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ABSTRACT

The rapid advances in wireless communications and networking have given rise

to a number of emerging heterogeneous wireless and mobile networks along with novel

networking paradigms, including wireless sensor networks, mobile crowdsourcing, and

mobile social networking. While offering promising solutions to a wide range of new

applications, their widespread adoption and large-scale deployment are often hindered

by people’s concerns about the security, user privacy, or both. In this dissertation, we

aim to address a number of challenging security and privacy issues in heterogeneous

wireless and mobile networks in an attempt to foster their widespread adoption.

Our contributions are mainly fivefold. First, we introduce a novel secure and

loss-resilient code dissemination scheme for wireless sensor networks deployed in hos-

tile and harsh environments. Second, we devise a novel scheme to enable mobile users

to detect any inauthentic or unsound location-based top-k query result returned by an

untrusted location-based service providers. Third, we develop a novel verifiable privacy-

preserving aggregation scheme for people-centric mobile sensing systems. Fourth, we

present a suite of privacy-preserving profile matching protocols for proximity-based mo-

bile social networking, which can support a wide range of matching metrics with different

privacy levels. Last, we present a secure combination scheme for crowdsourcing-based

cooperative spectrum sensing systems that can enable robust primary user detection

even when malicious cognitive radio users constitute the majority.
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Chapter 1

INTRODUCTION

The rapid advances in wireless communications and networking have given rise to a

number of emerging heterogeneous wireless and mobile networks along with novel and

promising networking paradigms. Wireless sensor networks, formed by a large number

of low-cost, low-power, and multi-functional sensor nodes with communication capabil-

ity, have been widely considered as ideal candidates for a wide range of applications

such as health monitoring, environment monitoring, and military operations. Participa-

tory mobile sensing and crowdsourcing systems, powered by the explosive growth of

smartphones and tablets with ever-growing capabilities in sensing, computation, stor-

age, and communications, makes it possible for people-centric urban-scale distributed

data collection, analysis, and sharing. Mobile social networking, driven by the marriage

between traditional web-based social networks and mobile devices, makes it easier than

ever for people to stay connected and interact with each other at anywhere and anytime.

These heterogeneous wireless and mobile networks are expected to drastically change

people’s daily lives.

While offering promising solutions to a wide range of applications, the widespread

adoption and large-scale deployment of these emerging heterogeneous wireless and

mobile network are often hindered by the concerns about the system security, user pri-

vacy, or both. On the one hand, these heterogeneous wireless and mobile networks

not only inherit all the security vulnerabilities of traditional wired networks, but also face

new security challenges raised by the openness of wireless medium, the lack of trust

of individual participating nodes, the resource constraints of mobile devices, and so on.

On the other hand, people have growing concerns about disclosing their personal in-

formation, data access pattern, etc, which may be used against their interests. In other

words, potential users may not want to adopt emerging networking paradigms if their

privacy cannot be guaranteed.

1



In this dissertation, we introduce novel solutions to a number of challenging

security and privacy issues in heterogeneous mobile and wireless networks to pave

the way for their wide adoption and deployment. These challenging issues are either

newly identified or not well addressed in the literature. The rest of this dissertation is

structured as follows.

Chapter 2 tackles secure and loss-resilient code dissemination in wireless sen-

sor networks. Code dissemination refers to the process of disseminating a new code

image via wireless links to all sensor nodes after they are deployed. It is desirable and

often necessary due to the need for, e.g., removing program bugs and adding new func-

tionalities in a multi-task sensor network. A sound code dissemination scheme need be

both loss-resilient and attack-resilient, which are crucial for sensor networks deployed

in lossy and hostile environments. We propose LR-Seluge, the first loss-resilient and

secure code dissemination scheme based on a novel integration of fixed-rate erasure

code and efficient cryptographic primitive. The efficacy and efficiency of LR-Seluge are

confirmed by both theoretical analysis and extensive simulation results. In particular,

LR-Seluge can reduce up to 40% communication overhead in lossy environments with

the same level of attack resilience in contrast to existing schemes.

Chapter 3 considers verifiable location-based top-k query processing against

untrusted location-based service provider. In view of the significant drawbacks of ex-

isting location-based query services, we propose a novel architecture for collaborative

location-based information collection and sharing, which relies on some trusted data

collectors acting as the central hubs using various incentives to collect point-of-interest

(POI) reviews from consumers and then sell the aggregated POI data set to individual

location-based service providers (LBSPs). We then develop effective and efficient so-

lutions to enable location-based service users to verify the authenticity and correctness

of the query results from the untrusted LBSP.

Chapter 4 investigates verifiable privacy-preserving aggregation in people-centric

mobile sensing systems (PC-MSSs). People-centric mobile sensing systems refer to
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using human-carried mobile devices such as smartphones and tablets with ever-growing

capabilities in sensing, computation, storage, and communications for urbanscale dis-

tributed data collection, analysis, and sharing. A main obstacle for the widespread

adoption of PC-MSSs is the privacy concern of participating individuals as well as the

concern about data integrity. To tackle this open challenge, we propose VPA, a novel

solution to verifiable privacy-preserving data aggregation in PC-MSSs. VPA can sup-

port a wide range of statistical additive and non-additive aggregation functions such

as Sum, Average, Variance, Count, Max/Min, Median, Histogram, and Percentile with

accurate aggregation results.

Chapter 5 addresses privacy-preserving profile matching in proximity-based so-

cial networking (PMSN). PMSN refers to adjacent mobile users interacting through the

Bluetooth/WiFi interfaces on their mobile devices. The first step toward effective PMSN

is for two users to compare their profiles, known as profile matching, which is never-

theless hindered by the growing privacy concerns about disclosing sensitive personal

profiles to strangers. To tackle this open challenge, we designed a suite of novel proto-

cols to enable two users to perform profile matching without disclosing any information

about their profiles beyond the comparison result. In contrast to existing coarse-grained

private matching schemes for PMSN, our protocols allow finer differentiation between

PMSN users and can support a wide range of matching metrics at different privacy

levels.

Chapter 6 studies secure combination of spectrum-sensing results in crowd-

sourcing-based cooperative (spectrum) sensing systems. Cooperative sensing is a key

function for dynamic spectrum access and is essential for avoiding interference with

licensed primary users and identifying spectrum holes. A promising approach for effec-

tive cooperative sensing over a large geographic region is to rely on special spectrum-

sensing providers (SSPs), which outsource spectrum-sensing tasks to distributed mo-

bile users. Crowdsourcing-based cooperative spectrum sensing is, however, vulnerable

to malicious sensing data injection attack, in which a malicious cognitive radio users
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submit false sensing reports containing power measurements much larger (or smaller)

than the true value to inflate (or deflate) the final average, in which case the SSP may

falsely determine that the channel is busy (or vacant). To tackle this challenge, we

propose a novel scheme to enable secure crowdsourcingbased cooperative spectrum

sensing by jointly considering the instantaneous trustworthiness of mobile detectors in

combination with their reputation scores during data fusion. Our scheme can enable

robust cooperative sensing even if the malicious CR users are the majority.

We summarize our work along with a discussion on future directions in Chap-

ter 7.
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Chapter 2

LOSS-RESILIENT AND SECURE CODE DISSEMINATION IN WIRELESS SENSOR

NETWORKS

2.1 Introduction

Code dissemination [47] or over-the-air reprogramming [43] in wireless sensor networks

refers to the process of disseminating a new code image via wireless links to all sensor

nodes after they are deployed. It is desirable and often necessary due to the need

for, e.g., removing program bugs and adding new functionalities in a multi-task sensor

network [104].

A sound code dissemination scheme faces two critical challenges. First, wire-

less channels are lossy in nature, especially for sensor networks deployed in remote

and harsh environments. Packets may get lost during transmission due to many reason-

s such as RF interference and environmental factors [115]. This calls for loss-resilient

code dissemination schemes like [43,46,92] that can withstand high packet losses. Sec-

ond, sensor networks in hostile environments such as the battlefield may be attacked.

In particular, the adversary may exploit the code dissemination mechanism to launch

various attacks. For example, the adversary may inject bogus code images to take over

the control of the whole sensor network or launch the Denial-of-Service (DoS) attack

by transmitting many bogus image packets to deplete the limited energy and/or buffer

of sensor nodes. This situation necessitates secure code dissemination schemes such

as Seluge [49] which provides code-image integrity and DoS attack resilience through

immediate and efficient packet authentication.

To the best of our knowledge, no existing code dissemination scheme satisfies

loss resilience and attack resilience at the same time. On the one hand, all existing

secure code dissemination schemes such as [25,49,60,105,106,110] are secure ver-

sions of Deluge [47], the de facto non-secure code dissemination scheme. Deluge [47]

relies on Automatic Repeat Request (ARQ) protocols for reliable broadcast transmis-

sions, in which each local broadcast receiver uses NACKs to request retransmission
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of lost packets. ARQ protocols, however, are generally not suitable for broadcasting in

highly lossy networks due to too many retransmissions and the accompanying high la-

tency [115]. On the other hand, most loss-resilient code dissemination schemes employ

rateless erasure codes such as Fountain codes [92] and random linear codes [43] at the

sender side to cope with packet losses. The common idea is to encode the code image

into an unlimited number of packets such that each local receiver can recover the code

image after receiving sufficiently many packets. It is unfortunately infeasible to use the

similar methods as in Seluge [49] to realize immediate and efficient authentication of

potentially unlimited erasure-coded packets. There is a clear gap between these two

lines of research.

In this chapter, we fill the this gap by LR-Seluge, a novel loss-resilient and se-

cure code dissemination scheme for sensor networks deployed in hostile and lossy

environments. As the first of its kind, LR-Seluge is aimed to strike a good balance be-

tween loss resilience and immediate packet authentication by using a limited number of

predetermined redundant packets. More specifically, we encode the code image using

a fixed-rate erasure code and carefully create chaining relationships between original

and encoded packets using lightweight cryptographic hash functions. This design al-

lows sensor nodes not only to recover the original code image from a subset of the en-

coded packets but also to efficiently authenticate any encoded packet upon its arrival,

thus simultaneously achieving sufficiently high loss resilience and attack resilience.

Our main contributions in this chapter are summarized as follows.

• We notice the lack of a sound code dissemination scheme for sensor network-

s in lossy and hostile environments with satisfactory loss resilience and attack

resilience and fill this void by proposing LR-Seluge.

• We theoretically analyze and compare the performance of LR-Seluge with and

Seluge [49], a representative secure code dissemination scheme that ensures

code-image integrity and provides very strong resilience to DoS attacks. We fur-
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ther confirm the efficacy and efficiency of LR-Seluge by extensive simulation re-

sults. Our results reveal that LR-Seluge can save up to 40% in communication

overhead and 40% in code-dissemination latency with the same level of attack

resilience in comparison with Seluge.

The rest of the chapter is structured as follows. We introduce our network and

adversary models and the design goal in Section 2.3, followed by a brief discussion on

the background Section 2.2. We then present the design of LR-Seluge in Section 2.4.

Subsequently, we analyze the performance of LR-Seluge in Section 2.5 and evaluate

LR-Seluge using extensive simulation results in Section 2.6. We discuss the related

work in Section 2.7 and finally concludes this chapter in Section 2.8.

2.2 Background

This section introduces the background knowledge necessary for understanding the

design of LR-Seluge.

2.2.1 Deluge

Deluge [47] is the de facto code dissemination paradigm for sensor network, which is

also one of the standard components of the TinyOS distribution [2].

Deluge employs a page-by-page dissemination strategy, in which a large code

image is divided into smaller fixed-size pages, and each page is further divided into

same-size packets. A sensor node requests for a new page only after completely re-

ceiving all the packets of the previous page. During the code dissemination process,

each node works in one of the following three states: maintenance, in which node

periodically advertises the version of its code image and the number of pages it has

for that version, receiving, in which the node actively requests the remaining packets

to complete the current page using Selective NACK (SNACK for short) requests, and

transmitting, in which the node broadcasts all the requested packets of the current page

and continuously serves any subsequent request.
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Deluge employs various suppression techniques to maximize the effect of over-

hearing and reduce packet collisions. For example, each node suppresses its own

advertisement after overhearing a threshold number of advertisements with the same

information. Moreover, a node suppresses its own request (or data) packet if overhear-

ing request (or data) packets for a page with the same or smaller indices. We refer

readers to [47] for the details about these suppression techniques.

2.2.2 Seluge

Seluge [49] is an exemplary secure code dissemination scheme, which ensures code-

image integrity and DoS attack resilience by enabling efficient and immediate packet

authentication.

Seluge integrates three different techniques to realize efficient and immediate

packet authentication. First, Seluge chains the packets of two adjacent pages with a

cryptographic hash function. For example, the hash image of the jth packet of page i

is embedded into the jth packet of page i− 1. Since Seluge adopts the same page-by-

page dissemination strategy from Deluge, any packet of page i can be authenticated

upon arrival because all the packets of page i−1 must have been received. Second, to

authenticate the first page, Seluge introduces a special hash page formed by concate-

nating all the hash images of packets of the first page. A Merkle hash tree is built on top

of the hash page, and the base station digitally signs the root of the Merkle hash tree

to ensure its integrity. In this way, each packet of the hash page can be authenticated

by computing the hash images along the path to the tree root. Finally, to prevent the

adversary from transmitting a large number of signature packets to force sensor nodes

to perform computationally expensive signature verifications, Seluge let the base sta-

tion attach a weak authenticator to the signature packet, which is a message specific

puzzle [81]. Only if the weak authenticator is valid do sensor nodes verify the signature.

Seluge does not work well in lossy environments due to its dependence on Deluge, as

to be shown later.
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2.2.3 Erasure Code

A k-n-k′ erasure code transforms k packets into n ≥ k encoded packets of the same

length such that the original k packets can be recovered from any k′ encoded packets.

The fraction k/n is called the code rate, and the fraction k′/k is called reception effi-

ciency, where k′ denotes the number of packets required for recovery. When k′ = k,

the erasure code is optimal. Typical erasure codes include Reed-Solomon codes, Tor-

nado codes, Raptor codes, Online codes, and LT codes, for which a good survey can

be found in [75].

2.3 Network/Adversary Models and Design Goals

This section outlines the network and adversary models underlying LR-Seluge as well

as our design goals.

2.3.1 Network Model

As in Seluge [49], we consider a WSN consisting of a base station and many sensor

nodes densely deployed in hostile environments such as the battlefield. The base sta-

tion has a new code image M to be disseminated to all the sensor nodes via wireless

links. We assume that the base station has abundant resources in computation and

communication and is safeguarded from attacks. We also assume that the base sta-

tion has a public/private key pair. In contrast, sensor nodes are more constrained in

storage, energy, computation, and communication capabilities. We, however, adopt the

same assumption in [49] that a sensor node can verify a few digital signatures, e.g., one

signature verification per code image. It is worth noting that technical advances have

rendered it quite feasible to execute once-daunting public-key operations on sensor

nodes. For example, it takes 1.12s for a Tmote Sky mote to verify an ECDSA signa-

ture [113]. Such public-key operations will be minimized in LR-Seluge, as to be shown

later. Moreover, we assume lossy and unreliable wireless channels such that packet-

s may get lost due to many reasons such as environmental factors and accidental or

malicious RF interference [115].
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2.3.2 Adversary Model

We also adopt the adversary model from [49]. In particular, we consider a computa-

tionally bounded adversary consisting of both external and internal attackers. External

attackers do not belong to the target WSN, but they are capable of overhearing pack-

et transmissions, injecting bogus packets, and replaying intercepted packets. Internal

attackers are compromised yet undetected sensor nodes which are fully controlled by

the adversary. We, however, follow the conventional assumption that non-compromised

sensor nodes are always the majority.

Despite the many attacks the adversary can launch, this chapter has the same

target as Seluge [49] and focuses on defeating the following two attacks on code dis-

semination.

• The adversary may inject forged code images to take control of the sensor net-

work.

• The adversary may send many fake packets or replay intercepted packets to force

sensor nodes into wasteful packet processing so as to quickly deplete their limited

energy and/or memory buffer.

2.3.3 Design Objectives

In view of the two attacks outlined above, LR-Seluge is designed with the following

goals in mind.

• Code-image integrity: Every sensor node is guaranteed to receive an authentic

code image unless the node is isolated from the rest of the network.

• DoS attack resilience: Any forged packets should be immediately detected upon

their arrivals, and packet authentication should be efficient.

• Loss resilience: LR-Seluge should enable more efficient code dissemination in

the presence of severe packet losses than prior work such as Seluge [49].
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2.4 LR-Seluge Design

In this section, we first give an overview of LR-Seluge and then present its design in

detail.

2.4.1 Overview of LR-Seluge

LR-Seluge is largely inspired by two observations. First, loss-resilient broadcasting can

be achieved by using erasure codes at the sender side, i.e., introducing redundant

packets, as demonstrated in [43, 46, 92, 115]. Second, immediate and efficient packet

authentication can be realized if all the packets to be transmitted are predetermined.

Consider Seluge [49] as an example, in which all the image packets are preprocessed

to create some chaining relationships with cryptographic hash functions to enable im-

mediate and efficient packet authentication. Such preprocessing can be done only if all

the packets can be determined prior to transmission.

The key idea of LR-Seluge is to introduce a limited number of predetermined

redundant packets to increase loss resilience and also achieve immediate packet au-

thentication by carefully creating chaining relationships between encoded packets and

original packets. More specifically, LR-Seluge differs from existing loss-resilient code

dissemination schemes [43,46,92,115] in that it uses a fixed-rate erasure code instead

of rateless ones to encode the image packets. To enable immediate packet authenti-

cation, LR-Seluge creates some chaining relationships between the original packets of

one page and the encoded packets of the next page. In this way, once a node receives

sufficient encoded packets to recover one page, it also recovers all the hash images of

the next page at the same time. This design differs from Seluge [49] in that there is no

one-to-one correspondence between the packets of adjacent pages. Furthermore, LR-

Seluge employs a simple but effective scheduling algorithm that allows each sender to

transmit much fewer packets to ensure that every one-hop neighbor receives sufficient

encoded packets to recover a code page.
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Figure 2.1: An example of code-image preprocessing for pages M1 to Mg, where
g = 3, k = 3, n = 6.

In what follows, we detail the operations of LR-Seluge, including initialization,

code-image preprocessing, efficient loss-resilient code dissemination, and authenticat-

ed packet transmission.

2.4.2 Initialization

Before the network deployment, the network owner preloads each sensor node with the

following information.

• The same instance of a k-n-k′ erasure code f(·);

• The same instance of a k0-n0-k′0 erasure code f0(·);

• The public key of the base station;

• A public cryptographic hash function H(·).

With f(·) or f0(·), every node can generate the same n or n0 encoded packets from the

same k or k0 input packets.

2.4.3 Code-Image Preprocessing

Assume that the base station has a code image M for dissemination to all sensor

nodes. As in [47,105], the base station partitions the original image M into g pages of

fixed size, denoted by {Mi}gi=1. Each page Mi is then further divided into k original
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blocks of equal length, i.e., Mi = {mi,j}kj=1, ∀i ∈ [1, g]. We will use the terms “Page

i” and “Page Mi” interchangeably hereafter. Starting from page Mg, the base station

constructs the packets for each page in the reverse order as the pages are transmitted.

An example is given in Fig. 2.1, where g = 3, k = 3, n = 6.

2.4.3.1 Page g

For page Mg , the base station applies f on {mg,j}kj=1 to generate n encoded blocks

as

f(mg,1, · · · ,mg,k) = (eg,1, · · · , eg,n) . (2.1)

The n packets of page Mg are then constructed as Pg,j := 〈ν, g, j, eg,j〉,∀j ∈ [1, n],

where ν and g denote the code version and the page number, respectively.

2.4.3.2 Pages g − 1 to 1

After constructing {Pg,j}nj=1, the base station proceeds to construct {Pg−1,j}nj=1 for

page Mg−1. The basic idea is to append the hash images of {Pg,j}nj=1 to the original k

blocks of page Mg−1 and then apply f to generate the n packets of Mg−1. In particular,

the base station computes hg,j = H(Pg,j), ∀j ∈ [1, n], and then splits hg,1|| · · · ||hg,n

into k slices of equal length, denoted by {hg,j}kj=1. The n encoded blocks of page

Mg−1 are then generated as

f(m′
g−1,j, · · · ,m′

g−1,k) = (eg−1,1, · · · , eg−1,n) , (2.2)

where m′
g−1,j := mg−1,j||hl,j . The n packets of page Mg−1 to be transmitted are

finally generated as Pg−1,j := 〈ν, g − 1, j, eg−1,j〉, ∀j ∈ [1, n].

By repeating the above process, the base station can also iteratively construct

the packets for pages g − 2 to 1, i.e., {Pi,j}nj=1,∀i ∈ [1, g − 2].

2.4.3.3 Page 0 and Signature Packet

We use a similar approach as in Seluge [49] to authenticate page M1 by purposefully

introducing a hash page M0 as the concatenation of the n hash images of page M1,

i.e., M0 := h1,1|| · · · ||h1,n. In general, M0 is much shorter than other pages but still

cannot fit into one packet. Therefore, the base station first splits M0 into k0 blocks of
13



equal length, denoted by {m0,i}k0i=1, and then applies the erasure code f0 to generate

n0 encoded blocks as follows,

f0(m0,1, · · · ,m0,k0) = (e0,1, · · · , e0,n0) , (2.3)

where n0 = 2d for some integer d.

The base station then builds a Merkle hash tree [71] of depth d on top of

{e0,j}n0
j=1, as illustrated in Fig. 2.2. In particular, the base station computes vj =

H(e0,j), j ∈ [1, n0], and builds a binary tree by computing each internal node as the

hash of its adjacent children nodes. For example, v3−4 = H(v3||v4) and v1−4 =

H(v1−2||v3−4) in Fig. 2.2.

Given the Merkle hash tree, the base station constructs one packet for each

e0,j , which consists of e0,j itself and its authentication information, i.e., all the siblings

of the nodes in the path from v0,j to the root of the Merkle hash tree. For example,

P0,2 := 〈ν, 0, 2, e0,2,v1,v3−4,v5−8〉 in Fig. 2.2.

The whole code image is authenticated by the base station signing the root of

the Merkle hash tree using its private key. To mitigate the possible DoS attack in which

the adversary injects many signature packets to deceive sensor nodes into continuous

relatively expensive signature verifications, a weak authenticator like a message specific

puzzle in Seluge [49] can be attached to the signature packet as a defense.

2.4.4 Efficient Loss-Resilient Code Dissemination

This subsection details the code dissemination process of LR-Seluge which efficient-

ly copes with packet losses. To ease the illustration, we defer the illustration of LR-

Seluge’s packet authentication mechanisms to Section 2.4.5. As in Deluge and Seluge,

every node in LR-Seluge works in one of three states at any time: MAINTAIN, RX and

TX. LR-Seluge differs from Deluge and Seluge mainly in the TX state due to the use

of erasure codes. For self-containment, below we briefly discuss the operations in the

MAINTAIN and RX states and then detail the operations in the TX state.
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Figure 2.2: An example of construction Merkle hash tree over page M0, where n =
24, k0 = 4, n0 = 8.

2.4.4.1 MAINTAIN

Every node in the MAINTAIN state monitors all its one-hop neighbors to ensure that

they all possess the same number of pages of the latest code image. For this purpose,

every node periodically broadcasts advertisements, each consisting of the sender ID,

the code version number, and the largest page number in possession (which implies

all previous pages are also in possession). Here a page is said to be possessed if the

sender has received at least k′ or k′0 out of n of n0 encoded packets of the page and

successfully decoded it.

If a node detects that any neighboring node has either a newer code image or

more pages of the same code image, it requests the missing pages from that neighbor

with an SNACK request. For example, assume that node v overhears an advertisement

from node u indicating that node u has more pages, node v switches to the RX state and

begins requesting the missing pages from node u which will switch to the TX state upon

an SNACK request from node v. In addition, to enable fast code propagation while

limiting the number of advertisement packets, every node adjusts the advertisement

frequency using Trickle [63], a protocol for maintaining code updates in WSNs.
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Node Pi,1 Pi,2 Pi,3 Pi,4 d

v1 0 1 0 1 1

v2 1 1 0 1 2
v3 1 1 1 1 3

Pop. 2 3 1 3

(a) Node u’s tracking table at some time T

Node Pi,1 Pi,2 Pi,3 Pi,4 d

v2 1 0 0 1 1
v3 1 0 1 1 2

Pop. 2 0 1 2

(b) After transmitting packet Pi,2

Node Pi,1 Pi,2 Pi,3 Pi,4 d

v3 1 0 1 0 1
Pop. 1 0 1 0

(c) After transmitting packet Pi,4

Table 2.1: An example of node operation in TX state, where k = k0 = 3, n = 4.

2.4.4.2 RX

A node in the RX state keeps sending SNACK requests to corresponding neighboring

nodes which possess a missing page until receiving enough packets to decode the

missing page. A SNACK request includes a bit-vector of n bits with every bit indicating

whether the corresponding packet is desired. For every received packet, the requesting

node first authenticates it using the methods in Section 2.4.5 and stores only the packet

passing the authentication. Once k′ or k′0 out of n or n0 authenticated packets are

received, the requesting node can erasure-decode the missing page and then returns

to the MAINTAIN state.

2.4.4.3 TX

A node, say u, switches to the TX state after receiving an SNACK request for a page

it has. The operations of LR-Seluge in the TX state differs from Deluge and Seluge

mainly in the following two aspects.

16



First, to serve an SNACK request, a node need erasure-encode the requested

page with the hash images of the next page’s packets. Consider node u as an example.

Assume that u has received at least k′ authenticated packets of page Mi and erasure-

decoded them to recover Mi and the appended hash images of page Mi+1’s encoded

packets, i.e., hi+1,1|| · · · ||hi+1,n. Suppose that u receives an SNACK request from node

v requesting Mi. As the base station does in Section 2.4.3, node u applies the same

erasure code f to Mi appended by hi+1,1|| · · · ||hi+1,n and obtains the n encoded

packets. Node u can then broadcast the encoded packets corresponding to the bit

vector in the SNACK request. Since node v has received page Mi−1 and thus the hash

images of Mi’s n encoded packets, it can immediately authenticate the packets from u

using the method in Section 2.4.5.

Second, a suitable scheduling algorithm is needed for nodes in the TX state to

reduce the number of transmissions for reducing communication overhead. In partic-

ular, different packets of the same page may be needed by different neighbors of the

node having that page due to random packet losses. It is thus desirable for the sender

to transmit the smallest subset of the n encoded packets to simultaneously satisfy the

requests from all its neighbors. This scheduling requirement is not found in existing

code dissemination schemes. In particular, a node in Deluge and Seluge simply trans-

mits packets corresponding to the union of bit vectors in SNACK packets, and a node

in the schemes [43, 46, 92] based on rateless erasure codes always transmits a fresh

encoded packet for an SNACK request.

We propose an effective greedy round-robin scheduling algorithm for nodes

in the TX state. The basic idea is for a node to transmit the packet desired by the

highest number of neighbors in a round-robin fashion. More specifically, every node

in the TX state, say node u, maintains a so-called tracking table with every table entry

corresponding to one neighbor from which an SNACK was received. The tracking entry

for a node, say v, consists of the following fields.

• The node ID v;
17



• A bit vector of length n indicating which packets have been received by v from u’s

current point of view;

• The distance of node v, denoted by dv and referring to the number of additional

packets v needs to recover the requested page.

Initially, the tracking table is empty. Upon receiving an SNACK request from a

node, say v, node u first checks if there is an entry for node v. If not, node u creates an

entry for node v, copies the bit vector from the SNACK request, and sets the distance

dv as the additional number of packets needed by v. For example, if all bits in the bit

vector of the SNACK request are ones, then dv = k′. In general, since node v needs at

most k′ packets for decoding the requested page, we have dv = q + k′ − n, where q is

the number of ones in the bit vector. If there is an entry for node v, node u updates the

entry according to the SNACK request.

To illustrate the scheduling algorithm, assume that node u is handling the S-

NACK requests from its neighbors for page Mi which is erasure-encoded into packets

{Pi,j}nj=1. We also define the popularity of a packet as the number of nodes requesting

it. Also assume that there are z entries in node u’s tracking table. The z bit vectors

form a z × n bitmap, in which the total number of ones in the jth column indicates the

popularity of packet Pi,j . The first packet, say Pi,x, sent by u is the packet with the

highest popularity and also the lowest packet index in case that there are multiple pack-

ets of the highest popularity. After sending Pi,x, node u updates the tracking table by

setting all the bits in the xth column to zero and decreasing the distances of the nodes

needing Pi,x by one. Note that if Pi,x failed to reach some nodes, these nodes may

request it again in a later SNACK packet. If some nodes’ distances reach zero, their

entries are deleted. The next packet is selected as the one with the highest popularity

and the index equal to min{x + 1, · · · , n, n + 1, · · · , n + x − 1} mod n, i.e., the first

packet to the right of Pi,x with the highest popularity. This process continues until u’s

tracking table is empty.
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Table 2.1 gives an example where k = k′ = 3, n = 4. Assume that at some

point, node u’s tracking table has three entries for nodes v1, v2 and v3, as shown

in Table 2.1a. The popularity of packets Pi,1 to Pi,4 are 2, 3, 1, and 3, respectively.

Node u will first transmit Pi,2 and then updates the tracking table to Table 2.1b. Note

that node v1 has been removed from the tracking table because its distance reaches

zero. Subsequently, node u chooses Pi,4 to transmit because it is the first packet of

the highest popularity on Pi,2’s right side. After Pi,4 is transmitted, the tracking table is

updated again to Table 2.1c. Finally, packet Pi,1 is transmitted, after which the tracking

table becomes empty.

2.4.5 Authenticated Code Dissemination

This subsection details how LR-Seluge realizes authenticated code dissemination. LR-

Seluge adopts the page-by-page dissemination approach from Deluge and Seluge in

which a node can only request a new page if all previous pages have been completely

received and recovered. This page-by-page strategy together with LR-Seluge’s packet

construction enables immediate packet authentication to ensure code-image integri-

ty and also prevents the DoS attack that targets exhausting the receivers’ energy or

buffers.

In particular, the base station initiates the dissemination process by broadcast-

ing the signature packet. On receiving the signature packet, every sensor node, say

u, verifies the signature to authenticate the root of the Merkle hash tree, e.g., v1−8 in

Fig. 2.2. If the verification succeeds, node u begins to send SNACK packets requesting

the packets of page M0. Every packet in page M0 can be immediately authenticated

upon its arrival. For example, for packet P0,1 in Fig. 2.2, node u can verify its authenticity

by checking if the following equation holds,

v1−8 = H(H(H(H(e0,1)||v2)||v3−4)||v5−8) .

If so, it stores the packet and otherwise drops it.

19



Once node u has collected k′0 authenticated packets of page M0, say {P0,jx}
k′0
x=1,

it can erasure-decode M0 as

f−1
0 (e0,j1 , · · · , e0,jk′

0
) = (m0,1, · · · ,m0,k0) . (2.4)

Recall that M0 contains all the hash images of the packets of page M1. Therefore,

node u can subsequently authenticate all the packets of page M1 upon their arrivals

by a simple hash verification. Similarly, once at least k′ authenticated packets of M1

have been collected, node u can decode M1 to get all the hash images of the packets

of page M2 whereby to immediately authenticate all the packets of page M3. In short,

the page-by-page strategy guarantees that whenever node u requests a new page from

a neighboring node, all the information needed for authenticating the new page is avail-

able at that time. Therefore, any data packet can be immediately authenticated upon

their arrivals.

In addition, LR-Seluge adopts the same mechanisms in Seluge, i.e., cluster key

and message specific puzzle, to authenticate advertisement and SNACK packets and

to effectively filter out forged signatures of the root of the Merkle hash tree, respectively.

Therefore, LR-Seluge inherits the same level of resilience to DoS attacks that exploit

Deluge’s epidemic propagation and suppression mechanisms.

It is worth noticing that LR-Seluge and all existing secure code dissemination

schemes [25, 49, 60, 105, 106, 110] are vulnerable to a special kind of denial of receipt

attack in which a compromised sensor node denies it has received any data packets

but keeps sending SNACK packets to a victim node in order to deplete its energy. In

particular, a victim node need transmit k′ data packets on receiving a SNACK packet

with all bits set to one. It is fundamentally difficult to verify whether a particular packet

has been received by certain nodes in lossy environment.

To mitigate the impact of this attack, a possible solution is to replace cluster key

by a local authentication scheme like LEAP [140] to simultaneously authenticate and

identify the source of any SNACK packet. In addition, each node in TX state maintains
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a counter for the number of SNACK packets from each neighbor. For any page, if the

number of data packets requested by a neighboring node, say v, exceeds some certain

threshold, the node that serving the page, say u, can simply ignore future SNACK

packets from v, under the assumption that either v is launching the denial of receipt

attack or the channel between u and v is too bad so that v should request data packets

from its other neighbors.

2.5 Performance Analysis

Section 2.4.5 discusses how LR-Seluge realizes code-image integrity and DoS re-

silience. In this section, we analyze the communication and computation overhead

of LR-Seluge.

2.5.1 Communication Overhead

The communication costs of Seluge and LR-Seluge both comprise the transmissions

of data, advertisement, and SNACK packets, among which data-packet transmissions

account for the most. Both costs are very difficult to analyze in a general multi-hop

sensor network with arbitrary topologies and random packet losses. To enable theoreti-

cal tractability, we here analyze the number of data-packet transmissions under Seluge

and LR-Seluge, respectively, under a one-hop scenario. This is a meaningful simplifica-

tion, as the performance of Seluge and LR-Seluge largely depends on hop-by-hop local

broadcasting. The impact of advertisement and SNACK packets and also the commu-

nication costs of Seluge and LR-Seluge in multi-hop scenarios will be demonstrated

using simulations in Section 2.6.

We consider a one-hop scenario consisting of N receivers and a local sender

at the center. Our main goal is to demonstrate the impact of employing erasure codes

in lossy environments. So we adopt a similar model as in [80] in which every packet to

node i gets lost with probability pi and packet losses at different nodes are uncorrelated.

We then have the following theorems regarding the number of data packet trans-

missions in Seluge and LR-Seluge, respectively, whose proofs are available in our tech-

nical report [135]. It is worth mentioning that the result in Theorem 2.5.2 is obtained by
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analyzing a variation of LR-Seluge. In this variation, instead of using SNACK packet-

s, each receiver returns an ACK packet only after receiving k′ packets of the current

page. Since the local sender has no information about which packets are missing at

each node, it has to repeatedly transmit the n erasure-coded packets until receiving an

ACK from every neighboring node. This variation is apparently less efficient than LR-

Seluge, as the sender may unnecessarily transmit some packets which have reached

all the receivers. Therefore, its communication cost can be viewed as the upper bound

of LR-Seluge

Theorem 2.5.1. With Seluge, the expected number of data-packet transmissions need-

ed to transmit a page of k packets to all N nodes is given by

k
∞∑
t=1

t ·
( N∏
i=1

(1− pti)−
N∏
i=1

(1− pt−1
i )

)
. (2.5)

The proof is given in Appendix A.

Theorem 2.5.2. With LR-Seluge employing a k-n-k′ erasure code, the expected num-

ber of data-packet transmissions needed for all N nodes to receive at least k′ packets

to recover the original page of k packets is bounded by

n

∞∑
r=1

r · (Pr(R ≤ r)− Pr(R ≤ r − 1)) , (2.6)

where Pr(R ≤ r) =
∏N

i=1

∑n
j=k′

(
n
j

)
(1− pri )

jp
r(n−j)
i .

The proof is given in Appendix B.

2.5.2 Computation Overhead

The computation overhead of LR-Seluge comes from packet authentication and page

encoding/decoding.

The computation cost incurred by packet authentication is very similar to that

of Seluge. First, authenticating a signature packet requires one hash function for the

weak authenticator and one signature verification. Second, authenticating a packet of

page M0 requires d + 1 hash computations, and total k′0(d + 1) hash computations
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are needed for page M0. In contrast, authenticating a packet of page Mi, 1 ≤ i ≤ g

requires one hash computation, so total k′ hash computations are needed for each

page Mi.

The computation cost incurred by erasure decoding and encoding depends on

the particular erasure code used by LR-Seluge. Theoretically speaking, LR-Seluge can

be integrated with any erasure code as long as the parameters (k, n, k′) are satisfied.

In our evaluation, we adopt a fixed-rate LT code from SYNAPSE [92], in which each

encoded packet is the XOR of some original packets. Assuming that k = 32, n = 64,

and k′ = 35, decoding a page of 32 original packets of 25 bytes requires 5142 XOR

operations on average and takes about 462 ms on a Tmote Sky sensor node [92].

Same as Seluge [49], LR-Seluge uses data packets with an effective payload length of

96 bytes. Since the decoding cost of the LT code is linear to the packet length, decoding

a page of 32 original packets of 96 bytes requires approximately 19745 XOR operations

and takes about 1.8 seconds. Finally, nodes in the TX state need erasure-encode the

original page to obtain the other n − k′ missing packets, which requires s(n − k′) ∗ 96

XOR operations on average, where s is the average number of original blocks XORed

to generate an encoded packet. If s = 12.06 as in [92], the encoding cost for a page in

LR-Seluge requires approximately 33576 XOR operations and takes about 3.1 seconds

on a Tmote Sky sensor node. It is also worth noting that in LR-Seluge, only a few nodes

in the TX state need perform encoding.

Although LR-Seluge introduces additional decoding and encoding delays at

sensor nodes in comparison with Seluge, it greatly reduces the overall code-dissemination

latency due to the dramatic reduction in the number of packet transmissions. This ar-

gument will be validated using simulations in the next section.

2.6 Performance Evaluation

In this section, we compare LR-Seluge with Seluge using extensive simulations in

TOSSIM [62], a discrete event simulator distributed with TinyOS 2.1.1.
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Unless stated otherwise, the following simulation configurations are used. For

the k-n-k′ erasure code f(·), we have k = 32, n = 64, and k′ = 35; for the k0-n0-

k′0 erasure code f0(·), we have k0 = 8, n0 = 16, and k′0 = 11. As in Seluge [49],

we set the packet-payload size to 102 bytes (the maximum payload size in the IEEE

802.15.4 standard) and use the 64-bit truncation of SHA-1 as the hash function H(·),

and use a gap of 17 ms between two data-packet transmissions. The image version

number, page number, and packet number in both Seluge and LR-Seluge packets totally

consume 6 bytes, which leaves 96 bytes for the effective packet payload. In addition,

except the packets of Page 0, each packet in Seluge and LR-Seluge contains one and

n/k hash values, respectively. 1 Therefore, the packets of Seluge and LR-Seluge have

96 − 8 = 88 bytes and 96 − 8 ∗ n/k = 80 bytes, respectively, for code-image slices.

In our simulations, each page consists of 32 packets for both Seluge and LR-Seluge,

and the code image M is of 20 KB. Under Seluge, M leads to totally g = 8 pages,

among which the last page comprises only 9 packets; under LR-Seluge, M leads to

totally g = 8 pages as well, all of which comprise 32 packets.

In addition, we set the minimum delays between two advertisement packets and

between two SNACK packets to 1 second and 128 ms, respectively, for both Seluge and

LR-Seluge. 2 Moreover, we use the delays of 2.5 and 3.5 seconds to emulate the de-

coding and encoding of a page, respectively, which is clearly in favor of Seluge because

the decoding and encoding times are estimated as 1.8 and 3.1 seconds, respectively,

in Section 2.5.2.

The performance metrics used in our comparisons include the total number of

data packets, the total number of SNACK packets, the total number of advertisement

packets, and the overall dissemination latency which is defined as the time required

to finish disseminating a code image to all the nodes in the network. Since SNACK

1The packets of the last page in both Seluge and LR-Seluge do not contain any hash value, but we
ignore such subtly and assume that all the packets in both Seluge and LR-Seluge have the same effective
payload length.

2The two delays are set to 2 seconds and 1 second in [49], respectively. Our simulations indicate that
our chosen parameters help significantly reduce the dissemination latency of Seluge.
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(a) 20 receivers (b) p = 0.3

Figure 2.3: One-hop one-page scenario.

packets in LR-Seluge are n− k bits longer than those in Seluge, we will also show the

total communication cost covering data, SNACK and advertisement packets in bytes for

fairness. Each measurement in the following figures is the average over 20 simulation

runs, each with a different seed.

2.6.1 Validation of Analytical Results

To validate the analytical results in Section 2.5.1, we first simulate the transmission of

one page in Seluge and LR-Seluge in a fully-connected one-hop scenario with one local

sender and a varying number of local receivers. To fully control and illustrate the impact

of packet losses, we use a similar simulation strategy as in [92], where nodes are placed

close enough to eliminate packet transmission errors caused by channel impairments,

and packet losses are emulated by each node dropping received data, advertisement,

or SNACK packets with the same probability p at the application layer.

Figs. 2.3a and 2.3b show the analytical results of Seluge and ACK-based LR-

Seluge and the simulation results of Seluge and LR-Seluge. We can see that the sim-

ulation result of Seluge closely matches the analytical result, and the number of data

packets transmitted in ACK-based LR-Seluge is always larger than that of LR-Seluge

obtained from simulations, which confirms that the number of data-packet transmission-

s in LR-Seluge is upper bounded by that in ACK-based LR-Seluge. In addition, we can
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see a significant increase in the number of data packet transmissions in ACK-based

LR-Seluge when the packet loss rate increases from 0.3 to 0.4. The reason is that

when p ≤ 0.3 (or p ≥ 0.4), ACK-based LR-Seluge can finish transmitting one page in

one round (or two rounds) with high probability. The figures also confirm that LR-Seluge

incurs much fewer data-packet transmissions than Seluge in lossy environments and is

less sensitive to the number of receivers as well.

2.6.2 The One-Hop Case

We focus on comparing LR-Seluge and Seluge with simulations which involve dissem-

inating a code image M of 20 KB. We first show more simulation results for the afore-

mentioned one-hop scenario, which is the basis of the more general multi-hop scenario.

2.6.2.1 Impact of the Packet-Loss Rate

Figs. 2.4a∼2.4e show the impact of the packet-loss rate p on LR-Seluge and Seluge,

where there are N = 20 local receivers. It is not surprising to see that the total com-

munication costs and dissemination latencies of LR-Seluge and Seluge both increase

as p increases. In addition, when p ≤ 0.01, LR-Seluge has a slightly larger commu-

nication cost than Seluge for both data and control packets. There are two reasons.

First, LR-Seluge has more data packets than Seluge for the same code image due to

the use of erasure codes. Second, under LR-Seluge, each node needs k′ > k packets

to recover each page, so more data-packet transmissions are needed to disseminate

one page if there are no or rare packet losses. In contrast, when p > 0.01, LR-Seluge

outperforms Seluge in all the five performance metrics. For example, when p = 0.4,

LR-Seluge reduces the total communication cost by 44% and the dissemination latency

by 48% in comparison with Seluge. These results clearly demonstrate that LR-Seluge

is much more resilient to packet losses than Seluge.

2.6.2.2 Impact of the Node Density

Figs. 2.5a∼2.5e show the impact of the number N of local receivers on LR-Seluge and

Seluge, where the packet-loss rate p = 0.1. We can see that the communication costs

of LR-Seluge and Seluge all increase as N increases. This is understandable because
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(a) data packet (b) SNACK packet

(c) advertisement packet (d) total communication cost

(e) dissemination latency

Figure 2.4: Impact of the packet-loss rate, where there are N = 20 local receivers.
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(a) data packet (b) SNACK packet

(c) advertisement packet (d) total communication cost

(e) dissemination latency

Figure 2.5: Impact of the node density, where the packet-loss rate p = 0.1.
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Table 2.2: Performance comparison under network with high density

LR-Seluge Seluge Ratio

Total # of SNACK packets 1804 3629 49.71%

Total # of data packets 4040 5496 73.50%

Total # of adver. packets 1059 1678 63.11%

Total comm. cost in bytes 6.05 × 105 8.78 × 105 68.91%

Dissemination latency (s) 93 146 63.70%

it always requires more data and control packet transmissions to disseminate the same

code image under packet losses. However, LR-Seluge is much less sensitive to the

increase of N , which can be clearly seen in Figs. 2.5a∼2.5d. In addition, the dissem-

ination latency of Seluge increases slightly as N increases, while that in LR-Seluge

slightly decreases. This could be explained as follows. In Seluge, as N increases, the

numbers of SNACK and data packet transmissions increase significantly, which leads

to higher the dissemination latency. In contrast, the numbers of SNACK and data pack-

et transmissions increase much slower in LR-Seluge as N increases. In addition, the

more nodes that demand the current page, the earlier the first node receives k′ packets

and thus recovers the current page, and the earlier the SNACK packet is transmitted to

request the next page. This leads to the decrease in total dissemination latency.

2.6.2.3 Impact of the erasure-coding rate

Figs. 2.6a∼2.6e show the impact of the erasure-coding rate n/k on LR-Seluge under

different packet-loss rates, where k is fixed to 32. We can see that by introducing a

limited number of redundant data packets, the communication cost of LR-Seluge de-

creases significantly. For example, when p = 0.1 and n = 56, the total number of

SNACK and data packet transmissions decrease by 70.5% and 30%, respectively. As

n/k further increases, the communication cost and dissemination latency increase s-

lowly. The reason is that higher erasure-coding rates lead to shorter packet space for

code-image slices and thus more packets for the same code image.
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(a) data packet (b) SNACK packet

(c) advertisement packet (d) total communication cost

(e) dissemination latency

Figure 2.6: Impact of the erasure-coding rate.
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Table 2.3: Performance comparison under network with medium density

LR-Seluge Seluge Ratio

Total # of SNACK packets 10927 20287 53.86%

Total # of data packets 38197 47373 80.63%

Total # of adver. packets 13088 18812 69.57%

Total comm. cost in bytes 5.55 × 106 7.27 × 106 76.34%

Dissemination latency (s) 1154 1534 75.23%

2.6.3 The Multi-Hop Case

We also simulate LR-Seluge and Seluge in multi-hop networks. In particular, we sim-

ulate them under two 15 × 15 grid sensor networks using the exemplary topologies

specified in 15-15-tight-mica2-grid.txt (high node density) and 15-15-medium-mica2-

grid.txt (low node density) and RF noise and interference from the sample noise trace

file meyer-heavy.txt of the TinyOS distribution.

Tables 2.2 and 2.3 compare the performance of LR-Seluge and Seluge under

these two topologies, respectively. We can see that LR-Seluge outperforms Seluge for

all the performance metrics by significant margins, which coincides with the results un-

der the one-hop scenario. We have also simulated other network topologies generated

by the topology tool provided by the TinyOS distribution which is based on theoretical

propagation models. In general, the results are very similar to those shown in Tables 2.2

and 2.3 and thus are omitted here.

2.6.4 Discussion

We summarize the simulation results as follows.

• LR-Seluge incurs slightly higher communication cost and dissemination latency

when packet loss rate is small.

• LR-Seluge can tolerate packet loss while incur much less communication over-

head than Seluge does.
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• LR-Seluge does not require high erasure code rate, because high rate decreases

the effective payload length.

2.7 Related Work

In addition to Deluge [47] and Seluge [49], the following work is most related to our

LR-Seluge scheme.

Sluice [60] aims at authenticated code dissemination based on signature and

cryptographic hash functions. It creates a chaining relationship among adjacent pages

by embedding the hash image of each page into the previous page and signing only the

first page. A scheme similar to Sluice is presented in [25], in which the hash image of

each packet is included in the previous packet. Both schemes, however, are vulnerable

to DoS attacks in which the adversary keeps sending bogus packets that cannot be

immediately authenticated, as pointed out in [49]. A scheme with better DoS resilience

is presented in [20] and uses Merkle hash trees to enable immediate authentication of

packets upon their arrivals. In addition, Tan at al. propose a secure code dissemination

scheme based on multiple hash chains [105] and also a code dissemination scheme

which preserves the confidentiality of the code image [106]. Most recently, Ugus et

al. [110] present a ROM-friendly secure code dissemination protocol which significant-

ly reduces the memory requirement. All these previous schemes rely on Deluge and

thus do not work well in lossy environments. In this chapter, we demonstrate the sig-

nificant advantages of the proposed LR-Seluge over Seluge which has the best DoS

resilience among similar schemes. Also note that the techniques in [110] can be easily

incorporated into LR-Seluge to make LR-Seluge also ROM-friendly.

There are also some loss-resilient code dissemination schemes such as Adap-

Code [46], Rateless Deluge and ACKless Deluge [43], and SYNAPSE [92], which do

not take security into consideration.

2.8 Summary

This chapter presents the design and evaluation of LR-Seluge, the first loss-resilient

and secure code dissemination scheme for sensor networks. LR-Seluge achieves loss-
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resilience and attack-resilience by seamlessly integrating fixed-rate erasure code and

efficient cryptographic primitives. The performance of LR-Seluge is confirmed by both

theoretical analysis and thorough simulation results.
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Chapter 3

SECURE TOP-k QUERY PROCESSING VIA UNTRUSTED LOCATION-BASED

SERVICE PROVIDERS

3.1 Introduction

The explosive growth of Internet-capable and location-aware mobile devices and the

surge in social network usage are fostering collaborative information generation and

sharing on an unprecedented scale. In particular, IDC believes that total worldwide

smartphone shipments will reach 659.8 million units in 2012 and will grow at a CAGR

of 18.6% until 2016.1 Almost all smartphones have cellular/WiFi Internet access and

can always acquire their precise locations via pre-installed positioning software. Also

owing to the growing popularity of social networks, it is more and more convenient

and motivating for mobile users to share with others their experience with all kinds of

points of interests (POIs) such as bars, restaurants, grocery stores, coffee shops, and

hotels. Meanwhile, it becomes commonplace for people to perform various spatial POI

queries at online location-based service providers (LBSPs) such as Google and Yelp.

As probably the most familiar type of spatial queries, a spatial (or location-based) top-k

query asks for the POIs in a certain region and with the highest k ratings for a given

POI attribute. For example, one may search for the best 10 Italian restaurants with the

highest food ratings within five miles of his current location. This chapter focuses on

spatial top-k queries, and the term “spatial” will be omitted hereafter for brevity.

We observe two essential drawbacks with current top-k query services. First,

individual LBSPs often have very small data sets comprising POI reviews. This would

largely affect the usefulness and eventually hinder the more prevalent use of spatial

top-k query services. Continue with the restaurant example. The data sets at individual

LBSPs may not cover all the Italian restaurants within a search radius. Additionally,

the same restaurant may receive diverse ratings at different LBSPs, so users may get

confused by very different query results from different LBSPs for the same query. A

leading reason for limited data sets at individual LBSPs is that people tend to leave

1http://www.idc.com/getdoc.jsp?containerId=233553
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reviews for the same POI at one or at most only a few LBSPs’s websites which they

often visit. Second, LBSPs may modify their data sets by deleting some reviews or

adding fake reviews and return tailored query results in favor of the restaurants which

would like to pay. Even if LBSPs are not malicious, they may return unfaithful query

results under the influence of various attacks such as the Sybil attack [127,128] whereby

the same attacker can submit many fake reviews for the same POI. In either case, top-k

query users may be misled by the query results to make unwise decisions.

A promising solution to the above two issues is to introduce some trusted data

collectors as the central hubs for collecting POI reviews. In particular, data collectors

can offer various incentives such as free coffee coupons for stimulating review sub-

missions and then profit by selling the review data to individual LBSPs. Instead of

submitting POI reviews to individual LBSPs, people (called data contributors) can now

submit them to a few data collectors to earn rewards. The data sets maintained by data

collectors can thus be considered the union of the small data sets currently at individual

LBSPs. Such centralized data collection also makes it much easier and feasible for data

collectors to employ sophisticated defenses such as [127,128] to filter out fake reviews

from malicious entities like Sybil attackers. Data collectors can be either new service

providers or more preferably existing ones with a large user base, such as Google, Ya-

hoo, Facebook, Twitter, and MSN. Many of these service providers have offered open

APIs for exporting selected data from their systems. We postulate that they may act as

location-based data collectors and sellers if sound techniques and business models are

in place.

The above system model is also highly beneficial for LBSPs. In particular, they

no longer need struggle to solicit faithful user reviews, which is often a daunting task es-

pecially for small/medium-scale LBSPs. Instead, they can focus their limited resources

on developing appealing functionalities (such as driving directions and aerial photos)

combined with the high-quality review data purchased from data collectors. The query

results they can provide will be much more trustworthy, which would in turn help them
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attract more and more users. This system model thus can greatly help lower the en-

trance bar for new LBSPs without sufficient funding and thus foster the prosperity of

location-based services and applications.

A main challenge for realizing the appealing system above is how to deal with

untrusted and possibly malicious LBSPs. Specifically, malicious LBSPs may still modify

the data sets from data collectors and provide biased top-k query results in favor of POIs

willing to pay. Even worse, they may falsely claim generating query results based on the

review data from trusted data collectors which they actually did not purchase. Moreover,

non-malicious LBSPs may be compromised to return fake top-k query results.

In this chapter, we propose three novel schemes to tackle the above challenge

for fostering the practical deployment and wide use of the envisioned system. The key

idea of our schemes is that the data collector precomputes and authenticates some

auxiliary information (called authenticated hints) about its data set, which will be sold

along with its data set to LBSPs. To faithfully answer a top-k query, a LBSP need return

the correct top-k POI data records as well as proper authenticity and correctness proofs

constructed from authenticated hints. The authenticity proof allows the query user to

confirm that the query result only consists of authentic data records from the trusted

data collector’s data set, and the correctness proof enables the user to verify that the

returned top-k POIs are the true ones satisfying the query. The first two schemes both

target snapshot top-k queries but differ in how authenticated hints are precomputed

and how authenticity and correctness proofs are constructed and verified as well as

the related communication and computation overhead. The third scheme, built upon

the first scheme, realizes efficient and verifiable moving top-k queries. The efficacy

and efficiency of our schemes are thoroughly analyzed and evaluated through detailed

simulation studies.

The rest of this chapter is organized as follows. Section 3.2 discusses the

related work, and Section 3.3 gives the problem formulation. Section 3.4 presents two

schemes for secure snapshot top-k query processing, which are extended for secure

36



moving top-k query processing in Section 3.5. All the schemes are then thoroughly

analyzed in Section 3.6 and evaluated via detailed simulations in Section 3.7. This

chapter is finally concluded in Section 3.8.

3.2 Related Work

Our work is most related to data outsourcing [42], for which we can only review repre-

sentative schemes due to space constraints. The framework of data outsourcing was

first introduced in [42], in which a data owner outsources its data to a third-party service

provider who is responsible for answering the data queries from either the data owner

or other users. In general, there are two security concerns in data outsourcing: data

privacy and query integrity [59].

Ensuring data privacy requires the data owner to outsource encrypted data to

the service provider, and efficient techniques are needed to support querying encrypt-

ed data. A bucketization approach was proposed in [41, 45] to enable efficient range

queries over encrypted data. Shi et al. presented novel methods for multi-dimensional

range queries over encrypted data [102]. Some most recent proposals aim at secure

ranked keyword search [9,10] or fine-grained access control [129] over encrypted data.

This line of work is orthogonal to our work, as we focus on publicly accessible location-

based data without need for privacy protection.

Another line of research has been devoted to ensure query integrity, i.e., that a

query result was indeed generated from the outsourced data (the authenticity require-

ment) and contains all the data satisfying the query (the correctness requirement). In

these schemes, the data owner outsources both its data and also its signatures over the

data to the service provider which returns both the query result and a verification object

(VO) computed from the signatures for the querying user to verify query integrity. Many

techniques were proposed for signature and VO generations, such as those [79,83,84]

based on signature chaining and those [59, 119, 123, 124] based on the Merkle hash

tree [72] or its variants. None of these schemes consider spatial top-k queries and thus

are not directly applicable to our intended scenario.
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Secure remote query processing in tiered sensor networks [14, 101, 103, 133,

134] is also loosely related to our work here. These schemes assume that some

master nodes are in charge of storing data from regular sensor nodes and answer-

ing the queries from the remote network owner. Various techniques were proposed

in [14, 101, 103, 134] to ensure data privacy against master nodes and also enable the

network owner to verify range-query integrity. Moreover, Zhang et al. [133] proposed ef-

ficient techniques for the network owner to validate the integrity of top-k queries. These

schemes cannot be adapted to address our problem in this chapter.

3.3 Problem Formulation

In this section, we first introduce our system model and then formulate the problem.

3.3.1 System Model

We assume a distributed system comprising a data collector, data contributors, LBSPs,

and top-k query users. Data contributors are common people who submit POI reviews

to the data collector’s website. The data collector normally need offer some incentives

such as FourSquare’s badges to stimulate review submissions and also employ nec-

essary countermeasures such as [127, 128] to filter out fake reviews from malicious

data contributors. The data collector sells aggregated POI reviews in the form of a

location-based data set to individual LBSPs. Every LBSP operates a website for users

to perform top-k queries over the purchased data set and may add some appealing

functionalities to the query result such as street maps and photos. In addition, although

there might be multiple data collectors with each selling data to a number of LBSPs, we

hereafter focus on one pair of data collector and LBSP for the purpose of this chapter.

The data set is classified according to POI categories such as restaurants, bars,

and coffee shops, and it contains a unique record for every POI in every category. As

a result, POIs falling into multiple categories (e.g., both a restaurant and bar) have one

record for every affiliated category. This chapter focuses on top-k queries involving a

single category, which are most commonly used in practice, and the extension of our

schemes to involve multiple categories is part of our future work. In particular, our
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discussion will focus on one POI category whose total data records form a set D. For

simplicity, we assume that the category has one numerical attribute taking values from

a given range. For instance, if restaurant is the category under consideration, there

may be λ = 4 attributes including food, price, service, and hygiene, with each rated on

a scale of 1 to 10.

The geographic area covered by the data collector is partitioned into M ≥ 1

equally-sized non-overlapping zones. For every zone i, let ni denote the number of

POIs, and POIi,j and Di,j denote the jth POI and its corresponding data record, re-

spectively. It follows that D =
⋃M

i=1Di, Di =
⋃ni

j=1Di,j , and Di
⋂

Dj = φ for all i �= j.

Also note that Di can be empty for some i ∈ [1,M ], meaning that there is no POI in

zone i that has been reviewed.

To illustrate the content of a data record, assume that the data collector got

reviews about POIi,j from ni,j data contributors. Every review includes a rating on

every attribute and possibly text comments. We also let Ai,j,q denote the rating for

attribute q averaged over ni,j individual ratings. The data record di,j for POIi,j includes

its name, location li,j , {Ai,j,q}λq=1, ni,j reviews, and possibly other information.

3.3.2 Problem Statement

We consider two types of top-k queries in this chapter. A snapshot top-k query includes

the interested POI category, a query region R, and an integer k ≥ 1. As an example,

the POI category and attribute can be restaurant and food, respectively. The query

region can be in multiple formats. For instance, the user can specify a GPS location

or street address along with a search radius, and he may also select multiple zones on

a map provided by the LBSP. An authentic and correct query result should include the

records for k POIs in the specified category of the data collector’s true data set, all of

which are in the query region R, have the attribute-q rating among the highest k, and

are ordered with respect to the attribute-q rating in the descending order. For brevity,

we will refer to the POIs that are both authentic and correct as top-k POIs hereforth. In

contrast, a moving top-k query can be viewed as the continuous version of snapshot
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top-k queries, whereby the user is interested in the top-k POIs in a moving region R

defined with respect to the user’s current location.

We assume that the data collector is trusted, while the LBSP is untrusted. In

particular, the LBSP may alter the query result in favor of the POIs willing to pay, to which

similar misbehavior has been widely reported in web-search industry. For example, the

LBSP may replace some true top-k POIs with others not among the top k or even not

in the data collector’s data set, and it may also modify some data records by adding

more good reviews and deleting bad ones. In addition, a LBSP good in nature may be

compromised by attackers to forge query results as well.

Our design objective is to enable the user to verify the authenticity and correct-

ness of the query result returned by the LBSP. The query result is considered authentic

if all its k POI records exist in the data collector’s data set and have not been tampered

with, and it is called correct if it contains the true top-k POI records in the query region.

3.4 Secure Snapshot Top-k Query Processing

In this section, we propose two novel schemes for secure snapshot top-k query pro-

cessing via untrusted LBSPs.

3.4.1 Overview: Design Challenge and Basic Idea

The main design challenge is the lack of shared information between the data collector

and top-k query users. On the one hand, the data collector cannot predict the content

of any top-k query from arbitrary users. On the other hand, users do not know the data

collector’s data set and thus have difficulty in verifying the authenticity and correctness

of query results. The only entity knowing both the query content and the data set is the

untrusted LBSP. A seemingly workable solution is to let the data collector attach a digital

signature to every POI record for the receiving user to verify. This solution, however,

can only enable authenticity verification, and incorrect query results comprising only

authentic POI records can still escape detection.
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Figure 3.1: An example of constructing the Merkle hash tree over {hi,1}8i=1.

The above challenge motivates the key idea underlying our two schemes. In

particular, we let the data collector precomputes and authenticates some auxiliary in-

formation (called authenticated hints) about its data set, which will be sold along with

its data set to LBSPs. To faithfully answer a top-k query, the LBSP need return the

true top-k POI data records as well as proper authenticity and correctness proofs con-

structed from authenticated hints. As the names suggest, authenticity and correctness

proofs enable the user to verify the authenticity and correctness of the query result,

respectively. Our two schemes differ in how authenticated hints are precomputed and

how authenticity and correctness proofs are constructed and verified.

In the remainder of this section, we illustrate our two schemes which both com-

prises three phases and differ in operation details. In the data-preprocessing phase,

the data collector uses cryptographic methods to create authenticated hints over its da-

ta set. In the subsequent query-processing phase, the LBSP answers a top-k query

by returning the query result as well as the authenticity and correctness proofs to the

query user. In the final verification phase, the user verifies authenticity and correctness

proofs. For ease of presentation, we shall temporarily assume that no two POIs have

the same rating for any attribute q ∈ [1, λ], which implies that there is one and only

one correct result for any top-k query. We will also temporarily assume that there are

always at least k POIs in the query region so that the query result contains exactly k

POI records for arbitrary k. These two assumptions are relaxed in Section 3.4.4.
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3.4.2 Scheme 1

In Scheme 1, authenticated hints are created by chaining ordered POIs in every zone

via cryptographic hash functions and then tieing the POIs in different zones via a Merkle

hash tree [71]. The details about constructing and using authenticated hints are as

follows.

3.4.2.1 Data Preprocessing

The data collector preprocesses its data set D =
⋃M

i=1Di before selling it to LBSP-

s, where M denotes the total number of zones. Recall that Di =
⋃ni

j=1Di,j , where

Di,j denotes the record of POIi,j and includes its name, location li,j , received ratings

{Ai,j,q}λq=1 for q attributes, individual reviews, and some other information. The data

collector performs the following operations for every attribute q ∈ [1, λ].

First, for each i ∈ [1,M ], the data collector sorts Di according to the attribute-q

rating to generate an orderer list D′
i = 〈D′

i,1,D
′
i,2, . . . ,D

′
i,ni

〉 such that A′
i,1,q > A′

i,2,q >

· · · > A′
i,ni,q

. It then computes an index for every D′
i,j ∈ D′

i as

φi,j = 〈l′i,j, A′
i,j,q,H(D′

i,j)〉 , (3.1)

where l′i,j denotes the location of D′
i,j , and H(·) denotes a cryptographic hash func-

tion. Note that φi,j contains sufficient information for a user to determine whether D′
i,j

satisfies a top-k query, which will be further illustrated shortly.

Second, the data collector chains {φi,j}ni
j=1 using cryptographic hash functions

to enable authenticity verifications of query results. In particular, recall that every at-

tribute rating is on a given range [Amin, Amax], say [1, 10]. Let χ denote a publicly

known number smaller than Amin. The data collector recursively computes a sequence

of hash values as follows,

hi,j =

⎧⎪⎨
⎪⎩

H(χ) j = ni + 1,

H(hi,j+1||φi,j) 1 ≤ j ≤ ni,
(3.2)
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where || denotes concatenation and ni ≥ 0. Note that if ni = 0, i.e., there is no POI in

zone i, we let φi,1 = hi,1 = H(χ).

Finally, the data collector builds a Merkle hash tree over {hi,1}Mi=1 to enable

efficient authentication of query results. More specifically, assuming that M = 2d for

some integer d, the data collector builds a binary tree of depth d, in which every leaf

node corresponds to one of {hi,1}Mi=1, and every non-leaf node is computed as the

hash of the concatenation of its immediate children nodes. We also define an auxiliary

set Ti as the set of non-leaf nodes required along with any leaf node hi,1 to compute

the Merkle root hash. An example for M = 8 is shown in Fig. 3.1, in which h1−2 =

H(h1,1||h2,1), h3−4 = H(h3,1||h4,1), h5−6 = H(h5,1||h6,1), h7−8 = H(h7,1||h8,1),

h1−4 = H(h1−2||h3−4), h5−8 = H(h5−6||h7−8), and h1−8 = H(h1−4||h5−8). If h3,1

is the given leaf node, we then have T3 = {h4,1, h1−2, h5−8}, as the root h1−8 =

H(H(h1−2||H(h3,1||h4,1))||h5−8). Note that if M is not a power of two, some dum-

my leaf nodes need be introduced for constructing the Merkle hash tree.

Since there are totally λ attributes, every POIi,j has λ indexes, based on which

the data collector builds a separate Merkle hash tree for every attribute and signs ev-

ery root using its private key. In addition, the data collector need perform the above

operations separately for the data set of every POI category.

3.4.2.2 Query Processing

The LBSP purchases the data sets of interested POI categories from the data collector.

For every POI category selected by the LBSP, the data collector returns the original

data set D, the signatures on λ Merkle root hashes, and all the intermediate results

for constructing the Merkle hash tree. Alternatively, the data collector can just return

the first two pieces of information and let the LBSP itself perform a one-time process to

derive the third piece in the same way as the date collector.

Now we illustrate the processing of a snapshot top-k query, including the de-

sired POI category, the interested attribute q ∈ [1, λ] for ranking POIs, the query region

R, and k. We denote the k POIs in R with the highest k attribute-q ratings by kPOI, a-
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mong which the lowest attribute-q rating is denoted by γ. In addition, we call each zone

either completely or partially covered by the query region a candidate zone. A correct

and authentic query result needs to satisfy two conditions. The correctness condition

requires the query result to contain at least the following information: (1) the complete

data records for kPOI; (2) the data indexes (much shorter than data records) for all the

POIs in each candidate zone but not in R whose attribute-q rating is larger than γ; and

(3) some additional information to prove that the query result includes either the data

record or index of every POI in every candidate zone with attribute-q rating not small-

er than γ. In addition, the authenticity condition requires that the query result include

the auxiliary set for every candidate zone for the calculation and verification of the qth

Merkle root hash.

To satisfy the correctness condition, the LBSP first searches {D′
i}Mi=1 to locate

kPOI and then determine the lowest attribute-q rating γ. Next, the LBSP determines the

set of candidate zones, denoted by I ⊆ {1, . . . ,M}. Let τi the number of POIs in zone

i with attribute-q ratings higher than γ. Apparently, we have ni ≥ τi,∀i ∈ I . It follows

that
∑

i∈I τi ≥ k, which holds because any candidate zone that partially overlaps with

R may have some POIs outside R but with attribute-q ratings higher than γ. We further

define

Xi,j =

⎧⎪⎨
⎪⎩

D′
i,j if l′i,j ∈ R,

φi,j o.w.,
(3.3)

for all i ∈ I, j ∈ [1, ni]. In other words, Xi,j equals D′
i,j if the POI is in R and a shorter

index otherwise. The LBSP returns the following information Si for each candidate zone

i ∈ I in the query result to enable correctness verification.

• Case 1: if ni = 0, Si = 〈i〉.

• Case 2: if ni = 1, Si = 〈i,Xi,1〉.

• Case 3: if ni ≥ 2 and τi = 0, Si = 〈i, φi,1, hi,2〉.
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• Case 4: if ni ≥ 2 and ni > τi ≥ 1,

Si = 〈i,Xi,1, . . . ,Xi,τi , φi,τi+1, hi,τi+2〉 .

• Case 5: if ni = τi ≥ 2, Si = 〈i,Xi,1, . . . ,Xi,τi〉.

Note that the last two fields in both Case 3 and Case 4 correspond to the POI in zone

i with the largest attribute-q rating smaller than γ. Since the POIs in zone i have been

ranked and chained together under cryptographic hash functions during data prepro-

cessing, the inclusion of such fields is necessary for proving that every POI in every can-

didate zone whose attribute-q rating not smaller than γ has been covered in the query

result in the form of either a data record or index. Such information has been implicitly

covered in the other three cases as well. In addition, the LBSP returns T =
⋃

i∈I Ti

and the data collector’s signature on the qth Merkle root hash to enable authenticity

verification.

3.4.2.3 Query-Result Verification

Now we discuss how the user verifies the authenticity and correctness of the query re-

sult, which can be done via a small plug-in developed by the data collector and installed

on his web browser. The security analysis of Scheme 1 is postponed to Section 3.6.

For authenticity verification, the user checks if every piece of information in

the query result can lead to the same Merkle root hash matching the data collector’s

signature. Specifically, the user first determines which of the above five cases Si (∀i ∈

I) belongs to based on its message format. He then derives the indexes for all related

POIs in {Si}i∈I . Note that the indexes of the POIs outside R are explicitly included in

{Si}i∈I , while those of the POIs in R can be computed from their corresponding data

records in {Si}i∈I . Subsequently, the user computes hi,1 for each i ∈ I according to

Eq. (3.2). Since the auxiliary information Ti for hi,1 is also in the query result, the user

further uses hi,1 and Ti to compute the Merkle root hash. If the query result is authentic,

the user can derive the same root hash for each i ∈ I , in which case he further verifies
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Rating

Location

Zone 1 Zone 2 Zone 3 Zone 4

Query region

POI returned Index returned POI need not be returned 
Index returned in Scheme 1, not returned in Scheme 2

Figure 3.2: An example for Scheme 1, where M = 4, k = 4, and the dots in zone i
correspond to POI records D′

i,1 to D′
i,4 from top to bottom.

whether the data collector’s signature in the query result is a valid signature on the

derived root hash. If so, he considers the query result authentic.

To perform correctness verification, the user first checks if zones I encloses

the query region R. If so, he proceeds with the following verifications in accordance

with the aforementioned correctness condition used in query processing.

1. There are exactly k data records in the query result with POI locations all in R,

which correspond to the top-k POIs (i.e., kPOI) in R. If so, the user locates the

lowest attribute-k rating γ.

2. None of the POIs for which the data indexes (instead of data records) are returned

satisfy the query. In particular, for each index φi,j (i ∈ I), at least one of the

following conditions does not hold.

• φi,j contains a location l′i,j ∈ R.

• φi,j contains an attribute−q rating A′
i,j,q > γ.

In addition, since the query result is authentic, it must include either the data record or

index for every POI in every candidate zone whose attribute-q rating is not smaller than

γ. Therefore, the user considers the query result correct if the above two verifications

succeed.
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3.4.2.4 An Example

To better illustrate Scheme 1, we show an example in Fig. 3.2 with M = 4 zones,

where we assume one-dimensional POI locations for simplicity, i.e., that all POIs are

distributed on a straight line, and all the shown POIs have been ordered according

to the attribute-q rating (q is omitted from subscripts for brevity). Suppose that the

user queries the top-4 POIs in the query region that completely covers zone 2 and

partially overlaps with zones 1 and 3. It follows that I = {1, 2, 3}, and τ1, τ2, τ3 are

3, 2, 0, respectively. For zone 1, there is one POI outside the query region with a

rating higher than γ, so we have S1 = 〈1,D′
1,1, φ1,2,D

′
1,3, φ1,4, h1,5〉. Similarly, we

have S2 = 〈2,D′
2,1,D

′
2,2, φ2,3, h2,4〉 for zone 2 and S3 = 〈3, φ3,1, h3,2〉 for zone 3. The

query result includes S1, S2, S3, the auxiliary indexes {Ti}3i=1, and the data collector’s

signature on h1−4 which is the root of the Merkle hash tree with depth d = 2. Based

on S1, S2, and S3, the user can derive h1,1, h2,1, and h3,1, respectively. He can further

compute three Merkle root hashes using h1,1 and T1, h2,1 and T2, and h3,1 and T3,

respectively. If the three root hashes are equal and match the data collector’s signature,

the user considers the query result authentic. If the query result can also pass the

aforementioned three correctness verifications, the user considers the query result both

authentic and correct.

3.4.3 Scheme 2

Scheme 1 requires the LBSP to return some information for every candidate zone even

if it has no top-k POI satisfying the query. This may incur significant communication

overhead for a large query region. Given this observation, we propose Scheme 2 which

works by embedding some information among nearby zones to dramatically reduce the

amount of information returned to the user.

The basic idea of Scheme 2 can be better illustrated using a simple example.

Assume that zones i and j are two candidate zones. But neither contains a top-k POI.

Under Scheme 1, the LBSP need return both 〈i, φi,1, hi,2,Ti〉 and 〈j, φj,1, hj,2,Tj〉 to
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prove that no POI in zones i or j satisfies the query. In contrast, if we could consider

zones i and j as one virtual zone, the LBSP only need return 〈x, φx,1, hx,2,Tx〉, where

x = i if the largest attribute-q rating in zone j is smaller than that in zone i, and x = j

otherwise. The amount of information returned to the user can thus be reduced.

3.4.3.1 Data Preprocessing

To implement the basic idea exemplified above, the data collector binds to every POI

data index some additional information about the POIs in adjacent zones. In particular,

the data collector partitions the original M zones into non-overlapping macro zones,

each consisting of m nearby zones, where m is a public system parameter. Assuming

that M is divisible by m, we let Me denote the set of zones composing the macro zone

e ∈ [1,M/m].

Consider a macro zone e as an example. As in Scheme 1, the data collector

first sorts Di for every zone i ∈ Me according to the descending order of the attribute-

q rating to generate an orderer list D′
i = 〈D′

i,1,D
′
i,2, . . . ,D

′
i,ni

〉. Let A′
j,0,q = χ and

A′
j,ni+1,q = χ denote two public values larger than the largest possible attribute rating

and smaller than the smallest possible attribute rating, respectively. The data collector

further generates {Ii,j}ni+1
j=1 , where Ii,j = {〈s,A′

s,1,q〉|s ∈ Me \ {i}} with A′
s,1,q ∈

(A′
i,j−1,q, A

′
i,j,q). In other words, Ii,j comprises all the other zones in Me \ {i} and

their largest attribute-q ratings in (A′
i,j−1,q, A

′
i,j,q). Apparently, we have |

⋃ni+1
j=1 Ii,j| =

|Me \ {i}| = m− 1. The data collector then computes an index as

φi,j = 〈li,j,Ii,j, A′
i,j,q,H(Ii,j||D′

i,j)〉 (3.4)

for all j ∈ [1, ni] and chains {φi,j}ni
j=1 according to Eq. (3.2). Finally, it builds a Merkle

hash tree over {hi,1}Mi=1 and signs the root as in Scheme 1. The essential difference

in data preprocessing between Schemes 1 and 2 thus lies in the construction of POI

indexes.

As in Scheme 1, the data collector builds a separate Merkle hash tree for every

attribute q ∈ [1, λ] in every POI category and signs every Merkle root hash using its
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private key.

3.4.3.2 Query Processing

The LBSP purchases the original data set D, the signatures on λ Merkle root hashes,

and all the intermediate results for constructing the Merkle hash tree of every interested

POI category from the data collector.

After receiving a top-k query, the LBSP first determines the top-k POIs (i.e.,

kPOI) in the query region R and also the set of candidate zones I ⊆ {1, . . . ,M}. The

LBSP then determines the lowest attribute-q rating γ in kPOI and τi as the number of

POIs in zone i ∈ I with attribute-q ratings not smaller than γ. Next, the LBSP defines

Yi,j =

⎧⎪⎨
⎪⎩

D′
i,j||Ii,j if l′i,j ∈ R,

φi,j o.w.,
(3.5)

for all i ∈ I, j ∈ [1, ni], where Ii,j is as defined in the data-preprocessing phase. The

query result includes the following information Si for each zone i ∈ I with τi > 0.

• Case 1: if ni = τi ≥ 1, Si = 〈i, Yi,1, . . . , Yi,τi〉.

• Case 2: if ni ≥ 2 and ni > τi > 0,

Si = 〈i, Yi,1, . . . , Yi,τi , φi,τi+1, hi,τi+2〉 .

Moreover, let M′
e = {i|i ∈ Me

⋂
I, τi < ni, ni �= 0} denote the zones with at least

one attribute-q rating smaller than γ in every macro zone e ∈ [1,M/m]. There are two

cases.

• Case 3: if there is zone i ∈ M′
e, τi > 0, nothing need be done because this case

has been covered by Case 2.

• Case 4: otherwise, we have τi = 0,∀i ∈ M′
e. Assuming that A′

j,1,q is the highest

attribute-q rating in M′
e, the LBSP also adds Sj = 〈j, φj,1, hj,2〉 to the query

result.
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Furthermore, for any candidate macro zone e, if there is no POI in zones Me
⋂
I with

attribute-q rating not smaller than γ, we must have ni = τi for all i ∈ Me
⋂

I , in which

case the LBSP is required to return Si = 〈i〉 for each i ∈ Me
⋂
I if ni = τi = 0

(Case 5). Note that the case for ni = τi > 0 has been covered by Case 1 above.

As in Scheme 1, the LBSP additionally returns the data collector’s signature

on the qth Merkle root hash and T =
⋃

i∈I′ Ti, where I ′ ⊆ I is the set of zones in

which there at least one POI data record or index has been included in the query result.

In contrast to Scheme 1, 〈i, φi,1, hi,2,Ti〉 need not be returned for any zone i ∈ I

when τi = 0 in most cases due to the macro-zone idea, which can lead to much lower

computation and communication overhead in practice.

3.4.3.3 Query-Result Verification

After receiving the query result, the user first verifies its authenticity as in Scheme 1.

If the authentication succeeds, he proceeds with correctness verification by checking

whether the query result contains some information for every candidate macro zone

e ∈ [1,M/m] that overlaps with the query region R. This verification should succeed

for a correct query result according to the query-processing process. If so, the user

further checks that the query result satisfies the same two conditions as in Scheme 1

(see Section 3.4.3.3) and then determines the lowest attribute-q rating γ among kPOI.

Subsequently, based on the information format Si for every zone i in the query result,

the user determines τi (i.e., the number of POIs in zone i with attribute-q ratings ≥ γ)

and also the relationship between τi and ni (the total number of POIs in zone i).

Unlike Scheme 1, Scheme 2 does not require some information to be returned

for every candidate zone i ∈ I overlapping with the query region R if τi = 0. The LBSP

may exploit this situation and return no information for zone i even if τi > 0. To detect

this possible attack, the user conducts the following verifications for every candidate

macro zone e in accordance with the five cases in query processing.
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• If there is any zone i ∈ I
⋂

Me with 0 < τi < ni (i.e., Case 2 in query pro-

cessing), the user checks whether the query result contains a valid Sx field corre-

sponding to Case 1 or 2 in query processing for every zone x ∈ I
⋂

Me
⋂
(
⋃τi+1

j=1 Ii,j)

that satisfies A′
x,1,q ≥ γ > A′

i,τi+1,q. If not, the user considers the query result

incorrect. The reason is that the pair 〈x,A′
x,1,q〉 should have been inserted by the

data collector in one of {Ii,j}τi+1
j=1 if x ∈ Me and A′

x,1,q > A′
i,τi+1,q. If x is also in

I and A′
x,1,q ≥ γ, we have τx ≥ 1, so the LBSP should have returned a valid Sx

for zone x corresponding to Case 1 or 2.

• If such zone i does not exist, the user checks if the query result contains Sj =

〈j, φj,1, hj,2〉 = 〈j, lj,1,Ij,1, A′
j,1,q,H(Ij,1||D′

j,1)〉 with A′
j,1,q < γ for j ∈ I

⋂
Me,

which corresponds to the case of τi = 0 for all i ∈ M′
e = {i|i ∈ Me

⋂
I, τi <

ni, ni �= 0}. If so, for every zone x ∈ I
⋂

Me
⋂

Ij,1 with A′
x,1,q ≥ γ > A′

j,1,q,

the user checks whether the query result contains a valid Sx corresponding to

Case 1 or 2 in query processing. If not, the query result is considered incor-

rect. Note that this verification implicitly ensures the compliance with Case 4 in

query processing, i.e., that the LBSP only returns the information for the highest

attribute-q rating in M′
e.

• If such zone j does not exist either, it must be true that ni = τi for all i ∈ I
⋂

Me

and that there is no attribute-q rating in zones I
⋂

Me smaller than γ. The user

verifies this by checking if ni = 0 or ni = τi > 0 for each zone i ∈ I
⋂

Me

according to the corresponding field Sx. If not, the user considers the query result

incorrect.

If the query result pass all the above verifications, the user considers it both authentic

and correct.

3.4.3.4 An Example

We continue with the example in Fig. 3.2, where we assume that zones 1 to 3 compose

a macro zone. Unlike in Scheme 1, the LBSP need not return any information for
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zone 3, which has been embedded into the query result along with the information from

zones 1 and 2. More specifically, we can see that the highest POI rating A′
3,1 in zone 3

satisfies A′
1,3 > A′

3,1 > A′
1,4 and A′

2,2 > A′
3,1 > A′

2,3. Therefore, 〈3, A′
3,1〉 must have

been embedded into I1,4 and also I2,3, so there is no need to include 〈3, A′
3,1,T3〉 in

the query result. After verifying the query result, the user can find that no POI in zone 3

has a rating higher than γ.

3.4.4 Discussion

Thus far we have assumed that there are at least k POIs in the query region and that

no POIs have the same rating for any attribute. This section discusses the impact on

our schemes if these assumptions do not hold.

3.4.4.1 Insufficient POIs in the Query Region

If there are less than k POIs in the query region R, any POI there satisfies the top-k

query. Therefore, the LBSP need prove to the user that the query result contains every

POI record in R by returning all the POIs in candidate zones I . Take Scheme 1 as an

example. On receiving a top-k query, the LBSP includes Si = 〈i,Xi,1, . . . ,Xi,ni〉 for

each zone i ∈ I in the query result, which the user can verify in the same way. Similar

modifications can be made to Scheme 2 and are omitted here.

The impact of such scenarios on our schemes is limited. Consider Scheme 1

as an example, Xi,j equals the index φi,j for POIi,j outside R and the record D′
i,j for

POIi,j in R according to Eq. (3.3), while an index contains much fewer bits than a data

record. So the additional communication overhead incurred by returning the indexes of

all the POIs in I but not in R is relatively very low. Moreover, such cases can be largely

avoided in practice by putting an upper limit on k and/or a lower limit on the query-region

size. For example, users are not allowed to submit a top-k query with k exceeding a

certain threshold and/or too small a query region.

3.4.4.2 Multiple POIs with Equal Attribute Ratings

Due to the limited rating range, multiple POIs may have an equal rating for the same

attribute. The tie can be easily broken by considering additional information for compar-
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ing POIs. For example, we can add the time of the last review into the index φi,j of any

POIi,j in Schemes 1 and 2. In case there are multiple POIs with equal ratings, the one

with the most recent review is preferred. The impact of such scenarios on our schemes

is thus negligible.

3.5 Secure Moving Top-k Query Processing

In this section, we propose a scheme to realize secure moving top-k query processing.

3.5.1 Basics of Moving Top-k Queries

A moving top-k query asks for the top-k POIs in a moving query region R. For example,

a user may want to find the k gas stations with the lowest gas price within 5 miles radius

when driving a car. In this example, R is a changing circle of radius 5 miles centered at

the user’s current location.

One may think about securely processing a moving top-k query as a sequence

of snapshot top-k queries. In particular, the mobile user submits a snapshot top-k query

at a sufficiently high frequency which can be processed by the LBSP using Scheme 1

or 2. Since the query results for consecutive snapshot top-k queries may largely over-

lap, this naive solution may incur unnecessary communication and computation over-

head. This observation motivates us to develop a more efficient solution to moving

top-k queries.

3.5.2 Scheme 3

Our basic idea is to let the LBSP process consecutive snapshot top-k queries involved

in a moving top-k query as a whole and only return a query result if there is any update

in the top-k POIs satisfying the query. An update in the top-k POIs may occur when a

current top-k POI is no longer in the moving query region or when a new POI appears in

the moving query region, which has an attribute-q rating higher than the lowest among

the current top-k POIs. The user can directly tell when the first situation occurs based

on the current top-k POIs he knows, in which case he can issue a new snapshot top-k

query for the current query region. The user, however, cannot tell when the second
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situation will occur. Without a sound defense in place, the LBSP can choose not to

inform the user about updated top-k POIs in the second situation.

Scheme 3 aims at the second situation discussed above and can be built upon

either Scheme 1 or Scheme 2. Due to space constraints, we focus on Scheme 1 and

assume that the data set has been preprocessed by the data collector accordingly, and

the same design principles apply when Scheme 2 is chosen instead. Without loss of

generality, we assume that a user issues a moving top-k query for attribute q during

time period [0, T ], where T may be unknown in advance. Since a moving top-k query

involves a sequence of snapshot top-k queries, we denote the ath snapshot top-k query

by Qa and the corresponding query region Ra. We also let kPOIa be the top-k POIs

in Ra and γa the lowest attribute-q rating among kPOIa. In what follows, we detail the

additional operations in Scheme 3 in contrast to Scheme 1, including query scheduling,

query processing, and query-result verification.

3.5.2.1 Query Scheduling

To realize a moving top-k query, the user issues a sequence of snapshot top-k queries

according to a query schedule. In particular, the user issues the ath snapshot top-k

query (i.e., Qa) at time

ta =

⎧⎪⎨
⎪⎩

0 if a = 1,

min(ta−1 +�t, tu, T ) o.w. ,
(3.6)

where �t is his personal parameter determining the lowest frequency at which snapshot

queries are issued, and tu denotes the time when the first POI in the current top-k POIs

moves out of the query region. To be more clear, after receiving kPOIa from the LBSP

in response to Qa, the user sets a timer of length �t. Then he issues Qa+1 when

the timer fires or when the first POI in kPOIa is no longer in his moving query region,

whichever comes first.

As before, Qa includes the interested POI category, the interested attribute q,

the current query region Ra, and an integer k ≥ 1. To facilitate query processing at the

LBSP, it also includes both an integer id uniquely identifying this moving top-k query
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Figure 3.3: An example of two consecutive snapshot top-k queries.

and a one-bit flag indicating whether Qa is the last snapshot query for this moving top-k

query.

3.5.2.2 Query Processing

Assume that the LBSP has purchased the data set from the data collector as in under

Scheme 1. It processes the sequence of snapshot top-k queries of the same moving

top-k query as follows.

We first define a special region to ease our subsequent illustration. Consider

two consecutive snapshot top-k queries Qa and Qa+1 with query regions Ra and Ra+1,

respectively. Since the user’s query region R is always defined with regard to his cur-

rent location, we have R = Ra at time ta and R = Ra+1 at time ta+1. We define

the progression region, denoted by Pa, as the area in Ra+1 but not in Ra. Consider

Fig. 3.3 as an example where the user issues two consecutive snapshot top-k queries

at locations X and Y with query regions R1 and R2, respectively. The progression

region P1 is the area formed by arcs AD and ACFD.

On receiving query Q1, the LBSP locates kPOI1 in the query region R1 and

then returns a complete query result constructed as in Scheme 1. In addition, the LBSP

records id, R1, and kPOI1 to facilitate the processing of subsequent snapshot top-k

queries with the same moving top-k identifier id. Then it processes any subsequent

query Qb (b > a) as follows. Without loss of generality, assume that the last complete

query result the LBSP returned is in response to Qa (a ≥ 1), which contains kPOIa in
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Ra. In other words, we assume that the top-k POIs {kPOIa}b−1
i=a in the query regions

{Ri}b−1
i=a are all equal to kPOIa.

First, the LBSP checks if a complete query result containing the top-k POIs (i.e.,

kPOIb) in the current query region Rb need be returned by checking the following two

conditions.

• kPOIb have different POIs from kPOIa.

• The one-bit flag in Qb is set, meaning that it is the last snapshot query for the

current moving top-k query identified by the same id.

If neither condition holds, the LBSP returns a short ACK containing a predefined flag to

the user, which means that the previously returned top-k POIs in kPOIa remain valid in

the current query region Rb. Otherwise, the LBSP constructs a complete query result

as follows.

First, the LBSP locates the top-k POIs (i.e., kPOIb) in the query region Rb

whose attribute-q ratings are among the highest k. Second, the LBSP retrieves the

recorded query regions {Rx}bx=a based on their same moving top-k identifier id, based

on which to compute the progressive regions {Px}b−1
x=a. Next, the LBSP computes a ver-

ification region as Va→b =
⋃b−1

x=aPx whereby to find the set of zones either completely

or partially covered by Rb
⋃

Va→b, denoted by Ia→b.

Let γa and γb be the lowest attribute-q rating among kPOIa and kPOIb, respec-

tively. For each zone i ∈ Ia→b, we define

τi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τb,i if zone i only overlaps with Rb,

τa,i if zone i only overlaps with Va→b,

max(τa,i, τb,i) if zone i overlaps with both Rb and Va→b ,

where τa,i and τb,i are the number of POIs in zone i with the attribute-q rating ≥ γa or
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γb, respectively. We further define

Zi,j =

⎧⎪⎨
⎪⎩

D′
i,j if l′i,j ∈ Rb and A′

i,j,q ≥ γb,

φi,j otherwise ,

which means that the LBSP only needs to return a much shorter index instead of the

complete record for any POI not in the query region Rb or not among the top-k. Similar

as in Scheme 1, the LBSP finally returns the following information Si for each zone

i ∈ Ia→b as part of the query result.

• Case 1: if ni = 0, Si = 〈i〉.

• Case 2: if ni = 1, Si = 〈i, Zi,1〉.

• Case 3: if ni ≥ 2 and τi = 0, Si = 〈i, φi,1, hi,2〉.

• Case 4: if ni ≥ 2 and ni > τi ≥ 1,

Si = 〈i, Zi,1, . . . , Zi,τi , φi,τi+1, hi,τi+2〉 .

• Case 5: if ni = τi ≥ 2, Si = 〈i, Zi,1, . . . , Zi,τi〉.

In addition, the LBSP returns T =
⋃

i∈Ia→b
Ti and the data collector’s signature

on the qth Merkle root hash.

3.5.2.3 Query-Result Verification

For every snapshot top-k queryQb of the same moving top-k query, the LBSP (if benign)

should return a complete query result if b = 1 or there has been any change in the top-k

POIs, or return an ACK if b > 1 and the previously returned top-k POIs are still valid.

Accordingly, there are three cases for the user to verify the query result in response

to Qb. First, if the user receives an ACK when Qb is the final snapshot query, he can

immediately tell that the result is incorrect. Second, if receiving an ACK when Qb is

not the final snapshot query, he marked this query result unverified and waits for the

next complete query result. Third, if receiving a complete query result for Qb (no matter

whether Qb is the final query), he verifies it as follows.
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First, the user checks if the query result is authentic as in Scheme 1. If so,

the user derives the set of zones Ia→b from the POI information returned in the query

result and checks if zones Ia→b encloses the region Rb
⋃

Va→b. If so, he locates the

lowest attribute-q rating γb in the query result whereby to check whether all the following

conditions hold.

1. There are exactly k POI records in the query result.

2. Every returned POI record is in Rb.

3. None of the POIs for which the indexes are returned satisfy the query. In par-

ticular, for each index φi,j ,∀i ∈ Ia→b, at least one following condition does not

hold.

• φi,j contains a location l′i,j ∈ Rb.

• φi,j contains an attribute rating A′
i,j,q ≥ γb.

If so, the top-k POI records are correct.

Assume that the last complete query result the user verified is for Qa and con-

tains kPOIa in the region Ra and that b > a + 1. The user should have accumulated

b−a−1 unverified query results for queries {Qx}b−1
x=a+1 and can verify their correctness

by checking whether the LBSP should have returned a complete query result instead

of an ACK for each of them instead. Let γa again denote the lowest attribute-q rating

in kPOIa and Sa→b =
⋃b−2

j=aPj denote the suspicion region. If all the unverified query

results are correct, there should not be any POI in Sa→b with attribute-q rating higher

than γa. According to the query-processing process, the LBSP should have returned

one or multiple data indices for every zone i that overlaps with Sa→b; otherwise, the

query result for Qb would not have passed the verification. The user thus proceeds to

check whether at least one following condition does not hold for any such index, say

φi,j .

• φi,j contains a location l′i,j ∈ Sa→b.
58



• φi,j contains an attribute rating A′
i,j,q > γa.

If so, all the unverified query results are marked verified; otherwise, the LBSP has

misbehaved.

3.6 Performance Analysis

In this section, we analyze Schemes 1∼3 with regard to their correctness in detecting

inauthentic and/or incorrect query results and the related communication/computation

overhead. To make the quantitative analysis tractable, we make the following assump-

tions.

• There are n > k POIs uniformly distributed in each zone, i.e., ni = n,∀i ∈ [1,M ],

where M = 2d for an integer d > 1.

• All attribute ratings are i.i.d. random variables uniformly distributed in the range

[0, 1] after proper normalization.

• The query-region size is δ times of the zone size.

3.6.1 Analysis of Scheme 1

The following theorem is for the correctness of Scheme 1.

Theorem 3.6.1. Scheme 1 can detect any incorrect and/or inauthentic query result from

a misbehaving LBSP.

We give the proof in Appendix C.

The main extra computation overhead incurred by Scheme 1 on top-k query

processing involves hash computations and signature generations/verifications. Con-

sider the data collector first. For every zone i ∈ [1,M ] and every attribute, the data

collector performs n hash computations to generate the indexes {φi,j}nj=1 and n hash

computations to derive hi,1, which leads to totally 2Mn hash computations. In addition,

the data collector needs M − 1 hash computations to construct the Merkle hash tree

of every attribute and one signature generation for the root hash. Since there are q
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POI attributes, the total computation overhead per POI category at the data collector

is λ(2Mn +M − 1) hash computations and λ signatures. Moreover, the computation

overhead at the LBSP is negligible because the LBSP need not perform any hash or

signature operations for query processing.2 Finally, we consider the computation over-

head at the user. For every query result, the user needs one signature verification for

the Merkle root hash and also a certain number of hash computations given below.

Theorem 3.6.2. The expected number of hash computations the user performs to verify

the query result under Scheme 1 is given by

E[Nhash,1] = k + |I| · (k + δ)n + 1

δn + 1
+

d−1∑
j=1

2j−1(1− (1− 2−(j−1))|I|) . (3.7)

We give the proof in Appendix D.

Now we analyze the communication overhead associated with transmitting the

necessary information for authenticity and correctness proofs from the data collector to

the LBSP. Let Lh, Lloc, Lr, and Lsig denote the bit-lengths of a hash value H(·), a POI

location, an attribute rating, and the data collector’s signature, respectively. For each of

λ POI attributes, the data collector sends n indexes of Lloc + Lr + Lh bits for each of

M zones as well as a Merkle hash tree of (M − 1)Lh bits. The extra communication

overhead in bits per POI category Scheme 1 incurs between the data collector and

LBSP is thus

S1 = λ(Mn(Lloc + Lr + Lh) + (M − 1)Lh + Lsig). (3.8)

We also have the following theorem about the extra communication overhead associ-

ated with sending authenticity and correctness proofs of a top-k query result from the

LBSP to the user.

2Here we ignore the LBSP’s database lookup overhead which exists with or without our scheme.
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Theorem 3.6.3. The additional communication overhead between the LBSP and the

user incurred by Scheme 1 is given by

E[T1] = (|I| · (k + δ)n + 1

δn + 1
− k)(Lloc + Lr + Lh) + |I| · d

+
d−1∑
j=1

2j(1− (1− 2−j)|I|)Lh + Lsig ,
(3.9)

We give the proof in Appendix E.

3.6.2 Analysis of Scheme 2

The following theorem is for the correctness of Scheme 2.

Theorem 3.6.4. Scheme 2 can detect any incorrect and/or inauthentic query result from

a misbehaving LBSP.

We give the proof in Appendix F.

Scheme 2 incurs the same computation overhead to the data collector and

LBSP as Scheme 1, which has been analyzed before. To verify the authenticity and

correctness of a top-k query result, the user performs one signature verification on the

Merkle root hash and also a certain number of hash computations given in the following

theorem.

Theorem 3.6.5. The expected number of hash computations the user performs to verify

the query result under Scheme 2 is given by

E[Nhash,2] = |I|μ1 +
d−1∑
j=1

2j−1(1− (1− 2−(j−1))|I|(1−μn
2 )) , (3.10)

where μ1 = (n− nμ2 + 1− μn2 ) and μ2 =
δn−k+1
δn+1 .

We give the proof in Appendix G.

Now we analyze the communication overhead incurred by Scheme 2. In Scheme 2,

every zone belongs to a macro zone of m zones. For every zone i in a macro zone

Me, the set {j,A′
j,1,q}j∈Me\{i} need be transmitted along with both POI records and
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indexes. Since a zone ID is of log2M = d bits, Scheme 2 requires the data collector to

additionally transmit 2(m − 1)(d + Lr) bits for attribute q in contrast to Scheme 1. The

extra communication overhead per POI category Scheme 2 incurs between the data

collector and LBSP is thus

S2 = S1 + 2(m− 1)λ(d + Lr) , (3.11)

where S1 is given in Eq. (3.8). We also have the following theorem about the communi-

cation overhead for sending authenticity and correctness proofs of a query result from

the LBSP to the user.

Theorem 3.6.6. Assuming that the query region comprises m̌ zones I fully contained

in a macro zone Me with m zones. The expected additional communication overhead

Scheme 2 incurs between the LBSP and user is bounded as follows,

T2 ≤ m̌(1− μn)d+ m̌(n− nμ+ 1− μn)(Lloc + Lr + Lh)

+ (m̌(1− μn) +

d−1∑
j=1

2j(1− (1− 2−j)m̌(1−μn)))Lh

+ m̌(1− μn)(m− m̌)(1 − (
n− ν

n+ 1
)n)(d+ Lr)

+ g(g − 1)(d + Lr) + Lsig ,

(3.12)

where μ = (m̌n− k + 1)/(m̌n+ 1), ν = n(1− μ)/(1 − μn), and g = min(k, m̌).

We give the proof in Appendix H. We have not been able to obtain a close-form

solution for the more general case, which we will evaluate using simulation in the next

section.

3.6.3 Analysis of Scheme 3

The following theorem is for the correctness of the Scheme 3.

Theorem 3.6.7. Any misbehavior of the LBSP, including returning incorrect/inauthentic

query result and omitting complete query results, will be eventually detected under

Scheme 3.
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Table 3.1: Default simulation settings

Para. Val. Para. Val. Para. Val. Para. Val.

M 10000 m 100 n 100 δ 10

k 5 d 14 d 20 Lh 160

Lloc 20 Lsig 160 Lr 10

We give the proof in Appendix I. We will use simulation to evaluate the commu-

nication and computation overhead incurred by Scheme 3 in the next section.

3.7 Simulation Results

In this section, we evaluate our schemes using simulations. We assume that the data

set covers 100 × 100 unit square zones of 1000 × 1000m2, each containing 100 POIs

uniformly distributed. The simulation code is written in C++, and each data point rep-

resents an average of 50 simulation runs with different random seeds. In addition, our

simulations use the default parameters in Table 3.1, unless stated otherwise.

3.7.1 Snapshot Top-k Queries

We first report the simulation results for Schemes 1 and 2. Recall that δ denote the ratio

of the query-region size to the zone size and that I represent the set of candidate zones

that completely or partially overlap with the query region R. We simulate the following

two types of queries.

• Type-1 queries: R exactly covers an integer number of zones, which means that

I = R and |I| = δ.

• Type-2 queries: R is a circle of radius r centered at a random location, which

means that I > R and |I| > δ.

3.7.1.1 Type-1 Queries: |I| = δ

For this set of simulations, we let the query region R formed by δ zones randomly

chosen from the same macro zone.

Fig. 3.4a shows the impact of δ on the user’s computation overhead for k = 5,

where the single signature verification is not included for brevity. Clearly, our analytical
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and simulation results closely match under both schemes. In addition, the user’s com-

putation overhead increases with δ under Scheme 1, while it initially increases as δ goes

from 1 to 10 and then is relatively stable under Scheme 2. The reason is that Scheme 1

requires the LBSP to return information for every zone in R for the user to verify. There-

fore, the larger δ, the higher the user’s computation overhead in Scheme 1. In contrast,

Scheme 2 requires the LBSP to return information only for the zones that have at least

one POI among the top-k POIs under our simulation settings, and there are at most k

such zones in R. Therefore, Scheme 2 incurs lower computation overhead on the user

for small k and large δ.

Fig. 3.4b shows the impact of δ on the LBSP-user communication overhead

for k = 5. It is clear that the simulation results are always below the corresponding

theoretical upper bounds. As in Fig. 3.4a, we can also observe that the LBSP-user

communication overhead in Scheme 1 always increases with δ and is higher than that

in Scheme 2. In contrast, the LBSP-user communication overhead under Scheme 2 is

relatively stable and even slightly decreases when δ grows. The reason is that the kth

largest attribute rating becomes large as δ increases, which means that the query result

contains less information for other zones in the same macro zone with attribute ratings

higher than any top-k rating.

Fig. 3.5a shows the impact of k on the user’s computation overhead for δ = 10.

We can see that our simulation and analytical results closely match and increase with

k under both schemes. The reason is that the number of hash computations increases

with the number of zones with information in the query result, which itself increases with

k. In addition, since Scheme 2 does not require the LBSP to return any information for

zones without a top-k POI, it requires the user to perform fewer hash computations and

thus incurs smaller computation overhead than Scheme 1. The difference between the

two schemes gradually diminishes when k goes beyond 20, as the number of zones in

R without a top-k POI quickly decreases for sufficiently large k.
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(a) computation cost (b) communication cost

Figure 3.4: The impact of δ for Type-1 queries, where k = 5.

(a) computation cost (b) communication cost

Figure 3.5: The impact of k for Type-1 queries, where δ = 10.

Fig. 3.5b shows the impact of k on the LBSP-user communication overhead for

δ = 10. Again, our simulation and analytical results closely match. In addition, the

LBSP-user communication overhead of Scheme 1 is not affected by k because it only

involves transmitting |I| = δ POI indexes. In contrast, the LBSP-user communication

overhead of Scheme 2 always increases with k, as the number of POI records or in-

dexes increases with k, and accordingly the information about other zones in the same

macro zone returned along with every POI record or index also increases.
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(a) computation cost (b) communication cost

Figure 3.6: The impact of query radius r for Type-2 queries.

(a) computation cost (b) communication cost

Figure 3.7: The impact of m on Scheme 2.

3.7.1.2 Type-2 Queries: |I| > δ

For this set of simulations, we simulate a circular query region with radius r centered at

a random location and only report the simulation results for simplicity.

Figs. 3.6a and 3.6b show the impact of query radius r on the user’s computation

overhead and the LBSP-user communication overhead, respectively, for k = 5 or 50.

Note that δ = πr2 increases quadratically with r, so does the number of candidate

zones. It is thus not surprising to see that the user’s computation overhead and the

LBSP-user communication overhead both increase as r increases under Scheme 1.
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(a) computation cost (b) communication cost

Figure 3.8: The impact of n.

In contrast, both metrics are relatively insensitive to r under Scheme 2 because the

number of zones having at least one top-k POI is at most k.

3.7.1.3 Impact of m on Scheme 2

Now we illustrate the impact of m, the number of zones in each macro zone, on

Scheme 2. For simplicity, we show the simulation results for Type-2 queries only.

Fig. 3.7a shows that the user’s computation overhead decreases rapidly as m

increases from 1 to 10 and slowly as m further increases. The reason is that the LBSP

returns only one index and the corresponding auxiliary set for each candidate macro

zone that has no top-k POI. When k is small and R is large, most zones in R do not

have any top-k POI, so the number of indexes and auxiliary sets returned is approxi-

mately proportional to the number of macro zones and thus inversely proportional to m

when m is not too large. Otherwise, the number of macro zones overlapping with R

approaches a constant, leading to relatively stable computation overhead.

Fig. 3.7b shows that the LBSP-user communication overhead quickly decreas-

es as m increases from 1 to 10. The reason is that the larger m, the fewer POIs and

corresponding auxiliary sets returned to the user. As m further increases, the commu-

nication overhead slowly increases, as a larger m requires the LBSP to return more

information about other zones in the same macro zone along with every POI record or
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index in the query result. In practice, a moderate m should be chosen to minimize the

LBSP-user communication overhead.

3.7.1.4 Impact of n on Schemes 1 and 2

Figs. 3.8a and 3.8b show the impact of n, the number of POIs per zone, on the da-

ta collector’s computation overhead and the collector-LBSP communication overhead.

For brevity, we only show the simulation results which apply to both Type-1 or Type-2

queries. Fig. 3.8a shows that the data collector’s computation overhead increases lin-

early with n under both schemes. The reason is that the data collector performs one

hash computation to generate the index and chain it with adjacent indexes for each POI

record in both schemes. Moreover, as anticipated, the largerM , the more POIs, and the

higher the computation overhead. In addition, Fig. 3.8b shows that the collector-LBSP

communication overhead under both schemes increases with n, and Scheme 2 incurs

larger overhead because it requires additional information for other zones in the same

macro zone to be transmitted for each POI record.

We have also simulated the impact of λ, the number of POI attributes, and

observed that the data collector’s computation overhead and the collector-LBSP com-

munication overhead are both proportional to λ under both schemes.

3.7.2 Moving Top-k Queries

In this subsection, we report the simulation results for Scheme 3. In particular, we

compare Scheme 3 with realizing moving top-k query via independent snapshot queries

under Scheme 1. We simulate a moving top-k query in which the query region is a

circular area of radius r = 5000m centered at the user’s location. The user starts at a

random location along a random direction, moves at a speed of 5m/s for a total distance

of 5000m.

3.7.2.1 General Comparison between Schemes 1 and 3

Figs. 3.9a and 3.9b show the user’s computation overhead and LBSP-user communica-

tion overhead incurred by the first 20 snapshot top-k queries under Schemes 1 and 3,

respectively, where �t = 20s. We can see that both schemes incur the same user-side
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(a) computation cost (b) communication cost

Figure 3.9: Comparison of the first 20 snapshot queries in Schemes 1 and 3.

computation overhead and LBSP-user communication overhead for the first snapshot

top-k query, as the LBSP need return a complete query result in both cases. Under

Scheme 1, each snapshot query incurs similar computation and communication costs,

while under Scheme 3, all the snapshot queries (except the 1st, 7th, and 16th) incur

negligible user-side computation overhead and LBSP-user communication overhead.

This is anticipated, as the LBSP always need return a complete query result for any

snapshot query under Scheme 1 but does so only when there is an update in the top-k

POIs from the previous ones under Scheme 3. It is also worth noticing that Scheme 3

incurs slightly higher user-side computation overhead and LBSP-user communication

overhead for the 7th and 16th snapshot queries. This is because that the LBSP need

provide additional information in the query response to prove that all previous returned

ACKs are valid.

3.7.2.2 Impact of �t

Figs. 3.10a and 3.10b compare Schemes 1 and 3 when �t varies. We can see that the

total computation and communication cost incurred by Scheme 3 are relatively insensi-

tive to the change in �t, as no matter how frequently the user issues snapshot top-k

queries, the LBSP only need return a complete query result when there is an update in

the top-k POIs. In contrast, the total computation and communication costs incurred by

Scheme 3 are inversely proportional to �t, since the LBSP treats each snapshot query
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(a) computation cost (b) communication cost

Figure 3.10: The impact of �t on Scheme 3.

(a) computation cost (b) communication cost

Figure 3.11: The impact of k on Scheme 3.

independently by always returning a complete query result. These results demonstrate

the significant advantage of Scheme 3 over Scheme 1.

3.7.2.3 Impact of k

Figs. 3.11a and 3.11b compare Schemes 1 and 3 when k varies. We can see that

the user-side computation overhead and LBSP-user communication overhead both in-

crease as k increases under both schemes. This is because that the larger k, the more

updates in the top-k POIs for the same distance that the user travels, and vice versa.

Under both schemes, the LBSP need return more complete query results, which lead

to higher user-side computation overhead and LBSP-user communication overhead.
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When k is small, Scheme 3 incurs significantly lower user-side computation overhead

and LBSP-user communication overhead than Scheme 1 does. For example, when

k = 1 and 5, the LBSP-user communication overhead incurred by Scheme 3 is only

3.5% and 13.5% that of Scheme 1, respectively. As k increases, the benefits of using

Scheme 3 gradually diminish, as the LBSP need return more complete query results

under both schemes.

3.8 Summary

This chapter considers a novel distributed system for collaborative location-based in-

formation generation and sharing. We have proposed three novel schemes to enable

secure top-k query processing via untrusted LBSPs for fostering the practical deploy-

ment and wide use of the envisioned system. Our schemes support both snapshot

and moving top-k queries, which enable users to verify the authenticity and correctness

of any top-k query result. The efficacy and efficiency of our schemes are thoroughly

analyzed and evaluated through detailed simulation studies.
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Chapter 4

VERIFIABLE PRIVACY-PRESERVING AGGREGATION IN PEOPLE-CENTRIC

URBAN SENSING SYSTEMS

4.1 Introduction

People-centric urban sensing systems (PC-USSs) refer to using human-carried mobile

devices such as smartphones and tablets with ever-growing capabilities in sensing,

computation, storage, and communications for urban-scale distributed data collection,

analysis, and sharing to facilitate the interaction between humans and their surrounding

environments. Examples of PC-USS applications include environment monitoring [31,

86], traffic measuring and congestion avoidance [70, 108], healthcare monitoring and

delivery [61], and many others [3, 8, 17, 33, 48, 55, 56, 68, 77, 85, 109]. PC-USSs are

expected to open a new era of exciting scientific, social, and commercial applications.

PC-USSs differ significantly from traditional wireless sensor networks that focus

on environment sensing and data collection. First, system devices are no longer owned

and managed by a single authority but belong to individuals with diverse interests. Sec-

ond, system devices have much more powerful resources than sensor nodes and can

be charged regularly. Third, the system features dynamic node mobility. Fourth, sens-

ing data are more related to the interactions among humans and between humans and

their surroundings instead of only about some physical phenomena of interest. Fifth,

but not the last, humans are no longer just passive data users but also active data

contributors.

The widespread deployment and adoption of PC-USSs face many obstacles, of

which user privacy and data integrity are among the most critical [17, 33, 56]. For in-

stance, in a study of the relationship between air quality and public health, researchers

desire some aggregate statistics of personal health data such as heart rates, blood

pressure levels, and weights at different sections of an urban area. Individuals may be

unwilling to disclose their personal data if there were no guarantee that their data would

not be used to invade their privacy. As an example for data-integrity breach, consider
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applications like CarTel [48] and VTrack [108] that use traffic statistics such as average

speed as an indicator of congestion to help system users do route planning. A selfish

and malicious driver may prevent other users from choosing his current road by manipu-

lating the aggregation result, i.e., cheating the server into accepting a lower-than-actual

average speed that indicates road congestion. These two examples highlight the ne-

cessity for verifiable privacy-preserving data aggregation techniques that can ensure

strong user privacy and also aggregation integrity.1

Designing a verifiable privacy-preserving aggregation scheme for PC-USSs is

particulary challenging. On the one hand, ensuring user privacy means that a user’s

original data cannot be disclosed to any other party. This requirement makes it hard

to detect if a user has faithfully participated in data aggregation. On the other hand,

ensuring aggregation integrity requires any misbehavior during data aggregation to be

detected with overwhelming probability. This requirement is extremely difficult to satisfy

without knowing users’ original data.

The contribution of this chapter is the design and evaluation of VPA, a novel

peer-to-peer based solution to verifiable privacy-preserving data aggregation in PC-

USSs. VPA consists of the following two components.

• The first component VPA+ aims at additive aggregation functions such as Sum,

Average, and Variance. Its basic idea is to divide the aggregation process into

two phases. In the first phase, each node submits a commitment to the aggrega-

tion server, which is a homomorphic message authentication code of its original

data. The homomorphic property of commitments enables the aggregation serv-

er to compute the aggregate commitment corresponding to the final aggregate,

while it is impossible for the aggregation server to recover any node’s original da-

tum. In the second phase, the original datum of each node is aggregated in a

privacy-preserving manner, in which users first exchange random shares of their

1We use “user privacy” and “data privacy” as well as “aggregation integrity” and “data integrity” inter-
changeably in this chapter.
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data with selected peers and then submit mixed data to the aggregation server.

The aggregation server can then verify the aggregation-result integrity using the

aggregate commitment derived in the first phase.

• The second component VPA⊕ is a non-trivial combination of the binary search

and verifiable privacy-preserving Count queries and can support a wide range

of non-additive aggregation functions like Max/Min, Median, Histogram, and Per-

centile, with accurate aggregation-results.

VPA is the first work of its kind as far as we know. The performance of VPA is thoroughly

analyzed and evaluated with detailed simulations.

The rest of this chapter is organized as follows. Section 4.2 reviews the related

work. Section 4.3 gives the system and adversary models and the design objectives.

Section 4.4 and Section 4.5 present the solutions to additive and non-additive aggre-

gation, respectively. Section 4.6 evaluates the performance of VPA using extensive

simulation results. This chapter is finally concluded in Section 4.7.

4.2 Related Work

Although PC-USSs, also known as participatory or opportunistic sensing systems, have

received extensive attention (e.g., [3,8,17,33,48,55,56,68,77,85,86,109]), there is rel-

atively little work focusing on their security and privacy aspects. Kapadia et al. [56]

surveyed the security and privacy challenges in opportunistic sensing systems. Cor-

nelius et al. [17] presented the AnonySense architecture for anonymous tasking and

reporting in people-centric sensing systems. AnonySense relies on a Mix network like

Minimaster [76] to ensure user privacy, which we will not assume in our scheme. Ganti

et al. [33] proposed PoolView for computing community statistics of time-series data

in a privacy-preserving manner without considering aggregation-result integrity. More

recently, Cristofaro and Soriente [18] proposed PEPSI to protect data and query pri-

vacy from unauthorized subscribers. None of these schemes could achieve the same

objectives as our VPA.
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Privacy-preserving aggregation in traditional sensor networks has been exten-

sively studied. The work [11,29,37,44] can support additive aggregation functions such

as Sum and Average. GP2S [136] can support both additive aggregation functions and

non-additive ones such as Max/Min, Median, and Histogram at the sacrifice in data ac-

curacy. The work [114] applies a particular class of encryption transformations to com-

pute two aggregation functions, Average and “movement detection” specific to sensor

networks. These schemes [11, 29, 37, 44, 114, 136] do not address aggregation-result

integrity, neither could be be directly applied to PC-USSs due to different application

scenarios.

There is also a big chunk of work on secure aggregation in sensor networks, see

[12,13,90,93,94,118,126] for example. Such work ensures that aggregation results are

not so different from the true values despite malicious intermediate aggregator nodes

and does not address individual nodes’ data privacy.

To the best of our knowledge, the work in [112] is the only one that simul-

taneously addresses data confidentiality and aggregation-result integrity. VPA differs

from [112] significantly in following aspects. First, the scheme proposed in [112] target-

s histogram aggregates in traditional sensor networks with static topology, while VPA

can support a large family of aggregates, including Sum, Average, Max/Min, Median,

Histogram, and Percentile. Second, the scheme proposed in [112] can only detect ill-

performed aggregation with some probability and protect users’ data privacy against

other users. In contrast, VPA can detect any false aggregation result with certainty and

ensure user data confidentiality against both curious users and aggregation servers.

Finally, location/identity privacy of mobile users is another active topic of re-

search, see [7, 32, 137] for example. This line of work is orthogonal to our work in this

chapter and can be integrated with our VPA.

4.3 Models and Design Goals

In this section, we present the system and adversary models as well as our design

goals.
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Cell 1 Cell 2 Cell 3

Service provider

AS
Wireless link

Data client

Figure 4.1: The abstract architecture of a people-centric urban sensing system (PC-
USS).

4.3.1 System Model

There is no universally accepted model for a PC-USS. For ease of illustration, we as-

sume an urban-sensing service provider which deploys a large-scale system similar to

a metro-scale wireless mesh network [137], as shown in Fig. 4.1. Our solution can be

easily extended to work with other system models such as cellular networks. The PC-

USS features a high-speed wireless backbone consisting of M powerful aggregation

servers (ASs for short) which also provide network access services for system nodes.

Each AS is in charge of a certain region referred to as a cell and interacts with nodes

therein. Here we use the term “node” to indicate a human who carries a portable device

such as a smartphone and tablet. The devices have different communication and com-

putation capabilities as well as various embedded sensors such as accelerator, digital

compass, proximity sensors, and humidity sensors [68].

A node may join the system at will to participate in data sensing and sharing

and also enjoy network access. To prevent fraudulent use of system resources and

also provide basic privacy assurance to nodes, the system and nodes need mutually

authenticate each other each time a node moves into a new cell.

We assume a similar mutual authentication protocol as in [137]. Assume that

an AS, denoted by A, can simultaneously accommodate up to 2λ users. After achieving

mutual authentication with a node, say i, A assigns node i a secret key ki, a temporal

integer-valued ID IDi (which is an unused one between [0, 2λ − 1]), and also an ID-
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based private key K−1
i . The pair IDi/K

−1
i will serve as the temporal public/private

keys of node i which are valid only in A’s cell.

In addition, we assume an efficient method for A to keep track of node mobility

in its cell. For example, node i need periodically notify A about its existence; otherwise,

A would assume that i has left its cell and then reclaim IDi to be allocated to new

nodes. In the latter case, A updates all the private keys of the remaining nodes in its

cell using a single broadcast message with the approach in [139]. The use of such ID-

based public/private keys will be illustrated soon. Note that the mutual authentication

process is performed whenever a node enters a new cell.

About the communication capabilities, we assume that each node and the AS

can directly communicate with each other. In addition, each can communicate with

neighboring nodes through WiFi or Bluetooth interfaces, for which very efficient proto-

cols are available such as in [120]. Moreover, each node can transmit to the AS in a

multi-hop fashion through other nodes if necessary.

Without loss of generality, we consider the following scenario throughout. We

assume that the service provider, on behalf of a data client, wants to get statistical

aggregates of some personal data such as heart rates, blood pressure levels, glucose

levels, weights, and moving speeds. A query will be sent to selected ASs which in

turn broadcast the query to the nodes inside their respective cells. If some nodes have

data satisfying the query, they will participate in aggregation if provided with privacy

guarantees. The ASs can then aggregate the returned data and forward the aggregation

result to the service provider. The service provider often need provide extra incentives

such as credits to motivate participation in data aggregation, but the design of sound

incentives is outside the scope of this chapter.

4.3.2 Adversary Model

This chapter focuses on thwarting attacks on breaching nodes’ data privacy as well

as aggregation-result integrity. Other important issues such as DoS defenses [56] are

beyond the scope of this chapter.
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We assume that ASs are trusted to follow aggregation operations for generating

correct aggregation results, but they may be curious about individual user data. A

curious AS may collude with other curious nodes to attempt deducing the sensing data

of target nodes.

In contrast, a node could be curious, malicious, or both. Like a curious AS, a

curious node is interested in discovering other nodes’ data but faithfully follow aggrega-

tion operations, while a malicious node intends to make the AS derive false aggregation

result. More specifically, a malicious node may launch two types of false-data injection

attacks [118]. First, a malicious node may forge its own datum. Second, a malicious

node may forge a false intermediate aggregation result that could significantly affect the

final aggregation result. Most recent research [24, 35, 36, 95] has shown that perhaps

the only feasible defense against the former (i.e., ensuring the integrity of sensor read-

ings from human-carried mobile devices) is to use some trusted hardware such as a

Trusted Platform Module (TPM). We thus follow this line of research and assume that

every participating mobile device has an embedded TPM. To keep the TPM cost as

low as possible, we only require the TPM to have a minimal set of functionalities dur-

ing aggregation, which include collecting sensor readings and generating a message

authentication code (MAC). For this purpose, we assume that every TPM has a unique

public/private key pair bound to the affiliated mobile device. After achieving mutual au-

thentication with node i, the AS sends another secret key κi encrypted with the public

key of node i’s TPM. The TPM can then decrypt the ciphertext using its private key and

store κi for later use. Based on the assumption about TPM, we focus on mitigating the

forgery of intermediate aggregation results in our solution.

There might also be external eavesdroppers not participating in data aggrega-

tion. Since external eavesdroppers are fairly easy to defeat using end-to-end encryp-

tion (which we will use), we focus on counteracting internal attackers hereafter, which

includes both curious ASs and curious/malicious participating nodes.
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4.3.3 Design Goals

Given the aforementioned adversary model, VPA is designed with the following objec-

tives.

• Aggregation accuracy: VPA should output accurate aggregation results in the

absence of malicious attacks.

• Aggregation/data integrity: any attempt of injecting false data should be detected

with certainty.

• Data/user privacy: Each user’s datum should be hidden from all the other parties

with high probability.

• Efficiency: VPA should incur low communication and computation overhead.

4.4 VPA+: Verifiable Privacy-Preserving Additive Aggregation

In this section, we present VPA+, a novel scheme to enable verifiable privacy-preserving

additive aggregation. Without loss of generality, our discussion focuses on a cell with

AS A and a set of n nodes, denoted by U . We will also use Sum aggregation as an

example, based on which other additive aggregation functions such as Average and

Variance [11] can be easily realized.

4.4.1 Overview and Basic Idea

We observe that either of user privacy and aggregation integrity alone can be easily

achieved if we ignore the other. On the one hand, if aggregation integrity is the only

concern, a straightforward solution is to let each node submit its datum directly to A

along with a message authentication code (MAC). The AS can then verify the authen-

ticity of each datum and compute the correct sum. This naive approach, however, offers

no data privacy to users. On the other hand, many existing techniques such as [29,44]

can realize privacy-preserving data aggregation, but a malicious node can launch the

false-data injection attack without being detected.
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Inspired by the above observation, we divide the whole aggregation process

into two phases. In the first phase, each node submits to A a commitment, which is

a homomorphic MAC of its datum and has a nice one-way property that A cannot de-

duce the corresponding datum. The homomorphic property of individual commitments

enables A to compute an aggregate commitment corresponding to the Sum aggregate

of all nodes’ data. In the second phase, nodes perform privacy-preserving in-network

data aggregation for A to derive the Sum aggregate without disclosing any individual

datum with overwhelming probability. Finally, A can verify the integrity of the Sum ag-

gregate by using the aggregate commitment derived in the first phase. In what follows,

we detail the design of VPA+, which includes aggregation initialization, commitment

submission, privacy-preserving in-network aggregation, and aggregation verification.

4.4.2 Aggregation Initialization

The AS A initializes the aggregation process by selecting a large prime p and a gen-

erator g of the group Z∗
p = {1, . . . , p − 1}. The parameters p and g should ensure

the computational hardness of the discrete logarithm problem, that is, given a random

y ∈ Z∗
p, it is computationally infeasible to find the unique integer x ∈ [0, p − 2] such

that gx = y mod p. Assume that each node has reported to A what kinds of data it

could generate when moving into A’s cell. Let U denote the set of n = |U| users that A

has selected and motivated to participate in data aggregation.2 Finally, A broadcasts

an aggregation request 〈p, g,U , r〉, where r is a random nonce for message freshness.

It is worth noting that the aggregation request can be sent as part of A’s periodic ser-

vice beacons and need be authenticated properly as in [137] to prevent attackers from

sending fake aggregation requests, which we have ignored here for the focus of this

chapter. In addition, there can be various methods to transmit a condensed version of

U , which is also not discussed here for simplicity.

2How A selects U from candidate users and appropriately stimulate their participation is an orthogonal
topic deserving independent investigation.
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4.4.3 Commitment Submission

In this phase, each node i ∈ U submits to A a commitment, which is a homomorphic

MAC of its datum di after appropriate expansion. In contrast to traditional MAC, a homo-

morphic MAC function H(·) has the additional property that the given the homomorphic

MACs of two messages, say H(m1) and H(m2), anyone can derive H(m1 + m2)

without knowing m1 or m2. VPA+ uses a simple homomorphic MAC construction as

follows,

H(m) = gm mod p,

where m ∈ [0, p − 2]. It is easy to see that H(·) is homomorphic because ∀m1,m2 ∈

[0, p − 2],

H(m1 +m2) = gm1+m2 = H(m1)H(m2) mod p.

Before generating the commitment, each node i first need expand its datum di

to introduce sufficient randomness. Note that the data range in many PC-USS appli-

cations is usually limited. For instance, in a traffic monitoring application, the driving

speed is between 0 and 100 miles. If node i directly submits H(di) to A, then A can

deduce di by exhaustive search. To avoid this situation, each node i expands di by

adding a random number. In particular, assume that each datum di is of l bits. Node i

generates a random number ri of φ bits known only to itself and computes

ei = 2l+�log2 n	 · ri + di . (4.1)

where φ is a system parameter determining the difficulty of exhaustive search. Alterna-

tively, we can view ei as the concatenation of ri, 
log2 n� zeros, and di as follows

ei = ri,

�log2 n	︷ ︸︸ ︷
0, . . . , 0, di .
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The reason to separate ri and di by 
log2 n� zeros can be explained as follows.

If we perform Sum aggregation over all ei, then we have

∑
i∈U

ei = 2l+�log2 n	 ·
∑
i∈U

ri +
∑
i∈U

di

≤ 2l+�log2 n	 ·
∑
i∈U

ri + n(2l − 1)

< 2l+�log2 n	 ·
∑
i∈U

ri + 2l+�log2 n	 .

It follows that ∑
i∈U

di =
∑
i∈U

ei mod 2l+�log2 n	 . (4.2)

This property will be used later by A to derive the correct aggregation result without

knowing {ri}i∈U .

To prevent malicious nodes from submitting arbitrary data, we require that di

and ei be generated and authenticated by node i’s TPM. Recall that A has assigned a

secret key ki to node i and another secret key κi to node i’s TPM after mutual authen-

tication (see Section 4.3.1). Node i submits to A the following message.

i→ A : i, 〈H(ei), h(κi||H(ei))〉ki ,

where h(·) denotes a good hash function, and 〈·〉∗ denotes a symmetric-key encryption

operation using the key on the subscript.

On receiving the message, the AS locates ki and κi using node ID i. It uses

ki to decrypt the message, and then verifies h(κi||H(ei)) using κi. If the verifica-

tion succeeds, A considers H(ei) an authentic commitment and drops it otherwise.

If {H(ei)}ni=1 are all authentic, the AS proceeds to derive the aggregate commitment

corresponding to
∑n

i=1 ei by computing

H(
∑
i∈U

ei) =
∏
i∈U

H(ei) mod p

=
∏
i∈U

gei mod p

= g
∑

i∈U ei mod p .
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4.4.4 Privacy-Preserving In-Network Data Aggregation

In this phase, nodes jointly perform in-network aggregation over their expanded da-

ta without disclosing them. This phase requires the establishment of an on-demand

temporary aggregation tree. In particular, the AS A broadcast an aggregation-tree for-

mation request, which specifies any node, say v ∈ U , as the root of the aggregation

tree. On receiving the request, node v rebroadcasts it via its Bluetooth or WiFi interface,

depending on the particular method (e.g., [120]) it uses to communicate with neighbor-

ing nodes. Upon receiving the request for the first time, each node further rebroadcasts

it and records the parent node from which this request came from. In this way, an

aggregation tree is formed and rooted at node v which can directly communicate with

A.

In what follows, we present two techniques for privacy-preserving in-network

Sum aggregation over all expanded data with different user-privacy guarantees and

communication overhead. To facilitate presentation, we define node i’s aggregation

neighbors as i’s neighboring nodes on the aggregation tree, denoted by Ti.

4.4.4.1 Method 1: Data Perturbation (DP)

In this method, each node i perturbs its expanded datum ei before actual aggregation.

Since ei is of l + 
log2 n�+ φ bits, we have

∑
i∈U

ei ≤ n · (2l+�log2 n	+φ − 1)

< 2l+2�log2 n	+φ ,

i.e., that
∑

i∈U ei is at most of l + 2
log2 n�+ φ bits.

Denote by h1(·) a good hash function of l + 2
log2 n� + φ bits. Each node i

generates a perturbed datum αi by computing

αi = h1(ki||r) + ei mod 2l+2�log2 n	+φ , (4.3)

where ki is the secret key shared between node i and the AS and r is the nonce

broadcasted by A.
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Each node then performs in-network aggregation over its perturbed datum by

adding it to the values received from its children on the aggregation tree and then trans-

mitting the result to its parent. Finally, the AS A can obtain
∑

i∈U αi by summing the

values received from the root of the aggregation tree, i.e., node v. Since A knows ki for

each i ∈ U , it can compute all h1(ki||r) and derive
∑

i∈U ei by computing

∑
i∈U

ei =
∑
i∈U

αi −
∑
i∈U

h1(ki||r) mod 2l+2�log2 n	+φ . (4.4)

Since ei is completely concealed by h1(ki||r), which is only known by A, other

curious nodes, e.g., node i’s neighbors on the aggregation tree, cannot derive ei by

monitoring i’s incoming and outgoing transmission. Unfortunately, node i’s data privacy

can still be breached if A colludes with node i’s aggregation neighbors.

4.4.4.2 Method 2: Peer-to-Peer Slicing and Mixing

To defend against A colluding with other curious nodes, we further propose another

approach based on peer-to-peer data slicing and mixing. In this approach, before par-

ticipating in in-network aggregation, each node i randomly divides its expanded datum

ei into multiple slices and mixes them with those from selected peers, such that da-

ta privacy can be preserved without affecting the correctness of the final aggregation

result.

Specifically, before answering the query, each node i slices ei into t+1 random

slices {si,j}t+1
j=1 with t ≤ n− 1, such that

ei =

t+1∑
j=1

si,j mod 2l+2�log2 n	+φ .

Then node i keeps si,t+1 to itself while sending each other slice to a unique peer called a

cover node. Next, each node i adds the slices received from other nodes to its remained

slice si,t+1 and conducts in-network aggregation as in Method 1. Finally, A adds up all

the received values. It is easy to see that the result is exactly the Sum aggregate of

interest.
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This slicing technique shares the similar idea as PDA [44], while our application

scenario is totally different. In particular, PDA is designed for sensor networks with rel-

atively static network topology, where all the nodes know each other and have pairwise

shared keys whereby to encrypt/decrypt data slices transmitted from any node to its

chosen cover nodes. Such assumptions no longer holds in our target scenarios, where

nodes in a cell are dynamically changing. Since the nodes do not know each other

beforehand, they have no pre-shared keys for end-to-end encryption. This significant

difference necessitates novel cover-selection strategies. In what follows, we detail two

cover-selection approaches that specially tailored for our target scenario.

Random Cover Selection (RCS) As its name suggested, in this approach, each node

randomly chooses t cover nodes from U and sends a data slice to each of them. The

challenge is how a node can establish a shared key with each of its cover nodes for

end-to-end encryption of its shares. VPA+ uses the following method. Consider node

i as an example with data ei to share. It first slices ei into {si,j}t+1
j=1 and then randomly

chooses a set of t nodes from U as its cover nodes, denoted by Ci ⊆ U . For any cover

node j ∈ Ci, node i computes a shared key ki,j based on its temporal public/private

keys IDi/K
−1
i and IDj by using the method in our previous work [137] and then sends

an encrypted unique slice si,τi,j to node j as follows.

i→ j : IDi, 〈si,τi,j , h(si,τi,j )〉ki,j

Since the route to j might not be known, the packet transmission is normally

preceded by an on-demand route discovery process using protocols like AODV [87].

On receiving the message, node j can derive the same key ki,j using its temporal

public/private keys IDj/K
−1
j and IDi according to [137] and then decrypts the packet

to get si,τi,j . Node i repeats this process for all its cover nodes, and so does every other

node in U .

Each node waits for sufficient time to receive all the slices from other nodes

choosing it as cover. Let Si ⊂ U denote the set of nodes selecting i as a cover node.
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Each node i computes its share as

βi = si,t+1 +
∑
j∈Si

sj,τj,i mod 2l+2�log2 n	+φ . (4.5)

Finally, all the nodes perform in-network aggregation over there shares as in Method 1

so that the AS A finally receives
∑

i∈U βi which equals
∑

i∈U ei.

μ-Hop Cover Selection (μCS) Random cover selection may not be efficient because

cover nodes are randomly chosen regardless of their locations. As a result, an on-

demand route discovery process is often incurred to find a route to a chosen cover

node multi-hop away. This may cause unnecessarily high energy consumption because

a route request often involves cell-wide broadcasting.

We observe that it is unnecessary for each node i to predetermine the slices

{si,j}t+1
j=1 and send each of them to a cover node. Instead, node i can broadcast a

random seed within its μ-hop neighborhood, in which every node is chosen as a cover

node and can compute a slice using their shared key.

Specifically, in μ-hop cover selection, each node i initiates the slicing process

by broadcasting a slicing request with a random seed ri and a TTL value set to μ.

Upon receiving a request with a TTL larger than one, each node further broadcasts

it after decreasing the TTL by one. A node should only process the first copy of the

same request which may be heard multiple times. In addition, each node memorizes

the parent node from which this request came from. In this way, a routing tree of depth

μ is formed and rooted at node i. When a node receives a request with the TTL value

equal to one, the node should send a slicing response to its parent node which in turn

forwards the response via the routing tree back to node i after appending its ID.

Each node waits sufficient time and then updates its share as follows. Consider

node i as an example. Suppose that node i has received slicing responses from the set

of nodes Ci and slicing requests from the set of nodes Si, i.e., the set of nodes choosing

i as covers. Node i derives a shared key ki,j for each j ∈ Ci
⋃

Si according to [137]
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and updates its share by computing

βi = ei −
∑
j∈Ci

h1(ri||ki,j) +
∑
j∈Si

h1(rj ||ki,j) mod 2l+2�log2 n	+φ . (4.6)

Finally, all the nodes perform in-network aggregation over their shares so that

the AS A finally obtains
∑

i∈U βi which equals
∑

i∈U ei.

Unlike in random cover selection, the number of cover nodes in μ-hop cover

selection is a random variable which cannot be determined before the process is com-

pleted. Intuitively, the larger μ, the more cover nodes discovered, the higher privacy

and the communication cost, and vice versa.

4.4.5 Aggregation-Result Verification

After in-network aggregation via Method 1 or 2, the AS obtain
∑

i∈U ei. It first verifies

its integrity by checking if

g
∑

i∈U ei =
∏
i∈U

H(ei) mod p.

If so, A considers
∑

i∈U ei authentic and proceeds to derive
∑

i∈U di by computing

∑
i∈U

di =
∑
i∈U

ei mod 2l ,

which should hold according to Eq. (4.2).

4.4.6 Performance Analysis

Now we analyze the performance of VPA+ with regard to its aggregation-integrity pro-

vision, data-privacy guarantee, and the associated overhead.

4.4.6.1 Aggregation Integrity

We first have the following theorem regarding the aggregation integrity of VPA+.

Theorem 4.4.1. Assume that each node’s datum is generated and authenticated by

TPM and that p > 2l+2�log2 n	+φ. VPA+ allows the AS to detect any false-data injection

attack.

We give the proof in Appendix J.
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4.4.6.2 Data Privacy

To evaluate the data-privacy provision of VPA+, we define exposure probability, denot-

ed by Pexp, as the probability that a node i’s data di is disclosed during aggregation. To

enable quantitative analysis, we assume that each node has Ntree aggregation neigh-

bors on average. We also assume that there are Mc out of M curious ASs and nc out

of n curious nodes.

We then have the following theorems regarding the exposure probability under

VPA+.

Theorem 4.4.2. The exposure probability under DP is given by

Pexp =
Mc

M
·
( n−nc

nc−Ntree

)
(
n
nc

) . (4.7)

We give the proof in Appendix K.

Theorem 4.4.3. The exposure probabilities under RCS and μCS are bounded by

Pexp ≤
(n−nc

nc−w

)
(
n
nc

) , (4.8)

where

w =

⎧⎪⎨
⎪⎩

max(Ntree, t) for RCS,

max(Ntree,
∑μ

x=1Nx) for μCS,
(4.9)

is the minimum number of nodes colluding with A.

We give the proof in Appendix L.

4.4.6.3 Overhead Analysis

Now we analyze the computation and communication overhead incurred by VPA+ for

each node.

For computation overhead, each node need perform one exponentiation to gen-

erate one commitment of its data. In addition, each node i need compute the shared

key ki,j for each node j ∈ Ci
⋃
Si under RCS and μCS.
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We assume that the average distance two random chosen nodes is L hops.

Also denote by ltree, lseed, lhmac, lh the length of a aggregation tree formation request, a

slicing request in μCS, a homomorphic MAC, and h(·), respectively. We then have the

following theorem regarding the communication overhead incurred by VPA+.

Theorem 4.4.4. The communication overhead incurred by VPA+ in bits is given by

TVPA+ = nltree + Tcommit + Tagg , (4.10)

where

Tcommit = n(λ+ lhmac + lh) (4.11)

is the overhead incurred by transmitting commitments to A, and

Tagg =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nldata for DP,

nt(nlreq + L(lrsp + ldata + λ)) + nldata for RCS,

n((1 +
∑μ−1

x=1)Nx(λ+ lseed) +
∑μ

x=1Nxλ) + nldata for μCS,

(4.12)

is the overhead incurred by in-network aggregation, and ldata = l + 2
log2 n�+ φ.

We give the proof in Appendix M.

4.5 VPA⊕: Verifiable Privacy-Preserving Non-additive Aggregation

VPA+ cannot be directly applied to non-additive aggregation functions such as Max/Min,

Median, Percentile, and Histogram, which have wide applications in practice. In this

section, we propose VPA⊕ as an extension of VPA+ to support non-additive aggrega-

tion.

4.5.1 Basic Idea

Our key observation is that all the above non-additive aggregation functions are closely

related to Count aggregation that ask for the number of nodes whose values are above,

below, or equal to a certain value. In particular, let Count[Q] be the number of nodes

with data satisfying the condition Q. Also denote by dmax, dmin, dmed, dσ−per, the Max,

Min, Median, and σ-percentile of a data set, respectively. It is easy to see that the

following conditions hold.
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• Max: ⎧⎪⎪⎨
⎪⎪⎩
Count[d > dmax] = 0,

Count[d = dmax] > 0 .

(4.13)

• Min: ⎧⎪⎪⎨
⎪⎪⎩
Count[d < dmin] = 0,

Count[d = dmin] > 0 .

(4.14)

• Median:

– If n is odd, then ⎧⎪⎪⎨
⎪⎪⎩
Count[d ≤ dmed] ≥ 
n/2�,

Count[d ≥ dmed] ≥ 
n/2� .
(4.15)

– If n is even, then there exists i, j ∈ U , such that di ≤ dj and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Count[d ≤ di] ≥ n/2,

Count[d < di] < n/2,

Count[d ≥ dj ] ≥ n/2,

Count[d > dj ] < n/2 ,

(4.16)

and dmed = (di + dj)/2.

• σ-percentile: we only show the simplest case here⎧⎪⎪⎨
⎪⎪⎩
Count[d ≤ dσ−per] ≥ 
σn/100�,

Count[d ≥ dσ−per] ≥ 
(100 − σ)n/100� .
(4.17)

Conversely, if we can find d∗ such that the conditions in Eq. (4.13) (respectively, (4.14),

(4.15), (4.16) (4.17)) hold, then we have d∗ = dmax (respectively, dmin, dmed, dσ−per).

Since Count is an additive aggregation function, it can be realized by VPA+. Built

on the above observation, VPA⊕ combines VPA+ with binary search to realize non-

additive aggregation functions through a series of verifiable privacy-preserving Count

aggregations.
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4.5.2 Scheme Description

Given a non-additive aggregation request, A transforms it into a series of Count queries

with conditions Q1, Q2, . . . , until the desired d∗ is found, where Qx is determined by the

result of the previous Count query with condition Qx−1. Each Count query Qx asks

how many nodes possess data above, below, or equal to a threshold, called a count

index. Each node i with datum di satisfying condition Qx gives an answer “yes", or

“no" otherwise, by a single bit of value one or zero, respectively. The answers are then

aggregated via VPA+ to let A get Count(Qx) with both user-privacy and aggregation-

integrity guarantees.

Below we brief how to realize privacy-preserving Max/Min, Median, Histogram,

and Percentile aggregation queries under the assumption that each data value di is

an integer between [0, 2l − 1]. It is easy to extend our technique to other non-additive

aggregation functions.

4.5.2.1 Max/Min

Since the Min operation is opposite to the Max operation, we just illustrate the latter

for brevity. Given a Max aggregation request, A first issues a Count query with Q1 =

[d ≥ 2l−1] and then aggregates the received data via VPA+ to get the number of “yes”

answers, denoted by θ1. If θ1 ≥ 1, the maximum value should be in [2l−1, 2l − 1], so

A will send a new Count query with Q2 = [d ≥ 2l−1 + 2l−2]; otherwise, the maximum

value should be in [0, 2l−1−1], so A will send a new Count query with Q2 = [d > 2l−2].

The suspicion range in which the maximum value is located is reduced by half for each

additional Count query. This process continues until the suspicion range is reduced to

one, in which case the last count index is exactly the maximum value, and the last query

result equals the number of nodes with the maximum value.

4.5.2.2 Median/Percentile

Since Median is a special case of Percentile, we illustrate the former for simplicity,

which can be easily extended to the latter. A median value is described as the number
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separating the higher half of a sample, a population, or a probability distribution, from

the lower half. Median aggregation can be realized in a similar fashion as Max. Here

we present the case for n being odd for simplify, while the case of n being even can be

realized accordingly.

Given a Median aggregation request, A first issues a Count query with Q1 =

[d ≥ 2l−1] and obtains θ1 via VPA+. If θ1 ≥ (n+1)/2, A sends the second Count query

with Q2 = [d ≥ 2l−1 + 2l−2]; otherwise, A sends the next query with Q2 = [d ≥ 2l−2].

This process continues until the suspicion range of dmed is one, which takes total l

queries. Suppose that the last two queries are Ql−1 = [d ≥ ql−1] and Ql = [d ≥ ql]

whereby A receives θl−1 and θl, respectively. It follows that ql−1 and ql differ by one.

There are four cases.

• Case 1: if ql−1 < ql and θl ≥ 
n/2�, then we have dmed = ql. The reasons are

as follows. First, we must have θl−1 < 
n/2�, as otherwise dmed ≤ ql − 1, and

ql should not be queried. Second, there must exist a query Qx = [d ≥ ql + 1]

with x ∈ [1, l − 2], due to the property of binary search. Third, it must hold that

θx < 
n/2�, as otherwise dmed > ql+1 and neither ql−1 nor ql should be queried.

• Case 2: if ql−1 > ql and θl ≥ 
n/2�, then we have dmed = ql.

• Case 3: if ql−1 < ql and θl < 
n/2�, then dmed = ql + 1.

• Case 4: if ql−1 > ql and θl < 
n/2�, then dmed = ql + 1.

The reasoning for Cases 2∼4 are similar to that of Case 1 and is thus omitted.

4.5.2.3 Histogram

In statistics, a histogram is a graphical display of tabulated frequencies, shown as bars,

and shows the proportion of cases falling into each of several categories. Using Count

query to realize Histogram is straightforward. In particular, given a Histogram aggrega-

tion request, A partitions the data range [0, 2l−1] into a certain number of consecutive,

non-overlapping intervals according to the aggregation request. It then sends a Count
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query for each interval, and the corresponding query result will equal the number of

nodes with data in that interval.

4.5.3 Performance Analysis

Since VPA⊕ is built upon VPA+, it can also ensure perfect aggregation integrity. We

thus focus on analyzing the user-privacy provision and overhead of VPA⊕.

4.5.3.1 Data Privacy

The exposure probability Pexp used to analyze the performance of VPA+ can no longer

precisely measure the privacy provision of non-additive aggregation. For example, even

if the answer of node i to a Count query Qx is disclosed, the adversary can only narrow

down the search of di to a certain range instead of precisely determining di. Assume

that the adversary knows that dj is in a range of length ε after the whole query process.

It is clear that the ratio ρ = ε/2l can be used to analyze the privacy performance of

the non-additive aggregation process: the larger ρ, the higher level of privacy provision,

and vice versa.

In particular, when ρ = 1, the adversary has no clue about what di is; when

ρ = 2−l, i.e., ε = 1, the adversary has precisely located di. We call ρ the suspicion

ratio of di hereafter. Without loss of generality, we use Max as an example to evalu-

ate the performance of the non-additive aggregation process. The studies about other

non-additive aggregation functions can be conducted similarly. Before proceeding, we

want to mention that the Max/Min aggregation functions naturally disclose some infor-

mation: any user’s data will be smaller or equal to dmax and larger or equal to dmin. No

scheme can prevent this kind of privacy breach which is due to the aggregate functions

themselves. In the following, we will ignore such natural privacy breach and focus on

the loss of privacy occurring in the query process.

We make the following assumptions for analytical tractability. We assume that

the aggregation tree is static for the entire sequence of l Count queries. For clarity, we

consider a special case where the maximum value dmax = 2l − 1. The similar process
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can be used to analyze the more general case that dmax may be any value in [0, 2l−1].

We then have the following theorems regarding the expected suspicion ratio of VPA⊕.

Theorem 4.5.1. Assume that dmax = 2l − 1, the expected suspicion ratio of VPA⊕

under DP or μCS is given by

E[ρ] = 1− Pexp + (2−2l +

l∑
x=1

2−2x)Pexp , (4.18)

where Pexp is the exposure probability of VPA+ that given in Eq. (4.7) for DP and E-

q. (4.8) for μCS.

We give the proof in Appendix N.

Theorem 4.5.2. Assume that dmax = 2l − 1, the expected suspicion ratio under of

VPA⊕ under RCS is given by

E[ρ] =
l−1∑
x=0

2−x−1E[ρx] + 2−lE[ρl] , (4.19)

where

E[ρx] =
x∑

k1=0

Pr(ye = k1)

l+1∑
k2=x+1

Pr(ne = k2)ρ[ye, ne] , (4.20)

Pr(ye = k) =

⎧⎪⎨
⎪⎩

(1− Pexp)
x if k = 0,

Pexp(1− Pexp)
k−1 if 1 ≤ k ≤ x ,

(4.21)

Pr(ne = k) =

⎧⎪⎨
⎪⎩

Pexp(1− Pexp)
k−x−1 if x+ 1 ≤ k ≤ l,

(1− Pexp)
l−x if k = l + 1 ,

(4.22)

ρ[ye, ne] =

⎧⎪⎨
⎪⎩

2−ye − 2−ne if ye + 1 ≤ ne ≤ l,

2−ye if ne = l + 1 ,
(4.23)

Pexp is the exposure probability of VPA+ that given in Eq. (4.8) for RCS.

We give the proof in Appendix O.

94



Table 4.1: Default simulation settings

Para. Val. Para. Val. Para. Val. Para. Val.

M 10 Mc 5 n 200 nc 50

λ 8 φ 160 μ 1 t 5

N1 20.9 N2 39.3 N3 48.1 N4 48.2

l 10 L 3.39 ltree 160 lseed 160

lreq 160 lrsp 160 lhmac 1024 Ntree 1.86

4.5.3.2 Overhead Analysis

VPA⊕ differs from VPA+ mainly in the communication overhead. Since it takes l queries

to complete the aggregation process, each of which incurs communication overhead of

TVPA+ , we thus have

TVPA⊕ = l · TVPA+ ,

where TVPA+ is given in Eq. (4.10).

4.6 Performance Evaluation

In this section, we evaluate VPA+ and VPA⊕ using extensive simulations.

4.6.1 Simulation Setting

We simulate 10 cells of 1 km2, each with an AS located at the center and 200 nodes

randomly distributed within the cell. The transmission range of each node is 200m. This

gives the average hop distance between two random nodes L = 3.39.

For our purpose, the simulation code is written in C++ and each data point

represents an average of 50 simulation runs with different random seeds. Table 4.1

summarizes the default setting used in our simulation if not mentioned otherwise.

4.6.2 Evaluation of VPA+

Fig. 4.2a shows both the theoretical and simulation results of the exposure probabilities

of DP, RCS and μCS varying with nc, the number of curious nodes. We can see that

the exposure probabilities of all three schemes decrease as nc increases. Among three

schemes, DP has the highest exposure probability, followed by RCS and μCS. The rea-
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(a) exposure probability (b) exposure probability

Figure 4.2: Impact of nc and Mc.

(a) exposure probability (b) communication overhead

Figure 4.3: Impact of t, the number of cover nodes on RCS.

son is that on average, each node has only less than two neighbors on the aggregation

tree (i.e., a spanning tree), making it easier for the adversary to compromise (or collude

with) all the neighbors of a target node under DP. In contrast, it is much more difficult

to compromise all the cover nodes under RCS and μCS. In addition, we can see that

the Pexp of DP obtained via theoretical analysis is slightly higher than that obtained by

simulations. The reason is that we round Ntree to 
Ntree� when computing
(

n−nc

nc−Ntree

)
in

Eq. (4.7), leading to higher Pexp.

Fig. 4.2b shows the impact of Mc, the number of curious ASs on the exposure

probability of DP. Since curious ASs has no impact on RCS and μCS, there exposure
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(a) exposure probability (b) exposure probability

Figure 4.4: Impact of μ.

(a) suspicion ratio (b) suspicion ratio

Figure 4.5: Impact of nc and Mc on suspicion ratio.

probabilities are shown only for references. We can see that the exposure probability of

DP increases linearly with the number of curious AS increases, which is expected.

Fig. 4.3a shows the impact of t, the number of cover nodes, on the exposure

probability of RCS, where the Pexps of DP and μCS are shown only for reference. We

can see that the Pexp of RCS decreases as t increases, and quickly drops to zero when

t > 4. The reason is that the probability of all the t cover nodes being compromised

decreases exponentially as t increases.

Fig. 4.3b shows the communication overhead of RCS varying with t. We can see

that under the default settings, RCS incurs significantly higher communication overhead
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(a) suspicion ratio (b) communication overhead

Figure 4.6: Impact of l.

than that of DP and RCS. This is anticipated since finding a cover node under RCS

requires an AODV-like route discovery that involves a network-wide flooding.

Fig. 4.4 shows the impact of μ on the exposure probability and communication

overhead of μCS, where the results of DP and RCS are only shown for reference. We

can see from Fig. 4.4a that the exposure probability of μCS is not much affected by μ

because Pexp is already close to zero when μ = 1. In addition, We can see that the

communication overhead of μCS increases moderately as μ increases, which is of no

surprise.

4.6.3 Evaluation of VPA⊕

Fig. 4.5a shows the suspicion ratios of DP, RCS and μCS, varying with nc. We can see

that the suspicion ratios of all three schemes decrease as nc increases. The reason

is that the higher nc, the lower Pexp, and the lower suspicion ratio, and vice versa. In

addition, under the default setting, μCS has the highest suspicion ratio, followed by that

of RCS and DP.

Fig. 4.5b shows the impact of Mc on the suspicion ratio of DP, where the per-

formance of RCS and μCS are only shown for reference. We cans see that the larger

Mc, the lower suspicion ratio, and vice versa, which is easy to understand.

Fig. 4.6 shows the impact of l on the suspicion ratio and communication over-
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head of VPA⊕. We can see from Fig. 4.6a that the change in data range has negligible

impact on the suspicion ratio of VPA⊕. The reason is that the suspicion ratio is deter-

mined by the last disclosed yes answer and the first disclosed no answer. Under the

default setting, DP has the lowest suspicion ratio due to its highest Pexp among the

three schemes (cf. Fig. 4.2a), while the suspicion ratios of both RCS and μCS are close

to one. In addition, we can see from Fig. 4.6b that the communication overhead of

VPA⊕ increases linearly as l increases, as it takes l Count queries to locate the desired

aggregate.

4.6.4 Discussion

We summarize the evaluation results as follows.

• All three variants of VPA+ (i.e., DP, RCS, and μCS) can ensure aggregation in-

tegrity by detecting any false-data injection attempt.

• DP can provide user/data privacy with high probability while incurring the mini-

mum communication overhead.

• RCS can provide user/data privacy against curious ASs with overwhelming prob-

ability while incurring the highest communication overhead.

• μCS can provide user/data privacy against curious ASs with overwhelming prob-

ability while incurring relatively low communication overhead.

• Built upon VPA+ and binary search, VPA⊕ can ensure both aggregation integrity

and user/data privacy with communication overhead linear to the bit length of

data.

In practice, μCS and the resulting VPA⊕ may be the best choices whose performance

can be adjusted as needed.

4.7 Summary

In this chapter, we have presented the design and evaluation of VPA, a novel peer-

to-peer approach to verifiable privacy-preserving aggregation for people-centric urban
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sensing systems. VPA can support a wide range of additive and non-additive aggrega-

tion functions with strong user-privacy and aggregation-integrity guarantees. The high

efficacy and efficiency of VPA are confirmed by thorough theoretical analysis and sim-

ulation results.
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Chapter 5

PRIVATE MATCHING FOR PROXIMITY-BASED MOBILE SOCIAL NETWORKING

5.1 Introduction

Proximity-based mobile social networking (PMSN) becomes increasingly popular due

to the explosive growth of smartphones. In particular, eMarketer estimated the US and

worldwide smartphone users to be 73.3 million and 571.1 million in 2011, 1 respec-

tively, and almost all smartphones have WiFi and Bluetooth interfaces. PMSN refers

to the social interaction among physically proximate mobile users directly through the

Bluetooth/WiFi interfaces on their smartphones or other mobile devices. As a valu-

able complement to web-based online social networking, PMSN enables more tangible

face-to-face social interactions in public places such as bars, airports, trains, and sta-

diums [120]. In addition, PMSN may be the only feasible social networking tool when

mobile users cannot access the Internet for online social networking, e.g., due to lack of

Internet access minutes or very weak signals from cellular base stations or WiFi access

points.

PMSN is conducted via applications running on smartphones or other mobile

devices. Such applications can be offered by small independent developers. For in-

stance, there are currently over 50 Bluetooth/WiFi chatting applications in the Android

Market for Android devices and 60 in the App Store for Apple devices. Developing

advanced Bluetooth/WiFi social networking applications also has recently attracted at-

tention from the academia [120]. Moreover, online social network providers such as

Facebook and Twitter may add PMSN functionalities to their future applications for s-

martphones and other mobile devices.

Private (profile) matching is indispensable for fostering the wide use of PMSN.

On the one hand, people normally prefer to socialize with others having similar interests

or background over complete strangers. Such social reality makes profile matching [65]

the first step towards effective PMSN, which refers to two users comparing their per-

1http://www.emarketer.com/Report.aspx?code=emarketer_2000763
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sonal profiles before real interaction. On the other hand, people have growing privacy

concerns for disclosing personal profiles to arbitrary persons in physical proximity be-

fore deciding to interact with them [6, 21, 65, 69]. Although similar privacy concerns

also exist in online social networking, preserving users’ profile privacy is more urgent

in PMSN, as attackers can directly associate obtained personal profiles with real per-

sons nearby and then launch more targeted attacks. This situation leads to a circular

dependency between personal-profile exchange and engagement in PMSN and thus

necessitates private matching, in which two users to compare their personal profiles

without disclosing them to each other.

Some elegant schemes such as [6,65,69] have recently been proposed to en-

able coarse-grained private matching for PMSN. Common to these schemes is the

implicit assumption that each user’s personal profile consists of multiple attributes cho-

sen from a public set of attributes, which can be various interests [65], friends [6], or

disease symptoms [69] in different contexts. Private matching is then converted in-

to Private Set Intersection (PSI) [58, 122] or Private Set Intersection Cardinality (PSI-

CA) [19,30], whereby two mutually mistrusting parties, each holding a private data set,

jointly compute the intersection [58,122] or the intersection cardinality [19,30] of the two

sets without leaking any additional information to either party. These schemes [6,65,69]

can enable only coarse-grained private matching and are unable to further differentiate

users with the same attribute(s). For example, Alice, Bob, and Charlie all like watch-

ing movies and thus have “movie” as an attribute of their respective profile. Alice and

Bob, however, both go to the cinema twice a week, while Charlie does so once every

two weeks. If Alice can interact with only one of Bob and Charlie, e.g., due to time

constraints, Bob is obviously a better choice. Under the existing schemes [6, 65, 69],

however, Bob and Charlie appear the same to Alice. To solve this problem and thus

further enhance the usability of PMSN calls for fine-grained private matching.

A natural first step towards fine-grained private matching for PMSN is to use

fine-grained personal profiles. The basic idea is to associate a user-specific numerical
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value with every attribute. For example, assume that every attribute corresponds to a

different interest such as movie, sports, and cooking. The first time every user uses the

PMSN application, he is prompted to create his profile by assigning a value to every

attribute in the public attribute set defined by the PMSN application. Every attribute

value is an integer in [0, 10] and indicates the level of interest from no interest (0) to

extremely high interest (10). 2 Every personal profile is then defined as a set of attribute

values, each corresponding to a unique attribute in the public attribute set.

Fine-grained personal profiles have significant advantages over traditional coarse-

grained ones comprising only interested attributes from a public attribute set. First, fine-

grained personal profiles enable finer differentiation among the users having different

levels of interest in the same attribute. Continue with the previous example. Alice now

can choose Bob over Charlie, as she and Bob have closer attribute values for “movie.”

In addition, fine-grained personal profiles enable personalized profile matching in the

sense that two users can select the same agreed-upon metric from a set of candi-

date metrics to measure the similarity between their personal profiles or even different

metrics according to their individual needs. The accompanying challenge is, however,

how to ensure the privacy of fine-grained profile matching, which cannot be solved by

existing solutions [6,65,69].

This chapter explores fine-grained private (profile) matching to foster the wide

use of PMSN. Our main contributions can be summarized as follows.

• We motivate the requirement for and formulate the problem of fine-grained private

(profile) matching for PMSN for the first time in the literature.

• We propose the notion of fine-grained personal profiles and a corresponding suite

of novel private-matching protocols for different metrics measuring profile similar-

ity. Our first three protocols are for the �1 distance, which is the sum of absolute

difference in each attribute. We also propose a threshold-based protocol based

2Note that a user only needs to manually set the attribute values for interested attributes and leave all
the other attribute values as their default values (0).
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on the �1 distance, in which two users can determine whether the �1 distance

between their profiles is smaller than some personally chosen threshold. We fi-

nally extend the third protocol to be a threshold-based protocol based on the MAX

distance, which is the maximum absolute difference among all attributes.

• We provide thorough security analysis and performance evaluation of our pro-

posed protocols and demonstrate their efficacy and efficiency under practical set-

tings.

The rest of the chapter is organized as follows. Section 5.2 formulates the prob-

lem of fine-grained private matching in PMSN. Section 5.3 presents a suite of novel

fine-grained private-matching protocols. Section 5.5 analyzes and evaluates the perfor-

mance of the proposed protocols. Section 5.6 discusses the related work. Section 5.7

concludes this chapter.

5.2 Problem Formulation and Cryptographic Tool

In this section, we first state our assumption on PMSN and then formulates the problem

of fine-grained private matching. Finally, we brief introduce Paillier’s cryptosystem [82],

the cryptographic tool underlying our protocol.

5.2.1 Proximity-Based Mobile Social Networking (PMSN)

We assume that each user carries a smartphone or some other mobile device with

the same PMSN application installed. The PMSN application can be developed by

small independent developers or offered by online social network service providers like

Facebook as a function module of their applications built for mobile devices. More and

more advanced PMSN applications have also been developed by the academia [120].

For convenience only, we shall not differentiate a user from his mobile device later.

A PMSN session involves two users and consists of three phases. First, two

users need discover each other in the neighbor-discovery phase. Second, they need

compare their personal profiles in the matching phase. Last, two matching users enter
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the interaction phase for real information exchange. Our work is concerned with the first

and second phases.

The PMSN application uses fine-grained personal profiles for fine-grained match-

ing. In particular, the application developer defines a public attribute set consisting of

d attributes {A1, . . . , Ad}, where d may range from several tens to several hundreds

depending on specific PMSN applications. The attributes may have different meanings

in different contexts, such as interests [65], disease symptoms [69], or friends [6]. For

easier illustration, we hereafter assume that that each attribute corresponds to a per-

sonal interest such as movie, sports, and cooking. To create a fine-grained personal

profile, every user selects an integer ui ∈ [0, γ − 1] to indicate his level of interest in

Ai (for all i ∈ [1, d]) the first time he uses the PMSN application. As a fixed system

parameter, γ could be a small integer, say 5 or 10, which may be sufficient to differ-

entiate user’s interest level. The higher ui, the more interest the user has in Ai, and

vice versa. More specifically, 0 and γ − 1 mean no interest and extremely high interest,

respectively. Every personal profile is then defined as a vector 〈u1, . . . , ud〉. The user

can also modify his profile later on as needed.

There are two additional points worth noting. First, our scheme incurs negligible

additional burden on the PMSN users in contrast to coarse-grained private matching

schemes [6, 65, 69]. More specifically, a user only need rate a few selected attributes

while leaving all the others as the default value 0. Second, the assumed attribute range

[0, γ − 1] is only for ease of illustration, and our protocols can directly support arbitrary

attribute ranges. For example, the attribute range can be [−γ+1, γ− 1], where −γ+1

corresponds to extreme dislike, and the default value 0 means neutral.

5.2.2 Problem Statement: Fine-Grained Private Matching in PMSN

We consider Alice with profile u = 〈u1, . . . , ud〉 and Bob with profile v = 〈v1, . . . , vd〉

as two exemplary users of the same PMSN application from here on. Assume that Al-

ice wants to find someone to chat with, e.g., when waiting for the flight to depart. As

the first step (Neighbor Discovery), she broadcasts a chatting request via the PMSN
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application on her smartphone to discover proximate users of the same PMSN applica-

tion. Suppose that she receives multiple responses including one from Bob who may

also simultaneously respond to other persons. It should be noted that normally PMSN

pseudonyms instead of real names are used in neighbor discovery. Due to time con-

straints or other reasons, both Alice and Bob can only interact with one stranger whose

profile best matches hers or his. The next step (Profile Matching) is thus for Alice (or

Bob) to compare her (or his) profile with those of others who responded to her (or whom

he responded to). Our subsequent discussion will focus on the profile-matching process

between Alice and Bob for the sake of simplicity. As in [21], we assume that the PMSN

application is completely distributed and does not involve any third party in neighbor

discovery, profile matching, and subsequent real user interactions.

Alice and Bob are both assumed to have privacy concerns about disclosing

their personal profiles to complete strangers, so a privacy-preserving matching protocol

is needed. In particular, let F denote a set of candidate matchings defined by the

PMSN application developer, where each f ∈ F is a function over two personal profiles

that measures their similarity. Our private-matching protocols allow Alice and Bob to

either negotiate one common metric from F or choose different metrics according to

their individual needs. We shall focus on the latter more general case henceforth, in

which private matching can be viewed as two independent protocol executions, with

each user initiating the protocol once according to her/his chosen matching. Assume

that Alice chooses a matching metric f ∈ F and runs the privacy-matching protocol with

Bob to compute f(u,v). According to the amount of information disclosed during the

protocol execution, we define the following three privacy levels from Alice’s viewpoint,

which can also be equivalently defined from Bob’s viewpoint for his chosen matching

metric.

Definition 5.2.1. Level-I privacy: When the protocol ends, Alice only learns f(u,v),

and Bob only learns f .
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Definition 5.2.2. Level-II privacy: When the protocol ends, Alice only learns f(u,v),

and Bob learns nothing.

Definition 5.2.3. Level-III privacy: When the protocol ends, Alice only learns if f(u,v) <

τA holds for some threshold τA of her own choice without learning f(u,v), and Bob

learns nothing.

For all three privacy levels, neither Alice nor Bob learns the other’s personal

profile. With level-I privacy, although Bob cannot learn f(u,v), he learns the matching

metric f chosen by Alice. In contrast to level-I privacy, level-II privacy additionally re-

quires that Bob learn nothing other than f ∈ F . Finally, level-III privacy discloses the

least amount of information by also hiding f(u,v) from Alice. We will introduce a suite

of private-matching protocols satisfying one of the three privacy levels. Besides priva-

cy guarantees, other design objectives include small communication and computation

overhead, which can translate into the total energy consumption and matching time and

thus are crucial for resource-constrained mobile devices and the usability of PMSN.

There might be passive attackers eavesdropping on the messages between

Alice and Bob. All our protocols can ensure that the eavesdroppers are completely

blind to the profiles of Alice and Bob and the matching metric(s) chosen by them, which

will not be disclosed in plain text during the protocol execution. For simplicity, we will

neglect passive eavesdroppers in subsequent protocol illustrations and analysis.

It is beyond the scope of this chapter to consider some other possible attack-

s. For example, Bob may manipulate the protocol output by using an arbitrary profile

and/or not faithfully following the protocol operations (e.g., by changing intermediate

computation results). It is fundamentally difficult to defend against this attack without

involving a trusted third party as in [58, 65]. In particular, Alice cannot tell whether the

protocol output is caused by Bob’s misbehavior or they indeed having similar profiles.

Our protocols, however, can guarantee one of the three privacy levels for Alice against

Bob. Our protocols are also vulnerable to Denial-of-Service attacks in which an attacker
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keeps sending or replying to chatting requests without finishing private matching with

good users in order to consume their device resources. In addition, attackers may track

PMSN users if they use static pseudonyms in neighbor discovery, private matching, and

other PMSN communications. Moreover, intelligent attackers may launch the man-in-

the-middle (MiM) attack by surreptitiously relay messages between Alice and Bob who

are not physically proximate. These attacks are not unique to our private-matching sce-

nario, and similar ones can apply to any wireless protocol involving message exchanges

between multiple parties. The DoS attack can be mitigated by incorporating message

puzzles [52] into protocol design, the tracking attack can be alleviated by letting users

employ dynamic pseudonyms in PMSN communications, and the MiM attack can be

tackled by using the device pairing protocol in [40] . Tight space limitations do not allow

us to elaborate on these issues in detail here.

5.2.3 Cryptographic Tool: Paillier Cryptosystem

Our protocols rely on the Paillier cryptosystem [82], and we assume that every PMSN

user has a unique Paillier public/private key pair which can be generated via a function

module of the PMSN application. How the keys are generated and used for encryption

and decryption are briefed as follows to help illustrate and understand our protocols.

• Key generation. An entity chooses two primes p and q and compute N = pq

and λ = lcm(p − 1, q − 1). It then selects a random g ∈ Z∗
N2 such that gcd(L(gλ

mod N2), N) = 1, where L(x) = (x − 1)/N . The entity’s Paillier public and

private keys are 〈N, g〉 and λ, respectively.

• Encryption. Let m ∈ ZN be a plaintext to be encrypted and r ∈ ZN be a random

number. The ciphertext is given by

E(m mod N, r mod N) = gmrN mod N2 , (5.1)

where E(·) denotes the Paillier encryption operation on two integers modulo N .

To simplify our expressions, we shall hereafter omit the modular notation inside

E(·).
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• Decryption. Given a ciphertext c ∈ ZN2 , the corresponding plaintext can be

derived as

D(c) =
L(cλ mod N2)

L(gλ mod N2)
mod N , (5.2)

where D(·) denotes the Paillier decryption operation hereafter.

The Paillier’s cryptosystem has two very useful properties.

• Homomorphic. For any m1,m2, r1, r2 ∈ ZN , we have

E(m1, r1)E(m2, r2) = E(m1 +m2, r1r2) mod N2,

Em2(m1, r1) = E(m1m2, r
m2
1 ) mod N2 .

• Self-blinding.

E(m1, r1)r
N
2 mod N2 = E(m1, r1r2) ,

which implies that any ciphertext can be changed to another without affecting the

plaintext.

The Paillier cryptosystem is semantically secure for sufficiently large N and g,

which means that it is infeasible for a computationally bounded adversary to derive

significant information about a message (plaintext) when given only its ciphertext and

the corresponding public key. To facilitate our illustrations, we assume that N and g

are of 1024 and 160 bits, respectively, for sufficient semantical security of the Paillier

cryptosystem [21]. Under this assumption, a public key 〈N, g〉 is of 1184 bits, a cipher-

text is of 2 log2N=2048 bits, a Paillier encryption needs two 1024-bit exponentiations

and one 2048-bit multiplication, and a Paillier decryption costs essentially one 2048-bit

exponentiation.

5.3 Fine-Grained Private Matching Protocols

In this section, we present three private-matching protocols to support different match-

ing metrics and offer different levels of privacy. In particular, Protocol 1 is for the �1-

distance matching metric and can offer level-I privacy, Protocol 2 supports a family of
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additively separable matching metrics and can offer level-II privacy, and Protocol 3 is

an enhancement of Protocol 3 for supporting level-III privacy.

A complete matching process involves Alice with profile u = 〈u1, . . . , ud〉 and

Bob with profile v = 〈v1, . . . , vd〉, each running an independent instance of the same or

even different private-matching protocol. Let f denote any matching metric supported

by Protocols 1 to 3. The larger f(u,v), the less similar u and v, and vice versa. We

can thus consider f(u,v) some kind of distance between u and v. Assume that Alice

has a threshold τA and will accept Bob if f(u,v) < τA. Similarly, Bob has a threshold

τB and will accept Alice if f(u,v) < τB. If both accept each other, they can start real

information exchange. Our subsequent protocol illustrations and analysis will be from

Alice’s viewpoint, which can be similarly done from Bob’s viewpoint. We assume that

Alice has a Paillier public key 〈N, g〉 and the corresponding private key λ, which are

generated as in Section 5.2.3. A practical security protocol often involves some rou-

tines such as using timestamps to mitigate replay attacks and message authentication

codes for integrity protection. To focus on explaining our key ideas, we will neglect such

security routines in protocol illustrations.

5.3.1 Protocol 1 for Level-I Privacy

Protocol 1 is designed for the �1 distance as the matching metric. Recall that every per-

sonal profile is a vector of dimension d. As probably the most straightforward matching

metric, the �1 distance (also called the Manhattan distance) is computed by summing

the absolute value of the element-wise subtraction of two profiles and is a special case

of the more general �α distance defined as

�α(u,v) = (

d∑
i=1

|vi − ui|α)
1
α , (5.3)

where α ≥ 1. When α = 1, we have �1(u,v) =
∑d

i=1 |vi− ui |. The �1 distance allows

a user to evaluate whether the overall absolute difference between his and another

user’s profiles is above a threshold chosen by himself.
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Protocol 1 is designed to offer level-I privacy from Alice’s viewpoint with regard

to Bob. It is a nontrivial adaptation from the protocol in [91] with significantly lower

computation overhead to be shown shortly. Our basic idea is to first convert �1(u,v)

into the �2 distance between the unary representations of u and v and then compute

the �2 distance using a secure dot-product protocol.

In particular, for all x ∈ [0, γ−1], we define a binary vector h(x) = 〈x1, . . . , xγ−1〉,

where xi is equal to one for 1 ≤ i ≤ x and zero for x < i ≤ γ − 1. We also

abuse the notation by defining another binary vector û = h(u) = 〈h(u1), . . . , h(ud)〉 =

〈û1, . . . , û(γ−1)d〉 and v̂ = h(v) = 〈h(v1), . . . , h(vd)〉 = 〈v̂1, . . . , v̂(γ−1)d〉. It follows that

�1(u,v) =

d∑
i=1

|ui − vi|

=

(γ−1)d∑
i=1

|ûi − v̂i|

=

(γ−1)d∑
i=1

|ûi − v̂i|2 = �22(û, v̂) .

(5.4)

The correctness of the above equation is straightforward. We can further note that

�22(û, v̂) =

(γ−1)d∑
i=1

|ûi − v̂i|2

=

(γ−1)d∑
i=1

û2i − 2

(γ−1)d∑
i=1

ûiv̂i +

(γ−1)d∑
i=1

v̂2i

=

(γ−1)d∑
i=1

û2i − 2û · v̂ +

(γ−1)d∑
i=1

v̂2i .

(5.5)

Since Alice and Bob know
∑(γ−1)d

i=1 û2i and
∑(γ−1)d

i=1 v̂2i , respectively, we just need a

secure dot-product protocol for Bob to compute û · v̂ without knowing Alice’s profile u

or disclosing his profile v to Alice. Subsequently, Bob can return −2û · v̂+
∑(γ−1)d

i=1 v̂2i

for Alice to finish computing �22(û, v̂) and thus �1(u,v).

5.3.1.1 Protocol Details

The detailed operations of Protocol 1 are as follows.

1. Alice does the following in sequence.
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a. Construct a vector û = h(u) = (h(u1), . . . , h(ud)) = (û1, . . . , û(γ−1)d),

where ûj is equal to one for every j ∈ Ju = {j|(i − 1)(γ − 1) < j ≤

(i− 1)(γ − 1) + ui, 1 ≤ i ≤ d} and zero otherwise.

b. Choose a distinct rj ∈ ZN and compute E(ûj , rj) for every j ∈ [1, (γ − 1)d]

using her public key.

c. Send {E(ûj , rj)}(γ−1)d
j=1 and her public key to Bob.

2. Bob does the following after receiving Alice’s message.

a. Construct a vector v̂ = h(v) = (h(v1), . . . , h(vd)) = (v̂1, . . . , v̂(γ−1)d),

where v̂j is equal to one for every j ∈ Jv = {j|(i − 1)(γ − 1) < j ≤

(i− 1)(γ − 1) + vi, 1 ≤ i ≤ d} and zero otherwise.

b. Compute

E(û · v̂,
∏
j∈Jv

rj) = E(
∑
j∈Jv

ûj,
∏
j∈Jv

rj)

=
∏
j∈Jv

E(ûj , rj) mod N2 ,

(5.6)

where the first equality sign is very obvious, and the second is due to the

homomorphic property of the Paillier cryptosystem.

c. Compute

E((N − 2)û · v̂, s) = EN−2(û · v̂,
∏
j∈Jv

rj) mod N2 ,

where s = (
∏

j∈Jv
rj)

N−2 mod N . This equation holds again due to the

homomorphic property of the Paillier cryptosystem.

d. Compute E(
∑d(γ−1)

j=1 v̂2j , r) with a random r ∈ ZN .

e. Compute

E(

d(γ−1)∑
j=1

v̂2j − 2û · v̂, rs) = E(

d(γ−1)∑
j=1

v̂2j + (N − 2)û · v̂, rs)

= E(

d(γ−1)∑
j=1

v̂2j , r) · E((N − 2)û · v̂, s) mod N2 ,

(5.7)
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and send it back to Alice. Note that the first equality sign is because v̂2j −

2û · v̂ = v̂2j +(N − 2)û · v̂ mod N , and that the second is again due to the

homomorphic property of the Paillier cryptosystem.

3. Alice decrypts E(
∑d(γ−1)

j=1 v̂2j −2û ·v̂, rs) using her private key to get
∑d(γ−1)

j=1 v̂2j −

2û · v̂ and finally computes

�1(u,v) =

d(γ−1)∑
j=1

v̂2j − 2û · v̂ +

d(γ−1)∑
j=1

û2j . (5.8)

5.3.1.2 Protocol Analysis

We now analyze the privacy provision of Protocol 1 and the related computation and

communication overhead.

Theorem 5.3.1. Protocol 1 ensures level-I privacy if the Paillier cryptosystem is seman-

tically secure and a personal profile is a vector of dimension d ≥ 2.

Proof. Bob receives and operates only on ciphertexts {E(û1, r1)}(γ−1)d
j=1 and does not

know Alice’s private key. Since the Paillier cryptosystem is semantically secure, com-

putationally bounded Bob cannot decrypt the ciphertexts to learn anything about Alice’s

profile u. As to Alice, she only get
∑d(γ−1)

j=1 v̂2j − 2û · v̂. If she wants to find out Bob’s

profile v, she must solve an equation with d unknowns, which is infeasible for d ≥ 2.

Therefore, Alice knows nothing about v other than the result �1(u,v).

The computation overhead incurred by Protocol 1 is mainly related to modular

exponentiations and multiplications. In particular, Alice need perform (γ − 1)d Pailli-

er encryptions in Step 1.a, each costing two 1024-bit exponentiations and one 2048-

bit multiplication according to Eq. (5.1). Note that Alice can preselect many random

numbers and precompute the corresponding ciphertexts in an offline manner to re-

duce the online matching time.3 In addition, Alice need perform one Paillier decryption

in Step 3, which is essentially a 2048-bit exponentiation. As for Bob, he need per-

form
∑d

i=1 vi − 1 2048-bit multiplications in Step 2.b, one 2048-bit exponentiation in
3Alice can even do such offline computations on her regular computer and then synchronize the results

to her mobile device.
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Step 2.c, two 1024-bit exponentiations and one 2048-bit multiplication (i.e., one Paillier

encryption) in Step 2.d, and one 2048-bit multiplication in Step 2.e. Considering Alice

and Bob together, we can approximate the online computation cost of Protocol 1 to be∑d
i=1 vi + 1 2048-bit multiplications, two 2048-bit exponentiations, and two 1024-bit

exponentiations. In contrast, a direct application of the secure dot-protocol in [91] will

require Bob to perform totally (γ − 1)d − 1 more 2048-bit exponentiations in Steps 2.b

and 2.c.

The communication overhead incurred by Protocol 1 involves Alice sending her

public key 〈N, g〉 and (γ − 1)d ciphertexts in Step 1.c and Bob returning one ciphertext

in Step 2.e. Since a public key and a ciphertext are of 1184 and 2048 bits, respectively,

the total net communication cost of Protocol 1 is of 2048(γ − 1)d + 3232 bits without

considering message headers and other fields.

5.3.2 Protocol 2 for Level-II Privacy

We now introduce Protocol 2 which can satisfy level-II privacy. In contrast to Protocol 1

working only for the �1 distance, Protocol 2 can apply to a family of additively separable

matching metrics and also hide the matching metric chosen by one user from the other.

The secrecy of a user’s selected matching metric can help prevent an attacker from

generating better tailored profiles to deceive the victim user into a successful matching.

To illustrate Protocol 2, we first introduce the definition of additively separable

functions as follows.

Definition 5.3.1. A function f(u,v) is additively separable if it can be written as f(u,v) =∑d
i=1 fi(ui, vi) for some functions f1(·), . . . , fn(·).

Many common matching metrics are additively separable. For example, the �1

distance can be written as �1(u,v) =
∑d

i=1 |ui − vi |, the dot product is u · v =∑d
i=1 uivi, and the �α norm is �αα =

∑d
i=1 |ui − vi|α. In addition, assuming that

Alice assigns a weight wi to attribute i, we can define the weighted �1 distance as∑d
i=1wi|ui − vi| which is also additively separable.
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Protocol 2 works by first converting any additively separable function into a dot-

product computation. In particular, given an additively separable similarity function f

of interest, Alice constructs a vector ũ = 〈ũ1, . . . , ũγd〉, where ũj = fi(ui, k), i =


(j − 1)/γ� + 1, and k = (j − 1) mod γ, for all j ∈ [1, γd]. Assume that Bob also

relies on his profile v to construct a binary vector ṽ = (ṽ1, . . . , ṽγd), where the jth bit ṽj

equals one for all j ∈ J ′
v = {j|j = (i − 1)γ + vi + 1, 1 ≤ i ≤ d} and zero otherwise.

It follows that ũj ṽj = ũj = fi(ui, vi) for all j ∈ J ′
v and zero otherwise. We then can

easily obtain the following result.

f(u,v) =
d∑

i=1

fi(ui, vi)

=
∑
j∈J ′

v

ũj

=

γd∑
j=1

ũj ṽj = ũ · ṽ

(5.9)

So we can let Alice run a secure dot-protocol protocol with Bob to obtain ũ · ṽ = f(u,v)

without disclosing u or f to Bob.

5.3.2.1 Protocol Details

The detailed operations of Protocol 2 are as follows.

1. Alice first constructs a vector ũ as discussed above and then chooses a distinct

random rj ∈ ZN to compute E(ũj , rj) for all j ∈ [1, γd] using her public key.

Finally, she sends {E(ũj , rj)}γdj=1 and her public key to Bob.

2. Bob constructs a vector ṽ as described above after receiving Alice’s message.

He then computes

E(ũ · ṽ,
∏
j∈J ′

v

rj) = E(
∑
j∈J ′

v

ûj,
∏
j∈J ′

v

rj)

=
∏
j∈J ′

v

E(ûj , rj) mod N2 ,

(5.10)
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which holds due to Eq. (5.9) and the homogenous property of the Paillier cryp-

tosystem. Next, he selects a random number rB ∈ ZN to compute

E(ũ · ṽ, rB
∏
j∈J ′

v

rj) = E(ũ · ṽ,
∏
j∈J ′

v

rj) · rNB mod N2 , (5.11)

which holds due to the self-blinding property of the Paillier cryptosystem intro-

duced in Chapter 5.2.3. Finally, Bob returns E(ũ · ṽ, rB
∏

j∈J ′
v
rj) to Alice.

3. Alice uses her private key to decrypt E(ũ · ṽ, rB
∏

j∈J ′
v
rj) and finally get ũ · ṽ,

i.e., f(u,v).

Note that it is necessary for Bob to perform one more encryption in Step.2 using

a random number rB unknown to Alice. Otherwise, Alice may be able to easily infer

Bob’s profile v by purposefully choosing her profile v and random numbers {rj}γdj=1.

5.3.2.2 Protocol Analysis

We now analyze the privacy provision of Protocol 2 and the related computation and

communication overhead.

Theorem 5.3.2. Protocol 2 ensures level-II privacy if the Paillier cryptosystem is se-

mantically secure and a personal profile is a vector of dimension d ≥ 2.

Proof. The proof is similar to that of Theorem 5.3.1 except the additional point that Bob

does not know the matching metric f employed by Alice. It is thus omitted here for lack

of space.

The computation overhead incurred by Protocol 2 also mainly relates to mod-

ular exponentiations and multiplications. In particular, Alice need perform γd Paillier

encryptions in Step 1, each requiring two 1024-bit exponentiations and one 2048-bit

multiplication. As in Protocol 1, Alice can do these encryptions beforehand in an offline

manner. In addition, Alice need do one Paillier decryption in Step 3, corresponding to

one 2048-bit exponentiation. Moreover, Bob need perform d − 1 = |J ′
v| − 1 2048-bit
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multiplications in Eq. (5.10) plus one 1024-bit exponentiation and one 2048-bit multipli-

cation in Eq. (5.11). In summary, the total online computation overhead of Protocol 2

can be approximated by d 2048-bit multiplications, one 2048-bit exponentiation, and

one 1024-bit exponentiation.

The communication overhead incurred by Protocol 2 involves Alice sending her

public key 〈N, g〉 and γd ciphertexts in Step 1 and Bob returning one ciphertext in

Step 2. Similar to that of Protocol 1, the total net communication cost of Protocol 2 can

be computed as 2048(γd + 1) + 1184 bits without considering message headers and

other fields.

5.3.3 Protocol 3 for Level-III Privacy

Protocol 3 is designed to offer level-III privacy. In contrast to Protocol 2, it only lets Alice

know whether f(u,v) is smaller than a threshold τA of her own choice, while hiding

f(u,v) from her. Protocol 3 is desirable if Bob does not want Alice to know the actual

similarity score f(u,v) between their profiles.

Protocol 3 is based on a special trick. In particular, assuming that there are three

arbitrary integers δ, δ1, and δ2 such that δ > δ1 > δ2 ≥ 0, we have 0 < (δ1 − δ2)/δ <

1. Since we assume f(u,v) and τA both to be integers, f(u,v) < τA is equivalent

to f(u,v) + (δ1 − δ2)/δ < τA and thus δf(u,v) + δ1 < δτA + δ2. On the other

hand, if f(u,v) ≥ τA, we would have f(u,v) + (δ1 − δ2)/δ > τA. According to this

observation, Bob can choose random δ, δ1, and δ2 unknown to Alice and then send

encrypted δf(u,v) + δ1 and δτA + δ2 to Alice. After decrypting the ciphtertexts, Alice

can check whether δf(u,v)+δ1 is smaller than δτA+δ2 to learn whether f(u,v) < τA.

5.3.3.1 Protocol Details

The detailed operations of Protocol 3 are as follows.

1. Alice first constructs a vector ũ as in Step 1 of Protocol 2. She then chooses a

distinct random rj ∈ ZN to compute E(ũj , rj) for all j ∈ [1, γd] and also another
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distinct random rτA to compute E(τA, rτA). Finally, she sends {E(ũj , rj)}γdj=1,

E(τA, rτA), and her public key to Bob.

2. Bob first construct a binary vector ṽ whereby to compute E(ũ · ṽ,
∏

j∈J ′
v
rj)

(i.e., E(f(u,v),
∏

j∈J ′
v
rj)) as in Step 2 of Protocol 2. He then randomly choose

r′1, r
′
2, δ, δ1, δ2 ∈ ZN such that δ > δ1 > δ2 to compute

E(δũ · ṽ + δ1, s1) = E(ũ · ṽ,
∏
j∈J ′

v

rj)
δE(δ1, r

′
1) mod N2

(5.12)

and

E(δτA + δ2, r
′
2rτA) = E(τA, rτA)

δ · E(δ2, r′2) mod N2 , (5.13)

where s1 = r′1(
∏

j∈J ′
v
rj)

δ mod N . Both equations hold due to the homomor-

phic property of the Paillier cryptosystem. Finally, Bob returns E(δũṽ + δ1, s1)

and E(δτA + δ2, r
′
2rτA) to Alice.

3. Alice decrypts the ciphertexts to get δũ·ṽ+δ1 and δτA+δ2. If the former is smaller

than the latter, Alice knows f(u,v) < τA. Otherwise, she knows f(u,v) ≥ τA.

5.3.3.2 Protocol Analysis

We now analyze the privacy provision of Protocol 3 and the related computation and

communication overhead.

Theorem 5.3.3. Protocol 3 ensures level-III privacy if the Paillier cryptosystem is se-

mantically secure and a personal profile is a vector of dimension d ≥ 2.

Proof. The proof is similar to that of Theorem 5.3.2 except the additional points that

Bob does not know Alice’s threshold τA and that Alice does know the comparison result

f(u,v).

The computation overhead incurred by Protocol 3 also mainly relates to modu-

lar exponentiations and multiplications. In particular, Alice need perform γd+ 1 Paillier

encryptions in Step 1, each requiring two 1024-bit exponentiations and one 2048-bit

multiplication. As in Protocol 2, Alice can do these encryptions beforehand in an offline
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manner. In addition, Alice need do two Paillier decryptions in Step 3, each correspond-

ing to one 2048-bit exponentiation. Moreover, Bob need perform d − 1 = |J ′
v| − 1

2048-bit multiplications in Eq. (5.10) plus one 1024-bit exponentiation and one 2048-bit

multiplication in Eq. (5.11). Furthermore, Bob need do one 2048-bit exponentiation, one

Paillier encryption, and one 2048-bit multiplication in each of Eqs. (5.12) and (5.13). In

summary, the total online computation cost of Protocol 3 is d+3 2048-bit multiplications,

four 2048-bit exponentiations, and four 1024-bit exponentiations.

The communication overhead incurred by Protocol 3 involves Alice sending her

public key 〈N, g〉 and γd+ 1 ciphertexts in Step 1 and Bob returning two ciphertexts in

Step 2. Similar to that of Protocol 2, the total net communication cost of Protocol 3 can

be computed as 2048(γd + 3) + 1184 bits without considering message headers and

other fields.

5.4 Extension: MAX-Distance Matching

In this section, we present another private-matching protocol based on the MAX dis-

tance. Given two personal profiles u and v, the MAX distance between them is defined

as follows.

�max(u,v) = max{|v1 − u1|, . . . , |vd − ud|} (5.14)

Protocols 1 to 3 all enable a user to check whether the overall absolute difference

between her and another user’s profiles is below a personally chosen threshold. In con-

trast, Protocol 4 allows the user to check whether the maximum attribute-wise absolute

difference does not exceed her personal threshold.

At the first glance, �max(u,v) is not an additively separable function, so it cannot

be computed using Protocol 2 or 3. In what follows, we first show how to convert

�max(u,v) into an additively separable function based on a concept called similarity

matching and then present the protocol details and analysis.

5.4.1 From the MAX Distance to an Additively Separable Function

The conversion from �max(u,v) to an additively separable function relies on similarity

matching defined as follows.
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Definition 5.4.1. Given two user’s personal profiles u = 〈u1, . . . , ud〉 and v = 〈v1, . . . , vd〉,

their i attributes are considered similar if |ui − vi| ≤ τ for a specific threshold τ .

Definition 5.4.2. The similarity score of u and v, denoted by Φ(u,v, τ), is defined as

the total number of similar attributes, i.e.,

Φ(u,v, τ) =

d∑
i=1

φ(ui, vi, τ) ,

where

φ(ui, vi, τ) =

⎧⎪⎪⎨
⎪⎪⎩
1 if |ui − vi| ≤ τ,

0 otherwise .

The similarity score has three essential properties. First, it is additively separa-

ble, implying that Alice can run Protocol 2 with Bob to compute Φ(u,v, τ) or Protocol 3

to check whether Φ(u,v, τ) < τA. Second, it is directly affected by the value of τ .

In particular, the larger τ , the higher Φ(u,v, τ), and vice versa. Last, it relates to

�max(u,v) based on the following theorem.

Theorem 5.4.1. For all τ ≥ �max(u,v), we have Φ(u,v, τ) = d; likewise, for all τ <

�max(u,v), we have Φ(u,v, τ) < d.

Proof. By the definition of the MAX distance, we have |ui − vi| ≤ �max(u,v) for all

1 ≤ i ≤ d. It follows that φ(ui, vi, τ) = 1 for all 1 ≤ i ≤ d if τ ≥ �max(u,v). Therefore,

we have therefore have s(u,v, τ) = d for all τ ≥ �max(u,v). Similarly, by the defini-

tion of MAX distance, there exists k such that |uk − vk| = �max(u,v). It follows that

φ(uk, vk, τ) = 0, so we have Φ(u,v, τ) < d for all τ < �max(u,v).

5.4.2 Protocol 4: MAX-Distance Matching for Level-III Privacy

Protocol 4 depends on Protocol 3 for level-III privacy. Let τmax to denote Alice’s MAX-

distance threshold kept secret from Bob. According to Theorem 4, checking whether

�max(u,v) < τmax is equivalent to checking whether Φ(u,v, τmax) = d.
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5.4.2.1 Protocol Details

1. Alice first constructs a vector ũ = 〈ũ1, . . . , ũγd〉, where ũj = φi(ui, k, τmax), i =


j/γ�+1, and k = (j − 1) mod γ for all j ∈ [1, γd]. He then chooses a random

rmax ∈ ZN to compute E(d, rmax) and a distinct random rj ∈ ZN to compute

E(ũj , rj) for all j ∈ [1, γd]. Finally, she sends {E(ũj , rj)}γdj=1, E(d, rτmax), and her

public key to Bob.

2. Bob performs almost the same operations as in Step 2 of Protocol 2 (except

replacing rA by rmax) and returns E(δũ · ṽ + δ1, s1) and E(δd + δ2, r
′
2rτmax) to

Alice. As in Protocol 2, we have ũ · ṽ = Φ(u,v, τmax).

3. Alice does the same as in Step 3 of Protocol 3 to check whether δũ ·ṽ+δ1 < δd+

δ2. If so, she learns ũ·ṽ < d (i.e., Φ(u,v, τmax) < d) and thus �max(u,v) > τmax.

Otherwise, Alice knows �max(u,v) ≤ τmax.

Since Protocol 4 is a special case of Protocol 3 and thus can also ensure level-III

privacy with the same communication and computation overhead as that of Protocol 3.
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5.5 Performance Evaluation

In this section, we evaluate the communication and computation overhead as well as

overall execution time of our protocols in contrast to previous work. Since previous

work [6,21,65,69] on private matching for PMSN is not applicable to fine-grained private

matching addressed by our protocols, we only compare our work with RSV, which refers

to the �1 distance protocol in [91] and can satisfy level-I privacy. We are not aware of

any existing work that can offer level-III privacy as our Protocol 3. We omit the rather

straightforward derivation process for the communication and computation costs of RSV

and refer interested readers to [91] for details.

Table 5.1 summarizes the theoretical performance of Protocols 1∼4 and RSV,

where mul1,mul2, exp1, and exp2 denote one 1024-bit multiplication, 2048-bit multipli-

cation, 1024-bit exponentiation, and 2048-bit exponentiation, respectively. It is clear

that all our protocols incur significantly lower online computation overhead than RSV

with similar communication overhead.

5.5.1 Implementation

We implement our four protocols and RSV on LG P-970 smartphones, which has a

1GHz Cortex-A8 processor, 512 MB RAM, Android v2.2 Operating System, a 802.11

b/g/n WiFi interface, and Bluetooth v2.1 with Enhanced Data Rate (EDR). As in [21], we

use a publicly available Java implementation of Paillier cryptosystem [51]. The whole

PMSN application consists of 5000+ lines of Java code, in which our four protocols

share the majority of the codes. Since Android platform currently does not support WiFi

ad-hoc mode, we let two smartphones communicate with each other through Bluetooth.

In our experiments, we are only able to achieve a transmission rate of approximately

800 kb/s, lthough Bluetooth v2.1 with EDR is expected to operate at a transmission rate

of 2.1 Mb/s. If better Bluetooth implementations are available, the execution time of our

protocols can be significantly reduced.
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In our implementation, assuming that Alice initiates the matching protocol with

Bob, each protocol consists of five main steps as follows.

1. Alice prepares the message through offline computation, e.g., generating a num-

ber of ciphertexts according to our protocol specifications;

2. Alice sends the message to indicate the start of the protocol;

3. Bob receives and buffers the message;

4. Once the transmission completes, Bob computes the intermediate result accord-

ing to our protocol specifications, and sends it back to Alice;

5. On receiving the intermediate result, Alice computes the final matching result.

We use custom message headers in the application layer to distinguish these mes-

sages.

5.5.2 Experimental Results

We first measure the computation time of different basic operations of Paillier cryp-

tosystem on LG P-970 and a Dell XPS 9100 desktop with Intel Core i7 920 2.6GHZ

CPU, 9GB RAM, and Windows 7 Operating System. The desktop is used for offline

computation. Tables 5.2 and 5.3 show the mean, maximum, minimum, medium, and

standard deviation of the execution time of mul1, mul2, exp1, exp2, Enc, and Dec on dif-

ferent platforms, where Enc and Dec denote one Paillier encryption and one decryption,

respectively, and each value is computed statistically from 10,000 runs. We can see

that it takes much less time to perform the same operation on Dell XPS 9100 than on

LG P-970. For example, one Paillier encryption takes on average 167.21 ms and 37.53

ms on LG P-970 and Dell XPS 9100, respectively. In what follows, we assume that

the offline computation is performed on desktop and is not counted into the protocol

execution time.

In our experiments, we generate random profiles with each having d attributes,

where every attribute value is chosen from [0, γ − 1] uniformly at random. The perfor-
124



Table 5.2: Execution time of different operations (ms) on LG P-970

Operation Mean Max Min Median Std.

mul1 0.73 40.25 0.58 0.61 1.16
exp1 81.08 112.0 77.0 78.0 6.22
mul2 0.88 43.00 0.73 0.76 1.14
exp2 159.06 197.0 153.0 154.0 9.75
Enc 167.21 295.0 158.0 159.0 17.53
Dec 165.6 227.0 160.0 161.0 10.27

Table 5.3: Execution time of different operations (ms) on Dell XPS 9100

Operation Mean Max Min Median Std.

mul1 0.0076 0.10 0.0042 0.0062 0.0055
exp1 18.84 28.0 17.0 18.0 1.54
mul2 0.033 0.28 0.031 0.031 0.0080
exp2 36.26 40.0 34.0 36.0 1.46
Enc 37.53 40.0 35.0 37.0 1.16
Dec 37.66 41.0 36.0 37.0 1.20

mance metrics used include the offline computation time on the desktop, online com-

putation time on the smartphone, the total net communication cost in bits, and the total

online execution time including the online computation, communication, and internal

processing time. Note that a complete matching process involves two independent ex-

ecutions of the same or even different private-matching protocols, initiated by Alice and

Bob, respectively. For simplicity, we assume that Alice and Bob choose the same pro-

tocol and only show the results for one protocol execution. The total matching time thus

should be twice the shown total online execution time. Finally, since Protocol 4 has the

same communication and computation overhead as Protocol 3, its performance results

are not shown for brevity.

5.5.2.1 Impact of d

We first check the case when γ = 5 and d varies. It is not surprising to see from

Fig. 5.1a that the offline computation costs of all the four protocols are proportional to

d. In addition, Protocols 2 and 3 incur comparable offline computation overhead higher

than that of Protocol 1 and RSV which incur the same computation overhead. The main

reason is that both Protocols 2 and 3 require γd + 1 offline Paillier encryptions,4 while

4Recall that one Paillier encryption corresponds to two 1024-bit exponentiation and one 2048-bit mul-
tiplication.
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(a) offline computation cost (b) online computation cost

(c) communication cost (d) protocol execution time

Figure 5.1: Impact of the profile dimension d, where γ = 5.

RSV and Protocol 1 require (γ − 1)d. Since users can do such offline computations

on their regular computers and then synchronize the results to their mobile devices, the

offline computation cost thus does not contribute to the total protocol execution time.

Fig. 5.1b shows the online computation costs of all the protocols in the log 10

scale for a fixed γ = 5 and varying d. It is clear that Protocols 1 to 3 all incur much

lower online computation overhead than RSV. The main reasons are that 1024-bit and

2048-bit exponentiations dominate the online computation costs of all the protocols and

that Protocols 1 to 3 all require a constantly small number of modular exponentiations,

while RSV requires a much larger number of modular exponentiations that increases

almost linearly with d.
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Fig. 5.1c compares the total net communication costs of all the protocols for

a fixed γ = 5 and varying d. We can see that all the protocols incur comparable

communication costs which all increase almost linearly as d increases, which is of no

surprise.

Fig. 5.1d shows the total protocol execution time for a fixed γ = 5, which com-

prise the online computation, communication, and internal processing time and is dom-

inated by the former. We can see that there are some fluctuations in the protocol exe-

cution time, mainly due to unstable transmission rate of the Bluetooth interface. In addi-

tion, Protocol 2 has the shortest execution time among Protocols 1 to 3, while Protocol 3

has the longest for achieving level-III privacy. All our protocols, however, can finish with-

in 15 seconds under all simulated scenarios in contrast to the much longer execution

time required by RSV. For example, when d = 100, RSV require 80.1 seconds to finish,

while Protocols 1 to 3 only require 4.2, 4.2, and 4.7 seconds, respectively. Recall that

a complete private-matching process involves two protocol executions. Our three pro-

tocols are thus much more feasible and user-friendly solutions to private matching for

PMSN.

5.5.2.2 Impact of γ

The impact of γ on the protocol performance is shown in Fig. 5.2, where d is fixed to be

100. Similar results can be observed as in Fig. 5.1. In particular, the online computation

time of Protocols 1 to 3 are relatively insensitive to the increase in γ while that of RSV

increases linearly as γ increases.

5.5.2.3 Energy Consumption

As in [21], we measure the energy consumption of our protocols using PowerTutor [131].

Table III shows that the energy consumption of one execution of RSV and Protocols 1

to 3, where d = 100 and γ = 5. We can see that all our protocols consumes about

one eighth of the energy RSV does. In addition, a fully charged LG P-970 has 20,160J

and one execution of any of our protocols only consumes less than 0.06% of the total
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(a) offline computation cost (b) online computation cost

(c) communication cost (d) protocol execution latency

Figure 5.2: Impact of the highest attribute value γ, where d = 200.

Table 5.4: Comparison of energy consumption for four protocols, where d = 100 and
γ = 5

Energy Consumption (J)
Protocol Alice Percentage Bob Percentage Total

RSV [91] 100 0.46% 98 0.45% 198
Protocol 1 12 0.055% 9.6 0.047% 21.6
Protocol 2 12.3 0.057% 9.6 0.047% 21.9

Protocol 3 13.2 0.061% 13.9 0.064% 27.1

energy, which indicate that our private matching protocols are very practical in terms of

power consumption.

5.5.3 Discussion

The experimental results show that all our protocols incur similar offline computation and

communication overhead but significantly lower online computation overhead and thus
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total protocol execution latency in comparison with RSV, making them more practical

than RSV to realize private matching in PMSN.

To further reduce the total execution latency of our protocols, there are two di-

rections to explore. First, since a significant portion of the total protocol execution time

is the transmission time, it is possible to reduce the total execution latency by using ad-

vanced wireless interface with higher transmission rate. For example, Bluetooth 3.0 and

4.0 have a promised speed of 25 Mb/s, and Wi-Fi Direct has the maximum transmis-

sion rate of up to 250 Mb/s, while our current achievable transmission rate via Bluetooth

interface on LG P-970 is only 800 kb/s. As more and more emerging mobile devices

support these advanced interfaces, the transmission time and total protocol execution

latency of our protocols will be significantly reduced. For instance, when d = 100 and

γ = 5, with a transmission rate of 25 Mb/s, the total execution times of Protocols 1 to

3 will be close to the online computation time, i.e., 2.1s, 1.4s, and 2.4s, respectively.

Second, our currently implementation uses the publicly available Java implementation

of Paillier cryptosystem [51] without any optimization, further optimization is expected

to further reduce the online computation time.

5.6 Related Work

In this section, we briefly discuss some work in several areas which is most germane to

our work in this chapter.

Private matching for PMSN. As mentioned in Chapter 5.1, the private matching schemes

proposed in [6, 65, 69] aim at coarse-grained personal profiles and match two users

based on a privacy-preserving computation of the intersection (cardinality) of their at-

tribute sets. In contrast, our protocols support fine-grained personal profiles and thus

much finer user differentiation, which is important for fostering the much wider use of

PMSN. To our best knowledge, Dong et al. presented the only piece of work in [21]

that does not match two users in PMSN using the intersection (cardinality) of their at-

tribute sets. Instead, they proposed using the social proximity between two users as the

matching metric, which measures the distance between their social coordinates with
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each being a vector precomputed by a trusted central server to represent the location of

a user in an online social network. By comparison, our work does not rely on the affili-

ation of PMSN users with a single online social network and addresses a more general

private matching problem for PMSN by supports fine-grained personal profiles and a

wide spectrum of matching metrics.

Secure multi-party computation. Private matching for PMSN can also be viewed as

special instances of secure two-party computation, which was initially introduced by Yao

in [121] and later generalized to secure multi-party computation by Goldreich et al. [39]

and many others. In secure two-party computation, two users with private inputs x and

y, respectively, both want to compute some function f(x, y) without any party learning

information beyond what can be inferred from the result f(x, y). It was shown that all

secure multi-party computation problems can be solved using the general approach in

using the general approach [39], which is nevertheless too inefficient to use in practice.

The existing literature on secure multi-party computation thus focused on devising more

efficient solutions for specific functions. Our work in this chapter belong to this category

and gives efficient solutions to many PMSN matching metrics.

Privacy-preserving data mining and scientific computation. Securely computing

some function over two vectors has also been investigated in the context of privacy-

preserving data mining and scientific computation. In particular, secure dot-product

computation was studied in [23, 38, 50, 97]. As in [21], we adopt the method in [38] as

a component of our protocols and make significant contributions on relating the com-

putation of many PMSN matching metrics to secure dot-product computation. Privacy-

preserving correlation computation was studied in [57, 89] and is loosely related to our

work here. Moreover, some novel methods were proposed in [91] for securely comput-

ing the approximate �1 distance of two private vectors. As said before, our Protocol 1 is

adapted from the protocols [91] but with significantly smaller computation overhead. In

addition, Du et al. proposed a set of protocols based on commutative encryptions for

securely computing the difference between two private vectors based on different met-
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rics [22], including the �1 distance, the �2 distance, and a more general function. Since

all known commutative encryption schemes are deterministic, i.e., the same plaintext

always leads to the same cyphertext, it is less secure than Paillier cryptosystem [65]. It

is not clear how to apply their protocols to our problem here in an efficient and secure

fashion.

5.7 Summary

In this chapter, we formulated the problem of fine-grained private (profile) matching

for proximity-based mobile social networking and presented a suite of novel solutions

that support a variety of private-matching metrics at different privacy levels. Detailed

performance analysis and experimental evaluation confirmed the high efficiency of our

protocols over prior work under various practical settings.
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Chapter 6

SECURE CROWDSOURCING-BASED COOPERATIVE SPECTRUM SENSING

6.1 Introduction

Cooperative spectrum sensing (CSS) is a key function for dynamic spectrum access

and is essential for avoiding interference with licensed primary users and identifying

spectrum holes [4]. It relies on spatially distributed cognitive radio (CR) users to jointly

detect the occupancy of a licensed channel in a specific location and time range. In

contrast to spectrum sensing by individual CR users, CSS could largely mitigate many

factors such as multipath fading and shadowing [4] and thus has considerably better

performance.

Centralized CSS involves a centralized fusion center (FC) which instructs se-

lected CR users to sense a specific channel and then makes a global decision about

channel occupancy by aggregating received local sensing results. Local spectrum

sensing at cooperative CR users normally relies on energy detection, matched filter

detection, or cyclostationary-feature detection. Data fusion can be in the form of ei-

ther soft or hard combination, which requires the CR users to report raw sensing data

or local decisions to the FC, respectively. As in [16, 26, 53, 64, 73], we consider soft

combining in this chapter.

A promising method for effective CSS over a large geographic region is to ex-

plore the emerging crowdsourcing paradigm, in which special spectrum-sensing providers

(SSPs) [26–28,98] outsource spectrum-sensing tasks to distributed mobile users called

mobile detectors who themselves may also be secondary CR users. The feasibility of

crowdsourcing-based CSS (CCSS for short) is deeply rooted in the ubiquitous penetra-

tion of mobile devices into everyday life. Specifically, according to a recent Cisco re-

port [1], the number of mobile devices such as smartphones and tablets will exceed the

world population in 2012 and hit 10 billion in 2016, which implies sufficient geographic

coverage especially in highly populated regions such as metropolitan areas. Moreover,

they can always accurately self-localize based on hybrid GPS, WiFi, and cellular po-
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sitioning techniques. Since dynamic spectrum access is expected to be pervasive in

future wireless systems, it is widely expected that future mobile devices can perform

spectrum sensing via either internal spectrum sensors or external ones acquired from

other parties like the SSP [4,26–28,74].

CCSS, though appealing, is vulnerable to false sensing reports, each containing

a power measurement much larger (or smaller) than the true value to inflate (or deflate)

the final average. A false sensing report can come from a normal mobile detector with a

faulty spectrum sensor, a dishonest one wishing to save energy by faking data without

actual sensing, or a malicious one aiming to prevent other users from using the channel

by submitting an extremely high (or low) power measurement. Without sound defenses

in place, the SSP may be misled by false sensing reports to falsely determine that the

channel is busy (or vacant). It is thus critical to ensure secure soft combination such

that the impact of possible false sensing reports can be minimized.

The prior work on secure CSS against false sensing reports can be generally

classified into three categories. The first category such as [26, 28, 53, 64, 73] uses

various anomaly detection techniques to identify false sensing reports and would fail if

they constitute the majority, as discussed in [27]. The second category such as [16,53,

130] uses reputations to differentiate malicious mobile detectors from legitimate ones

and is unable to handle sudden change in mobile detectors’ behaviors. More recent

work [27] relies on some trusted nodes to detect false sensing reports which requires

real signal propagation data from primary users (PUs) that are often difficult to obtain.

A sound soft combination scheme that can withstand a majority of malicious mobile

detectors without too strong assumptions remains an open challenge.

As the first work of its kind, we propose a novel scheme to realize secure CCSS

in the presence of malicious mobile detectors possibly being the majority without requir-

ing real signal propagation data from PUs. Our scheme relies on using a few trusted

anchor detectors to evaluate the instantaneous trustworthiness of mobile detectors in

combination with their reputation scores. Our scheme can enable robust PU detection
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even when the majority of mobile detectors are malicious as long as there are enough

trustworthy sensing reports submitted from legitimate mobile detectors. Our contribu-

tion in this chapter can be summarized as follows.

• We propose a novel metric to measure the instantaneous trustworthiness of a

sensing report based on trusted anchor detectors and the relationship between

receiving power and distance.

• We design a novel secure soft combination scheme based on the prioritized

weighted sequential probability ratio test, in which sensing reports are assigned

different weights based on their reputation scores and prioritized according to

their instantaneous trustworthiness.

• We confirm the high efficacy and efficiency of our scheme by extensive simulation

studies.

The rest of this chapter is organized as follows. Section 6.2 introduces the

system and adversary models. Section 6.3 presents our proposed solution. Section 6.4

reports the performance evaluation based on detailed simulation studies. Section 6.5

discusses the related work. Section 6.6 concludes this chapter.

6.2 System and Adversary Models

In this section, we introduce our system, signal propagation, local spectrum sensing,

and adversary models.

6.2.1 System Model

Fig. 6.1 shows the CCSS architecture under consideration. The SSP divides its service

region into equally-sized cells and deploys some anchor detectors at strategic location-

s, e.g., the corners or center of each cell. Similar to the trusted nodes in [27], anchor

detectors can be remotely attested by the SSP and excluded if they are detected as

compromised. Due to cost constraints, the SSP cannot afford to deploy too many an-

chor detectors. As a result, although anchor detectors can provide the most trustworthy
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Figure 6.1: A crowdsourcing-based cooperative spectrum sensing architecture.

spectrum-sensing reports, the SSP still relies on the majority of mobile detectors to

reach sufficiently high detection accuracy. Our subsequent discussion will focus on a

cell with anchor detectors denoted by Θa and mobile detectors denoted by Θ, where

|Θa| � |Θ|.

Mobile detectors correspond to humans using mobile devices such as smart-

phones and tablets to participate in CSS, and they can perform spectrum sensing via

either spectrum sensors embedded into mobile devices or external ones which are pro-

vided by the SSP and can communicate with mobile devices. Finally, we assume that

mobile detectors can accurately self-localize via hybrid GPS, cellular, and WiFi position-

ing techniques.

We consider large-scale PUs such as TV stations and cellular base stations

(expected in the future [54, 78]) with a large transmission range and known fixed loca-

tions. Extending our work to support small-scale and/or mobile PUs such as wireless

microphones is left as our future work.
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6.2.2 Signal Propagation and Spectrum-sensing Models

We adopt the signal propagation model in [96], under which the received primary signal

strength at mobile detector i can be expressed as

Pi = P0(
d0
di

)αeXieYi (Watt) (6.1)

where d0 is the reference distance, P0 is the received primary signal strength at d0, di is

the distance from mobile detector i to the primary user, α is the pathloss exponent with

typical value between 2 and 5, eXi and eYi represent the effect of shadowing fading and

multi-path fading, respectively, where Xi ∼ N (0, σ2).

Assuming that the channel bandwidth is much larger than the coherent band-

width, the effect of multi-path fading is negligible, i.e., Yi = 0 for all i. In addition, we

assume that Xi and Xj are independent for all i �= j, i.e., each mobile detector expe-

riences i.i.d. Gaussian shadowing and fading, which holds when the distance between

mobile detectors i and j exceeds decorrelation distance [5].

We assume energy detection for local spectrum sensing at mobile detectors,

which is the most widely-used detection technique for its simplicity and efficiency. In

particular, on receiving a sensing task from the SSP, each mobile detector collects m

RSS (received signal strength) samples. The sensing report from detector i is denoted

as xi = (xi,1, · · · , xi,m). The test statistic of the energy detector is the average RSS

(including the noise power), i.e., Si =
1
m

∑m
k=1 xi,k, which can be approximated as a

Gaussian random variable using the Central Limit Theorem (CLT) [100,107] as

Si ∼

⎧⎪⎪⎨
⎪⎪⎩
N (No,

2N2
o

m ) H0 : Primary user is absent

N (No + P̄i,
2(P̄i+No)2

m ) H1 : Primary user is present ,
(6.2)

where P̄i = E(Pi) is the average received power at detector i, and No is the noise

power, e.g., -96 dBm for a 6MHz TV channel.
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6.2.3 Adversary Model

We assume that the adversary is aware of our scheme and has full control over multiple

malicious detectors who may launch the following attacks.

• A malicious mobile detector may report high RSS values when the primary signal

is absent, aiming at increasing the probability of false alarm and preventing CR

users from using the channel.

• A malicious mobile detector may also report low RSS values when the primary

signal is present, aiming at increasing the probability of miss detection and caus-

ing increased interference to the primary user.

Malicious mobile detectors could be the majority in a cell. We, however, assume that

there are enough normal detectors submitting faithful sensing reports. Otherwise, it is

fundamentally difficult to realize robust PU detection with desired miss detection and

false alarm probabilities.

It is beyond the scope of this chapter to consider other possible attacks against

cooperative sensing. For example, a powerful adversary may jam the channel to pre-

vent mobile detectors from communicating with the SSP. These attacks are not unique

to cooperative sensing and can be mitigated by spread-spectrum techniques [88,132].

6.3 Secure Combination for CCSS

In this section, we first outline our secure combination scheme for CCSS and then detail

its design.

6.3.1 Overview

Our scheme relies on using trusted anchor detectors to evaluate the instantaneous

trustworthiness of mobile detectors in combination with their reputation scores. The key

insight is that a mobile detector’s reputation score and the instantaneous trustworthi-

ness of his sensing report have different trust implications. On the one hand, the rep-

utation score is to predict his future performance based on his past long-term behavior
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and is nevertheless incapable of handling sudden change in his current behavior. On

the other hand, the instantaneous trustworthiness of his sensing report only reflects the

level of fitting with the trusted reports from anchor detectors in the current sensing task

while is unable to incorporate his long-term behavior. Although the reports from anchor

detectors are trusted to have not undergone malicious modifications, they may be inac-

curate due to possible multi-path fading/shadowing and other channel impairments. We

thus propose to explore both the instantaneous trustworthiness and reputation scores

of mobile detectors to realize robust PU detection.

Specifically, our scheme uses instantaneous trustworthiness and reputation s-

cores of mobile detectors in different ways. To enable robust data fusion, we propose a

prioritized weighted-probability-ratio test to combine sensing reports, in which the sens-

ing reports are ordered according to their instantaneous trustworthiness and assigned

different weights according to their reputation scores. The sensing reports are fed to

the algorithm one at a time, and a decision is made when certain criterion is reached.

By doing so, as long as there are sufficient normal mobile detectors, the final decision

will not be misled even if malicious mobile detectors are the majority.

In what follows, we detail the design of our scheme, including instantaneous

trustworthiness measure, prioritized weighted sequential probability ratio test, and fine-

grained reputation management.

6.3.2 Instantaneous Trustworthiness Measure

We first introduce a novel metric to evaluate the instantaneous trustworthiness of any

mobile detectors i ∈ Θ ∪ ΘA (or equivalently, their reports). For convenience only, we

abuse the notation by letting Θ and Θa denote the mobile and anchor detectors who all

submitted a sensing report to the SSP, where the cardinality |Θ| is normally much larger

than |Θa|.

Our key insight can be explained as follows. According to Eqs. (6.1) and (6.2),

we know that the receiving powers at two honest mobile detectors either are both close

to noise if the primary user is absent, or satisfy certain condition with respect to their
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distances to the primary user if the primary user is present. Consider any two mo-

bile detectors i and j with their distances to the primary user di and dj , respectively.

Their test statistics are denoted by Si and Sj , respectively, which are assumed to be

independent Gaussian random variables. We define the following random variable

Zi,j = ρ(dαi (Si −No)− dαj (Sj −No)) , (6.3)

where ρ =
√

1
2(d2αi +d2αj )

.

When the primary user is absent, we have

E(Zi,j|H0) = E(ρ(dαi (Si −No)− dαj (Sj −No))) = 0 ,

and

VAR(Zi,j |H0) = ρ2VAR(dαi (Si −No)− dαj (Sj −No))

= ρ2(VAR(dαi Si) + VAR(dαj Sj))

=
2d2αi N2

o + 2d2αj N2
o

2m(d2αi + d2αj )

=
N2

o

m
.

Similarly, when the primary user is present, we have

E(Zi,j |H1) = E(ρdαi (Si −No)− dαj (Sj −No))

= E(dαi P̄i − dαj P̄j)

= E(dαi P0(
d0
di

)αeXieYi − dαj P0(
d0
dj

)αeXjeYj )

= E(P0d
α
0 e

Xi − P0d0e
Xj )

= P0d
α
0 (E(e

Xi)− E(eXj ))

= 0 ,

where the third equality holds because Yi = 0 (cf. Section 6.2.2). Since FCC requires

that unlicensed CR devices reliably detect incumbent signals at very low SNRs (e.g., as

low as -22 dB in the IEEE 802.22 standard [99]), it is typically assumed that No � Pi
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for all i ∈ Θ ∪Θa. It follows that

VAR(Zi,j |H1) = ρ2VAR(dαi (Si −No)− dαj (Sj −No))

= ρ2(VAR(dαi Si) + VAR(dαj Sj))

=
2d2αi (P̄i +No)

2 + 2d2αj (P̄j +No)
2

2m(d2αi + d2αj )

≈ N2
o

m
.

Therefore, no matter whether the primary user is present or not, Zi,j is approximate-

ly Gaussian distributed with zero mean and variance N2
o /m if the reports Si and Sj

are highly correlated with the distance di and dj . Otherwise, the distribution of Zi,j is

unpredictable.

Assume that Sj is provided by a trustworthy anchor detector j ∈ Θa. We can

thus assess the trustworthiness of Si with regard to Sj through the likelihood of Zi,j

being generated from the Gaussian distribution N (0, N2
o /m). In particular, assume

that detectors i and j report si and sj as an observation of Si and Sj , respectively,

based on which the SSP constructs an observation zi,j of Zi,j . The likelihood of zi,j

being generated from N (0, N2
o /m) is given by

L(zi,j |N (0, N2
o /m)) =

1√
2πN2

o /m
e
−mz2i,j

N2
o , (6.4)

which monotonically decreases as |zi,j | increases. Therefore, we define the relative

instantaneous trustworthiness of si with regard to sj as |zi,j |. The smaller |zi,j |, the

more trustworthy si with regard to sj , and vice versa. In addition, we have |zj,j| = 0 for

any anchor detector j ∈ Θa.

We then measure the overall instantaneous trustworthiness of si by combin-

ing all the relative instantaneous trustworthiness values {|zi,j |}j∈Θa . In particular, we

view detector si’s |Θa| relative instantaneous trustworthiness values as a point in the

|Θa|-dimensional space Pi = (|zi,1|, · · · , |zi,|Θa||) and define the overall instantaneous

trustworthiness of si as the Euclidean distance between Pi and the origin, which is
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given by

ti = (
∑
j∈Θa

|zi,j |2)
1
2 . (6.5)

The smaller ti, the more trustworthy of si, and vice versa.

We have a few remarks about the instantaneous trustworthiness measure ti.

First, when there is only one anchor detector, say j, we have tj = 0 as zj,j = 0, mean-

ing that sj is the most trustworthy sensing report. Second, it is possible that an anchor

detector j generates a bad sensing report due to temporal channel impairments. In

this case, a malicious mobile detector i with false sensing report may gain high rela-

tive instantaneous trustworthiness with regard to anchor detector j, i.e., low |zi,j |. It is,

however, impossible for him to simultaneously gain high instantaneous trustworthiness

at the other anchor detectors. It is therefore necessary to have multiple anchor detec-

tors. Finally, when the primary user is present, a malicious mobile detector may submit

a false sensing report along with a falsified location aiming at cheating the SSP into

computing a wrong but high instantaneous trustworthiness. Our instantaneous trust-

worthiness measure is resilient to this attack, as if the false sensing report and location

could together lead to a lower ti (i.e., high instantaneous trustworthiness), it is equiva-

lent to a sensing report submitted by a good mobile detector i′ at the reported location.

6.3.3 Prioritized Weighted Sequential Probability Ratio Test

Once the SSP evaluates the instantaneous trustworthiness of all anchor and mobile

detectors in Θ∪Θa, it applies the Weighted Sequential Probability Ratio Test (WSPRT)

technique [16] to aggregate the sensing reports by prioritizing those with higher instan-

taneous trustworthiness and also assigning higher weights to those from detectors with

higher reputation scores, which we call Prioritized Weighted Sequential Probability Ra-

tio Test (PWSPRT).

To perform PWSPRT, the SSP first ranks all the sensing reports according to

their instantaneous trustworthiness ti in an ascending order. We then define the follow-
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ing decision variable

V =
∑
i∈Θ

ln(
P(Si|H1)

P(Si|H0)
)wi , (6.6)

where P(S|Hk) refers to the probability density function of a random variable S under

Hk (k = 0 or 1), Θ denotes a subset of detectors in Θ ∪ Θa whose reports have been

aggregated, and wi ∈ [0, 1] is the normalized reputation score of detector i used as the

weight here, which will be explained in Section 6.3.4.

The SSP’s decision is based on the following criterion:

• Accept H1 and terminate if V ≥ A;

• Accept H0 and terminate if V ≤ B;

• Aggregate an additional report and add the corresponding detector index to Θ if

A < V < B,

where A andB are two decision thresholds derived from the desired miss detection and

false alarm probabilities. In particular, let χ and ψ denote the desired miss detection

and false alarm probabilities, respectively. The decision thresholds are given in [111]

as

A = ln(
1− χ

ψ
) and B = ln(

χ

1− ψ
) . (6.7)

In each iteration, the SSP chooses a sensing report with the lowest rank from the re-

maining reports, updates V according to Eq. (6.6), and checks if a final decision can

be reached. In addition, in case a decision cannot be reached after aggregating all the

sensing reports, the SSP permissively accepts H0 to avoid potential interference with

the primary user. In the end, the SSP updates the reputation profile for each mobile

detector (see Section 6.3.4).

Our scheme obviously has greater resilience to false sensing reports. In partic-

ular, a sensing report from a less reputable mobile detector will be assigned a smaller

weight and is thus less likely to drastically affect the final decision. In addition, a sens-

ing report with low instantaneous trustworthiness will be counted only if a final decision
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cannot be reached after combining all the other sensing reports with higher instanta-

neous trustworthiness (i.e., smaller ti). As long as there are sufficient mobile detectors

in the cell, a robust decision can still be reached even if there are much more malicious

mobile detectors.

6.3.4 Fine-Grained Reputation Management

As discussed in Section 6.3.3, the reputation scores of mobile detectors are used to

combine their sensing reports in PWSPRT. Now we present a novel reputation system

for the SSP to record the past sensing performance of mobile detectors.

Our reputation system will be built upon our previous work [138] which is firmly

rooted in the classical Bayesian inference theory used to estimate one or more unknown

quantities from the results of a sequence of multinomial trials. For clarity, we outline the

adopted Dirichlet-Multinomial model as follows and refer to [34] for more details. A

multinomial trial process is a sequence of independent, identically distributed (i.i.d.)

random variables U1, U2, ..., each taking one of � possible outcomes {oi}	i=1. We

then denote the common probability density function (PDF) of the trial variables by

pi = P(Uj = oi) for 1 ≤ i ≤ �, where pi > 0 and
∑	

i=1 pi = 1. Let p = (p1, ..., p	)

and z = (z1, ..., z	) which is the vector of observation counts of each outcome after

N multinomial trials, namely,
∑k

i=1 zi = N . The multinomial sampling distribution [34]

states that

f(z|p) = Mult(N |p1, ..., p	) =
N !∏	
i=1 zi!

	∏
i=1

pzii .

It is commonly assumed in Bayesian inference that p has a conjugate prior distribution1

known as the Dirichlet,

f(p) = Dir(p|α1, ..., α	) =
Γ(

∑	
i=1 αi)∏	

i=1 Γ(αi)

	∏
i=1

pαi−1
i ,

where pi �= 0 if αi < 1 and Γ is the gamma function2. The positive parameters αi

can be interpreted as “prior observation counts” for events governed by pi. Then the

1The property that the posterior distribution follows the same parametric form as the prior distribution
is called conjugacy [34].

2If x is an integer, Γ(x) = (x− 1)!.
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posterior distribution is also Dirichlet [34],

f(p|z) = f(z|p)× f(p)

f(z)

=
Γ(

∑	
i=1 (αi + zi))∏	

i=1 Γ(αi + zi)

	∏
i=1

pαi+zi−1
i

= Dir(p|α1 + z1, ..., α	 + z	),

(6.8)

which can be used to make statements about p considered as a set of random quanti-

ties. The posterior mean of pi, which maybe be interpreted as the posterior probability

of observing outcome oi in a future multinomial trial, is

E[pi|z] =
αi + zi∑	

i=1 (αi + zi)
. (6.9)

In what follows, we detail how to apply the Dirichlet-Multinomial model in our scheme.

Let � = 2(q + 1) for some integer q ≥ 1. The SSP first divides the range

(−∞,∞) into 2q + 2 intervals, denoted by I1, · · · , I2q+2. Recall that A and B (B <

0 < A) are the decision thresholds used in PWSPRT, which correspond to H1 and H0,

respectively (cf. Eq. (6.7)). The jth interval is given by

Ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−∞, B] if j = 1,

( (k
q+2−j−1)B

kq−1 , (k
q+1−j−1)B
kq−1 ] if 2 ≤ j ≤ q + 1,

( (k
j−q−2−1)A
kq−1 , (k

j−q−1−1)A
kq−1 ] if q + 2 ≤ j ≤ 2q + 1,

(A,∞) if j = 2q + 2 ,

(6.10)

where k > 1 is a system parameter. Let |Ij | denote the length of the jth interval. It

follows that |Ij| = k|Ij+1|čň for all 2 ≤ j ≤ q, and |Ij | = k|Ij−1|čň for all q+2 ≤ j ≤ 2q.

The reason to have the length of intervals form two geometric sequences is that most

normal detectors will have a relative small negative or positive contribution in low SNR

environment. By choosing small length for the intervals in the middle, we can better

differentiate the performance levels among different detectors.

After each sensing task, the SSP maps the performance of each mobile de-

tector into one of the � levels. In particular, for each i ∈ Θ, let ci = lnP(Si|H1) −
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lnP(Si|H0) be the potential contribution of mobile detector i in PWSPRT, regardless of

its weight wi. The SSP first maps ci into one of the � intervals, say Iηi . The perfor-

mance level of mobile detector i is then given by

li =

⎧⎪⎪⎨
⎪⎪⎩
ηi if H1 is accepted,

� + 1− ηi if H0 is accepted.
(6.11)

In other words, if mobile detector i ∈ Θ has a positive (or negative) contribution to the

final decision, its sensing performance will be mapped into one of the higher (lower)

q + 1 levels.

The SSP maintains a reputation profile for every mobile detector i ∈ Θ ∪ Θa,

represented by � counters {ci,s}	s=1. Each counter ci,s corresponds to the sth perfor-

mance level and is initialized to c0. After every sensing task, the SSP increases the

corresponding counter of every mobile detector Θ involved in PWSPRT according to

his performance level.

The SSP then computes wi,s =
ci,s∑�
s=1 ci,s

for all s ∈ [1,�], where wi,s refers

to the expected probability that detector i will have level-s sensing performance (cf.

Eq. (6.9)). If the SSP desires a performance level no less than l ∈ [1,�], it computes

the reputation score for detector i as

wi =

l∑
s=1

wi,s .

Let wmax be maximum reputation score among all mobile detectors Θ ∪ Θa. The nor-

malized reputation score of detector i is then given by

wi = wi/wmax , (6.12)

which will be used as the weight of detector i in PWSPRT.

The choice of l is important. In particular, the higher l is, the lower the weight

wi for each i ∈ Θ ∪ Θa, the fewer mobile detectors with a non-zero weight, and vice

versa. We will study the tradeoff between sensing quality and resilience to malicious

mobile detectors using simulations in Section 6.4.
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In addition, past performance may not always be relevant for determining the

current performance of mobile detectors who may update their devices and/or vary their

behaviors over time. To deal with this situation, the SSP could choose a discount fac-

tor ν between [0, 1.0] to assign more weight to recency. At regular intervals, the SSP

updates {ci,s}	s=1 := {νci,s}	s=1. Discounting the past not only helps identify mobile de-

tectors who behave well initially and poorly afterwards, but also permits a disreputable

mobile detector to reform by starting to have good performance.

6.4 Performance Evaluation

In this section, we evaluate the proposed scheme using extensive simulation. As the

only piece of prior work that targets malicious detectors being the majority, the solution

in [27] relies on real signal propagation data which may be very difficult to obtain es-

pecially in urban environments. It is thus less meaningful to directly compare our work

with [27] because our scheme does not require real signal propagation data. Instead,

we compare our work with the techniques proposed in [16] (denoted by CPB) and [53]

(denoted by KKB) that are under similar signal-propagation models and assumptions

as well as the standard SPRT [141] that corresponds to no defense in place.

6.4.1 Simulation Setup

As in [73], we consider an IEEE 802.22 WRAN environment with a single DTV trans-

mitter with 6MHz bandwidth and 150.3 km transmission range [100]. We simulate a

rectangle cell of 5 × 5 km2. The distance between the center of the cell to the primary

user is 145 km. We set the minimum distance between any two detectors to be 200 m to

decorrelate their shadow fading Xi [5]. In addition, we call a malicious mobile detector

i has an attack strength T (dB) if it reports a si + T where si is the true average of the

RSSI values [73]. We assume that there are 100 mobile detectors in the cell, among

which M are malicious.

Table I lists the default parameters used in our simulation unless stated other-

wise. The simulation is done in Matlab, and each point is the average of 10000 runs,

each with a random seed. In addition, since both CPB [16] and our scheme use reputa-
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Table 6.1: Default simulation setting

Para. Value Description

|Θ| 100 Number of mobile detectors

M 50 Number of malicious mobile detectors

|Θa| 5 Number of anchor detectors

d0 1m Reference distance

P0 90 dBm The received power at d0
m 6× 103 [73] Number of samples

α 3.7 Path loss exponent

χ 0.01 Desired miss detection probability

ψ 0.1 Desired false alarm probability

σ 5.5 dB [100] The standard deviation of shadow fading Xi

αs 1 Initial value for each counter in reputation profile

� 22 Total number of service levels

k 1.4 Ratio between adjacent performance intervals

l 12 Minimum desired service level
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Figure 6.2: Instantanoes trustworthiness vs. attack strength.

tion scores, meaning that the outcomes of later rounds are partially determined by those

of previous rounds, we divide the total 10000 rounds into 100 groups, each containing

100 rounds, and the reputation score of each mobile detector is reset at the beginning

of each group.

147



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
20

30

40

50

60

70

80

90

100

110

120

attack strength (dB)

av
er

ag
e 

ra
nk

 

 

5 anchors, malicious
3 anchors, malicious
1 anchor,   malicious
1 anchor,   normal
3 anchors, normal
5 anchors, normal

Figure 6.3: The average rank of malicious mobile detectors vs. attack strength.

6.4.2 Simulation Results

6.4.2.1 Instantaneous Trustworthiness

We first report the simulation result for the proposed instantaneous trustworthiness

measure, which is one of the key components of our scheme.

Fig. 6.2 shows the instantaneous trustworthiness of a malicious mobile detector

with its attack strength T varying between −0.3 and 0.3 dB. We can see that the instan-

taneous trustworthiness increases as the attack strength |T | increases. The reason is

that the higher the attack strength, the larger deviation from the expected received pow-

er at its location, the larger |zi,j| with regard to each anchor node j, the larger ti, and

vice versa. In addition, instantaneous trustworthiness also increases as the number of

anchor detectors increases, because each additional anchor detector corresponds to

one relative instantaneous trustworthiness value that will be counted in the overall in-

stantaneous trustworthiness. As a result, the more anchor detectors, the more sensitive

the instantaneous trustworthiness measure to false sensing data attack.

Fig. 6.3 shows the average ranks of 50 malicious mobile detectors and 50 nor-

mal detectors varying with attack strength. We can see that the average rank of a
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malicious detector increases rapidly from 50 and converges to 75 as the attack strength

increases, which means that the 50 malicious detectors constantly rank between 51

and 100, leading to an average rank of 75. In contrast, the average rank of 50 nor-

mal detectors decreases and converges to 25, meaning that the 50 normal detectors

consistently rank between 1 and 50. These results are expected since malicious (or

normal) detectors will have low (or high) instantaneous trustworthiness with high prob-

ability. In addition, we can see that the more anchor detectors, the smaller variance of

the average rank for both malicious and normal mobile detectors. This means that by

aggregating the relative instantaneous trustworthiness with regard to multiple anchor

nodes, the rank based on instantaneous trustworthiness can effectively differentiate

malicious detectors from normal detectors.

6.4.2.2 Reputation System

Fig. 6.4 shows the average normalized reputation scores of 50 normal detectors and

50 malicious detectors in each round with a different desired service level l. We can

see that the average reputation score of normal mobile detectors increases slowly after

each round, while that of malicious mobile detectors remains stable. The reason is

that in each round, most detectors involved in PWSPRT will be normal detectors with

high probability, so only the reputation counters of a subset of normal detectors will

be updated, leading to a slow increase in their average reputation scores. For the

same reason, the reputation counters of malicious detectors will not be updated, whose

average reputation score will remain stable. Such updates can still guarantee good

detectors having higher reputation scores than malicious ones. In addition, we can

see that the higher l is, the smaller the initial reputation score for each detector, and

the larger difference between the average reputation scores of normal detectors and

malicious ones after sufficient rounds. This represents the tradeoff between the desired

service level and convergence time as well as the final difference in the reputation

scores of normal detectors and malicious ones.
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Figure 6.4: The progressive average reputation scores of normal and malicious mobile
detectors.
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Figure 6.5: Miss detection probability vs. # of malicious detectors.

6.4.2.3 Resilience to Malicious Mobile Detectors

Fig. 6.5 shows the miss detection probabilities of our scheme, CPB, KKB, and SPRT

varying with the number of malicious detectors, where the attack strength of malicious

detectors is −0.1 dB. We can see that the miss detection probability of SPRT increases

as the number of malicious detectors increases, which is expected. In addition, the miss
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Figure 6.6: False alarm probability vs. # of malicious detectors
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Figure 6.7: Miss detection probability vs. attack strength.

detection probabilities of CPB and KKB are close to zero when the number of malicious

detectors is below 60, meaning both of them are resilient to false sensing data attack

when the malicious detectors do not constitute the majority. As the number of malicious

detectors further increases, the miss detection probabilities of CPB increases and even-

tually exceeds that of SPRT. The reason is that once the malicious detectors dominate

the cell, they will always determine the final decision and have their reputation scores

increased, while the normal detectors will always make the “wrong" decision and have
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Figure 6.8: False alarm probability vs. attack strength.

their reputation scores decreased. Similar trend can be observed about KKB, because

normal detectors’ sensing reports will be considered as outliers and filtered out once

the malicious detectors constitute the majority. In contrast, the miss detection proba-

bility of our scheme is insensitive to the increase in the number of malicious detectors

and remains below 0.05 even when the number of malicious detectors exceeds 90. The

reason is that malicious detectors will be ranked after normal detectors with high proba-

bility using our instantaneous trustworthiness measure, so the SSP can make a correct

decision as long as there are sufficient normal detectors.

Fig. 6.6 shows the false alarm probabilities of our scheme with CPB, KKB, and

SPRT varying with the number of malicious detectors, where the attack strength of

malicious detectors is 0.1 dB. Similar to Fig. 6.5, the false alarm probability of SPRT

increases as the number of malicious detectors increases, which is of no surprise. The

false alarm probabilities of CPB and KKB are both close to zero when the number of

malicious detectors is smaller than 20 and increase as the number of malicious detec-

tors further increases, which further demonstrate that they are effective against small

fraction of malicious detectors but ineffective when the malicious detectors become the

majority. In contrast, the false alarm probability of our scheme is much less sensitive
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Figure 6.9: False alarm probability vs. # of mobile detectors under no attack.

to the increase in the number of malicious detectors. In addition, the more anchor

detectors, the lower the false alarm probability, and vice versa.

Fig. 6.7 compares the miss detection probabilities of our scheme with CPB,

KKB, and SPRT with the attack strength varying between 0 to -0.2 dB, where the num-

ber of malicious detectors is 50. We can see that the miss detection probabilities of

CPB, KKB, and SPRT all increase as the attack strength increases. The reason is that

neither CPB nor KKB can withstand the malicious mobile detectors being the majority,

not to mention SPRT. In contrast, the miss detection probability of our scheme is rela-

tively insensitive to the increase in attack strength as our instantaneous trustworthiness

measure can effectively differentiate malicious detectors from the normal ones. As long

as there are enough normal detectors, the SSP can make a correct decision under our

scheme.

Fig. 6.8 compares the false alarm probabilities of our scheme with CPB, KKB,

and SPRT. The result is very similar to that in Fig. 6.7 and is omitted here.

6.4.2.4 Performance under No Attack

Fig. 6.9 compares the false alarm probabilities of our scheme and SPRT varying with the

number of mobile detectors where there is no malicious detectors. We can see that the
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false alarm probability of SPRT decreases from 1 to below 0.1 as the number of mobile

detectors increases from 0 to 20 and remains stable as the number of mobile detectors

further increases, which is expected for SPRT. In contrast, the false alarm probability of

our scheme first decreases as the number of mobile detectors increases from 0 to 20

and then slightly increases as the number of mobile detectors further increases. The

reason is that our scheme relies on the instantaneous trustworthiness measure to order

all the sensing reports, which further relies on a few anchor detectors. The order for

aggregating sensing reports in our scheme is thus different from the random order used

in SPRT. Since an anchor detector may also report an inaccurate sensing report due to

temporal channel impairment, a mobile detector with similar inaccurate sensing report

will obtain high instantaneous trustworthiness (i.e., low ti) if there are only a few anchor

detectors, leading to the increase in the false alarm probability. In addition, we can

see that using multiple anchor detectors can largely mitigate this limitation, because it

is very unlikely for an inaccurate sensing report to simultaneously attain high relative

instantaneous trustworthiness with regard to all the anchor detectors. We have also

simulated the miss detection probability of our scheme under no attack. The result is

very similar to that of Fig. 6.9 and is thus omitted here.

6.4.3 Discussion

We summarize the simulation results as follows.

• Our instantaneous trustworthiness metric can effectively differentiate normal de-

tectors from malicious ones with the help of a small number of anchor detectors.

• Our scheme can enable robust PU detection even when the malicious detectors

constitute the majority as long as there are sufficient number of normal detectors.

• When there are too few anchor detectors and too many mobile detectors, our

scheme has a slightly worse performance than SPRT in case there is no attack.

It is thus necessary to have multiple anchor detectors, say five, to achieve robust

PU detection in practice.
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The simulation results clearly demonstrate the significant advantage of our scheme over

existing schemes under the similar models and assumptions.

6.5 Related Work

In this section, we briefly discuss some work in several areas which is most germane to

our work in this chapter.

As mentioned in Section 6.1, previous works can be generally classified into

three categories. The schemes proposed in [16,26,28,53,64,73] use various anomaly

detection techniques to identify false sensing reports, which would fail if false sensing

reports constitute the majority. The second category such as [16,53,130] relies on rep-

utation system to differentiate malicious CR users from legitimate users based on their

past behaviors, but is unable to handle sudden change in mobile detectors’ behaviors.

The only piece of work that targets majority of false sensing reports appears in [27],

which assumes that neighboring cells can help overturn the decision by the real signal

propagation data from primary users. In contrast, our scheme does not rely on inter-cell

crosscheck nor requires real signal propagation data from primary users. In addition,

detecting false sensing reports in a distributed sensing architecture has been studied

in [116,125], which are orthogonal to our work in this chapter.

Another line of work is to mitigate the Primary User Emulation attack, i.e., testing

whether the legitimate primary user is using a licensed channel or whether an attacker

is impersonating the primary user to use the channel. Proposed solutions include pri-

mary user location estimation [15], authenticating primary user’s signal via physically

collocated helper node [67] or properly manipulating channel coding and modulation at

the physical layer.

In addition, detecting possible spectrum misuse by arbitrary secondary users

has been studied in [66, 117]. ALDO [66] uses statistical significance testing to detect

illegitimate secondary users based on RSS measurements and the characteristics of

radio propagation. The authors of [117] propose to let every legitimate channel user

embed a cryptographic spectrum permit into its physical-layer cyclostationary features,
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which can be verified by mobile “police devices" dispatched by the spectrum owner.

These works target different type of attack and are thus orthogonal to our work in this

chapter.

6.6 Summary

In this chapter, we have presented a novel secure crowdsourcing-based cooperative

spectrum sensing scheme. The key idea behind our scheme is to jointly consider the

instantaneous trustworthiness of mobile detectors in combination with their reputation

scores during data fusion. Our scheme can enable robust cooperative sensing even if

the malicious CR users are the majority. Extensive simulation results have demonstrat-

ed the effectiveness of our proposed scheme.
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Chapter 7

CONCLUSION AND FUTURE WORK

In this dissertation, we offer novel solutions to five challenging security and privacy is-

sues in heterogeneous mobile wireless networks, spanning wireless sensor networks,

mobile crowdsourcing, and mobile social networking. In particular, we design a secure

and loss-resilient code dissemination scheme for wireless sensor networks deployed

in hostile and harsh environments. Moreover, we devise a novel scheme to enable

mobile users to detect any inauthentic or unsound location-based top-k query query

result returned by an untrusted location-based service providers. In addition, we devel-

op a novel verifiable privacy-preserving aggregation scheme for people-centric mobile

sensing systems. Furthermore, we present a suite of privacy-preserving profile match-

ing protocols for proximity-based mobile social networking, which can support a wide

range of matching metrics with different privacy levels. Finally, we introduce a secure

combination scheme for crowdsourcing-based cooperative spectrum sensing systems.

7.1 Future Work

As our future work, we plan to further evaluate the performance of our solutions via

prototype implementations on real network testbeds or platforms such as smartphones

and Universal Software Radio Peripheral (USRP). We also plan to extend our solutions

by exploring the following directions.

First, we intend to extend LR-Seluge to defend against denial-of-receipt attack,

in which a compromised sensor node keeps requesting new pages from a target node.

In addition, besides the location-based top-k queries, we also intend to extend our so-

lution introduced in Chapter 3 to support other types of location-based queries, e.g.,

location-based range queries. Moreover, we intend to improve VPA to make it resilient

to denial-of-service attack, in which a malicious user keeps submitting false data to dis-

rupt the aggregation process. Furthermore, we plan to explore novel private matching

mechanisms that do not rely on public key cryptosystem. Last but not the least, we plan

to extend our secure combination scheme to support hard combination.
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Proof. With Seluge, the sender has to keep (re)transmitting every packet until it is re-

ceived by all N nodes. Let Tj be the number of transmissions needed for all N re-

ceivers to receive the j-th packet, ∀1 ≤ j ≤ k. After the t-th transmission of the j-th

packet, the probability that node i has received it is 1− pti, and the probability that all N

nodes have received it is thus

Pr(Tj ≤ t) =

N∏
i=1

(1− pti) . (7.1)

Therefore, the probability that it takes exactly t transmissions for all N nodes to receive

the j-th packet can be computed as

Pr(Tj = t) = Pr(Tj ≤ t)− Pr(Tj ≤ t− 1)

=
N∏
i=1

(1− pti)−
N∏
i=1

(1− pt−1
i ) .

(7.2)

The expected number of transmissions for the j-th packet is then E[Tj] =
∑∞

t=1 t ·

Pr(Tj = t). Since different packets are independent from each other, the expected

number of total transmissions to transmit k packets is then E[
∑k

j=1Tj] = kE[Tj ].
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Proof of Theorem 2.5.2
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Proof. In LR-Seluge, the greedy round-robin scheduling at local senders makes it very

difficult to directly analyze the performance of LR-Seluge. Instead, we analyze a vari-

ation of LR-Seluge whose communication cost can be viewed as the upper bound of

LR-Seluge. In this variation, instead of using SNACK packets, each receiver returns an

ACK packet only after receiving k′ packets of the current page. Since the local sender

has no information about which packets are missing at each node, it has to repeatedly

transmit the n erasure-coded packets until receiving an ACK from every node. This

variation is apparently less efficient than LR-Seluge, as the sender may unnecessarily

transmit some packets which have reached all the receivers.

Now we analyze how many rounds are needed for the local sender to trans-

mit all the n encoded packets such that each of the N nodes can receive at least k′

packets for successfully decoding the original page. Let R and Ri be the number of

rounds needed for all the N nodes and node i to receive at least k′ encoded packets,

respectively. After r rounds, the probability that node i has received a given packet is

1−pri , and the probability that node i has received at least k′ encoding packets is given

by

Pr(Ri ≤ r) =

n∑
j=k′

(
n

j

)
(1− pri )

jp
r(n−j)
i , (7.3)

The probability that all nodes have received at least k′ packets after r rounds can then

be computed as

Pr(R ≤ r) =

N∏
i=1

Pr(Ri ≤ r) . (7.4)

It follows that

E[R] =
∞∑
r=1

r · (Pr(R ≤ r)− Pr(R ≤ r − 1)) . (7.5)

Since each round involves n packet transmissions, the expected total number of trans-

missions for the above LR-Seluge variant is nE[R], which upper-bounds that of LR-

Seluge.
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APPENDIX C

Proof of Theorem 3.6.1

175



Proof. We first show that the user can detect any inauthentic query result containing

fake POI records or indexes. Recall that the hash of every record is embedded in its

index, and adjacent indexes are chained together. Therefore, any fake record or index

will make the user compute an invalid leaf node for the Merkle hash tree, which can

be immediately detected by the user after verifying the data collector’s non-forgeable

signature on the Merkle root hash.

Now we show that incorrect query results can also be detected. The key ratio-

nale is that if the LBSP returns Xi,j = D′
i,j or φi,j , he must also return Xi,1, · · · ,Xi,j−1

for the query result to pass the authenticity check. Let kPOI denote the correct top-k

records with the lowest attribute rating γ and k̃POI the incorrect top-k records with the

lowest attribute rating γ̃ �= γ. If γ̃ < γ, there must be at least k POI records with

attribute-q ratings higher than γ̃ in the query region, which should all be returned for

k̃POI to pass the authenticity check. This apparently contradicts with the fact that γ̃ is

the lowest rating in k̃POI. If γ̃ > γ instead, k̃POI must contain at least one POI record

outside the query region with attribute-q rating higher than γ, which can be directly

detected.
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Before go to the proof of Theorem 3.6.2, We first we need to prove the following

lemmas.

Lemma 7.1.1. Assume that Y1, Y2, · · · , Yn are i.i.d. random variables uniformly dis-

tributed in the range [0, 1]. Let Ỹ1, Ỹ2, · · · , Ỹn be the random variables defined by

sorting the values (realizations) of Y1, Y2, · · · , Yn in decreasing order. Then Ỹk ∼

Be(n− k + 1, k) is a Beta random variable with p.d.f.

f(x, n− k + 1, k) =
Γ(n+ 1)

Γ(n− k + 1)Γ(k)
xn−k(1− x)k−1 , (7.6)

where Γ(t) = (t− 1)!.

Proof. Consider an interval [x, x + dx]. For Ỹk to be in [x, x+ dx], it is necessary that

exactly k − 1 elements are larger than x + dx, and that at least one is between x and

x+ dx. Since the probability that more than one is in [x, x+ dx] is already O(dx2), the

probability of Ỹk falling in the interval [x, x + dx] is equal to the probability that exactly

k − 1, 1 and n − k elements fall in the intervals (x + dx, 1), (x, x + dx) and (0, x)

respectively, which is given by

P (Ỹn ∈ (x, x+ dx)) =
n!

(n− k)!(k − 1)!
(1− x− dx)k−1xn−kdx ,

and the result follows.

Lemma 7.1.2. The expected number of POIs with rating higher than γ in each zone is

given by

E[τ ] =
kn

δn + 1
, (7.7)

where δ is the ratio between the areas of the query region and a single zone.

Proof. Assume that there are n POIs uniformly distributed in each zone. The expect-

ed number of POIs in the query region can be estimated as δn. According to Lem-

ma 7.1.1, the kth highest rating within the query region is a Beta random variable, i.e.,

γ ∼ Be(δn − k + 1, k). It follows that

E[γ] =
δn− k + 1

δn + 1
. (7.8)
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We therefore have

E[τ ] = n(1− E[γ]) =
kn

δn + 1
. (7.9)

Lemma 7.1.3. The expected number of hash computations needed to verify {hi,1}i∈I

using Merkle hash tree is given by

E(Nmerkle) =

d−1∑
j=1

2j−1(1− (1− 2−(j−1))|I|) . (7.10)

Proof. In the Merkle hash tree, the number of nodes at level j is 2j−1 for all j ∈ [1, d].

To verify hi,1, the user need to compute each internal node along the path from hi,1 to

the root of the tree.

For each node at level j, the probability that it is on the path between a randomly

chosen leaf node and the root hash is 2−(j−1). It follows that it is on at least one

of the path between {hi,1}i∈I and the root hash, and thus appears in
⋃

i∈I Ti, with

probability (1 − 2−(j−1))|I|. The expected number of nodes at level j in
⋃

i∈I Ti is

then 2j−1(1− (1− 2−(j−1))|I|). Therefore, the expected number of hash computations

needed to verify {hi,1}i∈I is given by

E(Nmerkle) =
d−1∑
j=1

2j−1(1− (1− 2−(j−1))|I|) .

Now we are ready to prove Theorem 3.6.2.

Proof. The total number of hash computations needed by Scheme 1 consists of three

parts. First, the user need perform one hash computation for each returned data record

to generate the corresponding index, leading to k hash computations. Second, for each

zone i ∈ I , the user need compute hi,1, which incurs τi + 1 hash computations, where

τi can be estimated as E[τ ] derived in Eq. (7.7). Finally, the user need perform Nmerkle
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hash computations to verify {hi,1}i∈I . Summing up these three part, we have

E[Nhash,1] = k + |I| · (E[τ ] + 1) +
d−1∑
j=1

2j−1(1− (1− 2−(j−1))|I|) ,

where E[τ ] and Nmerkle are given in Eqs. (7.7) and (7.10), respectively.
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The following lemma is needed in proving Theorem 3.6.3.

Lemma 7.1.4. The expected number of distinct elements in
⋃

i∈I Ti is given by

|
⋃
i∈I

Ti| =
d−1∑
j=1

2j(1− (1− 2−j)|I|) (7.11)

The proof is similar to that of Lemma 7.1.3 and thus omitted.

We now prove Theorem 3.6.3.

Proof. The communication overhead between the data collector and the LBSP is given

by

T1 = Tid + Tindex + Tauth , (7.12)

where Tid,Tcert,Tauth are the communication overhead incurred by transmitting zone

IDs, indexes and authentication information (i.e., hash images and data collector’s sig-

nature), respectively.

For each zone i ∈ I , the LBSP need return the corresponding zone ID to the

user, so we have

Tid = |I| · d . (7.13)

In addition, the LBSP need return τi + 1 POIs for each zone i ∈ I . The total

number of POIs need be returned can be estimated as
∑

i∈I(τi + 1). Among them, k

POIs returned as data records, and rest of them are indexes. It follows that

Tindex = (
∑
i∈I

(τi + 1)− k) · (Lloc + Lr + Lh)

= (|I| · (E[τ ] + 1)− k) · (Lloc + Lr + Lh) ,

(7.14)

where E[τ ] is given in Eq. (7.7).

Finally, the LBSP need return one hash image, i.e., hi,τi+2, for each zone i ∈ I ,⋃
i∈I Ti for {hi,1}i∈I , and the data collector’s signature on the root of the Merkle hash

tree. We therefore have

Tauth = (|I|+ |
⋃
i∈I

Ti|) · Lh + Lsig , (7.15)
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where |
⋃

i∈I Ti| is given by Eq. (7.11). Substituting Eqs. (7.13), (7.14) and (7.15) into

Eq. (7.12), we have

E[T1] = (|I| · (E[τ ] + 1)− k) · (Lloc + Lr + Lh) + |I| · d

+
d−1∑
j=1

2j(1− (1− 2−j)|I|) · Lh + Lsig ,

where E[τ ] = kn
δn+1 , and the theorem is proved.
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Proof. As in the proof of Theorem 3.6.1, the user can easily detect any inauthentic

query result containing fake POI records or indexes. The proof is omitted here for

brevity.

Now assume that the LBSP returns an authentic but incorrect query result, from

which the user derives incorrect top-k POI records k̃POI with the lowest attribute rating

γ̃. Against, let γ denote the correct lowest top-k attribute rating. If γ̃ > γ, we can apply

the same argument in proving Theorem 3.6.1 to show that the user can discover that

at least one POI in k̃POI is outside the query region. If γ̃ < γ, the LBSP should have

deleted at least one POI record in the query region with an attribute rating higher than

γ̃. Suppose that the LBSP did not returnD′
i,j with A′

i,j,q > γ̃ in the macro zone e. There

are two cases.

• If the LBSP returned nothing from zone i, it must have returned at least one index

with a rating < γ̃ in the macro zone e, say φi1,j1. It follows that A′
i,1,q > A′

i,j,q >

γ̃ > A′
i1,j1,q

and 〈j,A′
i,1,q〉 ∈

⋃j1
x=1 Ii1,x, from which the user knows that the LBSP

omitted valid information from zone i.

• If the LBSP returned some POI records or indexes for zone i, it must have re-

turned Xi,1, . . . ,Xi,τ̃i+1 to pass the authenticity check. Since A′
i,j,q > γ̃, we have

j < τ̃i, and D′
i,j or φi,j must have been returned, leading to a contradiction.

Therefore, the user can detect any incorrect query result.
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Proof. Similar to Scheme 1, the number of hash computations needed by Scheme 2

consists of three parts.

First, the user need perform k hash computations to obtain the index for the

returned data records. Second, for each zone i with τi > 0, the user need perform

τi + 1 hash computations to obtain hi,1.

Let I ′ ∈ I be the set of zones in the query region that has POI with rating higher

than γ, i.e., τi > 0. We now estimate |I ′|. The probability that zone i ∈ I has no POI

with rating higher than γ is γn. The probability that zone i ∈ I has at least one POI with

rating higher than γ is then 1 − γn. It follow that the expected number of zones in the

query region that has at least one POI with rating higher than γ is given by

|I|′ = |I| · (1− γn) , (7.16)

where γ = (δn − k + 1)/(δn + 1).

For each zone i ∈ I ′, the conditional probability that τi = x given that τi > 0

can be computed as

P (τi = x|τi > 0) =
P (τi = x, τi > 0)

P (τi > 0)

=

⎧⎪⎨
⎪⎩

(nx)(1−γ)xγn−x

1−γn if 1 ≤ x ≤ n,

0 otherwise .

(7.17)

It follows that

E[τi|τi > 0] = n(1− γ)/(1 − γn) . (7.18)

The expected number of hash computations required to obtain {hi,1|i ∈ I ′} is

then given by

E[N2] =
∑
i∈I′

(τi + 1)

= |I| · (1− γn) · (n(1− γ)

1− γn
+ 1)

= |I|(n− nγ + 1− γn) .

(7.19)
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Finally, the user also need to verify {hi,1|i ∈ I ′} using Merkle hash tree. The

number of hash computation required is given by

E[Nmerkle] =
d−1∑
j=1

2j−1(1− (1− 2−(j−1))|I|
′)) . (7.20)

We therefore have

E[Nhash,2] = k + E[N2] + E[Nmerkle]

= k + |I|(n− nγ + 1− γn)

+

d−1∑
j=1

2j−1(1− (1− 2−(j−1))|I
′|) ,

where γ = (δn − k + 1)/(δn + 1) and |I ′| is given in Eq. (7.16).
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Proof. Similar to that of Scheme 1, the communication overhead between the LBSP

and user is given by

T1 = Tid + Tembed + Tindex + Tauth , (7.21)

where Tembed is the communication overhead incurred by transmitting embedded 〈j,A′
j,1,q〉.

We first estimate Tindex. Recall that the expected number of zones τi > 0 is

m̌(1− γn). For each of them, the LBSP need return τi + 1 POIs. It follows that

Tindex = m̌(1− γn)(
n(1 − γ)

1− γn
+ 1) · (Lloc + Lr + Lh)

= m̌(n− nγ + 1− γn) · (Lloc + Lr + Lh) .

(7.22)

Now we estimate Tauth. Similar to that in Scheme 1, we have

Tauth = (m̌(1− γn) +
d−1∑
j=1

2j(1− (1− 2−j)m̌(1−γn))) · Lh + Lsig . (7.23)

For Tid, we have

Tid = m̌(1− γn) · d , (7.24)

For Tembed, we further divide it into two parts: Tembed,1, the 〈j,Aj,1〉s from the

m̌ zones in the query region, and Tembed,2, the 〈j,Aj,1〉s from the m− m̌ zones outside

the query region.

For Tembed,1, there are two cases. First, when k < m̌, there are at most k zones

with τi > 0. Each of these k zones at most embeds the information from other k − 1

zones in I . Second, when k ≥ m̌, there are at most m̌ zones with τi > 0. Each of the

m̌ at most embed the information from other m̌− 1 zones in I . We therefore have

Tembed,1 ≤ t(t− 1) · (d+ Lr) , (7.25)

where t = min(k, m̌).

Now we estimate Tembed,2. Take zone i ∈ I ′ as an example. Let I ′
i,1,I ′

i,2, · · · ,I ′
i,ni+1

denote the sets of zone IDs outside the query region whose highest POI with attribute-

q rating in the range (χ,Ai,1), (Ai,1, Ai,2), · · · , (Ai,ni , χ), respectively. We then have∑ni+1
j=1 |I ′

i,j| = m− m̌.
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The c.d.f. of A′
i,1,q is given by

P (A′
i,1,q ≤ a) = P (Ai,1,q ≤ a,Ai,2,q ≤ a, · · · , Ai,n,q ≤ a)

=

n∏
i=1

P (Ai,1,q ≤ q)

= an .

According to Lemma 7.1.1, we have E(A′
i,j,q) = (n − j + 1)/(n + 1). For each zone

i′ ∈ Me \ I , the probability that i′ ∈
⋃j

x=1 I ′
i,x is given by

P (i′ ∈
j⋃

x=1

I ′
i,x) = P (A′

i′,1,q >
n− j + 1

n+ 1
)

= 1− (
n − j + 1

n+ 1
)n .

(7.26)

Therefore, the expected number of 〈j,Aj,1〉 in
⋃j

x=1 I ′
i,x can be estimated as (m −

m̌)(1 − ((n − j + 1)/(n + 1))n), we thus have
∑j

x=1 |I ′
i,x| = (m − m̌)(1 − ((n − j +

1)/(n + 1))n). It follows that

|I ′
i,j| = (m− m̌)((

n− j + 2

n+ 1
)n − (

n− j + 1

n+ 1
)n) (7.27)

The total number of 〈j,Aj,1,q〉 appear in these τi + 1 POIs is given by

τi+1∑
j=1

|I ′
i,j| =

τi+1∑
x=1

(m− m̌)((
n − j + 2

n+ 1
)n − (

n− j + 1

n+ 1
)n)

= (m− m̌)(1 − (
n− τi
n+ 1

)n); .

(7.28)

We therefore have

Tembed,2 =
∑
i∈I′

|I ′
i,j|

= |I ′|(m− m̌)(1 − (
n− E[τi|τi > 0]

n+ 1
)n)

= m̌(1− γn)(m− m̌)(1 − (
n− E[τ ]

n+ 1
)n) · (d+ Lr) .

(7.29)
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Substituting Eqs. (7.22), (7.23), (7.24), (7.25) and (7.29) into Eq. (7.21), we

have

T2 ≤ m̌(1− μn)d+ m̌(n− nμ+ 1− μn)(Lloc + Lr + Lh)

+ (m̌(1− μn) +

d−1∑
j=1

2j(1− (1− 2−j)m̌(1−μn)))Lh + Lsig

+ m̌(1− μn)(m− m̌)(1− (
n− ν

n+ 1
)n)(d+ Lr)

+ t(t− 1)(d + Lr) .

where μ = E[γ] = (m̌n − k + 1)/(m̌n + 1), ν = E[τ ] = n(1 − μ)/(1 − μn), and

t = min(k, m̌). The theorem is proved.

192



APPENDIX I

Proof of Theorem 3.6.7

193



Proof. Suppose that the user has issued a sequence of snapshot top-k queriesQ1, . . . , Qw

to realize a moving top-k query under Scheme 3. For each received complete query

result, the user can easily verify if it contains the authentic and correct top-k POIs ac-

cording to Scheme 1. The only option left for the LBSP is to purposefully omit some

complete query results by returning ACKs for some snapshot top-k queries, for which

we will show that it will be detected as well.

Assume that the LBSP has omitted a complete query result including kPOIa and

returns an ACK instead in response to query Qa. According to the query-processing

process, the LBSP need return a complete query result in response to both query Q1

and Qw; otherwise, it would be easily detected. So there exist 1 ≤ x < a < y ≤ w,

such that the user has received complete query results for queriesQx andQy as well as

ACKs for queries Qx+1, . . . , Qy−1. We thus have kPOIa �= kPOIx under the assumption

about the LBSP’s misbehavior.

If kPOIa �= kPOIx, there are two possible cases: at least one POI in kPOIx is

not in the ath query region Ra, or all the POIs in kPOIx are all in Ra, but there is at

least one POI in Ra but not in Rx with attribute-q rating higher than the lowest attribute-

q rating γx in Ra. In the former case, the user knows that the LBSP should have

returned a complete query result instead of an ACK in response to Qa, so the LBSP

can be detected immediately. In the later case, there must exist at least one POI with

rating higher than γx in Ra, say POIi,j . According to the query-processing process, the

complete query result for query Qy need to include the index φi,j for POIi,j According

to the query-result verification process, the user will detect that φi,j contains attribute-q

rating larger than γx and a POI location in the suspicion range Sx→y =
⋃y−2

j=xPj , thus

detecting the misbehavior of the LBSP.
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Proof. Assume that the AS receives {H(ei) : i ∈ U} during the commitment sub-

mission phase, whereby it derives H(
∑

i∈U ei) = g
∑

i∈U mod p. Suppose that some

malicious nodes injected false data during the data-aggregation phase so that the AS

receives e′ �=
∑

i∈U ei. The AS cannot detect the false-data injection attack if and only

if

ge
′
= g

∑
i∈U ei mod p .

However, for any y ∈ Z∗
p, there is a unique x ∈ [0, p−2] such that gx = y mod p. Since

p > 2l+2�log2 n	+φ >
∑

i∈U ei, there is no e′ �=
∑

i∈U ei can satisfy the above equation.

It is thus impossible for the adversary to inject false data without being detected under

VPA+.
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Proof. Consider node i as an example. Under DP, node i’s data ei is exposed if the AS

is curious and colludes with all the neighbors of node i in the aggregation tree, which

are denoted by Ti. The probability that the AS being curious is Mc/M . Assume that

|Ti| = Ntree and that there are nc curious nodes. The probability of all nodes in Ti being

curious is
(

nc

Ntree

)(
n−nc

nc−Ntree

)
/
(
n
nc

)
. We therefore have

Pexp =
Mc

M
·
( n−nc

nc−Ntree

)
( n
nc

) . (7.30)
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Proof. Under RCS and μCS, node i’s data ei is exposed if all the nodes in Ci, Si and Ti

are curious, where Si is the set of nodes that choose node i as a cover. For RCS, we

have |Ci| = t and for μCS, we have |Ci| =
∑μ

x=1Nx, where Nx is the number of the

x-hop neighbors of node i. Since max(|Ci|, |Si|, |Ti|) ≤ |Ci
⋃

Si
⋃

Ti|, we have

Pexp ≤
(n−nc

nc−w

)
( n
nc

)
where

w =

⎧⎪⎨
⎪⎩

max(Ntree, t) for RCS,

max(Ntree,
∑μ

x=1Nx) for μCS .
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Proof. The communication overhead incurred by VPA+ consists of three parts: Ttree,

the overhead incurred by forming aggregation tree, Tcommit, the overhead incurred by

submitting commitment to A, and Tagg, the overhead incurred by privacy-preserving

aggregation.

We first estimate Ttree. During the aggregation-tree formation process, each

node broadcasts the tree formation request once. Therefore we have

Ttree = nltree ,

where ltree is the length of the tree formation request in bits.

Now we estimate Tcommit. Suppose that H(e) and h(·) are of lhmac and lh bits,

respectively. The length of each commitment message is lhmac + lh. Recall that each

node ID is of λ bits. We then have

Tcommit = n(λ+ lhmac + lh) .

Finally, we estimate Tagg for DP, RCS and μCS.

• DP: during the aggregation phase, each node need transmit the intermediate

aggregation result to its parent node. We therefore have

Tagg = nldata ,

where ldata = l + 2
log2 n�+ φ.

• RCS: before in-network aggregation, each node need send one slice to each of

the t chosen cover nodes, which involves one route discovery to the chosen cover

node. Each route discovery incurs a communication overhead of nlreq + Llrsp,

where lreq and lrsp denote the length of a AODV route discovery request and a

response, respectively. In addition, transmitting one slice incurs a communication

overhead of L(ldata + λ). Therefore we have

Tagg = nt(nlreq + L(lrsp + ldata + λ)) + nldata .
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• μCS: For μCS, during slicing and mixing, each node i and all the nodes within

its μ− 1-hop neighborhood need broadcast a random seed along with IDi once,

which incurs communication overhead of (1 +
∑μ−1

x=1)Nx(λ + lseed). In addition,

each nodes in its μ−1-hop neighborhood need return its node ID to node i, which

leads to communication overhead
∑μ

x=1Nxλ. We therefore have

Tagg = n((1 +

μ−1∑
x=1

Nx)(λ+ lseed) +

μ∑
x=1

Nxxλ) + nldata .
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Before we prove Theorem 4.5.1, we first have the following lemmas.

Lemma 7.1.5. Assume that dmax = 2l − 1. Let {χi,j}lj=1 be the sequence of answers

from a node i, where χi,j ∈ {0, 1} for all j ∈ [1, l]. If χi,j = 1, then χi,j′ = 1 for all

j′ < j; likewise, if χi,j = 0, then χi,j′ = 0 for all j′ > j.

Proof. Assuming that dmax = 2l − 1, we have Qj = [d ≥
∑j

i=1 2
l−i] for all j ∈ [1, l].

It follows that Qj+1 ⊂ Qj for all j ∈ [1, l − 1]. Therefore, if χi,x = 1, then di ∈ Qj .

It follows that di ∈ Qj′ and χi,j′ = 1 for all j′ < j. The second part can be proved

similarly and is thus omitted.

Lemma 7.1.6. Assume that dmax = 2l − 1. Let χi,ye and χi,ne be the first exposed yes

answer and last exposed no answer, where 0 ≤ ye < ne ≤ l+1, ye = 0 and ne = l+1

denote the case that no yes answer is disclosed and the case that no no answer is

exposed, respectively. The suspicion ratio after l count queries is given by

ρ[ye, ne] =

⎧⎪⎨
⎪⎩

2−ye − 2−ne if ye + 1 ≤ ne ≤ l,

2−ye if ne = l + 1.
(7.31)

Proof. Suppose Qye = [d ≥
∑ye

j=1 2
l−j ] and χi,ye = 1. The disclosure of χi,ye = 1

let the adversary know that di ≥
∑ye

j=1 2
l−j . Similarly, suppose that ne exists, i.e., at

least one no answer is exposed. The disclosure of χi,ne = 0 let the adversary know

that di <
∑ne

j=1 2
l−j . It follows that

ye∑
j=1

2l−j ≤ di <

ne∑
j=1

2l−j .

Therefore, we have

ρ[ye, ne] = 2−l(

ne∑
j=1

2l−j −
ye∑
j=1

2l−j)

=

ne∑
j=1

2−j −
ye∑
j=1

2−j

=

ne∑
j=ye+1

2−j

= 2−ye − 2−ne .
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Note that the disclosure of other answers does not give the adversary additional infor-

mation, since Qj+1 ⊂ Qj for all j ∈ [1, l − 1].

In addition, if no “no” answer is disclosed, we have

ρ = 2−ye .

Now we prove Theorem 4.5.1.

Proof. We first consider DP and μCS in which each node i directly interacts with the

same set nodes during the whole sequence of l count queries. This means that if

χi,1 is exposed, which happens with probability Pexp, then all the subsequent answers

{χi,1}lj=2 are also exposed. On the other hand, if χi,1 is kept secret, which happens

with probability 1− Pexp, so are {χi,1}lj=2.

We further partition the data range [0, 2l − 1] into l + 1 equivalent classes,

denoted by {Cx}lx=0, where Cx = [2l − 2l−x, 2l − 2l−x−1 − 1] for x ∈ [0, l − 1], and

Cl = [2l − 1, 2l − 1]. It follows if di ∈ Cx, then χi,j = 1 for all j ∈ [1, x], and χi,j = 0 for

all j ∈ [x+ 1, l]. In other words, different nodes have the same sequence of answers if

their data are in the same equivalent classes.

Assume that di ∈ Cx. If {χi,1}lj=1 are exposed, which happens with probability

Pexp, then we have ye = x and ne = x+ 1. According to Eq. (4.23), we have

ρ =

⎧⎪⎨
⎪⎩

2−x−1 if 0 ≤ x ≤ l − 1,

2−l if x = l,

in this case. If {χi,1}lj=1 are kept secret, which happens with probability 1− Pexp, then

we have ρ = 1.
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Combining the above two cases, we can compute the expected suspicion ratio

as

ρ =

l−1∑
x=0

Pr(di ∈ Cx)((1 − Pexp) + 2−x−1Pexp)

+ Pr(di ∈ Cl)((1 − Pexp) + 2−lPexp)

=

l−1∑
x=0

2−x−1((1 − Pexp) + 2−x−1Pexp)

+ 2−l((1− Pexp) + 2−lPexp)

= 1− Pexp + (2−2l +

l∑
x=1

2−2x)Pexp .

(7.32)

207



APPENDIX O

Proof of Theorem 4.5.2
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Proof. In RCS, each node i chooses the cover nodes independently for each query.

This means that each χi,j is exposed independently with probability Pexp. Suppose

di ∈ Cx. So node i returns x yes answers and l−x no answers. The p.d.f. of ye is then

given by

Pr(ye = k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1− Pexp)
x if k = 0,

Pexp(1− Pexp)
k−1 if 1 ≤ k ≤ x,

0 otherwise.

(7.33)

Similarly, p.d.f. of ne can be computed as

Pr(ne = k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pexp(1− Pexp)
k−x−1 if x+ 1 ≤ k ≤ l,

(1− Pexp)
l−x if k = l + 1,

0 otherwise.

(7.34)

For all data in di ∈ Cx, the expected suspicion ratio can be computed as

E[ρx] =
x∑

k1=0

Pr(ye = k1)
l+1∑

k2=x+1

Pr(ne = k2)ρ[ye, ne] . (7.35)

Finally, the expected suspicion ratio can be computed as

E[ρ] =
l∑

x=0

Pr(di ∈ Cx)E[ρx]

=
l−1∑
x=0

2−x−1E[ρx] + 2−lE[ρl] .

(7.36)
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