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Preface 
These proceedings contain the papers which are being presented at the Third Korea-Netherlands 
Conference on Queueing Theory and its Applications to Telecommunication Systems, to be held July 
12, 2007 in the research institute EURANDOM in Eindhoven, The Netherlands. 

The initiative for this series of Korea-Netherlands conferences was taken by Professor Bong 
Dae Choi, who also organized the first edition in Seoul, Korea, in June 2005. The second 
one took place in Amsterdam, The Netherlands, in October 2006. Exploiting the fact that a 
strong Korean delegation will be visiting the 14th INFORMS Applied Probability Conference 
in Eindhoven University of Technology, J uly 9-11, 2007, we have decided to organize the third 
conference edition right after this INFORMS conference. 

The Korea-Netherlands conference series aim tobring together leading specialistsin queueing 
theory and its applications to the performance analysis of telecommunication systems from 
Korea and The Netherlands, thus stimulating scientific interaction and exchange of knowl­
edge between the two very active and prominent research communities of both countries. As 
in the previous two editions, the talks range from fundamental queueing theory to relevant 
applications to modern telecommunication networks. 

In the fust paper, Hwang, Kim, Son and Choi consider IEEE 802.16e, which is designed to sup­
port high capacity, high data rate and multimedia services as an emerging broadband wireless 
access system. The authors propose a new sleep-mode mechanism called the power saving 
mechanism with periadie traffic indications, and study its performance. 

Nufiez-Queija and Prabhu study the braadcast time of files in a Peer-to-Peer network with a 
large number N of initia! nodes. In a networkof altruistic nodes, they show the mean broadcast 
time to be O(Iog(N)); in a network with free-riding nodes, a similar order of mean braadcast 
time may be achieved if nodes remain connected to the network for the duration of at least one 
more contact after downloading the file. 

Park and Chong present an overview of wireless mesh networking technologies. They discuss 
a few promising standards for these technologies, and mention some challenging research 
issues associated with those standards. 

De Haan, Boucherie and van Ommeren study a polling model with a so-called autonomous 
server. More precisely, they assume that the server spends an exponentially distributed period 
of time at a queue (independent of the number of customers present at each queue) before 
moving to the next queue. Applications of the model arise for instanee in the context of wire­
less ad hoc networks. Their analysis is basedon consiclering embedded Markov chains at 
specific instants. 

The next two papers are devoted to retrial queues. Kim and Kim consider an M/G/1 retrial 
queue. By relating its waiting time to the waiting time in an ordinary M/G/1 queue with 
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random order of service, they are able to show that the waiting time distribution for the retrial 
queue is regularly varyingif the service time distribution is regularly varying. Nobel considers 
a retrial queue with an unlimited num.her of servers, of which only a finite num.her is not 
dormant but active. Using Markov decision theory, he tackles the problem of determining 
when to activate or shut down servers in order to minimize the long-run average casts per 
unit time. 

Hwang and Ishizaki study a cross-layer design problem fora wireless network with adaptive 
modulation and coding. Intheir cross-layer design, they consider bath the physicallayer and 
the medium access controllayer. To capture the joint effect of the performance of bath layers 
(packet transmission error rate at the PHY layer and packet overflow probability at the MAC 
layer) they introduce and study the effective bandwidth function of the packetservice process 
atthe MAC. 

In the final paper, Verloop, Borst and Nufiez-Queija investigate the delay-optimization prob­
lem for flows in bandwidth-sharing networks. For a class of simple linear bandwidth-sharing 
networks, they campare the performance of the optimal bandwidth-sharing policy with that of 
various a-fair strategies. They conclude that (optimization within) the family of a-fair strate­
gies is likely to be adequate for most practical purposes. 
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Abstract 

We propose a new sleep-mode scheme called the power saving mechanism with peri­
adie traffic indications in the IEEE 802.16e. In the proposed scheme, traffic indication 
(TRF-IND) messages are regularly sent at every constant time to initiate transmis­
sion. Bandwidth and energy can be saved by not sending sleep request (MOB­
SLP-REQ) and sleep response (MOB-SLP-RSP) messages, which are required in the 
original power saving classes in the 802.16e standard. We derive the Laplace Stielt­
jes transforms (LSTs) of the lengths of awake interval and sleep interval as well 
astheLST of queueing delay of a message. As performance measures we obtain 
sleep-mode ratio, power-consumption ratio, and mean total-delay. We show that 
our analytic results match with simulation results very well. Using our perfor­
mance analysis we find the optimal system parameters such as a TRF-IND interval 
and a close-down time, which minimize the power consumption of MS while sat­
isfying the required quality of service (QoS) on mean total-delay. The numerical 
results show that the proposed scheme performs better than the original power 
saving class of type 1 in the standard. 

Keywords : IEEE 802.16e; power saving scheme; performance analysis; M/G/1 queueing 
model. 

1 Introduetion 

The IEEE 802.16e is designed to support high capacity, high data rate and multimedia services 
as an emerging broadband wireless access system for fixed and mobile subscriber stations. 
Originally the IEEE 802.16 [1] has been designed for fixed subscriber stations, and the latest 
version IEEE 802.16e [2] has enhanced the original standard with mobility so that Mobile Sta­
tions (MSs) can move during services. Due to the promising mobility capability in the IEEE 
802.16e, a power saving scheme is one of the significant issues for the battery-powered MSs to 
extend their lifetime before recharging. The IEEE 802.16e standard [2] introduces three kinds of 
sleep-mode operations called power saving classes of type I, II and lil. Power saving class of type 
I is recommended for Best Effort (BE) and non-real-time variabie ra te (NRT-VR) traffics, power 
sa ving class of type II for unsolicited grant service (UGS) and re al-time variabie ra te (RT-VR) 
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traffics, and power saving class of type III for management operation and multicast connec­
tions, respectively. These three types differ by their parameter sets, procedures of activation or 
deactivation, and polides of MS availability for data transmission. 

Under the sleep-mode operation of the power saving classes in the IEEE 802.16e standard, 
in order to go to sleep, a MS sends a sleep request (MOB-SLP-REQ) message to its serving 
Base Station (BS) and obtains its approval through a sleep response (MOB-SLP-RSP) message 
from the BS. The sleep-mode in the power saving class of type I and type II involves two 
operational windows, namely, a sleep window and a listening window. After the MS receives 
a MOB-SLP-RSP message, it enters the sleep-mode from the awake-mode, and sleeps during 
a certain sleep window. At the following lislening window the MS wakes up to listentoa 
traffic indication (TRF-IND) message from the BS, which tells whether the BS has any buffered 
downlink service-data-units ( called packets in this paper) destined to it. If there is such traffic 
arrived at BS for the MS, the MS goes to the awake-mode. Otherwise, the MS remains in the 
sleep-mode and gets sleep for another sleep window. During the listening window, the MS 
listens to the TRF-IND message broadcasted from the BS, in the same way as in the state of 
awake-mode. 

The MOB-SLP-REQ/RSP messages contain power saving class-type, and the sizes of initiai­
sleep window, final-sleep window, and listening window. Each traffic can choose different 
power saving ciass-types by sending MOB-SLP-REQ/RSP messages. In the power saving class 
of type I, after sleeping during the initiai-sleep window, if there is no buffered traffic at the BS 
at the following listening window, the MS doubles the sleep window size, and sleeps until the 
next listening window. These sleeping-and-listening events repeat with updated sleep win­
dow sizes until the MS is notified of the buffered packets destined to itself via a TRF-IND 
message. If the sleep window size reaches up to a maximum value of the final-sleep window, 
then the sleep window size is not doubled, but fixed. 

Unlike the power saving class of type I, the power saving class of type II uses constant 
sleeping window size instead of doubling sleep window. Moreover, as opposite of type I, 
during the listening window of power saving type II, the MS may sendor receive any packets. 

There have been some recent studies that evaluate power saving schemes in the IEEE 
802.16e. Han and Choi [3] analyzed the sleep mode operation of IEEE 802.16e in view of 
downlink traffic through semi-Markov chain, assuming that the bandwidth is always allo­
cated one packet per one frame. Xiao [7] [8] proposed an analytica! model of the power saving 
class of type I and investigated the energy consumption of IEEE 802.16e, including both in­
coming and outgoing frames. Zhang and Fujise [10] performed the energy and delay analysis 
on uplink and downlink traffic separately in the IEEE 802.16e. Xu, et al.[9] and Jang, et al. [4] 
proposed adaptive energy saving mechanisms in the IEEE 802.16e system, where the initiai­
sleep window and final-sleep window are adjusted according to the average traffic overlaad 
dynamically. Kong, et al. [5] evaluated and compared the sleep-mode operations of the power 
saving classes of type I and type II using an embedded Markov chain. 

One of the problems in the power saving classes in IEEE 802.16e standard [2] is that they 
need overhead on the resources to transmit MOB-SLP-REQ/RSP messages. For example, dur­
ing the switching time from awake-mode to sleep-mode, a MS sends a MOB-SLP-REQ message 
and receives a MOB-SLP-RSP message, and also needs actions for requesting and granting re­
source to exchange such signaling messages. The switching time between awake I sleep-modes 
excluding resource request period takes at least 4 frames as follows: 

The switching time from awake-mode to sleep-mode = 
timetosend a MOB-SLP-REQ message from MS to BS,lframe 
+ time for BS to decode the MOB-SLP-REQ message, 1 frame 
+ time to check data buffered and togeneratea MOB-SLP-RSP message,lframe 
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+ timetosend the MOB-SLP-RSP message from BS to MS,lframe. 
Moreover, the problem is that during the switching time, MSs also consume the energy by 
staying in the awake-mode. In other words, the overhead to transmit the MAC management 
messages and the additional overhead for the resource request are necessary for the mode 
transition. The data link time to handle such overheads will be entirely wasted time in the 
awake mode, and will affect the power consumption efficiency. These problems motivate us 
to introduce a new sleep-mode scheme for the IEEE 802.16e. 

In this paper, we propose a new sleep-mode scheme called the power saving mechanism with 
periadie traffic indications in ordertosave the resources and the power consumption by not send­
ing MOB-SLP-REQ/RSP messages. The main charaderistic of the power saving mechanism 
with periodic traffic indications is tosend periodically a TRF-IND message by the BS at every 
constant interval, called the TRF-IND interval. This power saving mechanism with periodic 
traffic indications resolves the problem of the MOB-SLP-REQ/RSP in the IEEE 802.16e men­
tioned above, by saving their bandwidth as wellas the switching time between awake/sleep­
modes, and furthermore the energy consumption. The proposed power saving mechanism 
with periodic traffic indications unilies the power saving classes of type I and type II, and so 
it can be applicable to all traffics such as BE, NRT-VR, UGS and RT-VR traffics, by adjusting 
the lengthof a TRF-IND interval depending on traffics. The algorithm of the new sleep-mode 
scheme is so simple and convenient for the actual implementation. We will describe in details 
the power saving mechanism with periodic traffic indications in Section 2 of this paper. 

We provide an analytic performance study for the downlink traffic under the proposed 
scheme, assuming that arrivals of messages follow a Poisson process, which is applied for 
bursty traffic like BE traffic. 

We organize the rest of this paper as follows. InSection 2, we introduce the power sav­
ing mechanism with periodic traffic indications for the 802.16e. InSection 8, the probabilistic 
charaderistics of the lengths of awake/sleep intervals in the proposed sleep-mode operation 
are investigated by their Laplace-Stielljes transfarms (LSTs). As a result, we obtain sleep-mode 
ratio and power-consumption ratio. The LST and the mean of queueing-delay of a message are 
derived inSection 8. InSection 4, we show that our analytic results match with simulation re­
sults very well. The power saving mechanism with periodic traffic indications and the power 
saving class of type I in the IEEE 802.16e standard are compared with power-consumption ra­
tio under the constraint that the two schemes have the same mean total-delay bound. As we 
expect, the proposed scheme in this paper performs better than the power saving class of type 
I in the IEEE 802.16e standard. We conclude the paper inSection 5. 

2 The power saving mechanism with periodic traffic indications 

The power saving mechanism with periodic traffic indications has a TRF-IND interval of a 
constant length C. The TRF-IND interval consistsof a listening interval, an awake interval 
and a sleep interval. Under this new sleep-mode operation, the BS sends out periodically a 
TRF-IND message at the beginning of the listening interval in TRF-IND interval (see Fig.l). 
During the listening interval, a MS synchronizes with the serving BS downlink, listens to a 
TRF-IND message, and decides whether to go to an awake-mode or remain in a sleep-mode. 

If there are data traffics in the buffer for the tagged MS, the BS sends a positive TRF-IND 
message and the MS enters an awake-mode. The BS transmits data during the awake-mode, 
and the awake-mode terminates if no traffic arrives during a fixed time, called a close-down 
time (referred to as time-out insome papers), of a constant length T, since the buffer of the BS 
has become empty. The close-down time is given to provide with services before entering a 
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Figure 1: Sleep-mode operation of the power saving mechanism with periadie traffic indications. 

sleep-mode, to the data which arrive shortly after the buffer has become empty. If any data 
traffic arrives during the close-down timeT, the BS keeps on the awake-mode and transmits 
the data. Otherwise, the MS goes to a sleep-mode from the awake-mode without exchanging 
MOB-SLP-REQ/RSP messages. The sleep-mode continues up to the next listening interval, 
where the BS sends out a TRF-IND message. lf there are no data for the downlink traffic at the 
beginning of the listening interval, the BS sends a negative TRF-IND message, the MS stays in 
a sleep-mode, and a sleep interval becomes a whole TRF-IND interval. 

To illustrate the sleep-mode operation of the power saving mechanism with periadie traffic 
indications, we give an example in Fig.l, where TRF-IND interval C = 12, close-down time 
T = 4, and listening interval L = 2 frames. Since a message composed of3 packets arrives 
duringa previous sleep interval, the BS sends the first positive TRF-IND message in the listen­
ing interval. The awake intervallasts from 3rd frame to 9th frame, where the transmission of 
3 packets takes 3 frames and the close-down time is the last 4 frames. Because no data arrive 
during the close-down time, the MS enters a sleep-mode from the lOth to the 12th. The 13th 
frame is the beginning of a listening interval at which the next TRF-IND message arrives. The 
second TRF-IND message is negative, and then the MS restarts a sleep-mode. 

Now we explain why we can use our proposed power saving mechanism with periadie 
traffic indications for all traffics. Every traffic has its own arrival processof packets, and its own 
requirement on packet delay or packet loss. For example, BE traffic like Web browsing arrives 
with series of packets, (which we regard as a message in this paper), and it demands less 
stringent requirement on delay. A good candidate for BE traffic is the power sa ving mechanism 
with periadie traffic indications having a sufficiently large value of C. On the other hand, 
UGS traffic such as VoiP or streaming service produces packets of fixed bytes at every fixed 
milliseconds, and it demands stringent requirement on delay. Thus a good candidate for UGS 
traffic is the power saving mechanism with periadie traffic indications having a short length 
c. 
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In this paper we consider bursty traffics of messages consisting of a random number of 
packets, which are not sensitive to delay. Thus we assume that in the power saving mechanism 
with periodic traffic indications, the length C of a TRF-IND interval is chosen so large that 
an awake-mode terminales within C and the requirement on delay is still satisfied. A sleep 
interval is the remaining part of a TRF-IND interval after the awake-mode terminates. As a 
system parameter, the lengthof a TRF-IND interval determines delay and power consumption. 

3 Mathematica! analysis 

3.1 Assumptions 

We make the following assumptions: 
(1) The downlink message arrival toward the tagged MS follows a Poisson process with 

arrival rate À. 

(2) A message of random length is divided into packets of fixed length, and only one single 
packet is transmitted during every frame, i.e., MAC layer always allocates a resource to the 
tagged MS at every frame and the resource can transmit one packet. Thus the transmission 
time (service time in queueing terminology) of one message is a random multiple of one frame 
and so we may assume that the service time of a message has a general distribution B(x). 

Mathematica! analysis will be proceeded with the techniques developed in the M/G/1 
queuing model with a vacation by regarding messages as customers and a sleep-mode as a vaca­
tion. We assume that the BS has an infinite buffer for the tagged MS. 

It is assumed that the BS does not send downlink messages during the listening interval 
The mathematica! analysis will be done by classifying two intervals: awake interval and sleep 
interval. Since the listening interval is very short as 2 frames, for mathematica! simplicity we 
assume that the listening interval is included in the sleep interval. However, in reality the lis­
lening interval is on the awake-mode, and soit will be subtracted from the mean lengthof sleep 
interval and added to the mean lengthof a wake interval for obtaining power-consumption ra­
tio in 3.2. Let 

• A = the length of an awake interval, 
• V= C--A, the lengthof a sleep interval, assuming that the length C of a TRF-IND interval 

is chosen so large that A:::; C, as mentioned earlier. 
Remark. If a traffic has the lowest priority among traffic classes in the IEEE 802.16e system, 

like BE traffic, according to the traffic conditions of BS, the bandwidth for BE traffic may not 
be allocated tothepending packets destined to the tagged MS at every frame. The time ( called 
HoL-delay) to be allocated the bandwidth for the packet of BE traffic will be a random amount 
of time (see [2]). Assuming that the packet arrivals follow a Poisson process with arrival rate 
À, the results of this paper can be also applied tothesleep mode operatien initiated by BS by 
regarding the service time as HoL-delay + transmission time, and a sleep-mode as a vacation. 
In M/G/1 queueing, packets correspond to customers, and HoL-delay + transmission time 
correspond to a general service time. 

3.2 A wake interval and sleep interval 

In this subsection, first we describe the awake interval in terms of the busy periods generated 
by messages buffered at the BS. The LST of the length of the awake interval is computed in 
terms of the LST of the length of the sleep interval , and we obtain a relation between mean 
lengths of the awake/sleep intervals. We derive the LST and the mean of the lengthof the 
sleep interval. Sleep mode ratio and power consumption ratio are given. 
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Figure 2: Awake interval and sleep interval. 

Laplace transfarms of the lengtbs of awake interval and sleep interval 

Let Y be the num.her of messages which arrive duringa previous sleep interval V. We consider 
two cases of Y(w) = 0 and Y(w) > 0, separately. Note that P(Y = 0) = J0

00 P(Y = OjV = 
x) dV(x) = J~ e->.x dV(x) =V*(>.). 

(1) Case 1: Y(w) > 0, and so the BS sends a positive TRF-IND message. The probability of 
this case is given by P(case 1) = 1- V*(>.). 

Let ec be the lengthof the busy period generated by messages which have arrived during 
the previous sleep interval. As the busy period is over, the MS waits fora close-down timeT 
before it enters the sleep-mode. lf there is no arrival message during the constant close-down 
time T, the MS goes from the awake-mode to the sleep-mode, and the length of the awake 
interval in case 1 is equal to 8c + T with probability e->-T. Otherwise, the awake interval 
is added to the busy period, which is generated by the messages arrived during the present 
close-down time. The MS stays on the awake-mode and waits again for another close-down 
time T. In the case that there is no message in the second close-down time T, the MS enters 

the sleep-mode, and the lengthof the awake interval in case 1 becomes ec + T + (e~) + T) 
with probability e->.T(1 - e->.T), where 8~) representS the lengthof the (first) busy period 
generated by messages arrived during the fust close-down timeT. In such a way, the lengthof 
the awake interval given Y > 0 is expressedas follows (w.p. below stands for with probability). 
Fig.2 indicates the awake interval and the sleep interval in case 1. 

The length A of the awake interval, conditionally on {Y > 0} in case 1: 

8c+T w.p. e->.T 

8c + T + (e~) + T) w.p. e->.T (1 - e->.T) 

A= {1) 

8c + T + (e~) + T) + · · · + (e~) + T) w.p. e->.T (1 - e->.T)n 

The LST A*(sjY > 0) of A given Y > 0 is computed as follows. 

00 

A*(sjY > 0) = L E[e-sAIY > 0, A= ec + e~) + ... + e~) + (n + 1)T]e->.T(1 e->-Tt 
n=O 
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where 

D 3 

025 

•• 

0 
~ . 

0 • 

" . c • 
" . 

(a) C = 300, T = 30 

... 
006 

004 

002 

(b) C = 600, T 30 

Figure 3: Approximation of V*(>.) by e->-E[VJ. 

S*( ) = V*[>.- >.O*(s)]- V*(>.) 
c s 1 V*(>.) , 

-.>-T 
e [e>.TO*(s) - 1]. 

1- e->..T 

e~ ( s) and er ( s) are the LSTs of the busy periods e c and 8r generated by messages arrived 
during the previous sleep interval, and during the close-down timeT, respectively, and O*(s) 
is the LST of the busy period 0 of one message in the M/G/1 queueing system, with O*(s) = 
B*(s + >. >.O*(s)). Hence, 

* e-(>..+s)T[V*[>.- ),O*(s))- V*(>.)} 
A (siY > 0) = [1- V*(>.)1[1- e-(>..+s)T(e>..TO*(s)- 1))' 

(2) Case 2: Y(w) 0, and so the BS sends a negative TRF-IND message. Since we assurne 
for mathematica} sirnplicity that the listening interval is contained inthesleep intervat A is 
equalto zero in case 2. The probability of this case is P(case 2) =V*(>.). 

Therefore, the LST of the length A of an awake interval is as follows: 

A*(s) = A*(siY = O)P(Y = 0) + A*(siY > O)P(Y > 0) =V*(>.)+ A*(siY > 0)[1- V*(>.)], 

A* _ V*(>.)+ e-(>..+s)T[V*(>.- ),O*(s))- V*(>.)e>..TO*(s)J 
(s) - 1 + e-(>..+s)T[1 e>..TO*(s)j (2) 

This equation gives a re lation between A* ( s) and V* ( s), the LSTs of A and V. By differentiating 
it at zero, the re]ation of the mean lengths of an awake interval and a sleep interval can be 
obtained. Since V*(>.) is the probability that there is no message in the sleep interval V, we 
approxirnate V* ( >.) by the probability that there is no message in the interval whose length is 
E[V], i.e., V*(>.) 2:! e->..E(VJ. Fig.3 shows that this approxirnation is verified by sirnulation. The 

equalities p = >.E[B] and E[O] = ~~' are used to yield the equation of E[A) and E[V]: 

E[A} = - 1-[pE[V} + Te>..T- Te>..T e->..E[Vl]. (3) 
1-p 

This equation is arelation between E[A] and E[V] obtained from the relation of the LSTs of A 
and V in a general case withno assumption on the system parameters. 

However, we assurned that the TRF-IND interval C is chosen so large that A ::; C holds. 
Then V= C-A and the LST of V, V*(s) =A*( -s)e-sC and from (2) we have the following 
equation of V*(s): 

* e-sCV*(>.)[1 _ e-(>..-s)T e>..TO*(-s)J e-sCe-(>.-s)T * * 
V (s) = 1 + e-(>..-s)T[1 e>-TO•(-s)] + 1 + e-(>..-s)T[1- éTO•(-s)j V (>.- >.0 (-s)). 
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This expression is a functional equation fortheLST V*(s) of V. We solve for V*(s) for any 
given value s through the following iterative equation: 

v;+1 (s) = R(s) + Q(s)V;(D(s)) 

where V0* ( s) is some initia! function and 

R(s) 
e-scv* ( >.)[1 e-(>.-s)T e>-To· ( -s)J 

1 + e-(>.-s)T[1 _ e>.TB*(-s)] 

e-sC e-(>.-s)T 
Q(s) = 1 + e-(>.-s)T[1- èTO*(-s)] 

and D(s) = >.- >.0*( -s), then we obtain 

oo k n-1 

V*(s) =V*(>.) 2)e(>.-Dk(s))T -e>.TO*(-Dk(s))J IT Q(Di(s))+ n~ VJ(Dn(s)) IT Q(Di(s)) 
k=O j=O j=O 

(4) 
where Di(s) = D(D(· · · D(s))), j-fold composition of D(s). The equation (4) is an expression 
in termsof known quantities and initia! tunetion V0*, which may be chosen astheLST of V0 

where V0 is some proper random variable. Assuming (4) is convergent, E[V] can be obtained 
as in (5) below by differentiating (4}, but in such a differentiating calculation, the term of V0 

will vanish to zero withatermof p. E[A] = G- E[V] < G and using (3), 

E[VJ Te>.T e->.E[V] TéT + (1- p)G. (5) 

E[V] is obtained by solving (5) numerically. 

Sleep mode ratio and power consumption ratio 

In this subsection, we are interested in the performance measures such as sleep-mode ratio and 
power-consumption ratio under the sleep mode operation: 

• Sleep-mode ratio is defined by the ratio of mean lengthof a sleep interval to the total mean 
lengthof a sleep interval and an awake interval. 

. E[VJ 
Sleep Mode Ratw = E[A] + E[V]. 

• Power-consumption ratio is defined by the ratio of power-consumption per time unit as MS 
is applied to the sleep mode operation to that as MS stays always awake. 

. . aA(E[A] + L) + av(E[V]- L) +aan 
Power Consumptzon Ratw = aA(E[A] + E[VJ) 

where aA and av are energies consumed per time unit at the awake interval and the sleep 
intervat respectively, and aon is extra energy needed for the switchings from awake-mode to 
sleep-mode and from sleep-mode to awake-mode, and L is the length of a listening interval. 
In our calculation, the listening interval is included in the sleep interval for mathematica! sim­
plicity, but in reality the listening interval is on the awake-mode. This is why we add L to the 
mean lengthof the awake interval and subtract it from the mean length of the sleep interval. 
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3.3 Laptace transform of queueing delay 

As the BS transmits messages in the system with a sleep-mode operation, the sleep-mode op­
eration will give vast affects on the delay of the messages. The total delay of a tagged message 
is the sum of queueing delay ( = the lengthof the remaining sleep interval and the transmission 
times for the messages queued in front of the message) and the transmission time of the tagged 
message itself if arrival of the tagged message occurs during the sleep interval. Since queueing 
delay and transmission time are independent, as we find either total delay or queueing delay, 
we obtain the other. Here we will find the queueing delay. 

Let W be the queueing delay of a tagged message. We obtain the LST W* ( s) of W by using 
the technique in Takagi [6] for the delay in the M/G/1 queueing model with a vacation (sleep 
interval). 

W*(8) = E[e-sWlsleep]P(8leep) + E[e-sWlawake]P(awake) 

E[V] E[A] 
P(8leep) = E[A] + E[V], P(awake) = E[A] + E[V]' 

Calculations for E[e-sw!sleep] and E[e-swlawake] are given inSection 6 of the appendix. 

W*( ) = E[V] f>.~>.B•(s) V*(s)d8- fsoo V*(s)ds E[AJ e->.T[a'l1(8) + /3~(8)] 
8 

E[A] + E[VJ 8- ,\ + ,\B*(s) + E[AJ + E[V] 8 ,\ + ,\B*(s) 

where 
1 

w(s) = V*(,\- ,\B*(s)) + ->.T[l-B•(s)) _ -sT 
1 V*(,\) e e ' 

1- e->.T(I-B*(s)) ->.T[l-B*( )] -sT 
~(s) = + e 8 e , 

1-

oo (1 e->.T)n 

a = ~ E[Bc] + T + n(E[BT] + T)' 

oo n(1 - e->.T)n 

f3 = ~ E[8c] + T + n(E[8T] + T)' 

pE[VJ 
p)(1- V*(-\))' 

pT 
E[8r] = (1- p)(1 e->.T). 

It is differentiated to derive the mean queuing delay E[W] in the queue as follows. 

-\E[B2] E[A] [ ae->.T E[V] f3e->.TT ->.T ] 
E[W) = 2(1 p) E[A] + E[V] 1 + 1 V*(-\) + 1- e->.T- (a:+ f3)e T 

2 2] (1 + p)(E[V])2 
P )(a+ f3)T + 2(E[A] + E[V]). 

The mean total delay is E[W] + E[B]. The mathematica! calculation in this subsectionis in 
a general case with no assumption on the system parameters. However, the delay which we 
will see as a numerical result in the next section is obtained under our assumption that the 
TRF-IND interval C is chosen so that A ~ C holds. 

4 Numerical results and performance analysis 

For numerical analysis we assume that a message consists of only one packet of fixed size, 
thus the service time is 5 ms, one frame long. The lengthof a listening interval L is 10 ms as 2 
frames. 
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Figure 4: Comparison between numerical results and simulations. 

In order to compare mathematica! analysis and simulation results, we choose the following 
values of the parameters: Close-down timeT 30ms, TRF-IND interval 0 200ms. As 
mean interarrival time ! varies (on the x-axes), delay, power-consumption ratio and sleep­
mode ratio are compared between numerical analysis and simulation results in Fig. 4 (a)(b)(c), 
respectively. In obtaining the power-consumption ratio, UA =10, av =1, and aon =40 are 
chosen for example. Currently, we do nothave any power consumption information of IEEE 
802.16e as [3] mentioned. 

Fig. 4 shows the analysis and the simulation match very well. The reason that the results 
on analysis differ from those on simulation for small values of mean interarrival time is that 
for our assumption A s C, large values of mean interarrival times are assumed so that all 
messages which arrived during the previous sleep interval are served within one TRF-IND 
interval, as we mentioned. This is why two results match very well for large values of mean 
interarrival times and have a little gap for small ones. 

As the TRF-IND interval is longer, the sleep interval is longer and the delay is larger since 
the messages which arrived during the sleep interval have to wait until the next listelling 
interval. On the other hand, as the TRF-IND interval is shorter, the delay is shorter, but the en­
ergy consumption increases because of the frequent switchings between a wake I sleep-modes. 
Fig. 5 (a)(b)(c) depiet comparisons of delay, power-consumption ratio and sleep-mode ratio, 
respectively, in 6 cases of TRF-IND intervals (0 = lOOms, !40ms, · · · ,300ms) as mean in­
terarrival time varies and close-down time is 30ms. We see that the delay and the sleep-mode 
ratio increase as the TRF-IND interval and the mean interarrival time increase, whereas the 
power-consumption ratio decreases. 

If a mean total-delay bound is given, the optimal TRF-IND interval minimizing the power­
consumption ratio can be chosen using the graphs in Fig. S(a)(b)(c). For example, if the mean 
total-delay is less than 70ms and the mean interarrival time is 50ms, TRF-IND intervals are 
among 100, 140, 180, and 220ms as seen in Fig. S(a). From Fig. S(b) we find the optimal TRF­
IND interval(= 220ms) which minimizes the power-consumption ratio while satisfying the 
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Figure 5: Performance measures vs. mean interarrival time. 

required QoS on delay. In this case the power-consumption ratio and the sleep-mode ratio are 
0.50 and 0.65, respectively, as shown in Fig. 5(b)(c). 

The power saving mechanism with periodic traffic indications (abbreviated the periodic­
TRF-IND-method below) in the present paper is proposed to improve the power saving classes 
in IEEE 802.16e standard [2]. Now we compare our scheme and the power saving class of 
type 1 with the optima! power-consumption ratio. The optimal power-consumption ratio (on 
y-axis) in the graphs of Fig. 6 is defined as follows: First, fora given equal mean total-delay 
bound in the type 1 of IEEE 802.16e standard and the periodic-TRF-IND-method, we select all 
system parameters satisfying the given mean total-delay bound. Secondly, we find minimum 
power-consumption ratio among all power-consumption ratios which have the system param­
eters selected in the first step. In details, for the graphs of the power saving class of type 1 in 
IEEE 802.16e standard (caHed type 1 on the graphs), as given a mean total-delay bound, we 
select all sets of initiai-sleep windows, final-sleep windows and close-down times satisfying 
the mean total-delay bound, and then find the minimum (optima!) power-consumption ratio 
among all power-consumption ratios with the selected sets. Por the graphs of the periodic­
TRF-IND-method, as given a mean total-delay bound, we choose all pairs of TRF-IND inter­
vals and close-down times satisfying the given mean total-delay bound, and among these pairs 
we take the optimal parameters minimizing power-consumption ratio. The optimal power­
consumption ratio is the minimum power-consumption ratio with the optimal parameters. 

In Fig. 6(a)(b), we see the optima! power-consumption ratios which satisfy mean total­
delay bounds as the mean interarrival time is 30ms and as the mean interarrival time is 300ms. 
As seen in Fig. 6(a)(b), under the same delay bound, the optima! power-consumption ratio of 
the type 1 in the standard is larger than that of the periodic-TRF-IND-method. Por example, 
in Fig. 6(a) with mean interarrival time 30ms, if the delay bound is 50ms, the optimal power­
consumption ratio of the type 1 is 0.78 and that of the periodic-TRF-IND-method is 0.59. In Fig. 
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Figure 6: Comparison between the power saving class of type 1 in IEEE 802.16e standard and the 
power sa ving mechanism with periadie traffic indications. 

6(b) with mean interarrival time 300ms, under the delay bound 120ms, the optima! power­
consumption ratios of the type 1 and of the periodic-TRF-IND-method are 0.34 and 0.27, re­
spectively. Now we consider delays of two schemes with the same power-consumption ratio. 
In the case of the mean interarrival time 30ms {see Fig. 6{a)), under the power-consumption 
ratio 0.6, the type 1 has delay SOms and the periodic-TRF-IND-method has delay 50ms. lf the 
mean interarrival time is 300ms {see Fig. 6(b)), under the power-consumption ratio 0.29, the 
type 1 has delay 160ms and the periodic-TRF-IND-method has delay lOOms. 

5 Condusion 

In this paper, we propose the power saving mechanism with periodic traffic indications to sup­
port efficient power saving and tosave resources for IEEE 802.16e. The proposed scheme has 
a constant TRF-IND interval, and TRF-IND messages are regularly sent by BS at the beginning 
of the listening interval in every TRF-IND interval. We analyze the probabilistic characteris­
tics of the lengths of the awake interval and the sleep interval in the proposed scheme with 
a sufficiently large lengthof a TRF-IND interval for burst traffics. Sleep-mode ratio, power­
consumption ratio, and mean total-delay of a message are computed to obtain the optima! 
system parameters while satisfying the QoS delay. We compare the performance between the 
original power saving class of type 1 in IEEE 802.16e standard and our power saving mech­
anism with periodic traffic indications. In conclusion, the proposed scheme in this paper im­
proves the standard scheme in view of saving the resources as well as the switching time 
between the awake/sleep-modes, and furthermore the energy consumption. In the present 
paper, we show mathematica! analysis and performance evaluation under the assumption of 
Poisson arrival for BE traffic in the IEEE 802.16e. However, the power saving mechanism with 
periodic traffic indications can be also applied for UGS and RT-VR traffics. 

6 Appendix 

In this appendix we calculate E[e-swlsleep] and E[e-swlawake]. 
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Let WV.(s) = E[e-sWjsleep]. IfV =x, 

E[e-sW1V =x]= E[e-switagged message arrives at y]-dy 1x 1 

0 x 

e-sx _ e-.\x[l-B•(s)] 

x[À- ÀB*(s)- s] 

Unconditioning on V = x, we use the integration of Laplace transform: since 

thus 

.!_e-Àx[l-B*(s)] = {
00 

e-sxds, 
X JÀ-ÀB*(s) 

{oo .!.e->..x[l-B*(s)]dV(x) = r;x:, V*(s)ds 
Jo x JÀ->..B•(s) 

WV.(s) 
JÀ~ÀB*(s) V*(s)ds- J8

00 
V*(s)ds 

s À+ ÀB*(s) 

Let W;t(s) = E[e-sWjawake]. By (1), 

00 

W,4(s) 2::: E[e-swi8c + T + (8~) + T) + · · · + (8~) + T)]e->..T(1- e-ÀT)n. (6) 
n=O 

n 

E[e-switagged message arrives in (8c+T)]qo+ 2::: E[e-switagged message arrives in (8~) +T)]q1 
l=l 

where 

E[8c] + T E[8T] + T 
qo = Rn , Qt = Rn and Rn = E[8c] + T + n(E[8T] + T). 

We compute w;(s) = E[e-sWitagged message in (8c + T)] and 
W,;(s) = E[e-sWjtagged message in (8~) + T)]. 

W*( ) E[ -swl8 ] E[8c] E[ -sWIT] T 
c s = e c E[8c] + T + e E[8c] + T. (7) 

In order to find E[e-sWI8cl and E[e-sWIT]: Let To betheservice time for messages arriving 
in V, To = B1 + · · · + By. We call To the Oth generation of the busy period and the period 
forserving all messages that arrive during the m- 1 st generation the mth generation, where 
m = 1, 2, · · · . The lengthof the mth generation is denoted by Tm· Then 8c = 2::=o Tm, 

E[ -sw18 ) = .ç-. E[ -sw 18 J E[Tm) = .ç-.100 

E( -sWI = t)t dTm(t) E[Tm) 
e c ~ e c, Tm E[8 ] ~ - e Tm E[r. ] E[8 ] 

m=O c m=O t-0 m c 

where the probability distribution function of Tm, during which the tagged message arrives, is 
given by t ~;mj) . 

-Àt[l-B*(s)] -st 
E[ -sWI ] e e 

e Tm=t = t[s-À+ÀB*(s)] 

Thus 

-sW _ _ 2.:::-o[T~(,\- ,\B*(s))- T~(s)] _ 1- V*(,\- ,\B*(s)) 
E[e l8 c]- E[8c][s- À+ ,\B*{s)] - (1- V*(,\))E[8c][s- À+ ,\B*(s)] 
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because 
* ( ) * ( >..B*( )) *( ) V*(>.. >..B*(s))- V*(>..) 

Tm+ 1 s = Tm À - s , To s = 1 _ V* ()..) 

As for E[e-sWIT]: 

{T 1 e-.:\T{l-B*(s)] _e-sT 
E[e-sWIT] =Jo [e-swjtagged packet at y]Tdy = T[s ).. + >..B*(s)] · 

Hence, in (7), 

Wc*(s) 1 [1- V*()..- >..B*(s)) e-.:\T[l-B*(s)]- e-sT] 
(E[8c] + T)[s- >.. + >..B*(s)] 1- V*(>..) + . 

Similarly, 

W.* - e -.:\T[l-B*(s)] -sT 1 [1 ->.T(l-B*(s)) l 
T(s) = (E[8T] + T)[s-).. + >..B*(s)] 1- e-.:\T + e - e · 

Hence, from (6) 
-ÀT 

WÁ(s) = s- Àe+ >..B*(s) [o:\II(s) + ,B<.P(s)] 

where \II(s), <.P(s), a: and ,8 are given in subsectien 3.3. 
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Abstract 

In this paper we obtain the sealing law for the mean braadcast time of a file in a 
P2P network with an initia! population of N nodes. In the model, at Poisson rate 
À a node initiates a contact with another node chosen uniformly at random. This 
contact is said to be successful if the contacted node possesses the file, in which 
case the initiator downloads the file and can later upload it to other nodes. In 
a network with altruistic nodes (i.e., nodes do not leave the network) we show 
that the mean braadcast time is O(log(N)). In a network with free-riding nodes, 
our main result shows that a O(log(N)) mean braadcast time can be achieved if 
nodes remain connected to the network for the duration of at least one more contact 
after downloading the file, otherwise a significantly worse O(N) time is required 
to braadcast the file. 

1 Introduetion 

Traffic measurements in the Internet suggest that Peer-to-Peer (P2P) networks are becoming 
increasingly popular among Internet users for sharing and distributing files. The salient fea­
tures of a P2P architecture are the vast possible improvements in scalability and robustness 
compared to the traditional elient-server architecture. In the best-case scenario, a P2P network 
can broadcast a file in a time which scales only logarithmically with the number of nodesin the 
network, which compares favourably with the linear sealing for a elient-server network. This 
vast impravement in the distribution time can be explained as follows. After downloading the 
file, a elient node acts as a server and uploads the file to other elient nodes. Thus, the service 
capacity of the network actually increases with the number of the nodes in the network. The 
presence of several simultaneous servers in the network significantly reduces the vulnerability 
of the file dis tribution process to attacks on the central server. 

Although the P2P architecture is very promising in terms of scalability, there are several 
factors which are critical to achieving the promised performance gains. The foremost factor 
is the willingness of each elient node to become a server node. A failure on the part of elient 
nodes to do so (also called free-riding) would impact both scalability and robustness. As a sim­
ple example, if each elient node departs immediately after having downloaded the entire file, 
the network will behave as a elient-server network with the broadcast time sealing linearly in 
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the number of elient nodes. Thus, the impact of free-riding (i.e., downloading but not upload­
ing) on the braadcast time needs a detailed investigation. Another factor which is critica! to 
achieving the performance gains is the connectivity of the underlying network graph. Again 
as a simple example, if the network would be configured in a star topology then again the 
time to braadcast would be linear in the number of nocles which is significantly worse than the 
logarithrnic sealing possible on a hypercube topology [4]. 

A detailed study of the impact of these factors on the performance of a P2P networkis 
thus essential in obtaining conditions under which P2P architecture can outperfarm the elient­
server architecture. In this paper, we study a closed P2P networkin which N elient nocles and 
one seed node form a fully connected file sharing network. The purpose of this network is to 
braadcast the file which is available at the seed node. Each node (except the seed node) can 
leave the network after downloading the file. The model described above is suited to study 
the behaviour of P2P network when subjected to Jlash-crowds, i.e., a large population of nocles 
joins the networkin a very short interval of time [2]. One of the main performance measures 
in such networks is the time required tobraadcast the file. The focus of this paper is to study 
the impact of free-riding on the mean braadcast time. Our main result states that a O(log(N)) 
mean braadcast time is achievable in P2P networks with free-riding pravided that nocles stay 
long enough in the network after having downloaded the file, otherwise a significantly worse 
O(N) time is required, thereby implying a phase transition phenomenon for the sealing law of 
the mean braadcast time. 

1.1 Related work 

The availability of free P2P software such as BitTorrent [1] has contributed significantly to the 
increased popularity of P2P networks among Internet users, and has also motivated research 
in several aspects of the P2P networks. The BitTorrent P2P algorithm achieves a significant 
impravement in performance by dividing the file into several chunks. Instead of downloading 
a large file from one server, nocles can download smaller chunks from different servers. A file 
download is said to be complete when a node has downloaded all the corresponding chunks. 
Previously, low bandwidth nocles were reluctant to upload because of large file sizes, and 
thus reluctant to participate in P2P networks. However, breaking the file into smaller chunks 
provides such users an incentive to upload data and join a P2P network. In [4], the authors 
stuclied the problem of the optimal braadcast of a set of C messages to N nocles over a complete 
graph in a deterministic setting. They showed that the optimal braadcast time is O(C+log 2(N)). 
In our present paper, we give an analogous result in a stochastic setting for the one chunk case 
and with the more realistic assumption of nocles being able to leave the network. 

In general, the analysis of P2P networks in a stochastic setting (i.e., random node arrival 
and node departures) is too complex to permit an exact analysis. Hence appraximate models 
have been constructed to obtain some insights into the performance of P2P networks. For 
example, using a fluid model Qiu and Srikant [6] have stuclied the behaviour of the number 
of servers and clients in a BitTorrent networkin which there are extemal arrivals, and servers 
leave the networkat a certain rate. The emphasis is on studying the number of servers and 
clients in the equilibrium state. In [3], the authors generalized the above model to be able to 
study the spread of chunks within networks. One of their results was to show that chunk 
selection polides (like rarest first or random selection) had negligible impact on the performance 
of a P2P network. In practice, arrivals toa network may not occur at a constant ra te, and the so­
called flash crowd phenomenon has often been observed [2]. For example, the latest version of a 
popular software is solicited by a large number of users (a flash crowd) close totherelease date. 
Usually, the interest in this version may taper off as time progresses, and the critica! period of 
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eperation is during the first few days when the interest is large. We note that the interest may 
increase again when a new version of the software is released, for example. Unlike the above 
mentioned work, our objective in this paper is to characterize the mean braadcast time in a closed 
netwerk. In that respect, our work is an extension of [4] to stochastic setting with free-riding. 
However, the analytica! tools (Markov chains and fluid limits) are similar to those in [6] and 
[3]. 

As a first step, we present the analysis for the one chunk case, i.e., the file is not divided as 
in BitTorrent From the insights obtained using this model, we intend to extend this analysis 
to the multiple chunk case and for different netwerk topologies. 

The rest of the paper is organised as fellows. In sectien 2, we describe the model, give 
the assumptions, and formulate the problem in terms of the input parameters. The analysis 
for a netwerk without free-riding is presented in sectien 3. Insection 4 our main result on 
the mean broadcast time in a netwerk with free-riding users is derived. Using simulations, 
similar results for general values of Care given in sectien 5. Finally, we conclude with possible 
research directions in sectien 6. 

2 Problem Formulation 

Consider a population of N nocles who want to download a file which is available at the seed 
node at time 0. We assume that the underlying netwerk topology is fully connected, and 
that a node, which is present in the netwerk and has the file, is willing to upload the file to 
other nodes. In order to download a file, a node initiates a contact with another node chosen 
uniformly at random among the existing nodes. These centacts are initiated at Poisson rate À. 

lf the contacted node has the file then the file transfer is assumed to take place in a time which 
is negligible compared to the mean time between contacts. This model of a contact process for 
file dissemination is basedon the one analysed in [3] and [5]. 

In order to model the impatient behaviour of nocles in a real netwerk, we shall assume 
that, after having downloaded the file, a node leaves the netwerk at a Poisson rate J.L· The 
case J.L = 0 corresponds to altruistic nocles who remain in the netwerk for the duration of the 
broadcast whereas the case J.L = oo corresponds to nocles who leave the netwerk immediately 
after downtoading the file. Finally, we shall assume that the seed node remains in the netwerk 
for the duration of the broadcast. This assumption guarantees that all the nocles will be able 
to download the file eventually. One could possibly study the number of unsuccessful nocles 
if the seed node also had the possibility of leaving the netwerk. Such an analysis could give 
clues to the vulnerability of the netwerk to malicieus attacks on the seed node. 

Given the above setting, our main interest in this paper is to study the impact of the de­
parture rate, J.L, on the mean time to broadcast the file to all N nodes. Intuitively, a higher 
departure rate of the nocles would translate into fewer servers present in the netwerk which 
would then increase the mean broadcast time. We shall formalize this intuitive result by show­
ing that, depending on the departure rate, different sealing laws are possible for the mean 
broadcast time. 

3 Mean broadcast time with altruistic nodes (J-L = 0) 

We first take a look at the case J.L = 0. Through this analysis we expect to obtain a lower bound 
on the mean broadcast time for J.L > 0. In a deterministic setting when the sequence in which 
file downloads take place is determined at time 0, file broadcast can be achieved in O(log(N)) 
time units. We now show that this is also the case in the stochastic contact process model we 
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described earlier. Thus, the mean broadcast time in a random contact based P2P networkis of 
the sameorder as the optima! broadcast time. 

For the case of J1. = 0, we shall study the network in discrete time where each time step 
corresponds to the time between two contacts. Since no nodes leave the network, contacts 
are initiated at rateN>.. (we assume that the seed does not initiate any contacts). The mean 
braadcast time can be obtained by multiplying the mean number of contacts by ( N >..) -l. 

Let Yn denote the number of servers in the network after the nth contact. The dynamics of 
the process {Yn, n > 0} can bedescribed as follows. 

Y, _ { Yn w.p. p(Yn) 
n+l - Yn + 1 w.p. 1 - p(Yn) ' 

where p(i) = 1- NNi ij/. The probability p(i) describes the probability of an unsuccessful 
contact when there are i servers and one seed present in the network. 

Let Ai denote the number of contacts made in state i. The random variabie Ai is geometri­
cally distributed with 

Prob.(Ai = k) = (1- p(i))p(i)k-l, k ~ 1. 

Al 
Ao ------------·-······· 

n 

Figure 1: The relation between 8 and dynamics of Y 

Let Si = I:1=o Ai. The random variabie Sj is the number of contacts needed to distribute 
the file to j + 1 nodes. This relation between the processes Si and Yn is illustrated in figure 1 
from which we can lnfer that P(Yn < j) = P(Sj-l > n). Since Ajs are independent random 
variables, 

j 

E[Bj] - L E[Ai], j = 0, 1, ... , N - 1, 
i=O 

j 

Var[Sj] = 2.:Var[Aï], j=O,l, ... ,N 1. 
i=O 

Also, since Ais are geometrically distributed, 

1 N 2 

1-p(i)- (i+1)(N-i)' 

= p(i) = (1 - i+ 1 (!!____!_)) ( N
2 

)

2 

(1- p(i))2 N N (i+ l)(N- i) 

19 



Balakrishna Prabhu Sealing Laws for File Disseminarion in P2P Networks 

Therefore, the mean number of contacts to braadcast the file (i.e., to distribute the file to N 
nodes) is 

i=O 

N2 
N + 1 (21og(N) + o(log(N)). 

Let Tj denote the time needed to distribute the file to j nodes. Then, 

Sj-1 

Tj = LTk, 

k=O 

(1) 

where the random variabie Tk denotes the time between the kth and the (k+ 1)th contact. Since 
T1,T2 , ... is a sequence of i.i.d. exponential random variables with mean (N>-.)-1, we can use 
Wald's lemma and obtain the mean braadcast time as 

E[TN] = E[SN-l]E[TI] 
N 

2 >-.(N + 1) log(N) + o(log(N)). 

4 Mean broadcast time with free riding nodes (f.-L > 0) 

(2) 

(3) 

In the previous section we obtained a mean braadcast time of O(log(N)) for J.L = 0. For the 
other extreme case of J.L = oo, we can see that the braadcast time would be O(N) because the 
seed would be the only server present in the network, and every user will have to download 
the file from the seed node, which will take O(N) encounters. 

In this section we shall obtain the sealing law when 0 < J.L < oo, i.e., nodes leave the 
networkat rate J.L after downloading the file. Let Y(t) (resp. X(t)) denote the number of 
servers (resp. downloaders) present in the networkat timet. The joint process {X(t), Y(t)}t;:::o 
is a two-dimensional Markov process on {0, 1, 2, ... , N} x {0, 1, 2, ... , N} whose dynamics can 
bedescribed as follows 

Y(t) ---) { Y(t) + 1 at rate >-.X(t) X~)~t~t) 
Y(t)- 1 at rate J.LY(t) ' 

(4) 

X(t) ---) X(t)- 1 at rate >-.X(t) xYt~~tCt) , (5) 

with (X(O), Y(O)) = (N,O). The increase in Y(t) only happens when downloaders make a 
successful contact (the + 1 in the numerator is due to the presence of the seed). The ra te of 
decrease of Y(t) is J.LY(t) independent of the number of downloaders. 

We now study this processin the large initia} populationlimit i.e., N---) oo. Let (x(t), y(t)) = 
(X}!), Y}!)) be the rescaled process. Then, y(t) (resp., x(t)) is the fraction of nodes at time twho 

do (resp., do not) have the file. For 0 < J.L < oo, we can write the following fluid equations for 
the d ynamics x and y, 

dy y 
(6) = -J.LY + Àx--, 

dt x+y 
dx y 

(7) - -Àx--. 
dt x+y 
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Therefore, 
d(x + y) 

dt = -p,y. 

Combining equations (7) and (8), we get 

which can be solved to obtain 

d p,x+y 
(x+y) = ---, 

dx À x 

H_ 

x+ y =cox>.. 

(8) 

(9) 

(10) 

We can determine c0 by noting that y 0 when x = 1. Thus, we can characterize the evolution 
of the number of servers as a function of the number of downloaders in the networkas follows 

y=-x+xP, xE{0,1), (11) 

where p = p,/ À. In figure 2, we plot solutions of (10) for different values of p = p,/ À. As p, ~ 0, 
the solution approaches the line x+ y 1, which is the case when nonodes leave the network. 
The salution to the differentlal equation obtained above is valid only for p < 1. For p > 1 we 
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Figure 2: Solutions of y = -x+ xP for various values of p. 

obtain negative values for y, which makes the salution infeasible. We now have the following 
re sult. 

Theorem 4.1. The mean braadcast timefora file in a P2P network with free-riding users scales as 

• O(N) if p > 1; 

• O(log(N)) if p < 1. 

Thus, there is phase transition in the sealing law at p 1. This suggests that if nodes stay 
for the duration of one more contact after downloading the file then a significantly improved 
sealing law for the braadcast time prevails even in the presence of free-riding nodes. 

Proof We first prove that the mean braadcast time is O(N) for p > 1. For this case we upper 
bound the Y(t) process by anotherprocess which is easier to analyse. Let {Z(t)}t;:::o be defined 
as 

Z(t) ~ { Z(t) + 1 
Z(t) - 1 
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Por the same initial conditions, {Y(t)} is stochastically smaller than {Z(t) }. Por p > 1, we have 
Prob(Z(t) > N) --t 0 as N --t oo. Hence, for large N, we can conclude that Z(t) will not reach 
O(N) and, consequently, Y(t) will remain o(N). From (5), when X(t) is on linear scale it will 
decrease at a constant rate. Thus, for large N, the mean time required for X(t) to go from a.1N 
to a.2 N will be linear in N. Hence, the mean braadcast time will be O(N). 

Por p < 1, we will follow similar arguments. In order to deterrrtine the mean braadcast 
time, we divide the analysis in three phases. The fust phase corresponds to the time required 
for the number of serverstoreach O(N). In the second phase, bath the number of downloaders 
and the number of servers are O(N) and the fluid analysis is valid. In the final phase, the 
number of nocles goes to zero. 

Por the timespent in the first phase, we find the mean time required for Y(t) to exceed 
level EpN. This level will dependonpas notall values of y(t) E (0, 1) are feasible fora given 
p. First, we find a lower bound for the rate of increase of Y(t). Let 1 be the maximal salution 
of the equation -x+ xP = Ep in (0, 1). Then 

Y(t) 
>.X(t) X(t) + Y(t) 

> >.Y(t) X(t) 
X(t) + Ep 

> >.Y(t)-1 -. 
T + Ep 

The second inequality follows from the fact that xf(x + 1) is an increasing function in x, and 
that if Y(t) < EpN then X(t) > ,N. We now bound Y(t) by Z(t) described by 

Zt= ~ "YE.f 
~ ( ) { Z(t) + 1 at rate ).-L+ Z(t), 

Z(t)- 1 at rate J.LZ(t). 
(13) 

I 

We choose a 1 > p1-P which then determines Ep· Por this choice of,, ).-L+ = >.~ > >.p = J.L· 
"'( Ep "'( 

Por such a choke of parameters, Z(t) and, consequentially, Y(t) grow exponentially with time. 
Hence, the time for Y(t) to reach EpN, say t 1, is O(log(N)). 

Por the time spent in the second phase, we first solve (7) to obtain 

1 (x+ xP) t(x) = >.(1 _ r) log ~ . (14) 

From this equation, the time for x to start from a fraction 1 and reach a fraction 1* is a constant 
independent of N. Hence the time spent in the second phase is 0 ( 1). 

Por the timespent in the third phase, we shall bound the time required for x(t) starting 
from x(T) = r* to reach 0. Por a given p, y > x if x < 2(1~-p). We first fix a 1* < 2< 1~p). Por 
x<,*, 

>.x-y- > ~>.x. (15) 
x+y 2 

Since x is non-increasing, if x(t2) < 1* then x(t) < 1* and y(t) > x(t), Vt > t 2 • Hence, the 
above inequality will remain valid once x is smaller than 1*. Let {X ( t)} be described by 

X(t) --t X(t) -1 at rate ~>.X(t) . 

From this definition, the process {X(t)} is stochastically smaller than {X(t)}. Since X(t) de­
creases exponentially, we can conclude that X(t) also decreases to 0 in logarithmic time. 
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From the above analysis, the timespent in the first phase is upper bounded by O(log(N)), 
the timespent in the second phase is 0(1), and the timespent in the final phase is upper 
bounded by O(log(N)). Since the time to broadcast cannot be lower than log(N), we can con­
clude that the mean broadcast time is O(log( N)) for p < 1 . 

5 Simulations 

Using simulations, in this section we will observe that the above phase transition holds when 
Cis greater than unity as well. We simulate the model with C = 10 and C = 50 and obtain 
the mean broadcast time as a function of N. In figure 3, the mean broadcast time is shown as 
a function of log2(N) for C = 10 and tw'o different values of p smaller than 1. Figure 4 shows 
the mean broadcast time as a function of N for tw'o different values of p larger than 1. 

100 )( 

,.~ + 
o~~--~~~--~~--~~~ 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 
N 

Figure 4: Mean broadcast time versus N. C = 10. 

In figures 5 and 6, we plot the mean broadcast time versus log2(N) and N, respectively, for 
C = 50. From these plots we observe that the phase transition at p 1 appears to be true for 
larger values of C as well. 
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Figure 5: Mean broadcast time versus log2(N). C = 50. 
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Figure 6: Mean broadcast time versus N. C = 50. 

6 Conclusions and future work 

In this paper we quantified the effect of free-riding users on the mean broadcast time of a file 
in a P2P network. Our main result showed that a logarithmic broadcast time can be achieved 
if nodes stay in the network for the duration of one more contact, i.e., if they upload the file 
at least once. Otherwise a significantly worse linear sealing is achieved. Thus, if nodes stay 
in the network for the duration of one more contact, a random contact based P2P network can 
broadcast a file in a time which is of the same order as the optimal time. 

Our future work will seek to extend these results to the multiple chunk case, and also to 
study the effect of the network topology on the mean broadcast time. 
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Abstract 

Wireless mesh networking (WMN) technologies have captured attention from both 
industry and academia recently, and they can be the ultimate wireless networking 
solution for the next decade. WMNs are characterized as having self-configuring 
and self-healing nature along with flexible interoperability withother networks. In 
this paper, we discuss a few promising wireless mesh networking techno logies, es­
pecially those from IEEE 802.15.5, IEEE 802.1ls, 6LoWPAN standards, and address 
a few crudal research issues that are associated with the standards. 

1 Introduetion 

WMN has emerged as one of the wireless networking technologies to realize ubiquitous so­
ciety. Today, there are various types of wireless networking technologies such as WCDMA, 
WiMAX, Wibro, HSDPA, HSUPA, etc. These types of networks are in general developed as 
a backbone of networks, providing braadband networking services. Also these networks in­
volve considerable amount of investments for their deployment and elaborate network plan­
ning. In order to construct the ubiquitous society where peer-to-peer communications between 
devices and human beings are common, networks that can operate in pico- and nano- cell en­
vironment are inevitable. People have made a lot of effort to develop proper networking tech­
nologies that meet this requirement. Those indude Wireless Local Area Network(WLAN)s, 
Wireless Personal Network(WPAN)s, Body Area Network(BAN)s, and Wireless Sensor Net­
work(WSN)s. Among these networking technologies, WLANs, WSNs and WPANs can be the 
most important ones to enable communications among devices and humans to operate. Mesh 
networking issues lies at the center of these technologies for the peer-to-peer communications. 
The mesh network can play as an information collector from neighboring sensor nodes as well 
as a bridge between sensor nodes and backbone networks. 

There are three major standardization bodies to drive the international standard for wire­
less mesh networks, IEEE 802.11s, IEEE 802.15.5, and 6LoWPAN. IEEE 802.11s strives to lead 
WLAN-based mesh networking technologies, while IEEE 802.15.5 WPAN-based ones. IEEE 
802.11s adopts two procedures to implement the mesh networks among nodes, which indudes 
formation of topology and routing. The topology formation relates to collecting local informa­
tion among nodes and finding its neighbor nodes. The routing algorithm finds the best route to 
a destination based on the collected local information from the topology formation. All these 
procedures are executed in layer two of network stack. IEEE 802.15.5 and 6LoWPAN study the 
mesh networking technologies basedon WPAN MAC and PHY standards. IEEE 802.15.5 leads 
its standard focusing on MAC and PHY issues, while 6LoWPAN higher layer ones. Those is­
sues from 6LowPAN indude packet header compression and format, routing, security, etc., in 
order to transmit IPv6 packets over IEEE 802.15.4 networks. In this artide, we discuss several 
mesh networking technologies, mostly from recent publications and standard documents. 
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This document is organized as fellows. In sectien 2, wedefine generic structure of wireless 
mesh networks and present details of topology and routing algorithms, along with a netwerk 
employing multi-channel schemes. In sectien 3, we explain one example routing method dis­
cussed in 6LoWPAN as wellas a promising MAC protocol, adopting a new beacon scheduling 
algorithm in superframe. Sectien 4 discusses several major research issues associated with 
wireless mesh networks. Finally, a condusion of this artiele is given in sectien 5. 

2 WMN based on IEEE 802.11s standard 

WMN is conceived to achieve a netwerk infrastructure by relaxing the major eenstraint of 
mobile ad hoc networks "infrastructureless", and it introduces a physical hierarchy in the net­
werk by adopting static wireless relay nodes and mobile elient nodes. Figure 1 depiets generic 
architecture of a WMN where a group of mesh reuters sits in the middle where various elient 
nodes, Wi-Fi nodes, and sensor networks are connected. 

Current 802.11 ad hoc mode is not sufficient to implement the multi-hop nature of wire­
less mesh networks, andrecent advanceon 802.11 standard such as lle and lln also has their 
inherent dependency on wireline infrastructure backbones and the last, single-hop communi­
cation structure. In this sense, IEEE 802.11s is designed to provide an IEEE 802.11 wireless OS 
that supports both broadcast/multicast and unicast delivery at the MAC layer using radio­
aware metrics over self-configuring multihop topologies. Objectives of the standard are sum­
marized as: increased range/ coverage & flexibility in use, possibility of increased throughput, 
reliable performance, seamless security, power efficient operation, multimedia transport be­
tween devices, backward compatibility and interoperability for interworking. IEEE 802.11s 
defines three types of nodes that constitute a mesh netwerk, mesh point(MP), mesh access 
point(MAP), and mesh portal(MPP). MPs arenodes that relay frames each other in a router-
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Figure 2: Definition of nocles for an IEEE 802.11s WMN 

like hop-by-hop fashion. MAP perfarms two roles; that is, it works as a mesh relay node as 
well as AP for clients. MPP acts as a bridge to other nodes. 

2.1 Topology formation and routing 

802.11s mesh networkis composed of two major procedures called topology formation and 
routing[l]. In a topology formation, nocles exchange their own information with their neighbor 
nocles to find their neighbors. Figure 3 summarizes the procedure to forma topology in a 
network. 

First, when a mesh point running simple channel unification protocol(SCUP) is powered 
up, the system goes into a neighbor discovery phase where periodical advertisements of bea­
cons are exchanged among nocles in the neighbor. SCUP is a protocol that assigns a common 
channel to a subset of MPs bel on ging to the same mesh network. Request and response frames 
are invoked on demand by a mesh point to find the neighbor. If neighbors are found to ex­
ist, conneetion is established between nocles by assigning all channels totheir own network 
interface. This is also accompanied by authentication and association among neighbor nodes. 
If not found, the node selects one channel at random and assigns itself Channel Preeedenee 
Indicator (CPI). CPI is an indicator to differentiate mesh networks, and it is used to merge a 
group of network nocles into one mesh network group, having the same CPI. In general, CPI is 
computed as a sum of a random number and the timespent by an MP in the WLAN mesh[l]. 

After the phase of topology formation is over, the routing algorithm begins to operate. As 
mentioned before, the routing in the WLAN mesh networks is executed in the layer two of 
protocol stack. Based on the local information collected in the topology formation procedure, 
the routing algorithm determines a routetoa destination. A few well-known ad hoc routing 
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Figure 3: Procedure for topology formation 

algorithms are employed such as Ad hoc On demand Distance Vector (AODV) and Dynamic 
Souree Routing (DSR)[2]. When running these algorithms, MAC address is used to identify 
each node to a destination. To secure a more stabie route to the destination, multiple paths 
can be selected to the destination based on a metric. The metric is used to indicate status of 
channel between nodes. One example of the metric is given below 

(1) 

where Oca, Op, Bt, r, and ept represent channel access overhead, protocol overhead, number 
of bits in test frame, transmission bit rate for Bt, and error rate for Bt respectively. 

2.2 Multichannel and multiradio for WMN 

One of the hurdles in successful implementation of wireless mesh networks is the fact that 
most existing WLAN systems are using single channel APs, which results in high probability 
of packet collision. Consequently, severe performance degradation is inevitable in terms of 
throughput, latency, etc., with this type of technology [2]. One way to avoid this problem is to 
adopt multichannel and multiradio schemes into imptementing WMNs[3]. Figure 4 illustrates 
a WMN where muitkhannel multiradio technology is used to implement WMNs[3]. 

Figure 4 illustrates a route from a souree to a destination based on multichannel technolo­
gies where each node has two different channels. First, each node exchanges ratio metrics with 
its neighboring nodes(l). The radio metric can differ even between the sameadjacent nodes 
if different frequency links are in use, which is because channel state is dependent on active 
frequency used. When the exchange of the radio metric information is over, a node sends 
Route ...Request message to a destination to all WLAN interface. This message passes through 
all WLAN nodes connected, and transmitted to the destination (2). Now, the destination se­
lects a path having the least radio metric sums(3) and sends Route..Reply message back to the 
souree node(4). Eventually, the souree node sends data packets to the destination node fol­
lowing the chosen route path. This routing scheme operates in layer 2.5 of protocol stack in 
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Figure 4: Multichannel scheme is employed to irnplement a WMN 

general, therefore it can run independently of multiple access schemes. Figure 5 shows one 
of WMNs using different channels within a wireless distributed system(WDS)[4]. By assign-:­
ing different channels for ingress and egress packets, the system can reduce the probability of 
packet collision significantly, and thus increase system throughput. Consequently, overallla­
tency of packets can also be significantly reduced. Figure 6 shows an experiment where system 
throughput is measured with respect to varying number of hops with or without noise. 

As you can see in the figure, the system can maintain a fairly stabie throughput even in the 
presence of noise and increasing hops when a multi-channel scheme is employed. 

3 WMN basedon IEEE 802.15.5 and 6LoWPAN standard 

Unlike the previous 802.11s mesh networks, WPAN-based mesh networks have more con­
straints, which is sumrnarized as "3L" constraints, Low power, Low price, and Low transmis­
sion power. There are two standardization boclies that are involved in the development of 
WPAN-based mesh, 6LoWPAN and IEEE 802.15.5. 6LowPAN strives to develop standards to 
transmit 1Pv6 packet over IEEE 802.15.4 WPAN networks. It mostly focuses on the standard­
ization above the layer 2 of protocol stack. 6LoWPAN has been viewed as more promising 
tedmology than ZigBee [5] because it has loose constraints in termsof mobility of nodes. It 
can bethebest WPAN solution fora stationary environment where the mobility of the node is 
negligible. A list of major work items includes lP adaptation/Packet Format, interoperability, 
addressing schemes and address management, network management, routing in dynamically 
adaptive topologies, security including setup and maintenance, application programming in­
terface, discovery (of devices, of services, etc.), and implementation considerations. Many con­
tributions have been presented so far for the standard, mostly assuming that lower layer can 
support the high layer in reliable fashion. However, with the current IEEE 802.15.4-like MAC 
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Figure 5: Example of wireless mesh network based on multichannel scheme 
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Figure 6: Throughput analysis of a WMN depending on different number of hops 
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Figure 7: Mesh router assisted routing 

protocols, it is hard to realize WMNs because of inherent difficulties of beacon scheduling and 
shortage of address space. We address this later with more details. Here we introduce one of 
the routing methods that have been presented by a Korean delegate to 6 LoWPAN. Figure 7 
shows a diagram of a WMN where there are four mesh routers and groups of sensor nocles 
surrounding them. 

The idea is to have a wireline conneetion among the mesh routers, and each sensor node 
is controlled by one specific mesh router. This idea has several problems as follows. First 
when we have a large number of sensor nodes, address space will quickly run out. Second, 
nocles near the routers have high ra te of communication with lower layer nocles because pack­
ets from lower layer nocles must pass through higher layer nocles inevitably and therefore 
run out battery faster than lower layer nodes. This can create a domino effect on lower layer 
nodes. Nocles in the lower layer keep sending packets to the high layer nocles until they get 
responses from them. Third, without a proper beacon scheduling, it is unlikely to have normal 
communications between nocles because of collision of the beacons in the case of multi-hop 
communications. All these issues relate to how to design MAC and PHY layers efficiently as 
mentioned before. 

Meanwhile, the IEEE 802.15.5 Mesh Networking Task Group was formed to derive PHY 
and MAC standards to enable WPAN mesh networking. The use of mesh routing technolo­
giescan be used to overcome inherent power limitation of WPANs. The mesh networking 
environment can increase the coverage of WPANs and provides shorter links to nodes. This 
is particularly advantageous for ultra wideband (UWB) communication that is significantly 
sensitive to distance due to high data rate. The shorter links from the mesh networking envi­
ronment significantly increase throughput. 

Recently, a proposal is presented, addressing how to improve the performance of IEEE 
802.15.4-like MAC [6]. The author maintains a basic paradigm of IEEE 802.15.4 MAC and 
PHY, and suggests several novel ideas to improve the performance of the MAC. Those ideas 
indude a new beacon scheduling method, a new short addressing scheme, and a method to 
support seamless mobility. We explain this new beacon scheduling method here because it 
is the key to improving the performance of MAC. The new beacon scheduling algorithm is 
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Figure 8: Structure of the superframe and an example of scheduling table 

based on the idea that a node could avoid cellision of beacons if the node knows the timings 
of beacon transmissions of its neighbor nodes and those of the neighbor's neighbor nodes. 
A node keeps updating a scheduling table that is composed of its neighbor nodes, neighbor's 
neighbor nodes, depths from mother node, beacon timing to avoid, and its own beacon timing. 
We illustrate one example to explain the operatien of the beacon scheduling in Figure 8. 

In Figure 8, node 2 knows that it has node 1 and 3 as its neighbors, and its neighbors do 
nothave anymore neighbor nodes(denoted as "x" in the table). Therefore it is one depth away 
from the parent node 1. The node 2 also knows it can avoid the cellision of beacons from node 
1 and 3 by setting 2 as its beacon timing. As shown in Figure 8, the author adopts a Beacon 
Only Period (BOP) in the superframe where the beacon timingsof all nodes are scheduled. 
Figure 9 further illustrates the beacon scheduling when there are 20 nodes in the network. 

This algorithm is recently adopted as a candidate standard for WPAN mesh in the U-city 
forum in Korea. 

4 Research Issues 

As studied so far, there are many research issues with regards to wireless mesh netwerking 
technologies, and most of them are quite challenging. In this section, we summarize those ma­
jor research issues. First, wireless mesh netwerking technologies are characterized as ha ving a 
dynamic topology that enables us to construct self-configuring and self-healing wireless mesh 
networks. Given this fact, it is imperative to develop an efficient routing protocol with a novel 
link evaluation metric. Second, as in [6], an effort to achieve efficient routing protocol can be 
far-fetched without a proper beacon scheduling scheme in the MAC layer. More contributions 
on this are highly anticipated. Meanwhile the performance of [6] needs to be further evaluated 
along with simulation and analytica! results. Third, nodescan be movable, so one needs to take 
mobility issues into consideration as well in the design step of MAC protocols. Fourth, more 
studies on proper radio technologies are required. There are lots of different types of radio 
technologies to date. As many people have agreed, new approaches like cross-layer approach 
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Figure 9: Example of beacon scheduling in the case of 20 nocles 

can he more efficient. 

5 Concluding Remark 

This artiele discusses technica! issues related to wireless mesh networking technologies, which 
includes issues on topology formation, routing, MAC, and PHY schemes. Research actlvities of 
three standardization bodies, IEEE 802.11s, IEEE 802.15.5, and 6 LoWPAN, arealso discussed. 
One point to make is that it is nat easy to realize a proper mesh without ad vances in the MAC 
and PHY technologies, which is underestimated in comparison to those from the higher layers. 
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Abstract 

Polling models are used as an analytical performance tooi in several application 
areas. In these models, the focus oftenis on cantrolling the operation of the server 
as to optimize some performance measure. For several applications, cantrolling 
the server is not an issue as the server moves independently in the system. We 
present the analysis for such a polling model with a so-called autonomous server. 
In this model, the server remains for an exogenous random time at a queue, which 
also implies that service is preemptive. Moreover, in contrast to most of the previ­
ous research on polling models, the server does not immediately switch to a next 
queue when the current queue becomes empty, but rather remains for an exponen­
tially distributed time at a queue. The analysis is basedon consiclering imbedded 
Markov chains at specific instants. A system of equations for the queue-length dis­
tributions at these instant is given and solved for. Besides, we study to which extent 
the queues in the polling model are independent and identify parameter settings 
for which this is indeed the case. These results may be used to approximate per­
formance measures for complex multi-queue models by analyzing a simple single­
queue model. 

1 Introduetion 

Polling systems are multi-queue systems with a single server. Typically, the server visits a 
queue, offers service to (a part of) the customers present at this queue, and then moves to a 
next queue. The specific details of the system may lead to quite distinct polling mode Is. Polling 
models are typically characterized by: (i) the arrival process of the customers to the system 
(Poisson or more genera!), (ü) the service requirements of the customers, (üi) the servicing 
policy of the server (exhaustive, gated, k-limited, etc.), (iv) the visit order of the server, (v) the 
switch-over times of the server between visits to the queues. An excellent survey on a broad 
class of polling models is [1]. Applications of polling models are ubiquitous. For instance, 
traffic light systems, multiple-access protocols for communication networks (e.g., IEEE 802.11) 
and product-assembly systems can be modelled as a polling system. 

In most of the (applications of) polling models, the server is assumed controllable. The 
goal is then to limit the time a server spends idle at a queue while there is still work in the 
system. Contrary, in this artiele we assume that the server behaves autonomously (and thus 
is uncontrollable). More precisely, we assume that the server spends an exponentially dis­
tributed period of time at a queue independent of the distribution of the customers present 
at each queue. Another consequence of the autonomous server is that theservices are subject 
to preemption. Applications of such polling models arise for instanee in the context of wire­
less ad hoc networks in which cars, pedestrians or other moving objects which carry wireless 
equipment are used as communication hop. 

The class of polling models that is most closely related to our model is the class of so-called 
time-limited polling models [2, 3, 4, 5]. Leung [2] analyzes a time-limited model in which the 
server remains an exponential time at a queue but service is non-preemptive. Preemption is 
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considered fora deterministic time-limited model by De Souza e Silva et al. [4] for Poisson 
arrivals and by Frigui and Alfa [3] for Markovian Arrival Processes. In each of these models 
the server is impatient and leaves a queue as soon as it becomes empty. A specific application 
of a time-limited modeltoa timed token protocol~can be found in [5]. 

Standard polling models assume that the server moves to a next queue once the queue be­
comes empty. However, there also exists analytica! workon models with a server that remains 
at a queue even when it becomes empty. These models are often referred to as patient server 
models or stopping server models. The works of Eisenberg [6] and Borst [7] analyze several 
strategies for the server once the complete system becomes empty as to optimize some sys­
tem performance measure. More recently, Boxma et al. [8, 9] consider a single-queue vacation 
modeland a two-queue polling model in which the server upon arriving at an empty queue 
waits patiently fora certain duration before leaving again. We note that in the latter two-queue 
polling model (contrary to the modelsin [6] and [7]) there is no notion of work conservalion 
anymore, since the server may wait patiently at one queue while the other queue is nonempty. 

The only work we know of that includes both a given (random) visit time and a patient 
server that does not leave before the end of the visit time is [10]. This work considers the 
workload process for the autonomous server model with deterministic visit times. The authors 
of [10] analyze each queue in isolation by consiclering them as an M/G/1 model with server 
vacations. Using an approximate analysis, several performance measures for the system are 
derived. 

For the case of a single queue, the polling model that we will consider boils down to the un­
reliable server model (USM) [11]. The extension of the analysis toa two-queue polling model 
appears feasible when the approach of, e.g., [12] or [13] would be followed. This approach 
requires to solve a boundary value problem. This solution method appears an extremely diffi­
cult task forthetwo-queue model already, while for three or more queues analytica! solutions 
along this direction are not anticipated. 

In the first part of this article, we study a single-server polling model with M 2:: 1 stations 
with infinite buffer in a stabie environment. The main charaderistics of the model are that the 
server visits a queue for a random amount of time (irrespective of the number of customers 
present at a queue) and that the service is preemptive. Our interest is in the queue-length 
distribution at various instants in time. We note that if the interest would only be in mean 
performance measures, then the queues could be considered in isolation. Our analytica! ap­
proach builds on the workof Eisenberg [14]. We set-up a system of equations which relate the 
queue-length distributions at various specific instants. The solution of this system is obtained 
by the explicit determination of the distribution at visit completion instants via an iterative 
approach. This approach is similar to the approach introduced by Leung for probabilistically­
limited polling models [15]. In the second part of this article, we study to which extent the 
queues in the polling system are independent. To this end, we consider a single queue in iso­
lation by analyzing a USM. Next, we perform several numerical experiments to compare the 
results from the polling system with results basedon the USM. In this way, we identify for 
which system parameters the queues appear "reasonably" independent. 

This artiele is organized as follows. In Sect. 2 we describe the polling model. The analyses 
for the single-queue modeland multi-queue model are given inSect. 3 and Sect. 4, respectively. 
In Sect. 5, we study an approximation approach for the multi-queue model. The artiele is 
concluded in Sect. 6. 
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2 Model 

We denote queue i by Qi, i = 1, ... , M. Custorners arrive to Qi according to a Poisson 
process with arrival rate >.i. We will throughout use the subscript i to refer to a queue and 
for convenience leave out its range (i = 1, ... , M) whenever this doesnotlead to arnbigu­
ity. We denote the interarrival-tirne distribution by h with Laplace-Stieltjes Transferm (LST) 
Ïi(s) = >..ïf(>.i + s). A custorner arriving to Qi requires an arnount of service with a general 
distribution Xi, with LST Xi(s), and rnean 1/J.Li· 

A single server serves the queues at unit rate. For ease of presentation, we assurne a fixed 
cyclic visit schedule Q 1, Q2, ... , QM, Q1, Q2, etc., but assurning other fixed cyclic schedules 
(e.g., in which queues are visited multiple tirnes per cycle) would not significantly change 
the analysis. The servervisits Qi for an exponential arnount of time denoted by Y;;, with LST 
Yi(s) = Çïf(Çi + s). The server always rernains at a queue until the (random) visit time ends, 
even when the queue becornes ernpty. In other words, the dynarnics of the server are indepen­
dent of the current state of the systern. We assurne that switch-over tirnes of the server frorn 
Qi-l to Qi follow a general distribution Gil with LST Öi(s), and rnean ei. Due to the patient 
nature of the server, (possibly multiple) idle periods can occur duringa visit. The duration of 
each of these periods is distributed as the interarrival time. 

We assurne that custorners are served according to the First-In-First-Out discipline. The 
service (but also the idle periods) at a queue will be preernpted at the end of a visit. At the 
beginning of the next visit, the service time will be redrawn frorn the original distribution; 
thus, we adopt the so-called preemptive-repeat strategy with independent repetitions. 

The sequences of random variables generated frorn Ci, Ii, Xi and Y;; are assurned inde­
pendently and identically distributed. Besides, the random variables Ci, Ii, Xi and Y;; are 
assurned to be rnutually independent. 

3 Analysis of the single-queue model 

The single-queue model is in fact an unreliable server model. Altematively, it rnay be con­
sidered as a vacation model with preernptive service. The first to analyze this specific model 
was Gaver [11] by introducing high priority (i.e., interrupting) and low priority (i.e., arriving) 
custorners. 

Here, we analyze this unreliable server model by consiclering a sequence of altemating 
processing and non-processing periods. During a processing period, the server serves custorners, 
while during a non-processing period no customers are served. The server rnay break down 
(and thus need repair) at random points in time both during processing and non-processing 
periods. These repair periods follow a general distribution D with LST ÏJ(s) and rnean lED. 
The periods between consecutive repairs, the so-called availability periods, are assurned expo­
nentially distributed with rnean 1/Ç. Custorners arrive to the systern according toa Poisson 
process with rate >.. We assume further that a preemptive-repeat servicing strategy with inde­
pendent repetitions is followed, i.e., if a service is interrupted, then the next availability period 
the service requirement is redrawn frorn the original service-time distribution. 

Let us introduce sorne notation. We denote by XG(s) and JE[XG] the LST and the rnean of 
the generalized service time of a custorner, respectively. The latter period of time is defined as 
the period that starts when a custorner receives service for the first time and ends when the 
custorner leaves the systern. We let JE[K] refer to the rnean nurnber of custorners served during 
a processing period. Further, we denote by Û(z) the p.g.f. of the number of custorners arriving 
during the service time of a custorner that arrives to an ernpty systern duringa repair time. The 
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latter customer (service time) will be referred to as an exceptional first customer (service time). 
The load of the system is defined as PG· Let us finally denote the queue-length distribution 
at departure instants (which equals the time-equilibrium distribution) by dn, n = 0, 1, 2, ... 
. Then, the probability generating function PLd(z) of this distribution is known and given by 
the following theerem (see, e.g., [16]). 

Theorem 1. 

where 

Xa(s) 

Û(z) 

IE[K] 

PLd(z) = _1_. XcSÀ(1- z))- zÛ(z) , 
IE[K] Xc(À(1- z))- z 

X(Ç + s) · (Ç + s) 

(Ç + s)- Ç(1- X(Ç + s)).Ö(s) ' 

Xc(À(1 - z)). Àz + Ç(D(À(1- z~- D(À)) ' 
z(À + Ç(1- D(À)) 

_1 _ . À(1 + ÇIE[D]) 
1- Pc À+ Ç(1- D(À)) 

(1) 

Let us denote by V* the processing time given that the service is interrupted and by D the 
repair time. Further, we denote by X* the service time given that the service is successful. Let 
Vi* be i.i.d. copies of V*, Di be i.i.d. copies of D, and Na random variabie denoting the number 
of interruptlens duringa service. Then, the generalized service time X a satisfies: 

N 

Xe= X*+ L)Vi* +Di). 
i=l 

Let X(s) be the LSTs of the original service time. 

Lemmal. 
Xc(s) = IE[e-sXa] = X(Ç + s) ·_(Ç + s) - ' 

(Ç + s)- Ç(1- X(Ç + s))D(s) 

Proof The random variabieNis geometrically distributed with success probability Ç/(J.L + Ç). 
The result for Xc(s) fellows by conditioning on N and some elementary calculus. D 

The service time U of an exceptional fust customer is given by 

U=Xc+Ro·1{Rn}' (2) 

where Ro denotes the residual repair time when the first customer arrives to the queue and 
l{Rn} is the indicator function of theevent that a customer which arrives to an empty system 
arrives duringa repair time. 

Lemma 2. The p.gf of the number of arrivals duringa service time U of an exceptional first customer 
is given by 

where 

IE[zN(Xa)] 

lE[zN(Rn) l{Rn }] 

Xc(À(1- z)) , 

1- (1- lE[zN(Rn)]) · Ç · (1 - D(À)) 
(À+ Ç) - ç. D(À) 
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Proof. By Eq. (2), we can directly write for the p.g.f. of the number of arrivals during U, Û(z), 

Due to the Poisson arrival process, we have: 

lE[zN(Xa)J = Xa(,\(1 z)). 

Let us denote by P(XFS) the probability that an arbitrary arriving customer is indeed an 
exceptional first customer. Then, we can write: 

lE[zN(Rv)l{Rv}J = lE[zN(Rv)J. P(XFS) + 1 · {1 P(XFS)) 

1- {1-lE[zN(Rv)]) · P{XFS). 

The p.g.f. lE[zN(Rv)] can be found by conditioning on theevent of at least one arrival during 
the repair time and is given by: 

lE[zN(Rv)J = lE[zN(D) I N(D) 2: 1] = D(,\(1 - z)) D(,\) 
z z(1- D(,\)) 

The probability P{XFS) is obtained by consirlering its counterpart P(X FS) 1 P(XFS). The 
sequence of instants at which the queue becomes empty forms a renewal process. Note that 
the queue hecomes empty only during an availability period and that the residuar availability 
time is still exponentially distributed. Thus, by consirlering the first customer arriving after a 
renewal point, we can write for P( X F S): 

P(XFS) P(arrival in processing period) 

It follows that: 

and as a result: 

+ (1 P(arrival during processing period)) 

· P(no arrival in the following repair period) · P(X F S) . 

-À Ç- ~ ,\ 
P(XFS) = \t + \t · D(,\) · P(XFS1 = ( - ( )) , ,...+." ,...+." ,\+Ç1-D,\ 

P(XFS) 1 P(X FS) = Ç. (1 - D~,\)) 
,\ + Ç(1 - D{,\)) 

Finally, we consider the mean number of served customers during a processing period. 

Lemma3. 

lE[KJ 
1 ,\(1 + ÇlE[D]) 

--· - ' 1 PG ,\ + Ç(1 D(,\)) 

where 
PG = ,\ · lE[Xa] . 

Proof. The term JE[KJ follows directly by inserting z 1 in Eq. (1) 
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4 Analysis of the multi-queue model 

The analysis of the multi-queue model builds on the workof Eisenberg. Eisenberg [14] con­
siders a polling model with a non-patient serverand non-preemptive service. For this model, 
the queue-length distribution is determined at visit beginning, visit completion, service be­
ginning, and service completion instants by studying the imbedded Markov chains defined at 
these instants. The fundamental relation in the analysis is the relation that counts the number 
of events with state n that occurred until time t [14, Eq.(4)]. In our work, we extend this re­
lation for the polling model under consideration and we will use this as a building block for 
obtaining the queue-length distribution at various instants. We will fust discuss the stability 
conditions of the system in Sect. 4.1. Next, in Sect. 4.2, we treat the extended counting relation 
in more detail. This counting relation is not sufficient to determine the queue-length distribu­
tion at all instants. To this end, we derive additional relations between the random variables 
in Sect. 4.3. However, even with these additional relations we still do not have enough infor­
mation to solve our model completely. In Sect. 4.4, we will resolve this problem by deriving 
an explicit expression for the queue-length distribution at visit completion instants. This ap­
proach is based on work of Leung [15] for a probabilistically-limited polling model. Finally, 
we present the steady-state probabilities for our model in Sect. 4.5. 

4.1 Stability condition 

The polling system is stabie if each customer in the system can be served in a fini te period of 
time. Contrary to many other polling models, we must consider stability on a per-queue basis 
as service capacity cannot be exchanged between the queues. We say that the system is stabie 
if and only if all the queues in the system are stable. 

For an individual queue to be stable, we must have that on average the number of customer 
arrivals per cyde is smaller than the number of customers that can beservedat most per cycle. 
The latter random variabie for Qi will be denoted by s:nax and is geometrically distributed 
(due to the exponential visit times), i.e. 

where Pi = lP( service is preempted I s.b. at Qi) = 1 Xi(Çi)· Here we use s.b. as short for 
service beginning. Thus, the stability condition for Qi then reads: 

4.2 A relation for the queue-length distribution at various instants 

We set up a relation for the number of occurrences of specific events. Apart from the events 
defined in [14], wedefine a number of additional events. We introduceevents related to the 
start and the completion of an idle period. These events do not appear in Eisen berg' s model as 
in his model the server leaves a queue as soon as it becomes empty. Moreover, we introduce 
events related to the interruption of a service or idle period due to the end of a server visit. Let 
us denote by ni the number of customers at Qi. Next, we can define the following variables 
which all refer to thenumber of the given events withstaten (nl> ... , nM) that occur in (0, t) 
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wi ( t; n), service beginnings; 

1ri(t; n), successful service completions; 

1r! ( t; n), interrupted services; 

ai(t; n), visit beginnings; 

{i(t; n), visit completions; 

ai(t; n), idle period beginnings; 

bi ( t; n), idle period completions; 

b~(t; n), interrupted idle periods. 

We note that n refers to the number of customers present in the system (either waiting or 
in service) immediately after the specHic event occurred. These variables are related in the 
following way for t 2: 0: 

[1ri(t; n) + 1r!(t; n)] + ai(t; n) + [bi(t; n) + b~(t; n)] = wi(t; n) + t]i(t; n) + ai(t; n), V nENM . (3) 

This counting relation should be read as follows. At each instant that one of theevents present 
at the l.h.s. of (3) withstaten occurs, also exactly one event with the samestaten at the r.h.s. 
occurs. We note that the end of a server visit always corresponds to an interruption and vice 
versa. Therefore, we can isolate these events and break up Eq. (3) into: 

1r~(t; n) + b~(t; n) 
1ri(t; n) + ai(t; n) + bi(t; n) 

= t]i(t; n) , 

wi(t;n) + ai(t;n). 
(4) 

(5) 

Let us define imbedded Markov chains each corresponding to instauts at which one of the 
counting processes increases. Each state in a Markov chain is uniquely defined by the position 
i of the server (i = 1, ... , M) and n = (nl. ... , nM) E {0, 1, ... }M, the number of customers 
present in the system at a certain instant. Wedefine the steady-state probabilities for each event 
type by dividing the number of events withstaten that occurred until t by the total number of 
theevents until t, and then taking the limitfort to infinity. It can beseen that all these limits 
indeed do exist by noting first that the quantities in the denominator all go to infinity with 
probability one. Next, by using an ergodicity theorem [17], it can be shown that alllimits exist 
with probability one. Thus, the probabilities are correctly defined as follows: 

ai lim [ai(t;n)/ai(t)], "~ - lim [J]Ï(t; n)/ /]i(t)], bi = lim [bi(t; n)/bî(t)], n t-+00 t-+oo n t-+oo 

b~,n lim [b~(t;n)/b~(t)], ai = lim [ai(t; n)/ai(t)], wi = lim [wi(t; n)jw(t)], 
t-+00 n t-+oo n t-+oo 

'Ir i lim [ni(t; n)j1r(t)], i = lim [1r!(t; n)/1r*(t)], n t-+00 
1r•,n t-+oo 

where 

ai (t) = I:nai(t; n), J]i(t) = I:nt1i(t;n), bi(t) = I:nbi(t; n) , 

b~(t) I:nb~(t;n), ai(t) I:nai(t; n), w(t) I:i I:nwi(t; n) ' 
7r(t) I:i I:n1ri(t; n), 1r.(t) = I:i I:n7r!(t;n). 

Notice that (hereby following [14]) we have that all probabilities are conditioned on Qi 
except for w~, 1r~ and 1r~,• . Along with the steady-state probabilities, let us also define the 
corresponding p.g.f.'s as follows: 
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ai(z) 2: i n nan ·Z' /3i(z) = 'En/3~. zn, bi(z) = 'Enb~. zn' 
b!(z) = 'En b!,n . Zn' ai(z) 2: i n nan. z ' w(z) 2: i n nWn·Z ' 
7r(z) = 2: i n n11'n ·Z' 7r*(z) 2: i n n 11' *,n · Z ' 

where zn := zî1 
• • • z;.r. 

Next, we divide Eqs. (4) and (5) by 1r(t) and take the limit of t- oo, yielding: 

11'~n lim [1r*(t)/1r(t)] + b! n lim [b~(t)j1r(t)] = /3~ lim [/3i(t)j1r(t)], (6) 
' t--H:;o ' t-+oo t-+oo 

11'~ lim [7r(t)/7r(t)] +a~ lim [ai(t)j1r(t)] + b~ lim [bi(t)j1r(t)] (7) 
t-+oo t-+oo t-+oo 

w~ lim [w(t)j1r(t)] +a~ lim [ai(t)j1r(t)]. 
t-+oo t-+oo 

lt is readily verified by elementary renewal theory (see, e.g., [18, Prop. 3.3.1]) that under our 
model assurnptions all these lirnits indeed exist with probability one. 

Let us introduce some notation. We denote by Ppr,X the probability of an arbitrary service 
in the system being preempted and by P~,I the probability of an idle period at Qi being pre­
empted. Wedefine "-i := limt ...... 00 [ai(t)j7r(t)]. Further, we denote by JE[C] the mean cycle time 
of the server. This enables us to present the following theorem. 

Theorem 2. The p.g.f. 'sof the queue-length distributton at Q i at various imbedded instants in a polling 
model with an autonomous server are related as follows: 

Ppr,X . 1l'i (z) + "-' . Pi . bi (z) 1 * i pr,l * - Ppr,X 

where 

Ppr,X = 

i 
Ppr,I = 

"-i 

We will now present severallemmas and defer the proof of the theorem until the end of 
this section. 

Lemma4. 

Proof Let us first focus on limt-co[ai(t)/7r(t)], i.e., the limit of the ratio of the nurnber of visit 
beginnings at Qi and the total nurnber of service completions. Consider an arbitrary cycle 
starting and ending with the server arriving to Qi. The average number of visit beginnings at 
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Qi per cycle is exactly one. The average total number of service completionsper cycle is equal 
to the average total number of arrivals per cycle (assuming a stabie system). Hence, 

t!!,~[ai(t)/rr(t)] = Lj Àj1·1E[C] , 

where for IE[C], the mean cycle time, we have: 

E[C] =~(~~+ei). 
J 

Further, notice that the number of visit completions, f3i(t), differs at most one from the 
number of visit beginnings, ai(t), for any t ~ 0. Therefore, we have that limt-+oo[f3i(t)/rr(t)] = 

limt-+oo[ai(t)/rr(t)] D 

LemmaS. 

lim [w(t)/rr(t)] 
t-+oo 1 - Ppr,X ' 

1 

lim [n.(t)/n(t)] = Ppr,X 
t-+oo 1 - Ppr,X 

Proof The limt-+oo[w(t)/n(t)] is defined as the limit of the ratio of the total number of service 
beginnings and the total number of (successful) service completions. The numerator and de­
nominator are related via the probability of an arbitrary service being preempted, Ppr,X· More 
precisely, 

n(t) 
w(t) = 1- Ppr,X, fort ---) oo . 

Similar to the relation between ai(t) and f3i(t), we note that w(t) and n(t) + n.(t) differ at 
most one for t ~ 0. Therefore, we can write: 

lim [n.(t)/n(t)] = lim [(w(t)- n(t))/n(t)] = Ppr,X 
t-+oo t-+oo 1 - Ppr,X 

D 

Lemma6. 

lim [bi(t)/n(t)] 
t-+oo 
lim [b~(t)/n(t)] t-+oo 

Proof Reeall that we set limt-+oo[ai(t)/n(t)] =: K,i, where ""i is a constant yet to be determined. 
These limits do not appear to have a simple interpretation, but we can relate them to limits for 
other events. The number of events ai(t) and bi(t) are related as fellows: 

bi(t) i 
----:---( ) = 1 - Ppr /! fort ---) oo , at t ' 

where P~r,l' the probability that an idle period at Qi is preempted, depends on i, and is given 
by: 

P~r,I = 1- Ïi(~i) . 
Analogously, ai(t) and b~ (t) are related via: 

b!(t) = ai(t) · Ppi r 1 , fort---) oo. . ' 

D 
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Proof ofTheorem 2. The presented equations follow by first determining the limit expressions 
in Eqs. (6) and (7). The limit expressions are derived in the Lemrnas above. However, these 
expressions still contain the unknowns Ppr,x and Ki, i= 1, ... , M. 

For the service preemption probability Ppr,X, we obtain: 

Ppr,x = LIP'(serviceispreempted I s.b. atQi) ·IP'(s.b. atQi I s.b. atsomequeue) 
j 

= 2::(1- Xj(~i)) ·IP'(s.b. at Qi I s.b. at some queue) 
j 

Here we use s.b. as shortforservice beginning and also use that: 

!P'(s.b. at Qi I s.b. at some queue) = 

= 

>.i/(1- IP'(serv. at Qi is preempted I s.b. at Qi)) 

L:i >.i/(1 -IP'(serv. at Qi is preempted I s.b. at Qj)) 

>-d xi(çi) 

L:i >.i/Xi(~j) 

Notice that multiple service beginnings may correspond toa single customer. 

(8) 

The unknown Ki, i = 1, ... , M, can be found from Eq. (7) (or altematively from Eq. (6)) 
by inserting all the limit expressions and summing both sicles over n. After several rearrange­
ments and using that 

where we use s.i. as short for service interruption, we eventually obtain: 

1 ( >.i 1- xi(~i)) 
Ki = P~r,I ~- 'L:j Àj . Xi(~i) . 

The final step is to write these equations in terms of p.g.f.'s by multiplication with zn and 
summatien over n. D 

4.3 Additional relations for the queue-length distributions at different instants 

We need additional relations to obtain the queue-length distributions at the different instants 
defined. Eisenberg [14] presents relations between 1ri(z) and wi(z) for the non-patient server 
model with non-preemptive services. We show that with a minor modification this relation can 
be used to relate both 1ri(z) and wi(z) and 1r!(z) and wi(z) in our model. Moreover, relations 
between ai(z) and bi(z) and between ai(z) and b!(z) can be established in a similar fashion. 
Finally, for completeness we repeat the relation from [14] between ai(z) and /]i-I (z). 

Relations between service events 

Reeall that wi(z), 1r!(z) and 1ri(z) refer to the number of customers at all queues at instants 
of service beginning, service interruption and successful service completion, respectively. Let 
us first consider the relation between wi(z) and 1ri(z). We note that every successful service 
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completion instant has a corresponding service beginning instant, while the correspondence 
the other way round is not true due to preeroption (which is caused by the exogenously de­
termined visit times of the server). Notice that the fact whether a service will get interrupted 
does not depend on the queue-length distribution at the start of a service. 

Unfortunately, we carmot relate wi(z) and ni(z) in the straightforward marmer as was clone 
by Eisenberg. In particular, as these p.g.f.'s are not conditioned on the position of the server, we 
carmot readily describe the number of arriving customers during a completed service. Eisen­
berg could do so because the conditional and unconditional p.g.f.'s in his model are related 
identically. This is due to the non-preeroption assumption which ensures that the long-term 
fraction of all service beginnings that occur at Qi and the long-term fraction of all service com­
pletions that occur at Qi are equal. 

Reeall first the definitions of wi(z) and ni(z): 

wi(z) = L ... L z~1 
• • · z~IP(N = n n s.b. at Qi) , 

ni(z) = L · · · Z::::z~ 1 
• • • z~IP(N = n n s.c. at Qi), 

n1 nM 

where s.c. is used as shortforservice completion. Then, to circumvent the use of unconditional 
p.g.f.'s, wedefine w~(z) and n~(z) as follows. 

wi(z) L · · · L z~1 
• • • z';,r ·IP(N = n I s.b. at Qi)IP(s.b. at Qi I s.b. at some queue) 

-. w~(z) ·IP(s.b. at Qi I s.b. at some queue) , 

ni(z) = L · · · L z~1 
• • • z~ · P(N = n I s.c. at Qi)P(s.c. at Qi I s.c. at some queue) 

where 

-. n~(z) · P(s.c. at Qi I s.c. at some queue) , 

À i 
IP(s.c. at Qi I s.c. at some queue) = --

EJ.\i. 

The latter equation follows immediately by the observation that the number of arriving cus­
tomers is equal to the number of served customers for a stabie system. Further, notice that 
IP(s.b. at Qi I s.h. at some queue) is given in Eq. (8). 

These conditional p.g.f.'s we can relate in the following marmer: 

n~(z) = X:Cz) · w~(z) , 
Zi 

(9) 

where the term 1/ Zi is due to the fa ct that the number of customers at Qi at a service completion 
instant is exactly one less than at the service beginning instant and Xt{z) is the p.g.f. of the 
number of customers that arrive at all queuesduringa service at Qi that is indeed completed. 
The latter is given by: 

X~( ) ·=JE[ N(X;) I X· v:J = lE[zN(X;)l{X;<Yi}) = Xi(Çi + Ej Àj(l- Zj)) (10) 
t z . z ~ < Ii P(Xi < Yi) Xi(Çi) ' 

where we introduced the notation N(T) to denote the number of arrivals duringa random 
period T. The final equation follows from first conditioning on X i and Yi and next using that 
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E[zN(x)J is Poisson distributed with parameter Lj Àj · (1 Zj) ·x fora given x. Combining the 
definitions of the conditional p.g.f.'s and Eq. (9), we obtain: 

1l'i (z) = IF'(s.c. at Qi I s.c. at some queue) . XI(z) . wi(z) . 
IF'(s.b. at Qi I s.b. at some queue) Zi 

(11) 

The relation between 1l'~(z) and wi(z) resembles Eq. (11): 

i ( ) _ IF'(s.i. at Qi I s.i. at some queue) X* ( ) ( ) 
1l' Z - · · Z · Wi Z 

* IF'(s.b. at Qi I s.b. at some queue) a ' 
(12) 

where 

Xt(z) := JE[zN(Y;) I xi >lil= çi 1 - .. t(çi + Zj)) 
Ç'i+LjÀj(1-zj) 1-

The derivation of Xf(z) is done analogously to the derivation of x:(z). Notice further that the 
term 1/ Zi is absent in Eq. (12), since no customer departs from the queue. 

Remark 1. We note that for non-preemptive service the first ratio on the r.h.s. of Eq. (11) equals one as 
a service beginning corresponds uniquely toa service completion. Further, in this case, we have that the 
term XI(z) equals E[zN(X;)l, so that we obtain Eq. (17) of[14]. 

Relations between idle period events 

Reeall that ai(z), b~(z) and bi(z) refer to the number of rustomers at instantsof idle period 
beginning, idle period interruption and idle period completion at Qi, respectively. Let us first 
considertherelation betweenai(z) and bi(z). Wenotethateveryidleperiod completioninstant 
has a conesponding idle period beginning instant, while the correspondence the other way 
round is not true. This is due to the exponential visit time of the server. Whether the idle 
period gets interrupted only depends on the arrival process and on the distribution of the 
visit time of the server. In particular, it does not depend on the queue-length distribution at 
the start of an idle period. Therefore, we may state that the queue-length distribution at idle 
period beginning instants is independent of whether an idle period completion (due to an 
arrival to Qi) will follow or not. Thus, we can relate the generating functions ai(z) and bi(z) 
by the following observations. The p.g.f. of the number of customers that arrive at all queues 
different from Qi during an idle period that it is indeed completedis given by: 

Ï-(Ç· +I: >.·(1- z·)) 
I:Cz) := E[zN{l;) I Iï < liJ = ~ ~ ~#i 1 1 

. 

Ji(Çi) 

This expression can be derived in a similar fashion as Eq. (10). Further, we note that exactly 
one customer arrives at Qi at the end of the idle period. Together, this yields the following 
relation between ai(z) and bi(z): 

bi(z) = 1:(z) · Zi · ai(z). 

In the same manner, the relation between b~(z) and ai(z) can be established: 

b!(z) = Jf(z) · ai(z). 

Note that we use here that IJ(z) = E[zN(Y;) I Ii > lil E[zN(I;) I Iï < liJ. We are allowed to 
do so, because both li and Ji are assumed exponentially distributed. 
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Relation between servervisitevents 

Reeall that ai(z) and {3i(z) refer to the number of customers at visit beginning instants and 
visit completion instants at Qi, respectively. There exists a well-known relation (see, e.g., [14]) 
between the number of customers that the server leaves behind in the system at departure 
from Qi-l and the number of customers in the system that the server finds upon arrival to 
Qi. This difference is characterized by the number of arriving customers duringa switch-over 
time from Qi-l to Qi. We denote by Ci(z) the p.g.f. of this number, which is given by: 

Ci(z) ëi(I':Àj(l- Zj)). 
j 

Combining these two observations, we obtain the simple relation: 

Altogether, we have derived 7 · M relations between the 8 · M p.g.f's of our interest. Fora 
given value of z, !zl < 1, these relations are alllinearand independent. Therefore, to obtain all 
the desired p.g.f.'s, solving explicitly for M p.g.f.'s is sufficient. This will be done below for 
f3i(z), i= 1, ... , M . 

4.4 Queue-length probabilities at visit completion instants via auxiliary variables 

We will determine the p.g.f. of the queue-length distribution at visit completion instants, j3i(z), 
explicitly. Notice that for the polling system under consideration, the marginal queue-length 
distributions can be obtained by analyzing each queue in isolation. However, the joint queue­
length distribution cannot be obtained in this way due to the stochastics in the visit times of 
the server. Our analysis is basedon an approach which was introduced by Leung [15] for 
the study of a probabilistically-limited polling model, and extended in [2] to a time-limited 
polling model. The analysis builds on the relations of Eisenberg (14] and involves setting up 
an iterative scheme. A key role in this iterative scheme is played by the (auxiliary) p.g.f.'s 
4>k(z) and o/Hz), which will be explained below. In the final step of the iteration scheme pi(z) 
is obtained as a simple function of 4>~(z). 

We consider a tagged queue i and we willleave out the subscript and superscript i when­
ever it doesnotlead to ambiguity. Wedefine a service period as a period which starts either at a 
visit beginning or at a service completion instant and ends witheither the next service comple­
tion instant or an interruption ( due to the departure of the server) whichever occurs first. We 
note that each service period, except for the final service period of a visit, comprises exactly 
one successfully completed service. Further notice that the first service period always starts 
at a visit beginning instant and that the final service period always ends at a visit completion 
instant. Let us denote by 4>k ( z), k ~ 1, the p.g.f. of the number of customers at all queues at the 
end of the kthservice period and service period kis not the final service period (i.e., service 
period k ends with a successful service completion, and service period k + 1 will occur). Sim­
ilarly, we denote by 4>~(z), k ~ 1, the number of customers at all queues at the end of the kth 
service period and k is in fact the final service period (i.e., service period k will be interrupted, 
and service period k + 1 will not occur). Finally, we denote by 4>o(z) the p.g.f. of the number of 
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customers present at the beginning of a visit. Then, <f>k(z) and <Pk(z), k = 1, 2, ... , are given by: 

</Jk(z) - </Jk--l(z) lz;=O · (ziJE[zN(J)l{Y>I}]·JE[zN(X)l{Y>X}J~J (13) 

+ (</Jk-l(z)- </Jk-l(z) lzi=O) ·lE[zN(X)l{Y>X}J_!_ 
Zi 

</Jk-l(z) lzi=O JE[zN(X)l{Y>X}] ( JE[zN(I)l{Y>I}] ~J + </Jk-I(z)JE[zN(X)l{Y>X}} :i , 
and 

</Jk(z) - </Jk-l(z) lzi=O · (JE[zN(Y)l{Y<I}] + ZtlE[zN(J)l{Y>I}) ·JE[zN(Y)l{Y<X}J) (14) 

+ (</Jk-l(z)- </Jk-l(z) lzi=O) ·lE[zN(Y)l{Y<X}] 

where 

</Jk-I(z) (JE[zN(Y)l{Y<I}} +JE(zN(Y)l{Y<X}] · (ziJE[zN(J)l{Y>I}} -1)) 
+ </Jk-I(z)JE[zN(Y)l{Y<X}}, 

<Po(z) = a(z) 

JE[zNUll{v>nl - Îi(ei +I: >.j(l- zj)) 
#i 

JE[zN(x)l{Y>x}] - .. t(ei +I: >.j(1- zj)) 
j 

ei . (1- Îi(ei + 2::: >.j(1- Zj))) 
Çi + I.:j:f:i Àj (1 - Zj) #i 

e· +I:. t(l- z·) . (1- Xt(Çi + L Àj(1- Zj))) . 
~ J J J j 

Here N(T) denotes the number of arrivals duringa random period T while l{A} denotes the 
indicator function for event A. Equations (13) and (14) can be explained by the following 
observations. The number of customers at all queues at the end of a service period is equal 
to the number present at the end of the previous service period plus the ones that arrived 
during the present service period. The lengthof the service period depends on whether a 
customer was present at the end of the previous service period, which explains why each 
equation consists of two parts. Also, the length of a service period, and thus the number of 
arriving customers, depends on w hether a service period is interrupted or not. Finally, we note 
that <Po(1) = 1, while <Pk(1) :.:; 1, for all k = 1,2, ... , since the kthservice completion may not 
occur at allduringa visit to Qi. This explains the dilierences between Eqs. (13) and (14). 

Notice that there is a one-to-one relationship between a visit completion and the end of a 
final service period. Therefore, we can write 

00 

{1-(z) = L <PZ(z) . 
k=l 

We set up an iterative scheme to obtain {3i(z) numerically. The scheme is constructed 
in terms of Discrete Fourier Transforms (DFTs) as these appear more convenient for com­
putational purposes. To this end, we reptace zi, 'Vt, in the expressions above by wfi, where 
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wi = exp(-27rl/Ni), so that all expressions become functions of k = (k1, ... ,kM)· Here I is 
the imaginary unitand Ni refers to the number of discrete points used for Qi todetermine the 
joint probabilities. These probabilities that will eventually follow are exact for Ni --+ oo, Vi. 
However, the strength of the approach is that in general the probabilities are already close to 
the exact probabilities for small values of Ni. The pseudo-code of the iterative scheme is pre­
sented in Algorithm 1. The standard values for the convergence parameters that have been 
used are E = w-6 and ó = w-9 • Finally, via the Inverse Fourier Transform, the steady-state 
probabilities (3~ are found. 

Remark 2. The p.gf 1ri(z), which refers to the queue-length at service completion instants, can now be 
obtained using the derived relations (see Sect. 4.2-4.3) and the explicit computation of (3i(z). However, 
1ri(z) can also be expressed in termsof the introduced auxiliary p.gf cPk(z) as follows: 

i( ) = JP>(s.c. at Qi I s.c.) . Loo "' ( ) 
1r z IE[# . . Q ] '+'k z . s.c. per vzszt to i 

k=l 

Algorithm 1. Pseudo-code of iterative scheme for determining (3i (k), V i. 

{3~0 (k) = 1, Vi0 , Vk;(startwithanemptysystem) 
FOR i1 = 1, ... , M 

set i2 := i1; 
REPEAT 

(3i2 (k) = (3i2 (k)' Vk; 
setj := 0; 
set cPo(k) = (3~ 2 "

1(k) . ci2 (k); 
REPEAT 

setj := j + 1; 
compute cPi(k), Vk, using Eq. (13); 
compute cj)j(k), Vk, using Eq. (14); 

compute (3i2 (k) = ~{,..., 1 cj}f(k), Vk; 
UNTIL 1- Re({3~2 (0)) < ó 
set i2 := MOD(i2, M) + 1; 

UNTIL IRe((3i1 (k))- Re((3Ï1(k))l < E, vk 
END(FOR) 

Remark 3. In our model, interruptions can occur during bath services and idle periods, while in Le­
ung's time-limited model (see [2]) only services can be interrupted. The latter is due to the fact that 
in Leung's model the server moves to the next queue if there are na customers present anymore. Due 
to the additional eventof idle period interruption in our model, the probability '1/Ji(j) ~ 1 (one ar more 
customers present at Qi after j services) of Eq.(9) of[15] which is conditioned on theevent that na inter­
ruption occurs during the jth service is na langer equal to the unconditional probability. Nevertheless, 
we strongly believe that for our model the approach of [15] could still be followed to find (3i(z). However, 
the expressions will become quite involved, sa that we proposed here an unconditional approach. 

4.5 Steady-state queue-length probabilities 

The exponential visit times allow us to obtain the steady-state queue-length probabilities. 
More specifically, we have that a departing server observes the system in steady-state con­
ditioned on the position of the server. Thus, we can write for the steady-state probabilities 
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Figure 1: The coefficient of correlation as 
function of A for p = 1.00 and Ç = 1.00 (ex­
ponential service times). 
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Figure 2: The coefficient of correlation as 
function of Ç forA = 0.15 and p = 1.00 (ex­
ponential service times). 

Pn = ~ IP(nlserver at Qi) ·lP( server at Qi) 
Ï=l 

This contrasta with most previous work on polling models for which no steady-state queue­
length probabilities could be derived. 

5 Approximations 

We have performed experiments for a wide range of parameter settings for the polling model. 
As an example, we present results for a symmetrie system with three queues, exponential 
service times and zero switch-over times. For ease of presentation, wedefine A = 'Ei ÀJ, p = 
Pi, and Ç = Çi, for i= 1, ... , M. Specifically, we plot the coefficient of correlation, p1,21QJ' j = 
1, 2, 3, for the conditionat queue length at Q1 and Q2 as fundion of A and Ç, where PI,2IQ1 is 
defined as follows: 

Pl,
2
1Qf := JVar(N1 I server at Qj)Var(N2 I server at QJ) 

IE[N~, N2 I server at Qj]- E[N1 I server at QJ]E[N2 \server at Qj] 
JVar(NI I server at QJ)Var(N2 I server at QJ) 

We will only consider the conditional queue-lengtbs here. This is because the system state 
generally depends on the position of the server, so that it is more meaningful to compare con­
ditional probabilities. Moreover, if we would take a snapshot of the system state at a random 
instant in time, then we do not expect it to be in line with the unconditional time-equilibrium 
probabilities. 

In Fig. 1, we plot p1,21Q; as fundion of the arrival rate A for the situation p = 1.00 and 
Ç = 1.00. It is shown that the correlation between the queues is quite small (for all server's 
positions), although it increases (in absolute sense) slightly in A. Figure 2 shows the impaét of 
increasing Ç (i.e., decreasing the mean visit timetoa queue) on p1,21QJ for the situation A= 0.15 
and Ç = 1.00. The plot shows that the coefficient of correlation decreases rapidly in Ç. This is 
in accordance with the fact that for Ç -+ oo the queue lengtbs indeed become independent 
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yielding a coefficient of correlation equal to zero. We have also generated results for rnany 
other parameter settings for the symmetrie three-queue systern. These results dernonstrate 
that for a wide range of settings the coefficient of correlation is quite srnall which indicates 
little dependenee between the queue lengths at the different queues. 

A natura! next step is then to study approxirnations for the joint queue-length distribution 
of the polling model based on the assurnption of independenee of the queues. Such approxirna­
tions could he of great value since our experirnents have shown that the cornputation time for 
the joint queue-length probabilities in the polling model rnay grow quite large. Moreover, the 
convergence steps in the iterative scherne rnay becorne quite srnall which further contributes 
to large cornputation times. 

The approxirnation for the joint queue-length distribution is thus based on the rnarginal 
distributions. These rnarginal distributions can be cornputed directly via the unreliable server 
model (see Sect. 3). In this way, the single-queue results can he obtained very fast which is 
often a necessity for real applications. Specifically, the approxirnation reads as follows: 

M 

JP(N1 = n11 ... , NM = nM!server at Qi) ~IJ lP( Ni nijserver at Qj) . (15) 
i=l 

To assess the quality of this approxirnation, we cornpute the terrns on the r.h.s. of the Eq. (15) 
via the USM. As we have not analyzed these terrns yet, this will he done next. 

Let us consider the unreliable server model with arrival rate À, service rate J.L, exponen­
tially distributed availabili_!y periods with parameter~ and ErlangM_1 (Ç) distributed repair 
periods. We let the p.g.f. N1i(z) = IE[zN(Q1) !server at Qi], j = 1, ... , M, refer to the nurnber 
of custorners in the queue given that the server is either at the queue (j 1) or at "stage" 
j 1 of the repair period. Notice that (due to exponentially distributed availability periods) 
N11 ( z) in fa ct refers to the p.g.f. of the nurnber of custorners present at an arbitrary instant of 
the availability period. Denote further by Nw ( z) the p.g.f. of the nurnber of custorners present 
at an arbitrary instant of the repair period. These quantities are related to PLAz) as follows: 

where Pa and Pr are the long-term fractions that the server is available and being repaired, 
respectively. Observe that Nn(z) and Nw(z) arealso related via: 

Nw(z) Nu(z) · DA(z), 

where bA (z) is the p.g.f. of the nurnber of arrivals frorn the start of the repair period until an 
arbitrary instant of that period, and satisfies, using sirnple regenerative processes theory (see, 
e.g., [19]): 

1 D(z) 

D'(1)(1- z) ' 

where D(z) D(À(1- z))) is the p.g.f. of the nurnber of arrivals during the repair period. 
Hence, it follows that: 

Nu(z) 
Pa+ PrDA(z) 

We note N1i ( z), j =f 1, can be decornposed in three independent parts. The first part refers to 
the nurnber of custorners present at the end of an availablility period. The second part accounts 
for the arrivals during the already cornpleted repair stages. Finally, the last part represents the 
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number of arrivals from the beginning of repair stage j 1 until a random instant during this 
stage. In termsof p.g.f.'s, this leads to: 

j--2 

N11(z) = Nu(z) · II bk(z) · b~(z), j = 2, ... , M, 
k=l 

where bk(z) refers to the arrivals during the (completed) kthstage of the repair period and is 
given by 

bk(z) .l)k(>,(1- z)), k 1, ... , M- 2, 

and ~(z) (cf. bA(z)) is given by 

, · 1- b1(z) . 
~(z) = ~ . , J = 2, ... , M. 

D'J(1)(1- z) 

Pinally, the probabilities lP'(Ni = nilserver at Q1) are obtained from N11 (z) using DPT tech­
niques. Notice that for a comparison with an asymmetrie polling system all steps above have 
to be performed for each queue separately. 

The proposed approximation is anticipated to work well in situations where the individual 
queues behave independently. In our polling model, it seems that due to our imposed visit­
time distribution the dependendes between the different queues are small. Por instance, the 
number of arrivals during the absence of the server and the time that a queue is served are 
known (in distribution) and independent of what occurs at the other queues in the system. 

5.1 Performance measure 

We have now all the tools at hand to investigate the independendes between the queues in 
the polling system. Let us emphasize that our objective here is not to perform an exhaustive 
numerical study for all system parameters and service time distributions. The underlying 
idea of the approximation is that if the queues in the system would turn out to be '' almost" 
independent, then the results of a much simpler single-queue model can be used as a good 
approximation for a complex multi-queue polling model. Therefore, our purpose is mainly to 
gain preliminary insight in the parameter ranges for which the approximation works well. The 
performance measure that we use to assess the quality of the approximation is as follows. We 
use the measure of total variation distance [20] for the queue-length distribution conditional 
on the position of the server, denoted by O~ond,j : 

M 

e~ond,j := L lP'(N1 = n1, ... ,NM nM I server at Qj) ITlP'(Ni ni I server at Qj) . 
n i=l 

5.2 Numerical results 

We present here results from experiments for a symmetrie three-queue polling model for both 
exponentially and deterministically distributed service times. Por ease of presentation, we 
define e~ond = e~ond,j I for j = 1, ... ' M. 

The results for the total variation distance in the exponentlal case are presented in Pigs. 3 
and 4. First, consider Fig. 3 in which O~ond is plottedas function of A for various values of e. 
The slopes observed in this figure clearly show that O~ond is not insensitive to A, but increases 
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Figure 3: The total variation distance as 
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Figure 5: The total variation distance as 
function of A ( deterministic service times). 
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Figure 4: The total variation distance as 
fundion of Ç (exponential service times). 
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Figure 6: The total variation distance as 
function of Ç (deterministic service times). 

linearly in the arrival rate. Moreover, it can beseen that e~cmd decreases in Ç. Tobetter under­
stand the ra te of decrease in Ç, we plot in Fig. 4 the impact of Ç on e~d for various values of A. 
lt is shown that e~ond decreases rapidly in Ç toward zero for all values of A. 

The results for the deterministic service times are presented in Figs. 5 and 6. Figure 5 shows 
e~cmd as function of A for various values of Ç. Again as for the exponential case, e~ond increases 
linearly in A. The impact of Ç on e~ond appears small. This is confirmed by the plot of Fig. 6 
which shows the total varia ti on distance as fundion of Ç for various values of A. An important 
difference with respect to the exponential case is that the e~ond goes to some asymptotic value 
strictly larger than zero. The latter is due tothefact that the load for the deterministic case 
increases in Ç, so that the queue lengths will not approach independenee under the stabie 
regime (i.e., p < 1). 

Let us wrap up the main observations that we have done in our experiments for the three­
queue symmetrie system: (i) e~cmd is positively correlated to the arrival rate A; (ü) e~cmd de­
creases rapidly toward zero in the visit time parameter Ç for exponentlal service times, while 
for deterministic service e~ond decreases to an asymptotic value. 

We have seen that there exists a wide range of parameter settings for which the approxima­
tion works quite well. However, the approximation appears not applicable to heavily loaded 
systems. For such situations, it might be worthwhile to consider heavy-traffic approximations. 
This will be part of future work. 
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6 Conclusions 

Polling models with an autonomous server may arise as a performance model in the context of 
mobile wireless techno logies. We have analyzed this polling model in great detail by determin­
ing the queue-length distribution at various instants. Our analytica! approach appears mainly 
applicable to systems with a light to moderate load. We have performed several experiments 
to study the independenee between queues, so that we identify system parameter settings for 
which a simple single-queue model can successfully be applied to approximate performance 
measures. These experiments show that the quality of the approximation is not very sensitive 
to the total arrival ra te, but mainly depends on the mean visit time. The shorter the visit times, 
the better will be the approximation for the polling model measures. 

In future work, we will study other network structures such as a (multihop) chain model 
or a multi-path model. We strongly believe that similar techniques as described above may 
prove useful to analyze such models. Later, we want to combine analytica! results for these 
simple network structures to analyze more complex network structures. For instance, more 
complex mobility patterns and even models with multiple servers will be considered. Also 
incorporating communication between mobile nodes is a valuable model extension. 
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Abstract 

We consider an M/G/1 retrial queue, where the service time distribution has a 
regularly varying tail with index -(3, 1 < (3 < 2. The waiting time distribution 
is shown to have a regularly varying tail with index 1 - (3, and the pre-factor is 
determined explicitly. The result is obtained by camparing the waiting time in the 
M/G/1 retrial queue with the waiting time in the ordinary M/G/1 queue with 
random order service policy. 

Keywords: M/G/1 retrial queue, regular variation, waiting time distribution, random order 
service. 

1 Introduetion 

Retrial phenomena arise in many practical situations such as in call center systems and many 
other telecommunication systems. Retrial queues, which deals with the stochastic models for 
the retrial phenomena, have been investigated for several decades. Detailed overviews for 
retrial queuescan be found in Falin and Tempteton [7], Artalejo [1] and Choi and Chang [6]. 

In this paper, we consider an M/G/1 retrial queueing system, where rustomers arrive ac­
cording to a Poisson process with intensity À, service times B for customers are independent 
and identically distributed with distribution function Fn, and there is a single server. If the 
server is idle at the time of a customer arrival, the arriving customer begins to be served imme­
diately and leaves the system after service completion. Otherwise, i.e., if the server is busy, the 
arriving customer joins a reirial group, called an orbit. While in orbit, each customer spends 
an exponential time with mean v-1 before visiting the server again. If an incoming repeated 
customer from the orbit finds the server idle, it is served and leaves the system after service 
completion. Otherwise, i.e., if the repeated customer finds the server busy, the customer comes 
back to the orbit immediately, and tries her or hls luckafter an exponential time with mean v-1 

again. The traffic load p is defined as p ÀIEB. It is assumed that p < 1 for the stability of the 
system. 

The interest of this paper is the heavy-tailed asymptotics for the waiting time distribution 
in the M/G/1 retrial queue. There are fluent references for the heavy-tailed asymptotics in 
usual queues. See, for examples, [2, 3, 9, 12] and references therein. However, for the heavy­
tailed asymptotics in retrial queues it seems that Shang, Liu and Li [11] is the only known result 
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in open literature. Shang, Liu and Li [11] showed that the stationary distribution of the queue 
length in the M/G/1 retrial queue is subexponential if the stationary distribution of the queue 
length in the corresponding ordinary M/G/1 queue is subexponential. As a corollary of this 
property, they proved that the the stationary distribution of the queue length in the M/G/1 
retrial queue has a regularly varying tail if the service time distribution has a regularly varying 
tail. 

The main contribution of this paper is to show that if the service time distribution has a 
regularly varying tail of index -{3, 1 < {3 < 2, in the M/G/1 retrial queue, then the waiting 
time distribution has a regularly varying tail of index 1 - {3. More precisely, we prove that if 
the distribution function Fs of service times satisfies 

with a slowly varying fundion L, then the distribution fundion Fw for the waiting time of an 
arbitrary customer satisfies 

1 Fw(x) "' c x1-f3 L(x) as x-? oo (1) 

with a constant c > 0 that is given explicitly. Here and subsequently f(x) f'..J g(x) denotes 
l. /(x) 1 
liDx-oe g(x) • 

Boxma et al. [5] obtained the same result as (1) for the waiting time distribution in the 
ordinary M/G/1 queue with random order service (ROS) policy. The main result (1) of this 
paper is obtained by camparing the waiting time in the M/ G I 1 re trial queue with the waiting 
time in the ordinary M/G/1 queue with ROS policy. 

The remainder of this paper is organized as follows: InSection 2, we show that for the 
M/G/1 retrial queue, if the service time distribution has a regularly varying tail of index -{3, 
{3 > 1, then tails of several first passage time distributions are bounded by a function that 
is of regular variation with index - {3. In Sedion 3, when the service time dis tribution has a 
regularly varying tail of index -{3, 1 < {3 < 2, the main result (1) is derived with the explicit 
expression for c by camparing the waiting time in the M/G/1 retrial queue with the waiting 
time in the ordinary M/G/1 queue with ROS policy. 

2 First passage time distributions 

Let 

N(t) 

C(t) 

the number of customers in the orbit at time t; 

= { 1, if the server is busy at t, 
0, if the server is idle at t; 

X(t) 
_ { the elapsed service time of the customer who is in service at t, if C(t) = 1, 

0, if C(t) = 0. 

Then {(N(t), C(t), X(t)) : t 2 0} is a Markov process. Let 

Tn - inf{t > 0: N(t) = n, C(t) = 1, X(t) = 0}, n = 0, 1,2, ... ; 

CJn inf{t > 0: N(t) = n, C(t) = 0}, n = 0, 1,2, ... ; 

Gn(x) = IP(crn :S x I N(O) = n, C(O) = 1, X(O) = 0), n = 0, 1, 2, ... ; 

Hn(x) - JP>(Tn-1 :S x I N(O) = n, C(O) = 1, X(O) = 0), n = 1,2,3, .... 
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Fora distribution fundion F, the complementary distribution function is denoted by F, i.e, 
F(x) = 1- F(x), x ER Clearly 

n= 1,2,3, .... 

Further it can be shown, by stochastic comparison, that 

Gn(x) ~ Gm(x), x E IR, if 0 s; n s; m; 

Hn(x) ~ Hm(x), x E IR, if 0 s; n s; m. 

(3) 

In this sedion, we assume that the service time distribution has a regularly varying tail 
with index - {3, f3 > 1, i.e., 

FB(x),...., x-/3 L(x) as x-+ oo 

with a slowly varying fundion L. The following proposition asserts that, for all n, Gn(x) and 
H n (x) are bounded by a fundion that is of regular variation with index - {3. This result will be 
used in Section 3 to prove that the tail of the waiting time distribution in the retrial queue has 
a regular variation with index 1 {3. 

Proposition 1. We have 

and 

Hn(x) ;S x-!3L(x), n=1,2,3, ... , 

where f(x) ;S g(x) denotes limx-+oo ~f~~ < oo. 

The proof is deferred to the end of this section. Por the proof, we need a series of lemmas. 

Lemma 1. For n ~ 1, 

Gn(x) ;S (x) if and only if Hn(x) ;S FB(x). 

Proof By (3), Hn(x) ;S FB(x) implies Gn(x) ;S FB(x). Now we show the converse: 

Gn(x) ;S FB(x) implies Hn(x) ;S FB(x). 

Suppose that Gn(x) ;S FB(x). Let 

Jn(x) = IP'(rn-1 s; x I N(O) n, C(O) = 0). 

Th en 

(4) 

We observe that 

nv À 
--, Env+>.(x) + , Env+À * Hn(x), 
nv+" nv+" 

(5) 

where Eo: denotes the exponential distribution fundion with mean a-1. Substituting (5) into 
{4) leads to 

Hn(x) = nv À 
---:-, Gn * Env+>.(x) + , Gn * Env+>. * Hn(x). 
nv+" nv+" 
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This implies 

00 

L nv ( À )k-1 *k 
Hn(x) = À À (Gn * Env+>..) (x), 

nv + nv + 
k=l 

where the superscript *kon the right hand side denotes the k-fold convolution. Since Gn(x) ;S 
FB(x), we have Gn * Env+>..(x) ;S FB(x). By Proposition2.9 in (12], we obtain Hn(x) ;S FB(x). 
0 

Now we define 

A(t) = the number of exogenous arrivals during (0, t]; 

q = 1- fooo e->..tdFB(t); 

(} = inf{t > 0: C(t) = 0}. 

Note that q is the probability that at least one exogenous arrival occurs duringa service time. 

Lemma 2. (1) For n = 0, 1, 2, ... , 

where 

Gn(x) = (1- q)Gn,o(x) + q(Kn * Gn)(x), 

Gn,o(x) - JP>(an :::; x I N(O) = n, C(O) = 1, X(O) = 0, A(O) = 0), 

Kn(x) = lP(Tn:::; x I N(O) = n,C(O) = 1,X(O) = O,A(O) 2: 1). 

(2) For n = 0, 1, 2, ... , 

->..x 
Gn,o(x) 

e -
< -

1 
-FB(x), 
-q 

Kn(x) 
1-

< -Hn+I(x). 
q 

Proof (1) We decompose Gn(x) as 

Gn(x) = lP(an :::; x I N(O) = n, C(O) = 1, X(O) = 0) 

= JP>(an :::; x, A(O) = 0 I N(O) = n, C(O) = 1, X(O) = 0) 

+ JP>(an:::; x, A(O) 2: 1 I N(O) = n, C(O) = 1, X(O) = 0) 

= (1- q)lP(an :::; x I N(O) = n, C(O) = 1, X(O) = 0, A(O) = 0) 

+ q JP>(an :::; x I N(O) = n, C(O) = 1, X(O) = 0, A(O) 2: 1) 

(6) 

= (1- q)Gn,o(x) + qlP(an :::; x I N(O) = n, C(O) = 1, X(O) = 0, A(O) 2: 1). (7) 

Given {N(O) = n, C(O) = 1, X(O) = 0, A(O) 2: 1}, we have Tn < an, i.e, 

Further, given {N(O) = n, C(O) = 1, X(O) = 0, A(O) 2: 1}, we have the following: 

• Tn has the distribution function Kn; 

• Tn and an- Tn are independent; 
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• an - Tn has the distribution function Gn. 

Therefore 

JP>(an ~x I N(O) = n, C(O) = 1, X(O) = 0, A(B) 2:: 1) = Kn * Gn(x). (8) 

Substituting (8) into (7) leads to (6). 
(2) Wewrite 

Gn,o(x) = JP>(an >x I N(O) = n,C(O) = 1,X(O) = O,A(B) 0) 
1 

-
1 

-JP>(an >x, A(B) = 0 I N(O) = n, C(O) = 1, X(O) = 0) 
-q 
1 = 1qJP>(B >x, A(B) = 0 I N(O) = n, C(O) 1, X(O) 0). 

Since {B > x,A(B) = 0} c {B >x, A(x) = 0}, we have 

1 
Gn,o(x) < -

1 
-JP>(O >x, A( x)= 0 I N(O) = n, C(O) = 1, X(O) = 0) 
-q 

1 - À = -
1
-FB(x)e- x. 
-q 

Wewrite 

Kn(x) = JPl(Tn >x I N(O) = n,C(O) = 1,X(O) = O,A(B) 2:: 1) 
1 

- - JP>(Tn >x, A(B) ~ 1 I N(O) = n, C(O) 1,X(O) = 0). (9) 
q 

Since 

lP'(Tn > x,A(O) = k I N(O) = n,C(O) = 1,X(O) = 0) 

~ lP'(Tn > x, A(B) = k I N(O) = n + 1, C(O) = 1, X(O) = 0), k = 1, 2, 3, ... , 

we have 

JP>(Tn >x, A(O) ~ 11 N(O) n, C(O) = 1,X(O) = 0) 
00 

= LlP'(Tn > x,A(B) = k I N(O) = n,C(O) = 1,X(O) 0) 
k=l 
00 

~ LJP>(Tn > x,A(B) = k I N(O) = n + 1,0(0) = 1,X(O) = 0) 
k=l 

< JPl(Tn >x I N(O) = n + 1, 0(0) = 1, X(O) = 0) 

- Hn+I(x). 

By (9) and (10), we obtain 

- 1-
Kn(x) ~ -Hn+I(x). 

q 

(10) 

0 
For n ~ 1, we consider an ordinary M/G /1 queue where arrival rateis .À and service times 

have a distribution function F B(n): 

00 

~ nv ( .À )k-1 k 
FB(n) (x) = ~ nv + 'rtv +.À (FB * EnvH)* (x). 

k=l 

(11) 
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We remark that F B<n> is the distribution function of B(n) defined as 

I 

B(n) = L)Bk + &k), 
k=l 

where Bk, Ek, k = 1, 2, 3, ... , and I are independent random variables whose distributions are 
given by 

IP(Bk ~x) = 

IP(&k ~ x) 

IP(I=k) = 

FB(x), x ER, 

Env+>..(x), XE R, 

nv ( À )k-1 
--, --, ' k = 1,2,3, .... 
nv + /\ nv + /\ 

The mean of B(n) is given by 

JEB(n) = (lEB1 + lE&1)IEI =(lEB+ nv ~À) (1 + n~). 
Let 

ÀlEB(n) = (P + À ) (1 + ~) 
nv +À nv 

(12) 

(13) 

(14} 

(15) 

denote the offered load in the M/G/1 queue with the distribution function (11) forservice 
times. 

Lemma 3. Suppose that p(n) < 1. The distribution function Q(n) of a busy period in the M/G/1 queue 
satisfies 

as x-+ oo. 

Proof By Proposition 2.9 in [12], 

F B(n) (x) "'(1 + ~ )x-f3 L(x) as x-+ oo. 
nv 

Combining (16) with the result in [8] completes the proof. 

We now prove Proposition 1. 
Proof of Proposition 1. Choose n such that p(n) < 1. Lemma 3 yields 

Q(n)(x) ;S x-f3 L(x). 

(16) 

D 

(17) 

By stochastic comparison of the M/G/1 retrial queue and the ordinary M/G/1 queue where 
service times have the distribution function F8 (n), it can be easily shown that 

We have, by (17) and (18), 

and by (6), 
00 

Gk(x) = Gk,o * 2::::(1 q)qi K;/(x), k = 0, 1, 2, .... 
i=O 

By Lemma 2 (2) and Proposition 2.9 in [12], 

Gk(x);Sx-t3L(x) if Hk+I(x);Sx-13L(x), k=0,1,2, .... 

The proof is complete by Lemma 1, (19) and (20). 
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(19) 

(20) 
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3 Regularly varying tail of the waiting time distribution 

In thls section, we prove that if the service time distribution has a tail of a regular variation 
with index -(3, 1 < (3 < 2, then the waiting time distribution in the M/G/1 retrial queue has a 
tail of regular variation with index 1 (3. 

The result is proved by camparing the waiting time dis tribution in the M/ G I 1 re trial queue 
with the waiting time distribution in the ordinary M/G/1 queue with ROS policy. 

We consider the corresponding ordinary M/G/1 queue with ROS, where the arrival rateis 
>.. and service times have distribution function F8 . In ROS policy, the server randomly takes 
one of the waiting customers into service at the completion of a service. Let WRos denote a 
generic random variabie for the waiting time of an arbitrary customer. 

First we provide aresult of Boxma et al. [5] on the regularly varying tail of the waiting time 
distribution in the M/G/1 queue with ROS. We assume, as x -t oo, 

(x) "' x-!3 L(x), 1 < (3 < 2. 

Lemma 4. [5 1 IJ (21) holds, then 

where 

with 

h(p,(3) 

f(u,p,(3) 

p 1 1 
c = 1 - p h(p, (3) (3 - 11EB' 

= J(
1 

f(u,p,(3)du, 

= _P_( ~).B-1(1- u)l_:p + (1 + ~ ).8(1- u) l!.P-1. 
1 p1-p 1 p 

We now present the main result of this paper: 

(21) 

(22) 

Theorem 1. Let W be the waiting time of an arbitrary customer in the M/G/1 retrial queue. IJ (21) 
holds, then the distribution function Fw of W satisfies 

i.e., 

Fw(x) rv cx1-.BL(x) asx-too, 

where c is given by (22). 

Since W 2: WRos in distribution, we have 

Fw(x) 2: FwR08 (x) for all x E IR. 

This and Lemma 4 yield 

1. . f Fw(x) 
Im m 1_aL( ) 2: C. 
X-->00 X 1-' X 
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Thus the theerem is proved if we show 

. Fw(x) 
hm sup l-{3 L( ) :s; c. 

x-+oo X X 
(23) 

The remainder of this sectien is devoted to the proof of (23). 
We start with introducing notation. Consider the M/G/1 retrial queue. When N(O) ;:::: 1, 

choose an arbitrary customer in the orbit and call her or him a tagged customer. Let </> be the 
epoch of the beginning of service for the tagged customer. Let 

where 

.Pk(t) = { JF(<f> :s; tI N(O) k, C(O) = 1, X(O) = 0), k 1, 2, ... , 
U(t), k = 0, 

U(t) = { 1, t :?.: 0, 
0, t < 0. 

(24) 

Next, for each n with p{n) < 1, where p{n) is defined as in (15), we consider an ordinary 
M/G/1 queue with ROS where arrival ra te is>. and service times have the dis tribution function 
FB<n> defined as in (11). Let N{nl(t) be the number of customers in the queue at t, excluding 
the one in service if any. When there is a customer in service at t, let x<nl(t) be the elapsed 
service time of the customer in service. If the service is idle at t, x(n) (t) is set to be zero. When 
N(n) (0) ;:::: 1, choose an arbitrary customer who is waiting in the queue and call her or him a 
tagged customer. Let <f>{n) betheepoch of the beginning of service for the tagged customer. Let 

~~>in)(t) = { JF(<f>{n) :s; tI N{n)(O) k, x<nl(O) = 0), k > n, 
U(t), k :s; n. 

Lemma 5. (a) For k 2::: 0, 

(b) For k ;:::: 0 and n :?.: 0, 

IÏ>k+n(t) < Hîn * (k~n U+ k!n .Pk) (t), 

IÏ>k+n(t) < H*2n * ( 2LU + i_.p(n))(t) 
1 k+n k+n k ' 

IÏ>k+n(t) < Hi2n * ~~>in\t). 

Proof. (a) Letting 

IÏ>k,n(t) _ { JP(min{<f>,rn} :s; tI N(O) = k,C(O) = 1,X(O) = 0), 
- U(t), 

where r n is given by (2), we have 

IÏ>k,n(t) < ~~>in)(t). 

Clearly, 
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k > n, 
k :s; n, 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 
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[ service 1 service l service 

Figure 1: Embedded points for the Markov process {Mk: k = 1, 2, 3, ... } in the M/G/1 retrial 
queue 

A service time for the M/0/l queue 

Figure 2: A service time for the M/G/1 queue 

Substituting (29) and Hm(t) 5 H 1 (t), m = 1, 2, ... , n, into (30) yields (25). 
(b) We prove (26) by induction on n. If n = 0, then (26) is trivia!. Suppose that (26) holds 

forn m;::: 0. Then 

<Pk+rn+1(t) < Hk+m+l *(~U+ ~<Pk+m)(t) 

< Hk+m+l *(~U+ ~Hirn * (k:{:mU + k~rn<Pk)(t) 

< s;(m+l) * (k:;:;;t~1 u+ k+:-.+1 <Pk)(t). 

Thus (26) holds for n = m + 1, which completes the proof of (26). Substitution of (25) into (26) 
yields (27). The assertion (28) is immediate from (27). D 

Now we consider Markov chains embedded in the M/G/1 retrial queue and in the ordi­
nary M/G/1 queue with the distribution fundion F8 (n) in (11) forservice times. 

First, we describe the embedded Markov chain in the M/G/1 retrial queue. For k 
1, 2, 3, ... , let Mk be the number of customers in the orbit immediately after the beginning 
of the kthservice for the M/G/1 retrial queue. We observe that {Mk : k = 1, 2, 3, ... } is a 
Markov chain. For an illustration, embedded points are marked with dotsin Figure 1. 

Next we describe the embedded Markov chain in the ordinary M/G/1 queue with the 
distribution F B(n) in (11) forservice times. Reeall that genericservice time B(n) is written as 

I 

B(n) = L)Bi +ei), 
i=1 

where Bi, ei, i = 1, 2, 3, ... , and I are independent with distributions given by (12)-(14). We 
eaU each Bi +&i a subservice. Thus a service in the M/G/1 queue consists of a geometrie 
number of subservices. Further a subservice consists of two periods, namely B-period and 
e-period. The lengths of B-period and &-period have distribution functions FB and Env+>.., 
respectively. Figure 2 illustrates the structure of a service. 

For k = 1, 2, 3 ... , let Mt) be the number of customers waiting in the queue, excluding 
the one that starts a subservice, immediately after the beginning of the kth subservice for the 
M/G/1 queue with the distribution function F8 <nl forservice times. We observe that {M~n) : 
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a service a service 

~---- busyperiod ----------~~ idleperiod ~~oE-- busyperiod 

Figure 3: Embedded points for the Markov process { Mkn) k = 1, 2, 3, ... } in the M/G/1 
queue with the distribution function F8 <n> forservice times. 

k = 1, 2, 3, ... } is a Markov chain. For an illustration, embedded points are marked with dots 
in Figure 3. 

The following lemma provides a relation on the stationary distributions of {Mk : k = 

1, 2, 3, ... } and { M~n) : k = 1, 2,3, ... }. 

Lemma 6. LetMand M(n) denote random variables having stationary distributions of {Mk : k = 
1, 2, 3, ... } and { Mkn) : k = 1, 2, 3, ... } , respectively. Then 

(M- n)+ ~ M(n) in distribution, 

where (a)+= max{a,O}. 

Proof Suppose that M1 0 and M}n) = 0. Then induction on k shows that, for k 1, 2, 3, ... , 

(Mk n)+ ~ Mt) in distribution. 

Letting k --t oo completes the proof. 0 
Now we prove (23) through 3 steps. 

Step 1. Let w be a distribution function defined as 

~~ rX> 
w(x) f::o~Jo IP(M=k)at(y)((k+l:l)vHU+ y)dy(31) 

where 

1 100 ().t)l 
az(y) = lEB Y e->.t_l!-dFB(t) (32) 

and !l>k is given by (24). Then 

Fw(x) ~ pW * EvH(x), x> 0. (33) 

Proof We choose an arbitrary customer who arrives at the retrial queue and call her or him a 
tagged customer. Let 

I = { 1, 
0, 

if the tagged customer arrives while the server is busy, 
otherwise. 
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service service 

r---- waitingtimeofthetaggedcustomer ---i 
arrival epoch 
of a tagged customer 

beginning of the service 
for the tagged customer 

Figure 4: Arrival and beginning of the servicefora tagged customer in the M/G/1 retrial 
queue 

By the 'Poisson arrivals see time averages' (PASTA) property, 

JP(I = 1) = p. 

When I = 1, let us define the following related epochs; see Figure 4: 

t. the arrival epoch of the tagged customer; 

t1 = the beginning epoch of the service during which the tagged customer arrives; 

t2 

t3 

the ending epoch of the service during which the tagged customer arrives; 

the beginning epoch of the next service after t2; 

the beginning epoch of the service for the tagged customer. 

(34) 

When I 1, let A denote the number of exogenous arrivals during ( t 1, t 2) excluding the tagged 
customer. Given I = 1, N(t 1 ) and (A, t 2 - t.) are independent. Further N(t 1 ) has the same 
distribution as M. Therefore 

lP'(N(ti) = k, A= l, t2 t. :::; y I I= 1) = JP>(M = k)JP>(A = l, t2- t. :::; y I I= 1). (35) 

Given I = 1, the joint dis tribution of A and t2 - t. is given by 

d 
dy lP'( A= l, t2 - t. :::; y I I= 1) = al(Y), l 0, 1, 2, ... , y 2 0, (36) 

where az(y) is defined as (32). By (34), (35) and (36), we have 

:YJP>(I 1, N(t1) = k, A= l, t2- t.:::; y) = piP(M = k)at(Y), l = 0, 1, 2, ... , y 2 0. (37) 

If I 1, N(t1) = k, A= land t 2 t. :::; y, then N(t2 ) = k + l + 1; the k + l + 1 customers 
in the orbit at t2 consist of the tagged customer and the other k + l customers. Hence, given 
{I= 1, N(ti) = k, A= l, t2 - t*:::; y}, t3- t2 and t4 - t3 have distributionfunctions 

11 (k+l)ll ;\ 
E(k+l+I)v+>. and (k + l + 1)11 +;\U+ (k + l + 1)11 + ;\ <Pk+l + (k + l + l)11 + ;\ <Pk+l+I· 

Further, given {I= 1, N(it) = k, A= l, t2 - t. = y}, t3 t2 and t4 - t3 are independent. 
Therefore, 

k, A= l, t2 - t. = y) 

< (38) 
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By (37) and (38), the complementary distribution function Fw of a waiting time in the retrial 
queue satisfies the following: For x > 0, 

Fw(x) = JP>(I = 1, t4- t* >x) 

p f= f= to JP>(M = k)a1(y)JP>(t4- t* >x I I= 1, N(tl) = k, A= l, t2- t* = y)dy 
k=O l=O Jo 

p f= f= roo JP>(M = k)al(y)JP>(t4- t2 >x- y I I= 1, N(tl) = k, A= l, t2- t* = y)dy 
k=O l=O Jo 

< p t.t, f I'(M = k)a,(y) 

x Ev+>. * ((k+l:I)v+>. U+ (k1~:n~+>. <I>k+l + (k+l+>.I)v+>- <I>k+l+I)(x- y)dy, (39) 

which is written as (33) with 'l1 in (31). D 

Step 2. Let W(n) be the waiting time of an arbitrary customer in the ordinary M/G/1 queue with ROS 
and the service time distribution Ju netion F B<nl. Then 

(40) 

where q,(n) is a distribution function defined as 

with <I>in) and al(Y) in (29) and (32), respectively. 

Proof We consider the ordinary M/G/1 queue with ROS and distribution function FB(n) for 
service times. We choose an arbitrary customer who arrives at the queue with ROS and call 
her or him a tagged customer. Reeall the structure of a service in Figure 2. Let 

{ 

1, 
I(n) = 2, 

0, 

if the tagged customer arrives in a B-period, 
if the tagged customer arrives in a t'-period, 
otherwise. 

By the PASTA property, we know that 

JP>(I(n) = 1) = p; JP>(I(n) = 2) = p(n)- p; JP>(I(n) = 0) = 1- p(n). 

When I(n) = 1, let us define the following related epochs; see Figure 5: 

t~n) = the arrival epoch of the tagged customer; 

(42) 

tin) the beginning epoch of the B-period during which the tagged customer arrives; 

t~n) = the ending epoch of the B-period during which the tagged customer arrives; 

t~n) = the beginning epoch of the next subservice after t~n); 

tin) = the beginning epoch of the service for the tagged customer. 
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servtee -----~ service ~<E--- service ---?>- oE----- service -

anival epoch 
of a tagged customer 

beginning of the service 
for the tagged customer 

Figure 5: Arrival and beginning of the servicefora tagged customer in the ordinary M/G/1 
with random order service and service time dis tribution F B<nl. 

When J(n) = 1, let A(n) denote the number of exogenous arrivals during (t~n), t~n)) excluding 
the tagged customer. Given J(n) = 1, N(n)(t~n)) and (A(n), t~n) iln)) are independent. Further 

N(n)(tln)) has the same distribution as M(n). Therefore 

JP>(N(n)(tin)) = k, A(n) = l, t~n) -tin) :::; y I J(n) = 1) 

= JP>(M(n) = k)JP>(A(n) = l, t~n) tin) :::; Y I J(n) = 1). (43) 

Given J(n) = 1, the joint distribution of A(n) and t~n) tin) is given by 

d~ P(A(n) = l, t~n) t~n) :::; y I J(n) = 1) = at(Y), l = 0, 1, 2, ... , y 2: 0, (44) 

where at(Y) is given by (32). By (42), (43) and (44), we have 

~JP>(J(n) = 1 N(n)(t(n)) = k A(n) = l t(n)- t(n) < Y I J(n) = 1) 
dy , 1 , ' 2 * - pW>(M(n) = k)az(yJ45) 

On the other hand, 

IP(tin) - t~n) > X I J(n) = 1, N(n)(t~n)) = k, A(n) l, t~n) - t~n) = y) 

= IP(t~n)- t~n) >X- y I J(n) = 1, N(n)(t~n)) = k, A(n) = l, t~n)- t~n) = y) 

> JP>(tin)- t~n) >X y I J(n) = 1, N(n)(t~n)) = k, A(n) l, t~n) --tin)= y) 

= JP>(t~n) t~n) >X y I J(n) = 1, N(n)(t~n)) = k + l + 1) 

> JP>(tin) i~n) >X Y I J(n) = 1, N(n)(t~n)_) k + l + 1), {46) 

where the first inequality follows from tin) - t~n) ;::: t~n) - t~n) and the last inequality follows 
from N(n)(t~n)) ::; N(n)(t~n)- ). When J(n) = 1 and N(n)(t~n)-) = k + l + 1, the tagged customer 

and the other k + l customers are waiting forservices immediately before t~n). Therefore when 
J(n) = 1 and N(n)(t1n)_) = k + l + 1, we have the following at time 4n): 

• a B-period begins without service completion with probability nv~>.; 

• a service is completed and the tagged customer starts a service with probability n~~>. 

• a service is completed and a customer among the other k + l customers starts a service 
with probability n~~>. 
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Thus 

JID(t~n)- t~n) >X- y I J(n) = 1,N(n)(t~n)_) = k + l + 1) 

_ >. ..-l'.(n) + nv 1 U+ nv k+l ..-l'.(n) ( ) 
- nv+>. ':l:'k+l+l nv+>. k+l+l nv+>. k+l+l ':l:'k+l X- Y · 

Substituting ( 47) into ( 46) leads to 

By (45) and (48), 

JP'(t~n) - t~n) >X I J(n) = 1, N(n)(tin)) = k, A(n) = l, t~n)- t~n) = y) 

2: nv~>. ~~~l+l + n~~>. k+}+lU + n~~>. -&1~1 ~~~~(x- y). 

Fw<nJ(x) > lP'(I(n) = 1,t~n)- t~n) >x) 

= p f f laoo lP'(M(n) = k)al(Y) 

k=Ol=O 

(47) 

(48) 

X lP'(t~n) - t~n) > X I J(n) = 1, N(n) (tin)) = k, A(n) = l, t~n) - t~n) = y )dy 

> p t.t. 1.= il'(M(n) ~ k)a,(y) 

>. ~(n) + nv 1 U+ nv k+l ~(n) ( )d 
X nv+>. k+l+l nv+>. k+l+l nv+>. k+l+l k+l X- Y y, 

which is written as (40) with w(n) in (41). 

Step 3. The assertion (23) holds. 

Proof For x 2: 0 

w(x) = f f laoo IP(M = k)al(Y) 
k=Ol=O 

X (k+l:l)v+>. U+ k+7.:i ~+>. ~k+l + (k+l+\)v+>. ~k+l+l(x- y)dy 

< t.t. f il'((M- n)+ ~ k)a,(y) 

x (k+n+r+l)v+>. U+ k1~!~.ti ~+>. ~k+l + (k+n+l~l)v+>. ~k+l+I(x- y)dy 

< t.t. 1.= I'((M- n)+ ~ k)a,(y) 

X n~~>. k+n~l+l U+ n~~>. k!~~t~l ~k+n+l + nv~>. ~k+n+l+l(x- y)dy, 

where the last inequality follows from 

- ~ (n) 
U(x) ::; ~k+1 (x) ::; ~k+l+l(x); 

1/ 1 nv 
> 

( k + n + l + 1) v + À nv + À k + n + l + 1 ' 
1/ À 

< 
(k + n + l + 1)v +À 
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We have, by (27), 

(51) 

and by (28), 

<I> ( ) < <I> (n) H*2n( ) k+n+l+l X k+l+ 1 * X . (52) 

Substituting (51) and (52) into (50) yields 

w(x) ~ f f 100 

JP((M- n)+ = k)a1(y) 
k=O l=O O 

x n~~>. k+n~l+1 U+ n~~>. k~t~t~1 (k+~+lU + k~~~z<I>k~z) * Hî2n + nv~>. <I>k~l+l * Hî2n(x-

< t, t, ],00 

li'((M- n)+ ~ k)a,(y) 

( nv n+l U nv k±l <I>(n) + >. <I>(n) ) H*2n( )d 
X nv+>. k+n+l+l + nv+>. k+n+l+1 k+l nv+>. k+l+1 * 1 X - Y Y· 

Lemma 6 and (53) yield 

'I'( x) S t, t, ],00 

li'(M{n) ~ k)a,(y) 

x (n~~>. k±~"t}+1 U+ n~~>. k+~t~+1 <I>k~z + nv~>. <I>k~z+l) * Hî
2
n(x -- y)dy 

< t, t, ],00 

li'(M{n) ~ k)a,(y) 

X (~ k+h-ïU + n~~>. k~t~1 <I>k~z + nv~>. <I>k~l+l) * Hî2n(x- y)dy 

= w(n) * Hi2n(x). (54) 

By (33), (54) and (40), 

Lemma 4 with (16) yields 

where 

Pn 1 1 
Cn = 1 - Pn h(pn, {3) {3- 1JEB(n). 

By (56) and Proposition 1, we have 

Fw(n) * Ev+>. * Hî2n(x) ""' . CnX1
-,B L(x) as x-+ oo, 

which together with (55) leads to 

. Fw(x) 
hm sup 1_f3L( ) < Cn· 

X--+00 X X 

Finally, we obtain (23) by letting n -+ oo in (57). 
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A Retrial Queueing System with a Variabie 
Number of Active Servers 

ReinNobel 
Department of Econometri es, Vrije Universiteit, Amsterdam 

Abstract 

A retrial queueing model is considered with Poisson input and an unlimited num­
ber of servers. At any epoch only a finite number of the servers are active, the 
others are called dormant. An active server is always in one of two possible states, 
idle or busy. When upon arrival of a customer at least one of the active servers 
is idle, the newly arrived customer goes into service immediately, making the idle 
server busy. When at an arrival epoch all active servers are busy, the decision must 
be madetosend the newly arrived customer into orbit, or to activatea dormant 
server for immediate service of the arrived customer. Customers in orbit try to 
reenter the system after an exponentially distributed retrial time. At service com­
pletion epochs the decision must be made to keep the newly become idle server 
active, or to make this server dormant. The service times of the customers are in­
dependent and have a Coxian-2 distribution. Given specific costs for activating 
servers, keeping servers active and a holding cost for customers staying in orbit, 
the problem is when to activate and shut down servers in order to m.inimize the 
long-run average cost per unit time. Using Markov decision theory an efficient 
algorithm is discussed for calculating an optimal policy. 

Keywords: retrial model, semi-Markov decision model, fictitious decision epochs. 

1 Introduetion 

In recent years we have seen a considerable increase in the number of call centers. Both private 
companies and governmental institutions use these centers for answering questions from their 
customers. As a consequence, a lot of research has been undertaken to study the random 
behavior of these call centers. Not surprisingly, queueing theory plays a dominant role in this 
research. Starting with Erlang's Loss model, many papers have been written in which besides 
lost calls, also retrials and abandonments have been incorporated. Fora tutorial overview we 
refer to [3] and [5] and the references therein. A nice introductory paper on abandonments 
is [7] in which the so-called Palm/Erlang-A model is discussed. For the impact of retrials 
on call center performance we refer to [1]. The main topic in call center research is to find a 
balance between service quality, expressed e.g. in waiting-time characteristics, and the cost 
of operation, expressed, e.g. in the number of active servers. Hence, the so-called 'staffing 
problem' is a central topic in most of the call center literature. Formulated in the terminology 
of queueing theory, this problem can bedescribed as follows. Given all the relevant parameters 
for some multi-server queueing model in which customers have the option to abandon the 
system after not having been served within some random time, and/ or to retry entrance to the 
system some random time laterafter an unsuccessful arrival, the question is how many active 
servers (agents) must be available to guarantee a required balance between service quality and 
operational cost. The given parameters of the queueing model include the arrival rate, the 
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service ra te, the abandonment ra te and the retrial ra te. The design parameter is the number of 
agents. Taking a model with all parameter values fixed as a starting point, most papers give a 
descriptive analysis for the steady-state behavior of the system. Due to their complexity these 
models often do not allow for a practically feasible exact solution. This is a fortiori the case for 
the transient behavior of the systems and/or when parameters are time-dependent To cope 
with this intractability, all kinds of approximations are considered, such as fluid and diffusion 
approximations, e.g. see [6]. We will not give an extensive overview of all the research on call 
centers done so far, but the point we want to make is that most of this research is descriptive 
in character: the steady-state or transient behavior of the models is studied for a set of given 
parameters. Much less attention has been dedicated to finding dynamic operational polides 
as a solution for the staffing problem. 

So, instead of giving a descriptive analysis of some queueing model with a fixed number 
of servers, we propose to study the staffing problem as a dynamic optimization problem: let 
the number of active servers depend on the current congestion of the system, expressed in the 
number of busy servers and the number of waiting customers, and increase or decrease the 
number of active servers depending on instantaneous changes of the congestion as a conse­
quence of an arrival, a departure or an abandonment To pursue this idea of dynamic man­
power planning, we propose to study aretrial multi-server queueing model with an adaptable 
number of servers. To limit the calculational burden, we do not consider abandonments in this 
paper, but we want to underline that abandonments can be easily incorporated in the model, if 
one wishes to do so. For this retrial model, to bedescribed in detail below, we will use Markov 
decision theory to calculate an operating policy, for which a subtie balance between the costs 
of congestion and the operational costs is minimized. 

In a standard retrial model (see [2] fora monograph on retrial queues) customers who find 
all servers busy try to enter the system some time later. We say that the customer goes into 
orbit. Nowadays it is very common that the system knows at any time how many customers 
are in orbit (we can simply register unsuccessful calls). So, this information can be used in 
the determination of the number of active servers. In our model the number of servers is 
unlimited but at any moment only a fini te number is active (the others are called dormant), and 
this number is under control of the management of the system. Hence, we consider a multi­
server retrial queueing system with a controllable number of active servers, who can be idle 
or busy. When upon arrival of a customer no idle server is available, a choice must be made 
to activate a dormant server, or send the newly arrived customer into orbit. Upon a service 
completion it must be decided to shut down an active idle server (i.e. make him dormant), 
or keep him active for possible new arrivals. Of course, these decisions must be guided by 
some optimization criterion, i.e. a cost structure must be introduced in the model. Given this 
cost structure, the problem is to find the strategy for activating and shutting down servers, 
for which the long-run average cost per unit time is minimaL This strategy is a so-called 
stationary dynamic strategy, i.e. the decisions prescribed by the strategy take into account all 
the relevant information available at the decision epochs, notmore and notIe ss, in other words, 
the decisions are based on the complete state description of the system. By choosing a specific 
stochastic structure with respect to the probability distributions involved, we can describe 
our problem in terms of a semi-Markov decision model. A straightforward application of a 
standard algorithm from Markov decison theory is not feasible here, due to the large state 
space. By introducing so-called fictitious decision epochs we will show how to overcome this 
obstacle. 

In Section 2 the queueing model is described in detail. Section 3 describes a semi-Markov 
decision model and the value-iteration algorithm to calculate the optima! policy for which the 
long-run average cost per unit time is minimaL In Section 4 some numerical results are given. 
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2 Description of the model 

We consider a queueing model with retrials and a controllable number of active servers. The 
number of servers is unlimited, but at any epoch only a finite number of servers is active, either 
idle or busy. The non-active servers are called dormant. For idle servers linear eperating costs 
a per server per unit time are incurred, w hereas for busy servers these costs are 'Yper server per 
unit time b > a). Customers arrive at the system according to a Poisson process with rate À. 

Each customer requires a service time denoted by the generic variabie S, and the service times 
of different customers are independent. We give the service times Sa Coxian-2 distribution 
with parameters b, ~-t 1 and /J2 with 0 < b < 1 and /-ti < /J2· We reeall here that this says that 
S is, with probability b, distributed as a sum of two independent exponentlal phases, say S 1 

and 8 2 with mean Ij /-ti and 1 I ~-t 2 , respectively, and with probability 1 b, S is distributed as 
one exponential phase 8 1 with mean 11 I-tl· As we will see in the next section, the Coxian-2 
distribution is a very convenient choice for the service times, due to the memoryless property 
of the exponential phases. Also it is easy to fit a Coxian-2 distribution when only the first two 
moments are given (see [10] for further details). When upon arrival of a customer at least one 
idle server is available, the customer immediately starts its service, reducing the number of 
idle servers by one. When no idle server is present, either the newly arrived customer goes 
into orbit, or a dormant server is activated to serve the customer immediately. Activating a 
dormant server requires a set-up cost K. Customers in orbit try to enter the system again 
after an exponentially distributed retrial time R with mean 1 I v. The different retrial times 
are independent. For customers in orbit linear holding costs h per customer per unit time are 
incurred. At service completion epochs the choke must be made between keeping the server 
active (in the idle state) or making him dormant. So, the question is when to activatea dormant 
server upon an arrival and when to shut down an active server upon a departure, in order to 
minimize the long-run average cost per unit time. 

To calculate this optimal policy, in the next sectien we will formulate the model as a semi­
Markov decision model. To avoid the problem of an infinite statespace we will give our analysis 
fora truncated model, i.e. we limit the number of available servers to a finite number C and the 
maximum number of customers allowed to be in orbit will be taken M. A customer in orbit 
is considered to stay in orbit until he is accepted for service. So, to complete the description 
of the truncated model, we must specify precisely what to do upon arrivals and departures in 
the boundary situations: 

• New arrivals who find M customers in orbit and less than C servers busy will always be 
accepted, 

• An arrival from orbit will always be accepted when M customers are in orbit and less 
than C servers are busy, 

• New arrivals who find M rustomers in orbit and C servers busy are rejected, 

• An arrival from orbit will stay in orbit when upon arrival C servers are busy, 

• New arrivals who find C servers busy and less than M customers in orbit are always 
sent to orbit. 

By taking C and M sufficiently large the fraction of customers which will be rejected is negli­
gible, so our numerical results will be valid for the untruncated model as well. 
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3 The semi-Markov decision model 

We assume that the reader is acquainted with the conceptsof Markov decision theory (see [9] 
and [10] for thorough introductions to this subject), so we will not give an extensive description 
of the building blocks of a serni-Markov decision model. We justreeall that we have to specify a 
statespace S, action sets A(s) for each statesE S, a matrix of transition probabilities p[s'ls, a] 
fors', s E S and a E A(s), expected one-step costs 7J[s, a] fors E S and a E A(s), and the 
expected sojoum tirnes T[s, a] for each state s E S and a E A(s). All these building blocks 
will now be specified for the controllable queueing model described in the previous section. 
To describe a serni-Markov decision model with a sparse matrix of transition probabilities, it is 
very convenient to introduce so-called fictitious decision epochs (see [8] and [10]). According 
to the model description the only decision epochs are the arrival epochs at which no idle server 
is presentand theepochsof service cornpletion. To guarantee a sparse matrix of transition 
probabilities, we include all arrival epochs, and phase completion epochs of service tirnes as 
decision epochs as well. At these latter epochs no real decision is made, we just leave the 
systern as it is. We denote this 'no action' decision by 0. At service completion epochs two 
decisions are possible, shut down the server who has just becorne idle (denoted by -1), or 
leave the systern as it is (again denoted by 0). At arrival epochs we leave the systern as it is, 
when an idle server is available. A real decision has to be made only when all active servers 
are busy. Then we can send the newly arrived job intoorbit (denoted by 0), or we can activate 
a dormant server (denoted by 1). At this point it will be clear why our choice for Coxian 
service tirnes is so convenient: due to the exponential phases of the service time it is sufficient 
to know whether a service is in its first phase or in its second phase, and this enables a sirnple 
description of the state of the systern, as we will see next. In fa ct we can introduce the following 
state description at the decision epochs, 

(i,ji,J2,k,e), i=0,1, ... ; ]I,J2=0,1, ... ;k=0,1, ... ; e=0,1,-1,-2, 

with the following interpretation 

• i is the nurnber of idle servers, 

• j 1 is the nurnber of busy servers in the first service phase, 

• }2 is the number of busy servers in the second service phase, 

• k is the nurnber of jobs in orbit, 

• edescribes the type of event that occurred: e = 0 denotes a new arrival (frorn the Poisson 
strearn), e = 1 denotes an arrival frorn the orbit, e = -1 stands for a phase completion of 
an ongoing service time, which leads to the next phase of this service time, and e = -2 
stands for the completion of a service time. 

We emphasize that the nurnbers i, j 1, }2, k always refer to the nurnbers just aft er the 'event' e 
has occurred, but befare the decision is made. Specifically, a custorner in orbit is considered to 
stayin orbit until he is accepted for service. Notice that notall cornbinations (i, j 1 , }2, k, e) refer 
to real states, e.g. the states (0, ]I, }2, k, -2) do not exist because upon a departure (e = -2) at 
least one server must be idle. 

Next, we will specify the elernents of the semi-Markov decision model 

(S, {A(s), sE S}, { T[s, a], sE S, a E A(s)}, { 7J[s, a], sE S, a E A(s)}, {p[tls, a], s, tE S, a E A(s)}) 
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which describes the retrial queueing model with a variabie number of active servers. As al­
ready indicated above, the statespaceS is taken as 

S={(i,jb)2,k,e) li 0,1, ... ;jl,h=0,1, ... ;i+ji+h:;:;C;k=0,1, ... ,M;e=0,1, -2}. 

The action sets A(s) are very simple. At each service completion epoch the decision must 
be made to shut down an idle server or to leave the system as it is. When at an arrival epoch 
no idle servers are available the decision must be made to switch on a dormant server or send 
the newly arrived job into orbit. Because we do not allow more than M customers in orbit, 
we always accept an arriving customer when M customers are in orbit, unless the number of 
active servers is C. In the latter case we reject primary customers from the Poisson stream and 
leave the arriving customers frorn orbit in orbit until the number of busy servers has dropped 
below C. These remarks lead to the following action sets. 

A(i,j1,)2, k, -2) = {0, -1}, i = 1, 2, ... ; JI. )2, k = 0, 1, 2, ... , 

.A(O,jl>h,k,e) {0, 1}, e=0,1; )1,)2 0, 1, ... ; )I + j 2 < C; k = e, 1, 2, ... , M - 1, 

.A(O,j1,h, M, e) {1}, e = 0, 1; )1,)2 = 0, 1, ... ; J1 + h < C, 
.A(O,j1,)2, k, e) = {0}, e=0,1; j1,)2=0,1, ... ; j1+J2 C; k = e,1,2, ... ,M, 

A(i,ji,J2, k, e) {0}, e 0, 1; i= 1, 2, ... ; )1,)2 = 0, 1, ... ; k = e, 1, 2, ... , 

.A(i,ji,J2,k, -1) = {0}, i,jl,J2,k = 0, 1, .... 

For the one-step transition probabilities p[s'ls, a], denoting the conditional probability that, 
given action a is taken in state s, at the next decision epoch the state is s', we first consider 
the real decision epochs, i.e. the service completion epochs, and the arrival epochs when no 
idle server is available. First we give the one-step transition probabilities given that a service 
completion has occurred. So the decision a is either 0 (keep all idle servers active) or -1 (switch 
off an idle server). 

p[(i+a,j1,)2,k,O) I (i,jl,j2,k,-2),a] = 

p[(i + a,j1 -1,)2 + 1, k, -1) I (i,jt,)2, k, -2), a] = 

p[(i +a+ 1,jl = 

p[(i +a+ 1,j1,h- 1, k, -2) I (i,j1, )2, k, -2), a] 

À+ JIJ.ll + J2/.l2 +kv' 
kv 

À + Jlf.tl + hP.2 + kv' 
bjlfJ.l 

À+ JIJ.ll + hJ.t2 +kv' 
(1- b)jlJ.ll 

À+ J1JL1 + hJ.t2 +kv' 

Of course, the third and fourth transition is only possible when JI > 0, and the last transition 
requires that J2 > 0. 

Next, we write down these probabilities given that an arrival has taken place, a primary 
arrival (e = 0) or an arrival from orbit (e 1), and no idle servers are present. Now, the 
decision a 0 stands for 'send (keep) he arrived customer (in)to orbit' and a = 1 denotes 
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'switch on a dormant server'. 

p[(O, h +a, jz, k + 1- a- e, 1) I (O,j1, j2, k, e), a] 

p[(O,h +a -1,j2 + 1, k + 1- a- e, -1) I (O,jl,jz,k,e),a] 

p[(1,il +a -1,i2, k + 1- a- e, -2) I (O,ji,jz,k, e),a] 

p[(1,j1 + a,jz -1, k + 1- a- e, -2) I (O,i!,j2, k, e), a] 

À 

À+ (j1 + a)J.tl + i2J.t2 + (k + 1- a- e)v' 
(k+1-a-e)v 

À+ (jl + a)J.tl + izJ.t2 + (k + 1- a- e)v' 

b(j1 + a)J.tl 
À+ (jl + a)J.ti + izJ.t2 + (k + 1- a- e)v' 

(1- b)(j1 + a)J.ti 
----,-----:-'--
À+ (j1 + a)J.tl + i2J.t2 + (k + 1- a- e)v' 

hJ.t2 
À+ (j1 + a)JLI + hJ.t2 + (k + 1- a- e)v · 

Sirnilarly, we can treat the fictitious decision epochs, the arrival epochs with i > 0 idle servers 
available, and the phase completion epochs. The only decision is now 0 (leave the system as it 
is). 

p[(i -1,JI + 1,]2,k- e,O) I (i,ji,]2,k,e),O] 

p[(i- 1,]1 + 1,]2, k- e, 1) I (i,j1,]2, k, e), 0] = 

p[(i -1,j1,h + 1,k- e,-1) I (i,ji,J2,k,e),O] = 

p[(i,]I,]2, k- e, -2) I (i,j1,]2, k, e), 0] 

p[(i,j1 + 1,]2 -1,k- e, -2) I (i,]I,]2,k,e),O] = 

p[(i,JI,h, k, o) I (i,JI,h, k, -1), o] 

P[(i,JI,J2,k,1) I (i,JI,h,k,-1),o] = 

p[(i,j}-1,]2 +1,k,-1) I (i,jl,j2,k,-1),0] = 

p[(i+1,JI-1,h,k,-2) 1 (i,JI.J2,k,-1),o] = 

p[(i + 1,J1,h- 1, k, -2) 1 (i,JI,h, k, -1), o] = 

À+ (j1 + l)J.LI + hJ.L2 + (k- e)v' 
(k-e)v 

À+ (jl + 1)J.LI + hJ.L2 + (k- e)v' 

b(jl + 1)J.Ll 
À+ (j1 + 1)J.LI + hJ.L2 + (k- e)v' 

(1- b)(jl + 1)J.LI 
À+ (jl + 1)J.LI + hJ.L2 + (k- e)v' 

]2J.L2 
À+ (jl + l)J.LI + hJ.L2 + (k- e)v' 

À 

À+ JIJ.Ll + hJ.L2 +kv' 
kv 

À+ ]IJ.Ll + hJ.L2 +kv' 
bJIJ.Ll 

À + ]IJ.LI + hJ.L2 + kv' 
(1- b)jiJ.Ll 

À+ JIJ.L1 + hJ.L2 +kv' 
hJ.L2 

Next, we consider the boundary cases, i.e. the number of customers in orbit is M and/ or the 
number of busy servers is C. First, we look at arrivals finding M customers in orbit and less 
than C servers busy (j1 + h < C). As stated above in this case we always accept a new 
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custorner. 

p[(O,}l + 1,}2, M-e, 0) I (O,j1.}2, M, e), 1] 

p[(O,jllh + 1, M-e, -1) I (0,}1,}2, M, e), 1] = 

p[(1,}I,j2, M e, -2) I (0,}1,}2, M, e), 1] = 

p[(1,j1,h- 1, M e, -2) I (O,j1,h, M, e), 1] 

À+ (j1 + 1)JL1 + hJL2 + (M e)v' 
(M- e)v 

À+ (jl + 1)JL1 + hJL2 + (M- e)v' 
b(JI + 1)JL1 

À+ (h + 1)JL1 + hJL2 + (M e)v' 
(1 - b)(JI + 1)JL1 

À+ (j1 + 1)JLI + hJL2 + (M- e)v' 

Now we consider arrivals who find G servers busy (so j 1 + }2 = G) and less than M custorners 
in orbit. They are always sentinto orbit. 

p[(0,}1,}2,k + 1 e,O) I (O,}I,}2,k,e),O] 

p[(O,j1 +1,}2,k+1 e,1) j(O,}I,}2,k,e),O] 

p[(O,}I -1,}2 + 1,k + 1 e, -1) I (0,}1,}2,k,e),O] 

p[(1,jl-1,}2,k+ 1 e,-2) l (0,}1,}2,k,e),O] 

p[(1,}1,]2 -1,k + 1- e, -2) l (O,jl!]2,k,e),O] = 

+ il/Ll + hJL2 + + 1 -
(k+1-e)v 

À + i1JL1 + hJL2 + (k + 1 - e )v' 
b}l/Ll 

À+ i1JL1 + hJL2 + (k + 1- e)v' 
(1- b)jlJLl 

À+ JIJL1 + hJL2 + (k + 1- e)v' 
hJL2 

À+ i1JL1 + i2JL2 + (k + 1 e)v · 

Finally, we look at arrival epochs when G servers are busy and M custorners are in orbit. Then 
new arrival are rejected and arrivals frorn orbit stayin orbit. So we get, (j1 + ]2 = G, e 0, 1) 

p[(O,j1,j2, M, 0) I (O,j1,}2, M, e), 0] 

p[(0,}1,]2,M, 1) f (0,}1,]2, M,e),O] 

p[(O,jt-1,}2 + 1,M, 1) I (O,}I,}2,M,e),O] 

p[(l,}l -1,)2,M,-2) I (O,}I,}2,M,e),O] 

1,M,-2) I (0,}1,]2,M,e),O] 
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= 

À+ iiJL1 + hJL2 + Mv' 
Mv 

À+ hJL1 + hJL2 + Mv' 
bjlJLl 

À+ hJL1 + hJL2 + Mv' 
(1 - b)}l/Ll 

À+ J1JL1 + hJL2 + Mv' 
hJL2 

À+ JI/Ll + hJL2 + Mv · 
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Let us next consider the T[s, a], i.e. the expected time until the next decision epoch given 
that in state s action a is chosen. 

T[(i,i!,j2, k, e), 0] = 

T[(O,ji,h, k, e), a] -

T[(i, j1,i2, k, -1), 0) = 

T[( i, ii, h, k, -2), a] = 

1 

À+ (jl + 1)~ti + i21t2 + (k- e)v' 
1 

i= 1,2, ... ' 

À+ (ii + a)JLI + h~t2 + (k +l-a- e)v' 
a 

1 

À + iiM1 + i2M2 +kv' 
1 

i= 0, 1, 2, ... ' 

i l, 2, ... , a = 0, -1. 

0, 1, 

To complete the formulation of the Markov-decision model we must specify the costs rJ[s, a], 
i.e., the total expected costs incurred until the next decision epoch when in state s action a is 
taken. We give a few examples. 

f][(i,jl,J2, k,e),O] , (' ) 
1

. (k ) (io:+(jt+l+izh+(k-e)h), i=l,2, ... , 
"' + Jl + 1 J.Ll + J2J.L2 + - e v 

1][(0, JI, jz, k, e), a] aK+, (' ) . 
1 

(k 1 ) ((jt+a+hh+(k+1-a-e)h), "' + J1 +a J.Ll + J2J.L2 + + - a- e v 

f][(i,jl,J2, k, -1), 0] \ . 
1 

. k (ia:+ (jl + hh + kh), i= 0, 1, 2, ... , 
A + JIJ.Ll + J2J.L2 + V 

1 
-:-------"--((i- a)o: + (j1 + jzh + kh), i= 1, 2, ... ; a 

+ J1J.L1 + JzJ.LZ + 
0,-1. 

Once all the elementsof the Markov-decision model are known, we can use the value-iteration 
algorithm to calculate the optima} switching strategy. We give the formulation of the algorithm 
in general terms (see also [10]). First choose a positive number T with T ::; mins,a T[s, a] and a 
toleranee number €, e.g., € = 10-6 • 

INIT For all s E S, choose nonnegative numbers Wo(s) with Wo(s) ::; mina{rJ[s,a]/T[s,a]}. 
Let n := 1. 

LOOP For all sE S, calculate 

. [TJ[s, a] 
mm --+ 

aEA(s) T[s, a] 

and let Dn(s) E A(s) he the action that minimizes the right-hand side. 

EVAL Compute the bounds, 

mn = min{Wn(s) Wn-l(s)}, Mn = max{Wn(s)- Wn-I(s)}. 
sES sES 

TEST H Mn mn $ €mn then STOP with the resulting policy Dn, else n := n + 1 and go to 
LOOP. 

This algorithm returns after say n iterations a stationary policy D~ that minimizes the long­
run average costs per unit time. The (approximate) minimal average costs is calculated as 
g* = (mn + Mn)/2. 
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4 N urnerica I Results 

In this sectien we will present some numerical results. Because there are many parameters 
which can be varied we must make a selection. To start, we have chosen to keep the arrival 
rate and the mean service time constant and we vary only the retrial rate, and the squared 
coeffident of variatien of the service time (we used Gamma normalisation for fitting the pa­
rameters of the Coxian-2 distribution; see [10] for the detailshow to choose the parameters b, 
/-L1 and /-L2 to guarantee a given mean and squared coeffident of variation). Because the math­
ematica! state-description is more detailed than any reasonable physical state-description, we 
present a natural heuristic policy, with the corresponding cost, besides the optimal solution. 
To explain the heuristics, notice that the mathematica! state-description in our model contains 
the phases of the ongoing services which cannot be observed physically. Because in practice 
we only ob serve the number of idle servers i, the number of busy servers j, and, by registra­
tion, the number in orbit k (in other words on occurrence of theevent e the physical state is 
(i, j, k, e), we must base our dedsions on this information for all different mathematica! states 
(i, j 1 , )2, k, e) with j 1 + )2 = j. So, we are forced to select one dedsion in all these latter states, 
whereas the (mathematically) optimal policy may prescribe different dedsions forthese states. 
We have chosen a kind of demoeratic heuristic rule, defined as fellows. When in the majority of 
the states (i,j1 ,]2, k, e) dedsion a is the optimal dedsion, then we prescribe this dedsion in all 
corresponding physical states (i,j, k, e) with j =)I+ )2. In Table 1-2 we present the minimal 
cost and the corresponding heuristic cost for the following parameter values, 

>. = 3, E[S] = 2, h = 10, a = 20, 'Y = 25, K = 500. 

In Table 1 the holding cost for stayingin the orbit h = 10 and in Table 2 we have chosen h = 1. 
We vary the retrial ra te v and the squared coeffident of variation of the service time 4· Notice 
that the difference between the optimal costand the (democratie) heuristic cost is negligible for 
c; ::; 1. This difference tums out to be significant only for high holding costs and very irregular 
service times. 

To give an idea of the 'form' of the strategies for turning on and off servers we present both 
the primary arrival strategy and one departure strategy for a spedfic choice of the parameters. 
In Table 3 and Table 4 we present these optimal (heuristic) strategies for exponential service 
and in Table 5 and Table 6 for very irregular service times (c~ = 8). In these tables the number 
of customers in orbit is presented horizontally and the number of active servers vertically. 
Notice that in the tables for the arrival strategies the active servers are all busy (otherwise there 
is nothing to dedde), but for the departure strategies the dedsions are notbasedon the number 
of active servers alone; we also need to knowhow many servers are busy. So, for each spedfic 
number of active servers, say i, to be complete we should present i rows, i.e. one row for each 
possible number of idle servers. To avoid such an overwhelming amount of information in 
one table, in Table 5 and Table 6 we have made the choke to show only the dedsions for the 
situation that half of the active servers is idle. Finally, in these tables a '0' stands for 'leave the 
system as it is', so for the arrival strategies: send the newly arrived customer into orbit, and for 
the departure strategies 'keep the server just becoming idle active', and a '1' for 'turning on a 
dormant server' (arrival) and 'turning off an idle server' (departure). We see from these tables 
that the polides are rather insensitive for the squared coeffident of variatien of the service 
time, whereas the assodated costs are quite different (see Table 2, for c~ = 1 the minimal costs 
are 178.42, and for c~ = 8, ceteris paribus, 193.98). This fact, that optimal polides are rather 
robust for the variability of the service time, is a well-known phenomenon in the literature on 
controlled queueing systems. 

80 



ReinNobel Retrial with Variabie Number of Active Servers 

Table 1: Minimal and heuristic cost for À = 3, E[S] = 2, h = 10, a 20, 'Y = 25, K = 500. 
v\q. 0.6 0.8 1 2 4 8 
0.25 228.53 229.03 229.53 231.76 234.61 234.55 

228.53 229.03 229.53 231.81 235.15 239.44 
0.5 216.13 217.18 218.14 221.87 225.43 226.36 

216.16 217.19 218.14 222.00 226.73 231.20 
1 207.94 209.05 210.08 214.34 218.90 220.38 

207.96 209.05 210.08 214.44 220.06 226.17 
2 203.63 204.71 205.72 210.02 214.94 216.32 

203.66 204.71 205.72 210.12 215.84 222.98 
4 200.72 202.35 203.38 207.62 212.65 213.72 

200.74 202.36 203.38 207.69 214.24 220.36 

Table 2: Minimal and heuristic cost for À = 3, E[S] 2, h = 1, a 20, 'Y = 25, K 500. 
v\c~ 0.6 0.8 1 2 4 8 
0.25 192.15 193.24 194.22 197.97 201.89 203.98 

192.19 193.26 194.22 198.20 202.72 205.43 
0.5 184.09 185.37 186.55 191.14 196.16 199.01 

184.13 185.40 186.55 191.40 196.80 200.73 
1 179.61 180.87 182.05 186.94 192.56 195.57 

179.64 180.87 182.05 187.11 193.08 197.30 
2 177.36 178.53 179.67 184.56 190.43 193.36 

177.38 178.54 179.67 184.69 190.90 195.31 
4 176.05 177.33 178.42 183.25 189.15 192.02 

176.12 177.33 178.42 183.37 189.82 193.98 
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Table 3: PRIMARY ARRIVALS STRATEGY c1 = 1, v = 4, h = 1, a= 20,/ = 25, K = 500. 
act\ orb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
3 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
4 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
5 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 4: DEPARTURES STRATEGY c~ = 1, v = 4, h = 1, a = 20, '"'f = 25, K = 500. 
act\ orb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 ·o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
10 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Table 5: PRIMARY ARRIVALS STRATEGY c~ = 8, v = 4, h = 1, a = 20, '"'f = 25, K = 500. 
act\ orb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
3 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 
4 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 6: DEPARTURES STRATEGY c~ 8, v = 4, h 1, a 20, "f = 25, K 500. 
act\ orb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
10 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
11 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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Abstract 

In this paper, we consider a cross-layer design problem of a wireless network with 
AMC (Adaptive Modulation and Coding). In our cross-layer design, the average 
packet transmission error ra te at the PHY layer and the packet overflow probability 
at the MAC layer are simultaneously investigated. In addition, we assume that 
packet retransmission is allowed for the packets received in error and that a certain 
level of packet overflow probability at the MAC layer is given as the QoS (Quality 
of Service) requirement. To capture the joint effect of the performances of both 
layers, we introduce the effective bandwidth function of the packetservice process 
at the MAC layer. For our cross-layer design, we provide a theoretica! analysis on 
the behavior of the effective bandwidth function when we change the AMC scheme 
at the PHY layer. Basedon our theoretica! results, we propose a new framework 
for our cross-layer design, with which we can meet the required packet overflow 
probability at the MAC layer while maintaining the average packet transmission 
error rate at the PHY layer as low as possible. A numerical example is provided to 
see the validity of the proposed framework and to investigate its charaderis tics. 

1 Introduetion 

While available radio spectrum is extremely scarce, the demand for multimedia wireless ser­
vices requiring QoS (Quality of Service) has been tremendously increasing. Accordingly, en­
hancing the speetral efficiency in wireless communications is one of the key issues and AMC 
(Adaptive Modulation and Coding) schemes have been studied extensively as one of promis­
ing techniques to solve this problem. 

However, most of existing shtdies on AMC schemes rely on the assumption that data are 
continuously available at the transmitter. That is, the performance of the Physical (PHY) layer 
is considered independently of the performance of the Medium Access Control (MAC) layer. 
However, the performance at the MAC layer is significantly affected by the AMC scheme em­
ployed at the PHY layer. Thus, in order to get benefits by employing the AMC at the PHY layer 
and to provide better network performance, we should consider the interaction between the 
queue at the MAC layer and the AMC at the PHY layer. This motivates the cross-layer design 
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between the PHY and MAC layers, and there are many papers on the cross-layer design in the 
open literature, e.g., [1, 2, 3, 4]. 

In this paper, we consider downlink transmission from a Base Station (BS) to a Mobile 
Station (MS) over the Nakagami-m fading channel. There is a queue at the MAC layer and 
the AMC at the PHY layer in the BS. We assume that packet retransmission is allowed for the 
packets received in error. Then, all packets are eventually transmitted once stored in the queue 
and packet lossescan occur due to buffer overflow at the MAC layer. So, the packet overflow 
probability at the queue can be used to measure the performance of the MAC layer. On the 
other hand, the performance of the PHY layer can be estimated by the average packet error 
rate (PER) during transmission due to the AMC. Assuming that the MS requires a certain level 
of packet overflow probability as the QoS requirement, our cross-layer design objective is to 
meet the required packet overflow probability while maintaining the average PER at the PHY 
layer as low as possible. 

In this paper, to capture the joint effect of the queueing at the MAC layer and the AMC at 
the PHY layer we use the effective bandwidth function (EBF) of the packetservice process at 
the queue. For the details of the EBF, refer to [5, 6]. We investigate the behavior of the EBF 
theoretically when we change the AMC scheme at the PHY layer, and based on our theoretica! 
results we propose a cross-layer design framework, with which we can achleve our objective 
described above. Note that our previous work [7] considers the same problem, but any the­
oretica! analysis is not provided and only numerical studies are given to see the validity and 
charaderistics of the framewerk proposed in [7]. Our workin this paper provides the detailed 
theoretica! analysis and the proposed framewerk is based on the theoretica! analysis, which is 
the main con tribution of this paper. 

The remainder of this paper is organized as follows: In section 2, we describe our system 
considered in this paper. In section 3, we analyze the queue at the MAC layer based on the 
EBF of the packet service process. In section 4, we analyze the behavior of the EBF theoreti­
cally when we change the AMC scheme at the PHY layer and provide our cross-layer design 
framewerk based on our analysis. In section 5, we give a numerical example to validate our 
framewerk and to investigate the characteristics of our framework. In section 6, we give our 
conclusions. 

2 System ModeHing 

We consider downlink transmission from a Base Station (BS) to a Mobile Station (MS) over a 
slowly varying fading channel. At the PHY layer, transmissions are performed PHY frame-by­
frame, where each PHY frame duration is fixed with length T1 (sec). The PHY frame duration 
TJ is considered to be unit time in our model, and accordingly we assume that time axis is 
divided into unit times and time is indexed by t (t = 0, 1, ... ). We also assume that the channel 
condition is slowly varying and remains invariant per PHY frame. 

2.1 Wireless channel Model 

We assume that the slowly varying fading channel is modelled by the Nakagami-m model 
where the received SNR (signal-to-noise ratio) 1 per frame is a random variabie with Gamma 
probability density function: 

(1) 

86 



Gang Uk Hwang Cross-Layer Design with Adaptive Modulation and Coding 

where ;:y = E[T] is the average received SNR, r(m) = J0
00 tm-I exp( -t)dt is the Gamma func­

tion, and mis the Nakagami fading parameter (m 2: 1/2). 
We partition the entire SNR range into M + 1 ranges with boundaries { 'Yd~1;1 where 'Yo = 0 

and 'YM+l = oo. We assume that all boundary values { 'Yk}~1; 1 are fixed. The range bk, Ik+ I) is 
called Range k and denoted by Rk, 0::; k::; M. 

To describe the dynamics of the fading channel, we use a Fini te State Markov Chain (FSMC) 
{ m(t)it = 0, 1, · · ·} with statespace {0, 1, · · · , M} and when the estimated SNR is in Rk at time 
t, the Markov chain is defined to be in state k, i.e., m(t) = k. 

Let P = (Pi,j) be the transition probability matrix of the FSMC {m(t)} where Pi,j denotes 
the conditionat probability that the FSMC {m(t)} is in state j at time t + 1, given that it is 
in state i at time t. To save space, we omit the detailed derivation of the matrix P (for the 
detailed derivation, see [2]), but note that we allow state transitions from a given state to its 
two adjacent states only, if any, in the FSMC considered in this paper. 

For later use, let 1f"k (k E {0, 1, · · · , M}) denote the stationary probability that the FSMC is 
in state k, i.e., 1f"k > 0, Ef'!o 1riPi,j = 1f"j, 0::; j ::; Mand E~o 1f"k = 1. Then by definition 

k=O, ... ,M, 

where p .. ,/ 1) is given by (1), and it can be easily shown that, for 0 ::; k::; M 

r(m, m'Yk/;:y) - r(m, m'Yk+If;:y) 
1f"k = r(m) ' 

where r(m, x)= fx00 tm-l exp( -t)dt is the complementary incomplete Gamma function. 

2.2 Adaptive Modulation and Coding 

(2) 

The BS employs an Adaptive Modulation and Coding (AMC) scheme with N transmission 
modes as given in Table 1 where we have N = 5. 

We assume that the MS estimates its own SNR every unit time and feeds back the channel 
state to the BS withno delay through an error-free path. The BS adapts the transmission mode 
in the AMC every unit time based on the feedback channel state as follows: One of AMC 
transmission modes in Table 1 is assigned for each range and the AMC transmission mode 
assigned for Range Rk is denoted by n(k). When the estimated SNR, ,, is in Rb the BS selects 
the AMC transmission mode n(k). Later, we will discusshow toselect the AMC transmission 
mode n(k) for Range Rk to achleve our cross layer design objective. 

2.3 MAC Layer Model 

There is a queue at the MAC layer of the BS, and the service discipline of the queue is first-in­
first-out (FIFO). For the service process for packets in the queue at the MAC layer, we assume 
the following: lf a packet is received incorrectly at the MS after error detection, this information 
is immediately fed back to the BS and the BS retransmits the packet in the next PHY frame. On 
the other hand, if a packet is received correctly at the MS after error detection, this information 
is immediately fed back to the BS and the BS removes the packet from the queue. 

When transmission mode l is used, we assume that dl packets in the queue of the MAC 
layer are mapped into a PHY frame and transmitted simultaneously in the corresponding PHY 
frame. We assume that d1 < d2 < · · · < dN and a good example set of { dl}~0 can be found in 
[1]. To avoid deep channel fades, we further assume that no data are sent when the channel 
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Table 1: The AMC scheme with 5 modes 

Moden 1 2 I 3 4 5 
Modulation BPSK QPSK QPSK 16QAM 64QAM 

CodingRate 1/2 1/2 3/4 3/4 3/4 
Rn 0.5 1.0 1.5 3.0 4.5 

Table 2: The values of an, 9n1 and .:Yn fora packet size of 1080 bits [11 

Moden 11 1 2 3 4 5 

an 274.722 .2514 67.6181 53.3987 35.3508 
9n 7.9932 3.4998 1.6883 0.3756 0.0900 

.:Yn {dB) -1.5331 1.0942 3.9722 10.2488 15.9784 

state is in Range Ro (the worst channel condition), and in this case we assume that a new 
transmission mode, called transmission mode 0, is used, i.e., n(O) = 0 and do 0 for Range Ro 
and transmission mode 0, respectively. 

To model the packet service process at the MAC layer, we first consider the packet error 
process at the PHY layer in our model. The packet error rate (PER) at the PHY layer is ex­
pressed as a function of the transmission mode selected by the BS. Let PERz ( 1) denote the PER 
at the PHY layer when transmission model is used and the received SNR is equal to I· For 
transmission modes in Table 1, when the packet length is 1080 bits, Liu et al. [1] showed that 
PERzb) can be approximated as 

PER( )R:J{ 1 (O<I<i'l), 
1 1 az exp( -gn) b;?:: .:Yt), 

(3) 

where az, gz, and .:Yz are the mode-dependent parameters and are given in Table 2. 
Then, when the received SNR is in Range Rk with transmission mode n( k ), the correspond­

ing PER, rk,n(k)' is computed as, for n(k) ;?:: 1, 

(4) 

where 1rk is the steady state probability that the Markov chain is in state k (or the channel 
condition is in Rk) and p7 (/) is the p.d.f. (probability density function) of the received SNR. 
Note that 1rk and p7 (1) are given in (2) and (1), respectively. In practice, we have 0 < rk,n(k) < 1 
for n(k);?:: 1. For simplicity, if n(k) = 0, we use rk,n(k) = rk,O = 1. 

The PER averaged over all transmission modes, called the average PER and denoted by 
PPER, is then given by 

l:f!o nzdn(l) rz,n(l) 

l:t!o nzdn(l) 
(5) 

Note that, if we use higher transmission mode for Rkt the corresponding PER is higher, i.e., 
0 < rk,l < rk,2 < · · · < rk,N, because the fundion al exp( -gn) is increasing in transmission 
model, i.e., a1 exp( -gn) < a2 exp( -921) < · · · < aN exp( -9NI) and all the others in the right 
hand side of (4) are fixed. 
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We now consider the packetservice process of the queue at the MAC layer. We assume that 
packet errors occur independently on a packet-by-packet basis with probability rk,n(k) when 
m(t) =kat timet. 

Let q(t) (l = 0, ... , N; t 0, 1, ... ) denote a random variabie representing the number of 
packets successfully transmitted during [t, t + 1) when transmission mode l is seiected at time 
t. Note that, when transmission mode l(1 :::; l ::; N) is seiected at a PHY frame, the number 
of packets to be transmitted from the queue in the MAC layer is dl. Then when the estimated 
SNR 1 at timet is in Rk and transmission mode n(k) is seiected at timet, Cn(k)(t) is according 
toa Binomial distribution with parameters dn(k) and 1 - rk,n(k)· The corresponding moment 
generating function (MGF), denoted by 4>k,n(k)' is 

4>k,n(k)(fJ) = [(I - rk,n(k))e0 + rk,n(k)]dn(k) · (6) 

Then the packetservice processis given by { Cn(m(t)) (t)}. That is, when the wireiess channel 
state at time t is k, i.e., m(t) = k, the number of successfully transmitted packets is Cn(k)(t). 
Since {m(t)} is a Markov chain, the packetservice process {Cn(m(t))(t)} is a Markov modulated 
process. 

3 Queueing Analysis 

In this section, we focus on the queueing process at the MAC layer. Let q(t) (t = 0, 1, ... ) 
denote a random variabie representing the queue length (i.e., the number of packets in the 
queue) at timet. Let a(t) (t = 0, 1, ... ) denote a random variabie representing the number of 
packets newly arriving justafter timet. Since the packetservice process {cn(m(t))(t)} denotes 
the number of successfully transmitted packets during [t, t + I), the queueing process { q( t)} 
evolves according to the following recursion: 

q(t +I)= max{O, q(t) + a(t) Cn(m(t))(t)}. (7) 

To analyze the queueing process, we use the theory of the effective bandwidth. Let C ( t) 
(t = 0, I, ... ) denote a random variabie representing the cumulative service process during 
the interval [0, t), i.e., C(t) = :L!::~ Cn(m(s))(s). Let Ac(fJ) denote the Gärtner-Ellis limit of 
the cumulative service process G(t), i.e., Ac(fJ) = limt-+oo r 1 log Eexp(fJG(t)), provided that 
the limit exists. Then the Effective Bandwid th Function (EBF) of the packet service process is 
defined by [6, 8] 

~c(fJ) = _ Ac~-fJ). 

To compute the EBF of the packetservice process, let cp(fJ) be the diagonal matrix with 
diagonal elements { 4>o,n(o) ( 0), 4>t,n(l) (0), ... , 4>M,n(M) (fJ)} where 4>k,n(k)(fJ) are given in (6). Since 
the packetservice process {Cn(m(t)) (t)} is a Markov modulated process, it can be shown that 
the EBF of the packet service process is given by 

~c(fJ) = _logó~(-0), (8) 

where 6c(fJ) is the Perron-Frobenius (PF) eigenvaiue of the matrix C(fJ) = cp(fJ)P. For the 
proof, refer to [5, 6]. 

Similarly, let A(t) (t = 0, I, ... ) denote a random variabie representing the cumulative ar­
rival process during the interval [0, t), i.e., A(t) = :L~-;!0 a(n). Wedefine the EBF of the arrivai 
process, ~A(fJ), by [6] 

~A(fJ) = AA(}((}) 
1 
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where 
AA(O) = lim t-1 log Eexp(OA(t)). 

t-+oo 

Now we are ready to investigate the queueing performance with the help of the EBFs of 
the packet service and arrival processes. Let q( oo) denote a random variabie representing the 
queue length evolved by (7) in steady state. It is known that under some conditions1 the packet 
overflow probability IP(q(oo) > x) in steady state is approximately given by [6, 8, 9] 

IP(q(oo) >x)~ IP(q(oo) > O)exp(-O*x), (9) 

where ()* is the unique real salution of the equation 

AA(O) + Ac(-0) = 0, 

( or equivalently) ~A(O) - ec(O) = 0. (10) 

In addition, we have 

IP(q(oo) > 0) (11) 

It has been known that the approximation (9) provides a good prediction on the packet over­
flow probability for a wide range of queueing systems. So, we develop our cross layer design 
based on the approximation (9) in the next section. 

4 Cross-Layer Design Framework and Analysis 

In this section1 we provide our cross-layer design framework and theoretica! analysis of our 
framework. In our cross-layer design, we consider the performances of the PHY layer and the 
MAC layer simultaneously. The performance of the PHY layer is estimated by the average 
PER given in (5), and the performance of the MAC layer is estimated by the packet overflow 
probability given in (9). Note that there is a tradeoffbetween the average PER and the packet 
overflow probability. For lower values of the average PER1 lower transmission modes in the 
AMC are used for ranges1 which results in higher packet overflow probability. On the other 
hand, for higher values of the average PERJ higher transmission modes in the AMC can be 
used, which results in lower packet overflow probability. In [7], this tradeoff is shown through 
numerical studies. 

Now assume that a user requires a certain level of packet overflow probability, i.e., for the 
reference buffer size B, the required packet overflow probability is given by P0 = P{q(oo) > 
B}. ThenJ our cross-layer design objective is to guarantee the required packet overflow prob­
ability while maintaining the average PER as low as possible. 

4.1 The EBF of the packetservice process 

Even though we can notcontrol the arrival processJ the packetservice process can be controlled 
by changing transmission modes n(k) for ranges Rk (k = 0, 1, · · · , M). So, our cross-layer de­
sign problem is equivalent to assigning suitable transmission modes n(k) for all ranges in such 
a way that our objective is satisfied. For doing this, we first abserve the behavior of the EBF of 
the packetservice process. Note that1 if we increase the EBF of the packetservice process, then 
the salution ()*in (10) increases and the probability IP(q(oo) > 0) in (11) decreases, and conse­
quently from (9) we see that the packet overflow probability decreases. We will abserve this 
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behavior in Fig. 1 and Fig. 2 in section 5. Basedon this observation, we consider the following 
(briefly described) framewerk in our cross-layer design: An initial set of transmission modes 
for ranges is given and this initial set of transmission modes does not obviously satisfy our 
cross-layer design objective. We try to change transmission modes for some ranges in such a 
way that the EBF of the packetservice process increases with the costof increasing the average 
PER until the required packet overflow probability is satisfied. 

In what follows, we discuss the necessary and sufficient conditions on the transmission 
mode change under which the resulting EBF of the packet service process increases. 

Theorem 4.1. Consider an arbitrary range, say, Rk with transmission mode n( k ), and assume that we 
change the transmission mode of Rk from n( k) to n( k) + 1. The condition that the average number of 
successfully transmitted packets increases by the transmission mode change, i.e., (1 - rk,n(k))dn(k) < 
(1 - rk,n(k)+1 )dn(k)+l is a necessary condition for the increase in the EBF of the packetservice process 
by the transmission mode change. 

To prove the theorem, we need the following lemmas and the proof of Theorem 4.1 is given 
in Appendix. In Lemma 4.2, we consider Çc(O) in (8) and the relevant matrix C(O) 4J(O)P. 

Lemma4.2. Consider the transmission modechange of Range Rkfrom n(k) to n(k)+ 1. Ififlk,n(k)( -0) > 
iflk,n(k)+I ( -0) for 0 > 0, the EBF of the packetservice process increases for each 0 > 0 by the transmis­
sionmode change. On the other hand, if iflk,n(k)( -0) < iflk,n(k)+I ( -9) for 0 > 0, the EBF of the packet 
service process decreases for each 0 > 0 by the transmission mode change. 

Proof: See Appendix. 

Lemma 4.3. IJ (1 - rk,n(k))dn(k) 2:: (1 rk,n(k)+I)dn(k)+l for 0 > 0, we have 

iflk,n(k)( -0) = [{1 rk,n(k))e-8 + rk,n(k)]dn(k) 

< rilk,n(k)+l ( -0) = [{1 - rk,n(k)+l)e-8 + rk,n(k)+I]dn(k)+I. 

Proof: See Appendix. 

Theorem 4.4. Consider an arbitrary range, say, Rk with transmission mode n(k) 1), and as­
sume that we change the transmission mode of Rk from n(k) to n(k) + 1. Assume further that 
(1- rk,n(k))dn(k) < (1- rk,n(k)+I)dn(k)+l· For 0 > 0, let 

fk,n(k)(O) = dn(k) log[(1- rk,n(k))e-8 + rk,n(k)]- dn(k)+llog[{1- rk,n(k)+l)e-8 + rk,n(k)+l], 

and 

A 
_ dn(k)+l rk,n(k) 

k n(k) -
' dn(k) (1 - rk,n(k)) 

rk,n(k)+l 
1 - rk,n(k)+l. 

1. IJ Ak,n(k) ;::: 0, then fk,n(k)(O) > 0 for all 0 > 0. Accordingly, the EBF of the packetservice 
process increases by the transmission mode change. 

2. IJ Ak,n(k) < 0 then there exists Ö such that ik,n(k)(fJ) > 0 for 0 < fJ < Ö and fk,n(k)(fJ) < 0 for 
0 > Ö. Accordingly, the EBF of the packet service process increases for 0 < 0 < Ö and the EBF of 
the packet service process decreases for 0 > Ö by the transmission mode change. 

Proof: See Appendix. 
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Remark 1. For Range Rk with transmission mode 0, i.e., n(k) = 0, when we change the transmission 
mode from 0 to 1, the necessary condition in Theorem 4.1 is always satisfied because rk,n(k) = rk,O = 1 
and do = 0. Further, we always have 4>k,o(-B) = 1 > 4>k,l ( -8), which implies that the EBF of 
the packet service process always increases by the transmission mode change from 0 to 1. However, 
the transmission mode change from 0 to 1 is not always possible. For instance, when Range Rk with 
bk, lk+l) is in a very low SNR region such as Ik < 1'1, the computation of rk,n(k)+l = rk,l from (4) 
is no langer valid. Therefore, we should check ij Range Rk is above 1'1 in this case. Note that the same 
situation can occur when we change higher transmission modes, but in practice this does not seem to 
happen. We discuss it later in Remark 5. 

Remark 2. From the proof ofTheorem 4.4 in Appendix, we see that there exists (}0 defined by 

Bo =log [dn(k)+ddn(k)- 1] ' 
-Ak,n(k) 

(12) 

such that fk,n(k)(B) > 0 for 0 < (} < Bo < 0. Ij the value of Bo is large enough and beyond the region 
of interest, i.e., the decay rate (}* of the queueing system that satisfies the cross-layer design objective, is 
obviously less than 00, we can conclude that the EBF of the packet service process always increases in 
the region of interest by the transmission mode change from n( k) to n( k) + 1. 

4.2 The Cross-Layer Design Procedure 

We now describe our cross-layer design procedurebasedon Theorems 4.1 and 4.4. In our 
cross-layer design, we start with an initial (sufficiently small) average PER value, denoted by 
Tv· With the value Tv, wedetermine the initial set of transmission modes { n(k)} in such a way 
that the resulting average PER is below Tv. For details, see below. Then we repeatedly change 
the transmission modes for ranges in such a way that the EBF of the packetservice process in­
creases until either there is no available transmission mode change for ranges ( called condition 
1) or the initial average PER value is achieved ( called condition 2). In the case where condition 
2 occurs fust, we compute the packet overflow probabillty, Pt, by (9). If the resulting packet 
overflow probabillty is below the required packet overflow probabillty, i.e., Pt < P0 , then we 
stop the procedure and the resulting set of transmission modes is our solution for the cross­
layer design. Otherwise, we increase the initial average PER value Tv by a predefined value 
~(> 0), i.e., T~ = Tv+~ and repeatedly change the transmission modes for ranges with the 
new updated value T~ until either one of two conditions 1 and 2 occurs first. We continue the 
above procedure until the resulting packet overflow probability is below the required packet 
overflow probability, i.e., Pt < P0 , for the fust time. In the case where condition 1 occurs first 
before the resulting packet overflow probabillty is below the required packet overflow proba­
bility, we conclude that our cross-layer design is an infeasible problem and our system can not 
guarantee the required packet overflow probability. Note that the infeasibility can arise when 
the channel condition is severely bad and the required packet overflow probability is very low. 

In what follows, we provide the detailed procedure of our cross-layer design. 

1. We set an initial average PER value Tv which is a sufficiently small value. 

2. We consider thesetof reference boundary values { l(n)} defined by 

1 (o) = o, 1 (N+I) = oo, 

(n) 1 Un 1 =-log- (n= 1, ... ,N). 
gn Tv 
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3. For Range Rk with lower boundary Ik! if l(m) ::::; Ik < l(m+I), then transmission modem 
is selected for Range Rk i.e., n(k) = m. 

4. For thesetof transmission modes { n( k)} compute the indices of boundary ranges, I ( l) ( l = 
0, 1, .. · , N- 1) as follows: I(l) =kif n(k) =land n(k + 1) = l + 1. 

5. Among boundary ranges {RI(t)il = 0, 1, 2, · · · , N -1}, select boundary ranges for which 
the transmission mode change is possible in such a way that the EBF of the packetservice 
process increases by the change. To this we check the following conditions: 

i) (1 - T I(l),n(I(l)) )dn(I(l)) < (1 - T I(l),n(I(l))+l )dn(I(l))+l· (refer to Theorem 1.) 

ii) () =log [dnU(l)J+ddnU(l))-l] is large enough. (refer to (12).) 0 -Ar(l),n(I(l)) 

iii) I(l) > I(l - 1) + 1 for l > 0 and J(O) ~ 1. (For the reason of this condition, see 
Remark 5.) 

iv) 'YI(l) > i'n(I(l))+l (For the reason of this condition, see Remarks 1 and 5.) 

• If there is no boundary range satisfying the above conditions, we set i = 0 and go to 
step 8. 

• Otherwise, let L1, · · · , Lx denote the indices of boundary ranges satisfying the 
above conditions. Here, K denotes the number of boundary ranges for which trans­
mission mode changes are possible. Let i = 1. Go to step 6. 

6. We change the transmission mode for RLi as follows: 

I(n(Li)) = I(n(Li))- 1, n(Li) = n(Li) + 1. 

7. For the resulting set of transmission modes {n(k)}, compute the average PER, Tt, from 
(5). 

• If Tt ::::; Tv and 1 ::::; i < K, we set i =i+ 1 and go to step 6. 

• If Tt ::::; Tv and i= K, go to step 5. 

• Otherwise, i.e., if Tt > Tv, we set Tv = Tt and go to step 8. 

8. Compute the packet overflow probability, Pt, from (9) and (11). For the required packet 
overflow probability P0 , 

• if Pt ~ P0 , we increase the value of Tv by a predefined value .6.(> 0), i.e., Tv =Tv+ .6.. 
For 1 ::::; i < K, we set i = i+ 1 and go to step 6. For i = K, go to step 5. For i = 0, 
we stop the procedure and deelare the infeasibility of our problem. 

• Otherwise, i.e., if Pt < P0 , we stop the procedure. 

Remark 3. In step 1, the initia[ average PER value should be sufficiently small enough to guarantee 
that the resulting packet overflow probability with the initia[ set of transmission modes is greater than 
the required packet overflow probability. Otherwise, step 8 will nat work. 

Remark 4. The reference boundary values { 'Y(n)} in step 2 are the same as in {1]. That is, if transmis­
sion mode n is used for Range Rk, 'Y(n) is the minimum SNR value such that the corresponding PER, 
Tk,n(k)' is less than the initia[ PER value Tv· Since we use transmission mode n(k) = mfor Range Rk 

with lower boundary value Ik satisfying 'Y(m) ::::; Ik < l(m+I) in step 3, the resulting average PER with 
the initia[ set of transmission modes { n( k)} is always less than the initia[ PER value Tv· In addition, it 
is obvious that n(O) = 0 for Range Ro. 
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Remark 5. In step 5, condition ii) is nat an exact but a coarse condition for the increase in the EBF 
of the packet service process by the transmission mode change. Reeall that the region of() for which the 
EBF of the packet service process increases by the transmission mode change, is 0 < 0( < 00 ) < Ö. The 
reason why we use condition ii) instead of the exact condition that Ö is large enough, is that we do nat 
have any closed-Jarm formula of Ö and accordingly more numerical computations are needed to get the 
value of Ö. However, we see that condition ii) is satisfied in most numerical studies and considering 
condition ii) does nat limit the applicability of our procedure severely. 

Condition iv) is considered because of the validity of the new transmission mode after the change. 
That is, as seen in (3) transmission modes have their own minimum boundaries {iz}, and if the SNR 
is below the boundary of transmission model, )'1, the PER is 1 when transmission model is used. IJ 
a range contains a boundary )'1 of transmission mode l, we should nat use transmission mode l for the 
range due to the severe PER. 

Condition iii) is considered to guarantee that there exists at least one range for each transmission 
mode. Sa, this condition may be removed, but in that case there should be a modification on the update 
procedure of determining the boundary ranges. 

Remark 6. As we increase the value of rv, our procedure naturally results in the increase of the EBF 
of the packet service process and accordingly the decrease of the packet overflow probability. Hence, if it 
is nat declared to be infeasible, the final resulting set of transmission modes obtained in step 8 satisfies 
the objective of our cross-layer design problem. That is, it guarantees the required packet overflow 
probability while maintaining the average PER as low as possible. 

Remark 7. In our cross-layer design procedure, we compute the packet overflow probability when the 
resulting PER rt is greater than the updated value of rv for the first time. However, if we use a suffi­
ciently small value of .6. in the update procedure, we compute the packet overflow probability and the 
PER whenever we change the transmission mode, i.e., whenever we visit step 6. Note that there is a 
trade-off between the computational complexity and the value of .6.. That is, the smaller the value of .6. 
is, the more computational complexity we have in the procedure. 

Remark 8. In our cross-layer design procedure, we change the transmission modes of ranges subse­
quently, i.e., we change RL 1 , RL2 , • • • , RLK in turn. However, there are a number of different orders of 
changing transmission modes which can increase the EBF of the packet service process. Note that, the 
decay rate ()* in (10) of the queueing system depends on the arrival process as wellas the packetservice 
process. Sa, the effect of the increase in the EBF on the packet overflow probability a lso depends on the 
arrival process. Accordingly, it is difficult to determine the best order of changing transmission modes 
which results in the optima! performance over all possible arrival processes in practice. Instead, we 
consider the above simple but efficient procedure for our cross-layer design in this paper. Even though 
our framework does nat consider the global optimality over all possible cases, our study can provide a 
benchmark for future advanced cross-layer design frameworks. 

5 Numerical Example 

In this section, we provide a numerical example where our cross-layer design procedure is 
applied. For simplicity, we assume that the wireless channel is modelled by a Rayleigh fading 
model, that is, the Nakagami parametermis equal to 1. Then, the probability density function 
P-r (!) is given by 

P-rb) = ~ exp ( -~). 
We start with how to divide the whole SNR range to construct a FSMC which can well 

describe the wireless channel. Regarding this issue, there are a number of works in the open 

94 



Gang Uk Hwang 

< 

1 
~15 
~ 

.~ 
jj 
'0 . 
~ 1 

Cross-Layer Design with Adaptive Modulation and Coding 

lnefinalassignrrenl 

'ltlearrivalprocess 

/ 
thelnllialass1gnmenl 

os'---'----'------'---'----'----'---'---'------'----' 
0 0005 OOI 0015 002 0025 003 Ob35 OOI 0045 005 

0 

Figure 1: The behavior of the effective bandwidth function 

literature, e.g. [10, 11, 12, 13, 14], but in this section we use the method proposed by [12] where 
the boundaries { 1d~1 of ranges satisfy the following equations: 

exp (- :rt) - exp (-7k,t ) 
c= ------~--~-~==~-~----

fif exp ( -:rt) + J27r;;+l exp ( _ 7k,r) 
for k = 0, 1, 2, · · · , M - 1. In this study, we use M = 35 and cis approximated equal to 
3.003 which is in the region that [12] recommends. Our cross-layer design framework does not 
depend on the selection of the FSMC which describes the wireless channel, but note that the 
better the FSMC describes the wireless channel, the more meaningful our result is in practice. 
The construction of a suitable FSMC for the wireless channel is beyond the scope of this study. 

Por the other parameters of the Rayleigh fading channel, we use the following parameters 
in the numerical example. 

• the frame length r, = 2 ms 

• the sequence {dn} of service rates for AMC modes: dn = 2n, 0 ~ n ~ N 

• the average SNR ;y = 10 dB 

• the Doppier frequency f d = 10 Hz 

Por the arrival process, we consider an ON and OFF process with the following parameters: 
The transition probability from the ON state (resp. OFF state) to the OFF state (resp. ON state) 
is 0.35 (resp. 0.55), and the number of packets arriving in unit time with ON state (resp. OFF 
state) is 5 (resp. 0). We assume that the reference buffer size is 1000 and the required packet 
overflow probability is w-3 • 

Fig. 1 shows how the EBF of the packetservice process is updated in our cross-layer design 
procedure. In the figure, we see that the EBF of the packetservice process increases and that 
the EBF of the packetservice process for the final assignment is greater than that for the initial 
assignment. 

Table 3 shows the initial and final assignments of transmission modes for ranges. During 
the procedure we see the following observations: 
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Table 3: The transmission mode assignment 

Mode Initial Final 
Assignment Assignment 

0 Regions 0 to 2 Regions 0 to 1 
1 Region3 Region2 
2 Region4 Region3 
3 Regions 5 to 10 Regions 4 to 6 
4 Regions 11 to 20 Regions 7 to 18 
5 Regions 21 to 35 Regions 19 to 35 

• As seen in Fig. 1 our system with the AMC scheme basedon the initial set of transmission 
modes is an unstable system because there is no solution of (10) in this case. However, 
for the other cases in Fig. 1 our system is stable. 

• As we change the transmission modes of ranges, the effect on the increase in the EBF of 
the packetservice process becomes less significant. For instance, there is a big difference 
between the first two EBFs (of the initial assignment and case 1) in Fig. 1, but for the other 
EBFs there is a relatively small difference between two consecutive EBFs. However, if we 
consider the region of () near 0, we still have meaningful differences among EBFs. 

• When we change the transmission mode at least greater than or equal to 3 to higher, 
the increase in the EBF of the packet service process is significant. On the other hand, 
the change of transmission mode less than 3 results in a small change in the EBF of the 
packet service process. 

• The violatien of the conditions i) and ü) in step 5 does not happen in our numerical 
example, which means that the EBF increases by the transmission mode change in the 
regions of interest. 

• We can notchange the initial transmission mode of Range R1 because the condition of 
iv) in step 5 is not satisfied. That is, since the SNR in Range R1 is very low, we can not 
apply transmission mode 1 for Range R1• 

Obviously, the above observations are based on our numerical example and should not be 
generalized to other examples, but we think most of them are still true for other examples and 
accordingly should bear in mind. 

Next, to see the performance improvement with respect to the packet overflow probability 
we give Fig. 2 which shows the corresponding packet overflow probabilities (9) to the EBFs (of 
case 1, case 2 and the final assignment) shown in Fig. 1. Note that we can not get the packet 
overflow probability for our system with the AMC scheme based on the initial assignment. 
As seen in Fig. 2, as the EBF is increasing, the packet overflow probability is decreasing. In 
addition, we see that the AMC with our final assignment satisfies the required packet overflow 
probability 10-3 (or log(lo-3 ) = -6.908). The corresponding packet overflow probabilities 
are changed from 0.00614 to 0.000657 and the corresponding average PERs are changed from 
0.00062 to 0.0222. From Fig. 1 and Fig. 2, we can check the validity of our cross-layer design 
procedure and the characteristics of our cross-layer design framework. 
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Figure 2: The packet overflow probabilities 

In this paper, we provide a cross-layer design framework to support QoS for wireless commu­
nication services. In our framework, we consider the joint effect of the queueing at the MAC 
layer and the AMC at the PHY layer and provide a procedure of selecting a suitable AMC 
scheme, with which we can achleve our cross-layer design objective. The effedive bandwidth 
theory plays an important role in our study. The main contribution of this paper is that we pro­
vide a theoretica! analysis on the behavior of the effective bandwidth function of the packet 
service process at the MAC layer and the proposed frameworkis basedon our theoretica! anal­
ysis. A numerical example is provided to see the validity and charaderistics of the proposed 
framework. 

Appendix 

A.l. The proof of Lemma 4.2 

Proof: When we change the transmission mode from n(k) to n(k) + 1, the element <Pk,n(k)( -0) 
is replaced by <Pk,n(k)+I ( -0) in the matrix C( -0). When <Pk,n(k) ( -0) > <Pk,n(k)+l ( -0) for 0 > 
0, then the resulting Perron-Frobenius eigenvalue óc( -0) of the matrix C( -0) decreases for 
each 0 > 0 because C( -0) is a nonnegative and irreducible matrix [15, 16]. Since -log x is 
a decreasing fundion in x, the resulting EBF of the packetservice process, i.e., -log óc( -0)/0 
increases for each 0 > 0. Similarly, we can also prove the remairring part of our lemma. 

A.2. The proof of Lemma 4.3 

Proof: For simplicity, we use rn, dn, rn+l and dn+l insteadof rk,n(k)' dn(k)' rk,n(k)+l and dn(k)+I' 

respedively. Let 

ft (0) = [(1 - rn)e-8 + rn]dn, h(O) = [(1 - Tn+l)e-8 + Tn+l]dn+I. 

It suffices to show that !I (0) < h(O) for 0 > 0. Observe that 

log fi(O) -log h(O) = dn log[(1- rn)e-9 + rn]- dn+Ilog[(1- Tn+I)e-8 + Tn+I]· 
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Frorn the fact that (1 - rn)dn ~ (1 - rn+I)dn+l, we get 

and 
(} 1- rn+l (} 

dn log[(1- rn)e- + rn] :'S dn+llog[(1 - rn)e- + rn] 
1- rn 

for log[(1- rn)e-8 + rn] < 0. Note here that n(= n(k)) is not equal to 0 due to the condition 
dn(1- rn) ~ (1- rn+I)dn+l· Hence, 

Multiplying ld-rn (> 0) on both sides, we get 
n+l 

1-r 
_d_n [log h ( e) - log h( e) l 

n+l 
:'S (1 - rn+I) log[(1 - rn)e-8 + rn] - (1- rn) log[(1 - Tn+I)e-8 + Tn+I]· 

lf we can show that the right hand side of the above inequality is negative for e > 0, the 
proof is cornpleted. To do this, let x= 1- rn and y = 1- rn+l· Then the right hand side is 

y log[xe-8 + 1- x]- x log[ye-8 + 1- y] 

and 0 < y < x < 1. We will show that 

1 1 
-log[xe-8 + 1- x] < -log[ye-8 + 1- y]. 
x y 

Por 0 < t < 1 and e > 0, define g(t, 0) by 

1 
g(t, e) = t log[te-{} + 1- t]. 

Observe that 

1 { e-
8

- 1 } - 2 8 1 
t- log[te-8 + 1 - t] 

t te- + - t 

- t~ { 1- te-{}~ 1 _ t -log[te-
8 + 1- t]} 

Using the fact that h(a) = 1-1/a -log( a) < 0 for 0 <a< 1, we get ftg(t, B) < 0 for 0 < t < 1. 
This yields g(t, e) is strictly decreasing int for each e > 0. Since 0 < y < x < 1, we get 
g(x, e) < g(y, e) and we complete the proof. 

A.3. The proof of Theorem 4.1 

Proof: lf (1- rk,n(k))dn(k) ~ (1-rk,n(k)+I)dn(k)+l for e > 0, we have <l>k,n(k)( -e) < <l>k,n(k)+l ( -e) 
by Lemma 4.3. Then, by Lemma 4.2 the EBF of the packet service process decreases by the 
transmission mode change. This completes the proof. 

98 



Gang Uk Hwang Cross-Layer Design with Adaptive Modulation and Coding 

A.4. The proof of Theorem 4.4 

Proof: Forsimplicity, we use rn, dn, Tn+I, dn+l and fn(O) instead ofrk,n(k)' dn(k)' rk,n(k)+l' dn(k)+l 
and fk,n(k)(O), respectively, in the proof. First abserve that fn(O) = 0 and 

f' (O) = -dn(1- rn)e-0 + dn+I(1 Tn+I)e-8 . 
n (1- Tn)e-8 + Tn (1- Tn+I)e-8 + Tn+l 

Then using x= 1 rn and y = 1 rn+I, we have, for () > 0 

J~(()) > O iff dn+l(1- Tn+l) > dn(1- Tn) 
(1 - Tn+l)e-0 + Tn+I (1 - Tn)e-8 + Tn 

iff 
dn+l (1 - Tn+I) (1 - Tn) -- > ..,..---'----::-'---
dn (1 - Tn+I)e-8 + Tn+I (1 Tn)e-8 + Tn 

iff dn+l Y > X 

dn ye-8 + 1 - y xe-8 + 1 - x 

iff 
dn+I xe-8 + 1 x ye-0 + 1 y -- > .::__ __ __:;:_ 
dn x y 

iff dn+I (e-8 + ~) > e-o + ~ 
dn x y 

iff (dn+l 1)e-8 + 1- X - 1- y > 0 
dn dn X Y 

iff (d~:l - 1)e-O + An > 0. 

Now consider the case where An ~ 0. In this case, we have f~(e) > 0 for all() ~ 0. Since 
fn(O) = 0, we see that fn(O) > 0 for all() > 0. 

Consider the case where An < 0. Note that /~(0) = -dn(1 - rn) + dn+I(1- Tn+l) > 0. 
Define h(t) = (~1 

- 1)t + An for 0 < t :=:; 1 by letting t = e-8 for () ~ 0. Then we have 

h(1) = z~J > 0, h(O) = An < 0. Since h(t) is a linear function int, there exists a unique 

salution t0 = dn+:fd:-l satisfying h(to) = 0. Then for Oo = -log(to)(> 0) it follows that 
f~(Oo) = 0, !~(8) > 0 for 0 < () < Bo and !~(()) < 0 for () > Oo. Hence, fn(O) is strictly increasing 
for 0 < () < 00 and strictly decreasing for (} > 00 • Since fn(O) = 0, there exists a unique salution 
fn(è) = 0 with è > Bo and consequently we have fn(O) > 0 for 0 < () < è and fn(O) < 0 for 
() > è. Then by using Lemma 4.2, we complete the proof. 
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Abstract 

Bandwidth-sharing networks as considered by Massoulié & Roberts provide a nat­
ura! modeling framewerk for descrihing the dynamic flow-level interaction among 
elastic data transfers. Although valuable stability results have been obtained, cru­
dal performance metrics such as flow-level delays and throughputs in these mod­
els have remained intraetabie in all but a few special cases. In particular, it is not 
well understood to what extent flow-level delays and throughputs achieved by 
standard bandwidth-sharing mechanisms such as a-fair strategies leave potential 
room for improvement. 
In order to gain a better understanding of the latter issue, we set out to deter­
mine the scheduling polides that minimize the mean delay in some simple linear 
bandwidth-sharing networks. While admittedly simple, linear networks provide a 
useful model for flows that traverse severallinks and experience bandwidth con­
tention from independent cross-traffic. We compare the performance of the opti­
ma! policy with that of various a-fair strategies so as to assess the efficacy of the 
latter and gauge the potential room for improvement. The results indicate that the 
optima! policy achieves only modest improvements, even when the value of a is 
simply fixed, providedit is not too small. This suggests that (optimization within) 
the family of a-fair strategiesis likely to be adequate for most practical purposes. 

1 Introduetion 

Over the past several years, the processor-sharing discipline has emerged as a useful paradigm 
for evaluating the flow-level performance of elastic data transfers competing for bandwidth on 
a single bottle-neck link, see for instanee [2, 14]. Bandwidth-sharing networks as considered 
by Massoulié & Roberts [12] provide a natura! extension for modeling the dynamic interaction 
among competing elastic flows that traverse severallinks along their source-destination paths. 
Bonald & Massoulié [3] showed that a wide class of a-fair bandwidth-sharing polides as intro­
duced by Mo & Walrand [13] achleve stability in such networks under the simple (and neces­
sary) condition that no individuallinkis overloaded, see also [19] for instance. While stability 
is arguably the most fundamental performance criterion, flow-level delays and throughputs 
are obviously crudal metrics too. Although useful approximations, bounds [4] and heavy­
traffic limits [10] have been obtained, the latter performance metrics have largely remained 
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intraetabie in all but a few special cases. In particular, it is not well understood to what extent 
the flow-level delays and throughputs achleved by common bandwidth-sharing mechanisms 
leave potentlal room for improvement. 

The scope for improving flow-level delays and throughputs has been the focus of intense 
efforts in a somewhat distinct strand of research on size-based scheduling strategies. The ratio­
nale for size-based scheduling has been greatly amplified by empirica! findings indicating that 
file sizes in the Internet show huge variability and commonly have infinite varianee [7]. Sev­
eral studies have demonstrated that the Shortest Remaining Processing Time fust (SRPT) disci­
pline can achleve significant performance improvements for heavy-talled service requirements 
compared to First-Come First-Served or Processor Sharing. The SRPT discipline has therefore 
been adopted as an effective mechanism for improving the performance of web servers [5, 9]. 
To some extent, the huge variability in flow sizes also alleviates the long-standing concerns 
that have surrounded SRPT regarding the perceived unfaimess towards extremely large jobs 
[1, 8, 22]. It tums out that in case of heavy-tailed distributions only an exceedingly small frac­
tion of the jobs is worse off than under Processor Sharing as the prototype of perfect fairness. 
A critica! issue associated with size-based scheduling in generaland SRPT in particular, is that 
it relles on (partial) knowledge of (remaining) service requirements. While such information is 
usually available in web servers, it is impractical to obtain in Internet routers. An alternative 
strategy which has hence been advocated for scheduling data flows is the Least Attained Ser­
vice first (LAS) discipline also known as Foreground-Background Processor Sharing [11, 15]. 
In case the service requirement distribution has a decreasing failure rate, it has been shown 
that LAS stochastically minimizes the number of jobs in the system among all strategies that 
use no knowledge of the remaining job sizes [16]. 

Nearly all studies on the performance gains from size-based scheduling strategies such as 
SRPT and LAS have considered single-server settings. Single-server systerns provide reason­
able models for web servers, but they do not accurately capture scenarios where users require 
service from several resources simultaneously. Such concurrent resource possession arises in 
the above-mentioned bandwidth-sharing networks, where data flows traverse severallinks be­
tween their source-destination pairs and consume bandwidth on each of them for the duration 
of the transfer. (Even though individual packets travelacross the networkon a hop-by-hop 
basis, on a somewhat longer time scale a data flow claims roughly equal bandwidth on each of 
the links along its path since the amount of buffering at intermediate nocles is typically quite 
limited.) 

While single-server systerns provide traetabie results and useful insights, they do not ex­
hibit the potentlal non-work-conserving behavior that may occur in scenarios with concurrent 
resource possession. There are various indications that priority mechanisms in such scenar­
ios may cause starvation effects with possibly severe consequences. For example, Yang & de 
Veciana [23, 24] demonstrated that SRPT scheduling in network scenarios may yield consider­
able performance improvements in terms of mean delays and throughputs, but also observed 
that flows on long routes with large sizes may sustain a marked performance degradation. Re­
cently, it was shown that size-based scheduling strategies such as SRPT and LAS may in fact 
unnecessarily fail to achleve stability in network settings, even at arbitrarily low loads [21]. 

In conclusion, the results for size-based scheduling in single-server models do notprovide 
a good indication for the scope for impravement over common bandwidth-sharing mecha­
nisrns in network scenarios. In order to gain better insight into the latter issue, we will set 
out to determine scheduling polides that minimize the mean delay in bandwidth-sharing 
networks with a linear topology. While admittedly simple, linear networks provide a useful 
model for flows that traverse severallinks and experience bandwidth contention from inde­
pendent cross-traffic. Armed with the knowledge of the optima! policy, wethen campare its 

102 



Sem Borst Performance Optimization in Bandwidth-Sharing Networks 

performance with various a-fair strategies so as to assess the efficacy of the latter and gauge 
the potential room for improvement. Our results indicate that the optimal policy achieves only 
modest improvements over an a-fair strategy when the value of a is optimized. In its turn, an 
optimized a-fair strategy yields only marginal improvements compared to virtually any fixed 
value of a, as long as this value is not too small. This is particularly so for the important special 
cases a = 1 (proportional fair strategy) and a = 2 (which is a modeling abstraction of TCP). In 
fact, virtually any a-fair strategy shows fairly robust performance over a wide range of traffic 
parameters, as long as the value of a is not too small. This suggests that (optimization within) 
the family of a-fair strategiesis likely to be adequate for most practical purposes. 

The remainder of the paper is organized as follows. In Section 2 we provide a detailed 
model description and discuss some preliminaries. In Section 3 we derive some sample-path 
comparisons for the workload processes under various scheduling policies. We use these 
sample-path inequalities inSection 4 to show that in certain cases with exponential service 
requirements relatively simple priority-type polides minimize the mean number of users in 
the system. In Section 5 we examine cases where the optimal policy does not have a simple 
priority-type structure, and use dynamic programming techniques to prove that in these cases 
the optimal policy is characterized by a switching curve. Section 6 presents the numerical 
experiments that we conducted. We summarize our results inSection 7. 

2 Model description and preliminary results 

We consider a linear network with L nodes. For convenience, we assume each of the nodes 
to have a unit service rate. In order to present the results in the simplest possible setting, we 
focus on a traffic scenario with L + 1 classes, where class i requires service at node i only, 
i = 1, ... , L, while class 0 requires service at all L nodes simultaneously. The above 'toy' sce­
nario appears already suffidently rich to exhibit many of the qualitative phenomena that may 
occur for general network topologies and route structures. Ciass-i users arrive according to in­
dependent Poisson processes of rate Ài, and have generally distributed service requirements Bi 
with mean /3i, i 0, ... , L. 

Define the traffic load of class i as Pi := Ài/3i· Thus the load at node i is p0 +Pil i 1, ... , L. 
The obviously necessary conditions for stability p0 +Pi < 1, for i= 1, ... , L, are known [3] to 
be suffident as well for a-fair bandwidth-sharing policies. (For conciseness, these conditions 
will be referred to as the 'standard' conditions.) In order to examine the effectiveness of a-fair 
polides we seek polides that in some appropriate sense minimize the total number of active 
users in the above-described system. We only allow (possibly preemptive) polkies that have 
no knowledge available of the remaining service requirements and denote this class of polides 
by TI. The following polides will play a central role. 

• Policy 1r* gives preemptive priority to class 0 whenever it is non-empty and, otherwise, 
serves any other class with at least one user. 

• Policy 1r** simultaneously serves all classes i = 1, ... , L whenever at least one user of 
each class is present. Otherwise class 0 is served. When class 0 is empty, any other class 
with at least one user present is served. 

For both these polides the system is stabie under the standard conditions, since polides 1r* 

and 1r** ensure that each node operates at full rate when it is non-empty. 
Fora given policy 1r, denote by N{(t) the number of dass-i users at timetand by Wt(t) 

their total residual work. Nrr(t) is defined as Ef=1 Nt(t). We further define Nt, Wt and Nrr 
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as random variables with the corresponding time-average distributions (when they exist). For 
brevity, we use the superscripts * and ** for random variables corresponding to 1r* and 1r**. 

Note that class 0 does notnotlee the presence of other classes under policy 1r*. The mean 
amount of class-Q workis therefore given by the Pollaczek-Khintchine formula: 

With policy 1r*, any class i # 0 sees its service being interrupted by busy periods of class 0 so 
that [18]: 

Ào1E(Bo2
) + Ài1E(Bï2

) 

2(1- Po- Pi) 

Note that these formulas hold for any service requirement distribution and scheduling disci­
pline within classes. 

In the special case of exponentially distributed service requirements, scheduling within 
a class (without knowledge of the actual size of jobs) doesnotaffect the distribution of the 
number of users. Letting J.Li 1/ f3i (and thus IE(Bi2) 2/ J.Lf)), the mean number of users can 
then simply be obtained from IE(Nt) = J.LilE(Wt) for all classes i. In particular 

IE(N0) = 
1 

and 

Po ) 
Pi- 1- Po ' 

so that 
L k + 2 

IE(N*) = _!!2._ + """"( J1.0 PO Pi 
1- Po {:t (1 - Po)(1 -Po 

+~) 
Pi) 1- Po . 

(1) 

For policy 1r** there is no closed-form expression available for the mean workloads. For 
L = 2, determining these is equivalent to solving a boundary-value problem [6]: the service 
rate allocated to any dass i depends on the workloads of all other classes. 

3 Workload 

In this section we allow for general service requirement distributions and cernpare (sample­
path wise) the workloads of the various classes under different policies. 

Let 1fi be a policy that is werk-conserving in node i, i.e., the capacity of node i is fully used 
whenever that node is non-empty. Obviously, such a policy minimizes the total workload in 
node i at all times. More specifically, if wt (0) + Wl"; (0) ::;st W~(O) + Wt(O) forsome arbitrary 
policy 1r, then 

wt(t) + Wt'\t) ::;st W~(t) + Wt(t), Vt ~ 0. (2) 

Here denotes the usual stochastic ordering. Note that both polides 1r* and 1r** are werk­
conserving in each node, so inequality (2) holds for all i = 1, ... , L, if 1ti E { 1r*, 1r**}. We call 
W~J.k(t) := W~(t) + W}"(t) + Wk"(t) the aggregate workload in nocles j and k. Besides mini­
mizing the workload in one node, at any point in time, policy rr ** also minimizes the aggregate 
workload in at least one pair of nocles (these need not always be the same) as is formalized in 
the following lemma. This result will be useful for the analysis in the next sections. 

104 



Sem Borst Performance Optimization in Bandwidth-Sharing Networks 

Lemma 3.1. IJ fort = 0 there exist nodes j and k with j =I= k, such that 

w;,j,k(t) ~st Wo~j,k(t), (3) 

then, for any t > 0, there exist j and k (not necessarily the same as at timet = 0) with j =I= k such 
that (3) holds. 

Hence, if L = 2, the lemma states that policy 1r** stochastically minimizes the total work­
load in the system. We note that there is no policy that achieves the same for L > 2. 
Proof of Lemma 3.1 By assuming the same sequence of arrivals and service requests, we can 
cernpare the two policies, 1r** and 1r, in the samesample space. Let 

u= inf{t > 0: w;,},k(t) > WO,j,k(t), Vj, k =/= O,j =/= k}. 

We show by con tradietion that u cannot be fini te. Let us suppose u < oo. Inequality (3) can only 
be violated for all pairs j and k immediately after time u, if it holds with equality at time u for 
some j and k, which we fix for the remainder of the proof. In addition, for the equality to cease 
to be valid, policy 1r** should not be serving both nocles j and kat full rate, so that W0*(u) = 0 
and Wt*(u) = 0 for either i= j or i= k. From (2) we have Wz**(u) ~ W0(u) + Wt(u) for all 
l =1= 0, l =1= i; we fix such an l and cbserve that this inequality is preserved until the next arrival 
from either class 0 or class i (in the mean time, 1r** works at full ra te in nodeland 1r can not do 
better than that). Note that W0*(t) = 0 and Wt*(t) = 0 until such an arrival occurs and, hence, 
w;,i,1(t) ~ WO,i,z(t), which contradiets the definition of u. D 

4 Small dass-0 users 

In the remainder of the paper we focus on exponentially distributed service requirements and 
write J.Li = 1/ f3i· For relatively 'large' values of J.Lo, i.e., when class-0 users are relatively small, 
we show that either 1r* or 1r** stochastically minimizes the number of users at every point in 
time. More precisely: this is so when J.Lo > l:i~l,ifj J.Li for all j i- 0. In Sectien 4.1 we first show 
that the results of the previous sectien allow us to readily prove that 1r* and 1r** minimize the 
mean number of users in the above-mentioned cases. Because of Little's law, such a policy 
automatically minimizes the mean overall sojoum time as well. We briefly cernment on the 
stochastic optimality in Sectien 4.2. 

To put our results in context, we reeall that the J.L-rule is known to stochastically minimize 
the number of users [17] in a single-server system. The rationale behind this ruleis that it max­
imizes the output rate at all times. In the netwerk we discuss, this can only be accomplished 
for certain parameter values. Besides trying to maximize the total output rate of the system, 
we must take into account that when serving class i i- 0 while another class j -=f. 0 is empty 
may leave node j underutilized if there are users of class 0. For example, if J.Li > J.Lo for all 
i = 1, ... , L, then giving priority to classes 1, ... , L, myopically maximizes the total output rate 
of the system but such a discipline unnecessarily causes instability [21] when IIf=1 (1- Pi) < p0 . 

In general, there can be a trade-off between maximizing the output ra te and using the full ca­
pacity in each node whenever that node is non-empty. It is precisely in those cases where these 
two objectives are compatible, that we can identify the polides that minimize the total number 
of users. 

4.1 Minimizing the mean number of users 

The next lemma, together with the results for the workload obtained in Sectien 3, can be used 
to prove that, in certain cases, policy 1r* or 1r** minimizes the mean total number of users at 
every point in time. 
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Lemma 4.1. Let 1r, ft E TI and assume the service requirements of class i are exponentially distributed 
withmean /3i = 1/f.l.i· Ifforsome I Ç {0, ... ,L}, I:iel Wl"(t) I:iel Wt(t), Vt;::: 0, then 

" ...... 1 - ~1 L.....t -!E(N[(t)) :::; L.....t -!E(N[(t)). 
iEl Jl.i iEl Jl.i 

Proof Because of the memoryless property of the exponentlal distribution and the fact that 
polides 1r and ft have no knowledge of the remaining service requirements, the workload, 

Wi(t), is distributed as 2:~,:~) E~. Here E~ are i.i.d. random variables from an exponentlal 
distribution with mean 1/ Jli· Hence, 

Nf(t) Nf(t) 

L L Ek ::;st L L E1, V t ;::: 0, (4) 
iEl k=l iEl k=l 

and the lemma is proved after taking expectations. D 
This lemma paves the way for the following two propositions, which state that, in certain 

cases, 1r* or 1r** is optima!. 

Proposition4.2. Assume Wi*(O) ::;st W{(O),for all i. IJI:f=l Jli:::; f.J.o, then !E(N*(t)) :::; JE(N1t(t)), 
V1r E TI and Vt ;::: 0. 

Proof By (2), policy 1r* minintizes the workload in each node, which implies by Lemma 4.1 
that V i= 1, ... , L, 

!_JE(N0*(t)) + ~!E(Ni''(t)) :::; !_IE(Ntf(t)) + ~IE(N[(t)). 
Jl.o Jli Jlo Jl.i 

(5) 

Combining Lemma 4.1 with the fact that giving preemptive priority to class i minimizes the 
workload of class i, we have: 

IE(No*(t)) :::; IE(Ntf(t)). (6) 

Multiplying (5) by Jli ?: 0, for all i = 1, ... , L, multiplying (6) by :...::......-"""J.L"""o ""'-'--'- ?: 0 and summing 

these L + 1 inequalities gives Ef=o JE(Ni*(t)) :::; Ef=o JE(N[(t)). D 

Proposition4.3. Assume wr(o) Wt(O),forall i. IJI:f=l Jl.i;::: Jl.o?: Ef=l,i~j Jli/Orall j I== 0, 
then JE(N**(t)):::; 1E(N1t(t)), V1r E TiandVt?: 0. 

Proof As in the previous proof we have by (2) and Lemma 4.1 that 

!_IE(No**(t)) + ~IE(N/*(t)):::; !_IE(Ntf(t)) + ~JE(Nt(t)). 
Jl.o Jli Jlo Jli 

(7) 

Similarly, we can conclude from Lemmas 3.1 and 4.1 that at timet there are classes j and k, 
j f k E {1, ... , L }, such that 

!_!E(No**(t)) + !_JE(N/*(t)) + !_!E(Nk**(t)) 
Jlo /.1j Jlk 

Now multiply (7) by Jlo 

inequality (8) by Ef=I Jl.i 
Ef=o IE(Nt(t)). 

:::; !_JE(Ntf(t)) + _I_JE(Nj(t)) + !_!E(Nk(t)). (8) 
/.10 /.1j Jlk 

Ef=l,l#i /.11 ?: 0, for i j, k and by Jli for all i # 0, j, k; multiply 
Jlo?: 0 and sum these L+ 1 inequalities to obtain Ef=o JE(Ni**(t)) :::; 

D 
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4.2 Stochastic optimality 

It is worth noting that despite the stochastic inequality (4) the above argumentscan not be 
strengthened to prove that 1r* and 1r** in fact stochastically minimize the number of users for 
the given parameter values. This can, however, be accomplished using a dynamic program­
ming (DP) approach similar to that in Section 5 below. For the case L = 2 the following two 
results are proved in [20]: 

Proposition 4.4. IJ p,1 + p,2 :::; p,0 , then policy 1r* stochastically minimizes the total number of users. 

Proposition 4.5. IJ p,1, p,2 :::; p,0 and p,1 + /J2 2: p,o, then policy 1r** stochastically minimizes the total 
number of users. 

5 Large class-0 users 

Again assuming exponential service requirements, we now explore the uncovered case when 
there exists an j 1, ... , L, such that L:f=l,i~j /Ji 2: /JO· Since a stochastically optima} policy 
may in general not exist, we focus instead on the average-optimal policy, i.e., the policy that 
minimizes JE(N1T) over all policies 1r E IT. 

We again focus on the case of two nocles and hence consider service rates such that p,0 < J.Li 
for at least one i 1, 2. Intuitively it is clear that when there are users of both classes 1 and 2 
present, serving them will be optima!. When there are only users of classes 0 and 1 presentand 
p,1 < p,0, serving class 0 seems appropriate, since it is werk-conserving in both nodes and it 
maximizes the total output rate. However, when p,0 < p,1, there is no obvious rule which class 
to serve. The nextproposition states that in such situations, there exists a switching curve that 
determines which classis optimal to serve, i.e. there exists a function h( ·) such that it is optimal 
toserve class 0 at full rate if N1(t):::; h(N0(t)) and toserve dass 1 at full rate otherwise. 

Proposition 5.1. Assume that p,1 > p,0• IJ both classes 1 and 2 are non-empty, then the expected 
average-optimal stationary policy serves these simultaneously. While class 2 is empty, the optimal pol­
icy is characterized by a switching curve (class 1 is only served if there are sufficient class-1 users). IJ, 
in addition, p,0 2 p,2, then class 0 is served while class 1 is empty. 

In the remainder of this section we outline the proof of this proposition. We denote by i, 
j and k the numbers of class-0, class-1 and class-2 users, respectively. It will be convenient to 
focus on the uniformized Markov chain. That is, transition epochs (possibly 'dummy' tran­
sitions that do notalter the system state) are generated by a Poisson processof uniform rate 
v::;:; A0 + A1 + A2 + p,0 + p,1 + p,2. We assume v = 1 withoutlossof generality. Using DP, we min­
imize the mean number of users for the embedded uniformized process, which is equivalent 
to minimizing that of the original process. 

The direct costs that are incurred each time state (i,j, k) is visited, are i+ j + k, which 
implies that the objective is to find a policy 1r that minimizes JE(N1r). The DP equation can be 
written as: 

Vn+l(i,j, k) =i+ j + k 

+ AoVn(i + 1,j, k) + À1 Vn(i,j + 1, k) + À2Vn(i,j,k + 1) 

+ min{p,o Vn((i- 1)+, j, k) + (P.I + !J2)Vn(i, j, k), 

P,o Vn(i, j, k) + /JI Vn(i, (j - 1)+, k) + /J2 Vn(i,j, (k - t)+)}, 
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with V0 (i,j, k) =i+ j + k. 
The existence of an optima! switching curve when there are no class-2 users present is 

equivalent to the value function, V(i,j, k), satisfying Properties 1 and 2 below. By syrnrnetry, 
similar properties need to hold for the existence of a switching curve when there are no class-1 
users. 
Property 1: Hit is optima! toserve class 1 in state (i,j, 0), then thisis optima! in state (i,j + 1, 0) 
as well, or equivalently, if 

then 

ttoV(i,j,O) + tt1V(i,j -1,0) + tt2V(i,j,O) 

:S ttoV(i -1,j,O) + /Ll V(i,j,O) + tt2V(i,j,O), 

tto V(i,j + 1, 0) + /Ll V(i, j, 0) + /L2 V(i,j + 1, 0) 

:S ttoV(i -1,j + 1,0) + (ttl + tt2)V(i,j + 1,0). 

Note that this property is implied by the following inequality: 

ttoV(i,j + 1,0) + ttoV(i- 1,j,O) + 2ttl V(i,j,O) 

:S ttoV(i,j,O) + ttoV(i -1,j + 1,0) 

+tt1V(i,j -1,0) + tt1V(i,j + 1,0). 

Property 2: If it is optima! to serve class 0 in state (i, j, 0), then this is optima! in state (i+ 1, j, 0) 
as well, or equivalently, if 

then 

tto V(i- 1, j, 0) + /Ll V(i, j, 0) + tt2 V(i, j, 0) 

:S ttoV(i,j,O) + ttiV(i,j -1,0) + tt2V(i,j,O), 

tto V(i,j, 0) + /Ll V(i + 1,j, 0) + tt2 V(i + 1,j, 0) 

:S (tto + 1t2)V(i + 1,j, 0) + /Ll V(i + 1,j- 1, 0). 

This property is implied by 

2ttoV(i,j,O) + /Ll V(i + 1,j,O) + /Ll V(i,j- 1,0) 

:S ttoV(i + 1,j,O) + ttoV(i -1,j,O) 

+tt1V(i+ 1,j -1,0) +tt1V(i,j,O). 

These propertiescan be established for V(i,j, k) by proving them for all Vn(i,j, k) using 
induction on the time index n, see [20] for details. 

6 Numerical experiments 

We now campare the performance of the optima! policy with that of a-fair bandwidth-sharing 
policies. We denote by N?:t) the mean number of dass-i users as function of a. In the linear 
network, the a-fair allocation is 

no 
sa= L and Si= 1- sa, 

no + (l::l=l n?)l/a 
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where Sj is the rate allocated to class j, see [3). 
For the proportional fair allocation (a= 1), the mean number of users is given by 

L 

JE(NJ1)) = ~(1 +'""' Pi ) 
1 - Po {:t 1 - Po - Pi 

and JE( NP)) = 1-:0-p;, i = 1, ... , L, see [12]. For general a-fair allocations (a i- 1) we con­
ducted simulations in order to estimate the mean number of users. In our experiments we 
chose a E A = {0, 1, 2, 4, 6, 8, 10, oo }. Besides a = 1, the case a = 2 will receive particular 
attention as well, because it is a common abstraction for TCP's bandwidth allocation. 

Cernparing the mean number of users for the proportional fair allocation and policy 1r* 

already provides important insight. For L = 2 we have that JE(N*) -JE(N(l)) equals 

~ ( P1 ( J.L1 _ 1) + P2 ( J.L2 _ 1)) 
1 - Po 1 - Po - P1 J.Lo 1 - Po - P2 J.Lo · 

Note that for u 0 < ii0 := >.1 (~- o-p2)!>.2 
:- o- 1 (relatively large class-0 users), the proper-

,... ,- P1 -po-P2 P2 -po-p1 

tional fair allocation does better than 1r*, and that the difference is unbounded as J.Lo ~ 0. For 
J.Lo > Po (relatively small class-0 users), it is better to prioritize class 0. In fact, 1r* achieves 
the minimum mean number of users among allstrategiesin II, if J.Lo 2: J.L1 and J.Lo 2: J.L2. Still, 

the difference is limited by - 1 ~~0 ( 1 _P~1-p1 + 1 _P~2-p2 ). Thus, the proportional fair allocation 
perfarms well over a wide range of parameter values. 

We now preeeed to numerically investigate whether the latter finding holds in greater gen­
erality. The optima} policy is computed by DP after truncating the state space. In cases where 
the optima} policy is known explidtly, we verified that the results from DP are accurate. We ex­
amined a wide range of scenariosin termsof the values of the parameters Ài and J.Li, i = 0, 1, 2. 
Since the results were qualitatively similar in the various scenarios, we only present the results 
for the cases with po = 0.3, P2 = 0.3, J.L1 = 0.5, J.L2 = 1, with either (A) P1 = 0.2 or (B) p1 = 0.5, 
and varying J.Lo· 

In Figures 1 and 2 we plot the total mean number of users under different polides as a 
function of J.Lo for cases A and B, respectively. The smallest mean number of users among all 
a-fair polides (minaEA(lE(N(a)))) is labeled with "opt a fair", the mean number of users for 
the optima} policy in each point is indicated by "dp", and the curve "1r*", corresponds to the 
function in (1). Theether curves correspond to proportional faimess (a = 1) and an abstraction 
of TCP (a= 2). 

From Figures 1 and 2 we see that the performance of a-fair polides compares well with 
that of the optima} policy. The gap does not exceed 20%. Apparently, a-fair polides succeed in 
dynamically adjusting the ra te allocation in an effident manner, without any knowledge of the 
service rate parameters. It is also striking that the differences within the class of a-fair polkies 
are smal}, and that the mean total number of users is fairly insensitive to the value of J.Lo (for 
fixed p0). In all cases, the optima} value of a is either 0 (for small values of J.Lo) or oo (for large 
values of J.Lo). The transition point occurs approximately at J.Lo = Po· 

In Figures 3 and 4 we plot the total mean number of users as a function of a for two values 
of J.Lo, for cases A and B, respectively. Again, the results agree with what could be expected: for 
large J.Lo it is optimal to prioritize class 0, while for small J.Lo it is better to achleve a large degree 
of parallelization. The difference between the best and the worst a-fair allocations is roughly 
5% and 10% in cases A and B, respectively. 
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Figure 1: Total mean number of users in case A. 
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Figure 2: Total mean number of users in case B. 

7 Summary and conclusions 

In order to investigate the efficiency of standard allocation mechanisms such as a-fair poli­
des, we have determined the delay-optimal allocation polides in a simp Ie linear network with 
exponential service requirements. The optima! scheduling polides require a high degree of co­
ordination within the network as well as knowledge of the service requirement distributions, 
which may prohibit actual implementation. As a benchmark, though, they are extremely use­
ful to assess the effectiveness of other bandwidth-sharing strategies. In all our experiments we 
observed that (i) the dilierences within the class of a-fair allocations are not significant, and (ii) 
these allocanons compare well with the optimal strategies. 

The above-mentioned results concern rate allocation across flow classes (corresponding to 
flows sharing a common route), and do notaccount for scheduling within classes. As men­
tîoned in the introduction, it was shown in [21] that standard size-based scheduling strategies 
such as SRPT and LAS applied across all flows can cause instability effects. However, size­
based scheduling within flow classes may still produce substantial performance benefits, pro­
vided the ra te allocation across flow classes is carefully arbitrated to avoid the above instability 
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phenomena. Exactly how to combine size-based scheduling witrun classes with a stabie rate 
arbitration across classes, and what the potential gains might be, is non-trivia! and remains as 
a challenging topic for further research. 
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