918 research outputs found

    An Energy Aware Resource Utilization Framework to Control Traffic in Cloud Network and Overloads

    Get PDF
    Energy consumption in cloud computing occur due to the unreasonable way in which tasks are scheduled. So energy aware task scheduling is a major concern in cloud computing as energy consumption results into significant waste of energy, reduce the profit margin and also high carbon emissions which is not environmentally sustainable. Hence, energy efficient task scheduling solutions are required to attain variable resource management, live migration, minimal virtual machine design, overall system efficiency, reduction in operating costs, increasing system reliability, and prompting environmental protection with minimal performance overhead. This paper provides a comprehensive overview of the energy efficient techniques and approaches and proposes the energy aware resource utilization framework to control traffic in cloud networks and overloads

    Performance Analyses and Improvements for the IEEE 802.15.4 CSMA/CA Scheme with Heterogeneous Buffered Conditions

    Get PDF
    Studies of the IEEE 802.15.4 Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) scheme have been received considerable attention recently, with most of these studies focusing on homogeneous or saturated traffic. Two novel transmission schemes—OSTS/BSTS (One Service a Time Scheme/Bulk Service a Time Scheme)—are proposed in this paper to improve the behaviors of time-critical buffered networks with heterogeneous unsaturated traffic. First, we propose a model which contains two modified semi-Markov chains and a macro-Markov chain combined with the theory of M/G/1/K queues to evaluate the characteristics of these two improved CSMA/CA schemes, in which traffic arrivals and accessing packets are bestowed with non-preemptive priority over each other, instead of prioritization. Then, throughput, packet delay and energy consumption of unsaturated, unacknowledged IEEE 802.15.4 beacon-enabled networks are predicted based on the overall point of view which takes the dependent interactions of different types of nodes into account. Moreover, performance comparisons of these two schemes with other non-priority schemes are also proposed. Analysis and simulation results show that delay and fairness of our schemes are superior to those of other schemes, while throughput and energy efficiency are superior to others in more heterogeneous situations. Comprehensive simulations demonstrate that the analysis results of these models match well with the simulation results

    Motorway Vehicular Networks with Renewable Energy Powered Access Points

    Get PDF
    The goal of this work is to consider the potential of using renewable energy only to power roadside units (RSUs), which not only reduces CO2 footprint but also reduces the infrastructure needed in motorway vehicular communication. The thesis begins with collation and analysis of wind and motorway traffic data for the purpose of determining the energy demand of vehicular networks as well as the energy supply obtainable from wind. This is followed by the study of a standalone RSU powered by wind energy. Small size standalone wind energy systems which have benefits of low cost, easy and large scale deployments are implemented for the low power RSUs. The concept of wind energy based rate adaptation is introduced and implemented in the RSU through which RSU can vary transmission power according to the availability of wind energy. This reduces the outage and improves the overall service quality. Traditionally rate adaptation was employed to cater for wireless channel unavailability. A queuing model for the RSU is developed and verified through simulation to evaluate the performance in terms of delay, packet loss and utilisation. Channel fading is considered and the performance of the RSU is re-evaluated in terms of the same quality of service parameters, viz. delay, packet loss and utilisation to investigate the impact of fading in the network. Next, the reliability of the RSU is redefined in the context of unavailability of sufficient wind power. The transient nature of wind energy causes the RSUs to either transmit at full data rate or not transmit at all depending on the availability of sufficient energy. Thus, a failure occurs when the wind power is less than the load. Therefore, a framework has been developed for redefining a number of reliability parameters in the context of wind powered RSUs. A detailed wind data analysis was carried out based upon the hourly wind speed obtained from the UK air information resource (AIR) database for a period of five years, to determine the energy model of the deployed micro-turbine. An energy storage device (a small battery) is connected to the micro-wind turbine for improved service quality

    The research on the current status, development impetus and technical barriers of MASS

    Get PDF

    Cross-layer design for wireless sensor relay networks

    Get PDF
    In recent years, the idea of wireless sensor networks has gathered a great deal of attention. A distributed wireless sensor network may have hundreds of small sensor nodes. Each individual sensor contains both processing and communication elements and is designed in some degree to monitor the environmental events specified by the end user of the network. Information about the environment is gathered by sensors and delivered to a remote collector. This research conducts an investigation with respect to the energy efficiency and the cross-layer design in wireless sensor networks. Motivated by the multipath utilization and transmit diversity capability of space-time block codes (STBC), a new energy efficient cooperative routing algorithm using the STBC is proposed. Furthermore, the steady state performance of the network is analyzed via a Markov chain model. The proposed approach in this dissertation can significantly reduce the energy consumption and improve the power efficiency. This work also studies the application of differential STBC for wireless multi-hop sensor networks over fading channels. Using differential STBC, multiple sensors are selected acting as parallel relay nodes to receive and relay collected data. The proposed technique offers low complexity, since it does not need to track or estimate the time-varying channel coefficients. Analysis and simulation results show that the new approach can improve the system performance. This dissertation models the cooperative relay method for sensor networks using a Markov chain and an M/G/1 queuing system. The analytical and simulation results indicate system improvements in terms of throughput and end-to-end delay. Moreover, the impact of network resource constraints on the performance of multi-hop sensor networks with cooperative relay is also investigated. The system performance under assumptions of infinite buffer or finite buffer sizes is studied, the go through delay and the packet drop probability are improved compared to traditional single relay method. Moreover, a packet collision model for crucial nodes in wireless sensor networks is introduced. Using such a model, a space and network diversity combining (SNDC) method is designed to separate the collision at the collector. The network performance in terms of throughput, delay, energy consumption and efficiency are analyzed and evaluated

    The 4th Conference of PhD Students in Computer Science

    Get PDF
    • …
    corecore