
W&M ScholarWorks W&M ScholarWorks

Arts & Sciences Articles Arts and Sciences

2015

The Impact of API Change- and Fault-Proneness on the User The Impact of API Change- and Fault-Proneness on the User

Ratings of Android Apps Ratings of Android Apps

Gabriele Bavota

Mario Linares-Vasquez
College of William and Mary

Carlos Eduardo Bernal-Cardenas
College of William and Mary

Denys Poshyvanyk
College of William and Mary

Massimiliano Di Penta

See next page for additional authors

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

Recommended Citation Recommended Citation
Bavota, G., Linares-Vasquez, M., Bernal-Cardenas, C. E., Di Penta, M., Oliveto, R., & Poshyvanyk, D. (2014).
The impact of api change-and fault-proneness on the user ratings of android apps. IEEE Transactions on
Software Engineering, 41(4), 384-407.

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been
accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more
information, please contact scholarworks@wm.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/235420310?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/aspubs
https://scholarworks.wm.edu/as
https://scholarworks.wm.edu/aspubs?utm_source=scholarworks.wm.edu%2Faspubs%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

Authors Authors
Gabriele Bavota, Mario Linares-Vasquez, Carlos Eduardo Bernal-Cardenas, Denys Poshyvanyk,
Massimiliano Di Penta, and Rocco Oliveto

This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/aspubs/993

https://scholarworks.wm.edu/aspubs/993

The Impact of API Change- and Fault-Proneness
on the User Ratings of Android Apps

Gabriele Bavota, Mario Linares-V�asquez,Member, IEEE, Carlos Eduardo Bernal-C�ardenas,

Massimiliano Di Penta, Rocco Oliveto, and Denys Poshyvanyk,Member, IEEE

Abstract—The mobile apps market is one of the fastest growing areas in the information technology. In digging their market share,

developers must pay attention to building robust and reliable apps. In fact, users easily get frustrated by repeated failures, crashes,

and other bugs; hence, they abandon some apps in favor of their competition. In this paper we investigate how the fault- and

change-proneness of APIs used by Android apps relates to their success estimated as the average rating provided by the users to

those apps. First, in a study conducted on 5,848 (free) apps, we analyzed how the ratings that an app had received correlated with the

fault- and change-proneness of the APIs such app relied upon. After that, we surveyed 45 professional Android developers to assess (i)

to what extent developers experienced problems when using APIs, and (ii) how much they felt these problems could be the cause

for unfavorable user ratings. The results of our studies indicate that apps having high user ratings use APIs that are less fault- and

change-prone than the APIs used by low rated apps. Also, most of the interviewed Android developers observed, in their development

experience, a direct relationship between problems experienced with the adopted APIs and the users’ ratings that their apps received.

Index Terms—Mining software repositories, empirical studies, android, API changes

Ç

1 INTRODUCTION

ACCORDING to a recent study by VisionMobile [1], the
mobile handset industry has been growing at 23 per-

cent Compound Annual Growth Rate (CAGR)1 in revenues
since 2009, and the expected growth from 2012 to 2016 will
be 28 percent CAGR [3]. The “App” economy is a tremen-
dous success: iOS, BlackBerry, and Android were the most
lucrative software platforms in 2012, with average monthly
revenue of over $4,800, $3,700, and $3,300 per app, respec-
tively [4]. Additionally, the developers’ mindshare index
during the last four years (2010-2013) shows that Android
and iOS are the top two software platforms being used by
developers worldwide [1], [3], [4].

What are the hidden forces that contribute to the app economy’s
success? Typical answers are: ubiquitous computing, low
cost of handsets (especially, the Android devices), monetiza-
tion models, customers’ loyalty to brands such as iPhone or
BlackBerry, etc. However, beyond explaining the “hidden
forces” that drive consumer/developer decisions and define
the reasons for the success of the apps, that success can be

influenced by the software infrastructure that developers
use to build apps (i.e., Application Programming Interfa-
ces—APIs). APIs encapsulate the complexity of low-level
programming details, and provide developers with a high-
level model for using the underlying hardware. However,
the ease-of-use of these APIs is impacted by factors related to
API design and quality. For instance, top categories of API
learning obstacles are related to learning resources (e.g., doc-
umentation, or code examples) and API structure (e.g.,
design or name of API elements) [5]. Also, APIs not ensuring
backward compatibility support are typically hard to use
because of their instability [6], and API breaking-changes
could introduce bugs into the client code. Moreover, since
developers often assume correctness behind underlying
APIs, faults in APIs can drastically impact the client code
quality as perceived by the end-users; on the other hand,
developers avoid to use new version of APIs to skip bugs in
the new version [7]. For example, Zibran et al. [8] found that
among 1,513 bug reports related to various components of
Eclipse, GNOME,MySQL, Python 3.1, and Android projects,
562 bug-reports were related to API usability issues; and
about 175 (31 percent) of those issueswere related to API cor-
rectness. Also Businge et al. [9] found that 44 percent of 512
Eclipse third-party plug-ins depends on “bad” (i.e., unstable,
discouraged, and unsupported) APIs and that developers
continue using those APIs. Although one can possibly assume
that API instability (change-proneness) and fault-proneness may
impact the success of software applications, to the best of our knowl-
edge such relations have not been empirically investigated yet.

Stability and fault-proneness in the Android API is a
sensitive and timely topic, given the frequent releases
and the number of applications that use these APIs. There-
fore, the goal of this paper is to provide solid empirical
evidence and shed some light on the relationship between
the success of apps (in terms of user ratings), and the

1. For a definition of CAGR see [2].

� G. Bavota is with the Department of Computer Science, Free University of
Bozen-Bolzano, Bolzano, Italy. E-mail: gabriele.bavota@unibz.it.

� M. Linares-V�asquez, C. Bernal-C�ardenas, and D. Poshyvanyk are with the
Department of Computer Science, The College of William and Mary,
Williamsburg, VA 23185. E-mail: {mlinarev, cebernal, denys}@cs.wm.edu.

� M. Di Penta is with the Department of Engineering, University of Sannio,
Benevento, Italy. E-mail: dipenta@unisannio.it.

� R. Oliveto is with the Department of Bioscience and Territory, University
of Molise, Pesche (IS), Italy. E-mail: rocco.oliveto@unimol.it.

Manuscript received 24 Jan. 2014; revised 20 Oct. 2014; accepted 28 Oct.
2014. Date of publication 3 Nov. 2014; date of current version 17 Apr. 2015.
Recommended for acceptance by F. Tip.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2014.2367027

384 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 4, APRIL 2015

0098-5589� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

change- and fault-proneness of the underlying APIs (i.e.,
Android API and third-party libraries). We designed two
case studies. In the first study we analyzed to what extent
the APIs fault- and change-proneness affect the user rat-
ings of the Android apps using them, while in the
second we investigated to what extent Android developers
experience problems when using APIs and how much they
feel these problems can be causes of unfavorable user
ratings/comments.

The first study (in the following referred as “Study I”)
was conducted on a set of 5,848 Android free apps belong-
ing to different domains. We estimated the success of an
app based on the ratings posted by users in the app store
(Google Play2). Then, we identified the APIs used by those
apps, and computed the number of bug fixes that those
APIs underwent. In addition to the bug fixes, we computed
different kinds of changes occurring to such APIs, including
changes in the interfaces, implementation, and exception
handling. Finally, we analyzed how the user ratings of an
app are related to APIs fault- and change- proneness, specif-
ically to different kinds of changes occurring to APIs. This
study has mainly the aim of providing possible quantitative
evidence about relationship between APIs fault- and
change-proneness, and the apps’ ratings. However, espe-
cially because we have no visibility over the source code of
such apps and of their issue trackers, it is difficult to provide
a strong rationale and, possible, a cause-effect relationship
for such findings.

In order to provide explanations to the finding of Study I,
we conducted a second study (in the following referred as
“Study II”). This study consists of a survey, and it involved
45 professional Android developers. We asked such devel-
opers to fill-in a questionnaire composed by 21 questions
organized into five categories: (i) developer’s background,
(ii) factors negatively impacting user ratings, (iii) frequent
reasons causing bugs/crashes in Android apps, (iv) experi-
ences with used APIs, and (v) impact of problematic APIs
on the user ratings. Then, we quantitatively analyzed the
answers to 19 questions by using descriptive statistics, and
completed the analysis with qualitative data gathered from
the other two questions (See Table 9).

It is important to point out that this work does not claim a
cause-effect relationship between APIs fault- and change-
proneness and the success of apps, which can be due to sev-
eral other internal (e.g., app features and usability) and/or
external (e.g., availability of alternative similar apps) factors.
Instead, the purpose of our study is to investigate whether
the change- and fault-proneness of APIs used by the app
relates (or not) to the app success, measured by its ratings.
That is, a heavy usage of fault-prone APIs can lead to
repeated failures or even crashes of the apps, hence encour-
aging users to give low ratings and possibly even abandoning
the apps. Similarly, the use of unstable APIs that undergo
numerous changes in their interfaces can cause backward
compatibility problems or require frequent updates to the
apps using those APIs. Such updates, in turn, can introduce
defects into the applications using unstable APIs.

Results of our first study demonstrate that Android apps
having higher user ratings generally use APIs that are less

fault- and change-prone than APIs used by low rated apps.
For instance, among the 5,848 analyzed apps, the 50 least suc-
cessful apps use APIs that are 457 percent more fault-prone and
315 percent more change-prone, on average, than APIs used by
the 50 most successful apps. Moreover, results of our survey
conducted with Android developers indicate that 62 percent
of them observed, in their development experience, a direct rela-
tionship between problems experienced with the used APIs and
bad users’ ratings/comments.

Structure of the paper. Section 2 defines Study I and its
research questions, while Section 2 reports and discusses
the results achieved from a quantitative and qualitative
point of view. Section 3 presents the design and the results
achieved in Study II (i.e., the survey). Section 4 discusses
the threats that could affect the validity of the results
achieved in both studies. Section 5 relates this work to the
existing literature, while Section 6 concludes the paper and
outlines directions for future work.

2 STUDY I: MINING SOFTWARE REPOSITORIES

The goal of this study is to understand to what extent the
APIs fault- and change-proneness affect the user ratings of
the Android apps using them. The context consists of 5,848
free apps from the Google Play Market, and the quality focus
is the success of those apps in terms of ratings expressed by
users on the market.

2.1 Study Design

In the following we describe in detail the design and plan-
ning of the study, and in particular the context selection, the
research questions, the independent and dependent varia-
bles, the data extraction process, and the analysis method.

2.1.1 Context Selection

Table 1 reports characteristics of the 5,848 apps that we ana-
lyzed. As it can be seen from the table, the apps belong to a
pretty varied (30) set of categories. For each category consid-
ered in our study (e.g., photography, medical, games, etc),
the table lists (i) the number of apps analyzed from the cate-
gory (column #apps), (ii) the size range of the analyzed
apps in terms of number of classes (column #classes), and
bytecode size in terms of thousands of lines of code
(KLOC). There are multiple factors that lead us to the selec-
tion of the set of apps mentioned above. First and foremost,
we deliberately restricted our attention to free apps for prac-
tical reasons (paid apps would clearly require a fee). To col-
lect free apps, we built a Crawler downloading free
Android apps. We ran the Crawler for one week and col-
lected 25,869 apps. We only considered apps having at least
10 votes to prune out unreliable ratings. With a smaller
number of ratings, there was a higher risk that our results
may depend on the subjectiveness of the ratings themselves.
That is, if an app receives only one or two votes, the fact that
they are extremely positive or negative can depend too
much on the subjective reasons of those particular users.
This filtering process led to the 7,097 apps considered in our
previous paper [10]. Also, we excluded all the apps for
which we were not able to convert their Android PacKage
(APK) file into a JAR (more details can be found in Section
2.1.4). In particular, 300 apps were discarded due to errors2. http://play.google.com verified on January 2014.

BAVOTA ET AL.: THE IMPACT OF API CHANGE- AND FAULT-PRONENESS ON THE USER RATINGS OF ANDROID APPS 385

during the conversion from APK to JAR. Finally, we limited
our attention to a subset of apps using APIs (both Android
SDK APIs and third-party APIs) for which it was possible
to retrieve the change history from a versioning system.
This resulted in the removal of other 1,249 apps, leading to
the final 5,848 apps.t

2.1.2 Research Questions

In the context of this study (i.e., Study I) we formulated the
following two research questions:

� RQ1: Does the Fault-Proneness of APIs Affect the User
Ratings of Android Apps? This research question aims
at investigating if Android apps having lower user
ratings make heavier use of fault-prone APIs than
apps having higher user ratings. The conjecture is
that the usage of fault-prone APIs can cause annoy-
ing failures and crashes, and for this reason users
provide low ratings. Specifically, we test the follow-
ing null hypothesis:

H01 : There is no significant difference between the
average fault-proneness of APIs used by apps with high
and low rates.

� RQ2: Does the Change-Proneness of APIs Affect the User
Ratings of Android Apps? This research question is
similar to RQ1, however it considers the change-
proneness instead of the fault-proneness as the main

factor to analyze. The conjecture is that if APIs
change a lot, such changes may alter their behavior
and even worse their interface, hence having a side
effect on the applications using them. First, an
evolved API may not be back-compatible with a pre-
vious version, and therefore could alter the app
behavior in an undesired way. Second, changes in
API signatures may require adaptations on the app’s
side that, in turn, could induce faults. Thus, the null
hypothesis being tested is

H02 : There is no significant difference between the
average change-proneness of APIs used by apps with high
and low rates.

2.1.3 Study Variables

The dependent variable for both research questions is rep-
resented by the average (mean) rating provided by the users
for those apps, representing a proxy to measure the success
of the considered apps. Such ratings are posted by users on
the Android market as a discrete value ranging between
one and five stars.

The independent variable considered to answer RQ1 is
the number of bugs fixed in the APIs used by the apps dur-
ing the investigated time period. The analysis is restricted
to the period of time going from the date in which the con-
sidered app version was released until the date in which
either (i) the app has been superseded by a new version or
(ii) the last rating for such app was collected, i.e., the last
observation for our dependent variable.

For RQ2 the independent variables are the number of
changes performed in APIs used by the considered apps,
measured in the same time period adopted for the fixed
bugs. Specifically, we computed the following variables:

� The overall number of method changes.
� The number of changes in method signatures

(method names, parameters, return types, visibility).
� The number of changes to the set of exceptions

thrown by methods, as detected by analyzing their
signatures. Such kind of change is particularly
important to analyze because a better usage of excep-
tion handlers may improve the apps’ robustness.

Note that for all changes we separately computed data for all

methods and public methods. Changes to public methods were

analyzed apart in our study because these methods represent

the API public interface that is directly called by the apps. Sim-

ilarly to RQ1, the analysis of changes was performed in the

same time period considered for bug fixes.

2.1.4 Data Extraction Process

The data needed to answer our research questions are (i)
the user ratings of the 5,848 considered apps, (ii) the list
of APIs used by each app, and (iii) the bug and change
history of those APIs. The user ratings were downloaded
from Google Play by selecting ratings related to each app
version considered in our study. We mined the users’
reviews just the day before we started the data analysis,
in order to gather as many ratings as possible for each
app considered in our study. However, in the period of
time going from the date when we downloaded the apps’
APK (D1), until the date we collected the apps’ ratings

TABLE 1
Characteristics of the Apps (Grouped by Category)

Used in Our Study

Category #apps Classes KLOC

Arcade 265 7-566 115-6 K
Books and reference 139 7-78 1K-11 K
Brain 313 5-572 14K-31 K
Business 139 8-226 4K-16 K
Cards 189 8-633 367-4 K
Casual 313 6-566 2K-6 K
Comics 13 16-43 1K-1 K
Communication 144 6-11 117-10 K
Education 305 6-87 1K-4 K
Entertainment 603 2-11 173-20 K
Finance 158 4-107 2K-48 K
Health and fitness 41 6-104 2K-7 K
Libraries and demo 128 1-310 11K-56 K
Lifestyle 370 2-572 1K-3 K
Media and video 232 5-572 2K-8 K
Medical 5 13-107 2K-21 K
Music and audio 239 2-190 3K-53 K
News and magazines 177 5-280 805-2 K
Personalization 528 4-29 557-23 K
Photography 199 7-1974 35K-132 K
Productivity 137 7-217 4K-7 K
Racing 190 15-280 6K-48 K
Shopping 45 5-114 2K-38 K
Social 41 9-318 4K-7 K
Sports 183 7-280 5K-6 K
Sports games 167 6-572 14K-20 K
Tools 484 3-65 1K-11 K
Transportation 23 12-144 1K-3 K
Travel and local 74 8-251 5K-44 K
Weather 4 5-41 871-11 K

Total 5,848 2-572 1K-132 K

386 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 4, APRIL 2015

(D2), new versions of the considered apps may have been
released. Thus, there was the risk of including in our
analysis reviews that were not related to the specific ver-
sion of the apps considered in our study. For this reason,
in the period of time going from D1 to D2 we mined the
Google Play market at time intervals of one week to ver-
ify if new versions of the considered apps were issued.
As explained before, we just considered reviews in the
period of time going from the date in which the consid-
ered app version was released until the date in which
either the app was superseded by a new version or the
last rating for such app was collected (i.e., D2).

To identify APIs used by the apps in our study, we
downloaded their Android PacKage files using a third party
library.3 An APK file is a variant of a JAR archive contain-
ing, among other information, the compiled classes in the
dex (Dalvik EXecutable) format used by the process virtual
machine in Android.

For extracting API calls from the APK files we adopted
the following process:

1) we converted the APK files to JARs using the dex2jar4

disassembler tool.
2) we extracted references/calls to API classes from

. class files, using the JClassInfo5 tool.
Once we collected the list of APIs for each app, we

mined the APIs change history from their versioning
systems.6 We analyzed 85,636 developers’ commits per-
formed in a period going from October 2007 to September
2013 for a total of 39,718 bug-fixing activities and
1,082,362 method’s changes. More specifically, we mined
2,105 days of history of the Android SDK APIs and, on
average, 778 days for the considered third-party APIs; the
number of analyzed commits is 35,702 for the Android
SDK APIs (involving a total of 1,068 developers) and
49,934 for the third party APIs (by 1,232 developers). The
average size of a commit in terms of number of modified
files is 15 for the Android SDK APIs and nine for the
third-party APIs, while the commits’ frequency in terms
of number of commits per month is 164 for the Android
SDK APIs and 14 for the third-party APIs. Thus, the
Android SDK APIs evolve much quicker than the consid-
ered third-party APIs.

In order to identify bug-fixing commits activities we used
an approach proposed by Fischer et al. [11], i.e., by mining
regular expressions containing issue IDs and the keyword
“fix” in the commit notes, e.g., “fixed issue #ID” or “issue ID”.

For the changes, we used a code analyzer developed in
the context of the MARKOS European project7 to compare
the APIs before and after each commit at a fine-grained
level. In particular, while the versioning system logs just
report the changes at file level granularity performed in

a commit, we used the MARKOS code analyzer to capture
changes at method level.

The code analyzer parses source code by relying on the
srcML toolkit [12], and categorizes changes occurring in
methods into three types: (i) generic change (including all
kinds of changes); (ii) changes applied to the method sig-
nature (i.e., visibility change, return type change, parame-
ter added, parameter removed, parameter type change,
method rename); and (iii) changes applied to the set of
exceptions thrown by the methods. Moreover, we distin-
guished between changes performed to public methods
directly used by the apps and changes performed to non
public methods. To distinguish cases where a method
was removed and a new one added from cases when a
method was renamed (and possibly its source code
changed), the MARKOS code analyzer uses a heuristic
that maps methods with different names if their source
code is similar based on a metric fingerprint similar to
the one used in metric-based clone detection [13]. In
particular, each method is associated to a 12 digits finger-
print containing the following information: LOCs, num-
ber of statements, number of if statements, number of
while statements, number of case statements, number of
return statements, number of specifiers, number of param-
eters, number of thrown exceptions, number of declared
local variables, number of method invocations, and num-
ber of used class attributes (i.e., instance variables). The
accuracy of such heuristic has been evaluated by manu-
ally checking 100 methods reported as moved by the
MARKOS code analyzer. Results showed that 89 of them
were actually moved methods. Typical cases of false posi-
tives were those in which a method was removed from a
class and a very similar one—in terms of signature and
fingerprint—was added to another class.

After having analyzed the APIs, we used such informa-
tion to compute, for each app, the total number of bugs
fixed in the used APIs and the number of changes along the
three categories mentioned above.

It is important to note that, while in our previous work
[10] we focused the attention only on the official Android
APIs, here we also consider all the (open source) third-
party APIs used by the apps; in fact, across the 5,848
apps object of our study, 1,224 (21 percent) make use of
open source third-party APIs. Our choice of also consid-
ering third-party APIs explains why we focus our study
on a smaller set of apps with respect to the work in [10]
(i.e., 5,848 against 7,097—82 percent). Indeed, we only
consider an app in our study if it (i) does not use any
third-party library or (ii) uses third-party APIs for which
we were able to find the versioning system. In other
words, apps using third-party APIs for which we were
not able to find the versioning system were discarded by
our study. In total, we were able to analyze the entire
change history of 68 projects used as third-party APIs by
the Android apps in addition to the official Android
APIs. The list of the analyzed third-party libraries is
reported in Table 2. The total number of API classes
considered in this study is 19,763 compared to the 4,816
considered in [10]. Note that commercial third-party APIs
were not taken into account given the impossibility to
analyze their change history.

3. http://code.google.com/p/android-market-api verified on Janu-
ary 2014.

4. http://code.google.com/p/dex2jar verified on January 2014.
5. http://jclassinfo.sourceforge.net verified on January 2014.
6. We mined the change history of APIs with versioning systems

publicly available. The list of APIs we mined is within our online
appendix, which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TSE.2014.2367027.

7. www.markosproject.eu verified on January 2014.

BAVOTA ET AL.: THE IMPACT OF API CHANGE- AND FAULT-PRONENESS ON THE USER RATINGS OF ANDROID APPS 387

2.1.5 Analysis Method

To define the analysis method it is important to analyze
the distribution of high and low rated apps in our dataset.
Fig. 1 reports the distribution of the average ratings
assigned by users to these apps. Note that the number of
ratings received by each app varies between 10 (the mini-
mum we considered) and 432,900, with a first quartile ¼ 31,
median ¼ 105, third quartile ¼ 597, and mean ¼ 2,540.

In general, the user ratings are very high: 3,251 apps
(55.59 percent) exhibit an average rating greater than 4 stars.
Nevertheless, due to quite large corpus of apps considered
in our study, we also have 425 apps with an average rating
lower than 3 stars. Thus, we can verify a possible relation-
ship between fault- and change-proneness of used APIs and
apps average user rating. One might be tempted to believe
that such apps received high scores because of being free,
i.e., the user is less disappointed when an app is unreliable
or useless, because she did not spend money for it or, on the
contrary, a good and free functionality is highly rewarded.
To verify this conjecture, we analyzed the ratings for 5,848
paid (non-free) apps randomly selected from the Google
Play Market.8 Fig. 2 depicts the distribution of ratings for
these commercial apps. The number of ratings received by
each commercial app vary between 10 and 96,460, with a
first quartile ¼ 16, median ¼ 30, third quartile ¼ 85, and
mean ¼ 267. As in the case of the free apps, user ratings are
generally very high: 3,359 commercial apps (57.44 percent)
exhibit an average rating greater than 4 stars. Also, similarly
to free apps, 438 commercial apps have an average rating
lower than 3 stars. In summary, the average rating for free
apps is 3.97, whereas for paid apps it is 4.02. Although
Mann-Whitney test reports a significant difference between
the two distributions (p-value < 0:0001), the difference has a
negligible effect size (Cliff’s d ¼ 0:05).

Coming back to the 5,848 free apps object of our study,
we group them in three different sets on the basis of their
average user rating (ra). In particular, given Q1 ¼ 3:667 and
Q3 ¼ 4:395 the first and the third quartile of the distribution
of the average user ratings assigned to the 5,848 apps con-
sidered in our study, we cluster the apps into the following
three sets:

1) Apps having high rating: apps having ra > Q3.
2) Apps having medium rating: apps having Q3 �

ra > Q1.
3) Apps having low rating: apps having ra � Q1.
To address our research questions, we use descriptive

statistics to provide an overview of data, then followed by
the use of statistical tests and effect size measures. First, we
depict boxplots of the distribution of the average number of
faults and changes for APIs used by apps that received aver-
age scores in the three categories described above. It is very
important to note that, for each app, we compute the aver-
age (mean) number of changes across all APIs used by that
app. In this way, we do not bias the study because of apps
using too many (and possibly change-prone) or too few
(and possibly stable) APIs. Then, we plot and compare dis-
tributions of such averages.

TABLE 2
Analyzed Third-Party Libraries

API name #apps
using it

#Classes KLOC

ACRA 152 51 8
AdWhirl 352 75 18
AndEngine 26 596 66
android-wheel 12 25 3
AndroidAsynchronousHttpClient 10 19 4
AndroidPulltorefresh 6 36 6
AndroidQuery 10 66 20
ApacheCommonsCodec 96 107 28
ApacheCommonsIO 29 200 50
ApacheCommonsLang 25 242 114
ApacheCommonsLogging 121 65 12
ApacheCordova 8 98 15
ApacheJamesMime4j 2 270 38
asmack 4 15 3
BeInToo 1 123 22
cwac-adapter 8 2 1
cwac-anddown 11 2 1
cwac-colormixer 11 6 1
cwac-endless 9 7 1
cwac-layouts 3 4 1
cwac-loaderex 3 15 1
cwac-locpoll 5 5 1
cwac-merge 8 3 1
cwac-sacklist 11 2 1
cwac-wakeful 10 5 1
DiskLRUCache 1 5 2
Droid-Fu 34 74 11
Facebook 630 156 43
FasterXMLJackson 1 143 37
google-gson 230 184 27
GoogleGDataClient 31 1,228 214
GoogleGuava 26 1,648 392
GoogleGuice 5 510 72
GoogleProtocolBuffers 2 45 21
GoogleZXing 35 459 202
ImageViewZoom 18 22 2
JodaBeans 5 135 27
JodaMoney 2 35 14
JodaPrimitives 3 154 40
JodaTime 13 317 140
JSONsimple 70 14 2
jsoup 31 80 18
JTwitter 17 90 20
JTwitterJSON 9 91 20
libgdx 324 2,035 324
Madvertise 78 10 3
MobFox 2 54 10
MongoDBJavaDriver 21 258 45
MoPub 80 154 17
NewQuickAction 6 6 1
NewQuickAction3D 10 5 1
NineOldAndroids 1 47 11
OpenUDID 6 2 1
ormlite 15 20 3
RoboGuice 10 133 10
ScribeOAuth 46 137 7
SignPostOAuth 98 54 5
slf4j 147 221 26
SlidingMenu 1 33 4
Socialize 12 977 116
SpringFramework 7 182 33
TapIt 11 50 8
Twitter4J 118 397 56
TwitterAPIME 2 125 23
UniversalImageLoader 2 78 10
ViewPagerindicator 1 42 4
WapStartPlus1 1 19 3
XMLPullParsing 396 59 12

8. Further information about these apps is in our online appendix,
available in the online supplemental material.

388 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 4, APRIL 2015

In addition to showing boxplots, we compare such distri-
butions using Mann-Whitney test [14]. For the latter, we
pairwise compared the fault-and change-proneness for the
three groups. The results were statistically significant at
a ¼ 0:05. Since we performed multiple tests, we adjusted
our p-values using the Holm’s correction procedure [15].
This procedure sorts the p-values resulting from n tests in
ascending order, multiplying the smallest by n, the next by
n� 1, and so on.

We also estimated the magnitude of the difference
between fault- and change-proneness of the APIs used by
different groups of apps; we used the Cliff’s Delta (or d), a
non-parametric effect size measure [16] for ordinal data. We
followed the guidelines in [16] to interpret the effect size
values: small for d < 0:33 (positive as well as negative val-
ues), medium for 0:33 � d < 0:474 and large for d � 0:474.

2.1.6 Replication Package

The data set used in our study is publicly available at
http://www.cs.wm.edu/semeru/data/tse-android/.Spe-
cifically, we provide: (i) the list (and URLs) of the studied

5,848 apps, together with the user ratings distributions; (ii)
the list of APIs used by each app; (iii) complete information
on the bugs fixed and changes that occurred in the APIs
considered in our study (both official Android as well as
third-party APIs); (iv) the R scripts and working data sets
used to run the statistical tests and produce the plots and
tables presented.

2.2 Results

This section reports the results aimed at answering the two
research questions formulated in Section 2.1.2.

2.2.1 Does the Fault-Proneness of APIs Affect the User

Ratings of Android Apps?

Boxplots in Fig. 3 show the distribution of average number
of bug fixes in API classes used by apps having different
levels of rating (i.e., high, medium, and low rating as defined
in Section 2.1.5). Note that we set 30 as a limit for the y-axis
(i.e., average number of bug fixes in API classes) for read-
ability purposes.

The boxplots reported in Fig. 3 highlight that apps
having a higher average user rating use APIs having a
lower bug-proneness. In particular, apps having a high
rating use APIs with 6.1 bug-fixes on average. This num-
ber grows up to 9.8 (þ61 percent) for apps having a
medium rating and reaches 12 (þ111 percent) for apps
having a low rating. Overall, the difference in terms of
APIs fault-proneness between apps having different lev-
els of rating is very clear by looking to the distributions
depicted in Fig. 3.

We also compared the difference in terms of API bugs
between the 50 most and the 50 least successful apps (in
terms of achieved average user rating). The 50 most success-
ful apps are those having an average rating higher than
4.946, while the 50 least successful exhibit an average
rating lower than 2.068. For the former, the average number
of bug fixes in the used APIs is 4.4, while for the latter we

Fig. 1. Average user ratings for the 5,848 analyzed apps.

Fig. 2. Average user ratings for 5,848 paid apps.

Fig. 3. Boxplots of average number of bug fixes in API classes used by
apps having different levels of rating. The red dot indicates the mean.

BAVOTA ET AL.: THE IMPACT OF API CHANGE- AND FAULT-PRONENESS ON THE USER RATINGS OF ANDROID APPS 389

measured an average of 24.5 bug fixes in the used APIs
(þ457 percent).

Table 3 reports the results of the Mann-Whitney test
(p-value) and the Cliffs d effect size. We compared each set
of apps (grouped by level of rating) with all other sets hav-
ing a lower rating (e.g., high rating vs. the other). As we can
see from the table, apps having a higher rating always
exhibit a statistically significant lower number of bug fixes
in the used APIs than apps having a lower rating (p-value
always < 0.0001). The Cliff’s d is small (0.10) when compar-
ing apps having a high rating and apps having a medium rat-
ing, and medium (0.37) when the comparison is performed
between apps having a high rating and apps having a low
rating. The effect size is small (d ¼ 0:18) when comparing
apps having a medium rating and those having low rating.
As expected, also the comparison of the 50 most and the 50
least successful apps shows statistical significant difference,
with a p-value < 0.0001 and a large effect size (d ¼ 0:66).

With the achieved results, we can reject our null hypothe-
sis H01 , i.e., APIs used by apps having higher user ratings
are, on average, significantly less fault-prone than APIs
used by low rated apps. However, it is interesting to under-
stand if the observed difference in terms of APIs fault-
proneness between apps having different levels of rating is
due to the used official Android APIs, third-party APIs, or
to both of them. To this aim, we separately investigated the
fault-proneness of the official Android APIs and of the
third-party APIs used by the apps object of our study.

Concerning the official Android APIs, apps having a high
rating use APIs that underwent, on average, 6.2 bug fixes,
as compared to the 9.7 (þ56 percent) of apps having a
medium rating and the 13.0 (þ109 percent) of apps having a
low rating. This result is inline with what we observed when
analyzing all the used APIs as a whole. Also the results of
the Mann-Whitney test reported in Table 4 confirm that offi-
cial Android APIs used by apps having a higher average
user rating are, on average, significantly less fault-prone
than APIs used by low rated apps. Indeed, as already
observed when considering all APIs, apps having a higher
rating always exhibit a statistically significant lower number
of bug fixes in the used APIs than apps having a lower

rating (p-value always < 0.0001). In this case, the effect size
is small in all comparisons.

When analyzing third-party APIs in isolation we only
considered the 1,224 apps using at least one third-party API
since, as explained in Section 2.1.4, not all the considered
apps use third-party APIs. In this case we observed a
slightly different trend:

� apps having a high rating use third-party APIs sub-
ject, on average, to 1.3 bug-fixing activities.

� apps having a medium rating use third-party APIs
subject, on average, to 3.6 bug-fixing activities
(þ177 percent).

� apps having a low rating use third-party APIs subject,
on average, to 2.7 bug-fixing activities (þ108 percent).

Thus, while it is confirmed that apps having a high rating
use less fault-prone APIs than apps having a medium and a
low rating, from the average values it seems that apps hav-
ing a medium rating use APIs more fault prone than those
used by apps having a low rating. However, by looking into
the data we found that this result is mainly due to a set of
28 apps falling in the medium rating category and all using
the same (fault-prone) third-party APIs. In particular, these
28 apps are developed by the same software house9 and use
APIs subject to a number of bug-fixes going from a mini-
mum of 23 to a maximum of 46, clearly raising the average
value of bug-fixes in the medium rating category. In fact,
when comparing the fault-proneness of the three categories
by using the Mann-Whitney test (see Table 5), we obtain
that apps having higher ratings use APIs statistically signifi-
cant less fault-prone than low rated apps, even when com-
paring apps having a medium rating with those having a low
(p-value always <0.0001, with a small effect size).

Summarizing, the results of our RQ1 show that the higher
the rating of the apps, the lower the fault-proneness of the
APIs they use. This holds when considering all APIs, as well
as the official AndroidAPIs and third-partyAPIs in isolation.

2.2.2 Does the Change-Proneness of APIs Affect the

User Ratings of Android Apps?

Boxplots in Fig. 4 show the change-proneness of APIs used
by the three different sets of apps considered in our study. In
particular, Figs. 4a and 4b report the overall number of
method changes and the overall number of changes in the
method signatures, respectively, while Figs. 4c and 4d show
the same data by considering the APIs’ public methods only.

Fig. 4 suggests that apps having a higher rating gener-
ally use more stable APIs, i.e., APIs having a lower

TABLE 3
Use of Fault-Prone APIs by Apps Having Different Levels of
Rating: Mann-Whitney Test (adj. p-value) and Cliff’s Delta (d)

Test adj. p-value d

highrating vsmedium rating <0.0001 0.10 (Small)
highrating vs low rating <0.0001 0.37 (Medium)
mediumrating vs low rating <0.0001 0.18 (Small)

TABLE 4
Use of Fault-Prone Android API by Apps Having Different

Levels of Rating: Mann-Whitney Test (adj. p-value)
and Cliff’s Delta (d)

Test adj. p-value d

highrating vsmedium rating <0.0001 0.10 (Small)
highrating vs low rating <0.0001 0.27 (Small)
mediumrating vs low rating <0.0001 0.18 (Small)

TABLE 5
Use of Fault-Prone Third-Party APIs by Apps Having Different

Levels of Rating: Mann-Whitney Test (adj. p-value)
and Cliff’s Delta (d)

Test adj. p-value d

highrating vsmedium rating <0.0001 0.09 (Small)
highrating vs low rating <0.0001 0.27 (Small)
mediumrating vs low rating <0.0001 0.19 (Small)

9. http://www.androidpit.it/it/android/market/applicazioni/
list/owner/LightCubeMagic verified on January 2014.

390 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 4, APRIL 2015

change-proneness. In particular, the APIs used by apps
having a high rating underwent, on average, 25 method
changes, as opposed to the 36 changes in the APIs used by
apps having a medium rating (+44 percent) and to the 47
(+88 percent) of the apps having a low rating—see Fig. 4a.
Also, the three quartiles show a continuous upward-trend
of the number of changes as the app ratings decrease.

The trend is almost the same if considering public meth-
ods only: an average of 15 method changes for APIs used by
top rated apps, 21 for those having amedium rating (+40 per-
cent), and 26 for APIs used by apps having a low rating (+73
percent)—Fig. 4c. Again, boxplots confirm that apps having
a low rating generally use more change-prone APIs as com-
pared to apps having a high rating.

Also for changes involvingmethod signatures (Figs. 4b and
4d), results highlight that highly rated apps are generally built
using stable APIs. If considering both public and private/pro-
tectedmethods (Fig. 4b), we observe, on average, five changes

in APIs used by apps having a high rating, seven changes
for apps having a medium rating (þ40 percent), and nine
for the apps having the lower ratings (þ80 percent). Results
are confirmed if considering public methods only (Fig. 4d).

Similarly to the case of bug fixes, we also compared
the 50 most and the 50 least successful apps (in terms of
their average rating), and the results for the four types of
changes are:

1) the overall number of method changes in API meth-
ods are, on average, 20 for the most successful and
83 (+315 percent) for the least successful apps;

2) the number of changes in public methods is 12 for
the most successful, and 44 (+267 percent) for the
least successful apps;

3) changes to method signatures are 4 vs. 16 (þ300 per-
cent) considering all methods, and 3 vs. 11 (þ266
percent) by considering public methods only.

Fig. 4. Boxplots of change-proneness in API classes used by apps having different levels of rating. The red dot indicates the mean.

BAVOTA ET AL.: THE IMPACT OF API CHANGE- AND FAULT-PRONENESS ON THE USER RATINGS OF ANDROID APPS 391

Table 6 reports the results of the Mann-Whitney test and
the Cliff’s d when comparing the change-proneness of APIs
used by apps belonging to different groups of average user
ratings. Table 6 shows that: (i) there is statistically signifi-
cant difference (p-value < 0.0001) when comparing apps
having a higher rating with those having a lower one, and
(ii) Cliff’s delta is small for all comparison. However, when
comparing the top 50 and the least 50 successful apps (i) the
p-value is confirmed < 0.0001, and (ii) we get a large Cliff’s d
(� 0.474) for all change types.

Then, we analyzed another category of changes that
might occur in the Android APIs, i.e., changes to the set of
exceptions thrown by methods. In total, we identified 2,799
changes to exceptions thrown by methods; 1,735 (62 per-
cent) were aimed at adding new exceptions to a method.
Results are reported in Figs. 5a and 5b for all methods and
public methods only, respectively. Differently from the
trends observed for the other kinds of changes shown in
Fig. 4, for what concerns changes to exceptions we do not
observe (also according to Mann-Whitney tests performed)
any significant difference between different levels of apps’
rating. This result is not surprising, since robust Java pro-
grams generally make a massive use of exception handling
mechanisms [17].

On summary, we can reject our null hypothesis H02 i.e.,
APIs used by apps having high user ratings are on average less
prone to changes occurred to API signatures and implementation
than APIs used by low rated apps. Instead, there is no significant
difference when the changes are on the exceptions thrown by
API methods.

As already done for the fault-proneness, we also ana-
lyzed the change-proneness of APIs used by the different
categories of apps by isolating official Android APIs and
third-party APIs. Concerning the official Android APIs, we
observed that those used by apps having high user ratings
are significantly less change prone than those used by low
rated apps, as also confirmed by the results of the Mann-

Whitney test reported in Table 7 (p-value always <0.0001
with a small effect size). In particular:

� In terms of overall method changes, apps having a
high rating use APIs that underwent, on average, 25
changes, as compared to the 37 (þ48 percent) of apps
having a medium rating and the 48 (þ92 percent) of
apps having a low rating. This trend is also con-
firmed when just considering changes to public
methods, with apps having low rating using APIs
subject to 27 changes, on average, 80 percent more
than the apps having high rating.

� When focusing on changes performed on method
signatures, apps having a high rating use APIs object,
on average, of 5 changes, 40 percent less than APIs

TABLE 6
Change-Proneness of APIs for Apps Having Different Levels of

Rating: Mann-Whitney Test (p-value) and Cliff’s delta (d)

Test adj. p-value d

Overall Method Changes

highrating vsmedium rating <0.0001 0.08 (Small)
highrating vs low rating <0.0001 0.25 (Small)
mediumrating vs low rating <0.0001 0.18 (Small)

Changes to Public Methods
highrating vsmedium rating <0.0001 0.08 (Small)
highrating vs low rating <0.0001 0.25 (Small)
mediumrating vs low rating <0.0001 0.17 (Small)

Overall Changes in Method Signatures
highrating vsmedium rating <0.0001 0.07 (Small)
highrating vs low rating <0.0001 0.24 (Small)
mediumrating vs low rating <0.0001 0.17 (Small)

Changes in Public Method Signatures
highrating vsmedium rating <0.0001 0.08 (Small)
highrating vs low rating <0.0001 0.24 (Small)
mediumrating vs low rating <0.0001 0.17 (Small)

Fig. 5. Boxplots of changes related to method thrown exceptions in API
classes used by apps having different levels of rating. The red dot indi-
cates the mean.

392 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 4, APRIL 2015

used by apps having a medium rating and 80 percent
less than APIs used by apps having a low rating.
These results are also confirmed when just focusing
on public methods.

� If restricting our analysis to the Android APIs only,
we do not observe any statistically significant differ-
ence in terms of changes performed to the exceptions
thrown by methods between the different categories
of apps.

Turning to the third-party APIs, the results of the
Mann-Whitney test reported in Table 8 show that the
change-proneness of APIs used by apps having high user
ratings is lower in a statistically significant way. More-
over, when comparing apps having a high rating with
those having a low rating, we obtain a large effect size for
all type of changes reported in Table 8. For instance,
when considering all changes performed to the API meth-
ods, we go from the three changes, on average, of APIs
used by apps having a high rating to the seven changes
(+133 percent) of APIs used by apps having a low rating.
The same trend has been also observed when (i) just
focusing on public methods, and (ii) just considering the
changes occurred to (public) methods’ signature.

Instead, also in case of third-party APIs, we did not
observe any statistically significant difference in terms of
changes performed to the exceptions thrown by methods in
APIs used by the different categories of apps.

Summarizing, the results of RQ2 show that the higher the
average rating of the apps, the lower the change-proneness
of the APIs they use. This holds when considering all APIs,
as well as when restricting our attention to official Android
APIs or third-party APIs only. Instead, there is no signifi-
cant difference when the changes are on the exceptions
thrown by API methods. Again, this result holds for all
APIs as well as for the official Android APIs and the third-
party APIs considered in isolation.

2.2.3 Qualitative Analysis

The quantitative analysis performed to answer our research
questions provided us with strong empirical evidence that
Android apps having higher rating generally use APIs that
are less fault- and change-prone than APIs used by apps
having lower rating. We are aware that this is not sufficient
to claim causation; consequently, we performed a qualita-
tive analysis to (at least in part) find a rationale of the rela-
tion between the use of “problematic APIs” and the low
user ratings of some apps.

First, we performed a coarse grained automatic analysis
of comments left by users to unsuccessful apps (i.e., apps
having an average rating lower than three), for a total of
15,944 comments. The goal of this analysis is just to get an
idea of the main reasons behind the users dissatisfaction
with low rated apps. In particular, we are interested in
understanding if these comments are mostly related to
lack of features in the apps (and thus, no relation with the
use of fault- and change- prone APIs can be hypothe-
sized), to bugs/unexpected behavior of apps (and thus, a
possible relation with the use fault- and change- proneness
APIs could exist), or both. To this aim, we extracted from
comments the n-grams composing them, considering
n 2 ½1 . . . 4�.

Fig. 6 reports the 30 most common n-grams we found. As
we can notice, the most frequent n-grams are related to
problems with the correct working of the app: does not work,
crashes, update/needs update, please fix it, not compatible with,
freezes, can’t even open it, force close. However, there are also
comments that seems linkable to unsatisfactory features
offered by the app: useless, lacks, annoying, boring. Thus, as
expected, bugs/unexpected behavior of apps represent one
of the main reasons behind users dissatisfaction with down-
loaded apps.

The next step to find insights about the relation between
the use of fault- and change-prone APIs and the apps user

TABLE 7
Change-Proneness of Android APIs for Apps Having
Different Levels of Rating: Mann-Whitney Test (p-value)

and Cliff’s delta (d)

Test adj. p-value d

Overall Method Changes

highrating vsmedium rating <0.0001 0.08 (Small)
highrating vs low rating <0.0001 0.26 (Small)
mediumrating vs low rating <0.0001 0.18 (Small)

Changes to Public Methods
highrating vsmedium rating <0.0001 0.08 (Small)
highrating vs low rating <0.0001 0.26 (Small)
mediumrating vs low rating <0.0001 0.18 (Small)

Overall Changes in Method Signatures
highrating vsmedium rating <0.0001 0.07 (Small)
highrating vs low rating <0.0001 0.25 (Small)
mediumrating vs low rating <0.0001 0.18 (Small)

Changes in Public Method Signatures
highrating vsmedium rating <0.0001 0.08 (Small)
highrating vs low rating <0.0001 0.25 (Small)
mediumrating vs low rating <0.0001 0.17 (Small)

TABLE 8
Change-Proneness of Third-Party APIs for Apps Having
Different Levels of Rating: Mann-Whitney Test (p-value)

and Cliff’s delta (d)

Test adj. p-value d

Overall Method Changes

highrating vsmedium rating <0.0001 0.34 (Medium)
highrating vs low rating <0.0001 0.49 (Large)
mediumrating vs low rating 0.0001 0.18 (Small)

Changes to Public Methods
highrating vsmedium rating <0.0001 0.34 (Medium)
highrating vs low rating <0.0001 0.48 (Large)
mediumrating vs low rating 0.0002 0.17 (Small)

Overall Changes in Method Signatures
highrating vsmedium rating <0.0001 0.31 (Small)
highrating vs low rating <0.0001 0.49 (Large)
mediumrating vs low rating <0.0001 0.19 (Small)

Changes in Public Method Signatures
highrating vsmedium rating <0.0001 0.30 (Small)
highrating vs low rating <0.0001 0.45 (Large)
mediumrating vs low rating 0.0003 0.16 (Small)

BAVOTA ET AL.: THE IMPACT OF API CHANGE- AND FAULT-PRONENESS ON THE USER RATINGS OF ANDROID APPS 393

ratings is to manually analyze some of the unsuccessful
apps on Google Play trying to understand if APIs’ bugs/fre-
quent changes directly impacted the apps’ user experience.

Firstly, we must point out that most of the negative
reviews we looked at were simply non-informative, i.e.,
did not provide any clue for the reasons behind the user
dissatisfaction. Examples of such reviews are “this app is
terrible”, “crap”, “do not download”, “improvements needed”,
and “needs a lot of work”. This outcome was quite expected,
since a recent study by Chen et al. [18] showed that just
35 percent of reviews available on the mobile app market-
place were informative. Also, we found negative reviews
due to the poor features provided by the apps (e.g.,
“boring”, “this is not an app is just a link to the website”), or to
the “spam nature” of the app (e.g., “a lot of spam on screen
and notifications”, “I never even got to the point where I could
open the app itself I was constantly closing pop-up windows and
removing added icons to my home screen”). These negative
reviews are clearly not linkable to any API issues, but sim-
ply due to specific apps’ characteristics.

Nevertheless, several negative reviews were related to
bugs/crashes experienced by users while using the apps
(as also highlighted by the n-grams analysis). To provide
some numbers, among the 151,564 negative reviews (i.e.,
those having a score lower than three stars) present in
our dataset, 27,162 contained the word “bug” or the tri-
gram “does not work”, and 14,228 contained the word
“crash”, “freezes” or the bi-gram “force close”. Most of
these reviews did not describe the experienced issues
enough in details to allow us to check if the APIs’ bugs/
frequent changes were the cause of the problem. Still,
we found several user reviews directly related to prob-
lems present in the APIs used by the apps they down-
loaded and tried.

An interesting case is the official CNN app for Android
tablets. In our study, we analyzed the release 1.3.3 of the
CNN app. That version received several low ratings from
users (482 out of 812 votes rated the app with one star),
mostly because the presence of bugs. However, we found
that some of those bugs were related to the Android APIs.
For example, these are two reviews in Google Play for the
CNN app version 1.3.3

Rating: $$

A Google User - July 3, 2012 - Version 1.3.3
Widget?
The widget looks awesome when it doesn’t foul up. I just
don’t understand the invisible widget thing. please fix.

Rating: $$ $$

A Google User - July 6, 2012 - Version 1.3.3
Needs some MAJOR bug fixes
I was excited to see that the app has finally been updated,
and for a few hours it worked great. But then some of its
widgets became invisible, and it froze my desktop several
times. Galaxy Tab 7.7 with ICS.

By analyzing the change log of the APIs used by the
CNN app, we identified a possible cause for the problem
described in the reviews. In particular, with a commit per-
formed on 07/03/2012, the developer Chet H. implemented
a bug fix solving the issue #6773607 in the Android API:
Layered views animating from offscreen sometimes remain invisi-
ble. The layered views are the mechanism used by the CNN
app to implement its widgets.

We also found several user reviews reporting prob-
lems related to functionalities in apps that are provided
by problematic APIs. An interesting example is the sub-
system android.speech.tts, providing developers
with the possibility of integrating the Text To Speech
(TTS) technology in their apps. More than 200 users of
the apps using TTS complained about problems related
to this feature. Examples of reviews are “Useless. TTS
doesn’t work.”, and “Every time I restart my phone I have to
reinstall it as app related to TTS.”. By analyzing the change-
history of the android.speech.tts subsystem, we
found that the 15 classes contained in it underwent, in
total, 93 commits (69 of which fixed a bug), distanced on
average 13 days from each other. In these commits, a total
of 460 methods have been changed, of which 289 are pub-
lic methods, and among these public methods 80 under-
went changes to their signatures. This can suggest that,
very likely, it has been difficult, for app developers, to
stay tuned with changes performed in such unstable and
fault-prone APIs.

Another API, this time a third-party one, that caused
problems to users for a certain period of time was the
Facebook Android SDK.10 We found almost 100 users of
apps relying on the Facebook Android SDK leaving low
ratings due to problems experienced when logging in,
from their app, to Facebook. Examples of these reviews
are “Every time I login to Facebook the app is forced to close.”
and “Started once, seemed to login with Facebook, but after
that, it went back to the main screen and nothing happened.”
This strange behavior, that forced the apps to close when
logging into Facebook, was due to a bug present in the
Facebook Android SDK until version 3.5. This issue has
also been discussed by Android developers in the popular
Questions & Answers website stackoverflow.com

11

and was resolved in the version 3.5.1 of the Facebook

Android SDK.

Fig. 6. Word cloud of the 30 most common n-grams in low rated apps
user comments.

10. http://tinyurl.com/nz7z4zs verified on January 2014.
11. http://tinyurl.com/qyop5q9 verified on January 2014.

394 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 4, APRIL 2015

In general, the performed qualitative analysis confirmed
the results of the quantitative one: fault- and change-prone
APIs represent a serious threat for the success of Android apps.

3 STUDY II: SURVEY WITH DEVELOPERS

The goal of this study is survey Android developers, with
the purpose of understanding to what extent they experience
problems when using APIs and how much they consider
these problems to be related with negative user ratings/
comments. Hence, the study quality focus is the developers’
perception of the impact change- and fault-prone APIs
can have on the apps’ user ratings. Such perception insights
serve to corroborate the (mainly quantitative) results of the
first study where we found a correlation between change-
and fault-prone APIs and apps ratings. The context of this
study consists of 45 professional developers (hereinafter
referred to as “participants”) providing their opinions about
the goals of the study.

3.1 Study Design

In the following, we report the design and planning of
the survey study, by detailing the context selection, the
research questions, the data collection process, and the
analysis method.

3.1.1 Context Selection

As potential participants to this study, we targeted all
developers of the apps considered in the first study (Study
I). To identify them, we mined the Google play market’s
webpages of the 5,848 apps considered in our previous
study to extract the email address of the related developers.
This was possible thanks to the Contact Developer field pres-
ent in each webpage presenting an app on the market. We
automatically removed all duplicated e-mail addresses due
to multiple apps developed by the same developer(s). This
resulted in almost 1,800 e-mail addresses including, of
course, those related to customer support (e.g., ask@, sup-
port@, etc). We manually pruned-out these addresses,
obtaining in the end 1,221 developers to be contacted. Each
developer received an email with instructions on how to
participate in our study and a link to the website hosting
our survey (details of how data was collected are reported
in Section 3.1.4). In the end, we collected 45 responses. Even
if this number looks very low, i.e., the response rate is 4 per-
cent (whereas the suggested minimum response rate for
survey studies is around 10 percent [19]), we should con-
sider that a number of these developers may be no longer
active in the field, might have changed organization (if any,
while their emails still being valid), etc. In addition, even if
the response rate achieved in our study is quite low, we got
a number of responses higher or comparable to similar sur-
veys reported in the literature (e.g., [20], [21]).

3.1.2 Research Questions

This study aims at addressing the following two research
questions:

� RQ3: To What Extent Android Developers Experience
Problems when Using APIs? This research question
aims at investigating whether Android developers

experience problems related to the use of APIs
when working on their apps. As done in the Android
apps case study (Section 2), we focus our attention
on both the official Android APIs as well as third-
party APIs.

� RQ4: To What Extent Android Developers Consider
Problematic APIs to be the Cause of Negative User Rat-
ing/Comments? This research question aims at inves-
tigating whether, from a developer’s point-of-view,
the usage of problematic APIs negatively impact the
apps’ ratings.

We answer both research questions by asking Android
developers to fill-in a questionnaire we designed.

3.1.3 Survey Questionnaire Design

We designed a survey aimed at collecting developers’ opin-
ion needed to answer our two research questions. The study
questions are reported in Table 9. For each question, the
table specifies whether it is expected an answer in a Likert
scale [22] (from 1¼very low to 5¼very high), a Boolean
answer (Yes or No), or an open answer.

The first six questions aimed at gathering information
about the background of the developers taking part in
our study. In particular, we focus on their experience in
mobile development (i.e., number of years of experience,
used mobile platforms, and number of apps developed)
and on the success of their development activity (i.e.,
number of downloads and average rating assigned by the
users to their apps).

Then, we asked developers about their opinion on the
factors negatively impacting apps’ user ratings. In partic-
ular, we provided participants with four different factors
to evaluate (see questions from 7 to 10) providing for
each of them an assessment on how much it negatively
impacts the user ratings/comments of an app. A score of
one means that the factor does not negatively impact an
app’s rating at all, while a score of five means that the
factor has a strong, negative impact on the app rating.
The four investigated factors are: (i) the features offered
by the app are not useful, (ii) the app is difficult to use,
(iii) on the Google play store there are better apps offer-
ing the same functionality, and (iv) the presence of bugs/
unexpected behaviors in the app. Note that the latter is
the only one on which the use of problematic APIs (both
the official as well as the third-party ones) could have
some form of impact.

In the third part of the survey (questions from 11 to 15)
we asked developers to select the most frequent perceived
causes of bugs/crashes in the apps among five possibilities:
(i) Java programming errors in the app, (ii) use of third-
party libraries affected by bugs, (iii) changes in new releases
of third-party libraries, (iv) bugs present in the official
Android APIs, and (v) changes in new releases of the
Android platform. It is clear that our aim here is to have a
first indication about possible problems experienced by
developers with APIs when working on their apps. This
aspect is investigated more in depth in the next part of our
questionnaire: experiences with used APIs. Questions from
16 to 18 ask developers if they ever experienced problems
with mobile development APIs and, in this case, to indicate
the API name and version.

BAVOTA ET AL.: THE IMPACT OF API CHANGE- AND FAULT-PRONENESS ON THE USER RATINGS OF ANDROID APPS 395

Finally, the last part of our survey (impact of problematic
APIs on the user ratings of your apps-questions from 19 to
21) assesses the impact of problematic APIs on apps’ user
ratings as experienced by developers.

3.1.4 Data Collection

To automatically collect the answers, the survey was hosted
on a Web application named eSurveyPro12 Note that the
Web application exploited for our survey allowed develop-
ers to complete the questionnaire in multiple rounds, e.g., to
answer the first two questions on one day, the others one
week later. Developers had 45 days available to respond. At
the end of the 45 days we collected 28 complete question-
naires. To enlarge the set of participants in our study, we
sent a reminder to the developers that did not answer up to
that point and waited for additional 35 days. This allowed
us collecting additional 17 questionnaires, leading to a total
of 45 completed questionnaires.

3.1.5 Analysis Method

We firstly analyzed, by using descriptive statistics and box
plots, the answers provided to the questions related to the

developers’ background (questions from 1 to 6 in Table 9).
The results of this analysis provided us with information
about the context in which our study has been performed.
Then, to answer RQ3 we report:

1) Box plots of the answers provided by developers to
questions 7-10 (see Table 9), assessing the factors
negatively impacting the apps’ user ratings. The aim
is to verify to what extent the only factor potentially
affected by the use of problematic APIs (i.e. the pres-
ence of bugs/unexpected behaviors in the app) is
felt as important by developers.

2) The percentage of developers indicating change-
and fault-prone APIs as one of the most frequent
perceived causes of bugs/crashes in their apps (see
questions 11-15 in Table 9).

3) The percentage of developers declaring to have
experienced problems with mobile development
APIs (question 16) and to had bugs in their apps due
to new releases of the Android platform (question
18). Also, we present qualitative analysis discussing
examples gathered from the developers’ answers to
question 17 (see Table 9).

Concerning RQ4, we present (i) the percentage of devel-
opers declaring, in question 19, to have observed evidence

TABLE 9
Survey Questionnaire Filled in by the Study Participants

Question Answer

Questions about the developer’s background

1. How many years of experience do you have in Android development? Open
2. On which other mobile platforms did you develop in the past? (e.g., iOS, BlackBerry, etc.) Open
3. How many apps have you developed? Open
4. Please provide URLs for your apps if possible Open
5. How many times have been downloaded your apps? Open
6. What is the average rating assigned by users to your apps? 1 j 2 j 3 j 4 j 5
On the factors negatively impacting apps’user ratings (1¼very low impact, . . ., 5¼very strong impact)

7. The features offered by the app are not useful 1 j 2 j 3 j 4 j 5
8. The app is difficult to use 1 j 2 j 3 j 4 j 5
9. On the Google play store there are better apps offering the same functionalities 1 j 2 j 3 j 4 j 5
10. Presence of bugs/unexpected behaviors in the app 1 j 2 j 3 j 4 j 5
Select, among the following, the most frequent perceived causes of app bugs/crashes.

11. Java programming errors in the app YES jNO
12. Use of third party libraries affected by bugs (e.g., a bug in a library used by the app causes crashes) YES jNO
13. Changes in new releases of third party libraries used by the app cause crashes YES jNO
14. Bugs present in the official Android APIs (e.g., a bug in the Android APIs causes the app to crash) YES jNO
15. Changes in new releases of the official Android APIs cause the app to crash YES jNO

Experiences with used APIs.

16. Did you ever experience problems with mobile development APIs? YES jNO
17. If YES to 16, were they official Android APIs or third party APIs? Indicate release version and
describe the problem if possible

Open

18. Did you ever have new bugs in your app due to the new releases of the Android platform? YES jNO

Impact of problematic APIs on theuser ratings of your apps.

19. Did you find evidence about possible relationships between bad user ratings/comments and
problems experienced with APIs?

YES jNO

20. If YES to 19, provide an assessment on the severity of this impact on user bad ratings/comments
(1¼very low, . . ., 5¼very high)

1 j 2 j 3 j 4 j 5

21. If YES to 19, describe examples of problems in APIs that caused issues in your apps, with consequent
bad ratings/comments

Open

12. http://www.esurveyspro.com verified on January 2014.

396 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 4, APRIL 2015

about relationships between bad user ratings/comments
and problems experienced with mobile development APIs
and (ii) box plots of the severity perceived by developers of
the negative impact of problematic APIs on user ratings/
comments (question 20 in Table 9). Also in this case, we
complement our analysis with qualitative data gathered
from question 21. Note that questions 20 and 21 were asked
only to developers positively answering question 19.

3.1.6 Replication Package

All the data used in our study are publicly available at
http://www.cs.wm.edu/semeru/data/tse-android/. Spe-
cifically, we provide: (i) the text of the email sent to the
developers; (ii) the raw data of answers provided by the
developers; (iii) the R scripts and working data sets used to
run the statistical tests and produce the plots and tables
reports in this paper.

3.2 Results

Fig. 7 shows boxplots of the answers provided by partici-
pants to questions related to their experience in mobile
software development. The 28 developers involved in our
study have between two and five years of experience in
Android apps development—see Fig. 7a, with a mean of
3.5 years (median 4). They developed between one and
200 apps—see Fig. 7b, with a mean of 25 (median 11), and
their apps have been downloaded between 1,932 and
30 millions of times—see Fig. 7c, with a mean of 2,945,000
(median 350,000). The average user ratings of their apps
are quite high and inline with what we observed for free
apps—see Fig. 7d: the average user rating is included
between two and four with an average of 3.7 (median 4).

Overall, the experience of the 45 developers involved
in our study is quite high, both in terms of years working
on the Android platform (especially considering that
Android is a relatively young technology) as well as in
terms of number of developed apps. Moreover, 19 of
them also developed apps for other mobile platforms,
and in particular: 12 developers also worked on iOS, two
on PSP, one on NintendoDS, two on BlackBerry, and two
on Windows phone. Also, their apps have been down-
loaded millions of times and, most of them, also received
good user ratings.

3.2.1 To What Extent Android Developers Experience

Problems when Using APIs?

Fig. 8 reports box plots of the answers provided by develop-
ers to questions assessing the negative impact of four differ-
ent factors (see Table 9—questions 7-10) on the apps’ rating.
Firstly, it is interesting to note as developers consider the
factor less negatively impacting apps’ rating the presence on
the Google play market of better apps providing the same function-
ality. In fact, this is the factor exhibiting the lowest average
score—2.96—and a median of three (i.e., medium negative
impact on apps’ rating). All the other three factors consid-
ered in our study exhibited a median score of four (i.e.,
strong negative impact on apps’ rating), with the app’s usabil-
ity receiving an average score of 3.42, the uselessness of the
features provided by the apps 4.02, and the presence of bugs/
unexpected behavior 4.27. Thus, the presence of bugs/unex-
pected behavior is the factor developers perceived as the
one having the strongest negative impact on apps’ rating.
This is inline with what we observed in the qualitative

Fig. 7. Boxplots of answers provided by developers to questions related to their experience. The red dots indicate the mean.

Fig. 8. Boxplots of answers provided by developers to questions 7-10
(see Table 9), assessing the factors negatively impacting the apps’ rat-
ing (1¼very low impact, . . ., 5¼very strong impact). The red dots indicate
the mean.

BAVOTA ET AL.: THE IMPACT OF API CHANGE- AND FAULT-PRONENESS ON THE USER RATINGS OF ANDROID APPS 397

analysis performed in the context of our first study (see Sec-
tion 2.2.3), where we found most of the negative comments
left by apps’ users related to problems with the correct
behavior of the app. Among all factors considered in this
study, this is the one having the most straight-forward
direct link to API change and fault-proneness. That is, API
change- and fault-proneness is unlikely to (directly) affect
the app usability or the level of provided functionalities, fac-
tors mainly due to app’s design and implementation choices
(and only partially due to the available technologies).
Instead, mis-use of APIs that evolved, or use of unreliable
API will likely cause bugs and/or unexpected behavior.

Fig. 9 reports the results obtained when asking develop-
ers to select the most frequent perceived causes of bugs/
crashes in the apps among: (i) Java programming errors in
the app, (ii) use of third-party libraries affected by bugs, (iii)
changes in new releases of third party libraries, (iv) bugs
present in the official Android APIs, and (v) changes in new
releases of the official Android APIs. In particular, for each
of these five perceived causes we report the percentage of
developers indicating it as one of the most frequent causes
of apps’ bugs (note that we allowed each developers to
select more than one of the proposed causes).

Among the 45 developers, 38 (84 percent) indicated Java
programming errors as one of the most frequent cause of
bugs/crashes in their apps. This result is not surprising
since, as any other piece of software, Android apps can be
affected by programming errors made by developers. 71 per-
cent of developers (i.e., 32 out of 45) indicated the use of
third-party libraries affected by bugs as one of the reasons fre-
quently causing bugs/crashes in their apps, while 44 per-
cent (20 out of 45) pointed out the changes in new releases of
third-party libraries as one of the bugs/crashes root causes. If
restricting our attention to the Android official APIs only,
25 developers (56 percent) indicate the bugs present in the offi-
cial Android APIs and 22 (49 percent) the changes in new
releases of the official Android APIs as frequent cause of bugs/
crashes in their apps.

Summarizing, the study results indicate that:

1) a large percentage of the developers (between 44 and
71 percent) consider change- and fault-proneness of
APIs as threats to the proper working of their apps.
When focusing on problems related to the APIs (i.e.,
considering all the answers but the “Java program-
ming errors in the app” one), developers perceive that
bugs present in third-party APIs represent the most
frequent cause of bug introduction in their apps.

2) developers are generally more concerned about the
effect of bugs present in the used APIs than about
changes performed in new releases of the used APIs;
this is true for both third-party as well as official
Android APIs.

3) developers believe that more bugs are present in
third-party APIs than in the official Android APIs.
However, they are more concerned about the
change-proneness of the Android platform than to
the change-proneness of third-party APIs. This result
likely has a two-fold explanation. First, the Android
APIs have been object of a very fast evolution13 lead-
ing to 18 major releases over just four years. It is very
unlikely that also third-party APIs have evolved so
fast. This is also confirmed by the average frequency
of commits per month observed in Study I for the
Android APIs (164 commits per month) as compared
to the third-party APIs (14 commits per month).
Thus, developers have more likely experienced bugs
introduced by major changes in the Android APIs
than by changes in the used third-party libraries.
Second, Android API reuse by inheritance is widely
implemented by developers [23], [24], and Android
apps are highly dependent on the official Android
APIs [25]. Almost 50 percent of classes in Android
apps inherit from a base class as shown in a recent
study by Mojica Ruiz et al. [23]. This, again, makes
more likely for developers to experience bugs due to
changes in the official APIs than in third-party APIs.

Among the 45 developers answering our questionnaire,
33 (73 percent) said they have experienced problems with
the used APIs (question 16 in Table 9). Of these 33, 21 indi-
cated Android APIs as the cause of the problems, and 12
indicated third-party APIs. Again, this is likely because
most of the APIs used in the apps belong to the Android
SDK, and only few of them are third-party ones.14 Also, 64
percent of developers (29) declared to have observed new
bugs in their apps introduced as a consequence of new
releases of the Android platform (question 18 in Table 9).

Three developers indicated the third-party library
moPub15 as the one they experienced problems with, and
one of them also explained the problem. moPub is an open-
source advertisements (ads) serving platform designed to
help developers to monetize the success of their apps by
effectively placing advertisements. Note that moPub does
not broker advertisers for an app; rather, for this task, it

Fig. 9. Percentage of developers indicating each of the considered
“perceived causes” among those most frequently causing bugs/crashes
in the apps.

13. https://developer.android.com/reference/android/os/Build.
VERSION_CODES.html verified on January 2014.

14. Note that in our first study, we found just 21 percent of the con-
sidered apps to use at least one open source third-party API.

15. http://www.mopub.com/ verified on January 2014.

398 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 4, APRIL 2015

relies on an ads network. Hence, moPub can be integrated
with any available advertisement network, like the one
used by the developer, i.e., MillennialMedia.16 The integra-
tion between moPub and MillennialMedia created issues to
one of the developers involved in our survey:

moPub APIs in some versions caused crashes when
integrating MillennialMedia as ad network

One developer indicated the google-api-translate-java APIs17

as cause of problems in her apps. In particular, while this
problem is somewhat related to a third-party API (google-
api-translate-java is not part of the Android platform), it is
manifested just with the release of the Android platform
4.0. The developer pointed us to the google-api-translate-java
issue tracker describing the problem18 and wrote:

my app makes a massive use of thegoogle-api-trans-
late-javaAPIs and everything worked just fine until
the release of Android Ice Cream Sandwich (i.e., the
release 4.0 of Android). Then, my app started crashing
when invoking thegoogle-api-translate-javaAPIs.
The problem was solved by modifying the request to
the APIs from a GET to a POST request.

Other developers indicated some other APIs as the source of
their problems (e.g., RoboGuice, Wa, etc.) without, however,
providing a description of the experienced issues.

Summarizing, the quantitative and qualitative results of
our RQ3 highlight that:

1) Developers felt the presence of bugs/unexpected
behavior as the main cause of users’ bad ratings/
comments. Among the factors we investigate, this is
the one that has the most direct and straight-forward
relationship with the use of problematic APIs.

2) A high percentage of developers (up to 71 percent)
consider the change- and fault- proneness of APIs as
threats to the proper working of their apps.

3) Seventy three percent of developers experienced
problems with the APIs used in their apps. Also, 64
percent declared to have observed new bugs in their
apps introduced as a consequence of new releases of
the Android platform. These findings have been par-
tially confirmed by the examples described by the
developers answering our survey.

3.2.2 To What Extent Android Developers Consider

Problematic APIs to be the Cause of Negative

User Rating/Comments?

Of the 45 surveyed developers, 28 (62 percent) declared to
have observed a relationship between problems experi-
enced with the used APIs and bad user’s ratings/comments
(question 19 in Table 9). These 28 developers evaluated the
severity of the observed impact, providing a score on a five
point Likert scale between 1¼very low and 5¼very high
(question 20). Fig. 10 reports the achieved results. The

median is 4 (i.e., high impact) indicating that the use of prob-
lematic APIs could strongly impact the rating of an app
form the developers’ point-of-view. Also, it is important to
note that no one of the developers assessed the impact at
a value lower than 3 (i.e., medium impact). This means
that developers, in their experience, not only observed a
decrease of the ratings assigned by users to their apps as
consequence of problems in the used APIs, but also that this
decrease was substantial.

Some of the comments left by the developers to question
21 (see Table 9) describe cases where they observed a nega-
tive impact of problems experienced with APIs on the rat-
ings/comments left by the apps’ users. For instance, one of
the developers wrote:

my app worked fine until Android 3.2 (API level 13).
Then, the app started to crash on screen rotation. This
was due to a change in the Android APIs requiring,
besides the management of the orientation value
(as needed until API level 12), also the management of
the screenSize value when a screen rotation event
arises. Unfortunately, given to commitments on other
projects it took some days to fix the problem and this
resulted in several low ratings for my apps.

Another example, reported by two developers, was the
removal of the menu button that happened with the release
of Android Honeycomb (i.e., the release 3.0 of Android). As
well explained in a post by Scott Main19 Honeycomb removed
the reliance on physical buttons, and introduced the ActionBar
class as the standard solution to make actions from the user
options immediately visible and quick to invoke. This change has
created several issues to the developers20 with the need to
update their apps as fast as possible. However, as explained
by one of the developers involved in our study

the removal of the menu button resulted in bad user
experiences with my apps and, consequently, in bad
user ratings/comments.

Fig. 10. Severity assigned by developers to the impact of problematic
APIs on the rating of their apps (1=very low, . . ., 5=very high). The red
dot indicates the mean.

16. http://mmedia.com/ verified on January 2014.
17. https://code.google.com/p/google-api-translate-java/ verified

on January 2014.
18. https://code.google.com/p/google-api-translate-java/issues/

detail?id=165 verified on January 2014.

19. http://android-developers.blogspot.de/2012/01/say-goodbye-
to-menu-button.html verified on January 2014.

20. see e.g., http://tinyurl.com/o95yfty verified on January 2014.

BAVOTA ET AL.: THE IMPACT OF API CHANGE- AND FAULT-PRONENESS ON THE USER RATINGS OF ANDROID APPS 399

Other developers described situations in which problems in
third-party APIs have negatively impacted the app user
ratings, like for instance a developer that reported the issue
with the moPub library described in the context of RQ3.
When commenting the impact of this problem on the rating
of her apps, the developer wrote

for few days I received bad user comments due to crashes
in my app. However, the moPub team rapidly fixed the
problem.

In summary, the answers provided by developers to
questions related to RQ4 indicate that 62 percent of develop-
ers perceived a direct relationship between problems
experienced with the used APIs and bad users’ ratings/
comments, and the impact of such APIs on the apps’ user
ratings was considered as medium-high. Also, the discussed
examples support the quantitative results obtained in our
first study: the use of problematic APIs could represent a
threat for the success of Android apps.

4 THREATS TO VALIDITY

This section describes the threats to validity of both studies
presented in Section 2 and Section 3. We discuss such
threats together since, as explained in the introduction,
Study II has been conducted to provide a rationale to the
findings of Study I, i.e., the relation between APIs change-
and fault-proneness and the apps’ user ratings.

4.1 Construct Validity

Threats to construct validity concern the relationship
between theory and observation. For Study I, such threats
are essentially due to the measurements/estimates on
which our study is based. The most important threat is
related to using ratings as an indicator of success. We are
aware that such ratings can be highly subjective and impre-
cise. To mitigate such a threat and the randomness/subjec-
tiveness effect, (i) we analyzed a very large sample of apps,
and (ii) we discarded apps having less than 10 ratings.
Another possibility would have been to use the number of
downloads as a mirror for the apps’ success. However, we
discarded such an option because:

1) Several users just download the app without even
installing it, or they immediately uninstall it, because
they realize that was not the app they wanted.

2) Mining studies impact the number of apps’ down-
loads. As in our case, we downloaded thousands of
apps, but never installed them on devices.

3) In the Google Play market the number of downloads
per app is not reported (in fact, none of the mobile
markets lists the number of downloads). Google
Play just shows the number of app installations in
ranges (e.g., from 100,000 to 500,000). Such a number
is an aggregated value that includes the number of
installs for all the versions of the app. In other words,
a user installing the app Ai version 1.0 and then
updating Ai to version 1.1, is considered to install it
two times. However, such information is not precise
enough for the purpose of our study.

One source of imprecision/incompleteness can be
related to how we identified the APIs used by the analyzed

apps. Although some of the API usages can not be detected
when there is no direct invocation (e.g., API calls encapsu-
lated by Java annotations21), the JClassInfo tool provided us
with all the references to Android classes and methods
from client-code (i.e., app using the Android SDK). As refer-
ences we consider (i) direct invocations to Android classes
or to methods contained in them, and (ii) dependencies
toward classes/interfaces due to inheritance or interface
implementations. Thus, we are not capturing cases of over-
riding, in which the client code is overriding one or more
methods from an API; since the client code is providing its
own implementation of the method(s), any impact on the
app caused by problems (e.g., bugs) in such implementation
should not be considered as a responsibility of the API.

Another imprecision/incompleteness can be related to
how fault-proneness of APIs is estimated. We chose to con-
sider bug-fixes instead “number of reported bugs” since the
latter could represent false alarms. Also, we did not consider
dead apps in our study, i.e., appswith inactive development,
for which bug-fixes might not be reported. However, we are
aware that the information from software repositories can be
imprecise/incomplete in terms of the actual number of bug
fixes performed on a project [26]. Moreover, our study did
not distinguish how the apps used the APIs (e.g., by inheri-
tance or invocation), because the JClassInfo tool lists the refer-
ences between a JAR file and third-party libraries. However,
this would not influence our results, because our research
questions do not emphasize the relation between change/
fault-proneness and a specific type of API usage.

As for Study II, to allow aggregating responses provided
by the study participants, wherever appropriate we asked
questions using a Likert scale [22]. Where this is not
appropriate (e.g., for questions like “Did you ever experi-
ence problems with mobile development APIs?”) we used
Boolean answers; however, in most cases such questions are
preliminary to more focused ones for which a Likert scale is
used. Instead, questions with open answers are mainly
aimed at collecting some qualitative insights from the study
participants. Also, in Study II the developers might have
been influenced by the questions posed in our survey. For
instance, when investigating the causes for app bugs/
crashes perceived as most frequent by developers (i.e., ques-
tions from 11 to 15 in Table 9), four out of the five options
were related to the use of problematic APIs. Several other
possible reasons for an app bug/crash were all represented
by the “Java programming errors in the app” option. However,
when designing our questionnaire we focused our attention
on reaching a fair compromise between the quantity of infor-
mation gathered and the time needed to complete the survey.
Indeed, a too long questionnaire could have discouraged
developers leading to a lower response rate.

4.2 Conclusion Validity

Threats to conclusion validity concern the relationship
between treatment and outcome. For Study I, our con-
clusions are supported by appropriate, non-parametric sta-
tistics (p-values were properly adjusted when multiple
comparisons were performed). In addition, the practical

21. The Android SDK does not have annotations, but third party
libraries can define annotations.

400 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 4, APRIL 2015

relevance of the observed differences is highlighted by
effect size measures.

For Study II the main threat to conclusion validity is the
extent to which the set of respondents is representative of
the population of developers that worked on the set of
applications analyzed in Study I. As explained in Section 3
the response rate of our study is only 4 percent, which is
below the response rate often achieved in survey studies
[19], i.e. 10 percent. However, explicitly targeting original
developers is usually challenging because many of them
may not be active, the email addresses are invalid, or even
impossible to contact because they are no longer using the e-
mail addresses we collected. Also, note that a pool of 45
original developers is above the number of original devel-
opers used in many previous studies investigating other
software engineering phenomenon, where such a number
was between 10 and 14 [27], [28], [29], [30].

4.3 Internal Validity

Threats to internal validity concern factors that can affect our
results. Most importantly, this work does not claim a cause-
effect relation between APIs fault- and change- proneness
and the user ratings of apps, which can be due to several
other factors. Instead, the purpose of our study is to show
that the availability of stable and reliable APIs is important
for app developers, and without that the success of pro-
duced apps (reflected by the user ratings) can be seriously
hindered. In the first study we support such findings with
qualitative analysis for which we manually analyzed com-
ments related to ratings.

After that, to provide a justification and plausible explan-
ations to the quantitative findings of Study I, we rely on the
quantitative and qualitative information collected by inter-
viewing 45 original developers of the analyzed apps (Study
II). However, it should be clear that, although the results
and insights collected in Study II provide a meaningful
rationale for results of Study I, they cannot directly provide
a cause-effect explanation of the specific correlations we
have found.

Another possible source of bias for the results of Study I
might be the thresholds we used when analyzing the data
and presenting our results. We grouped the apps into three
levels of rating (i.e., high, medium, and low) based on their
average rating (ra). In particular, apps having ra lower than
the first quartile (bottom 25 percent of the apps) were con-
sidered as apps having a low rating; apps having ra between
the first and the third quartile (middle 50 percent of apps)
were considered as apps having a medium rating; apps hav-
ing ra higher than the third quartile (top 25 percent of the
apps) were considered as apps having a high rating. Thus,
our thresholds to define the apps’ rating categories were
based on the quartiles of the distribution of the average rat-
ing for the 5,848 considered apps. However, a different
choice might lead to different results and, consequently, to
different findings. For this reason we performed an addi-
tional analysis where we considered different thresholds to
group the apps into the three rating categories. In particular,
we considered the bottom 33 percent apps (in terms of ra) as
those having a low rating; the middle 34 percent apps as
those having a medium rating; and the top 33 percent apps as
those having a high rating. Also, we focused our analysis of

extreme cases on the 100 most and the 100 least successful
apps (instead of the 50 most and 50 least successful apps as
done in Section 2). The results were consistent with those
discussed in this paper and led to the same findings. Details
about this analysis are reported in our replication package.22

We also replicated the analysis conducted in Study I
isolated to the 1,000 most popular apps in our dataset.
This analysis is useful to verify whether it is still possible
to observe differences in the change- and fault-proneness
of APIs used by apps having different levels of ratings
when just considering very popular apps. Since the num-
ber of downloads for each app is not available, we used
the number of reviews received by an app as a proxy of its
popularity. The correlation between the number of down-
loads and the number of reviews received by an app is
something expected (i.e., the more an app is downloaded,
the more it is reviewed) and it has been also observed in
the recent work by Khalid et al. [31]: “reviews, [. . .], are
highly correlated with download counts”. Even just focusing
on the most 1,000 popular apps, we still observed a corre-
lation between the app success and the change- and fault-
proneness of the used APIs. Specifically, the higher the
app success the lower the change- and fault-proneness of
the APIs it uses. Also for this analysis more details are
available in our replication package.

4.4 External Validity

Threats to external validity concern the generalization of our
findings. We limited our analysis to free apps. It could be
the case that our conclusions are no longer valid for paid
apps. This is because, for example, users could be more dis-
appointed if they payed for an unreliable poor app, while
they may not care that much if a free app occasionally
crashes. However, although we could not afford—and
could not do for legal reasons—the same kind of study on
paid apps, at least we have shown (Section 2, Fig. 2) that the
distribution of ratings for free apps and paid apps (a set of
randomly selected apps) is comparable.

Although we analyzed a pretty large set of apps belong-
ing to various categories, we are aware that our conclusions
may or may not generalize to further apps, and for apps
developed for other mobile platforms (e.g., iOS or Windows
Mobile).

5 RELATED WORK

The analysis of mobile applications and operating systems
has become a hot research topic in the recent years. How-
ever, for reasons related to availability of source code and
other artifacts (e.g., bugs, change requests, etc.), such stud-
ies have been mainly focused on the Android ecosystem.
For example, the Mining Challenge track at the 10th Work-
ing Conference on Mining Software Repositories (MSR’12)
[32] was focused on the analysis of change and bug data in
the Android OS. Other studies have been oriented to secu-
rity issues and malware detection as in [33], [34], [35], [36],
[37], [38] and few studies using Android apps have investi-
gated software engineering-related tasks [23], [24], [25],
[39], [40], [41], [42], [43], [44].

22. http://www.cs.wm.edu/semeru/data/tse-android/

BAVOTA ET AL.: THE IMPACT OF API CHANGE- AND FAULT-PRONENESS ON THE USER RATINGS OF ANDROID APPS 401

In this section, we focus our attention on related work
concerning empirical studies for evolution- and mainte-
nance-related aspects and analysis of change and bug data
in Android applications. We also discuss studies that used
changes in APIs to analyze software evolution and stability.

5.1 Empirical Studies Using Android Apps

Several recent works extracted bytecode from APK files, as
we did in Study I, to analyze evolution- and maintenance-
related aspects in Android apps, such as automatic catego-
rization [39], [40], reuse/cloning and dependencies analy-
sis [23], [24], [25], [41], [44], analysis of development
process and Android apps design [42], [43]. Concerning
the analysis of Android APIs, only the work by McDonnell
et al. [45] is related to ours. However, in the following we
describe all those studies to provide the reader with a per-
spective of the empirical studies that have been done using
Android apps.

Shabtai et al. [39] categorized APK files into two root
categories of the Android market (i.e., “Games” and
“Applications”), using attributes extracted from dex files
and XML data in the APK files. Sanz et al. [40] used string
literals in classes, ratings, application sizes, and permissions
to classify 820 applications into several existing categories,
such as “Entertainment”, “Puzzle and brain games”,
“Communication”, “Multimedia and Video”, “Society”,
“Productivity”, and “Tools”.

Mojica Ruiz et al. [23], [24] analyzed the extent of code
reuse in Android applications. The authors extracted the
bytecode of Android apps from APK files to generate class
signatures. These latter have been generated by using a
technique previously applied by Davies et al. [46], [47] on
the Maven Repository. Mojica Ruiz et al. [23], [24] used sig-
natures to compute usage frequencies via inheritance and
class reuse. The main conclusion of their studies is that
reuse by inheritance and code cloning is prevalent in
Android apps. Dresnos [41] also used method signatures
to detect similar Android apps, where the signatures
included string literals, API calls, exceptions, and control
flow structures. Linares-V�asquez et al. [44] analyzed the
impact of third-party libraries and obfuscation code when
the reuse in Android apps is estimated with the technique
by Davies et al. [46], [47].

Syer et al. [25] analyzed dependencies, and source code/
churn metrics of three mobile apps (i.e., Wordpress, Google
Authenticator, and Facebook SDK) in Android and Black-
Berry. The authors analyzed different dimensions of reuse
(i.e., by inheritance, interface implementation, API calls)
and their main conclusions were that Android apps require
less source code but have larger files than in BlackBerry,
and depend more on the Android APIs.

Minelli and Lanza [42] proposed a visualization-based
analysis for mobile apps using Samoa, which is an interac-
tive tool exploiting historical and structural information
from the apps. Although the tool is not focused on a specific
design aspect as reuse, the authors used the Average
Hierarchy Height (AHH) and Average Number of Derived
Classes (ANDC) metrics to study inheritance in Android
apps. They found that some apps reuse libraries by copying
the entire code instead of referencing JAR files. Some of
the findings help to describe the programming model of

Android apps (e.g., complexity of mobile apps is mostly
attributed to the dependency on third-party libraries), how-
ever, only 20 apps were used in the study.

Syer et al. [43] analyzed 15 open source apps to investi-
gate the differences of mobile apps with five desktop/server
applications. The comparison was based on two dimen-
sions: the size of the apps and the time to fix defects.
The study suggest that mobile apps are similar to UNIX util-
ities in terms of size of the code and the development team.
Also, the findings suggest that mobile app developers
are concerned to fixing bugs quickly: over a third of the
bugs are fixed within one week and the rest are fixed within
one month.

The study by McDonnell et al. [45] is the closest to the
one presented in this paper. McDonnell et al. analyzed the
evolution of Android APIs (i.e., frequency of changes),
and the reaction of client code to API evolution. For the lat-
ter purpose, they analyzed 10 open source Android appli-
cations from seven domains to investigate into: (i) the
degree of dependency on Android APIs; (ii) the lag time
between a client API reference and its most recent avail-
able version; (iii) the adoption time of new APIs; (iv) the
relation between API instability and adoption; and (v) the
relationship between API updates and bugs in client code.
The results show that client code with more changes to
adopt API updates are more prone to bugs; also, fast-
evolving APIs are used more, but the time taken for adop-
tion is longer.

Mojica Ruiz et al. [48] also related factors—and specifi-
cally the number of Ad (advertisement) libraries—to
Android app ratings. They studied 236,245 different apps
(236,245 app versions) and found no evidence of relations
between the use of Ad libraries and the app rating. How-
ever, they found that the use of some specific Ad libraries
could negatively affect the app rating. Hence, this is yet
another factor that could—in some specific cases as Mojica
Ruiz et al. found—influence the rating of apps. As we men-
tioned in the introduction, our work, as also other related
work in this area, does not aim at establishing a cause-effect
relationship between one factor (API change- and fault-
proneness) and the user ratings of an app, but, rather, to
show that there is a correlation and to provide a rational to
such quantitative findings through a qualitative analysis of
app reviews.

Table 10 lists the number of mobile applications and
related categories, that were used in the studies mentioned
above. If comparing our study to [23], [24], [25], [39], [40],
[41], [42], [43], [45], this is the first study relating the API
(Android API and third-party libraries) fault- and change-
proneness to the user ratings received by the apps.

5.2 Change and Bug Data Analysis in Android

Martie et al. [49] analyzed discussions in the Android open
source project issue tracker, and derived the discussion
topic trend and time distributions. Results indicated that (i)
Android runtime error was a problematic feature of the
Android platform and (ii) the new garbage collector in
Android Gingerbread may have resolved issues with the
Android runtime and graphics applications that use heavy
weight graphics libraries. Although [49] did not investigate
the impact of Android platform bugs on Android apps,

402 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 4, APRIL 2015

it provides empirical evidence of the bugs concerning
Android developers and the evolution of the Android API
as a reaction to those concerns.

Sinha et al. [50] analyzed the contributions to the
Android core code base (AOSP), measuring change activity,
contributor density, and industry participation in five
AOSP sub-projects (device, kernel, platform, tool-chain,
tools). Assaduzzaman et al. [51] mined changes and bug
reports in Android to identify changes that introduced the
bugs. The links between bugs and changes were identified
by looking for keywords in commit messages, and by com-
paring the textual similarity between the reports and the
commit messages.

Our work is different from [49], [50] and [51] for the fol-
lowing two reasons: (i) we computed metrics on bugs and
changes in the Android APIs to correlate fault/change
proneness with the average user rating of apps, and (ii) we
did not analyze textual information in bug reports or com-
mit messages.

5.3 APIs Instability Analysis

Dig and Johnson [52] studied the changes between two
major releases of four frameworks and one library written
in Java; they found that on average 90 percent of the API
breaking changes23 are refactorings. Hou and Yao [53] ana-
lyzed the evolution of AWT/Swing at the package and class
level. They found that, during 11 years of the JDK release
history, the number of changed elements was relatively
small as compared to the size of the whole API, and the
majority of them happened in release 1.1. Thus, the main
conclusion of their study was that the initial design of
the APIs contributes to the smooth evolution of the AWT/
Swing API.

Changes in APIs were also studied by Raemaekers et al.
[54] to measure the stability of the Apache Commons
library. Their findings indicated that a relatively small
number of new methods were added in each snapshot to
the “Commons Logging” library, while there is more
work going on in new methods of “Common Codec” than
in old ones.

Mileva et al. [7] analyzed 250 Apache projects to identify
usage trends and the popularity of four libraries, and the
number of times the projects migrated back to an older ver-
sion of the libraries; although the purpose of the study is
not the analysis of API instability, the findings illustrate
how bugs in newer versions of libraries motivate library
consumers to switch back to earlier versions. In our study,
we did not analyze the developers’ reaction to the instability
of fault-proneness of Android APIs (i.e., actions taken as a
consequence of the APIs instability and fault-proneness).
However, we found some evidence of how the Android
APIs instability and fault-proneness has impacted apps
quality from the users perspective (e.g., low ratings), and
evidence that developers had to adapt quickly their apps as
a reaction to the low ratings.

Changes in APIs and frameworks require the adaptation
of clients (apps in our case), that can, sometimes, be auto-
mated. To this aim, Degenais and Robillard [55] proposed
SemDiff, a tool to recommend client adaptation required
when the used framework evolve. The authors evaluated
SemDiff on the evolution of the Eclipse-JDT framework
and three of its clients. Our study does not aim at investigat-
ing how apps can be adapted when APIs change, although
the criticality of such changes further support the need for
such a kind of adaptation.

Businge et al. [56] analyzed the impact of stable/sup-
ported APIs and non supported APIs on survival of
Eclipse third-party plugins. Their results show that change
proneness of the third party plugins based on non sup-
ported APIs is higher, and the fault-proneness of third-
party plugins based on stable/supported APIs is lower.
Although the quality focus in [56] is the survival of the
plugins (in our case we used success of apps in terms of
ratings), both studies (ours and [56]) provide evidence
on the impact of unstable APIs on the client code using
those APIs.

The impact of breaking changes could be a major fac-
tor for the development of Android apps in Java, because
Android produced significant releases as rapidly as every
one to six months. Stability in the Android API is a sensi-
tive and timely topic, given the frequent releases and
the number of applications that use these APIs. Similarly
to [45], [53], [54], we used the number of changes in

TABLE 10
Recent Studies on Analysis of Android Apps, Analyzed Aspects or Purpose, Number of Apps, and Number

of Android Categories Covered

Study Purpose #apps #cat.

Shabtai et al. [39] Apps categorization 2,285 2
Syer et al. [25] Dependencies analysis 3 NR
Sanz et al. [40] Apps categorization 820 7
Dresnos [41] Detection of similar apps 2 1
Mojica Ruiz et al. [23] Reuse by inheritance and code cloning 4,323 5
Minelli and Lanza [42] Visualization based analysis 20 NR
Mojica Ruiz et al. [24] Reuse by inheritance and code cloning > 200K 30
Mojica Ruiz et al. [48] Use of Ad library and app rating 236K 27
Syer et al. [43] Size, dependencies and defect fix time 15 NR
McDonnell et al. [45] API instability and adoption 10 7
Linares-V�asquez et al. [44] Impact of third-party libraries and obfuscated code in reuse by code cloning 24,379 30
Our study Apps user ratings and API change/bug proneness 5,848 30

We use NR to distinguish the cases where the number of domain categories is not reported.

23. Changes causing an application built with an older version of the
component to fail under a newer version.

BAVOTA ET AL.: THE IMPACT OF API CHANGE- AND FAULT-PRONENESS ON THE USER RATINGS OF ANDROID APPS 403

methods as a proxy for change-proneness. Our findings
suggest that there is a relation between stability and apps
rating: the greater the app rating, the lower the number
of changes in methods of Android classes and third-party
libraries used in the app.

6 CONCLUSION AND FUTURE WORK

This paper investigated the relationship between API
change- and fault-proneness and the ratings of Android
apps using them. While there is anecdotal evidence that
API instability (change-proneness) and fault-proneness
may impact the success of software applications, until now
there were no rigorous empirical evaluations of such rela-
tionships. We filled this gap by performing two studies.

In the first study we estimated the success of 5,848 free
Android apps as the average ratings obtained in the Google
Play market. Then, we measured fault- and change-prone-
ness of APIs (the official Android APIs as well as the open
source third-party APIs) used by those apps. The fault-
proneness was measured as the total number of bugs fixed
in the used API, while to assess the change-proneness we
used the number of changes at method level along three cat-
egories: (i) generic changes (including all kinds of changes),
(ii) changes applied to method signatures, and (iii) changes
applied to the exceptions thrown by methods. Moreover,
we performed change-analysis by considering all the meth-
ods as well as by just focusing on public methods. Results
of this study show that APIs used by apps having high user
ratings are significantly less fault-prone than APIs used by
low rated apps. In addition, APIs used by highly rated apps
are also significantly less change-prone than APIs used by
low rated apps, including when changes affected method
signatures and especially public methods. Instead, changes
to the set of exceptions thrown by methods did not signifi-
cantly relate with the app rating. These findings hold when
considering (i) all the APIs used by apps, (ii) just the official
Android APIs used by apps, and (iii) just the open source
third-party APIs used by apps.

To provide a quantitative and qualitative explanation to
the correlations found in the first study, in the second study
we conducted a survey with 45 Android developers. Our
questions aimed at investigating potential problems experi-
enced by developers with the use of APIs and their per-
ceived impact on bad user ratings/comments. The
quantitative data collected in this study highlight as devel-
opers experienced problems caused by the APIs change-
and fault-proneness. Moreover, most of them observed a
direct relationship between problems experienced with the
used APIs and bad users’ ratings/comments. The examples
discussed by developers also allowed us to further corrobo-
rate the findings of our studies.

In summary, although it must be clear that the user rat-
ings of an app—as well as its success—can depend on sev-
eral factors (e.g., the usage of advertisement libraries [48] or
energy consumed by the APIs [57]), whenever possible
developers should carefully choose the APIs to be used in
their apps: the fault-proneness of APIs can easily be propa-
gated to apps using them, causing crashes or other kinds of
failures. Also, a high API change-proneness may trigger the
need for frequent app updates that can in turn introduce

new bugs. Also, such frequent changes may introduce a
behavior that is not expected by apps using the APIs; in
other words, APIs may not preserve their back-compatibil-
ity. This can either be the cause of bugs in apps using such
APIs or, when this does not happen, it may trigger complex
changes needed to adapt the current application to the
evolved APIs, and this not only can induce bugs, but also it
could, in some cases, negatively affect the functional (e.g.,
feature no longer supported by the API) or non-functional
characteristics (e.g., increase of battery consumption, or of
CPU/memory usage) of the apps.

While our findings highlight the importance of avoiding
change-and fault-prone APIs, it must be clear that selecting
the best APIs to use is far from trivial. First, information
about the change- and fault-proneness of APIs is currently
not available for developers, and they react to API changes
looking for answers (related to the changes) in Q&A sys-
tems [58]. Developing monitoring systems aimed at provid-
ing such information to developers (at least for open source
APIs) should be a priority for the research community. In
the past, this has been done for example to predict the com-
patibility of Eclipse plug-in with respect to new Eclipse
releases [56], [59]. While extracting information about
the fault-proneness of APIs is straightforward (a mining of
the issue tracking systems may be sufficient), extracting pre-
cise information about the change-proneness requires fine-
grained change analysis as done in our study by exploiting
the MARKOS Code Analyzer.

Even if considering the information about change- and
fault-proneness of APIs as available for developers, avoid-
ing change- and fault-prone APIs might be not obvious.
Indeed, sometimes developers need a feature implemented
in a specific API, despite its change- and fault-proneness. In
these cases, the use of recommendation tools able to identify
similar software applications (see for instance the work by
McMillan et al. [60], [61], [62], and Moritz et al. [63]) can
help developers in looking for alternative APIs, implement-
ing the same features and, hopefully, being less change-
and fault-prone. Also, another opportunity would be to
integrate API change- and fault-proneness analysis in IDEs
code-search mechanisms [64], [65], [66], [67], [68], [69].

Of course, the worst-case scenario may happen as well
where, for the specific feature needed by the developer,
there are no alternatives but using a change- and/or fault-
prone API. In such cases, the developer has to carefully con-
sider the balance between the advantages provided by the
features implemented in the API (e.g., saved time/money,
reuse of already tested code, etc) and the possible issues
derived by its change/fault-proneness. Tools aimed at sup-
porting the developers in evaluating such contrasting goals
would be worthwhile in these cases. For instance, these
tools could estimate the cost of re-implementing from
scratch the feature provided by the API as well as the likeli-
hood of having bugs in the app due to the use of the API.

Lastly, it is possible that app stores could be interested in
applying some forms of quality control on the APIs used by
the deployed apps, and such quality controls can be built
based on the results of this study. However, besides the
pros and cons outlined above—including the need for using
some APIs when no alternatives are available—this could
go against the open philosophy of the app store.

404 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 4, APRIL 2015

Our future research agenda includes additional studies
aimed at further corroborating our results and at empiri-
cally investigating other factors impacting the apps’ success.
Such factors include (i) the change- and fault-proneness of
the apps themselves, (ii) the design quality of the apps, and
(iii) the responsiveness of developers in implementing fea-
tures/bug-fixes required by the apps’ users. Our work-in-
progress also focuses on implementing recommenders
to support developers in dealing with APIs updates that
can potentially (and inadvertently) impact their apps
with breaking changes and bugs, as the ones proposed by
Linares-V�asquez [70].

ACKNOWLEDGMENTS

The authors would like to thank anonymous FSE’13 and
TSE reviewers for their pertinent feedback and useful com-
ments that helped us to improve and steer this work. Also,
they are grateful to professional Android developers who
participated in our survey. This work was supported in part
by the NSF CCF-1016868, NSF CCF-1218129, and NSF
CAREER-1253837 grants. Gabriele Bavota and Massimiliano
Di Penta were partially supported by the MARKOS project,
funded by the European Commission under Contract Num-
ber FP7-317743. Any opinions, findings, and conclusions
expressed herein are the authors’ and do not necessarily
reflect those of the sponsors. This paper was an extension of
“API Change and Fault Proneness: A Threat to the Success
of Android Apps” that appeared in the Proceedings of the 9th
Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE 2013), Saint Petersburg, Russia,
pages 477-487, 2013.

REFERENCES

[1] VisionMobile. (2013). Developer tools: The foundations of the app
economy (developer economics 2013) [Online]. Available: http://
www.visionmobile.com/product/developer-economics-2013-the-
tools-report/

[2] F. J. Jones, M. J. P. Anson, and F. J. Fabozzi, The Handbook of Tradi-
tional and Alternative Investment Vehicles: Investment Characteristics
and Strategies. Hoboken, NJ, USA: Wiley, 2011.

[3] VisionMobile. (2013). Developer economics q3 2013: State of the
developer nation [Online]. Available: http://www.developereco-
nomics.com/reports/q3-2013/

[4] VisionMobile. (2012). The new mobile app economy (developer
economics 2012) [Online]. Available: http://www.visionmobile.
com/product/developer-economics-2012/

[5] M. Robillard and R. DeLine, “A field study of API learning
obstacles,” Empirical Softw. Eng., vol. 16, pp. 703–732, 2012.

[6] M. Zibran, “What makes APIs difficult to use?” Int. J. Comput. Sci.
Netw. Security, vol. 8, no. 4, pp. 255–261, 2008.

[7] Y. Mileva, V. Dallmeier, M. Burger, and A. Zeller, “Mining trends
of library usage,” in Proc. Joint Int. Annu. ERCIMWorkshops Princi-
ples Softw. Evol. Softw. Evol. Workshops, 2009, pp. 57–62.

[8] M. Zibran, F. Eishita, and C. Roy, “Useful, but usable? factors
affecting the usability of APIs,” in Proc. 18th Working Conf. Reverse
Eng., 2011, pp. 151–155.

[9] J. Businge, A. Serebrenik, and M. van de Brand, “Eclipse API
usage: The good and the bad,” Softw. Quality J., pp. 1–35. (2013).
[Online] Available: http://dx.doi.org/10.1007/s11219-013-9221-3

[10] M. Linares-V�asquez, G. Bavota, C. Bernal-C�ardenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk, “API change and fault proneness:
A threat to the success of Android apps,” in Proc. 9th Joint Meeting
Found. Softw. Eng., 2013, pp. 477–487.

[11] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in Proc.
19th Int. Conf. Softw. Maintenance, 2003, pp. 23–32.

[12] M. L. Collard, H. H. Kagdi, and J. I. Maletic, “An xml-based light-
weight c++ fact extractor,” in Proc. 11th Int. Workshop Program
Comprehension, 2003, pp. 134–143.

[13] J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the auto-
matic detection of function clones in a software system using met-
rics,” in Proc. Int. Conf. Softw. Maintenance, 1996, pp. 244–253.

[14] W. J. Conover, Practical Nonparametric Statistics, 3rd ed. Hoboken,
NJ, USA: Wiley, 1998.

[15] S. Holm, “A simple sequentially rejective Bonferroni test
procedure,” Scandinavian J. Statist., vol. 6, pp. 65–70, 1979.

[16] R. J. Grissom and J. J. Kim, Effect Sizes for Research: A Broad Practical
Approach, 2nd ed. Mahwah, New Jersey, USA: Lawrence Ear-
lbaum Associates, 2005.

[17] M. P. Robillard, and G. C. Murphy, “Designing robust Java pro-
grams with exceptions,” in Proc. 8th ACM SIGSOFT Int. Symp.
Found. Softw. Eng.: 21st Century Appl., 2000, pp. 2–10.

[18] N. Chen, J. Lin, S. Hoi, X. Xiao, and B. Zhang, “AR-Miner: Mining
informative reviews for developers from mobile app market-
place,” in Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 767–778.

[19] R. M. Groves, Survey Methodology, 2nd ed. Hoboken, NJ, USA:
Wiley, 2009.

[20] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collo-
cated software development teams,” in Proc. 29th Int. Conf. Softw.
Eng., 2007, pp. 344–353.

[21] A. Hindle, C. Bird, T. Zimmermann, and N. Nagappan, “Do topics
make sense to managers and developers?” Empirical Softw. Eng.,
pp. 1–37, 2014, http://dx.doi.org/10.1007/s10664-014-9312-1

[22] A. N. Oppenheim, Questionnaire Design, Interviewing and Attitude
Measurement. Greenville, SC, USA: Pinter Publishers, 1992.

[23] I. Mojica Ruiz, M. Nagappan, B. Adams, and A. Hassan,
“Understanding reuse in the Android market,” in Proc. 20th IEEE
Int. Conf. Program Comprehension, 2012, pp. 113–122.

[24] I. Mojica, B. Adms, M. Nagappan, S. Dienst, T. Berger, and A. Has-
san, “A large scale empirical study on software reuse in mobile
apps,” IEEE Softw., vol. 31, no. 2, pp. 78–86, Mar./Apr. 2014.

[25] D. Syer, B. Adams, Y. Zou, and A. Hassan, “Exploring the devel-
opment of micro-apps: A case study on the Blackberry and
Android platforms,” in Proc. 11th IEEE Int. Working Conf. Source
Code Anal. Manipulation, 2011, pp. 55–64.

[26] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. T. Devanbu, “Fair and balanced?: Bias in bug-fix datasets,”
in Proc. 7th Joint Meeting Eur. Softw. Eng. Conf. ACM SIGSOFT Int.
Symp. Found. Softw. Eng., 2009, pp. 121–130.

[27] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A.
De Lucia, “Methodbook: Recommending move method refactor-
ings via relational topic models,” IEEE Trans. Softw. Eng., vol. 40,
no. 7, pp. 671–694, Jul. 2014.

[28] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A.
D. Lucia, “An empirical study on the developers’ perception of
software coupling,” in Proc. 35th Int. Conf. Softw. Eng., 2013, pp.
692–701.

[29] G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “Who is
going to mentor newcomers in open source projects?” in Proc.
20th ACM SIGSOFT Symp. Found. Softw. Eng., 2012, p. 44.

[30] B. Dagenais, H. Ossher, R. K. E. Bellamy, M. P. Robillard, and
J. de Vries, “Moving into a new software project landscape,”
in Proc. 32nd ACM/IEEE Int. Conf. Softw. Eng., 2010, pp. 275–
284.

[31] H. Khalid, E. Shihab, M. Nagappan, and A. Hassan, “What do
mobile app users complain about? A study on free iOS apps,” IEEE
Softw., (2014). [Online]. Available: http://dx.doi.org/10.1109/
MS.2014.50

[32] E. Shihab, Y. Kamei, and P. Bhattacharya, “Mining challenge 2012:
The Android platform,” in Proc. 9th IEEE Working Conf. Mining
Softw. Repositories, 2012, pp. 112–115.

[33] L. Baytuk, M. Herpich, S. Camtepe, K. Raddatz, A. Schmidt, and S.
Albayrak, “Using static analysis for automatic assessment and
mitigation of unwanted and malicious activities within Android
applications,” in Proc. 6th Int. Conf. Malicious Unwanted Softw.,
2011, pp. 66–72.

[34] T. Isohara, K. Takemori, and A. Kubota, “Kernel-based behavior
analysis for Android malware detection,” in Proc. 7th Int. Conf.
Comput. Intell. Security, 2011, pp. 1011–1015.

[35] T.-E. Wei, C.-H. Mao, A. Heng, H.-M. Lee, H.-T. Wang, and D.-J.
Wu, “Android malware detection via a latent network behavior
analysis,” in Proc. IEEE 11th Int. Conf. Trust, Security Privacy Com-
put. Commun., 2012, pp. 1251–1258.

BAVOTA ET AL.: THE IMPACT OF API CHANGE- AND FAULT-PRONENESS ON THE USER RATINGS OF ANDROID APPS 405

[36] M. Alazab, V. Monsamy, L. Batten, P. Lantz, and T. Ronghua,
“Analysis of malicious and benign Android applications,” in Proc.
32nd Int. Conf. Distrib. Comput. Syst. Workshops, 2012, pp. 608–616.

[37] R. Jhonson, W. Zhaohui, C. Gagnon, and A. Stavrou, “Analysis of
Android applications’ permissions,” in Proc. IEEE 6th Int. Conf.
Softw. Security Rel. Companion, 2012, pp. 45–46.

[38] Y. Zhou and X. Jiang, “Dissecting Android malware: Characteri-
zation and evolution,” in Proc. IEEE Symp. Security Privacy, 2012,
pp. 95–109.

[39] A. Shabtai, Y. Fledel, and Y. Elovici, “Automated static code
analysis for classifying Android applications using machine
learning,” in Proc. Int. Conf. Comput. Intell. Security, 2010,
pp. 329–333.

[40] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, and P. Bringas,
“On the automatic categorization of Android applications,” in
Proc. IEEE Consumer Commun. Netw. Conf., 2012, pp. 149–153.

[41] A. Dresnos, “Android: Static analysis using similarity dis-
tance,” in Proc. 45th Hawaii Int. Conf. Syst. Sci., 2012, pp. 5394–
5403.

[42] R. Minelli and M. Lanza, “Software analytics for mobile applica-
tions: Insights and lessons learned,” in Proc. 17th Eur. Conf. Softw.
Maintenance Reeng., 2013, pp. 144–153.

[43] M. Syer, M. Nagappan, B. Adms, and A. Hassan, “Revisiting prior
empirical findings for mobile apps: An empirical case study on
the 15 most popular open-source Android apps,” in Proc. Conf.
Center Adv. Studies Collaborative Res., 2013, pp. 283–297.

[44] M. Linares-V�asquez, A. Holtzhauer, C. Bernal-C�ardenas, and D.
Poshyvanyk, “Revisiting Android reuse studies in the context of
code obfuscation and library usages,” in Proc. 11th IEEE Working
Conf. Mining Softw. Repositories, 2014, pp. 242–251.

[45] T. McDonnell, B. Ray, and M. Kim, “An empirical study of API
stability and adoption in the Android ecosystem,” in Proc. 29th
IEEE Int. Conf. Softw. Maintenance, 2013, pp. 70–79.

[46] J. Davies, D.M. German,M.W.Godfrey, andA. J. Hindle, “Software
bertillonage: Finding the provenance of an entity,” in Proc. IEEE
Working Conf.Mining Softw. Repositories, 2011, pp. 183–192.

[47] J. Davies, D. M. German, M. W. Godfrey, and A. Hindle,
“Software bertillonage determining the provenance of software
development artifacts,” Empirical Softw. Eng., vol. 18, pp. 1195–
1237, 2012.

[48] I. Mojica, M. Nagappan, B. Adams, T. Berger, S. Dienst, and
A. Hassan, “Impact of ad libraries on ratings of android mobile
apps,” IEEE Softw., vol. 31, no. 6, pp. 86–92, Nov./Dec. 2014.

[49] L. Martie, V. Palepu, H. Sajnani, and C. Lopes, “Trendy bugs:
Topic trends in the Android bug reports,” in Proc. 9th IEEE Work-
ing Conf. Mining Softw. Repositories, 2012, pp. 120–123.

[50] V. Sinha, S. Mani, and M. Gupta, “Mince: Mining change history
of Android project,” in Proc. 9th IEEE Working Conf. Mining Softw.
Repositories, 2012, pp. 132–135.

[51] M. Assaduzzaman, M. Bullock, C. Roy, and K. Schneider, “Bug
introducing changes: A case study with Android,” in Proc. 9th
IEEE Working Conf. Mining Softw. Repositories, 2012, pp. 116–119.

[52] D. Dig and R. Johnson, “How do APIs evolve? A story of
refactoring,” J. Softw. Maintenance Evol.: Res. Practice, vol. 18,
pp. 83–107, 2006.

[53] D. Hou and X. Yao, “Exploring the intent behind API evolution: A
case study,” in Proc. 18th Working Conf. Reverse Eng., 2011,
pp. 131–140.

[54] S. Raemaekers, A. van Deursen, and J. Visser, “Measuring soft-
ware library stability through historical version analysis,” in Proc.
8th IEEE Int. Conf. Softw. Maintenance, 2012, pp. 378–387.

[55] B. Dagenais, and M. P. Robillard, “Recommending adaptive
changes for framework evolution,” in Proc. 30th Int. Conf. Softw.
Eng., 2008, pp. 481–490.

[56] J. Businge, A. Serebrenik, and M. van den Brand, “Survival of
eclipse third-party plug-ins,” in Proc. Int. Conf. Softw. Maintenance,
2012, pp. 368–377.

[57] M. Linares-V�asquez, G. Bavota, C. Bernal-C�ardenas, R. Oli-
veto, M. D. Penta, and D. Poshyvanyk, “Mining energy-greedy
API usage patterns in Android apps: An empirical study,” in
Proc. 11th IEEE Working Conf. Mining Softw. Repositories, 2014,
pp. 2–11.

[58] M. Linares-V�asquez, G. Bavota, M. D. Penta, R. Oliveto, and D.
Poshyvanyk, “How do API changes trigger stack overflow discus-
sions? a study on the android SDK,” in Proc. 22nd IEEE Int. Conf.
Program Comprehension, 2014, pp. 83–94.

[59] J. Businge, A. Serebrenik, and M. van den Brand, “Compatibility
prediction of Eclipse third-party plug-ins in new Eclipse
releases,” in Proc. 12th IEEE Int. Working Conf. Source Code
Anal. Manipulation, 2012, pp. 164–173.

[60] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting simi-
lar software applications,” in Proc. 34th Int. Conf. Softw. Eng., 2012,
pp. 364–374.

[61] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, and Q. Xie,
“Exemplar: A source code search engine for finding highly rele-
vant applications,” IEEE Trans. Softw. Eng., vol. 38, no. 5,
pp. 1069–1087, Sep./Oct. 2012.

[62] C. McMillan, N. Hariri, D. Poshyvanyk, J. Cleland-Huang, and B.
Mobasher, “Recommending source code for use in rapid software
prototypes,” in Proc. 34th IEEE/ACM Int. Conf. Softw. Eng., 2012,
pp. 848–858.

[63] E. Moritz, M. Linares-V�asquez, D. Poshyvanyk, C. McMillan, M.
Grechanik, and M. Gethers, “Export: Detecting and visualizing
API usages in large source code repositories,” in Proc. 28th IEEE/
ACM Int. Conf. Automat. Softw. Eng., 2013, pp. 11–15.

[64] D. Cubranic and G. Murphy, “Hipikat: Recommending pertinent
software development artifacts,” in Proc. 25th Int. Conf. Softw.
Eng., 2003, pp. 408–418.

[65] R. Holmes and A. Begel, “Deep intellisense: A tool for rehydrating
evaporated information,” in Proc. Int. Working Conf. Mining Softw.
Repositories, 2008, pp. 23–26.

[66] J. Cordeiro, B. Antunes, and P. Gomes, “Context-based recom-
mendation to support problem solving in software devel-
opment,” in Proc. 3rd Workshop Recommendation Syst. Soft. Eng.,
2012, pp. 85–89.

[67] P. Rigby and M. Robillard, “Discovering essential code elements
in informal documentation,” in Proc. 35th Int. Conf. Softw. Eng.,
2013, pp. 832–841.

[68] W. Takuya and H. Masuhara, “A spontaneous code recommenda-
tion tool based on associative search,” in Proc. 3rd Int. Workshop
Search-Driven Softw. Develop., 2011, pp. 17–20.

[69] M. Rahman, S. Yeasmin, and C. Roy, “Towards a context-aware
IDE-based meta search engine for recommendation about pro-
gramming errors and exceptions,” in Proc. IEEE Conf. Softw. Main-
tenance, Reeng., Reverse Eng., 2014, pp. 194–203.

[70] M. Linares-V�asquez, “Supporting evolution and maintenance of
Android apps,” in Proc. Int. Conf. Softw. Eng., 2014, pp. 714–717.

Gabriele Bavota received the PhD degree in
computer science from the University of Salerno,
Italy, in 2013. He is an assistant professor at the
Free University of Bozen-Bolzano, Italy. From
January 2013 to October 2014, he has been a
research fellow at the University of Sannio, Italy.
His research interests include software mainte-
nance, empirical software engineering, mining
software repository, refactoring of software sys-
tems, and information retrieval. He is the author
of more than 50 papers appeared in international

journals, conferences, and workshops. He serves and has served as
organizing and program committee member of international conferences
in the field of software engineering, such as ICSME,MSR, ICPC, SANER,
SCAM, and others. He is amember of the IEEEComputer Society.

Carlos Eduardo Bernal-C�ardenas received the
BS degree in systems engineering from the Uni-
versidad Nacional de Colombia in 2012. He is
currently working toward the PhD degree at the
College of William and Mary advised by Dr Denys
Poshyvanyk. His research interests include soft-
ware engineering, software evolution and mainte-
nance, information retrieval, software reuse,
mining software repositories, mobile applications
development, and user experience.

406 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 4, APRIL 2015

Massimiliano Di Penta is an associate professor
at the University of Sannio, Italy. His research
interests include software maintenance and evo-
lution, mining software repositories, empirical
software engineering, search-based software
engineering, and service-centric software engi-
neering. He is the author of more than 190 papers
appeared in international journals, conferences,
and workshops. He serves and has served in the
organizing and program committees of more than
100 conferences such as ICSE, FSE, ASE,

ICSM, ICPC, GECCO, MSR WCRE, and others. He has been a general
cochair of various events, including the 10th IEEE Working Conference
on Source Code Analysis and Manipulation (SCAM 2010), the Second
International Symposium on Search-Based Software Engineering
(SSBSE 2010), and the 15th Working Conference on Reverse Engineer-
ing (WCRE 2008). Also, he has been program chair of events such as
the 28th IEEE International Conference on Software Maintenance
(ICSM 2012), the 21st IEEE International Conference on Program Com-
prehension (ICPC 2013), the 9th and 10th Working Conference on Min-
ing Software Repository (MSR 2013 and 2012), the 13th and 14th
Working Conference on Reverse Engineering (WCRE 2006 and 2007),
the First International Symposium on Search-Based Software Engineer-
ing (SSBSE 2009), and other workshops. He is currently a member of
the steering committee of ICSME, MSR, SSBSE, and PROMISE. Previ-
ously, he has been steering committee member of other conferences,
including ICPC, SCAM, and WCRE. He is in the editorial board of IEEE
Transactions on Software Engineering, the Empirical Software Engi-
neering Journal edited by Springer, and the Journal of Software: Evolu-
tion and Processes edited by Wiley.

Mario Linares-V�asquez received the BS degree
in systems engineering from the Universidad
Nacional de Colombia in 2005, and the MS
degree in systems engineering and computing
from the Universidad Nacional de Colombia in
2009. He is currently working toward the PhD
degree at the College of William and Mary
advised by Dr. Denys Poshyvanyk, and
cofounder of liminal ltda. His research interests
include software evolution and maintenance,
software reuse, mining software repositories,

application of data mining and machine learning techniques to support
software engineering tasks. He is a member of the IEEE and ACM.

Rocco Oliveto received the PhD degree in com-
puter science from the University of Salerno,
Italy, in 2008. He is an assistant professor in the
Department of Bioscience and Territory at the
University of Molise, Italy. He is the director of the
Laboratory of Informatics and Computational Sci-
ence of the University of Molise. His research
interests include traceability management, infor-
mation retrieval, software maintenance and evo-
lution, search-based software engineering, and
empirical software engineering. He serves and

has served as an organizing and program committee member of interna-
tional conferences in the field of software engineering. In particular, he
was the program cochair of TEFSE 2009, the Traceability Challenge
chair of TEFSE 2011, the Industrial Track chair of WCRE 2011, the Tool
Demo cochair of ICSM 2011, the program cochair of WCRE 2012, and
he will be the program cochair of WCRE 2013, SCAM 2014, and ICPC
2015. He is a member of the IEEE Computer Society, ACM, and the
IEEE-CS Awards and Recognition Committee.

Denys Poshyvanyk received the MS and MA
degrees in computer science from the National
University of Kyiv-Mohyla Academy, Ukraine,
and Wayne State University in 2003 and 2006,
respectively. He received the PhD degree in com-
puter science from Wayne State University in
2008. He is an associate professor at the College
of William and Mary in Virginia. He serves as a
Program cochair for ICSME’16. He also served
as a Program cochair for ICPC’13, WCRE’12,
and WCRE’11. His research interests are in soft-

ware engineering, software maintenance and evolution, program com-
prehension, reverse engineering, software repository mining, source
code analysis and metrics. He is a member of the IEEE and ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BAVOTA ET AL.: THE IMPACT OF API CHANGE- AND FAULT-PRONENESS ON THE USER RATINGS OF ANDROID APPS 407

	The Impact of API Change- and Fault-Proneness on the User Ratings of Android Apps
	Recommended Citation
	Authors

	The Impact of API Change- and Fault-Proneness on the User Ratings of Android Apps

