1,895 research outputs found

    Time for Addressing Software Security Issues: Prediction Models and Impacting Factors

    Get PDF
    Finding and fixing software vulnerabilities have become a major struggle for most software development companies. While generally without alternative, such fixing efforts are a major cost factor, which is why companies have a vital interest in focusing their secure software development activities such that they obtain an optimal return on this investment. We investigate, in this paper, quantitatively the major factors that impact the time it takes to fix a given security issue based on data collected automatically within SAP’s secure development process, and we show how the issue fix time could be used to monitor the fixing process. We use three machine learning methods and evaluate their predictive power in predicting the time to fix issues. Interestingly, the models indicate that vulnerability type has less dominant impact on issue fix time than previously believed. The time it takes to fix an issue instead seems much more related to the component in which the potential vulnerability resides, the project related to the issue, the development groups that address the issue, and the closeness of the software release date. This indicates that the software structure, the fixing processes, and the development groups are the dominant factors that impact the time spent to address security issues. SAP can use the models to implement a continuous improvement of its secure software development process and to measure the impact of individual improvements. The development teams at SAP develop different types of software, adopt different internal development processes, use different programming languages and platforms, and are located in different cities and countries. Other organizations, may use the results—with precaution—and be learning organizations

    Large-Scale Identification and Analysis of Factors Impacting Simple Bug Resolution Times in Open Source Software Repositories

    Get PDF
    One of the most prominent issues the ever-growing open-source software community faces is the abundance of buggy code. Well-established version control systems and repository hosting services such as GitHub and Maven provide a checks-and-balances structure to minimize the amount of buggy code introduced. Although these platforms are effective in mitigating the problem, it still remains. To further the efforts toward a more effective and quicker response to bugs, we must understand the factors that affect the time it takes to fix one. We apply a custom traversal algorithm to commits made for open source repositories to determine when “simple stupid bugs” were first introduced to projects and explore the factors that drive the time it takes to fix them. Using the commit history from the main development branch, we are able to identify the commit that first introduced 13 different types of simple stupid bugs in 617 of the top Java projects on GitHub. Leveraging a statistical survival model and other non-parametric statistical tests, we found that there were two main categories of categorical variables that affect a bug’s life; Time Factors and Author Factors. We find that bugs are fixed quicker if they are introduced and resolved by the same developer. Further, we discuss how the day of the week and time of day a buggy code was written and fixed affects its resolution time. These findings will provide vital insight to help the open-source community mitigate the abundance of code and can be used in future research to aid in bug-finding programs

    Locating bugs without looking back

    Get PDF
    Bug localisation is a core program comprehension task in software maintenance: given the observation of a bug, e.g. via a bug report, where is it located in the source code? Information retrieval (IR) approaches see the bug report as the query, and the source code files as the documents to be retrieved, ranked by relevance. Such approaches have the advantage of not requiring expensive static or dynamic analysis of the code. However, current state-of-the-art IR approaches rely on project history, in particular previously fixed bugs or previous versions of the source code. We present a novel approach that directly scores each current file against the given report, thus not requiring past code and reports. The scoring method is based on heuristics identified through manual inspection of a small sample of bug reports. We compare our approach to eight others, using their own five metrics on their own six open source projects. Out of 30 performance indicators, we improve 27 and equal 2. Over the projects analysed, on average we find one or more affected files in the top 10 ranked files for 76% of the bug reports. These results show the applicability of our approach to software projects without history

    Technical Debt Prioritization: State of the Art. A Systematic Literature Review

    Get PDF
    Background. Software companies need to manage and refactor Technical Debt issues. Therefore, it is necessary to understand if and when refactoring Technical Debt should be prioritized with respect to developing features or fixing bugs. Objective. The goal of this study is to investigate the existing body of knowledge in software engineering to understand what Technical Debt prioritization approaches have been proposed in research and industry. Method. We conducted a Systematic Literature Review among 384 unique papers published until 2018, following a consolidated methodology applied in Software Engineering. We included 38 primary studies. Results. Different approaches have been proposed for Technical Debt prioritization, all having different goals and optimizing on different criteria. The proposed measures capture only a small part of the plethora of factors used to prioritize Technical Debt qualitatively in practice. We report an impact map of such factors. However, there is a lack of empirical and validated set of tools. Conclusion. We observed that technical Debt prioritization research is preliminary and there is no consensus on what are the important factors and how to measure them. Consequently, we cannot consider current research conclusive and in this paper, we outline different directions for necessary future investigations

    An Empirical Study on Android-related Vulnerabilities

    Full text link
    Mobile devices are used more and more in everyday life. They are our cameras, wallets, and keys. Basically, they embed most of our private information in our pocket. For this and other reasons, mobile devices, and in particular the software that runs on them, are considered first-class citizens in the software-vulnerabilities landscape. Several studies investigated the software-vulnerabilities phenomenon in the context of mobile apps and, more in general, mobile devices. Most of these studies focused on vulnerabilities that could affect mobile apps, while just few investigated vulnerabilities affecting the underlying platform on which mobile apps run: the Operating System (OS). Also, these studies have been run on a very limited set of vulnerabilities. In this paper we present the largest study at date investigating Android-related vulnerabilities, with a specific focus on the ones affecting the Android OS. In particular, we (i) define a detailed taxonomy of the types of Android-related vulnerability; (ii) investigate the layers and subsystems from the Android OS affected by vulnerabilities; and (iii) study the survivability of vulnerabilities (i.e., the number of days between the vulnerability introduction and its fixing). Our findings could help OS and apps developers in focusing their verification & validation activities, and researchers in building vulnerability detection tools tailored for the mobile world

    The Impact of API Change- and Fault-Proneness on the User Ratings of Android Apps

    Get PDF
    The mobile apps market is one of the fastest growing areas in the information technology. In digging their market share, developers must pay attention to building robust and reliable apps. In fact, users easily get frustrated by repeated failures, crashes, and other bugs; hence, they abandon some apps in favor of their competition. In this paper we investigate how the fault-and change-proneness of APIs used by Android apps relates to their success estimated as the average rating provided by the users to those apps. First, in a study conducted on 5,848 (free) apps, we analyzed how the ratings that an app had received correlated with the fault-and change-proneness of the APIs such app relied upon. After that, we surveyed 45 professional Android developers to assess (i) to what extent developers experienced problems when using APIs, and (ii) how much they felt these problems could be the cause for unfavorable user ratings. The results of our studies indicate that apps having high user ratings use APIs that are less fault-and change-prone than the APIs used by low rated apps. Also, most of the interviewed Android developers observed, in their development experience, a direct relationship between problems experienced with the adopted APIs and the users\u27 ratings that their apps received
    • …
    corecore