
University of Massachusetts Amherst
ScholarWorks@UMass Amherst
Computer Science Department Faculty Publication
Series Computer Science

2003

Multi-resolution Storage and Search in Sensor
Networks
Deepak Ganesan
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Amherst. It has been accepted for inclusion
in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information,
please contact scholarworks@library.umass.edu.

Recommended Citation
Ganesan, Deepak, "Multi-resolution Storage and Search in Sensor Networks" (2003). Computer Science Department Faculty Publication
Series. 79.
Retrieved from https://scholarworks.umass.edu/cs_faculty_pubs/79

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/13600263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs/79?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Multi-resolution Storage and Search in Sensor
Networks

Deepak Ganesan
Department of Computer Science,
University of Massachusetts, Amherst, MA 01003

Ben Greenstein, Deborah Estrin
Department of Computer Science,
University of California, Los Angeles, CA 90095,

John Heidemann
University of Southern California/Information Sciences Institute,
Marina Del Rey, CA 90292
and
Ramesh Govindan
Department of Computer Science,
University of Southern California, Los Angeles, CA 90089

Wireless sensor networks enable dense sensing of the environment, offering unprecedented op-
portunities for observing the physical world. This paper addresses two key challenges in wireless
sensor networks: in-network storage and distributed search. The need for these techniques arises
from the inability to provide persistent, centralized storage and querying in many sensor networks.

Centralized storage requires multi-hop transmission of sensor data to internet gateways which can
quickly drain battery-operated nodes.

Constructing a storage and search system that satisfies the requirements of data-rich, scientific
applications is a daunting task for many reasons: (a) the data requirements are large compared to
available storage and communication capacity of resource-constrained nodes, (b) user requirements
are diverse and range from identification and collection of interesting event signatures to obtaining
a deeper understanding of long-term trends and anomalies in the sensor events, and (c) many
applications are in new domains where a priori information may not be available to reduce these
requirements.

This paper describes a lossy, gracefully degrading storage model. We believe that such a model
is necessary and sufficient for many scientific applications since it supports both progressive data
collection for interesting events as well as long-term in-network storage for in-network querying
and processing. Our system demonstrates the use of in-network wavelet-based summarization and
progressive aging of summaries in support of long-term querying in storage and communication-
constrained networks. We evaluate the performance of our linux implementation and show that it
achieves: (a) low communication overhead for multi-resolution summarization, (b) highly efficient
drill-down search over such summaries, and (c) efficient use of network storage capacity through
load-balancing and progressive aging of summaries.

Categories and Subject Descriptors: C.2.7 [COMPUTER-COMMUNICATION NETWORKS]: Sensor Net-
works; H.3.4 [INFORMATION STORAGE AND RETRIEVAL]: Systems and Software—Distributed Sys-
tems

Additional Key Words and Phrases: Wireless Sensor networks, Data storage, Wavelet processing,
Multi-resolution storage, Data aging, Drill-down query

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005, Pages 1–0??.

2 ·

1. INTRODUCTION

One of the key challenges in wireless sensor networks is the storage and querying of use-
ful sensor data, broadly referred to as data management. Theterm useful sensor data
is application-specific and has different meaning in different application scenarios. For
instance, in a target tracking application, users are interested in detecting vehicles and
tracking their movement. Here, useful sensor data comprises target detections (timestamp
and location) as well as their tracks. In a structural monitoring application such asWisden
([Xu et al. 2004]), scientists are interested in spatio-temporal analysis of sensor data, such
as, vibrations measured at different points of a building inresponse to an excitation over a
period of time. This requires access to vibration event datacorresponding to periods when
the building is excited. Data management captures the broadspectrum of how useful data
is handled in a sensor network, and addresses three key questions:

—Where is data stored in a network? Is it stored locally at each sensor node (local storage),
in a distributed manner within the network (distributed storage) or at the edge of the
network at the base-station (centralized storage)?

—How are queries routed to stored data? Can we use attributesof the search to make it
efficient?

—How can the network deal with storage limitations of individual sensor nodes?

Many schemes have been proposed for data management in sensor networks. The main
ideas are summarized along the axes of communication required for data storage and com-
munication required for query processing in Figure 1. The figure depicts a fundamental
tradeoff between centralized storage and local storage. Atone extreme is a conventional
approach of centralized data management where all useful sensor data is transmitted from
sensors to a central repository that has ample power and storage resources. This task is
communication intensive (and hence energy intensive) but facilitates querying. Queries
over this data are handled at the central location and incur no energy cost to the sensor
network. Centralized storage is appropriate for low-data rate, small-scale sensor networks
where there are infrequent events. As the useful data rate increases, and the network scale
grows, centralized storage is not feasible in sensor networks due the power constraints on
sensor nodes. Aggregate costs of transmitting the data to a base-station can quickly drain
power on all nodes in the network. Nodes that are closer to thebase-station are especially
impacted due the need to relay data from many other nodes in the network. Thus, deal-
ing with power constraints requires alternate approaches that involves storing sensor data
within the sensor network and performing query processing on this distributed data store.

Many parameters are at work in determining which data management scheme best suits
an application. Is the deployment short-term or long-term?What are the energy, storage
and processing resources on sensor nodes? What kind of queries are posed on the data
and with what frequency? How much useful sensor data is generated by the network?
What in-network data processing is appropriate for the sensor data? Dealing with the wide
range of requirements and constraints in sensor networks requires a family of solutions.
These solutions are different from distributed storage systems in wide-area networks in
two respects. First, energy and storage limitations introduce more stringent communication

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 3

Fig. 1. Taxonomy of data storage solutions

constraints. Second, data in sensor networks exhibits spatio-temporal correlations, which
can be exploited in the storage, processing and querying of data.

Our goal is to provide storage and search for raw sensor data in data-intensive scientific
applications. We believe that long-term data storage or archival will complement event-
driven sensor network development. Sensor network deployments involve two interacting
phases. One phase involves enabling the scientific community to determine how events can
be reliably detected from distributed data. The second phase involves using these events to
trigger the sensor network such that the communication requirements can be significantly
reduced.

Constructing a storage and search system that satisfies the requirements of data-rich,
scientific applications is a daunting task as the storage requirements are large compared to
available storage and communication capacity of resource-constrained nodes. Clearly, it
is impossible for a sensor network to provide lossless, persistent storage and querying that
a centralized wired system can provide. Our more modest goal, therefore, is to provide a
lossy, progressively degrading storage model. We believe that such a model might be nec-
essary and sufficient for many scientific applications for two reasons. First, a gracefully
degrading storage model enables aquery and collect approach for fresh data where users
can precisely query recent data and selectively decide on important data snippets that can
then be collected losslessly for persistent offline storage. Second, older data can be ex-
pected to be useful for identifyinglong-term patterns, and anomalous occurrences. Thus,
older data can be stored more lossily, but with sufficient fidelity to satisfy such long-term
queries.

How do we provide distributed, progressively degrading storage in a sensor network?

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

4 ·
The key idea behind our system is spatio-temporal summarization: we construct multi-

resolution summaries of sensor data and store them in the network in a spatially and
hierarchically decomposed distributed storage structureoptimized for efficient querying.
Summaries are generated in a multi-resolution manner, corresponding to different spatial
and temporal scales. Queries on such data are posed in a drill-down manner,i.e they are
first processed on coarse, highly compressed summaries corresponding to larger spatio-
temporal volumes, and the approximate result obtained is used to focus on regions in the
network are most likely to contain result set data. Multi-resolution summaries are aged to
provide a gracefully degrading storage model.

1.1 Contributions

Our main contributions are three-fold.
Novel Wavelet-based Distributed Data Summarization Systems: Data aggregation

is a critical building block of sensor network systems. We developed a distributed wavelet-
based summarization [Ganesan et al. 2003; Ganesan et al. 2002]) procedure that is very
useful for sensor network data. Our summarization procedure is novel in two respects.
From a distributed storage systems perspective, the use of data aggregation that exploits
spatio-temporal correlation is novel. While there are manydistributed storage systems
designed for the internet, these deal with uncorrelated files or movies, and do not exploit
correlations between them. Furthermore, the use of wavelets to deal with sensor data
in a spatially distributed setting is an interesting application of wavelet transforms. We
implement this codec on two different platforms, large sensor nodes (Ipaqs) and small
sensor nodes (Motes).

Drill-down Query Processing: We empirically evaluate the use of drill-down query
processing over multi-resolution data storage and show that high query accuracy (within
85%) at very low overhead (5% of the network) can be achieved.These results demonstrate
the use of our system for query processing.

Optimization-based Graceful Data Aging: The key contribution of this work is build-
ing a data-aging framework that can deal with storage limitations in manner that provides a
gracefully degrading query interface to users. We formalize the notion of storage in a dis-
tributed multi-resolution hierarchy, including data summarization and query processing.
We construct an optimization procedure that determines thestorage allocation at nodes in
the network between different levels of resolution. This optimization procedure can be
used to construct a training-data based strategy for graceful storage degradation. In the
absence of training data, we propose a greedy scheme that canbe used to determine the
storage allocation.

The remainder of this paper is organized as follows. In Section 2, we survey research that
relates to our work. Section 4 provides a overview of the architecture of DIMENSIONS,
and describe the many usage models that it can support for sensor network applications.
In Section 3, we outline the design goals of our system and we provide an architectural
overview in Section 4. Section 5 provides a formal description of the aging problem.
System implementation and performance results over a precipitation dataset are provided
in Section 6. Section 7 describes one of the usage models of the system, multi-resolution
data collection as part of a sensor network system for structural health monitoring. A mote
implementation and performance over a structural vibration dataset is discussed as part of
this work. Section 8 discusses some future extensions to ourwork. Finally, we conclude
in section 9 with a discussion of how our system satisfies these goals.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 5

2. RELATED WORK

Figure 1 shows four solutions for distributed storage and search. We discuss related work
that address these different problems.

2.1 Centralized Storage and Search

The conventional approach to storing time series data is to have all sensing nodes feed all
of their data to a central repository external to the sensingenvironment. In a network of
n nodes, this cost is on the order of the diameter of the networkfor each piece of data
sent, orO(

√
n). Queries over this data incur no additional cost to the network, because the

data is already resident on storage external to the network.(Note, however, that queries
initiated from within the network, perhaps by in-network actuation mechanisms, will incur
O(
√

n).) Centralized storage may be appropriate for low-data rate, small-scale sensor net-
works. For instance, consider a target-tracking system that is detecting infrequent targets
(once an hour), and generating event tuples, with the event type, timestamp and location
of detection. The data is very small, and the event rate is low, hence centralized storage
might be reasonable for a network of a hundred nodes transmitting data over 2-3 hops to
a base-station. As the event or useful data rate increases, and the network scale increases,
centralized storage is not always feasible in sensor networks due to the aggregate and bot-
tleneck costs of transmitting all data towards a network gateway, potentially over multiple
hops.

2.2 Local Storage and Geographical Search

At the lower right of the spectrum shown in Figure 1 is a fully local storage scheme where
all useful sensor data is stored locally on each node and queries are routed to locations
where the data is stored. Since data is stored locally at the sensing nodes that produced
them, there is no communication cost involved in constructing the distributed store. How-
ever, in-network search and query processing can potentially incur high energy cost. Be-
cause data can reside anywhere in the network, a query that does not explicitly constrain
the physical search space must be flooded to all storage nodesin the network, which costs
O(n), wheren is the number of nodes in the network. Responses are sent backto the
source of the query at a cost ofO(

√
n) (since the network diameter is approximately

√
n).

If only a few queries are issued during the lifetime of a network, answering these queries
might involve little communication cost. A large number of flooded queries that each in-
volves significant communication, however, can drain a network’s energy reserves.

Many of the initial ideas pursued within the context of Directed Diffusion [Intanagonwi-
wat et al. 2000] followed such a paradigm. Sources publish the events that they detect, and
sinks with interest in specific events can subscribe to theseevents. The Directed Diffu-
sion substrate routes queries to specific locations if the query has geographic information
embedded in it (eg: find temperature in the south-west quadrant), and if not, the query is
flooded throughout the network.

There are three drawbacks of such a scheme. First, for queries that are not geograph-
ically scoped, search cost (O(n)) might be prohibitive for large networks with frequent
queries. Second, queries that process spatio-temporal data (eg: edges) need to perform
significant distributed data processing each time a query isposed which can be expensive.
Third, these techniques need to be enhanced to deal with storage limitations on sensor
nodes.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

6 ·
Application Sensors Expected Data Rates Data Require-

ments Per
Year

Building Health
Monitoring [Kohler]

Accelerometer 30 minutes vibration
data per day

8Gb

Micro-climate Moni-
toring

Temperature, Light,
Precipitation, Pres-
sure, Humidity

1 sam-
ple/minute/sensor

40Mb

Habitat Monitoring Acoustic, Video 10 minutes of audio
and 5 mins of video
per day

1 Gb

Table I. Data Requirement estimates for Scientific Applications

2.3 Local storage with Distributed Indexing

Distributed indexing addresses search issues in the local storage mechanism described
above. Recent research has seen a a growing body of work on data indexing schemes
for sensor networks [Ratnasamy et al. 2002][Greenstein et al. 2003][Li et al. 2003]. These
techniques differ in the aggregation mechanisms used, but are loosely based on the idea of
geographic hashing and structured replication. One such indexing scheme is DCS[Ratnasamy
et al. 2002], that provides a hash function for mapping from event name to location. DCS
constructs a distributed storage structure that groups events together spatially by their
named type. Names are considered to be arbitrary keys to the hash function and are the
basic unit of categorization.

A node that detects an event stores the event at the mirror closest to its location. A search
using structured replication would begin with the root, descend to its four children, descend
to each of the children’s four children, and so forth. DCS uses structured replication to
register the existence of events at replicated rendezvous nodes. The communication cost to
store a datum isO(

√
n); and the costs to send a query and retrieve data are eachO(

√
n).

In traditional databases, a table is indexed in order to speed up common queries. Like-
wise, DCS indexes its data, but does so in a manner that is optimized for communication
instead of latency. When a network administrator knows along which dimensions a query
will be casta priori, an indexing scheme can be employed that spatially organizes data so
that a query need not visit more than a single site to be satisfied.

Distributed index of features in Sensornets (DIFS [Greenstein et al. 2003]) and Multi-
dimensional Range Queries in Sensor Networks (DIM [Li et al.2003]) extend the data-
centric storage approach to provide spatially distributedhierarchies of indexes to data. In
these two techniques, the storage atom is a high-level eventthat is described with attributes
that each have associated numerical values.

3. DESIGN GOALS OF DATA STORAGE IN SENSOR NETWORKS

The storage requirements for sensing applications differ widely in their data-rates and stor-
age needs. Table I shows a cross-section of applications andtheir data requirements. In
this section, we describe the main design goals of a distributed storage and search for these
applications.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 7

Energy Efficient: Energy efficiency is critical to any system component designed
for sensor networks, and a storage system is no exception. Energy efficiency generally
depends on the amount of data communicated and other parameters such as efficiency of
the duty-cycling scheme and the traffic patterns in the network. In our storage system, we
will focus on limiting the amount of data communicated.

Long-term Storage: One of the major benefits of centralized storage over a distributed
wireless sensor network storage is the ability to provide a reliable and persistent long-term
storage capability. Scientists, in particular, are reluctant to let data be discarded for energy
or other reasons, since this data could be valuable for theirstudies. To provide an effective
service for such applications and users, we have to provide aservice that can compete
with centralized storage by providing a long-term persistent storage and data processing
capability. The key criteria for persistent storage technology in sensor networks is power
consumption and cost. The most attractive technology that fits both these criteria is Flash
memory. In addition to low cost, the power requirements of flash memory are at least an
order of magnitude less than communication.

Multi-Resolution Data Storage: A fundamental design goal is the ability to extract
sensor data in a multi-resolution manner from a sensor network. Such a facility is very
useful in storage designed for sensor data for multiple reasons: (a) it allows users to look at
low-resolution data from a larger region cheaply, before deciding to obtain more detailed
and potentially more expensive datasets, and (b) compressed low-resolution sensor data
from large number of nodes can often be sufficient for spatio-temporal querying to obtain
statistical estimates of a large body of data [Vitter et al. 1998].

Balanced, Distributed Data Storage: Design goals of distributed storage systems
such as [Kubiatowicz et al. 2000][Rowston and Druschel 2001] of designing scalable,
load-balanced, and robust systems, are especially important for resource constrained dis-
tributed sensor networks. We have as a goal that the system balances communication and
computation load of querying and multi-resolution data extraction from the network. In
addition, it should leverage distributed storage resources to provide a long-term data stor-
age capability. Robustness is critical given individual vulnerability of sensor nodes. Our
system shares design goals of sensor network protocols thatcompensate for vulnerability
by exploiting redundancy in communication and sensing.

Robustness to Failure: An outdoor deployment of cheap sensor nodes is clearly sus-
ceptible to node and hardware failures due to the vagaries ofthe weather. The unpre-
dictabilities of the environment are likely to reflect in a higher probability of nodes being
permanently or temporarily disconnected and completely orpartially losing their stored
data. Thus, reliability schemes become an important designconcern, and such schemes
should be designed such that data is not lost even in the presence of a high failure proba-
bility.

Graceful Data Aging: To enable long-term storage given limited storage capacity,
the system should to provide a mechanism to age data. This aging procedure should be
utility-basedi.e., it should age data that is not useful to the user while retaining data that is
potentially useful for querying. The aging procedure should be graceful and data quality
should degrade slowly rather than abruptly over time to provide users with a more useful
sensor network.

Exploiting Correlations in Sensor Data: Correlations in sensor data can be expected
along multiple axes: temporal, spatial and between multiple sensor modalities. These

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

8 ·
correlations can be exploited to reduce communication and storage requirements. The
storage structure should be able to adapt to the correlationcharacteristics of sensor data.

4. ARCHITECTURE DESCRIPTION

We describe the architecture of our system in four parts: (a)the hierarchical processing
that constructs lossy multi-resolution summaries, (b) therouting protocol that construct a
distributed hierarchy to enable summarization at different layers, (c) the expected usage of
these summaries through drill-down queries, and (d) the data aging scheme that determines
how summaries should be discarded, given node storage requirements.

Summarization and data aging are periodic processes, that repeat every epoch. The
choice of an epoch is application-specific, for instance, ifusers of a micro-climate mon-
itoring network ([Hamilton]) would like to query data at theend of every week, then a
reasonable epoch would be a week. In practice, an epoch should at least be long enough to
provide enough time for local raw data to accumulate for efficient summarization.

4.1 Multi-Resolution Summarization

Our goal is to construct a system that can support a wide rangeof queries for patterns in
data. Therefore, we use a summarization technique that is generally applicable, rather than
optimizing for a specific query. Wavelets have well-understood properties for data com-
pression and feature extraction and offer good data reduction while preserving dominant
features in data for typical spatio-temporal datasets ([Rao and Bopardikar 1998][Vetterli
and Kovacevic 1995]). As sensor networks mature and their applications become better
defined, more specialized summaries can be added to the family of multi-resolution sum-
maries maintained in such a framework.

Hierarchical construction (shown in Figure 2) using wavelets involves two components:
temporal and spatial summarization of data.

Temporal Summarization: The first phase,temporal summarization, has low energy
overhead since it involves only computation overhead at a single sensor node, and incurs
no communication overhead. The first step towards constructing a multi-resolution hierar-
chy, therefore, consists of each node reducing the time-series data as much as possible by
exploiting temporal redundancy in the signal and apriori knowledge about signal character-
istics. By reducing the temporal data-stream to include only potentially interesting events,
the communication overhead of spatial decomposition is reduced. In general, significant
benefit can be expected from merely temporal processing at very little cost.

Consider the example of a multi-resolution hierarchy for building health monitoring (Ta-
ble I). Such a hierarchy is constructed to enable querying and data extraction of time-series
signals corresponding to interesting vibration events. The local signal processing involves
two steps: (a) Each node performs simple real-time filteringto extract time-series that may
represent interesting events. The filtering could be a simple amplitude thresholding i.e.
events that cross a pre-determined signal-to-noise ratio (SNR) threshold. The thresholding
yields short time-series sequences of building vibrations. (b) These time-series snippets
are compressed using wavelet subband coding to yield a sequence that capture as much
energy of the signal as possible, given communication, computation or error constraints.

Spatial Summarization: The spatial summarization phase constructs a hierarchical
grid-based overlay over the node topology, and uses spatio-temporal wavelet compression
to re-summarize data at each level. Figure 2 illustrates itsconstruction: at each higher level
of the hierarchy, summaries encompass larger spatial scales, but are compressed more, and

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 9

Summarization
Spatial

Temporal
Summarization

communicated from level 0 to 1

Compressed data from Level 1 is
decompressed, and re−compressed
jointly with higher compression factor.
This jointly compressed data is
forwarded up the hiearchy

Time−series summaries are

Coarsest Resolution
(Level 2)

Finer Resolution
(Level 1)

Finest Resolution (Raw Data)

(Level 0)

Fig. 2. Hierarchy Construction

are therefore more lossy. At the highest level (level 2), oneor a few nodes have a very
lossy summary for all data in the network.

Spatial summarization can be very useful in either highly over-deployed networks where
there is a significant amount of spatial redundancy, or in large networks. In other instances,
the reduction in total data size as a result of spatial summarization is less than that of
temporal summarization. However, it still plays an important part in reducing sensor data
sizes. In the instance of building health monitoring, spatial summarization may involve
jointly processing correlated vibration data detected at proximate sensor nodes.

4.2 Distributed Quad Trees

While summaries at different spatial and temporal scales can be generated using wavelet
processing, such hierarchical summarization will need to be enabled by appropriate rout-
ing and clustering techniques that aggregate data and stores it in a hierarchical manner.
The routing framework that we use to enable the summarization of data at various spatio-
temporal scales is called a Distributed Quad Tree (DQT), named after the quad-tree data
structure that is frequently used in information retrieval[Wang et al. 1997].

Distributed Quad Tree (DQT) is loosely based on the notion ofstructured replication
introduced in Data-Centric Storage (DCS [Ratnasamy et al. 2001]). Structured replication
performs geographic hashes to specific locations and routesdata to these locations instead
of explicitly selecting clusterheads. Data is routed to thenode closest to the hashed location
using a variant of the GPSR protocol [Karp and Kung 2000]. This procedure is cheap
from an energy perspective since it precludes the need for communication that is usually
involved in a clusterhead election procedure.

DQT adds load-balancing to such a hashing and clustering scheme. Such a load bal-
ancing scheme is essential when individual storage capacity on nodes is not substantial.
Clearly, a simple hierarchical arrangement as shown in Figure 2 distributes load quite un-
evenly. For instance, if no load-balancing were done, the highest level clusterhead (level 2)
is responsible for all the coarsest resolution data. In a homogeneous network, a node that
is elected to be the root has no more storage than any other node in the network, hence,

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

10 ·

that is most likely to satisfy the query

Query is processed on available view of
data and is forwarded to the quadrant

Query is first addressed
to root of hierarchy.

Coarsest View

Finer View

Finest View (Raw Data)

(Level 2)

(Level 1)

(Level 0)

Fig. 3. Drill-down Querying

such a procedure leads to uneven storage distribution.
Our approach to deal with this problem is a simple probabilistic load-balancing mecha-

nism, whereby each node assumes the role of a clusterhead at any level for a limited time
frame. After each such time frame, a different node is probabilistically chosen to perform
the role. As a result of such a load-balancing procedure, theresponsibility of being a clus-
terhead is shared among different nodes. The performance ofsuch a scheme depends on
the node distribution, with uniform distribution of load ina regular setting. Our scheme
is similar to load-balancing schemes proposed in the GAF [Xuet al. 2001] and ASCENT
[Cerpa and Estrin 2002] protocols.

4.3 Drill-Down Querying

Drill-down queries on distributed wavelet summaries can dramatically reduce the cost of
search. By restricting search to a small portion of a large data store, such queries can
reduce processing overhead significantly. The term drill-down query is borrowed from
the data mining literature, where drill-down queries have been used to process massive
amounts of data. These queries operate by using a coarse summary as a hint to decide
which finer summaries to process further.

Our use of drill-downs is in a distributed context. Queries are injected into the network
at the highest level of the hierarchy, and processed on a coarse, highly compressed sum-
mary corresponding to a large spatio-temporal volume. The result of this processing is an
approximate result that indicates which regions in the network are most likely to provide
a more accurate response to the query. The query is forwardedto nodes that store sum-
maries for these regions of the network, and processed on more detailed views of these
sub-regions. This procedure continues until the query is routed to a few nodes at the low-
est level of the hierarchy or until an accurate enough resultis found at some interior node.
This procedure is shown in Figure 3, where a drill-down queryis forwarded over a logical
hierarchy to the quadrants that are most likely to satisfy it.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 11

Finer

Aging Period (time for which summary is stored)

resolution sum
m

aries are queried
Increasing query quality as finer

Coarsest resolution is aged slowest.

Coarsest

Raw

(Level 2)

(Level 1)

(Level 0)

Raw data (lossless) is aged fastest
It is stored for least time in the network

Fig. 4. Long term storage

4.4 Networked Data Aging

Hierarchical summarization and drill-down querying address challenges insearching for
features in distributed sensor data. Providing a long-termstorage and query processing
capability requires storing summaries for long deploymentperiods. In storage-constrained
networks (Table I), however, resources have to be allocatedfor storing new summaries
by discarding older ones. The goal of networked data aging inour system is to discard
summaries such that network storage resources are efficiently utilized, and graceful quality
degradation over time is achieved. In other words, our work addresses the problem of
apportioning the limited storage capacity in the network between different summaries.

We define the length of time for which a summary is stored in thenetwork as theage of
a summary. Each summary represents a view of a spatial area for an epoch, and its aging
renders such a view unavailable for query processing. For instance, storing only the highest
level (level 2) summary in Figure 4, provides a condensed data representation of the entire
network and consequently low storage overhead compared to finer summaries, but may not
offer sufficiently accurate query responses. Storing a level 1 summary (finer) in addition
to the level 2 one, enables an additional level of drill-down, and offers better accuracy, but
incurs more storage overhead. Figure 4 shows a typical instance of gracefully degrading
storage, the coarsest summary being stored for the longest period of time, and subsequent
lower level summaries being stored for progressively shorter time periods.

The networked data aging algorithms provide a storage partitioning between different
summaries for each individual node such that the resultant global allocation matches user
requirements. This algorithm weighs three factors: (a) thedistributed storage resources in
the network, (b) the storage requirements of different summaries, and (c) the incremental
query benefit obtained by storing the summary.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

12 ·
4.5 Usage Models

A distributed multi-resolution storage infrastructure with system components as described
above benefits search and retrieval of datasets that exhibitspatial correlation, and applica-
tions that use such data. In this section, we briefly describesome of the different applica-
tions that this system can be used for.

Long-term Storage: DIMENSIONS provides long-term storage to applications that
are willing to sacrifice data fidelity for the ability to provide long-term storage. Long term
storage is provided by exploiting the fact that thresholdedwavelet coefficients lend them-
selves to good compression benefit [Rao and Bopardikar 1998][Vetterli and Kovacevic
1995]. The rationale in balancing the need to retain detailed datasets for multi-resolution
data collection and to provide long-term storage is that if scientists were interested in de-
tailed datasets, they would extract it within a reasonable interval (weeks). Long-term stor-
age is primarily to enable querying for long-term spatio-temporal patterns, for which it is
sufficient to store summaries that retain key features of data. Thus, the wavelet compres-
sion threshold is aged progressively, lending older data toprogressively better compres-
sion, but retaining key features of data.

Querying for Spatio-Temporal features: The hierarchical organization of data can
be used to search for spatio-temporal patterns efficiently by reducing the search space.
Spatial features such as edges or discontinuities are important for many applications as
well as systems components. Detecting edges is important for applications like geographic
routing, localization and beacon placement. By progressively querying for the specific
features, communication overhead of searching for features can be restricted to only a
few nodes in the network. Temporal patterns can be efficiently queried by drilling down
the wavelet hierarchy by eliminating branches whose wavelet coefficients do not partially
match the pattern, thereby reducing the number of nodes queried.

Multi-Resolution Data Collection: Multi-resolution data extraction can proceed along
the hierarchical organization by first extracting and analyzing low-resolution data from
higher level clusterheads. This analysis can be used to obtain high-resolution data from
sub-regions of the network if necessary. There are many circumstances under which such
progressive data gathering might be useful. One instance isreal-time monitoring of events
of a bandwidth constrained network where all data cannot be extracted from the network
in real-time. In such an instance, a compressed summary of the data can be communicated
in real-time with the rest of the data being collected in non-real time when the bandwidth
utilization is less (Wisden [Xu et al. 2004]).

Approximate Querying of Wavelet Coefficients: Summarized coefficients that result
from wavelet decomposition have been found to be excellent for approximate querying
[Chakrabarti et al. 2001][Vitter et al. 1998], and to obtainstatistical estimates from large
bodies of data. Often, good estimates for counting queries ([Hellerstein et al. 2003][Zhao
et al. 2002]) can be obtained from higher level wavelet coefficients (range sum queries
[Vitter et al. 1998]). coefficients at higher levels of the decomposition are often effective
in capturing many interesting features in the original data. The hierarchy is aged progres-
sively, with more compressed coefficients being stored for longer periods of time. Queries
that mine patterns over long time-scales are executed on thecompressed coefficients rather
than the original dataset.

Network Monitoring: Network monitoring data is another class of datasets that ex-
hibits high correlation. Consider wireless packet throughput data: throughput from a spe-

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 13

Symbol Parameter
S Local storage constraint
f(t) User-specified aging function
g(t) Provided step function
ri Size of each summary communicated from a

leveli clusterhead to a leveli+1 clusterhead.
Raw data is not communicated

Ri Total data communicated in the network be-
tween leveli and leveli + 1

si Storage allocated to a leveli clusterhead for
storing summaries from leveli − 1

ci Compression ratio at leveli

Agei Aging Parameter for leveli, i.e., duration in
the past for which a leveli − 1 summary is
available at a leveli clusterhead

N Number of nodes in the network
β Resolution bias of the greedy algorithm

Table II. Parameters for the Aging Problem

cific transmitter to two receivers that are spatially proximate are closely correlated; sim-
ilarly, throughput from two proximate transmitters to a specific receiver are closely cor-
related. DIMENSIONS serves two purposes for these datasets: (a) they can be used to
extract aggregate statistics with low communication cost,and (b) discontinuities represent
network hotspots, deep fades or effects of interference, which are important protocol pa-
rameters, and can be easily queried.

5. AGING PROBLEM

Having discussed the architectural components and usage models of our system, we now
address the core question in distributed storage: How does each node age summaries such
that that network can provide a long-term storage capability?

The storage allocation problem arises due to the finite storage capacity at each node.
When a node’s local storage is filled up, then, for each new summary that needs to be
stored at a sensor node, a decision needs to be made about whatdata to discard in order to
create storage space for the new summary. In this section, describe the criteria to consider
while designing an aging strategy, formalize the aging problem and describe an efficient
optimization-based solution.

5.1 Aging Problem Formulation

Consider a network withN nodes placed in a regular grid structure, over which ak-level
(k ≤ log4 N) multi-resolution hierarchy is constructed. The network is homogeneous, and
each node samples sensor data at a rate ofγ bytes per epoch, and has storage capacity,S,
which is partitioned among summaries at different resolutions.

The goal of this analysis is to identify how the storage capacity of each node,S, can be
partitioned among summaries at different resolutions. In order to derive the aging scheme,
we use the fact that the system provides a load-balancing mechanism that distributes data
approximately equally between nodes in the network. Therefore, in the analysis, we will
assume perfect load-balancing,i.e., each node has identical amount of storage allocated to
data at each resolution. We also assume that the network is a perfectly dyadic grid,i.e., a
square with side2i, wherei is an integer.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

14 ·
5.2 Communication overhead

The communication rate at leveli is given byri, which determines the communication
between a clusterhead at leveli and a clusterhead at leveli + 1. Raw, uncompressed
sensor data has rateγ, r0 corresponds to temporally compressed data which is transmitted
to a clusterhead at level 1 from a level 0 node. Similarly,ri for i ≥ 1 corresponds to
communication overhead from leveli to leveli+1. The rateri depends on the compression
ratio chosen for a summary at leveli, ci, defined as the ratio between size of compressed
data transmitted from a clusterhead at leveli to one at leveli + 1, and the total amount
off raw data that the leveli quadrant generates. The relation between rate,ri, and the
compression ratio that it corresponds to,ci, is thus:

ri =
4iγ

ci

(1)

since there are4i nodes within each quadrant at level i, each generatingγ bits, whose
data is compressed by a factorci by the clusterhead for the quadrant.

To compute the total amount of data communicated in the entire network from leveli to
level i + 1, Ri, we use the fact that there are4log

4
N−i clusterheads at leveli. Thus,

Ri = ri4
log

4
N−i (2)

In this paper, we will assume that the compression ratios, and therefore, the rates, have
been appropriately chosen for the sensor data being studied. In practice, the relationship
between lossy compression and query performance would needdetailed study with the
sensor dataset in question. Our goal, however, is to obtain appropriate aging parameters
for a given choice of rates,ri.

5.3 Query quality

Drill-down queries over this network can proceed hierarchically until summaries are avail-
able for the requested data. For instance, in the case of a 3-level hierarchy as shown in
Figure 4, if only the coarsest summary is available, the query terminates at the root, if both
the coarsest and finer summaries are available, it terminates at level 1, and so on. We define
the query accuracy if a drill-down terminates at leveli to beqi. Thus, in the hierarchy in
Figure 4, the query accuracy if only the coarsest resolutionis queried isq2, if the coarsest
and finer resolutions are queried isq1, and if all resolutions including raw data are queried
is q0. In practice,q0 ≥ q1 ≥ ... ≥ qk, i.e., query quality increases with more drill-down
levels since finer data is being queried.

5.4 Storage Overhead

The amount of storage required at any level is related to the total amount of data commu-
nicated to it from the lower level. For instance, a level 2 clusterhead receives summaries
from four level 1 clusterheads, stores these summaries for future queries, and generates
summaries of its own that are sent to level 3. We definesi as the amount of data that a each
node in the network allocates for summaries from leveli. The per-epoch network-wide
storage requirement for summaries from leveli is Ri, which is the total amount of data
communicated from leveli to leveli + 1 in the network.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 15

In
cr

ea
si

ng
 Q

ue
ry

 A
cc

ur
ac

y

Increasing Time

User−defined expected quality f(t)90%

30%

1 week 1 year

Provided query quality g(t)

Fig. 5. Providing graceful quality degra-
dation by aging summaries

Time

Q
ue

ry
 A

cc
ur

ac
y

quality difference is evaluated
Points at which instantaneous

Fig. 6. Objective Function

5.5 Approximating user-specified aging function

Letf(t) be a monotonically decreasing user-specified aging function which represents how
much error a user is willing to accept as data ages in the network. Such a function can be
provided by a domain expert who has an idea of the usage patterns of the sensor network
deployment. The solid curve in Figure 5 is one instance of such a function, in which the
user would like 90% query accuracy for data that is only a weekold, and 30% accuracy
for data that is over a year old, with a monotonically decreasing accuracy in between these
two times.

We wish to approximate the user-defined aging function usinga step function,g(t), that
represents query degradations due to summaries being aged.As shown in Figure 5, the
steps correspond to time instants at which summaries of a certain resolution are aged from
the network. We represent this age of each summary byAgei.

Since each node allocatessi data to leveli summaries and there areN nodes in the net-
work, the total networked storage allocated to data from level i is Nsi. The total storage re-
quired for leveli summaries isRi, given by Equation 2. Assuming perfect load-balancing,
the age of summaries generated at leveli is:

Agei =
Nsi

Ri

=
4isi

ri

∀i ≥ 1 (3)

Age of the raw data,Ageraw is a special case, since it is not communicated at all. If
sraw storage slots are allocated to each node for locally generated and stored raw data, the
age of raw data,Ageraw = sraw

γ
.

The cost function that we choose is thequality difference, qdiff (t), that represents the
difference between the user-specified aging function and the achieved query accuracy at
time t (shown in Figure 6). The objective is tominimize the quality difference over all
time. Theminimum error aging problem can, thus, be defined as follows.

Find the ages of summaries, Agei, at different resolutions such that the the maximum
quality difference is minimized.

Min0≤t≤T (Max (qdiff)(t))) (4)

under constraints:
Drill-Down Constraint: Queries are spatio-temporal and strictly drill-down,i.e., they

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

16 ·
terminate at a level where no summary is available for the requested temporal duration
of the query. In other words, it is not useful to retain a summary at a lower level in the
hierarchy if a higher level summary is not present, since these cannot be used by drill-
down queries.

Agei+1 ≥ Agei 0 ≤ i ≤ k (5)

Storage Constraint: Each node has a finite amount of storage, which limits the size
of summaries of each level that it can store. The number of summaries of each level
maintained at a node (si

4ri
) is an integer variable, since a node cannot maintain a fractional

number of summaries.

Σ0≤i≤ksi ≤ S
si

4ri

= integer variable

Additional Constraints: In formulating the above problem, we consider only drill-down
queries and a network of homogeneous devices with identicalstorage limitations.

Our formulation can be extended to deal with different sensor network deployments and
queries. For instance, queries may look at intermediate summaries directly, without drilling
down. Previous research has proposed a tiered model for sensor deployments ([et al 2001]),
where nodes at higher tiers have more storage and energy resources than nodes at lower
tiers. Some of these constraints can be added in a straightforward manner to the above
optimization problem.

For a monotonically decreasing user-specified aging function, qdiff needs to be evalu-
ated only at a few points (as shown in Figure 6). The points corresponds to the ages,Agei,
for each of the summaries in the network. As can be seen, the value of qdiff at all other
points is greater than or equal to the value at these points.

The minima of a maxima in Equation 4 can be easily linearized by introducing a new
parameterµ

Min0≤i≤n {µ} (6)

qdiff(Agei) ≤ µ ∀ i (7)

The complexity of the resulting optimization procedure depends on the form of the user-
specified aging function,f(t). For instance, iff(t) is a linear function of time, the opti-
mization can be solved using a standard linear solver such aslp solve.

5.6 Choosing an Aging Strategy

The constraint-optimization problem presented in Section5.1 is straightforward to solve
when all parameters are known. This brings up an important question: How does one
design an aging strategy with limited a priori information?

Figure 7 shows different options that might be possible depending on the availability of
prior datasets for the application. In traditional wired sensor networks, the entire dataset
would be available centrally, and could potentially be usedto construct an optimal aging
strategy using the above-mentioned constraint-optimization procedure1.

1The size of the dataset and the latency in estimating parameters using the entire dataset could preclude optimal
aging even in a wired instance of the problem.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 17

High

Low

Optimization on

entire dataset

Optimization on

Online training

Greedy

heuristic

training dataset

Full

E
xp

ec
te

d
qu

er
y

ac
cu

ra
cy

Information available prior to deployment

NonePartial

Fig. 7. Aging algorithms that operate on different levels ofa priori information.

Distributed scenarios such as wireless sensor networks have to operate with less infor-
mation due to the overhead of centralized data collection. In some scientific applications, a
data gathering phase might precede full-fledged deployment(e.g.: James Reserve [Hamil-
ton]), potentially providing training datasets. In other cases, there might be available data
from previous wired deployments (e.g.: Seismic Monitoring[Kohler]). These datasets
can be used to train sensor calibration, signal processing and in our case, aging, parame-
ters prior to deployment. The usefulness of a training procedure depends greatly on how
well the training set represents the raw data for the algorithm being evaluated. For instance,
if the environment at deployment has deviated considerablyfrom its state during the train-
ing period, these parameters will not be effective. Ultimately, a training procedure should
be on-line to continuously adapt to operating conditions.

Systems, sometimes, have to be deployed without training data and with little prior
knowledge of operating conditions. For instance, [Intanagonwiwat et al. 2000] describes
sensor network deployments in remote locations such as forests. In the absence of training
datasets, we will have to design data-independent heuristics to age summaries for long-
term deployment.

We design algorithms for aging in two cases: with training data and without training
data. For the case when prior datasets are available, we use the optimization problem
to compute aging parameters, both for a baseline, omniscient scheme that uses full in-
formation, and for a training-based scheme that operates ona limited training set. For
deployments where no prior data is available, we describe a greedy aging strategy.

5.6.1 Omniscient Algorithm. An omniscient scheme operates on the entire dataset,
and thus, has full knowledge of the query error obtained by drilling down to different
levels of the hierarchy. The scheme, then, computes the aging strategy by solving the
optimization function, presented in Section 5.1, for each query type. The pseudo-code
for such a scheme is shown in Algorithm 1. Omniscience comes at a cost that makes
it impractical for deployment for two reasons: (a) it uses full global knowledge, which
in a distributed sensor network is clearly impossible, and (b) it determines optimal aging

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

18 ·
Level (i) Rate from level i to

level i + 1 (ri)
Storage required per-
epoch for data at level
i (4ri)

si (with greedy algo-
rithm β = 1)

Agei

Raw 1024 1024 0 0
0 (finest) 64 256 256 4
1 (finer) 16 64 128 32
2 (coarsest) 8 32 128 256

Table III. Example of a greedy algorithm for a 16 node network

parameters for each query separately, whereas in practice,a choice of aging parameters
would need to satisfy all possible queries together.

Algorithm 1 Omniscient Algorithm Pseudocode
for Each query in Q in set of QueryTypesdo

qi = Query accuracy for Q obtained from entire dataset
Solve constraint-optimization in Section 5.1

end for

5.6.2 Training-based Algorithm. The training scheme differs from the omniscient scheme
in two ways: (a) data corresponding to a brief training period is chosen for determining ag-
ing parameters, rather than the entire dataset, and (b) a single choice of aging parameters
is determined for all query types being studied.

Ideally, the choice of a training period should be such that the parameters extracted from
training set is typical of the data that is sensed during system deployment. Often, however,
practical limitations such as deployment conditions, storage, communication bandwidth
and personnel limit the amount of training data.

Unlike the omniscient idealized algorithm, the training scheme cannot choose aging
parameters per-query. In a practical deployment, a single allocation scheme would be
required to perform well for a variety of queries. Therefore, the training scheme uses
the error for different queries to compute a weighted cumulative error metric as shown
in Algorithm 2. The cumulative error can be fed to the optimization function to evaluate
aging parameters for different summaries.

Algorithm 2 Training Algorithm Pseudocode
Require: : Q: Set of all query types
Require: wi: Weight for query typei
Require: Ei: Error for query typei from the training set

/* Evaluate weighted cumulative error over all query types */

qi =
P

i∈Q
wiEi

|Q|

Solve constraint-optimization in Section 5.1

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 19

2 1 0 2 1 2 2

First Pass Second PassPass
Third

Pass
Fourth

Local Storage Capacity = 512 units

Fig. 8. Local Resource Allocation using
the Greedy Algorithm. 4 coarsest, 2 finer,
and 1 finest summaries are allocated

1 1

2222 22

past present
Time

coarsest

finest

Resolution
level

...512 epochs

64 epochs

0 epochs

Fig. 9. Resource allocation where very
long-term storage is achieved but low
query accuracy is obtained old data.

0

1 1

222

1

2

1

0

presentpast
Time

...

finest

coarsest

Resolution
level

...

...4 epoch

256 epochs

32 epochs

Fig. 10. Resource allocation scheme
where medium-term storage is achieved
with medium accuracy for queries over
old data.

00

past present
Time

Resolution
level0 epochs

0 epochs coarsest

finest...8 epochs

Fig. 11. Resource allocation scheme
where short-term storage is achieved with
high accuracy over old data.

5.6.3 Greedy Algorithm. We now describe a simple greedy procedure that can be used
in the absence of prior datasets. The greedy procedure assigns weights to summaries ac-
cording to a measure of expected importance of each resolution towards drill-down queries,
represented by the parameterresolution bias (β). Algorithm 3 shows the greedy allocation
procedure: when available storage is larger than the size ofthe smallest summary, the
scheme tries to allocate summaries starting with the coarsest one. The ratio of the coars-
est summaries to summaries that are i levels finer areβi. For instance, in a three-level
hierarchy (Table III), a resolution bias of two means that for every coarse summary that is
stored, two of finer, and four of the finest summaries are attempted to be allocated. The
resolution bias parameter is used to control how gradually we would like the step function
(in Figure 5) to decay.

The greedy allocation procedure specifies how the per-node parameterssi are deter-
mined for each resolution leveli. The networked age of each summary is determined from
si using Equation 3. For instance, consider a greedy allocation with resolution bias of 1 in
a 64-node network with parameters provided in Table III. There are three levels in such a
hierarchy, with every node storing raw data, 16 clusterheads at level 1 storing summaries
transmitted from 64 clusterheads at level 0, 4 at level 2 storing summaries from 16 level
1 clusterheads, and 1 clusterhead at level 3 storing summaries from 4 clusterheads at level

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

20 ·
Algorithm 3 Greedy Algorithm Pseudocode
Require: N : number of nodes in the network
Require: k: number of levels
Require: ri: the size of a summary at leveli
Require: wi: Weight for query typei

while at least the smallest summary can fit into the remaining storage spacedo
Assign Summaries starting from the coarsest
for level i = k down to 1do

if storage is availablethen
allocateβk−i summaries of leveli

end if
end for

end while

2. Consider an instance where the local storage capacity is 512 units and the sizes of each
summary are as shown in Table III. The greedy allocation scheme allocates summaries
starting with the coarsest level as shown in Figure 8. Note that storage is allocated in units
of 4ri since there are four clusterheads at leveli sending data to eachi + 1 clusterhead. In
the first pass, one of each summary except raw data is allocated, in the second, one coarsest
and one finer summary is allocated, and in the third and fourth, one coarsest summary is
allocated. Thus, a total of 128 bytes for coarsest, 128 bytesfor finer, and 256 bytes for
finest summary are allocated at each node. The age of summaries at various levels can be
computed using the parameters provided in Table III on Equation 3. For instance,Age0 is
40s0

r0

= 256
64 = 4 epochs.

The resulting aging sequence is shown in Figure 10. The resulting allocation favors the
coarsest summary more than the finer ones. Thus, the network supports long-term querying
(256 epochs), but with higher error for queries that delve into older data. Raw data is
aged very quickly, therefore, queries after four epochs will be unable to query raw data.
Similarly, other allocations can be considered under the same resource limitations. Figure 9
shows an allocation that balances favors duration over detail, whereas the allocation in
Figure 11 favors detail over duration.

6. EXPERIMENTAL EVALUATION

In this section, we describe the implementation of long-term storage and aging on a linux-
based network emulation platform, Emstar ([Girod et al. 2004]). Since available dense
wireless sensor network datasets lack sufficient temporal and spatial richness, we chose a
geo-spatial precipitation dataset [Widmann and C.Bretherton] for our performance studies.
The dataset provides daily precipitation for the Pacific Northwest from 1949 to 1994, with
50km resolution. It comprises a 15 x 12 grid of daily precipitation data for forty five years,
where adjacent grid points are 50 kilometers apart.

Some features of the dataset were interesting from a system performance evaluation
perspective. First, the dataset involved a reasonably longtime-history, which would be
useful for analyzing a data summarization algorithm. In addition, since precipitation is
likely to have annual cycles, many years of data would provide us with sufficient temporal
redundancy to test our data summarization techniques thoroughly. Second, the data had
a reasonable spatial scale (15x12) which would enable us to explore both processing and

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 21

Wavelet Codec

1D

3D
Quad Tree
DistributedSensor Data

Local

level N level N−1 ...
Circular Buffer Per Level

Local Storage

Fig. 12. Implementation Block Diagram

querying techniques over a spatial area. Finally, many different queries could be evaluated
over the dataset due to its spatial and temporal richness. This includes temporal queries
such as averages, maxima and minima, as well as spatial queries such as edges. Thus,
while both the spatial and temporal sampling are much lower than what we would expect
in a typical sensor network deployment, this dataset has edges and exhibits spatio-temporal
correlations, both of which are useful to understand and evaluate our algorithms. In all
our experiments, we replayed this dataset. While such geo-spatial datasets are readily
available, further research has to be done to understand if such datasets are representative
of sensor datasets such as at James Reserve ([Hamilton]).

6.1 Ipaq Wavelet Codec Implementation

The wavelet codec software is based on a high-performance transform-based image codec
for gray-scale images (freeware written by Geoff Davis ([Davis]). We extended this coder
to perform 3D wavelet decomposition to suit our application. For our experiments, we
use a 9/7 wavelet filter, uniform quantizer, arithmetic coder and near-optimal bit allocator.
The 9/7 filter is one of the best known for wavelet compression, and especially for images.
While the suitability of different filters to sensor data requires further study, this gives us a
reliable initial choice of wavelet filter.

Since the spatial scale of the dataset is 15x12, it is not feasible to use wavelet processing
along the spatial axis. In practice, a grid of size, at least 32x32 would be required before
spatial wavelet processing can be expected to be effective.For the given dataset, therefore,
multi-resolution datasets were constructed by repeated temporal processing.

Communication overhead over a multi-resolution hierarchyis governed by the rates,ri,
that are determined as shown in Equation 1. We do not address the problem of finding the
optimalri for a given dataset. Our objective is to choose a representative set of parameters
that determine the communication overhead,i.e., the compression ratios at each level,ci,
and the amount of data per epoch,γ, such that the rates,ri increase slowly with the level
of the hierarchy.

We select the parameters as follows:

—γ = 3epochs ∗ 365samples/epoch ∗ 2bytes/sample = 2190bytes. To construct sum-
maries, we used an epoch of three yearsi.e., the summary construction process repeats
every three years. The choice of a large time-period was due to the temporal infrequency

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

22 ·

Quantization
RLE

Encoder
Huffman
Encoder

RLE
Decoder

Transmission
over the air

Filter 3D Array
Reconstructed

Huffman
Decoder

Decoding at Level i+1 clusterheadCoding at Level i clusterhead

3D DWT

Cost Metric:
Number of Zeros

Summaries from
Level (i−1)

Combine Data into
3D Array

X

Y

Time

Fig. 13. Codec for the Ipaq

Hierarchy level
(i)

Num Cluster-
heads (Nc)

Compression
Ratio

Rate (ri) Total
Data
(Ncri)

Raw 180 1 2190 (γ) 394.2K
0 to 1 180 5.97 367.1 66.08K
1 to 2 48 11.91 689.1 33.08K
2 to 3 12 23.46 1400.1 16.8K
3 to 4 4 50.9 2933.5 11.73K

Table IV. Communication Rate per Level

of samples. Each node in the network would have 1095 samples to process every three
years, enough to offer reasonable temporal compression benefit. In a typical deploy-
ment, where nodes generate more data, the epoch would be muchshorter.

—c0 : c1 : c2 : c3 = 6 : 12 : 24 : 48. Compression ratios should be chosen such
that the exponential effect of aggregating data is mitigated. Our choice of compression
parameters has two features that mitigate the increase in data, (a) temporal compression
ratio of 6 means that approximately 367 bytes are communicated by each node at level 0,
instead of 2190 bytes, and (b) the compression ratios increase by a factor of two instead
of four (in Equation 1), thus, data implosion towards the root is less severe.
The total communication overhead for summaries at each level is shown in Table IV.
The first row (Raw data) corresponds to uncommunicated data.The results from the
codec were within 4% the input compression parameters. The standard deviation results
from the fact that the dimensions of the grid are not perfectly dyadic (power of two) and
therefore, some clusterheads aggregate more data than others.

6.2 Drill-down Query Performance

We use the summarized data constructed by wavelet compression to evaluate the perfor-
mance of drill-down queries.

6.2.1 Query Types. Our implementation considers four types of queries (shown in Ta-
ble V) that involve different extents of spatio-temporal processing that evaluate both ad-
vantages and limitations of wavelet compression. These queries can be classified into
different categories corresponding to the spatial and temporal scales that they process as
shown in Figure 14. The GlobalYearlyEdge and LocalYearlyMean queries explore features
for which wavelet processing is typically well suited. The Max queries (GlobalDailyMax,
GlobalYearlyMax) looks at the Max values at different temporal scales. The GlobalYear-

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 23

Type Query
GlobalDailyMax What is the maximum daily precipitation for year X?
GlobalYearlyMax What is the maximum annual precipitation for year X?
LocalYearlyMean What is the mean annual precipitation for year X at location Y?
GlobalYearlyEdge Find nodes along the boundary between low and high precipitation areas for year X

Table V. Spatio-temporal queries posed on Precipitation Dataset

S
pa

tia
l S

ca
le

YearlyMax
DailyMax’

Edge

PerNodeMean

Temporal Scale
YearlyDaily

S
in

gl
e

N
od

e
A

ll
N

od
es

Not evaluated

Fig. 14. Classification of Spatio-temporal Queries

lyMax query looks at the maximum yearly precipitation in theentire network, while the
GlobalDailyMax queries for the daily global maximum.

Both the LocalYearlyMean query and the two Max queries are processed as regular drill-
down queries. The query is processed on the coarsest summaryto compute the quadrant
to drill-down, and is forwarded to the clusterhead for the quadrant. The GlobalYearlyEdge
query tries to find nodes in the network through which an edge passes, and involves a more
complex drill-down sequence. This query is first processed by the highest-level cluster-
head, which has a summary covering the spatial extent of the entire network. The cluster-
head uses a standard canny edge detector to determine the edge in its stored summary, and
fills a bitmap with the edge map. The query and the edge bitmap are then forwarded to all
quadrants that the edge passes through. The cluster-heads for these quadrants run a canny
detector on their data, and update the edge bitmap with a moreexact version of the edge.
The drill-down stops when no edge is visible, and the edge bitmap is passed back up, and
combined to obtain the answer to the query.

6.2.2 Query Performance. We now evaluate the performance of drill-down queries
over the multi-resolution dataset constructed as described above. Our goal in this section
is to demonstrate the search features of the system and proveour claim that multi-resolution
storage can be useful for a broad variety of queries.

To evaluate performance, each of the queries shown in Table Vwas posed over the
dataset. For yearly queries (GlobalYearlyEdge and and GlobalYearlyMax), there were 45
instances each, since there are 45 years of data. For the GlobalDailyMax query, the results
are averaged over 16801 instances (one for each day), and forGlobalYearlyMean, the
queries were averaged over 8100 queries (180 nodes x 45 years).

The query accuracy for a drill-down query that terminates atlevel i (qi) is measured as

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

24 ·

Fig. 15. Query error decreases as they drill-down to lower levels of hierarchy. Summaries at lower levels typically
contribute less to reducing query error than higher level summaries.

the fraction errori.e., the difference of the measured drill-down result and the real result
over raw data over the real result (measured - real/real). Figure 15 shows the variation of
query quality for queries defined in Table V for different levels of drill-down.

Performance for LocalYearlyMean, GlobalYearlyMax and LocalDailyMax queries are
very similar, as shown in Figure 15. All of them have an error of 40-50% if only the
coarsest (level 4) summaries are queries, but reduce rapidly when the drill-down proceeds
to the lowest level. Even one or two levels of drill-down significantly improve error, for
instance, querying level 3 in addition to level 4 reduces error to under 20%, and querying
level 2 as well reduces error to less than 5%.

For the GlobalYearlyEdge query, we measure error as the fraction of nodes missed from
the real edge. This query exhibits a different trend from other queries, with lower error by
querying the coarsest level, and less benefit due to further drill-downs. Thus, in Figure 15,
the error is 15% when only the coarsest (level 4) summaries are queried. The error reduces
to 11% with an additional level of drilldown, however, further drill-downs do not improve
the result. This trend is consistent with what one would expect for edge detection, the edge
is more visible in a lower resolution (and consequently, higher level) view, and becomes
more difficult to observe at lower levels of the hierarchy. Ina larger network, with more
levels, improvement might be observed using drill-down. Additionally, a more relaxed
definition of query error can be considered, for instance, only nodes that are not nearest
neighbors of the real edge are considered erroneous. The edge error is seen to be less than
2% with such a definition.

The communication overhead of in-network processing of these queries is extremely
low as well. Even with false positives, the total query overhead of a GlobalYearlyEdge
query is less than 10% of the network. Other drill-down queries such as GlobalYearlyMax
and LocalDailyMax drill-down query only around 5% of the network. This performance
results from hierarchical processing of queries, and for many queries that require a single
answer (mean,max,min), the overhead is onlyO(log4N) (one branch probed per level),
i.e., only around 5% of the network is queried for the result.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 25

Level
till
which
drilled
down

GlobalYearlyMax GlobalDailyMax LocalYearlyMean GlobalYearlyEdge Cumulative
Training
Error

Omniscient Training Omniscient Training Omniscient Training Omniscient Training
1 1.6% 1.2% 3.2% 6.6% 1.0% 1.0% 11.2% 7.5% 5.4%
2 5.5% 5.0% 7.2% 8.9% 5.9% 6.1% 11.2% 7.5% 9.2%
3 16.9% 12.2% 17.6% 12.9% 20.9% 21.0% 11.2% 7.5% 17.9%
4 38.6% 32.2% 40.8% 30.4% 48.4% 49.8% 15.6% 7.5% 39.9%

Table VI. Comparing the error in Omniscient (entire) Dataset vs Training (first 6 years)
Dataset

These results demonstrate a key advantage of multi-resolution storage. While there is an
initial overhead of communicating summaries, this overhead can be amortized over many
queries posed by the users.

6.3 Aging Performance Evaluation

In this study, we consider linear aging functions of the form,

f(t) = 1− αt (8)

The parameterα can be varied depending on the rate at which the user would like the
aging function to decay. A largeα would generate a rapidly decaying aging function.

As shown in the previous section, different summaries contribute differently to the over-
all query quality, with the top-level summary contributingmaximum. For instance, in the
case of the GlobalDailyMax query, query error reduces by 50%by storing only the level 4
summary. Adding an additional level of summaries decreaseserror by 15%, and so on till
storing raw data results in 0% error. This trend motivates the aging problem, which allo-
cates storage to different summaries based on their marginal benefit to query processing,
and their storage utilization. In this section, we will lookat the impact of aging summaries
based on their relative importance. Since raw data adds little to the overall query result
(Figure 15), we will assume that nodes store only summaries at various levels and not raw
data.

The parameter,α, in Equation 8 is varied between 0.01 and 0.002, and determines
whether the user would like a fast decay of query accuracy over time, or a slower decay.

We evaluate the three aging schemes, using the globally omniscient scheme as a baseline
to compare the more practical training-based and greedy schemes. In this comparison, we
increase the amount of local storage allocated to each node in the network from 0KB to
100KB, in steps of 4KB blocks. As with the previous section, our metric for error isqdiff
(Equation 4).

6.3.1 Omniscient Strategy: Establishing a Lower Bound for Query Error. The omni-
scient scheme uses the query error for each query on the entire dataset (Figure 15) to deter-
mine the optimal choice of aging parameters for each query type. As shown in Table VI,
the error from the coarsest summaries ranges from 30% to 50% for different queries. As
the local storage capacity increases, however, the optimalalgorithm performs dramatically
better, until 0% error is achieved when all levels can be drilled down. This behavior is
also shown in Figure 16, which shows the performance of this scheme for the GlobalYear-
lyMax query on one instance of a user-specified linear aging function (α = 0.002). In

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

26 ·
α Omniscient Training Greedy

Duration
(β=0.5)

Balanced
(β=1)

Detail (β=2)

0.01 (fast) 13.6% 14.8% 20.6% 13.7% 13.9%
0.0033 15.0% 15.9% 25.3% 16.0% 16.0%
0.002 (slow) 18.2% 19.2% 28.6% 20.0% 26.1%

Table VII. Comparison of between omniscient, training and greedy schemes. Training is within 1% of the om-
niscient scheme. The greedy algorithm shows significant variability to the choice ofβ, however, thebalanced
resolution bias performs within 2% of the omniscient scheme.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

F
ra

ct
io

n
E

rr
or

 (
m

ea
su

re
d

-
re

al
)/

re
al

Local Storage Size (KB)

Omniscient
Training

Greedy - Detail
Greedy - Balanced
Greedy - Duration

Fig. 16. Comparison of Omniscient, Training and Greedy strategies for GlobalYearlyMax query(α = 0.002)

networks composed of nodes with low local storage capacities, the error is high since only
the coarsest summaries can be stored in the network .

6.3.2 Evaluating Training using Limited Information. In our evaluation, we use a
training period of two epochs of data (10% of total deployment time) to predict the query
accuracy for the entire dataset. Summaries are constructedover the training set, and all
queries in Table V are posed over these summaries. Ideally, the error obtained from the
training set would mirror error seen by the omniscient scheme.

How effectively does the the training dataset represent theentire dataset? Table VI shows
that the predicted error from the training set is typically within 5% of the query quality seen
by the omniscient scheme, but is almost 10% off in the worst case (GlobalDailyMax query
over level 4 summaries). Also, in the case of the GlobalYearlyEdge query, the error seen
from the training dataset is consistently off of the averageresult. Thus, the training set is
moderately representative of the entire dataset.

To compute the cumulative error using Algorithm 2, we use equal weights for all queries.
When usage statistics of sensor networks become available,application-specific weighting
schemes can be used. This cumulative error can be fed to the optimization function to
evaluate aging parameters for different summaries.

The first column in Table VII shows the difference between theperformance of training
and the optimal schemes. These results are aggregate results over a range of storage sizes

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 27

(0 - 100KB) and query types (shown in Table V). Training performs exceedingly well, and
in fact is on average less than 1% worse than the optimal solution. These results are very
encouraging since it suggests that even with moderately representative training datasets,
very good performance can be observed.

Having seen the aggregate result, we look at a single run in Figure 16, that shows how
the performance varies as the amount of storage allocated toa node is increased. Fig-
ure 16 shows the result of such a resource allocation for the GlobalYearlyMax query. As
expected, increasing the storage size reduces error for allschemes. Notably, the training
curve follows the omniscient storage allocation curve veryclosely (almost indistinguish-
ably). Similar results were obtained for other queries as well.

6.3.3 Greedy Algorithm. We use three settings for resolution bias (β), a low resolution
bias (β = 0.5), that favorsduration over detail, a medium bias (β = 1), thatbalances
both duration and detail, and a high bias (β = 2), that favorsdetail over duration.

As seen in Table VII, varying the settings of resolution biasfor the greedy heuristic
significantly changes the performance of the greedy heuristic. Whenα is large, the user-
specified aging function has a steep slope. In this case, a lowresolution bias (duration)
performs poorly since it prefers coarser summaries much more than finer ones. In contrast,
whenα is small and the user-specified aging function has a gradual slope, a high resolution
bias (detail) performs exceedingly bad, since allocates more storage tofiner summaries,
thereby reducing duration. In both cases, thebalanced summary assignment performs
well, and has a worst-case performance of around 5% in comparison with the omniscient
scheme, and 4% in comparison with the training scheme.

This result can be understood by looking at the relationshipbetween resolution bias,
β, and the slope of the user-specified aging function,α. A low value of resolution bias
(duration) results in more storage being apportioned to coarser summaries, thus biasing
towards very long duration, but low accuracy. The maximum user error (max(qdiff))is
observed for queries that look at recent data, where the userexpects high accuracy, but the
system can only provide coarse summaries. Thus, such an allocation performs well when
the user-specified aging function requires very long duration storage (eg:α = 0.002),
but badly for short duration storage (eg:alpha = 0.05). In contrast, a higher value for
resolution bias (detail) allocates significant storage to finer summaries. The erroris low for
queries on recent data, but the age of all summaries is limited as well. Queries on old data
will result in a large max(qdiff) because summaries will be unavailable in the network for
old data. Thus, as we vary the resolution bias,β between these extremes, we get different
results from the greedy algorithm. An ideal choice ofβ is seen to beβ = 1 (balanced),
which lies between these extremes, and results in more gradual aging of summaries.

This hypothesis also explains Figure 16. For a user-specified aging function that favors
duration (α = 0.002), the greedy algorithm withdetail bias consistently has high error,
whereasbalanced andduration bias perform significantly better.

7. USAGE MODEL: PROGRESSIVE LOSSY DATA COLLECTION

Having described the DIMENSIONS system and its implementation for Linux-based nodes,
we describe one of the usage models outlined in Section 4.5 - progressively lossy data
collection. Many existing deployments for sensor networkshave been deployed for data
collection since they enable collection of previously unavailable fine-grained datasets for
many different scientific disciplines. In this section, we describe how a subset of the archi-

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

28 ·

Vibration Radio

Threshold−based
Event detection

Flash Storage
File System

 Decomposition

Quantization
Encoding

BitStream

EEPROM
Sensor

Event Storage Manager

Progressive Data Collect Application

Wavelet Run−length

Real−time Wavelet

Thresholding

Fig. 17. Component Diagram of Mote implementation

tecture that we described can be used to enable scalable datacollection in sensor networks.
The implementation was done over motes as part of theWisden [Xu et al. 2004] system.

Wisden is a wireless sensor network system for structural-response data acquisition. The
system continuously collects structural response data from a multi-hop network of sensor
nodes, and displays and stores the data at a base station.Wisden can be thought of as
a first-generation wireless structural monitoring system;it incorporates some in-network
processing, but later systems will move more processing into the network once the pre-
cise structural monitoring applications are better understood. In being essentially a data
collection system, the system resembles other early sensornetworks such as those being
deployed for habitat monitoring [Hamilton ; Mainwaring et al. 2002].

While the architecture ofWisden is simple—a base station centrally collecting data—its
design is a bit more challenging than that of other sensor networks built till date. Structural
response data is generated athigher data rates than most sensing applications (typically,
structures are sampled upwards of 100 Hz). The relatively low radio bandwidths, the high
packet loss rates observed in many environments, and the resource constraints of existing
sensor platforms add significant challenges to the system design.

To address the latency of data acquisition, we have designedand implemented a pro-
gressive storage and transmission strategy on the motes. This approach uses local storage
on the motes as a in-network cache for raw data and transmits low-resolution compressed
summaries of data in near-real time. The user can visualize this summarized event data and
the raw data can be collected from the distributed caches when required. This on-demand
data collection has to occur within the time window before which data in the cache is re-
placed by newly generated samples. As we show below, such an approach can compress
vibration data by a factor of 20; when coupled with event detection, it can reduce the
acquisition latency to less than in a minute in many cases.

7.1 Wavelet Codec Internals

We use an optimized implementation for the motes due to memory and computation con-
straints. For this reason, many design choices that we make are simpler than other progres-
sive codecs such as JPEG2000. The component diagram of our implementation is shown
in Figure 17. We now describe the individual system components in more detail.

Integer-Integer Wavelet decomposition:Our implementation uses the bi-orthogonal
Cohen-Daubechies-Feauveau (2,2) (CDF(2,2)) integer wavelet lifting transform that relies

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 29

solely on integer addition and bit shifting operations. Wavelet lifting involves two steps:
(a) a prediction step when the odd values of the time-series are predicted from the even
values, and (b) an update step when the even values are updated to capture the error in the
prediction step. The predict and update operations for the CDF(2,2) lifting transform are:

di ← di −
1

2
(si + si+1)

si ← si −
1

4
(−di−1 − di)

The choice of the above lifting transform over other kernelswas based on two factors:
computation overhead and compression performance. Using longer wavelet filters involves
more computation overhead but does not provide significant compression improvement
over the chosen filter, at least for the building vibration dataset that we studied ([Kang
et al.]).

While the lifting transform itself is very efficient, normalization of coefficients at var-
ious subbands involves floating point operations. The normalization coefficients for the
CDF(2,2) transform are:

nH =
√

2 (9)

nL =
1√
2

wherenH is the higher frequency subband andnL is the lower frequency subband. We per-
form the normalization operations during the wavelet thresholding step rather than during
wavelet decomposition to be more computationally efficient.

The wavelet codec operates on buffers of length2n, wheren is a positive integer. To
avoid blocking artifacts at the buffer boundaries, we pad each buffer with a few samples at
either end.

Quantization: Quantization involves representing a range of values in a signal by a sin-
gle value. This reduces the number of symbols that are required to represent a signal, and
hence makes the signal more compressible. We implemented a simple uniform quantizer
that can be used to reduce the resolution of data depending onthe range of the signal and
the number of bits allocated to each sample.

Signal Thresholding: Thresholding is a technique used to modify the wavelet decom-
posed signal such that the resulting signal contains long sequences of zeros that can be
efficiently compressed by an entropy coding scheme. We use a hard thresholding scheme
in which if the absolute value of any wavelet falls below the threshold, it is set to zero. We
maintain a probability density function (pdf) of the signalto facilitate the selection of an
appropriate threshold. The user specifies what percentage of the signal need to be zeros in
the lossy version, and the pdf can be used to determine the appropriate threshold.

The thresholds for different subbands are normalized usingthe coefficients shown in
Equation 9. This operation needs to be done only once, hence,it reduces the computation
requirements of normalizing the signal.

Run-length encoding: Wavelet decomposition, quantization and thresholding process
the signal to make it more amenable for compression by an entropy coding scheme, but no
compression has yet occurred. An entropy coding scheme is typically designed such that
the symbols that occur most frequently use the least amount of bits. Run length coding

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

30 ·
is the simplest of such schemes that exploitsruns of a particular value in the signal. This
scheme was preferred over other encoding schemes such as Huffman or Arithmetic coding
due to its simplicity of implementation, a necessary requirement for Mote-based software.

BitStream: The run-length encoded signal is a series of symbols of different lengths
depending on the number of bits used in quantization and the lengths of the special symbols
used in the run length encoding process. A bitstream module is used to pack these variable
length symbols into the data segment of a TinyOS message packet. Each time the data
segment of a packet is filled up, it can be scheduled for transmission to the base station.

7.1.1 Operation Description. The progressive transmission operation involves three
steps: event detection, local data storage, and progressive coding. An event detection
scheme (discussed in detail in [Xu et al. 2004]) runs continually, and triggers when an event
is detected. The event signal then undergoes wavelet decomposition, and the decomposed
signal is written to the persistent external flash memory on the mote. Until this point, no
compression has occurred, hence, the lossless event data isavailable on flash.

A separate periodic task reads the flash memory and compresses the signal using the
five step process described in Section 7.1, after which it transmits the bitstream to the
base-station. The choice of signal threshold and number of quantization bins is assumed to
be determined by a priori analyis of training data to obtain maximum compression benefit
within the specified error bounds.

A user at the base-station can analyze the low-resolution signal in real-time and request
either the raw data or additional detail in the signal. Sincethe raw data is stored on flash,
the difference between the previously transmitted resolution and the requested resolution
is coded by the steps described in Section 7.1 and transmitted to the base-station. This
progressive transmission procedure should be completed before the data on flash is over-
written by future events.

This implementation is currently not integrated into the rest of our system due to the
need for significant memory optimization.

Computation
Time

Memory
Utilization

Wavelet Decomposition
and Flash Storage

6.44ms 288bytes

Uniform Quantizer 0.32ms 7bytes
Run-length Encoder 6.30ms 20bytes

Table VIII. Performance of 128-sample 4-level transform

7.2 Performance Evaluation

We evaluate the performance of our system on three fronts: (a) the applicability of wavelet
compression to structural vibration sensor data, (b) the computation and memory overhead
of doing the wavelet compression in real-time on a mote, and (c) the compression gain by
using our scheme, which translates to the latency of data acquisition. We used data from
shaker table tests at CUREE-Kajima [Kang et al.].

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20

25

30

35

40

Normalized Frequency (xπ rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (

dB
/ r

ad
/s

am
pl

e)

π

Fig. 18. Periodogram of the Power Spectral Density estimateof the structural vibration event. Energy is concen-
trated in the low-frequency bands, making the use of waveletcompression ideal.

2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

C
om

pr
es

si
on

 R
at

io

Number of Bits Per Sample

Fig. 19. Compression Ratios

2 3 4 5 6 7
2

3

4

5

6

7

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

 (
R

M
S

)

Number of Bits Per Sample

Fig. 20. Root Mean Square Error

7.2.1 Applicability of Wavelet Processing. Our progressive transmission strategy for
vibration data uses wavelet compression. The applicability of wavelet techniques follows
from characteristics of large structures, whose frequencyresponse is usually focused in
the low-frequency components [Vetterli and Kovacevic 1995]. Figure 18, which shows the
power spectral density of a real vibration signal collectedas part of the CUREE-KAJIMA
project. It illustrates quite clearly that low-frequency components dominate the power
spectral density, motivating the use of wavelet-based dataprocessing.

7.2.2 Computation and Memory Requirements. Table VIII shows the computation and
memory requirements of the core components of our compression system. The computa-
tion time is low, and enables us to perform the entire operation in real-time. We were able
to perform sensor data sampling, 128 sample CDF(2,2) wavelet lifting transform as well as
writing the decomposed buffer to the EEPROM for sampling rates upto 250Hz. As can be
seen in Table VIII, the memory requirements are low as well, making it easier to integrate
with other components of the system.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

32 ·
7.2.3 Compression and Error Performance. The compression and error results from

using such a scheme are shown in Figure 19 and Figure 20 respectively. Both graphs use
a threshold that sets 80% of the decomposed signal to zero. The trends of both graphs
are as expected; as the number of quantization bits increases, both the compression ratio
and the RMS error reduce. One sweet spot that emerges from these two graphs is a 4-bit
quantization scheme. This choice gives us about 20-fold reduction in data size with very
low RMS error of 3.1. The peak-to-peak signal to noise ratio (PSNR) for the above choice
of parameters is 30dB.

These results are very promising are indicate that such an approach can be used to allow
near real-time structural data acquisition from tens of sensors.

8. FUTURE RESEARCH PROBLEMS

Having discussed distributed data storage and aging, we point to some interesting potential
research directions with distributed storage. There are many aspects of distributed storage
that need to be addressed.

8.1 Building Long-term Data Archival Systems

Many current sensor network deployment are data collection-based ([Hamilton ; Mainwar-
ing et al. 2002]) as they collect data for scientists to provide more datasets for analysis.
As sensor network deployments become more commonplace, we believe that the need to
optimize for lifetime of such networks will result in a shifttowards distributed storage and
querying systems.

Long-term data archival systems for sensor networks will need new tools. First, dis-
tributed storage and search techniques need to be adapted toheterogeneous sensor net-
works with different sensor modalities and nodes with different storage and processing
constraints. Systems approaches for such heterogeneous networks will require careful
splitting of processing and storage functionality. However, we believe that multi-resolution
techniques are well-suited to such networks due to its ability to adapt the compression ratio
to the resource-constraints on different devices. Second,much of the focus in the sensor
network community has been about optimizing the power-constrained network rather than
integrating it to a wide-area system. Eventually, sensor networks will form the edges of a
larger wide-area network. Thus, an interesting question ishow to build a wide-area query-
ing system where data is archived at the edges.

8.2 Coping with Irregular Spatio-Temporal Sampling

A central issue that impacts our data storage system is the impact of irregular sampling on
many different aspects of sensor network design. A large class sensor network deployments
will have irregular spatial configurations for two fundamental reasons: (a) the phenonmena
of interest are not uniformly distributed and the deployment of sensor resources will be
variable in order to achieve denser sensing where there is greater spatial variability (e.g.,
on the edge of biological regions), and (b) terrain and otherdeployment practicalities bias
deployment locations to where necessary power sources, communication or access can
be achieved. For instance, in environmental monitoring networks such as that shown in
Figure 8.2, node placement is irregular.

Irregular deployments impacts the design and performance of our system. Consider a
2-dimensional grid of sensor data where samples are taken ina non-uniform manner. A
naive scheme would be to assume that the samples were regularand perform the wavelet

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 33

Fig. 21. Micro-climate monitoring sensor network de-
ployment at James Reserve: Node placement is irregular,
with the lower left being more densely deployed than the
rest of the network

1.5 2 2.5 3 3.5 4 4.5 5 5.5
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
DAILY MAX: Error VS Drilldown Level

DrillDown Level

F
ra

ct
io

n
E

rr
or

 (
O

bt
ai

ne
d

V
al

ue
/G

ro
un

d
T

ru
th

)

Fig. 22. Drill-down Daily MAX query performs quite
well in an irregular setting.

compression accordingly. However, this creates numerous artifacts, and can distort the
original data greatly since spatial correlation is not correctly captured.

Irregular spatial samples are routinely regularized in geo-spatial data processing since
analysis of irregular datasets is significantly more complex than that of regularly spaced
ones. This regularization procedure, calledresampling, typically involves interpolation
and can be used to deal with irregularity. The cheapest interpolation scheme for distributed
sensor data isnearest neighbor, which assigns the value of a resampled grid point to the
nearest known data sample. Such sampling can be done in a distributed and inexpensive
manner by constructing the Voronoi cells corresponding to each sensor node. Ease of local-
ized construction of voronoi cells [Ganeriwal et al. 2003; Meguerdichian et al. 2001] makes
them particularly attractive as means to deal with irregularity. Higher degree polynomials
can be used to improve the precision of the interpolation, especially if node distribution is
highly skewed.

We combined nearest neighbor interpolation with DIMENSIONS to deal with highly
irregular topologies. Figure 22 shows the performance of a GlobalDailyMax query over
a highly irregular topology. While the performance trend issimilar to the results in the
regular topology case, the quality of the drill-down solution does not always improve with
the level as one would expect. This can be attributed to artifacts in the interpolation scheme
caused due to the large extent of data irregularity. We hope to improve these results with
better interpolation and modeling.

9. CONCLUSIONS

As sensor networks start being deployed, the question of data storage and querying will be-
come increasingly important. A closely related technological trend that demonstrates this
importance is RFIDs. Data management in RFIDs is quickly becoming a critical problem
as massive amounts of information being generated by these systems. Similarly, sensing
the physical world makes it essential to deal with the large volumes of data generated by
sensor networks. In-network storage and search in sensor networks is one of the main
aspects of data management and poses considerable challenges. In-network storage is nec-
essary for sensor networks because in power-limited systems, it is more efficient to store

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

34 ·
data locally than to transmit to a central location. Significant research challenges emerge
due to the need to optimize for resources, power, and the types of queries that are posed on
the data.

Ideally, a search and storage system for sensor networks should have the following prop-
erties: (a) low communication overhead, (b) efficient search for a broad range of queries,
and (c) long-term storage capability. In this paper, we present the design and evaluation
of DIMENSIONS, a system that constructs multi-resolution summaries and progressively
ages them to meet these goals. This system uses wavelet compression techniques to con-
struct summaries at different spatial resolutions, that can be queried efficiently using drill-
down techniques. We demonstrate the generality of our system by demonstrating the query
accuracy for a variety of queries on a precipitation sensor dataset. Our proposal for pro-
gressive aging includes schemes that are applicable to a spectrum of application deploy-
ment conditions: a training algorithm where training sets can be obtained, and a greedy
algorithm for others. A comparison shows that both the training and greedy scheme per-
form within 2% of an optimal scheme. While the training scheme performs better than
the greedy scheme in practice, the latter performs within 1%of training for an appropriate
choice of aging parameters.

REFERENCES

CERPA, A. AND ESTRIN, D. 2002. Ascent: Adaptive self-configuring sEnsor networks topologies. InProceed-
ings of the IEEE Infocom. IEEE, New York, NY.

CHAKRABARTI , K., GAROFALAKIS , M., RASTOGI, R., AND SHIM , K. 2001. Approximate query processing
using wavelets.VLDB Journal: Very Large Data Bases 10, 2–3, 199–223.

DAVIS , G. Wavelet Image Compression Kit.

ET AL , A. C. 2001. Habitat monitoring: Application driver for wireless communications technology. InProceed-
ings of the 2001 ACM SIGCOMM Workshop on Data Communications in Latin America and the Caribbean.

GANERIWAL , S., HAN , C.-C.,AND SRIVASTAVA , M. B. 2003. Going beyond nodal aggregates : Spatial average
of a continuous physical process in sensor networks. InPoster in Sensys 2003. to appear.

GANESAN, D., ESTRIN, D., AND HEIDEMANN , J. 2002. Dimensions: Why do we need a new data handling
architecture for sensor networks? InFirst Workshop on Hot Topics in Networks (Hotnets-I). Vol. 1.

GANESAN, D., GREENSTEIN, B., PERELYUBSKIY, D., ESTRIN, D., AND HEIDEMANN , J. 2003. Multi-
resolution storage in sensor networks. InProceedings of the First ACM Conference on Embedded Networked
Sensor Systems (SenSys).

GIROD, L., STATHOPOULOS, T., RAMANATHAN , N., ELSON, J., ESTRIN, D., OSTERWEIL, E., AND

SCHOELLHAMMER, T. 2004. A system for simulation, emulation, and deployment of heterogeneous sen-
sor networks. InProceedings of the Second ACM Conference on Embedded Networked Sensor Systems.
Baltimore, MD.

GREENSTEIN, B., ESTRIN, D., GOVINDAN , R., RATNASAMY, S.,AND SHENKER, S. 2003. Difs: A distributed
index for features in sensor networks.Elsevier Journal of Ad Hoc Networks.

HAMILTON , M. James San Jacinto Mountains Reserve.

HELLERSTEIN, J., HONG, W., MADDEN, S.,AND STANEK , K. 2003. Beyond average: Towards sophisticated
sensing with queries. InIPSN ’03. Vol. 1. Palo Alto, CA.

INTANAGONWIWAT, C., GOVINDAN , R., AND ESTRIN, D. 2000. Directed diffusion: A scalable and robust
communication paradigm for sensor networks. InProceedings of the Sixth Annual International Conference
on Mobile Computing and Networking. ACM Press, Boston, MA, 56–67.

KANG, T. H., RHA , C., AND WALLACE , J. W. Seismic performance assessment of flat plate floor systems.
CUREE-Kajima Joint Research Program.

KARP, B. AND KUNG, H. T. 2000. GPSR: greedy perimeter stateless routing for wireless networks. InPro-
ceedings of Mobicom.

KOHLER, M. UCLA Factor Building.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

· 35

KUBIATOWICZ , J., BINDEL , D., CHEN, Y., EATON, P., GEELS, D., GUMMADI , R., RHEA, S., WEATHER-
SPOON, H., WEIMER, W., WELLS, C., AND ZHAO, B. 2000. Oceanstore: An architecture for global-scale
persistent storage. InProceedings of ACM ASPLOS. ACM.

L I , X., K IM , Y.-J., GOVINDAN , R.,AND HONG, W. 2003. Multi-dimensional range queries in sensor networks.
In Proceedings of the First ACM Conference on Embedded Networked Sensor Systems (SenSys). Vol. 1. to
appear.

MAINWARING , A., POLASTRE, J., SZEWCZYK, R., CULLER, D., AND ANDERSON., J. 2002. Wireless sensor
networks for habitat monitoring. InACM International Workshop on Wireless Sensor Networks and Applica-
tions. Atlanta, GA.

MEGUERDICHIAN, S., KOUSHANFAR, F., POTKONJAK, M., AND SRIVASTAVA , M. 2001. Coverage Problems
in Wireless Ad-hoc Sensor Networks. InProceedings of the IEEE Infocom.

RAO, R. M. AND BOPARDIKAR, A. S. 1998. Wavelet Transforms: Introduction to Theory and Applications.
Addison Wesley Publications.

RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SHENKER, S. 2001. A scalable content ad-
dressable network. InProceedings of the 2001 ACM SIGCOMM Conference.

RATNASAMY, S., KARP, B., YIN , L., YU, F., ESTRIN, D., GOVINDAN , R., AND SHENKER, S. 2002. Ght -
a geographic hash-table for data-centric storage. InFirst ACM International Workshop on Wireless Sensor
Networks and their Applications.

ROWSTON, A. AND DRUSCHEL, P. 2001. Storage management and caching in past, a large-scale, persistent
peer-to-peer storage utility. In18th ACM SOSP. Vol. 1. Lake Louise, Canada.

VETTERLI, M. AND KOVACEVIC, J. 1995.Wavelets and Subband coding. Prentice Hall, New Jersey.
V ITTER, J. S., WANG, M., AND IYER, B. 1998. Data cube approximation and histograms via wavelets,. In

Proceedings of CIKM’98, D. Lomet, Ed. Washington D.C, 69–84.
WANG, W., YANG, J., AND MUNTZ, R. 1997. Sting: A statistical information grid approach tospatial data

mining. InProceedings of the 23rd VLDB Conference. Vol. 1. Athens, Greece.
WIDMANN , M. AND C.BRETHERTON. 50 km resolution daily preciptation for the Pacific Northwest, 1949-94,

http://tao.atmos.washington.edu/datasets/widmann/.
XU, N., RANGAWALA , S., CHINTALAPUDI , K., GANESAN, D., BROAD, A., GOVINDAN , R., AND ESTRIN,

D. 2004. A wireless sensor network for structural monitoring. In Proceedings of the Second ACM Conference
on Embedded Networked Sensor Systems (SenSys).

XU, Y., HEIDEMANN , J.,AND ESTRIN, D. 2001. Geography-informed energy conservation for ad hoc routing.
In Proceedings of the ACM/IEEE International Conference on Mobile Computing and Networking (Mobicom).
ACM, Rome, Italy, 70–84.

ZHAO, Y., GOVINDAN , R., AND ESTRIN, D. 2002. Residual energy scans for monitoring wireless sensor
networks. InProceedings of the IEEE Wireless Communications and Networking Conference.

Submitted to ACM Transactions on Storage, Vol. V, No. N, April 2005.

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2003

	Multi-resolution Storage and Search in Sensor Networks
	Deepak Ganesan
	Recommended Citation

	tos.dvi

