1,412 research outputs found

    Multi-dimensional data indexing and range query processing via Voronoi diagram for internet of things

    Get PDF
    In a typical Internet of Things (IoT) deployment such as smart cities and Industry 4.0, the amount of sensory data collected from physical world is significant and wide-ranging. Processing large amount of real-time data from the diverse IoT devices is challenging. For example, in IoT environment, wireless sensor networks (WSN) are typically used for the monitoring and collecting of data in some geographic area. Spatial range queries with location constraints to facilitate data indexing are traditionally employed in such applications, which allows the querying and managing the data based on SQL structure. One particular challenge is to minimize communication cost and storage requirements in multi-dimensional data indexing approaches. In this paper, we present an energy- and time-efficient multidimensional data indexing scheme, which is designed to answer range query. Specifically, we propose data indexing methods which utilize hierarchical indexing structures, using binary space partitioning (BSP), such as kd-tree, quad-tree, k-means clustering, and Voronoi-based methods to provide more efficient routing with less latency. Simulation results demonstrate that the Voronoi Diagram-based algorithm minimizes the average energy consumption and query response time

    Energy-Efficient Data Management in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are deployed widely for various applications. A variety of useful data are generated by these deployments. Since WSNs have limited resources and unreliable communication links, traditional data management techniques are not suitable. Therefore, designing effective data management techniques for WSNs becomes important. In this dissertation, we address three key issues of data management in WSNs. For data collection, a scheme of making some nodes sleep and estimating their values according to the other active nodes’ readings has been proved energy-efficient. For the purpose of improving the precision of estimation, we propose two powerful estimation models, Data Estimation using a Physical Model (DEPM) and Data Estimation using a Statistical Model (DESM). Most of existing data processing approaches of WSNs are real-time. However, historical data of WSNs are also significant for various applications. No previous study has specifically addressed distributed historical data query processing. We propose an Index based Historical Data Query Processing scheme which stores historical data locally and processes queries energy-efficiently by using a distributed index tree. Area query processing is significant for various applications of WSNs. No previous study has specifically addressed this issue. We propose an energy-efficient in-network area query processing scheme. In our scheme, we use an intelligent method (Grid lists) to describe an area, thus reducing the communication cost and dropping useless data as early as possible. With a thorough simulation study, it is shown that our schemes are effective and energy- efficient. Based on the area query processing algorithm, an Intelligent Monitoring System is designed to detect various events and provide real-time and accurate information for escaping, rescuing, and evacuation when a dangerous event happened

    Energy-efficient query management scheme for a wireless sensor database system

    Get PDF
    Minimizing the communication overhead to reduce the energy consumption is an essential consideration in sensor network applications, and existing research has mostly concentrated on data aggregation and in-network processing. However, effective query management to optimize the query aggregation plan at the gateway side is also a significant approach to energy saving in practice. In this paper, we present a multiquery management framework to support historical and continuous queries, where the key idea is to reduce common tasks in a collection of queries through merging and aggregation, according to query region, attribute, time duration, and frequency, by executing the common subqueries only once. In this framework, we propose a query management scheme to support query partitioning, region aggregation and approximate processing, time partitioning and aggregation rules, multirate queries, and historical database. In order to validate the performance of our algorithm, a heuristic routing protocol is also described. The performance simulation results show that the overall energy consumption for forwarding and answering a collection of queries can be significantly reduced by applying our query management scheme. The advantages and disadvantages of the proposed scheme are discussed, together with open research issues

    Outlier detection techniques for wireless sensor networks: A survey

    Get PDF
    In the field of wireless sensor networks, those measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are not directly applicable to wireless sensor networks due to the nature of sensor data and specific requirements and limitations of the wireless sensor networks. This survey provides a comprehensive overview of existing outlier detection techniques specifically developed for the wireless sensor networks. Additionally, it presents a technique-based taxonomy and a comparative table to be used as a guideline to select a technique suitable for the application at hand based on characteristics such as data type, outlier type, outlier identity, and outlier degree

    Wireless sensor network as a distribute database

    Get PDF
    Wireless sensor networks (WSN) have played a role in various fields. In-network data processing is one of the most important and challenging techniques as it affects the key features of WSNs, which are energy consumption, nodes life circles and network performance. In the form of in-network processing, an intermediate node or aggregator will fuse or aggregate sensor data, which are collected from a group of sensors before transferring to the base station. The advantage of this approach is to minimize the amount of information transferred due to lack of computational resources. This thesis introduces the development of a hybrid in-network data processing for WSNs to fulfil the WSNs constraints. An architecture for in-network data processing were proposed in clustering level, data compression level and data mining level. The Neighbour-aware Multipath Cluster Aggregation (NMCA) is designed in the clustering level, which combines cluster-based and multipath approaches to process different packet loss rates. The data compression schemes and Optimal Dynamic Huffman (ODH) algorithm compressed data in the cluster head for the compressed level. A semantic data mining for fire detection was designed for extracting information from the raw data by the semantic data-mining model is developed to improve data accuracy and extract the fire event in the simulation. A demo in-door location system with in-network data processing approach is built to test the performance of the energy reduction of our designed strategy. In conclusion, the added benefits that the technical work can provide for in-network data processing is discussed and specific contributions and future work are highlighted

    Distributed Database Management Techniques for Wireless Sensor Networks

    Full text link
    Authors and/or their employers shall have the right to post the accepted version of IEEE-copyrighted articles on their own personal servers or the servers of their institutions or employers without permission from IEEE, provided that the posted version includes a prominently displayed IEEE copyright notice and, when published, a full citation to the original IEEE publication, including a link to the article abstract in IEEE Xplore. Authors shall not post the final, published versions of their papers.In sensor networks, the large amount of data generated by sensors greatly influences the lifetime of the network. In order to manage this amount of sensed data in an energy-efficient way, new methods of storage and data query are needed. In this way, the distributed database approach for sensor networks is proved as one of the most energy-efficient data storage and query techniques. This paper surveys the state of the art of the techniques used to manage data and queries in wireless sensor networks based on the distributed paradigm. A classification of these techniques is also proposed. The goal of this work is not only to present how data and query management techniques have advanced nowadays, but also show their benefits and drawbacks, and to identify open issues providing guidelines for further contributions in this type of distributed architectures.This work was partially supported by the Instituto de Telcomunicacoes, Next Generation Networks and Applications Group (NetGNA), Portugal, by the Ministerio de Ciencia e Innovacion, through the Plan Nacional de I+D+i 2008-2011 in the Subprograma de Proyectos de Investigacion Fundamental, project TEC2011-27516, by the Polytechnic University of Valencia, though the PAID-05-12 multidisciplinary projects, by Government of Russian Federation, Grant 074-U01, and by National Funding from the FCT-Fundacao para a Ciencia e a Tecnologia through the Pest-OE/EEI/LA0008/2013 Project.Diallo, O.; Rodrigues, JJPC.; Sene, M.; Lloret, J. (2013). Distributed Database Management Techniques for Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems. PP(99):1-17. https://doi.org/10.1109/TPDS.2013.207S117PP9

    Security and Privacy in Heterogeneous Wireless and Mobile Networks: Challenges and Solutions

    Get PDF
    abstract: The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions to a wide range of new applications, their widespread adoption and large-scale deployment are often hindered by people's concerns about the security, user privacy, or both. In this dissertation, we aim to address a number of challenging security and privacy issues in heterogeneous wireless and mobile networks in an attempt to foster their widespread adoption. Our contributions are mainly fivefold. First, we introduce a novel secure and loss-resilient code dissemination scheme for wireless sensor networks deployed in hostile and harsh environments. Second, we devise a novel scheme to enable mobile users to detect any inauthentic or unsound location-based top-k query result returned by an untrusted location-based service providers. Third, we develop a novel verifiable privacy-preserving aggregation scheme for people-centric mobile sensing systems. Fourth, we present a suite of privacy-preserving profile matching protocols for proximity-based mobile social networking, which can support a wide range of matching metrics with different privacy levels. Last, we present a secure combination scheme for crowdsourcing-based cooperative spectrum sensing systems that can enable robust primary user detection even when malicious cognitive radio users constitute the majority.Dissertation/ThesisPh.D. Electrical Engineering 201

    Uncertainty Management of Intelligent Feature Selection in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) are envisioned to revolutionize the paradigm of monitoring complex real-world systems at a very high resolution. However, the deployment of a large number of unattended sensor nodes in hostile environments, frequent changes of environment dynamics, and severe resource constraints pose uncertainties and limit the potential use of WSN in complex real-world applications. Although uncertainty management in Artificial Intelligence (AI) is well developed and well investigated, its implications in wireless sensor environments are inadequately addressed. This dissertation addresses uncertainty management issues of spatio-temporal patterns generated from sensor data. It provides a framework for characterizing spatio-temporal pattern in WSN. Using rough set theory and temporal reasoning a novel formalism has been developed to characterize and quantify the uncertainties in predicting spatio-temporal patterns from sensor data. This research also uncovers the trade-off among the uncertainty measures, which can be used to develop a multi-objective optimization model for real-time decision making in sensor data aggregation and samplin

    Distributed Efficient Similarity Search Mechanism in Wireless Sensor Networks

    Get PDF
    The Wireless Sensor Network similarity search problem has received considerable research attention due to sensor hardware imprecision and environmental parameter variations. Most of the state-of-the-art distributed data centric storage (DCS) schemes lack optimization for similarity queries of events. In this paper, a DCS scheme with metric based similarity searching (DCSMSS) is proposed. DCSMSS takes motivation from vector distance index, called iDistance, in order to transform the issue of similarity searching into the problem of an interval search in one dimension. In addition, a sector based distance routing algorithm is used to efficiently route messages. Extensive simulation results reveal that DCSMSS is highly efficient and significantly outperforms previous approaches in processing similarity search queries
    corecore