% 6.1% 11.2% 7.5% 9.2%
3 16.9% 12.2% 17.6% 12.9% 20.9% 21.0% 11.2% 7.5% 17.9%
4 38.6% 32.2% 40.8% 30.4% 48.4% 49.8% 15.6% 7.5% 39.9%

Table VI. Comparing the error in Omniscient (entire) Datase Training (first 6 years)
Dataset

These results demonstrate a key advantage of multi-résoktorage. While there is an
initial overhead of communicating summaries, this ovedhesn be amortized over many
gueries posed by the users.

6.3 Aging Performance Evaluation
In this study, we consider linear aging functions of the fprm

Ft)y=1-at 8)

The parametesy can be varied depending on the rate at which the user wowddhi&
aging function to decay. A large would generate a rapidly decaying aging function.

As shown in the previous section, different summaries doute differently to the over-
all query quality, with the top-level summary contributimgximum. For instance, in the
case of the GlobalDailyMax query, query error reduces by 5§%toring only the level 4
summary. Adding an additional level of summaries decreases by 15%, and so on till
storing raw data results in 0% error. This trend motivatesating problem, which allo-
cates storage to different summaries based on their matggnafit to query processing,
and their storage utilization. In this section, we will loakthe impact of aging summaries
based on their relative importance. Since raw data adtks ditthe overall query result
(Figure 15), we will assume that nodes store only summatiearaus levels and not raw
data.

The parametery, in Equation 8 is varied between 0.01 and 0.002, and detesmin
whether the user would like a fast decay of query accuracytowe, or a slower decay.

We evaluate the three aging schemes, using the globallysaient scheme as a baseline
to compare the more practical training-based and greedsnse$. In this comparison, we
increase the amount of local storage allocated to each motheinetwork from OKB to
100KB, in steps of 4KB blocks. As with the previous sectiomr, metric for error igqdiff
(Equation 4).

6.3.1 Omniscient Strategy: Establishing a Lower Bound for Query Error. The omni-
scient scheme uses the query error for each query on the dataset (Figure 15) to deter-
mine the optimal choice of aging parameters for each qugrg.tAs shown in Table VI,
the error from the coarsest summaries ranges from 30% to 60#ifferent queries. As
the local storage capacity increases, however, the optilgatithm performs dramatically
better, until 0% error is achieved when all levels can bdettitiown. This behavior is
also shown in Figure 16, which shows the performance of tfisie for the GlobalYear-
lyMax query on one instance of a user-specified linear agimgtfon ¢« = 0.002). In
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«a Omniscient Training Greedy
Duration Balanced Detail (3=2)
(8=0.5) (B=1)
0.01 (fast) 13.6% 14.8% 20.6% 13.7% 13.9%
0.0033 15.0% 15.9% 25.3% 16.0% 16.0%
0.002 (slow) | 18.2% 19.2% 28.6% 20.0% 26.1%

Table VII. Comparison of between omniscient, training aneegy schemes. Training is within 1% of the om-
niscient scheme. The greedy algorithm shows significanabiity to the choice of3, however, thebalanced
resolution bias performs within 2% of the omniscient scheme

Omnis'cient
09 r Training - |
l Greedy - Detail -
g Greedy - Balanced
e 08r Greedy - Duration -—--- q
g o7} |
B o6f |
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@
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5 04 |
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Local Storage Size (KB)

Fig. 16. Comparison of Omniscient, Training and Greedytagias for GlobalYearlyMax quers(= 0.002)

networks composed of nodes with low local storage capacitie error is high since only
the coarsest summaries can be stored in the network .

6.3.2 Evaluating Training using Limited Information. In our evaluation, we use a
training period of two epochs of data (10% of total deployirtene) to predict the query
accuracy for the entire dataset. Summaries are constrogdhe training set, and all
gueries in Table V are posed over these summaries. Ideadlyerror obtained from the
training set would mirror error seen by the omniscient sahem

How effectively does the the training dataset represerdittiee dataset? Table VI shows
that the predicted error from the training set is typicallyhin 5% of the query quality seen
by the omniscient scheme, but is almost 10% off in the worse ¢&lobalDailyMax query
over level 4 summaries). Also, in the case of the Global'yé&atge query, the error seen
from the training dataset is consistently off of the avernaggeilt. Thus, the training set is
moderately representative of the entire dataset.

To compute the cumulative error using Algorithm 2, we uses¢gueights for all queries.
When usage statistics of sensor networks become avaiigipécation-specific weighting
schemes can be used. This cumulative error can be fed to thmizgtion function to
evaluate aging parameters for different summaries.

The first column in Table VII shows the difference betweengbegormance of training
and the optimal schemes. These results are aggregatesregeita range of storage sizes
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(0 - 100KB) and query types (shown in Table V). Training parie exceedingly well, and
in fact is on average less than 1% worse than the optimalisnluthese results are very
encouraging since it suggests that even with moderatelgseptative training datasets,
very good performance can be observed.

Having seen the aggregate result, we look at a single rungar€&il6, that shows how
the performance varies as the amount of storage allocatadntmde is increased. Fig-
ure 16 shows the result of such a resource allocation for tobabrearlyMax query. As
expected, increasing the storage size reduces error fecladmes. Notably, the training
curve follows the omniscient storage allocation curve v@ogely (almost indistinguish-
ably). Similar results were obtained for other queries as we

6.3.3 Greedy Algorithm. We use three settings for resolution big}, @ low resolution
bias (3 = 0.5), that favorsduration over detail, a medium biagi(= 1), thatbalances
both duration and detail, and a high bias=€ 2), that favorsietail over duration.

As seen in Table VII, varying the settings of resolution biasthe greedy heuristic
significantly changes the performance of the greedy héuriéthenc is large, the user-
specified aging function has a steep slope. In this case, adsalution biasduration)
performs poorly since it prefers coarser summaries mucte tinan finer ones. In contrast,
whenq is small and the user-specified aging function has a grathyse sa high resolution
bias @etail) performs exceedingly bad, since allocates more storadjiego summaries,
thereby reducing duration. In both cases, babanced summary assignment performs
well, and has a worst-case performance of around 5% in casguewith the omniscient
scheme, and 4% in comparison with the training scheme.

This result can be understood by looking at the relationbleifpveen resolution bias,
0, and the slope of the user-specified aging functien A low value of resolution bias
(duration) results in more storage being apportioned to coarser sui@snahus biasing
towards very long duration, but low accuracy. The maximumrwesror (max¢diff))is
observed for queries that look at recent data, where theexpercts high accuracy, but the
system can only provide coarse summaries. Thus, such aratdlo performs well when
the user-specified aging function requires very long danatitorage (egoe = 0.002),
but badly for short duration storage (egipha = 0.05). In contrast, a higher value for
resolution biasdetail) allocates significant storage to finer summaries. The &tow for
gueries on recent data, but the age of all summaries is binasewvell. Queries on old data
will result in a large max{diff) because summaries will be unavailable in the network f
old data. Thus, as we vary the resolution bjagetween these extremes, we get different
results from the greedy algorithm. An ideal choicefois seen to bgd = 1 (balanced),
which lies between these extremes, and results in more grading of summaries.

This hypothesis also explains Figure 16. For a user-spddaifiing function that favors
duration ¢« = 0.002), the greedy algorithm witldetail bias consistently has high error,
whereasalanced andduration bias perform significantly better.

7. USAGE MODEL: PROGRESSIVE LOSSY DATA COLLECTION

Having described the DIMENSIONS system and its implem@ntdior Linux-based nodes,
we describe one of the usage models outlined in Section 4rbgressively lossy data

collection. Many existing deployments for sensor netwdrge been deployed for data
collection since they enable collection of previously uaikable fine-grained datasets for
many different scientific disciplines. In this section, wesdribe how a subset of the archi-
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Fig. 17. Component Diagram of Mote implementation

tecture that we described can be used to enable scalableaflatztion in sensor networks.
The implementation was done over motes as part of\fisden [Xu et al. 2004] system.

Wisden is a wireless sensor network system for structural-respdata acquisition. The
system continuously collects structural response data &aonulti-hop network of sensor
nodes, and displays and stores the data at a base statisden can be thought of as
a first-generation wireless structural monitoring systénmcorporates some in-network
processing, but later systems will move more processirmgtime network once the pre-
cise structural monitoring applications are better untdexd In being essentially a data
collection system, the system resembles other early sertaorks such as those being
deployed for habitat monitoring [Hamilton ; Mainwaring ét2002].

While the architecture dMsden is simple—a base station centrally collecting data—its
design is a bit more challenging than that of other sensevarés built till date. Structural
response data is generatechagher data rates than most sensing applications (typically,
structures are sampled upwards of 100 Hz). The relativelyrsalio bandwidths, the high
packet loss rates observed in many environments, and tbercesconstraints of existing
sensor platforms add significant challenges to the systaigmie

To address the latency of data acquisition, we have designddmplemented a pro-
gressive storage and transmission strategy on the motésapproach uses local storage
on the motes as a in-network cache for raw data and transmitsdsolution compressed
summaries of data in near-real time. The user can visu&ligstimmarized event data and
the raw data can be collected from the distributed caches wdwiired. This on-demand
data collection has to occur within the time window beforealifdata in the cache is re-
placed by newly generated samples. As we show below, suchmoach can compress
vibration data by a factor of 20; when coupled with event ciite, it can reduce the
acquisition latency to less than in a minute in many cases.

7.1 Wavelet Codec Internals

We use an optimized implementation for the motes due to mgar computation con-
straints. For this reason, many design choices that we mak@rapler than other progres-
sive codecs such as JPEG2000. The component diagram of plenimantation is shown
in Figure 17. We now describe the individual system comptaienmore detail.
Integer-Integer Wavelet decomposition: Our implementation uses the bi-orthogonal
Cohen-Daubechies-Feauveau (2,2) (CDF(2,2)) integerlethfting transform that relies
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solely on integer addition and bit shifting operations. ‘alat lifting involves two steps:
(a) a prediction step when the odd values of the time-sereggedicted from the even
values, and (b) an update step when the even values are dpdatpture the error in the
prediction step. The predict and update operations for DE(E,2) lifting transform are:

1
d; — d; — 5(81 + 81'4_1)

1
S; < 8; — Z(_di_l - di)

The choice of the above lifting transform over other kerweds based on two factors:
computation overhead and compression performance. Usingggl wavelet filters involves
more computation overhead but does not provide significantpcession improvement
over the chosen filter, at least for the building vibrationadat that we studied ([Kang
etal.]).

While the lifting transform itself is very efficient, normzdtion of coefficients at var-
ious subbands involves floating point operations. The nbzation coefficients for the
CDF(2,2) transform are:

ng =2 (9)
nL=%

wheren g is the higher frequency subband andis the lower frequency subband. We per-
form the normalization operations during the wavelet thoéding step rather than during
wavelet decomposition to be more computationally efficient

The wavelet codec operates on buffers of ler@jthwheren is a positive integer. To
avoid blocking artifacts at the buffer boundaries, we pathdauffer with a few samples at
either end.

Quantization: Quantization involves representing a range of values igmesiby a sin-
gle value. This reduces the number of symbols that are redjtirrepresent a signal, and
hence makes the signal more compressible. We implementetpéeuniform quantizer
that can be used to reduce the resolution of data dependitigeaange of the signal and
the number of bits allocated to each sample.

Signal Thresholding: Thresholding is a technique used to modify the wavelet decom
posed signal such that the resulting signal contains loggeseces of zeros that can be
efficiently compressed by an entropy coding scheme. We usedathresholding scheme
in which if the absolute value of any wavelet falls below theeshold, it is set to zero. We
maintain a probability density function (pdf) of the signalfacilitate the selection of an
appropriate threshold. The user specifies what percenfabe signal need to be zeros in
the lossy version, and the pdf can be used to determine thepte threshold.

The thresholds for different subbands are normalized usiegcoefficients shown in
Equation 9. This operation needs to be done only once, h@émeduces the computation
requirements of normalizing the signal.

Run-length encoding: Wavelet decomposition, quantization and thresholdinggss
the signal to make it more amenable for compression by an@ntroding scheme, but no
compression has yet occurred. An entropy coding schemeiisatly designed such that
the symbols that occur most frequently use the least amdurito Run length coding
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is the simplest of such schemes that exploitss of a particular value in the signal. This
scheme was preferred over other encoding schemes suchfasadufr Arithmetic coding
due to its simplicity of implementation, a necessary regmient for Mote-based software.
BitStream: The run-length encoded signal is a series of symbols ofréiffelengths
depending on the number of bits used in quantization anctigghs of the special symbols
used in the run length encoding process. A bitstream moduisdd to pack these variable
length symbols into the data segment of a TinyOS messagespaElach time the data
segment of a packet is filled up, it can be scheduled for trésssom to the base station.

7.1.1 Operation Description. The progressive transmission operation involves three
steps: event detection, local data storage, and progeessiding. An event detection
scheme (discussed in detail in [Xu et al. 2004]) runs comtiguand triggers when an event
is detected. The event signal then undergoes wavelet dexsitiop, and the decomposed
signal is written to the persistent external flash memoryhenmote. Until this point, no
compression has occurred, hence, the lossless event datilable on flash.

A separate periodic task reads the flash memory and comprésseasignal using the
five step process described in Section 7.1, after which iitstrits the bitstream to the
base-station. The choice of signal threshold and numbewarfiigation bins is assumed to
be determined by a priori analyis of training data to obtaaximum compression benefit
within the specified error bounds.

A user at the base-station can analyze the low-resolut@grasin real-time and request
either the raw data or additional detail in the signal. Sitheeraw data is stored on flash,
the difference between the previously transmitted resnitand the requested resolution
is coded by the steps described in Section 7.1 and transhdtéhe base-station. This
progressive transmission procedure should be complefedesthe data on flash is over-
written by future events.

This implementation is currently not integrated into thetref our system due to the
need for significant memory optimization.

Computation Memory
Time Utilization
Wavelet Decompositior] 6.44ms 288bytes
and Flash Storage
Uniform Quantizer 0.32ms Tbytes
Run-length Encoder 6.30ms 20bytes

Table VIII. Performance of 128-sample 4-level transform

7.2 Performance Evaluation

We evaluate the performance of our system on three frontthéapplicability of wavelet
compression to structural vibration sensor data, (b) tlepegation and memory overhead
of doing the wavelet compression in real-time on a mote, ahthé compression gain by
using our scheme, which translates to the latency of dataisiiqn. We used data from
shaker table tests at CUREE-Kajima [Kang et al. ].
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Fig. 18. Periodogram of the Power Spectral Density estimftiee structural vibration event. Energy is concen-
trated in the low-frequency bands, making the use of waweletpression ideal.
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7.2.1 Applicability of Wavelet Processing. Our progressive transmission strategy for
vibration data uses wavelet compression. The applicglifitvavelet techniques follows
from characteristics of large structures, whose frequeasponse is usually focused in
the low-frequency components [Vetterli and Kovacevic J98%gure 18, which shows the
power spectral density of a real vibration signal colleasgbart of the CUREE-KAJIMA
project. It illustrates quite clearly that low-frequenayneponents dominate the power
spectral density, motivating the use of wavelet-based glateessing.

7.2.2 Computation and Memory Requirements. Table VIII shows the computation and
memory requirements of the core components of our comresystem. The computa-
tion time is low, and enables us to perform the entire opamnati real-time. We were able
to perform sensor data sampling, 128 sample CDF(2,2) wiliftileg transform as well as
writing the decomposed buffer to the EEPROM for samplingsatpto 250Hz. As can be
seen in Table VIII, the memory requirements are low as wedlkimyg it easier to integrate
with other components of the system.

Submitted to ACM Transactions on Storage, Vol. V, No. N, AR€05.



32

7.2.3 Compression and Error Performance. The compression and error results from
using such a scheme are shown in Figure 19 and Figure 20 teghecBoth graphs use
a threshold that sets 80% of the decomposed signal to zere.tréhds of both graphs
are as expected; as the number of quantization bits inggbeth the compression ratio
and the RMS error reduce. One sweet spot that emerges fraa tive graphs is a 4-bit
guantization scheme. This choice gives us about 20-foldatioh in data size with very
low RMS error of 3.1. The peak-to-peak signal to noise rad@i8NR) for the above choice
of parameters is 30dB.

These results are very promising are indicate that suchmaph can be used to allow
near real-time structural data acquisition from tens osees

8. FUTURE RESEARCH PROBLEMS

Having discussed distributed data storage and aging, we fposome interesting potential
research directions with distributed storage. There amyraapects of distributed storage
that need to be addressed.

8.1 Building Long-term Data Archival Systems

Many current sensor network deployment are data colledigsed ([Hamilton ; Mainwar-
ing et al. 2002]) as they collect data for scientists to piteuinore datasets for analysis.
As sensor network deployments become more commonplaceehevdthat the need to
optimize for lifetime of such networks will result in a shifiwards distributed storage and
guerying systems.

Long-term data archival systems for sensor networks wildheew tools. First, dis-
tributed storage and search techniques need to be adaphedetmgeneous sensor net-
works with different sensor modalities and nodes with défe storage and processing
constraints. Systems approaches for such heterogenetwasrke will require careful
splitting of processing and storage functionality. Howewe believe that multi-resolution
techniques are well-suited to such networks due to itstghdiadapt the compression ratio
to the resource-constraints on different devices. Seamndh of the focus in the sensor
network community has been about optimizing the power-taimed network rather than
integrating it to a wide-area system. Eventually, sensowoks will form the edges of a
larger wide-area network. Thus, an interesting questitwows to build a wide-area query-
ing system where data is archived at the edges.

8.2 Coping with Irregular Spatio-Temporal Sampling

A central issue that impacts our data storage system is thadhof irregular sampling on
many different aspects of sensor network design. A larggsdansor network deployments
will have irregular spatial configurations for two fundartemeasons: (a) the phenonmena
of interest are not uniformly distributed and the deploytr&nsensor resources will be
variable in order to achieve denser sensing where theree@arspatial variability (e.g.,
on the edge of biological regions), and (b) terrain and otle@ioyment practicalities bias
deployment locations to where necessary power sourcesnooination or access can
be achieved. For instance, in environmental monitoringvagts such as that shown in
Figure 8.2, node placement is irregular.

Irregular deployments impacts the design and performahoermsystem. Consider a
2-dimensional grid of sensor data where samples are takamon-uniform manner. A
naive scheme would be to assume that the samples were regdi@erform the wavelet
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Fig. 21. Micro-climate monitoring sensor network dd=ig. 22. Drill-down Daily MAX query performs quite
ployment at James Reserve: Node placement is irregulégll in an irregular setting.

with the lower left being more densely deployed than the

rest of the network

compression accordingly. However, this creates numerdifads, and can distort the
original data greatly since spatial correlation is not eotly captured.

Irregular spatial samples are routinely regularized in-gjgatial data processing since
analysis of irregular datasets is significantly more comphan that of regularly spaced
ones. This regularization procedure, callegampling, typically involves interpolation
and can be used to deal with irregularity. The cheapestiatation scheme for distributed
sensor data isearest neighbor, which assigns the value of a resampled grid point to the
nearest known data sample. Such sampling can be done irribudistl and inexpensive
manner by constructing the Voronoi cells correspondingtdesensor node. Ease of local-
ized construction of voronoi cells [Ganeriwal et al. 2003&dwerdichian et al. 2001] makes
them particularly attractive as means to deal with irredtyaHigher degree polynomials
can be used to improve the precision of the interpolatiopeeially if node distribution is
highly skewed.

We combined nearest neighbor interpolation with DIMENSEDt deal with highly
irregular topologies. Figure 22 shows the performance ofadb&DailyMax query over
a highly irregular topology. While the performance trendsiisilar to the results in the
regular topology case, the quality of the drill-down sadatdoes not always improve with
the level as one would expect. This can be attributed tcaeattfin the interpolation scheme
caused due to the large extent of data irregularity. We hopmprove these results with
better interpolation and modeling.

9. CONCLUSIONS

As sensor networks start being deployed, the question afstatage and querying will be-
come increasingly important. A closely related technatabirend that demonstrates this
importance is RFIDs. Data managementin RFIDs is quicklyobeng a critical problem
as massive amounts of information being generated by thessenss. Similarly, sensing
the physical world makes it essential to deal with the largjemes of data generated by
sensor networks. In-network storage and search in sensaprie is one of the main
aspects of data management and poses considerable ckallémgetwork storage is nec-
essary for sensor networks because in power-limited systitiis more efficient to store

Submitted to ACM Transactions on Storage, Vol. V, No. N, AR€05.



34

data locally than to transmit to a central location. Sigaificresearch challenges emerge
due to the need to optimize for resources, power, and the yjgueries that are posed on
the data.

Ideally, a search and storage system for sensor networkidshave the following prop-
erties: (a) low communication overhead, (b) efficient skedoc a broad range of queries,
and (c) long-term storage capability. In this paper, we gmethe design and evaluation
of DIMENSIONS, a system that constructs multi-resolutiamsnaries and progressively
ages them to meet these goals. This system uses waveletessigor techniques to con-
struct summaries at different spatial resolutions, thatmmqueried efficiently using drill-
down techniques. We demonstrate the generality of oursyisyedemonstrating the query
accuracy for a variety of queries on a precipitation senstaset. Our proposal for pro-
gressive aging includes schemes that are applicable toctrgpeof application deploy-
ment conditions: a training algorithm where training seta be obtained, and a greedy
algorithm for others. A comparison shows that both the ingirand greedy scheme per-
form within 2% of an optimal scheme. While the training scleeperforms better than
the greedy scheme in practice, the latter performs withirot#aining for an appropriate
choice of aging parameters.
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