
Open Research Online
The Open University’s repository of research publications
and other research outputs

Locating bugs without looking back
Journal Item
How to cite:

Dilshener, Tezcan; Wermelinger, Michel and Yu, Yijun (2018). Locating bugs without looking back. Automated
Software Engineering, 25(3) pp. 383–434.

For guidance on citations see FAQs.

c© 2017 The Authors

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1007/s10515-017-0226-1

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1007/s10515-017-0226-1
http://oro.open.ac.uk/policies.html

Autom Softw Eng
DOI 10.1007/s10515-017-0226-1

Locating bugs without looking back

Tezcan Dilshener1 · Michel Wermelinger1 ·
Yijun Yu1

Received: 29 July 2016 / Accepted: 30 August 2017
© The Author(s) 2017. This article is an open access publication

Abstract Bug localisation is a core program comprehension task in software main-
tenance: given the observation of a bug, e.g. via a bug report, where is it located in the
source code? Information retrieval (IR) approaches see the bug report as the query,
and the source code files as the documents to be retrieved, ranked by relevance. Such
approaches have the advantage of not requiring expensive static or dynamic analysis
of the code. However, current state-of-the-art IR approaches rely on project history, in
particular previously fixed bugs or previous versions of the source code. We present a
novel approach that directly scores each current file against the given report, thus not
requiring past code and reports. The scoring method is based on heuristics identified
throughmanual inspection of a small sample of bug reports.We compare our approach
to eight others, using their own five metrics on their own six open source projects. Out
of 30 performance indicators, we improve 27 and equal 2. Over the projects analysed,
on average we find one or more affected files in the top 10 ranked files for 76% of the
bug reports. These results show the applicability of our approach to software projects
without history.

This is a substantially extended version of our previous 4-page paper (Dilshener et al. 2016). We have
added 2 research questions, analysed 2 more projects (Pillar1 and Pillar2), and compared against 3 more
approaches (Wong et al. 2014; Youm et al. 2015; Rahman et al. 2015). Sections 4 and 5 are new (except
4.1.3 and 4.1.4) and existing sections have been considerably expanded with new material.

B Tezcan Dilshener
tezcan@dilshener.de

Michel Wermelinger
michel.wermelinger@open.ac.uk

Yijun Yu
yijun.yu@open.ac.uk

1 School of Computing and Communications, The Open University, Milton Keynes MK7 6AA, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-017-0226-1&domain=pdf
http://orcid.org/0000-0002-6467-3293
http://orcid.org/0000-0002-7154-8570

Autom Softw Eng

Keywords Bug localisation · Information retrieval · Empirical study

1 Introduction

Current software applications are valuable strategic assets to companies: they play
a central role for the business and require continued maintenance. In recent years,
research has focused on utilising concept location techniques in bug localisation to
address the challenges of performing maintenance tasks on such applications.

In general, software applications consist of multiple components. When certain
components of the application do not perform according to their predefined function-
ality, they are classified to be in error. These unexpected and unintended erroneous
behaviours, also referred as bugs, are known to be often the product of coding mis-
takes. Upon discovering such abnormal behaviour of the software, a developer or a
user reports it in a document referred as bug report (BR). BR documents may provide
information that could help in fixing the bug by changing the relevant program ele-
ments of the application. Identifying where to make changes in response to a BR is
called bug localisation. The change request is expressed as a BR and the end goal is to
change the existing program elements (e.g. source code files) to correct an undesired
behaviour of the software.

Li et al. (2006) classified bugs according to three categories: root cause, impact and
the involved software components.

– The root cause category includes memory and semantic related bugs like improper
handling of memory objects or semantic bugs, which are inconsistent with the
original design requirements or the programmers’ intention.

– The impact category includes performance and functionality related bugs, like the
programkeeps running but does not respond, halts abnormally,mistakenly changes
user data, or functions correctly but runs/responds slowly.

– The software components category includes bugs related to the components imple-
menting core functionality, graphical user interfaces, runtime environment and
communication, as well as data base handling.

The study in Li et al. (2006), performed with two open source software (OSS)
projects, showed that 81% of all bugs in Mozilla and 87% of those in Apache are
semantics related. These percentages increase as the applications mature, and they
have direct impact on system availability, contributing to 43–44% of crashes. Since it
takes a longer time to locate and fix semantic bugs, more effort needs to be put into
helping developers locate the bugs.

Generally, program comprehension tasks during software maintenance require
additional effort from those developerswhohave little domain knowledge (Bennett and
Rajlich 2000; Starke et al. 2009; Antoniol et al. 2002; Abebe et al. 2011). Therefore,
a programmer can easily introduce semantic bugs due to inconsistent understanding
of the requirements or intentions of the original developers. Early attempts to aid
developers in recovering traceability links between source code files and system doc-
umentation used Information Retrieval (IR) methods, such as the Vector Space Model
(VSM) (Salton and Buckley 1988) and Latent Semantic Indexing (LSI), and managed
to achieve high precision (Marcus and Maletic 2003) or high recall (Antoniol et al.

123

Autom Softw Eng

2002). The idea behindVSM is that themore times a query term appears in a document
relative to the number of times the term appears in all the documents in the collection,
the more relevant that document is to the query. Vectors represent queries (bug reports
in the case of bug localisation) and documents (source code files). Each element of the
vector corresponds to a word or term extracted from the query’s or document’s vocab-
ulary. The relevance of a document to a query can be directly evaluated by calculating
the similarity of their word vectors.

These probabilistic IR approaches do not consider terms that are strongly related
via structural information and thus still perform poorly in some cases (Petrenko and
Rajlich 2013). Pure textual similarity may not be able to distinguish the actual buggy
file from other files that are similar but unrelated (Wang et al. 2015). For example,
Moreno et al. (2014) noted that when two files are structurally related, and when one
of them has a higher textual similarity against a particular query, the irrelevant file
could be ranked higher.

Further research recognised the need for combining multiple analysis approaches
on top of IR to support program comprehension (Gethers et al. 2011). To determine
the starting points, like class and method names, in investigating relevant source code
files for maintenance work, techniques combining dynamic (Wilde and Scully 1995)
and static (Marcus et al. 2005) analysis have been exploited (Poshyvanyk et al. 2007;
Eisenbarth et al. 2001; Le et al. 2015). However, requests for new non-existing fea-
tures are unsuitable for dynamic analysis (Poshyvanyk et al. 2007). A large software
project or one with a long history may require time-consuming analysis, making static
approaches impracticable (Rao and Kak 2011).

1.1 Vocabulary of bug reports in source code files

In general, a typical BR document provides multiple fields where information pertain-
ing to the reported issue may be described, such as a brief summary of the problem, a
detailed description of the conditions observed, date of the observed behaviour, name
of the files changed to resolve the reported condition. Recent empirical studies pro-
vide evidence that many terms used in BRs are also present in the source code files
(Saha et al. 2013; Moreno et al. 2013). Such BR terms are an exact or partial match
of program elements (i.e. class, method or variable names and comments) in at least
one of the files affected by the BR, i.e. those files actually changed to address the BR.

Moreno et al. (2013) showed that (1) the BR documents share more terms with
the corresponding affected files and (2) the shared terms were present in source file
names. The authors evaluated 6 Open Source Software (OSS) projects, containing
over 35K source files and 114 BRs, which were solved by changing 116 files. For
each BR and source file combination (over 1 million), they discovered that on average
75% share between 1-13 terms, 22% share nothing and only 3% share more than 13
terms. Additionally, the study revealed that certain locations of a source code file, e.g.
a file name instead of a method signature, may have only a few terms but all of them
may contribute to the number of shared terms between a BR and its affected files. The
authors concluded that the BRs have more terms in common with the affected files
and the common terms are present in the names of those affected files.

123

Autom Softw Eng

Saha et al. (2013) claimed that although class names are typically a combination of
2–4 terms, they are present in more than 35% of the BR summary fields and 85% of the
BR description fields of the OSS project AspectJ. Furthermore, the exact file name is
present in more than 50% of the bug descriptions. They concluded that when the terms
from these locations are compared during a search, the noise is reduced automatically
due to reduction in search space. For example, in 27 AspectJ BRs, at least one of the
file names of the fixed files was present as-is in the BR summary, whereas in 101 BRs
at least one of the file name terms was present.

1.2 Our aim and contributions

Motivated by these insights, we aim to check if the occurrence of file names in BRs
can be leveraged for IR-based bug localisation in Java programs. We restrict the scope
to Java programs, where each file is a class or interface, in order to directly match the
class and interface names mentioned in the BRs to the files retrieved by IR-based bug
localisation.

Current state-of-the-art approaches for Java programs [BugLocator (Zhou et al.
2012), BRTracer (Wong et al. 2014), BLUiR (Saha et al. 2013), AmaLgam (Wang
and Lo 2014), LearnToRank (Ye et al. 2014), BLIA (Youm et al. 2015) and Rahman
et al. (2015)] rely on project history to improve the suggestion of relevant source files.
In particular they use similar BRs and recently modified files. The rationale for the
former is that if a new BR x is similar to a previously closed BR y, the files affected
by y may also be relevant to x. The rationale for the latter is that recent changes to a
file may have led to the reported bug. However, the observed improvements using the
history information have been small.

We thus wonder whether file names mentioned in the BR descriptions can replace
the contribution of historical information in achieving comparable performance and
ask our first research question (RQ) as follows.

RQ1 Can the occurrence of file names in BRs be leveraged to replace project history
in achieving state-of-the-art IR-based bug localisation?

If file name occurrence can’t be leveraged, we need to look more closely at the con-
tribution of past history, in particular of considering similar bug reports, an approach
introduced by BugLocator and adopted by others. So we ask in our second RQ:

RQ2 What is the contribution of using similar bug reports?
Furthermore, IR-based approaches to locating bugs use a base IR technique that is

applied in a context-specific way or combined with bespoke heuristics. However, Saha
et al. (2013) note that the exact variant of the underlying tf/idf (term frequency/inverse
document frequency) model usedmay affect results. In particular they find that the off-
the-shelfmodel they use inBLUiR already outperformsBugLocator,which introduced
rVSM, a bespoke VSM variant. In our approach we also use an off-the-shelf VSM
tool, different from the one used by BLUiR. In comparing our results to theirs wemust
therefore distinguishwhat is the contribution of file names, andwhat is the contribution
of the IR model used. Thus we ask in our third RQ:

123

Autom Softw Eng

RQ3 What is the overall contribution of the VSM variant adopted in our approach,
and how does it perform compared to rVSM?

Previous studies performed by Starke et al. (2009) and Sillito et al. (2008) reveal
that text-based searches available in current IDEs are inadequate because they require
search terms to be precisely specified, otherwise irrelevant or no results are returned.
They highlighted that large search results returned by the IDE tools cause developers
to analyse several files before performing bug-fixing tasks. Thus we wanted to know
how developers perceive the search results of our tool, which presents a ranked list
of candidate source code files that may be relevant for a BR at hand during software
maintenance. Hence we ask our fourth RQ:

RQ4 How does our approach perform with industrial applications and does it benefit
developers?

To address RQ1 we propose a novel approach and then evaluate it against existing
approaches (Zhou et al. 2012; Saha et al. 2013; Moreno et al. 2014; Wong et al. 2014;
Wang andLo 2014;Ye et al. 2014) on the same datasets andwith the same performance
metrics. Like other approaches, ours scores each file against a given BR and then ranks
the files in descending order of score, aiming for at least one of the files affected by the
BR to be among the top-ranked ones, so that it can serve as an entry point to navigate
the code and find the other affected files. Aswe shall see, our approach outperforms the
existing ones in the majority of cases. In particular it succeeds in placing an affected
file among the top-1, top-5 and top-10 files for 44, 69 and 76% of BRs, on average.

Our scoring scheme does not consider any historical information in the repository,
which contributes to an ab-initio applicability of our approach, i.e. from the very first
bug report submitted for the very first version. Moreover, our approach is efficient,
because of the straightforward scoring, which doesn’t require any further process-
ing like dynamic code analysis to trace executed classes by re-running the scenarios
described in the BRs.

To address RQ2, we compare the results of BugLocator and BRTracer using SimiS-
core (the similar bug score), and the results of BLUiR according to the literature,
showing that SimiScore’s contribution is not as high as suggested. From our experi-
ments, we conclude that our approach localises many bugs without using similar bug
fix information, which were only localised by BugLocator, BRTracer or BLUiR using
similar bug information.

As for RQ3, through experiments we found that VSM is a crucial component to
achieve the best performance for projects with a larger number of files that makes the
use of term and document frequency more meaningful, but that in smaller projects its
contribution is rather small. The Lucene VSM we chose performs in general better
than the bespoke VSM of BugLocator and BRTracer.

We address RQ4 by conducting a user case study in 3 different companies with 4
developers. On average, our tool placed at least one affected file into the top-10 for 9
out 10 BRs. Developers stated that since most of the relevant files were positioned in
the top-5, they were able to avoid the error prone tasks of browsing long result lists
and performing repetitive search queries.

The rest of this paper is organised as follows. Section 2 describes the IR-based
approaches against which we compare ours, and the datasets used to evaluate all of

123

Autom Softw Eng

them. Section 3 describes our approach, detailing the scoring algorithm. Section 4
presents the results, addressing the first three research questions above. The user study
is presented in Sect. 5. We discuss why the approach works and the threats to validity
in Sect. 6. Finally, Sect. 7 presents concluding remarks.

2 Previous approaches

In bug localisation a query is a bug report, which is substantially different in struc-
ture and content from other text documents, thus requiring special techniques. Zhou
et al. (2012) proposed an approach consisting of the four traditional IR steps (cor-
pus creation, indexing, query construction, retrieval & ranking) but using a revised
Vector Space Model (rVSM) to score each source code file against the given BR. In
addition, each file gets a similarity score (SimiScore) based on whether the file was
affected by one or more closed BRs similar to the given BR. Similarity between BRs
is computed using VSM. The rVSM and similarity scores are each normalised to a
value from 0 to 1 and combined linearly into a final score: (1 − w)*normalrVSM +
w*normalSimiScore, where w is an empirically set weight.

The final score is then used to rankfiles from the highest to the lowest. The approach,
implemented in a tool called BugLocator, was evaluated using over 3400 reports of
closed bugs (see Table 1) and their known affected files from four OSS projects: the
IDE tool Eclipse, the aspect-oriented programming library AspectJ, the GUI library
SWT and the bar-code tool ZXing. Eclipse and AspectJ are well-known large scale
applications used in many empirical research studies for evaluating various IR models
(Manning et al. 2008). SWT is a subproject of Eclipse and ZXing is an Android project
maintained by Google.

Table 1 Project artefacts

Project Source files Bug reports Period Used also by

AspectJ 6485 286 2002/07–2006/10 Zhou et al. (2012), Saha et al. (2013),
Wong et al. (2014), Wang and Lo
(2014) and Youm et al. (2015)

Eclipse 12863 3075 2004/10–2011/03 Zhou et al. (2012), Saha et al. (2013),
Wong et al. (2014) and Wang and
Lo (2014)

SWT 484 98 2004/10–2010/04 Zhou et al. (2012), Saha et al. (2013),
Wong et al. (2014), Wang and Lo
(2014), Youm et al. (2015) and
Rahman et al. (2015)

ZXing 391 20 2010/03–2010/09 Zhou et al. (2012), Youm et al.
(2015) and Rahman et al. (2015)

Tomcat 2038 1056 2002/07–2014/01 Ye et al. (2014)

ArgoUML 1685 91 2002/01–2006/07 Moreno et al. (2014)

Pillar1 4355 27 2012/03–2013/01 –

Pillar2 337 12 2010/05–2011/01 Dilshener and Wermelinger (2011)

123

Autom Softw Eng

For two of these projectswwas set to 0.2 and for the other twow = 0.3. The perfor-
mance ofBugLocatorwas evaluatedwith 5metrics: Top-1, Top-5, Top-10,MAP (mean
average precision) andMRR (mean reciprocal rank). Top-N is the quantity (given as an
absolute number or as a percentage) of bugs that are located with threshold N, which
means that at least one affected file was placed among the first N ranked files. Across
the four projects, BugLocator achieved a Top-10 of 60–80%, i.e. for each project at
least 60% of its bugs were affected by at least one of the first 10 suggested files.

Wang et al. (2014) proposed a composite VSM approach that combines 5 variants
of term frequency (tf) and 3 variants of inverse document frequency (idf)1 to obtain 15
VSM variants. A final composite VSM is the weighted sum of all variants. A genetic
algorithm (GA) was used with three-fold cross validation to find the weights that
maximised the MAP and MRR. The approach was evaluated with 3 projects of the
BugLocator dataset: AspectJ, Eclipse, and SWT. The composite approach, compared
to the standard tf-idf, improved the MAP and MRR by at most 0.03 for AspectJ and
SWT, but achieved no improvement for Eclipse.

2.1 Using stack trace and structure

It has been argued that existing approaches treat source code files as onewhole unit and
bug report (BR) as one plain text (Poshyvanyk et al. 2007; Saha et al. 2013; Ye et al.
2014; Kevic and Fritz 2014; Abebe et al. 2011). However, BRs may contain useful
information like stack traces, code fragments, patches and recreation steps (Bettenburg
et al. 2008). A study done by Schröter et al. (2010) explored the usefulness of stack
trace (ST) information found in the BRs. They investigated 161,500 BRs in the Eclipse
project bug repository and found that around 8% (12947/161500) BRs contained ST
information. After manually linking 30% (3940/12947) of those closed BRs to their
affected files, 60% (2321/3940) revealed that the file modified to solve the bug was
one of the files listed in the ST.

Schröter et al. (2010) note that STs identified in the study contained up to 1024 file
names and a median of 25 files. Out of 2321 BRs with a ST, in 40% the affected file
was in the very first position of the ST and in 80% it was within the first 6 positions. It
is not clear if non-project specific file names were ignored during the evaluation of the
stack frames. Also, the authors discovered multiple stack traces in 32% (4206/12947)
of the BRs with an ST. Investigating the affected files revealed that 70% of the time
the affected file is found in the first trace and in 20% it is found on the second or
third trace. Finally, the authors investigated whether including ST in BRs speeds up
the development process and conclude that fixing bugs with ST information requires
2–26 days and without ST 4–32 days.

Moreno et al. (2014) presented LOBSTER, which leverages the ST information
available in BRs to suggest relevant source code files. The authors argue that if 60%
of the cases the ST contains at least one of the source code files that was changed to
resolve the bug (Schröter et al. 2010), then in rest of the cases (40%) the changed source
file should be a neighbouring one to those present in the ST. Based on this claim, the

1 http://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html

123

http://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html

Autom Softw Eng

approach first calculates a textual similarity score between the words extracted by the
Lucene tool, which uses VSM, from bug reports and code files. Second, a structural
similarity score is calculated between each file and the class names extracted from the
stack trace information found in the bug report. If the file is not in the list of stack
trace files then the application’s call-graph information is used to check whether a
neighbouring class’s name occurs in the stack trace. Finally, both textual and structural
similarity scores are combined to rank the files.

After evaluating the approachwith only 155 bug reports containing a stack trace, the
results reveal that 65% of the bugs were fixed in a file mentioned in the ST submitted
in the BR. Out of 314 files fixed to resolve the reported bugs, 35% (109/314) were at
a distance 1 from the files listed in the ST, 11% (36/314) at a distance of 2 and 8%
(25/314) at a distance between 3 and 7. They observed that when parts of the code
that need to be changed are not structurally related to the files listed in the ST then the
effectiveness of the approach degraded.However, they conclude that overall 50%of the
files to be changedwere in the top-4 rankedfiles. Compared to standardVSM(Lucene),
the approach achieved 53% better, 29% equal and 18% worse performance results.

Moreno et al. (2014) conclude that considering stack traces does improve the
performance with respect to only using Lucene’s VSM. Since our approach also lever-
ages stack traces, we compare the performance of both tools using their dataset for
ArgoUML, a UML diagraming tool (Table 1).

Wong et al. (2014) proposed BRTracer, which also leverages the ST information
and performs segmentation of source files to reduce any noise due to varying size of
the file lengths (Bettenburg et al. 2008). The method involves dividing each source
file into sections, so called segments, and matching each segment to a BR to calculate
a segment score and a length score. In addition, the ST is evaluated to calculate a ST
boost score. Subsequently, for each source file, the segment with the highest score is
taken as the relevant one for the BR and multiplied by the length score to derive a
similarity score. Finally the ST score is added on top of the similarity score to get the
overall score for a file.

The length score is calculated by revising the logistic function used in BugLocator
(Zhou et al. 2012) with a beta factor to regulate how much favour is given to larger
files. The ST boost score is calculated by evaluating the files listed in the stack trace
as well as the files referenced via import statements, defined as the closely referred
ones. The approach considers only the first 10 files listed in a ST to be relevant, which
was first introduced by Schröter et al. (2010). Additionally, BugLocator’s SimiScore
function is utilised to calculate the similarity of the BR to the previously closed bugs
and give favour to the files affected by those similar reports.

BRTracer was evaluated by measuring its performance against BugLocator with 3
of the same datasets used in that study to see whether the segmentation and ST makes
a difference. Wong et al. (2014) concluded that the approach is able to significantly
outperform the one introduced in BugLocator regardless of considering similar BRs
or not. Authors claim that segmentation or ST analysis is an effective technique to
boost bug localisation and both are compatible with the use of similar BRs. Since we
also use the same datasets as BugLocator and leverage stack traces, we compare the
performance of our tool against BRTracer to demonstrate the improvements gained
and to confirm that ST analysis aids bug localisation.

123

Autom Softw Eng

2.2 Version history and other data sources

Nichols (2010) argues that utilising additional sources of information would greatly
aid IR models to identify relations between BRs and source code files. One of the
information sources available in well-maintained projects is the past bug details and
to take advantage of this, the author proposes an approach that mines the past bug
information automatically. The approach extracts semantic information from source
code files (e.g. terms from identifiers and method names) to create searchable repos-
itories. Also, one repository is augmented with information from previous BRs (e.g.
title, description and affected files).

Experimenting with augmented and non-augmented search repositories revealed
that search results from the repository augmented with up to 14 previous BRs were
the same as those from the non-augmented one. The best performance was obtained
when 26–30 previous bugs were used in the augmented repository. Nichols (2010)
observed that there is no guarantee that considering previous bug information con-
tributes towards improving the rank of a source file in the result list, and concludes
that quality BRs, e.g. those with good descriptions, are more valuable than the number
of past BRs included in the repository.

In their study about diversifying data sources to improve concept location, Ratan-
otayanon et al. (2010) ask if having more diverse data in the repository where project
artefacts, e.g. source files, are indexed always produce better results. They investigated
the effects of combining information from (1) change set comments added by devel-
opers when interacting with source version control systems, (2) BR details from issue
tracking systems and (3) source code file dependency relations, i.e. the call graph.

They observed that (1) using change sets togetherwithBRs produces the best results
and (2) including the referencing files, i.e. the caller/callee information available in
the call-graph, increased recall but deteriorated precision.

Ratanotayanon et al. (2010) claim that change sets provide vocabulary from the
perspective of the problem domain because developers add to each commit descriptive
comments which are more aligned with the terms used when performing a search task.
However they argued that the success of utilising the change sets in search tasks is
sensitive to the quality of these comments. Also, the authors proposed that when using
a call-graph, the results be presented in ranked order based on a weighting scheme to
compensate for any possible deterioration in precision due to false positives.

Wang and Lo (2014) proposed AmaLgam for suggesting relevant buggy source
files by combining BugLocator’s SimiScore and BLUiR’s structured retrieval (Saha
et al. 2013) into a single score using a weight factor, which is then combined (using a
different weight) with a version history score that considers the number of bug fixing
commits that touch a file in the past k days. Instead of considering all the previous
BRs as in Sisman and Kak (2012), they only consider recent version history commits.
They identify when the current bug was reported and compare the number of days/h
between each past commit to assign a score to reflect the relevance of those previously
modified files for the bug at hand. So if a file was changed 17h ago, it gets a higher
score then if it was changed 17 days ago.

The approach is evaluated in the same way as BugLocator and BLUiR, i.e. the
number of BRs placed in top-N, for various values of k. AmaLgammatches or outper-

123

Autom Softw Eng

forms the other two in all indicators except one, the MAP for ZXing. Their evaluation
shows that considering historical commits up to 15 days increased the performance,
15–20 days did not make much difference and considering up to 50 days deteriorated
the performance. Thus they conclude that themost important part of the version history
is in the commits of the last 15–20 days.

Wang et al. incorporated their composite VSM approach (Wang et al. 2014) into
AmaLgam (Wang and Lo 2014) and compared the performance of AmaLgamwith and
without composite VSM. The MAP and MRR improved by 0.1 and 0.07 for AspectJ,
by 0.04 and 0.03 for Eclipse, and the MAP improved by 0.01 for SWT. One of the
shortcomings of the approach is that it takes time, as acknowledged by the authors:
the training phase takes 3h.

2.3 Combining multiple information sources

Saha et al. (2013) claim that dynamic approaches are more complicated, time con-
suming and expensive than static approaches where a recommendation system may
be used, thus making the static approach more appealing. They argue that existing
techniques treat source code as flat text ignoring the rich structure of source code
file names, method names, comments, variables etc. The authors presented BLUiR,
which leverages the structures inside a bug report and a source code file. To measure
the similarity between a bug report and a file, the approach uses the Indri tf/idf model,
which is based on BM25 (Okapi)2 instead of VSM. It also incorporates structural
information retrieval, where the textual content of each field in a bug report and each
part of a source file are considered independently.

This involves dividing a bug report into summary and description fields, as well as
dividing a source file into class names, method names, variable names, and comments.
Indri computes a similarity score between each of the 2 fields of a bug report and each
of the 4 parts of a source file. The 8 scores are summed into a final score to rank the
files. One of the weaknesses of the approach is that it assumes all features are equally
important and ignores the lexical gap between bug reports and source code files.

The results were evaluated using BugLocator’s dataset and performance indica-
tors. For all but one indicator for one project (ZXing’s MAP), BLUiR matches or
outperforms BugLocator, hinting that a different IR approach might compensate for
the lack of history information, namely the previously closed similar bug reports. Sub-
sequently, BLUiR incorporated BugLocator’s SimiScore, which did further improve
its performance.

Ye et al. (2014) claim that if a source file is recently changed than it may still
contain defects and if a file is changed frequently than it may be more likely to have
additional errors. They argued that there is a significant inherentmismatch between the
descriptive natural language vocabulary of a BR and the vocabulary of a programming
language found in the source code files. They defined a ranking model that combines
six features measuring the relationship between bug reports and source code files,
using a learning-to-rank (LtR) technique: (1) lexical similarity between bug reports

2 http://nlp.stanford.edu/IR-book/html/htmledition/okapi-bm25-a-non-binary-model-1.html

123

http://nlp.stanford.edu/IR-book/html/htmledition/okapi-bm25-a-non-binary-model-1.html

Autom Softw Eng

and source code files; (2) API enriched lexical similarity, using API documentation
of the libraries used by the source code; (3) collaborative filtering, using similar bug
reports that got fixed previously; (4) bug fixing recency, i.e. time of last fix in terms of
months; (5) bug fixing frequency, i.e. howoften a file got fixed; (6) feature scaling, used
to bring the score of all previous features into one scale. Their experimental evaluations
show that the approach places a relevant file within the top-10 recommendations for
over 70% of the bug reports of Tomcat (Table 1).

The source files are ranked based on the score obtained by evaluating each of the
6 features. Although improved results are obtained compared to existing tools, Ye
et al. reported that in two datasets, AspectJ and Tomcat, existing tools also achieved
very similar results. One of the reasons is that in AspectJ affected files were very
frequently changed and in Tomcat the BRs had very detailed and long descriptions.
Evaluation on performance of each feature shows that the best results were obtained
by lexical similarity and considering previous BRs, so this leaves the question whether
considering other features like version history commits as introduced in Wang and Lo
(2014) is really worth the effort since other studies also report their effectiveness to
be poor.

LtR approaches make use of machine learning in order to learn the rank of each
document in response to a given query. Our simpler approach only uses the first of Ye
et al. (2014) six features, lexical similarity, and yet provides better results on Tomcat,
as we’ll show.

Youm et al. (2015) introduced an approach where the scoring methods utilised in
previous studies (Zhou et al. 2012; Saha et al. 2013; Wong et al. 2014; Wang and
Lo 2014) are first calculated individually and then combined together by varying
alpha and beta parameter values. The approach, implemented in a tool called BLIA,
is compared against the performance of the other tools where the original methods
were first introduced. For evaluation only the three smaller BugLocator datasets (i.e.
excluding Eclipse) are used. Although BLIA improves the MAP and MRR values of
BugLocator, BLUiR and BRTracer, it fails to outperform AmaLgam in AspectJ. The
authors found that stack-trace analysis is the highest contributing factor among the
analysed information for bug localisation.

Recently, Ye et al. (2016) used extra documents (tutorials, implementation guides,
etc.) to obtain co-occurring words and thus be able to find files that have no word
in common with the bug report. For each project, they train their approach on 2000
bug reports. They do not report top-N results, so it is unclear how well the approach
performs in practice. Compared to their previous LtR approach, the use of extra docu-
ments improves the MAP and MRR by at most 0.03, except for the Eclipse JDT, with
an improvement of 0.07.

In another recent study, Rahman et al. (2015) extended BugLocator by considering
file fix frequency and file name matches. The file fix frequency score is calculated
based on the number of times a ranked file is mentioned in the bug repository as
changed to resolve another bug. The file name match score is based on the file names
that appear in the bug report. The approach is evaluated with the SWT and ZXing
projects from the BugLocator dataset and one of their own: Guava. The authors show
improved MAP and MRR values over BugLocator’s.

123

Autom Softw Eng

Independently of Rahman et al. (2015) (of which we became aware only recently),
we decided to use file names because the study by Saha et al. (2013) shows that many
bug reports contain the file names that need to be fixed. Rahman et al. (1) extract the
file names from the bug report using very simple pattern matching techniques and
(2) use a single constant value to boost a file’s score when its name matches one of
the extracted file names. On the contrary, our approach (1) uses a more sophisticated
file matching regular expression pattern to extract file names from the bug report and
(2) assigns varying values depending on the extracted file name’s position in the bug
report, as we will show later.

Uneno et al. (2016) proposed a new approach called Distributed REpresentation
of Words based Bug Localization (DrewBL) which utilises a semantic Vector Space
Model (sVSM). The idea is to concatenate the terms extracted from source code files
and the stemmed words extracted from bug reports into a single vector space with
a low dimension and high density. The approach combines the DrewBLScore with
the scores obtained by running BugLocator and Bugspots,3 which is based on bug-
fixing history. The approach is tested on two OSS projects (Tomcat and Birt) from
the LtR dataset (Ye et al. 2014) and the results reveal that DrewBL by itself performs
substantially worse than the combined approach, which is still worse than LtR. The
reason, as acknowledged, is that many irrelevant source code files are retrieved.

2.4 User studies

Sillito et al. (2008) conducted two different studies, one in a laboratory setting with
9 developers who were new to the code base and the other in an industrial setting
with 16 developers who were already working with the code base. In both studies
developers were observed performing change tasks to multiple source files within
a fairly complex code base using modern tools. The findings reveal that text-based
searches available in current IDEs are inadequate because they require search terms
to be precisely specified, otherwise irrelevant or no results are returned. The study
claims that developers repeatedly perform discovery tasks in a trial and error mode,
which causes additional effort and often results in several failed attempts.

Starke et al. (2009) performed a studywith 10 developers to find out how developers
decide what to search for and what is relevant for the maintenance change task at hand.
Participants were randomly assigned one of 2 closed bug descriptions selected from
the Sub-Eclipse tool’s issue repository and instructed to carry out search tasks in the
Eclipse IDE using the available search tools. The findings highlight that formulating
a search query is the most challenging task for the developers since Eclipse’s search
tools require the search terms to be precisely specified, otherwise no relevant results
are returned. The authors also state that when many search results are returned, the
developers tend to lose confidence in the query and decide to search again rather
than investigate what was returned. They propose future research on tool support for
developers, to provide more contextual information and to present results in a ranked
order, grouped within the context provided by search tasks at hand.

3 http://github.com/igrigorik/bugspots

123

http://github.com/igrigorik/bugspots

Autom Softw Eng

Recently Kochhar et al. (2016) performed a study with practitioners about their
expectation of automated fault localisation tools. The study explored several crucial
parameters, such as trustworthiness, scalability and efficiency. Out of 386 responses,
30% rated fault localization as an “essential” research topic. The study further reveals
that around 74% of respondents did not consider a fault localisation session to be
successful if it requires developers to inspect more than 5 program elements and that
98% of developers indicated that inspecting more than 10 program elements is beyond
their acceptability level. These findings show the importance of positioning relevant
files in the top-10, especially in the top-5; otherwise the developers lose confidence.

Parnin and Orso (2011) studied users fixing 2 bugs with Tarantula, a tool that
suggests a ranked list of code statements to fix a failed test. Users lost confidence
if the ranked list was too long or had many false positives. Users didn’t inspect the
ranked statements in order, often skipping several ranks and going up and down the list.
For some users, the authors manually changed the ranked list, moving one relevant
statement from rank 83 to 16, and another from rank 7 to rank 35. There was no
statistically significant change in how fast the users found the faulty code statements.
This may be further indication that the top-5 ranks are the most important.

Xia et al. (2016) record the activity of 36 professionals debugging 16 bugs of 4
Java apps, each with 20+ KLOC. They divide professionals into 3 groups: one gets
the buggy statements in positions 1–5, the other in positions 6–10, the other gets no
ranked list. On average, the groups fix each bug in 11, 16 and 26min, respectively. The
difference is statistically significant, which shows the ranked list is useful. Developers
mention that they look first at the top-5, although some still use all of the top-10 if
they’re not familiar with code. Some do an intersection of the list with where they
think the bug is and only inspect those statements. Although the bug localisation is
based on failed/successful tests and the ranked list contains code lines, not files, the
study emphasises the importance of the top-5 and how developers use ranked lists.

As we shall present in Sect. 4, our approach equals or improves the top-5 metric on
all analysed projects, and as we shall see in Sect. 5, our user study on IR-based local-
isation of buggy files confirms some of the above findings on test-based localisation
of buggy code lines.

3 Our Approach

Each approach presented in the previous section incorporates an additional information
source to improve results, as shown in Table 2. We list the six tools against which we
evaluate our approach (ConCodeSe), by using the same datasets (Table 1) and metrics.
Additionally, we used two financial applications, one open source, Pillar1, and one
proprietary, due to confidentiality referred as Pillar2.

Both applications implement the financial regulations for credit and risk manage-
ment defined by theBasel-IIAccord (Basel 2006). Pillar14 is a client/server application

4 http://www.pillarone.org

123

http://www.pillarone.org

Autom Softw Eng

Table 2 Comparison of approaches

Approach Underlying IR logic Version history Similar
report

Structure File name Stack
trace

BugLocator rVSM No Yes No No No

BRTracer rVSM + segmentation No Yes Yes No Yes

BLUiR Indri No Yes Yes No No

AmaLgam Mixed Yes Yes Yes No No

BLIA rVSM + segmentation Yes Yes Yes No Yes

Rahman rVSM Yes Yes No Yes No

LtR VSM Yes Yes Yes No No

LOBSTER VSM No No Yes No Yes

ConCodeSe lexicalScore + VSM No No Yes Yes Yes

developed in Java and Groovy by Munich Re (a re-insurance company). The BR doc-
uments are maintained with JIRA,5 a public tracking tool.

Pillar2 is a web-based application developed in Java at our industrial partner’s site
and is not publicly available. It was in production for 9 years. The maintenance and
further improvements were undertaken by five developers, including in the past the
first author, none of them part of the initial team. The BR documents were maintained
by a proprietary tracking tool.

As Table 1 shows, for both Pillar1 and Pillar2 we only have a small set of closed bug
reports for which we also have the source code version on which they were reported.
Neither application is maintained anymore.

3.1 Data processing

The two financial applications and the OSS projects from Table 1, consisting of source
code files and BRswith their known affected files, identified as described in Zhou et al.
(2012), Moreno et al. (2014) and Ye et al. (2014), were processed using our source
code analysis tool called ConCodeSe (Contextual Code Search Engine), which we
substantially improved from previous work (Dilshener and Wermelinger 2011) where
only lexical similarity search was implemented. ConCodeSe utilises state of the art
data extraction, persistence and search APIs (SQL, Lucene,6 Hibernate7). Figure 1
illustrates the extraction, storage, search and analysis stages. In the top layer, the
corpus creation and search services tasks are executed automatically.

The left hand side (1) represents the extraction of terms from the source code files
and from theBRs. Themiddle part (2) shows the storage of the extracted terms. Finally,
in the search stage (3), the search for the files affected by the BRs takes place.

5 https://issuetracking.intuitive-collaboration.com
6 http://lucene.apache.org/java/docs/index.html
7 http://www.hibernate.org

123

https://issuetracking.intuitive-collaboration.com
http://lucene.apache.org/java/docs/index.html
http://www.hibernate.org

Autom Softw Eng

Fig. 1 ConCodeSe data extraction, storage and search

In the first stage, the Java code is parsed using the source code mining tool JIM8

(Butler et al. 2010), which automates the extraction and analysis of identifiers from
source files. It parses the code, extracts the identifiers and splits them into terms, using
the INTT9 tool (Butler et al. 2011) within JIM. INTT uses camel case, separators and
other heuristics to split at ambiguous boundaries, like digits and lower case letters.
The extracted information, i.e. identifier names, their tokenisation and source code
location, is stored in Derby10 relational database.

In the case of Pillar1, as it is developed in Groovy and Java, its BRs also refer to a
mixture of both source code files. For BugLocator and BRTracer to process theGroovy
source code files, we converted them into Java. Since Groovy is a dynamic language
based upon Java with similar syntax and runs in the Java Virtual Machine, setting the
file extensions as Java without modifying the file content was sufficient. Afterwards,
manually inspecting the generated corpus confirmed the presence of the converted
files with their associated terms extracted from the source code file identifiers.

Furthermore, the BRTracer tool, available at the online annex ofWong et al. (2014),
is set to process only three datasets (AspectJ, Eclipse and SWT) as default. We were
kindly granted access to its source code by its author (Chu Pan Wong) and with his
assistance modified the main program to accept additional project artefact details,
e.g. location of the source files and the BRs. Prior to running the modified tool using
other datasets, we ran the modified version with the default projects and compared the
results against those reported in its paper. This allowed us to verify that despite our
modifications the results were as reported.

8 https://github.com/sjbutler/jim
9 https://github.com/sjbutler/intt
10 http://db.apache.org/derby

123

https://github.com/sjbutler/jim
https://github.com/sjbutler/intt
http://db.apache.org/derby

Autom Softw Eng

Also for the first stage, we developed a Java module to tokenise the text in the
BRs into terms. The module reuses Lucene’s StandardAnalyzer because it tokenises
alphanumerics, acronyms, company names, email addresses, etc., using a JFlex-based
lexical grammar. It also includes stop-word removal.We used a publicly available stop-
words list11 to filter them out. The extracted information is stored via the Hibernate
persistenceAPI into the sameDerby database.We also use thismodule to extract terms
(by tokenisingwords and removing stop-words) from Java source code comments prior
to storing them into the database. During this stage, stemming is done using Lucene’s
implementation of Porter’s stemmer (Porter 1997).

For the third stage of the process, we developed a Java module that (1) runs SQL
queries to search for the occurrences of the BR terms in the source code files and (2)
ranks all the files for each BR as explained in the next subsection. The ranked search
results are saved in a spreadsheet for additional statistical analysis like computing the
Mean Average Precision (MAP) andMean Reciprocal Rank (MRR) values (Boslaugh
and Watters 2008).

MAP provides a single-figure measure of quality across recall levels. Among eval-
uation measures, MAP has been shown to have especially good discrimination and
stability (Manning et al. 2008). The MAP is calculated as the sum of the average
precision value for each BR divided by the number of BRs for a given project. The
average precision (AP) for a BR is the mean of the precision values obtained for all
affected files listed in the result set and computed as in Eq. 1. Then the MAP for a
set of queries is the mean of the average precision values for all queries, which is
calculated as in Eq. 2.

AP(Relevant) =
∑

r∈Relevant Precision(Rank(r))
|Relevant| (1)

MAP(Queries) =
∑

q∈Queries AP(Relevant(q))
|Queries| (2)

MAP is considered to be optimal for ranked results when the possible outcomes of
a query are 5 or more (Lawrie 2012). As Table 3 shows, very few BRs have at least 5
affected files, but we still use the MAP for comparison with previous approaches. As
we will show, for all eight projects, including ZXing, we achieve the best MAP.

MRR is a metric for evaluating a process that produces a list of possible responses
to a query (Voorhees 2001). The reciprocal rank RR(q) for a query q is the inverse
rank of the first relevant document found and computed as in Eq. 3. Then the MRR is
the average of the reciprocal ranks for the results of a set of queries calculated as in
Eq. 4.

RR(q) =

⎧
⎪⎨

⎪⎩

if q retrieves no

relevant documents 0

otherwise 1
TopRank(q)

(3)

11 http://norm.al/2009/04/14/list-of-english-stop-words/

123

http://norm.al/2009/04/14/list-of-english-stop-words/

Autom Softw Eng

MRR(Queries) =
∑

q∈Queries RR(q)
|Queries| (4)

On the other hand, MRR is known to measure the performance of ranked results
better when the outcome of a query is less than 5 and best when just 1 (Lawrie 2012),
which is the majority of cases for the datasets under study (Table 3). The higher
the MRR value, the better the bug localisation performance. We will show that our
approach improves, sometimes substantially, the MRR for all eight projects.

3.2 Ranking files

Given a BR and a file, our approach computes two kinds of scores for the file: a lexical
similarity score (Algorithm 2, explained later) and a probabilistic score given byVSM,
as implemented by Lucene.

The two scorings are done with four search types, each using a different set of terms
indexed from the BR and the file:

1. Full terms from the BR and from the file’s code.
2. Full terms from the BR and the file’s code and comments.
3. Stemmed terms from the BR and the file’s code.
4. Stemmed terms from the BR, the file’s code and comments.

For each of the 8 scorings, all files are ranked in descending order. Files with the
same score are ordered alphabetically, e.g. if files F and G have the same score, F will
be ranked above G. Then, for each file we take the best of its 8 ranks. If two files have
the same best rank, then we compare the next best rank, and if that is tied, then their
3rd best rank etc. For example, if file B’s two best ranks (of the 8 ranks each file has)
is 1 and 1, and if file A’s two best ranks are 1 and 2, B will be ranked overall before A.

The rationale for the four search types is that during experiments, we noticed that
when a file could not be ranked among the top-10 using the full terms and the code, it
was often enough to use associated comments and/or stemming. As shown in Table 4,
for SWT’s BR #100040, the affected Menu.java file had a low rank (484th) using
the first type of search. When the search includes comments, stemming or both, it is

Table 3 Affected files per BR

Project BRs with only 1 file BRs with 2–4 files BRs with ≥ 5 files

AspectJ 71 149 66

Eclipse 1525 1066 484

SWT 59 32 7

ZXing 14 5 1

Tomcat 690 281 85

ArgoUML 42 32 17

Pillar1 10 7 10

Pillar2 0 1 11

123

Autom Softw Eng

Table 4 Ranking achieved by all search types in SWT

BR # Affected
Java file

BugLocator BRTracer ConCodeSe 1: Full/code 2: Full/all 3: Stem/code 4: Stem/all

100040 Menu 20 65 2 484 3 29 2

79107 Combo 6 8 3 26 29 3 8

84911 FileDialog 6 6 5 5 39 6 56

92757 StyledText
Listener

87 74 3 4 3 75 72

The best rank of each file is in bold

ranked at 3rd, 29th and 2nd place respectively. The latter is the best rank for this file
and thus returned by ConCodeSe (4th column of the table).

There are cases when using comments or stemming could deteriorate the ranking,
for example because it helps irrelevant files to match more terms with a BR and thus
push affected classes down the rankings. For example, in BR #92757, the affected
file StyledTextListener.java is ranked much lower (75th and 72nd) when stemming
is applied. However, by taking the best of the ranks, ConCodeSe is immune to such
variations.

The lexical similarity scoring and ranking is done by function searchAndRankFiles
(Algorithm 1), which takes as arguments a BR and the project’s files and returns
an ordered list of files. The function is called 4 times, for each search type listed
previously, and goes through the following steps for each source code file.

1. Check if the file’s name matches one of the words in key positions (KP) of the
BR’s summary, and assign a score accordingly (Sect. 3.2.1).

2. If no score was assigned and if a stack trace (ST) is available, check if the file’s
name matches one of the file names listed in the ST and assign a score accordingly
(Sect. 3.2.2).

3. If there is still no score then assign a score based on the occurrence of the search
terms, i.e. the BR text terms (TT) in the file (Sect. 3.2.3).

Once all the files are scored against a BR, the list is sorted in descending order, where
the files with higher scores are ranked at the top. Ties are broken by alphabetical order.

Algorithm 1 searchAndRankFiles
input: files: List<File>, br: BR // one bug report
output: ranked: List<File>
foreach file in files
file.score := scoreWithKeyPositionWord(file.name, br.summary) // KP Score
if file.score = 0 and br.stackTrace exists then
file.score := scoreWithStackTrace(file.name, br.stackTrace) // ST Score
endif
if file.score = 0 then
file.score := scoreWithFileTerms(file, br) // TT Score
endif

end for
return files in descending order by score

123

Autom Softw Eng

Table 5 Sample of words in key positions

BR# Summary Position

79268 Program API does not work with GNOME 2.8
(libgnomevfs-WARNING)

First

78559 [consistency] Slider fires two selection events before
mouse down

Second

92341 DBR - Add SWT.VIRTUAL style to Tree widget Penultimate

100040 Slow down between 3.1 RC1 and N20050602 due to
change to ImageList

Last

3.2.1 Scoring with key positions (KP score)

By manually analysing all SWT and AspectJ BRs and 50 random Eclipse BRs, i.e.
(98 + 286 + 50)/4665 = 9.3% of all BRs (Table 1), we found that the word in the
first, second, penultimate or last position of the BR summary may correspond to the
affected file name. For example, Table 5 shows that in the summary sentence of BR
#79268, the first word is already the name of the affected source file, i.e. Program.java.

Overall, our manual analysis of SWT revealed that in 42% (42/98) of the BRs the
first word and in 15% (15/98) of the BRs the last word of the summary sentence was
the affected source file.We found similar patterns in AspectJ: 28% (81/286) as the first
word and 5% (15/286) as the last word. The frequency for the second and penultimate
words being the affected file was 4 and 11% respectively.

We also noticed that some KP words come with method and package names in
the BR summary, e.g. Class.method() or package.subpackage.Class.method(). They
hence required parsing using regular expressions. Based on these findings, we assign a
high score to a source file when its namematches the words in the above described four
key positions of the BR summary sentence. The earlier the file name occurs, the higher
the score: the word in first position gets a score of 10, the second 8, the penultimate
6 and the last 4. Note that the key positions are scored in a different order (1st, 2nd,
penultimate, last) from their frequency (1st, penultimate, last, 2nd) inAspectJ, because
while experimenting with different score values for SWT and AspectJ we found the
‘natural’ order to be more effective. Disregarding other positions in the summary
prevents non-affected files that occur in those other positions from getting a high KP
score and thus a higher ranking.

3.2.2 Scoring with stack traces (ST score)

Stack traces list the files that were executed when an error condition occurs. During
manual analysis of the same BRs as for KP we found several included an ST in the
description field (see Table 6).

We found that especially for NullPointerException, the affected file was often the
first one listed in the stack trace. For other exceptions such as UnsupportedOpera-
tionException or IllegalStateException however, the affected file was likely the second
or the fourth in the stack trace.

123

Autom Softw Eng

Table 6 Stack trace information in BRs

Project # of BRs # of BRs with Stack Traces % of BRs with Stack Traces

AspectJ 286 67 23

Eclipse 3075 435 14

SWT 98 4 4

ZXing 20 0 0

Tomcat 1056 83 8

ArgoUml 91 5 5

Pillar1 27 1 4

Pillar2 12 0 0

We first use regular expressions (see Fig. 2) to extract from the ST the application-
only source files, i.e. excluding third party and Java library files, and then put them
into a list in the order in which they appeared in the trace. We score a file if its name
matches one of the first four files occurring in the list. The file in first position gets a
score of 9, the second 7, the third 5 and the fourth 3.

3.2.3 Scoring with text terms (TT score)

We assign a score to the source file based onwhere the BR’s terms (without duplicates)
occur in the file. If a BR term occurs in the file name this results in a higher score.
Each occurrence of each BR term in the file increments slightly the score, as shown
in function scoreWithFileTerms (Algorithm 2). As explained before, the BR’s and the
file’s terms depend on whether stemming and/or comments are considered.

Again, the file names are treated as the most important elements and are assigned
the highest score. When a query term is identical to a file name, it is considered a full
match (no further matches are sought for the file) and a relatively high score (adding
2) is assigned. The occurrence of the query term in the file name is considered to be
more important (0.025) than in the terms extracted from identifiers, method signatures
or comments (0.0125).

The TT score values were chosen by applying the approach on a small sized training
dataset, consisting of randomly selected 51 BRs from SWT and 50 BRs fromAspectJ,
i.e. (50 + 51)/4665 = 2.17% of all BRs, and making adjustments to the scores in
order to tune the results for the training dataset.

3.2.4 Rationale behind the scoring values

As mentioned in the previous subsections, values for the KP scoring (10, 8, 6, 4),
ST scoring (9, 7, 5, 3) and TT scoring (2, 0.025, 0.0125) were obtained heuristically,

Fig. 2 Search pattern for stack trace

123

Autom Softw Eng

Algorithm 2 scoreWithFileTerms
input: file: File, br: BR // one bug report
output: score: float = 0
foreach query_term in br.terms
if (query_term = file.name)
score := score + 2
return score
endif
if (file.name contains query_term) then
score := score + 0.025
else
foreach doc_term in file.terms
if (doc_term = query_term) then
score := score + 0.0125

endif
endfor
endif

endfor
return score

whilst reflecting the importance of the summary, the stack trace and the description,
in this order, and of the different parts of each. The scoring values are weights that
give more importance to certain positions in the summary and stack trace, or to certain
kinds of words (class names). As such, they are in essence not different from other
weights used by other authors, which they also obtained heuristically. For example,
Hill et al. (2007) assigned weights 2.5 and 0.5 to terms based on whether they match
those extracted from the file name or method name, respectively, and Uneno et al.
(2016) summed the scores of three tools adjusted by weights 0.5, 0.3, and 0.1 or
1.0, based on manual experiments and observations. Methodologically, our approach
therefore does not deviate from established practice.

Some authors automatically determine the bestweight values, e.g. by usingmachine
learning. However, the optimal weights obtained from a particular collection of
projects are not necessarily the best weights for other projects. For example, in Tom-
cat the bug reports have very detailed and long descriptions but in Pillar2 they are
tersely written. Optimising weights (via machine learning or some other technique)
must therefore be done separately for each project, and only for projects that have
sufficient history, i.e. sufficient past BRs that can be used as training set.

We are not interested in a tailored approach that provides the best results for the 8
projects at hand. Rather, we aim to seewhether using the least information possible (the
bug report to be localised and the source code files on which the bug was reported) and
using a light-weight IR approach with fixed, not necessarily optimal, weights, we can
achieve similar performance to other approaches that use more data sources (similar
past bug reports, past code versions) or more complicatedmethods. Aswewill show in
Sect. 4, we actually surpass the performance of other approaches. Our results can thus
form a new baseline to compare to, and our simple minimalistic approach can serve as
a ‘trampoline’ for others to improve on our baseline, e.g. by modifying Algorithm 1 or
by adding further heuristics and techniques, like project history and machine learning.

123

Autom Softw Eng

4 Evaluation of the results

In this section we address the research questions. Since they ask for the effects of
various scoring components, we had to run ConCodeSe, BugLocator and BRTracer
(the other tools were unavailable) in different ‘modes’, e.g. with and without stack
trace information or with and without SimiScore (similar bug reports), to observe the
effect on the ranking of individual files. We ran BugLocator and BRTracer without
SimiScore by setting the alpha parameter to zero, as described in Zhou et al. (2012)
and Wong et al. (2014). We also ran both tools with SimiScore, by setting alpha to the
value reported in the corresponding paper. We confirmed that we obtained the same
top-N, MAP and MRR results as reported in the papers. This reassured us we were
using the same tool versions, datasets and alpha values as the authors had, and that the
results reported in the rest of this section for BugLocator and BRTracer are correct.

As we derived our heuristics by manually analysing the BRs of AspectJ and SWT,
and some from Eclipse, to avoid bias, we evaluated our approach using additional OSS
and industrial projects: ArgoUML, Tomcat, ZXing, Pillar1 and Pillar2. As already
described in Sect. 2, all but the last two projects were also used by the approaches we
compare our tool’s performance against.

4.1 RQ1: scoring with file names in BRs

As described throughout Section 3, our lexical similarity scoring mainly considers
whether the name of the file being scored occurs in the BR, giving more importance
to certain positions in the summary or in the description’s stack trace. The rationale is
of course that a file explicitly mentioned in the BR is likely to require changes to fix
the bug.

The first research question asks whether such an approach, although seemingly
sensible, is effective. To answer the question we compare our results to those of
BugLocator, BRTracer, BLUiR, AmaLgam, LtR, BLIA and Rahman using the same 5
metrics (Top-1, Top-5, Top-10, MAP, MRR) and for LOBSTER using only the MAP
and MRR metrics (as given in their paper). We look at the separate and combined
effect of using file names for scoring.

4.1.1 Scoring with words in key positions (KP score)

To see the impact of considering occurrences of the file name in certain positions of
the BR summary, we ran ConCodeSe with and without assigning a KP score, whilst
keeping all the rest as described in Sect. 3. Table 7 shows how evaluating the words in
key positions improved results for the affected classes of the BRs given in Table 5. In
the cases of BugLocator and BRTracer, we obtained the ranks by running their tool,
and obtained the ones for BLUiR from their published results.

As the table illustrates, in some cases (like for Program.java) the summary scoring
can make the difference between the file not even making into the top-10 or making
into the top-5. In other cases, the change in ranking is small but can be significant,

123

Autom Softw Eng

Table 7 Results with and without considering key positions

SWT BR# Affected file BugLocator BRTracer BLUiR ConCodeSe

Without With

79268 Program.java 20 10 – 19 2

78559 Slider.java 2 4 1 5 1

92341 Tree.java 1 1 5 4 2

100040 ImageList.java 7 1 9 2 1

making the affected file become the top ranked, which is always the most desirable
situation, as the developer will not have to inspect any irrelevant files.

To have an overall view, we also ran ConCodeSe using just KP and TT scores
together (KP+TT) against only using TT score, i.e. in both runs ST and VSM scoring
were not used. Table 8 shows that compared toTTalone,KP+TTprovides an advantage
in positioning files of a BR in the top-1 for SWT and ZXing, and in the top-5 for
AspectJ, Eclipse and Tomcat. On the contrary, in the cases of Pillar1 and Pillar2 using
KP+TT score did not make a difference and the results remained the same as the TT
score in all top-N categories. Further analysis revealed the reason: in Pillar2 the BR
summaries do not contain source code file names and in Pillar1 only 3 BRs contain
file names in their summaries, but they are not the files changed to resolve the reported
bug and the TT score of the relevant files is higher.

Overall 46–86% of BRs can be located by just assigning a high score to file names
in certain positions of the BR summary, confirming the studies cited in the introduction
that foundfile namesmentioned in a large percentage ofBRs (Saha et al. 2013; Schröter
et al. 2010). The file name occurrences in other places of the BR are also scored by
comparing BR and file terms in function scoreWithFileTerms (see Algorithm 2), but
irrelevant files that match several terms may accumulate a large score that pushes the
affected classes down the ranking.

4.1.2 Scoring with stack trace information (ST score)

To see the impact of considering file names occurring in a stack trace, if it exists, we
ran ConCodeSe with and without assigning an ST score, but again leaving all the rest
unchanged, i.e. using key position (KP) and text terms (TT) scoring. Table 9 shows
results for some affected classes obtained by BugLocator, BRTracer and BLUiR.

Again, the rank differences can be small but significant, moving a file from top-10 to
top-5 (ResolvedMemberImpl.java) or from top-5 to top-1 (EclipseSourceType.java).
In some cases (ReferenceType.java) the file goes from not being in the top-10 to being
in the top-1, even if it is in the lowest scoring fourth position in the stack.

Table 8 also shows the effect of runningConCodeSe justwith andTT scores together
(ST+TT) against only using TT score, i.e. without KP and VSM scoring, except for
ZXing and Pillar2, which don’t have any stack traces in their BRs (Table 6). ST+TT
scoring provides significant advantage over the TT score alone in positioning affected
files of a BR in top-1. In particular for AspectJ, Eclipse, Tomcat and ArgoUML, ST

123

Autom Softw Eng

Table 8 Key position versus stack trace versus text terms

Project Scoring Top-1(%) Top-5 (%) Top-10 (%) MAP MRR

AspectJ KP+TT only 12.9 43.0 59.1 0.17 0.33

ST+TT only 21.7 45.1 59.4 0.20 0.40

TT only 13.6 43.7 59.1 0.17 0.34

Eclipse KP+TT only 19.5 35.2 48.0 0.21 0.32

ST+TT only 19.9 35.9 48.0 0.21 0.33

TT only 18.3 34.7 48.0 0.20 0.32

SWT KP+TT only 62.2 79.6 89.8 0.60 0.81

ST+TT only 43.9 76.5 88.8 0.50 0.70

TT only 42.9 76.5 88.8 0.50 0.69

ZXing KP+TT only 40.0 65.0 80.0 0.46 0.53

ST+TT only N/A N/A N/A N/A N/A

TT only 25.0 60.0 75.0 0.38 0.42

Tomcat KP+TT only 36.2 56.3 64.1 0.39 0.49

ST+TT only 34.8 56.3 64.3 0.39 0.49

TT only 34.0 55.7 64.0 0.38 0.48

ArgoUML KP+TT only 12.1 48.4 56.0 0.19 0.32

ST+TT only 13.2 48.4 56.0 0.20 0.33

TT only 12.1 48.4 56.0 0.19 0.32

Pillar1 KP+TT only 7.4 33.3 40.7 0.10 0.36

ST+TT only 7.4 33.3 40.7 0.10 0.36

TT only 7.4 33.3 40.7 0.10 0.36

Pillar2 KP+TT only 25.0 66.7 75.0 0.20 0.71

ST+TT only 25.0 66.7 75.0 0.20 0.71

TT only 25.0 66.7 75.0 0.20 0.71

The best scoring combination for each project is in bold

scoring places more BRs in all top-N categories, indicating that giving file names
found in stack trace a higher score contributes to improving the performance of the
results, which is also in line with the findings of previous studies (Schröter et al. 2010;
Moreno et al. 2014; Wong et al. 2014).

Note that there is no significant difference between ST+TT and TT scoring for
SWT and ArgoUML. Only 4 of SWT’s BRs have a stack trace and it happens that

Table 9 Results with and without stack trace information

AspectJ
BR#

Exception description Affected class Stack pos. BugLocator BRTracer BLUiR ConCodeSe

Without With

138143 NullPointerException EclipseSourceType 1st 1 2 5 5 1

158624 UnsupportedOperation ResolvedMemberImpl 2nd 16 6 56 7 3

153490 IllegalStateException ReferenceType 4th 122 3 74 11 1

123

Autom Softw Eng

Table 10 Key word and stack trace scoring on versus off

Project KP+ST Top-1 (%) Top-5 (%) Top-10 (%) MAP MRR

AspectJ On 42.3 68.2 78.3 0.32 0.67

Off 35.0 67.1 78.3 0.30 0.62

Eclipse On 37.6 61.2 69.9 0.37 0.57

Off 34.6 59.6 69.7 0.35 0.55

SWT On 72.4 89.8 92.9 0.68 0.94

Off 59.2 88.8 92.9 0.62 0.85

ZXing On 55.0 75.0 80.0 0.55 0.68

Off 35.0 70.0 80.0 0.45 0.52

Tomcat On 51.5 69.2 75.4 0.52 0.66

Off 49.1 68.6 75.3 0.51 0.65

ArgoUML On 31.9 61.5 65.9 0.30 0.55

Off 31.9 61.5 65.9 0.30 0.55

Pillar1 On 29.6 59.3 63.0 0.22 0.69

Off 29.6 59.3 63.0 0.22 0.69

Pillar2 On 33.3 66.7 83.3 0.26 0.92

Off 33.3 66.7 83.3 0.26 0.92

The results with scoring turned on are in bold

in those cases the lower TT score value of 2 for the files occurring in the stack trace
is still enough to rank them highly. For ArgoUML, 5 bug reports contain stack trace
information and using ST+TT scoring adds only one more bug report to the top-
1 compared to the other two scoring variations. The small difference is due to the
relevant file for the other 4 bug reports not being among the ones listed in the stack
trace or being listed at a position after the 4th. Since ST scoring only considers the
first 4 files, in that case the affected file gets a TT score, because its name occurs in
the BR description.

Again, for Pillar1 and Pillar2 using ST+TT scoring alone did not make a difference
and the results remained constant in all top-N categories. None of the Pillar2 BRs
contains stack traces and in the case of Pillar1 only 1 BR description contains stack
traces but the relevant file is listed after the 4th position and gets a ST score of zero
(Sect. 3.2.2).

We end the analysis of the contributions of positional scoring of file names in BR
summaries (KP) and stack trace (ST) with Table 10, which shows the combined rank
‘boosting’ effect of positional scoring, i.e. using KP and ST scoring together vs not
using it. For example in the case of the SWT project, using summary and stack trace
scoring places an affected source file in the top-1 for 72% of the BRs compared to
the base case (TT score) of 59%. This performance advantage remains noticeable
high for all the projects except for ArgoUML, Pillar1 and Pillar2 due to the stated
reasons.

123

Autom Softw Eng

Table 11 KP and ST scoring variations

Project Approach Top-1 (%) Top-5 (%) Top-10 (%) MAP MRR

Aspectj halved 42.0 68.5 78.3 0.33 0.67

reversed 34.6 65.0 77.6 0.30 0.61

uniform 37.4 68.2 78.3 0.31 0.64

close2base 41.6 68.2 78.3 0.33 0.67

Eclipse halved 37.2 61.1 69.8 0.37 0.57

reversed 35.7 61.2 69.9 0.36 0.56

uniform 36.6 61.2 69.9 0.36 0.56

close2base 37.8 67.8 78.3 0.36 0.57

SWT halved 71.4 89.8 92.9 0.68 0.93

reversed 69.4 88.8 92.9 0.66 0.92

uniform 71.4 89.8 92.9 0.68 0.94

close2base 72.4 89.8 92.9 0.68 0.94

Tomcat halved 50.9 68.8 75.5 0.52 0.65

reversed 50.5 68.8 75.5 0.52 0.65

uniform 51.0 69.2 75.4 0.52 0.66

close2base 51.7 69.1 75.4 0.52 0.66

ArgoUML any 31.9 61.5 65.9 0.30 0.55

ZXing any 55.0 75.0 80.0 0.51 0.63

Pillar1 any 29.6 59.3 63.0 0.22 0.69

Pillar2 any 33.3 66.7 83.3 0.26 0.92

The best variation for each project is in bold

4.1.3 Variations of score values

The KP and ST scores are computed in very simple ways, which may affect the perfor-
mance of the outcome. Variations to those scores may or may not further enhance the
performance. We experimented further to evaluate the effects of our scoring mecha-
nism by assigning different scores to the four positions in the summary and in the stack
trace. Table 11 shows the results obtained after performing the following changes:

1. The scores were halved, e.g. 10, 8, 6, 4 became 5, 4, 3, 2.
2. The scores were reversed, i.e. 4, 6, 8, 10 and 3, 5, 7, 9.
3. All 8 positions (4 in the BR summary and 4 in the ST) have a uniform score of 10.
4. The scores were made closer to those of TT (close2base):

(a) for the summary positions: 3.00, 2.75, 2.50, 2.25
(b) for the stack positions: 2.75, 2.50, 2.25, 2.00

Halving and close2base keeps the order of each set of 4 positions, and the results
obtained are similar to those obtained with the original score values, 10, 8, 6, 4 for
summary positions and 9, 7, 5, 3 for stack trace positions. The reversed and uniform
scoring break that order and led to the worst results. This confirms that the rela-

123

Autom Softw Eng

tive importance of the various positions (especially the first position) found through
inspection of SWT and AspectJ applies to most projects.

In the cases of ArgoUML, Pillar1 and Pillar2 changing the KP and ST scoring
doesn’t make a difference because the 8 summary and stack trace positions do not
play a role in those projects (Table 10). In the case of ZXing neither of the scoring
variations made a difference due to the small number of BRs. It made little difference
to SWT, which has only a few more BRs than ArgoUML.

Looking closer at Table 11, we note that in cases of the Eclipse, SWT and Tomcat
projects, close2base places more BRs in top-1 than any other variation. Investigating
more closely, we found that one additional BR for SWT and two for Tomcat are
placed in top-1. In the case of SWT, the only affected source code file, Spinner.java
for BR #96053, achieved a TT score of 2.56 by function scoreWithFileNames (see
Algorithm 2) and is ranked in the 2nd position whereas the file Text.java achieved a
KP score of 4 and is ranked 1st. Analysing further revealed that the last word “text”
in the BR summary sentence matches the file name, thus assigning a high KP score
value of 4 to the file Text.java. However, when close2base scores are used, the KP
score value for the last word position is set to 2.25 (see point 4a in the variations list
above), which is lower than the TT score (2.56), thus ranking Spinner.java as 1st and
Text.java as 2nd. Similar patterns were discovered in Eclipse and Tomcat as well.

Comparing Table 11 to the results achieved by other approaches (Fig. 4 in the
next subsection), we note that the halved and close2base variations outperform the
other approaches in most cases, showing that the key improvement is the higher and
differentiated scoring of the 4 positions in the summary and stack trace, independently
of the exact score values.

To sum up, the four systematic transformations of the score values and the better
performance of the halved and close2base transformations provide evidence that the
absolute values is not the main point but rather ther relative values. Moreover, the
heuristics (the more likely occurrence of relevant file names in certain positions) were
based on the analysis of only 10% of the bug reports, far less than the typical training
data sample used in k-fold cross-validation. Especially for large projects like Eclipse,
with many people reporting bugs, one can reasonably expect that many BRs will
deviate from the sample. The similar behaviour of the variants across all projects and
all BRs (close2base and halved are better than uniform, which is better than reversed)
therefore provides reassurance that the chosen values capture well the heuristics and
that the heuristics are valid beyond the small sample size used to obtain them.

4.1.4 Overall results

Finally, we compare the performance of ConCodeSe against the state-of-the-art tools
using their datasets and metrics (Figs. 3, 4). As mentioned before, we were only able
to obtain BugLocator and BRTracer,12 which meant that for the other approaches we
could only refer to the published results for the datasets they used. Thismeanswe could
compare our Pillar1 and Pillar2 results only against those two approaches and couldn’t

12 Although BLIA is available online, we were unable to run it on datasets other than the ones used by its
authors (AspectJ, SWT and ZXing).

123

Autom Softw Eng

Fig. 3 MAP and MRR values of the tools

for example run BLUiR and AmaLgam on the projects used by LOBSTER and LtR
and vice versa. LtR’s top-N values for Tomcat were computed from the ranking results
published in LtR’s online annex (Wang and Lo 2014).

LtR also used AspectJ, Eclipse and SWT but with a different dataset to that of
BugLocator. The online annex only included the Tomcat source code, so we were
unable to rank the BRs for the other projects with LtR.

Figures 3 and 4 show that except for AmaLgam’s Top-1 performance on AspectJ,
ConCodeSe outperforms or equals all tools on all metrics for all projects, including
BugLocator’s MAP for ZXing, which BLUiR and AmaLgam weren’t able to match.

For LOBSTER, the authors report MAP and MRR values obtained by varying the
similarity distance in their approach, and we took their best values (0.17 and 0.25).
LOBSTER only investigates the added value of stack traces so to compare like for

123

Autom Softw Eng

Fig. 4 Top-N values of the tools

123

Autom Softw Eng

like, we ran ConCodeSe on their ArgoUML dataset using only the ST scoring and still
improved on their results (Fig. 3 ConCodeSe-(ST) row).

We note that ConCodeSe always improves theMRRvalue, which is an indication of
how many files a developer has at most to go through in the ranked list before finding
one that needs to be changed. User studies (Xia et al. 2016; Kochhar et al. 2016)
indicate that developers only look at the top-10, and especially the top-5, results.
ConCodeSe has the best top-5 and top-10 results across all projects.

We also get distinctly better results than Rahman et al. (2015), the only other
approach to explicitly use file names found in BRs. Looking at the largest project,
Eclipse (Fig.4), we note that even a small 1.7% Top-1 improvement over the second
best approach (BLUiR) represents 52 more BRs for which the first recommended file
is relevant, thus helping developers save time.

We notice that our tool performs almost 2% worse than AmaLgam (42.3 vs 44.4%)
for AspectJ when placing relevant files in top-1. Investigating the reasons for this, we
found out that in 2 AspectJ BRs, with a FileNotFound exception reported, the changed
file got ranked 2nd despite being listed in the ST. This is because the ST lists a utility
file in the 1st position and the affected file in the 2nd position. For example, in AspectJ
BR #123212, the file AjBuildManager.java uses FileUtil.java to write information to
an external file and the FileNotFoundException is thrown by FileUtil first and then
propagated to its users like AjBuildManager. Since ST scores are assigned based on
the order of each file appearing in the ST, in the case of AspectJ BR #123212, FileUtil
gets a higher score than AjBuildManager. To handle this scenario, we experimented
by adjusting our ST scoring values but the overall results deteriorated.

In the case of Pillar1, our tool achieves a significantly higher performance over
BugLocator and BRTracer in all top-N categories (Fig. 4). It is also interesting to see
that BugLocator outperforms BRTracer in the top-1 and top-5 metrics despite that
BRTracer is reported to be an improvement over BugLocator. In the case of Pillar2,
although our approach achieves identical performance to the second best in the top-5
and top-10 metrics, it is far superior in the top-1 metric and thus outperforms the other
approaches in terms of MAP and MRR (Fig. 3).

The first research question is about leveraging filenames. So, we divided each
project’s BRs in two sets—thoseBRsmentioning at least one file and thosementioning
no files at all—and ran ConCodeSe, BRTracer and BugLocator on each set. The results
are in Tables 12 and 13. Table 13 shows that ConCodeSe matches or outperforms the
other two tools on every project and metric, except Eclipse’s top-1 and SWT’s Top-5,
Top-10 andMAP. This is evidence that our approach performswell even if a bug report
doesn’t mention file names.

As a further example, SWTBR#58185mentions no files and yet ConCodeSe places
3 of the 4 relevant files in the top-5, whereas BugLocator and BRTracer only place 2
files. Similarly, AspectJ BR #95529 contains no file names but out of the 11 relevant
files, ConCodeSe ranks 3 files in the top-5 and 1 in the top-10 whereas BugLocator
and BRTracer only rank 1 relevant file in the top-5. In all these cases the KP and
ST scores are zero and Algorithm 1 uses the lexical (TT) score. The TT and VSM
scores are computed with and without using the file’s comments, with and without
stemming. Thus, even if a bug report doesn’t mention file names, our approach still
obtains 2∗2∗2 = 8 ranks for each file, to choose the best of them.

123

Autom Softw Eng

Table 12 Performance on BRs mentioning at least one file name

Project #BRs Tools Top-1 (%) Top-5 (%) Top-10 (%) MAP MRR

AspectJ 282 ConCodeSe 42 69 78 0.34 0.70

BRTracer 33 59 72 0.24 0.54

BugLocator 18 42 52 0.17 0.34

Eclipse 3043 ConCodeSe 38 61 70 0.37 0.57

BRTracer 32 57 66 0.33 0.51

BugLocator 32 55 65 0.32 0.51

SWT 93 ConCodeSe 73 89 94 0.71 0.96

BRTracer 50 79 88 0.54 0.71

BugLocator 44 71 84 0.50 0.67

Zxing 19 ConCodeSe 53 74 79 0.54 0.65

BRTracer 53 68 74 0.51 0.60

BugLocator 42 68 74 0.44 0.52

Tomcat 942 ConCodeSe 54 72 79 0.56 0.71

BRTracer 37 59 65 0.40 0.47

BugLocator 0 64 74 0.28 0.35

ArgoUML 61 ConCodeSe 29 57 60 0.30 0.57

BRTracer 23 50 65 0.20 0.40

BugLocator 21 45 57 0.20 0.42

Pillar1 19 ConCodeSe 47 58 58 0.35 0.96

BRTracer 16 37 37 0.16 0.36

BugLocator 21 37 42 0.19 0.43

Pillar2 0 all tools N/A N/A N/A N/A N/A

The best approach for each project is in bold

Having always 8 ranks to choose from also helps with the other extreme: the bug
report includesmanyfile names, butmost are irrelevant. For example, SWTBR#83699
mentions 14 files but only 1 is relevant. We rank it in the 4th position using the
file’s comments, whereas BugLocator and BRTracer rank it 9th and 14th, respectively.
Similarly,AspectJBR#46298has a veryverbose description thatmentions 9files, none
relevant. We list the only relevant file in the 2nd position using VSM and comments;
BugLocator and BRTracer list it in 6th and 12th position respectively.

More generally, Table 12 shows that ConCodeSe outperforms BugLocator and
BRTracer in every metric for every project when the BR contains file names, whether
relevant or not. We have separated the BRs that have one or more relevant file names
(Table 14) from those that have no relevant file names at all (Table 15). Table 14
shows that if there is at least one relevant file name in the BR, ConCodeSe matches or
outperforms the other two tools in every metric for every project. Table 15 shows that
the same happens, except for Eclipse, when the BR doesn’t include any relevant file
name. Even in the case of Eclipse the difference to BugLocator (which outperforms
BRTracer) is small. Comparing both tables, one can see that for each project except

123

Autom Softw Eng

Table 13 Performance on BRs mentioning no file name

Project #BRs Tools Top-1 (%) Top-5 (%) Top-10 (%) MAP MRR

AspectJ 4 ConCodeSe 25 75 75 0.27 0.62

BRTracer 25 50 50 0.20 0.40

BugLocator 0 0 25 0.05 0.10

Eclipse 32 ConCodeSe 9 34 50 0.14 0.30

BRTracer 16 34 50 0.15 0.29

BugLocator 13 31 47 0.14 0.27

SWT 5 ConCodeSe 40 80 80 0.27 0.98

BRTracer 0 80 80 0.19 0.62

BugLocator 40 100 100 0.32 0.90

Zxing 1 ConCodeSe 100 100 100 0.70 1.00

BRTracer 0 0 100 0.15 0.23

BugLocator 0 100 100 0.21 0.31

Tomcat 114 ConCodeSe 24 39 45 0.22 0.41

BRTracer 10 21 32 0.11 0.16

BugLocator 0 26 40 0.11 0.21

ArgoUML 30 ConCodeSe 38 72 79 0.34 0.62

BRTracer 10 45 52 0.15 0.33

BugLocator 14 38 55 0.17 0.36

Pillar1 8 ConCodeSe 13 63 75 0.17 0.49

BRTracer 13 13 13 0.09 0.18

BugLocator 13 13 13 0.14 0.23

Pillar2 12 ConCodeSe 33 67 83 0.26 0.69

BRTracer 17 67 83 0.17 0.61

BugLocator 17 58 67 0.17 0.61

ConCodeSe’s results are in bold

SWT, most BRs do not mention any relevant file and yet ConCodeSe performs best
in almost every case.

A BR can be very terse, e.g. a short sentence in the summary and an empty descrip-
tion field, like SWT BR #89533. In this example our tool ranks the only relevant file
in 3rd position, by applying VSM and stemming to the BR summary and the file’s
comments, whereas BugLocator and BRTracer rank the same file in 305th and 19th
position respectively. Similarly, for AspectJ BR #39436, the only relevant file is ranked
in the top-5, based on the comments in the file, whereas BugLocator and BRTracer
rank the same file below the top-10.

Figure 4 only counts for how many BRs at least one affected file was placed in the
top-N. The MAP and MRR values indicate that ConCodeSe tends to perform better
for each BR compared to other tools, so we also analysed the per-BR performance to
measure the number of files per BR placed in the Top-10. This analysis required access
to per-BR results and the only publicly available tools are BugLocator and BRTracer.

123

Autom Softw Eng

Table 14 Performance on BRs mentioning at least one relevant file name

Project #BRs Tools Top-1 (%) Top-5 (%) Top-10 (%) MAP MRR

AspectJ 124 ConCodeSe 58 92 96 0.48 0.91

BRTracer 44 78 90 0.34 0.68

BugLocator 30 53 64 0.26 0.46

Eclipse 1083 ConCodeSe 71 95 98 0.62 0.93

BRTracer 56 84 91 0.53 0.78

BugLocator 52 77 86 0.49 0.74

SWT 68 ConCodeSe 88 99 100 0.83 1.00

BRTracer 59 91 96 0.63 0.80

BugLocator 57 79 91 0.59 0.78

Zxing 9 ConCodeSe 89 100 100 0.86 0.97

BRTracer 78 89 89 0.75 0.84

BugLocator 67 89 89 0.66 0.75

Tomcat 524 ConCodeSe 81 92 93 0.78 0.95

BRTracer 56 77 81 0.57 0.65

BugLocator 0 86 91 0.38 0.46

ArgoUML 12 ConCodeSe 58 100 100 0.56 0.86

BRTracer 50 100 100 0.46 0.68

BugLocator 33 75 83 0.40 0.54

Pillar1 4 ConCodeSe 100 100 100 0.59 1.00

BRTracer 50 100 100 0.56 0.82

BugLocator 75 100 100 0.59 1.00

Pillar2 0 all tools N/A N/A N/A N/A N/A

The best approach for each project is in bold

Table 16 shows, for example, that for 128/286 = 45% (resp. 85/286 = 30%)
of AspectJ’s BRs, our tool placed more files in the top-10 than BugLocator (resp.
BRTracer). This includes BRs in which ConCodeSe placed at least one and the other
tools placed none. The ‘same’ columns indicate the percentage of BRs for which both
tools placed the same number of affected files in the top-10. This includes cases where
all approaches can be improved (because neither ranks an affected file in the top-10),
and where none can be improved (because all tools place all the affected files in the
top-10).

From all the results shown we can answer RQ1 affirmatively: leveraging the occur-
rence of file names in BRs leads in most cases to better performance than using project
history. Due to the use of the best of 8 scores, ConCodeSe is robust to the absence of
file names or the presence of irrelevant file names in the BRs.

4.2 RQ2: scoring without similar bugs

Our second research question was to evaluate the contribution of using similar bug
reports. As described earlier, BugLocator, BRTracer, BLUiR and AmaLgam utilise a

123

Autom Softw Eng

Table 15 Performance on BRs mentioning no relevant file name

Project #BRs Tools Top-1 (%) Top-5 (%) Top-10 (%) MAP MRR

AspectJ 162 ConCodeSe 30 52 65 0.24 0.54

BRTracer 25 43 57 0.17 0.42

BugLocator 9 33 42 0.11 0.25

Eclipse 1992 ConCodeSe 19 43 54 0.22 0.37

BRTracer 20 41 52 0.22 0.36

BugLocator 21 43 53 0.23 0.38

SWT 30 ConCodeSe 33 67 77 0.36 0.66

BRTracer 20 50 70 0.30 0.49

BugLocator 13 57 70 0.26 0.46

Zxing 11 ConCodeSe 27 55 64 0.29 0.43

BRTracer 27 46 64 0.29 0.37

BugLocator 18 55 64 0.23 0.32

Tomcat 532 ConCodeSe 22 46 58 0.27 0.40

BRTracer 13 33 42 0.18 0.22

BugLocator 0 33 49 0.14 0.20

ArgoUML 79 ConCodeSe 28 56 61 0.27 0.55

BRTracer 14 41 54 0.15 0.34

BugLocator 17 38 52 0.16 0.38

Pillar1 23 ConCodeSe 26 52 57 0.22 0.69

BRTracer 9 17 17 0.06 0.22

BugLocator 9 17 17 0.10 0.26

Pillar2 12 ConCodeSe 33 67 83 0.26 0.69

BRTracer 17 67 83 0.17 0.61

BugLocator 17 58 67 0.17 0.61

ConCodeSe’s results are in bold

Table 16 ConCodeSe versus BugLocator and BRTracer per-query top-10 performance

Project BugLocator BRTracer

Better (%) Same (%) Worse (%) Better (%) Same (%) Worse (%)

AspectJ 45 48 7 30 55 15

Eclipse 23 64 13 22 65 13

SWT 24 69 6 21 74 4

ZXing 10 85 5 20 75 5

Tomcat 22 66 12 56 37 7

ArgoUML 25 62 13 29 59 12

Pillar1 48 48 4 48 48 4

Pillar2 58 33 8 50 33 17

123

Autom Softw Eng

Table 17 Similar bug reports examples (from SWT)

BR# Affected
Java Files

BugLocator BRTracer BLUiR ConCodeSe

rVSM SimiScore no SimiScore SimiScore structure SimiScore

78856 OS.java 37 36 89 88 3 6 1

79419 Link.java 18 18 4 4 31 6 1

OS.java 58 58 48 47 11 21 1

83262 RTFTransfer 224 224 214 214 43 79 35

TextTransfer 202 202 198 197 – – 36

87676 Tree.java 49 21 10 6 4 3 2

feature called SimiScore, which uses the BR terms to find similar closed BRs. The
files changed to fix those BRs are suggested as likely candidates for the current BR
being searched. To answer RQ2 we ran BugLocator and BRTracer with and without
SimiScore, as explained at the start of Sect. 4.

Unfortunately, we were unable to obtain BLUiR and AmaLgam to perform runs
without SimiScore, but we do not consider this to be a handicap because from the
published results it seems that SimiScore benefits mostly BugLocator and BRTracer.
We selected the SWTBRs reported in the BLUiR paper (#78856, #79419, #83262 and
#87676) and then ran BugLocator and BRTracer on the same BRs to compare their
performance.

As shown in Table 17, BugLocator placed the file Tree.java in the 49th and 21st
positions in the ranked list by using their revised VSM (rVSM) approach first and then
by considering similar BRs. In the case of BRTracer, the introduced segmentation
approach already ranked the file in the top-10 (10th position) and SimiScore placed
the same file at an even higher position (6th). In the case of BLUiR, the same file is
placed at 4th and 3rd positions, respectively. For the other cases in the table, SimiScore
doesn’t improve (or only slightly so) the scoring for BugLocator. In the case of BLUiR,
apart from the great improvement for Link.java, SimiScore leads to a lower rank than
structural IR.

We ran BugLocator and BRTracer without using SimiScore on all projects, to
have a more like-for-like comparison with ConCodeSe in terms of input (no past
BRs). Comparing Fig. 4 (with SimiScore) and Table 18 (without) shows a notice-
able performance decline in BugLocator and BRTracer when not using similar BRs
and thus an even greater improvement achieved by ConCodeSe. BLUiR without
SimiScore also outperforms BugLocator and BRTracer with SimiScore. Interest-
ingly BRTracer and ConCodeSe perform equally well in top-5 and top-10 for
Pillar2.

WeanswerRQ2by saying that although the contributionof similarBRs significantly
improves the performance of BugLocator and BRTracer, it is not enough to outperform
ConCodeSe. The large contribution of SimiScore for BugLocator and BRTracer is
mainly due to the lower baseline provided by rVSM, as reinforced by the results in
the next section.

123

Autom Softw Eng

Table 18 BugLocator and BRTracer without similar bug reports score

Project Approach Top-1 (%) Top-5 (%) Top-10 (%) MAP MRR

AspectJ BugLocator 22.7 40.9 55.6 0.19 0.18

BRTracer 38.8 58.7 66.8 0.27 0.47

ConCodeSe 42.3 68.2 78.3 0.33 0.67

Eclipse BugLocator 24.4 46.1 55.9 0.26 0.35

BRTracer 29.6 51.9 61.8 0.30 0.40

ConCodeSe 37.6 61.2 69.9 0.37 0.57

SWT BugLocator 31.6 65.3 77.6 0.40 0.47

BRTracer 46.9 79.6 88.8 0.53 0.59

ConCodeSe 72.4 89.8 92.9 0.68 0.94

ZXing BugLocator 40.0 55.0 70.0 0.41 0.48

BRTracer 45.0 70.0 75.0 0.46 0.55

ConCodeSe 55.0 75.0 80.0 0.55 0.68

Tomcat BugLocator 42.1 62.4 71.0 0.26 0.33

BRTracer 36.6 57.3 65.6 0.45 0.56

ConCodeSe 49.9 69.2 75.4 0.52 0.66

ArgoUML BugLocator 18.7 42.9 54.9 0.11 0.48

BRTracer 18.7 46.2 54.9 0.20 0.38

ConCodeSe 31.9 61.5 65.9 0.30 0.55

Pillar1 BugLocator 18.5 29.6 33.3 0.17 0.37

BRTracer 14.8 29.6 29.6 0.14 0.31

ConCodeSe 29.6 59.3 63.0 0.22 0.69

Pillar2 BugLocator 16.7 58.3 66.7 0.17 0.61

BRTracer 16.7 66.7 83.3 0.17 0.61

ConCodeSe 33.3 66.7 83.3 0.26 0.69

Average BugLocator 27 50 61 0.25 0.40

BRTracer 31 57 65 0.33 0.50

ConCodeSe 44 69 76 0.40 0.57

ConCodeSe’s results are in bold

4.3 RQ3: VSM’s contribution

As described in Sect. 3.2, 4 of a file’s 8 rankings are obtained with the VSMprobabilis-
tic method available in the Lucene library, and the other 4 with our lexical similarity
rankingmethod (Algorithm 1). To find out the added value of VSM, we performed two
runs, one with VSM only and the other with lexical similarity scoring only (Table 19).

VSM outperforms the lexical scoring for the larger projects (AspectJ and Eclipse),
i.e. with most code files (Table 1), and underperforms for small projects (SWT, ZXing
and Pillar2). In cases of medium size projects (Tomcat and ArgoUML), lexical scoring
outperforms VSM for Tomcat and underperforms for ArgoUML. As to be expected,
each scoring by itself has a poorer performance than ConCodeSe, which combines
both, whilst the total number of BRs located by ConCodeSe (Fig. 4) is not the sum of

123

Autom Softw Eng

Table 19 Lucene VSM versus lexical similarity scoring

Project Approach Top-1 (%) Top-5 (%) Top-10 (%) MAP MRR

AspectJ VSM 28.0 47.2 60.1 0.22 0.49

Lexical similarity 20.6 44.4 59.4 0.20 0.39

Eclipse VSM 23.3 45.7 56.6 0.25 0.41

Lexical similarity 18.6 36.3 48.2 0.21 0.32

SWT VSM 39.8 71.4 82.7 0.46 0.66

Lexical similarity 63.3 79.6 89.8 0.60 0.82

ZXing VSM 35.0 55.0 65.0 0.37 0.45

Lexical similarity 40.0 70.0 80.0 0.47 0.54

Tomcat VSM 28.1 47.7 57.6 0.32 0.43

Lexical similarity 34.0 56.6 64.0 0.38 0.48

ArgoUML VSM 24.2 51.6 58.2 0.24 0.45

Lexical similarity 13.2 48.4 56.0 0.20 0.33

Pillar1 VSM 25.9 48.1 55.6 0.18 0.59

Lexical similarity 7.4 33.3 40.7 0.10 0.36

Pillar2 VSM 8.3 66.7 75.0 0.18 0.62

Lexical similarity 25.0 66.7 75.0 0.20 0.71

The best approach for each project is in bold

the parts. In other words, many files are ranked in the top-N by both scoring methods,
and each is able to locate BRs the other can’t. ConCodeSe literally takes the best of
both worlds.

For all projects except ArgoUML, VSM by itself performs poorer than the best
other approach (Table 4), which shows the crucial contribution of lexical similarity
scoring for the improved performance of our approach.

TheVSMvariant we adopt outperforms inmany cases rVSM, introduced inBugLo-
cator and also utilised in BRTracer. Even ConCodeSe’s lexical similarity by itself
outperforms rVSM in most cases. This can be seen by comparing the VSM (or lexical
similarity) rows of Table 19 against theBugLocator rows of Table 18,where SimiScore
is turned off to only use rVSM.

We thus answer RQ3 by concluding that VSM provides a bigger contribution for
projects with a large number of files, which makes the use of term and document fre-
quency more meaningful. We also confirm that the exact IR variant used is paramount
(Saha et al. 2013): Lucene’s VSMand our simple lexical matching outperformBugLo-
cator’s bespoke rVSM in many cases as well as BLUiR’s Okapi, especially for SWT
and ZXing. However, VSM on its own isn’t enough to outperform other approaches.

5 RQ4: user study

In the previous section, we evaluated our approachwith a range of open source projects
and showed it outperformed current state-of-the-art tools in a simpler, faster, and more
general way that doesn’t require history. To investigate the generalisability of our

123

Autom Softw Eng

approach, we conducted user studies in three different companies with professional
developers. The first aim of the study was to demonstrate the applicability of our
approach in industrial environments. It may be that commercial applications and bug
reports may differ from those used in the previous section, thus impacting on the
performance of our approach.

Previous user studies, summarised in Sect. 2.4, reveal that: large search results
returned by the integrated development environment (IDE) tools cause developers to
analyse several files before performing bug-fixing tasks and that providing developers
with automated code search tools that present results in a ranked order would be of
great benefit in performing their daily tasks (Starke et al. 2009; Sillito et al. 2008); 5
is the magic number of results that developers deem acceptable to inspect (Xia et al.
2016;Kochhar et al. 2016); almost all developers ‘refuse’ to inspectmore than 10 items
(Kochhar et al. 2016); items are not inspected in the order they are ranked (Parnin and
Orso 2011). None of those studies used IR-based bug localisation. Thus the second
aim of our study was to see how developers perceive and use the ranked search results
of ConCodeSe.

Hence we ask our fourth RQ as:
How does our approach perform with industrial applications and does it benefit

developers by presenting the search results in ranked order of relevance?
In order to not require users to modify ConCodeSe to interface with their software

repositories and issue trackers, we implemented a simple front-end (GUI) panel to
our tool for users to paste the summary and description of a BR and search for the
candidate source code files. The results are displayed in the ranked order of relevance
from most to least likely.

5.1 Study design

Based on the work of Starke et al. (2009) and Sillito et al. (2008), we designed a study
with professional software developers with their a priori consent on the following:

1. Data collected:
(a) How useful was the ranked list?
(b) How accurate was the ranking?
(c) How much were you confident on the list?
(d) How intuitive was it compared to an IDE search tool?
(e) What did work best?

2. Data collection method:
(a) Pre-session interview
(b) Each search session: choosing the BRs, running the tool, evaluating the results.
(c) Post-session interview

The first author contacted five different companies where he formerly worked as
a freelance software developer, explaining the study. He sent each company an infor-
mation leaflet explaining that we were looking for participants to take part in a study
where our tool will be used to search source code files of a software application with
descriptions available in a BR document. The leaflet informed interested parties how
the study would unfold:

123

Autom Softw Eng

Table 20 Participant profile

Company Business
nature

Study dates
(2015)

Participant
Id

Years of
experience

Years of IDE
Experience

Time spent on
maintenance (%)

U Finance 29.06–03.07 1 20 10 30

2 15 10 70

S Logistic 06.07–04.08 3 9 9 20

A Software Services 05.06–16.10 4 11 11 40

1. We would conduct a 30–45min pre-session interview to explain how to use Con-
CodeSe.

2. Afterwards, the participants would be required to try the tool for 7–10 business
days in their own time and document their experience on the relevance of the
suggested source files for the search tasks performed.

3. Finally, at the end of the trial period a post-session interview lasting for 30–45min
would be conducted to collect details on their usage experience.

The leaflet further explained that the participation would be treated in strict confidence
in accordance with the UK Data Protection Act and no personal information could
be passed to anyone outside the research team. It also informed that we would aim to
publish thefindings from the study, but no individualwould be identifiable. Participants
were allowed to answer questionswith “not applicable” if they did not intend to provide
an answer during both interview sessions.

Out of the five contacted companies, only three agreed to participate and two of
them agreed to have the post-session interview session recorded as video. Upon receiv-
ing the participation agreement from each company, the first author obtained written
consent from each participant prior to the study. Table 20 shows the participant pro-
file information at each company. Table 21 details the artefacts used in the study: the
size of the industrial applications is comparable to the medium-sized OSS projects
(Table 1). All participants were professional software developers and did not require
compensation since they were recruited on a volunteering basis.

Although the first author has worked for the three companies in the past, he did
not have prior knowledge of the applications used in the study nor had he previous
contact with the participants. He went to each company and presented ConCodeSe
and the aim of the study, which was to identify the benefits provided by a ranked list
of candidate source code files that may be relevant for a BR at hand during software
maintenance. Subsequently, he conducted a pre-session interview with the developers

Table 21 Artefacts used

Company Application in production
since

of source code class files # of bug reports used

U 2014 2840 10

S 2009 2240 10

A 2013 4560 10

123

Autom Softw Eng

to collect information about their experience and their thought process on how they
performed their tasks during daily work. One of the intentions of this pre-session
interview was to make developers aware of their working habits so that they could
document their experience with our tool more accurately.

5.2 Results

We present the information collected during the pre- and post-interviews. Throughout
both sessions developers referred to a source code file as class and to a bug as defect.

5.2.1 Pre-session interview findings

Based on the observations made by Starke et al. (2009) we designed the pre-interview
questions in order to obtain a summative profile of developers and their working
context. Below we list the questions asked and the general answers given to each of
these questions.

1. How do you go on about solving defects? All developers indicated that they read
BR descriptions and log files looking for what to fix based on experience. They
also try to reproduce the bug to debug the execution steps and look at the source
code to see what is wrong. Only one developer indicated that he compares the
version of the application where the bug has occurred against a version where the
bug hasn’t been reported yet to detect any changes that might have caused the
reported bug.

2. How would you go on about solving a defect in an unfamiliar application? In
general developers responded that they search code by using some words (e.g.
nouns and action words) from the bug description to pick a starting point. They
also read the user guide to understand the behaviour of the application and technical
guide to understand the architecture.Onedeveloper indicated that hewould attempt
to simulate the reported behaviour if he could understand the scenario described
in the BR and some test data is provided.

3. What about when you cannot reproduce or haven’t got a running system? At least
to get an idea of a starting point, developers look for some hints in class andmethod
names. One developer stated that he would include logging statements in certain
classes to print out trace information and collect details of execution in production
so that he could see what was happening during run time.

4. In order to find starting points to investigate further, what kind of search tools do
you use? Although all developers said that they use search functions available in
IDEs, e.g. full text, references, inheritance chain and call hierarchies, one said that
he prefers to use the Mac OS Spotlight search because in addition to source files,
it indexes other available artefacts like the configuration files, GUI files (e.g. html,
jsp and jsf) as well as the documentation of the application.

5. How do you evaluate a call hierarchy? Developers explained that they would start
by performing a ‘reference’ search of a class and browse through the results. One
said that “I also look to see if method and variable names that are surrounding the
search words also make sense for the bug description that I am involved with” .

123

Autom Softw Eng

6. What do you consider as being important, callers of a class or the called classes
of a class? Each reply started with “That depends on…”. It seems that each par-
ticipant has a different way of assessing the importance of the call hierarchy. For
some developers the importance is based on the bug description, e.g. if the bug
description indicated that some back-end modules are the culprit, then they would
look to see where the control flows are coming from, while for others, it is based on
architecture, e.g. if a certain class is calling many others then they would consider
this to be a bad architecture and ignore the caller.

7. How do you decide which classes to investigate further, i.e. open to look inside,
and which to skip? Almost all developers answered first by saying “gut feeling”
and then went on to describe that they quickly skim through the results list and
look for clues on package or file names to determine whether it makes sense to
further investigate the file contents or not.

8. Do you consider descriptive clues?Once again developers replied that they rely on
their experience of the project to relate conceptual words found in the bug reports
to file names.

9. When do you decide to stop going through the path and start from the beginning?
All participants indicated that after browsing through the search results looking at
file names, they may open 3 or 4 files to skim through their content and when no
clues were detected, they would decide to start a new search with different words.

10. What kind of heuristics do you use when considering concepts implemented by
neighbouring classes? In general, developers indicated that they look at the context
of a source file within the bug that they are working on, i.e. relevance of a file based
on the BR vocabulary. One developer said that project vocabulary sometimes
causes ambiguity because in the application he works with, certain file names
contain the word Exception, which refers to a business exception rule and not to
an application exception, i.e. error condition.

The pre-session interview answers confirmed the challenges highlighted by pre-
vious studies (Starke et al. 2009; Sillito et al. 2008). We asked developers to try out
ConCodeSe by downloading, installing and performing search tasks in their own time.
We decided to perform an uncontrolled study because we felt that this would provide a
more realistic environment and also allow developers to have adequate time to utilise
our tool without negatively impacting their daily workload.

We asked them to collect screen shots showing the information they entered as
search text and the results listed. We instructed them to use closed bug reports for
search query where the affected files were also documented so that they can prove to
us whether the results contained the relevant files or not.

We arranged to meet them in 7–10 business days for a 30–45min post-session
interview to gather their experiences and to inspect the screen shots.

5.2.2 Post-session findings

Below we list the questions asked during the post-interview sessions and the general
answers given to each of these questions.

123

Autom Softw Eng

1. How did you go on using the tool? All indicated that they first used a few BRs
with which they previously worked with to become familiar with our tool and its
performance. Afterwards they have randomly chosen closed BRs that they had
not previously worked with, performed search by using the words found in the
summary and description fields of the BRs and then compared the search results
against the files identified as affected in the issue-tracking tool. One developer
said, “I performed search tasks by selecting a few words, i.e. 2–3, from the BR,
which I knew would lead to relevant results. However this did not work very well
so I have gradually increased the search terms with additional ones found in the
BR descriptions. This provided more satisfactory results and the relevant classes
started appearing in the result list”.

2. Did the tool suggest relevant classes in the ranked list? Inspecting the screen-shots
of the results, we found that in Company-U, for 8 out of 10 BRs at least one file
was in the top-10. In Company-S, for 9 out of 10 BRs the tool ranked at least one
affected file at top-1. Developer in Company-A said that “The relevant file was
always ranked among the top-3. I never needed to investigate files which were
ranked beyond top-3”.

3. Were there relevant classes in the result list, which you might not have thought of
without the tool? All participants replied with ‘yes’. One developer said that “I
have also opened up the files listed at top-2 and top-3, despite that they were not
changed as part of the BR at hand. However looking at those files would have also
led me to the relevant one, assuming that the relevant file was not in the result
list” . Another indicated that “a BR description had a file name which got ranked
at top-1 but did not get changed. However it was important to consider that class
during bug fixing”.

4. Did the ranked list provide clues to formulate search descriptions differently?
Developers indicated that most of the time they had a clue to what they were
looking for but were not always certain. However, seeing file names with a rank
allowed them to consider those files with a degree of importance as reflected by
the ranking. In case of one defect, the description caused a lot of noise and resulted
in the top 5 files being irrelevant, but 3 relevant files were placed in the top-10.

5. What did you add to or remove from the description to enhance the search?Devel-
opers indicated that the search led to better resultswhen the query included possible
file names, exceptions and stack trace information. However, in one case ignoring
the description and searching only with the summary resulted in 4 out of 8 rele-
vant files to be ranked at top-5 and 1 file between top-5 and top-10. One developer
indicated that in one case despite changing search words, the relevant file was still
not found because the BR did not provide any clues at all.

6. What would you consider to reduce false positives in search results? In general,
all participants suggested that project specific vocabulary mapping should be used
to cover cases when concepts in file names cause misleading results. For example,
Batch jobs are named as Controller, so when a BR describes a batch job without
using theword controller, then those classes are not found if there are no comments
indicating additional clues. In case of such a defect, only 5 out of 18 affected files
were found.

123

Autom Softw Eng

7. How comfortable were you with the ranked list? All developers indicated that the
tool was easy to use and after performing 3–4 searches to become familiar with
the tool, they were satisfied with the results since the files at the first 5 positions
were most often relevant ones. Despite their comfort with the tool, all participants
indicated that if a BR description contained fewer technical details, e.g. fewer file
names, and more descriptive information, e.g. test scenario steps, the tool was not
useful. In fact they felt that in such cases any tool would fail to suggest the relevant
file(s).

8. Were you able to get to the other relevant classes based on the suggested ones
that were relevant? All participants expressed that the ranked list helped them to
consider other focal points and gave them a feel for what else to look for that might
be relevant. One said that “Most of the cases I browsed through the results and
opened only the top-1 and top-2 files to see if they were the relevant ones or to see
if they can lead me to the file that may be more appropriate”.

9. Would you consider such a tool to support you in the current challenges you have?
In general, all indicated that the ranked list would benefit anyone who is new to a
project since it could guide novice developer to the parts of the application when
searching for files that may be relevant to solve a defect. This would in turn allow
the novice developers to rapidly build up application knowledge. One said “The
tool would definitely speed up the learning curve for a new team member who
is not familiar with the architecture and code structure of our project. It would
save him a lot of time during the first few weeks. After that due to the small size
of the project (12000 LOC) it would not provide much significance because the
developer would become familiar with the code anyway”. We were told that as a
research product our prototype tool was very stable. They experienced no failures,
i.e. crashes or error exceptions. One developer said that even when running the
tool in a virtual machine (VM) environment, suspending and then resuming the
VM, our tool continued to function.

To our final 10th question, “What would you suggest and recommend for future
improvements?”, we have received a lot of valuable suggestions. First of all, we were
told by all developers that the biggest helpwould be towrite better bug descriptions and
to introduce a defect template to solicitate this. They noticed that defect descriptions
containing test steps entered by 1st level support is noisy. For example, in case of one
defect, the relevant file is ranked in top-5 and its test file in top-1 so the relevant files
were obscured by test files.

Also we were suggested to include in the search the content of configuration files,
e.g. config.xml, DB scripts and GUI files. One developer noticed that the words on
the first search field (BR summary) are given more importance. He wished that the
second field (BR description) is treated with the same importance as the first search
field.

In addition we have received several cosmetic suggestions for presenting the results
and interacting in search fields, like proposing keywords, e.g. auto complete based on
terms found in the source code. Also participants felt that it would be helpful to display,
next to the ranked files, the words in those files that matched the BR so that the user
can determine whether it really makes sense to investigate the content of the file or not.

123

Autom Softw Eng

Interestingly one developer said that sometimes he did not consider the ranking as an
important factor and suggested to group files into packages, based on words matching
the package name and then rank the files within that group.

Most of the suggestions concern the developer interface and are outside the scope
of ConCodeSe. We intend to investigate whether configuration files can be matched
to BRs in future work.

5.3 Evaluation of the results

Modern IDE search tools offer limited lexical similarity function during a search. The
developers are required to specify search words precisely in order to obtain accurate
results, which may require developers to be familiar with the terminology of the appli-
cation and the domain. The success of modern IDE search tools depend on the clarity
of the search terms otherwise the results may contain many false positives. To com-
pensate for these weaknesses, developers choose to specify on average 3 words (see
post-session interview answer 1) when searching for relevant files in IDEs instead of
using all the words available in a BR. Since current IDE search tools deprive develop-
ers from the advantage of utilising the full information available in BRs, developers
may search outside of the IDE (see pre-session interview answer 4).

Furthermore, in current IDEs, the search results are not displayed in a ranked order
of relevance causing developers to go through several irrelevant files before finding
relevant ones as entry points for performing bug-fixing tasks. Since developers are
faced with the challenge of manually analysing a possibly long list of files, they
usually tend to quickly browse through the results and decide on its accuracy based
on their gut feeling as revealed during our pre-session interview. They also prefer to
perform a new search query using different words rather than opening some files to
investigate their content. These repetitive search tasks cost additional effort and add
burden on the productivity of the developers causing them to lose focus and introduce
errors due to fatigue or lack of application knowledge.

We set out to explore whether our ranking approach would benefit developers.
Based on the post-session interview answers provided by developers working in dif-
ferent industrial environments with different applications, we confirm that developers
welcomed the ranked result list and stated that since most of the relevant files were
positioned in the top-5, they were able to avoid the error prone tasks of browsing long
result lists and repetitive search queries by focusing on the top-5 portion of the search
results.

We were interested in finding out whether the ranked list would point developers
to other files that might be of importance but were not initially thought to be relevant.
After trying out our tool, at the post-session interview, the developers said that the
result list contained other relevant files that they would not have thought of on their
own without our tool (see post-session interview answer 3). Developers stated that
those additional and not thought of files would not have appeared in the result of the
IDE search tool they use because those files do not contain the search terms. The use
of stemming allows us to still match the bug report to the code file for some of those
cases.

123

Autom Softw Eng

Finally we wanted to see whether our tool, which leverages the textual information
available in bug reports, encourages developers to use the full description of a BR
when formulating search queries. During the pre-session interview, developers told us
that they use their gut feeling and experience when selectingwords to use on the search
query. At the post-session interview, we were told by developers that incrementing the
search words with additional ones from the BRs improved the results.

In software projects, a developer may get assistance from other team members or
expert userswhen selecting the initial entry points to perform the assignedmaintenance
tasks. We were told that our tool complements this by providing a more sophisticated
search during software maintenance. Thus the BR vocabulary can be seen as the
assistance provided by the expert team members and the file names in the search
results can be seen as the initial entry points to investigate additional relevant files.

Furthermore, we were told that search results still depend on the quality of bug
descriptions. In case of tersely described BRs, even experienced developers find it
challenging to search for relevant files. In addition, we found that BRs can be of (1)
developer nature with technical details, i.e. references to code files and stack traces,
or (2) descriptive nature with business terminology, i.e. use of test case scenarios.
Since BR documents may come from a group of people who are unfamiliar with the
vocabulary used in the source code, we propose that BR descriptions contain a section
for describing the relevant domain vocabulary. For example a list of domain terms
implemented by an application can be semi-automatically extracted and imported into
the BR management tool. Subsequently, when creating a BR, the user may choose
from the list of relevant domain terms or the tool may intelligently suggest the terms
for selection.

From all these results, we can answer RQ4 affirmatively: in case of business appli-
cations, our tool also achieves to place at least one file into top-10 for on average 88%
of the BRs (see post-session interview answer 2 and Fig. 4: 83% in Pillar2, 80% in
Company U, 90% in S and 100% in A). Our study also confirms that users will focus
on the first 10 suggestions and that therefore presenting the search results ranked in
the order of relevance for the task at hand benefits developers.

6 Discussion

It has been argued that textual information in BR documents is noisy (Zimmermann
et al. 2010).Our approach is partly basedon focussingonone single typeof information
in the BR: the occurrence of file names. The assumption is that if a file is mentioned
in the BR, it likely needs to be changed to fix the bug. Manual inspection of only
9.4% of the BRs reinforced that assumption and revealed particular positions in the
summary and in the stack trace where an affected file occurs. Our improved results
provide further evidence of the relevance of the assumption.

On the other hand, it has been argued that if bug reports already mention the
relevant files, then automated bug localisation provides little benefit (Kochhar et al.
2014). This would indeed be the case if almost all files mentioned in a bug report were
true positives. As Table 3 shows, most bug reports only affect a very small number of
files, and yet they may mention many more files, especially if they contain stack traces

123

Autom Softw Eng

(Table 6). In Sect. 4.1.4 we gave two examples of such BRs, both placed in the top-5 by
ConCodeSe: one mentioning 9 files, all irrelevant, the other mentioning 14, of which
only one was relevant. Developers are interested in finding out focus points and how
files relate to each other, especially when working in unfamiliar applications (Sillito
et al. 2008). Automated bug localisation can help developers separate the wheat from
the chaff when looking at the files mentioned in bug reports, and even suggest relevant
files not mentioned in the reports.

We offer some reasons why we think our approach works better. First, other
approaches combine scores using weight factors that are fixed.We instead take always
the best of several ranks for each file. In this way, we are not a priori fixing for each file
whether the lexical scoring or the probabilistic VSM score should take precedence.
We also make sure that stemming and comments are only taken into account for files
where it matters. The use of the best of 8 scores is likely the reason for improving the
key MRR metric across all projects.

Second, we leverage structure further than other approaches. Like BLUiR, we
distinguish the BR’s summary and description, but whereas BLUiR treats each BR
field in exactly the same way (both are scored by Indri against the parts of a file) we
treat each field differently, through the key position and stack trace scoring.

Third, our approach simulates the selective way developers scan BRs better than
other approaches. It has been argued that developers may not necessarily need auto-
mated bug localisation tools when file names are present in the bug reports (Kochhar
et al. 2014) because they may be able to select which information in the bug report is
more relevant, based on the structure of the sentences and their understanding of the
reported bug (Wang et al. 2015). ConCodeSe first looks at certain positions of the bug
report and then, if unsuccessful, uses all terms in the BR, stopping the scoring when a
full file name match is found. However, the same cannot be said for most automated
tools: they always score a file against all the BR terms, which may deteriorate the
performance if a file has more matching terms with the bug report, as it is scored
higher and falsely ranked as more relevant (Moreno et al. 2014).

Fourth, our approach addresses both the developer nature and the descriptive nature
ofBRs,whichweobserved in the analysis of theBRs for these projects and in particular
for Pillar1 and Pillar2 (Dilshener and Wermelinger 2011). BRs of a developer nature
tend to include technical details, like stack traces and class or method names, whereas
BRs of a descriptive nature tend to contain user domain vocabulary. By leveraging file
(class) names and stack traces when they occur in BRs, and by otherwise falling back
to VSM and a base lexical similarity scoring (Algorithm 2), we cater for both types of
BRs. As the non-bold rows of Table 10 show, the fall-back scoring alone outperforms
all other approaches in terms of MAP and MRR (except AmaLgam’s MAP score for
AspectJ).

Although LOBSTER doesn’t use historical information either, it was a study on the
value of stack traces over VSM, and thus only processes a subset of developer-type
BRs, those with stack traces.

To sum up, we treat each BR and file individually, using the summary, stack trace,
stemming, comments and file names only when available and relevant, i.e. when they
improve the ranking. This enables our approach to deal with very terse BRs and with
BRs that don’t mention files.

123

Autom Softw Eng

As for the efficiency of our approach, creating the corpus from the application’s
source code and BRs takes, on a machine with a 3GHz i3 dual-core processor and
4GB RAM, 3h for Eclipse (the largest project, see Table 1). Ranking (8 times!) its
12863 files for all 3075 BRs takes about 1.5h, i.e. on average almost 2 seconds per BR.
We consider this to be acceptable since our tool is a proof of concept and developers
locate one BR at a time.

6.1 Threats to validity

The construct validity addresses howwell an experiment set up measures to its claims.
During creation of the searchable corpus, we relied on the JIM tool to extract the
terms from source code identifiers and on regular expressions for extracting the stack
trace from the BR descriptions. It is possible that other tools may produce different
results. Also, the queries (i.e. search terms) in our study were taken directly from
BRs. Our user study showed that the developers formulate their queries differently
when locating bugs in an IDE and that the use of different queries with vocabularies
more in line with the source code would yield better results. However, using the BR
summaries and descriptions as queries instead ofmanually formulated queries avoided
the introduction of bias from the authors.

In the user study, the bug localisation was uncontrolled, to avoid disturbing the
daily activities of the developers. This may be a potential threat to construct validity.
We partially catered for this threat by asking developers to make screen shots of the
results, which they showed during the post-session interview. In future we aim to
conduct an ethnographic study to observe how developers use the tools for live bug
localisation tasks using our tool against using no tool or other tools. The study would
be both qualitative, e.g. whether developers’ bug localization strategies depend on the
tool used or its absence, and quantitative, e.g. to compare the time taken to fix bugs.

The internal validity addresses the relationship between the cause and the effect of
the results to verify that the observed outcomes are the natural product of the imple-
mentation. We catered for this by comparing the search performance of ConCodeSe
like for like (i.e., using the same datasets and the same criteria) with eight existing
bug localisation approaches (Zhou et al. 2012; Saha et al. 2013; Moreno et al. 2014;
Wong et al. 2014; Wang and Lo 2014; Ye et al. 2014; Youm et al. 2015; Rahman
et al. 2015) as well as assessing the contribution of the off-the-shelf Lucene library’s
VSM. Therefore, the improvement in results can only be due to our approach. It is
conceivable that an IR engine using the LSI model may produce more or less sensitive
results to using file names in BRs. We plan to experiment with LSI in future work.
Also, we used fixed values to score the files, obtained by manually tuning the scoring
on AspectJ and SWT.We confirmed the rationale behind those values (namely, distin-
guish certain positions and assign much higher scores than base term matching) led
to the best results, by trying out scoring variations.

The conclusion validity refers to the relationship between the treatment and the out-
come and if it is statistically significant. We used a non-parametric Wilcoxon matched
pairs statistical test since no assumptions were made about the distribution of the
results. This test is quite robust and has been extensively used in the past to con-

123

Autom Softw Eng

Table 22 Wilcoxon test
comparison

Statistics BugLocator BRTracer

Top-1 Top-10 Top-1 Top-10

Z-value −4.2686 −3.2351 −2.73934 −3.9656

W-value 254 576 487 543

p-value 0.047504 0.0326 0.043432 0.0067

duct similar analyses (Schröter et al. 2010; Moreno et al. 2014). Based on the values
obtained as shown in Table 22, we conclude that on average ConCodeSe locates sig-
nificantly (p ≤ 0.05) more relevant source files in the top-N, which confirms that the
improvement in locating relevant files for a BR in the top-N position by our tool over
the state of the art is significant.

The external validity addresses the possibility of applying the study and results to
other circumstances. The small size of the user study (4 participants from 3 companies)
and the characteristics of the projects (e.g. the domain, the identifier naming conven-
tions, and the way comments and BRs are written, including the positions where file
names occur) are a threat to external validity. We reduced this threat by repeating
the search experiments with 11 different OSS and industrial applications, developed
independently of each other, except for SWT and Eclipse. Although ConCodeSe only
works on Java projects for the purpose of literature comparison, the principles (take
the best of various rankings, score class names occurring in the BR higher than other
terms, look for class names in particular positions of the summary and of the stack
trace if it exists) are applicable to other object-oriented programming languages.

7 Concluding remarks

This paper contributes a novel algorithm that, given a bug report (BR) and the appli-
cation’s source code files, uses a combination of lexical and structural information to
suggest, in a ranked order, files that may have to be changed to implement the BR. The
algorithm considers words in certain positions of the BR summary and of the stack
trace (if available in a bug report) as well as source code comments, stemming, and a
combination of both independently, to derive the best rank for each file.

We compared the results to eight existing approaches, using their 5 evaluation
criteria and their datasets (4626 BRs from 6 OSS applications), to which we added
39 BRs from 2 other applications. We found that our approach improved the ranking
of the affected files, increasing in a statistical significant way the percentage of BRs
for which a relevant file is placed among the top-1, 5, 10, which is respectively 44, 69
and 76%, on average. This is an improvement of 23, 16 and 11% respectively over the
best performing current state-of-the-art tool.

We also improved, in certain cases substantially, the mean reciprocal rank value
for all eight applications evaluated, thereby reducing the number of files to inspect
before finding a relevant file. However, our user study, to our knowledge the first on
IR-based bug localisation in an industrial setting, confirms results by other authors
that developers only tend to look at the first 10 ranked results.

123

Autom Softw Eng

We evaluated the algorithm on four very different industrial applications (one of
the two provided by us and three from the user studies), and placed at least one file in
the top-10 for 88% of bug reports on average, thus confirming the applicability of our
approach also in commercial environments.

Our approach not only outperforms other approaches, it does so in a simpler, faster,
and more general way: it uses the least artefacts necessary (one bug report and the
source codebase it was reported on), not requiring past information like version history
or similar bug reports that have been closed, nor the tuning of any weight factors to
combine scores, nor the use of machine learning.

Although our IR-based approach can be also applied to feature requests and not just
bug reports, as it does not depend on past BRs, the evaluation datasets only include
bug reports. Feature requests necessarily don’t include a stack trace and they may not
mention specific files. We plan to evaluate our approach with feature requests in future
work.

Like previous studies, ours shows that it is challenging to find the files affected by a
BR: in spite of our improvements, for larger projects 23%of bugs are not located among
the top-10 files. Adding history-based heuristics and learning-to-rank, as proposed by
other approaches, will certainly further improve the bug location performance. In order
to help develop new search approaches, we will offer in an online companion13 to this
paper the full results as an improved baseline for further bug localisation research.

Acknowledgements We thank Hongyu Zhang for kindly providing BugLocator and its datasets (Zhou
et al. 2012), Ripon Saha for the BLUiR dataset (Saha et al. 2013), Laura Moreno for the LOBSTER dataset
(Moreno et al. 2014) and Chu Pan Wong for the BRTracer tool source code (Wong et al. 2014). We thank
Simon Butler for his assistance in using the JIM tool (Butler et al. 2010), and our industrial partner, a global
financial IT solutions provider located in southern Germany, for providing the Pillar2 artefacts and their
input on diverse information required. We thankMiguel Goulão for his suggestions and the developers who
participated in the user study for their valuable comments. We thank the anonymous reviewers for their
insightful comments and additional references, which helped improve the paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Abebe, S.L., Haiduc, S., Tonella, P., Marcus, A.: The effect of lexicon bad smells on concept location in
source code. In: Proceedings of the International Working Conference on Source Code Analysis and
Manipulation, pp. 125–134 (2011)

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering traceability links between code
and documentation. IEEE Trans. Softw. Eng. 28(10), 970–983 (2002)

Basel-II: International Convergence of Capital Measurement and Capital Standards: A Revised
Framework—Comprehensive Version (2006). http://www.bis.org/publ/bcbs128.htm. Accessed
August 2016

Bennett, K.H., Rajlich, V.T.: Software maintenance and evolution: a roadmap. In: Proceedings of the Con-
ference on the Future of Software Engineering, ICSE ’00, pp. 73–87. ACM (2000)

13 http://concodese.com

123

http://creativecommons.org/licenses/by/4.0/
http://www.bis.org/publ/bcbs128.htm
http://concodese.com

Autom Softw Eng

Bettenburg, N., Premraj, R., Zimmermann, T., Kim, S.: Extracting structural information from bug reports.
In: Proceedings of the International Working Conference onMining Software Repositories, MSR ’08,
pp. 27–30. ACM (2008)

Boslaugh, S., Watters, P.: Statistics in a Nutshell, 1st edn. O’Reilly Publishing (2008)
Butler, S., Wermelinger, M., Yu, Y., Sharp, H.: Exploring the influence of identifier names on code qual-

ity: an empirical study. In: Proceedings of the European Conference on Software Maintenance and
Reengineering, pp. 156–165 (2010)

Butler, S., Wermelinger, M., Yu, Y., Sharp, H.: Improving the tokenisation of identifier names. In: Proceed-
ings of the European Conference on Object-Oriented Programming, pp. 130–154. Springer, Berlin,
Heidelberg (2011)

Dilshener, T., Wermelinger, M., Yu, Y.: Locating bugs without looking back. In: Proceedings of the Inter-
national Conference on Mining Software Repositories, MSR ’16, pp. 286–290. ACM (2016)

Dilshener, T.,Wermelinger,M.:Relating developers’ concepts and artefact vocabulary in afinancial software
module. In: Proceedings of the International Conference on SoftwareMaintenance, pp. 412–417. IEEE
(2011)

Eisenbarth, T., Koschke, R., Simon, D.: Aiding program comprehension by static and dynamic feature
analysis. In: Proceedings of the International Conference on Software Maintenance, pp. 602–611
(2001)

Gethers, M., Oliveto, R., Poshyvanyk, D., Lucia, A.D.: On integrating orthogonal information retrieval
methods to improve traceability recovery. In: Proceedings of the International Conference on Software
Maintenance, pp. 133–142. IEEE (2011)

Hill, E., Pollock, L., Vijay-Shanker, K.: Exploring the neighborhood with dora to expedite software main-
tenance. In: Proceedings of the International Conference on Automated Software Engineering, ASE
’07, pp. 14–23. ACM (2007)

Kevic, K., Fritz, T.: Automatic search term identification for change tasks. In: Companion Proceedings of
the International Conference on Software Engineering. ICSE Companion 2014, pp. 468–471. ACM
(2014)

Kochhar, P.S., Tian, Y., Lo, D.: Potential biases in bug localization: Do they matter? In: Proceedings of the
International Conference on Automated Software Engineering, ASE ’14, pp. 803–814. ACM (2014)

Kochhar, P.S., Xia, X., Lo, D., Li, S.: Practitioners’ expectations on automated fault localization. In: Pro-
ceedings of the International Symposiumon Software Testing andAnalysis, ISSTA2016, pp. 165–176.
ACM (2016)

Lawrie, D.: Discussion of Appropriate Evaluation Metrics, 1st Workshop on Text Analysis in Software
Maintenance (2012). https://dibt.unimol.it/TAinSM2012/slides/dawn.pdf. Accessed April 2016

Le, T.D.B.,Oentaryo,R.J., Lo,D.: Information retrieval and spectrumbased bug localization: better together.
In: Proceedings of the Joint Meeting of the European Software Engineering Conference and the
Symposium on Foundations of Software Engineering, ESEC/FSE 2015, pp. 579–590. ACM (2015)

Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., Zhai, C.: Have things changed now?: an empirical study of bug
characteristics in modern open source software. In: Proceedings of theWorkshop on Architectural and
System Support for Improving Software Dependability, ASID ’06, pp. 25–33. ACM (2006)

Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University
Press, Cambridge (2008)

Marcus, A., Maletic, J.I.: Recovering documentation-to-source-code traceability links using latent semantic
indexing. In: Proceedings of the International Conference on Software Engineering, ICSE ’03, pp.
125–135. IEEE Computer Society (2003)

Marcus, A., Rajlich, V., Buchta, J., Petrenko, M., Sergeyev, A.: Static techniques for concept location in
object-oriented code. In: Proceedings of the International Workshop on Program Comprehension, pp.
33–42 (2005)

Moreno, L., Bandara, W., Haiduc, S., Marcus, A.: On the relationship between the vocabulary of bug
reports and source code. In: Proceedings of the International Conference on Software Maintenance,
pp. 452–455. IEEE (2013)

Moreno, L., Treadway, J.J., Marcus, A., Shen, W.: On the use of stack traces to improve text retrieval-
based bug localization. In: Proceedings of the International Conference on Software Maintenance and
Evolution, pp. 151–160. IEEE (2014)

Nichols, B.D.: Augmented bug localization using past bug information. In: Proceedings of the Annual
Southeast Regional Conference, ACM SE ’10, pp. 61:1–61:6. ACM (2010)

123

https://dibt.unimol.it/TAinSM2012/slides/dawn.pdf

Autom Softw Eng

Parnin, C., Orso, A.: Are automated debugging techniques actually helping programmers? In: Proceedings
of the International Symposium on Software Testing and Analysis, ISSTA ’11, pp. 199–209. ACM
(2011)

Petrenko, M., Rajlich, V.: Concept location using program dependencies and information retrieval (DepIR).
Inf. Softw. Technol. 55, 651–659 (2013)

Porter,M.F.:An algorithm for suffix stripping. In: Sparck Jones,K.,Willett, P. (eds.) Readings in Information
Retrieval, pp. 313–316. Morgan Kaufmann Publishers Inc., San Francisco (1997)

Poshyvanyk,D., Guéhéneuc,Y.G.,Marcus,A., Antoniol, G., Rajlich,V.: Feature location using probabilistic
ranking of methods based on execution scenarios and information retrieval. IEEE Trans. Softw. Eng.
33, 420–432 (2007)

Rahman, S., Ganguly, K.K., Sakib, K.: An improved bug localization using structured information retrieval
and version history. In: Proceedings of the International Conference on Computer and Information
Technology, pp. 190–195 (2015)

Rao, S., Kak, A.: Retrieval from software libraries for bug localization: A comparative study of generic and
composite text models. In: Proceedings of the Working Conference on Mining Software Repositories,
MSR ’11, pp. 43–52. ACM (2011)

Ratanotayanon, S., Choi, H.J., Sim, S.E.: My repository runneth over: an empirical study on diversifying
data sources to improve feature search. In: Proceedings of the International Conference on Program
Comprehension, pp. 206–215 (2010)

Saha, R.K., Lease, M., Khurshid, S., Perry, D.E.: Improving bug localization using structured information
retrieval. In: Proceedings of the International Conference on Automated Software Engineering, pp.
345–355 (2013)

Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 24,
513–523 (1988)

Schröter, A., Bettenburg, N., Premraj, R.: Do stack traces help developers fix bugs? In: Proceedings of the
Working Conference on Mining Software Repositories, pp. 118–121 (2010)

Sillito, J., Murphy, G.C., De Volder, K.: Asking and answering questions during a programming change
task. IEEE Trans. Softw. Eng. 34, 434–451 (2008)

Sisman, B., Kak, A.C.: Incorporating version histories in information retrieval based bug localization. In:
Proceedings of the Working Conference on Mining Software Repositories, pp. 50–59 (2012)

Starke, J., Luce, C., Sillito, J.: Searching and skimming: an exploratory study. In: Proceedings of the
International Conference on Software Maintenance, pp. 157–166 (2009)

Uneno, Y., Mizuno, O., Choi, E.H.: Using a distributed representation of words in localizing relevant files
for bug reports. In: Proceedings of the International Conference on Software Quality, Reliability and
Security, pp. 183–190 (2016)

Voorhees, E.M.: The trec question answering track. Nat. Lang. Eng. 7, 361–378 (2001)
Wang, S., Lo, D., Lawall, J.: Compositional vector space models for improved bug localization. In: Pro-

ceedings of the International Conference on International Conference on Software Maintenance and
Evolution, pp. 171–180. IEEE (2014)

Wang, S., Lo, D.: Version history, similar report, and structure: Putting them together for improved bug
localization. In: Proceedings of the International Conference on ProgramComprehension, ICPC 2014,
pp. 53–63. ACM (2014)

Wang, Q., Parnin, C., Orso, A.: Evaluating the usefulness of IR-based fault localization techniques. In:
Proceedings of the International Symposium on Software Testing and Analysis, ISSTA 2015, pp.
1–11. ACM (2015)

Wilde, N., Scully, M.C.: Software reconnaissance: mapping program features to code. J. Softw. Maint. Res.
Pract. 7, 49–62 (1995)

Wong, C.P., Xiong, Y., Zhang, H., Hao, D., Zhang, L., Mei, H.: Boosting bug-report-oriented fault local-
ization with segmentation and stack-trace analysis. In: Proceedings of the International Conference
on Software Maintenance and Evolution, pp. 181–190. IEEE (2014)

Xia, X., Bao, L., Lo, D., Li, S.: Automated debugging considered harmful—considered harmful: a user study
revisiting the usefulness of spectra-based fault localization techniques with professionals using real
bugs from large systems. In: Proceedings of the International Conference on Software Maintenance
and Evolution, pp. 267–278. IEEE (2016)

Ye, X., Bunescu, R., Liu, C.: Learning to rank relevant files for bug reports using domain knowledge. In:
Proceedings of the International Symposium on Foundations of Software Engineering, FSE 2014, pp.
689–699. ACM (2014)

123

Autom Softw Eng

Ye,X., Shen,H.,Ma,X., Bunescu, R., Liu, C.: Fromword embeddings to document similarities for improved
information retrieval in software engineering. In: Proceedings of the International Conference on
Software Engineering. ICSE ’16, pp. 404–415. ACM (2016)

Youm, K.C., Ahn, J., Kim, J., Lee, E.: Bug localization based on code change histories and bug reports. In:
Proceedings of the Asia-Pacific Software Engineering Conference, pp. 190–197 (2015)

Zhou, J., Zhang, H., Lo, D.: Where should the bugs be fixed? More accurate information retrieval-based
bug localization based on bug reports. In: Proceedings of the International Conference on Software
Engineering, ICSE ’12, pp. 14–24. IEEE (2012)

Zimmermann, T., Premraj, R., Bettenburg, N., Just, S., Schröter, A., Weiss, C.: What makes a good bug
report? IEEE Trans. Softw. Eng. 36(5), 618–643 (2010)

123

	Locating bugs without looking back
	Abstract
	1 Introduction
	1.1 Vocabulary of bug reports in source code files
	1.2 Our aim and contributions

	2 Previous approaches
	2.1 Using stack trace and structure
	2.2 Version history and other data sources
	2.3 Combining multiple information sources
	2.4 User studies

	3 Our Approach
	3.1 Data processing
	3.2 Ranking files
	3.2.1 Scoring with key positions (KP score)
	3.2.2 Scoring with stack traces (ST score)
	3.2.3 Scoring with text terms (TT score)
	3.2.4 Rationale behind the scoring values

	4 Evaluation of the results
	4.1 RQ1: scoring with file names in BRs
	4.1.1 Scoring with words in key positions (KP score)
	4.1.2 Scoring with stack trace information (ST score)
	4.1.3 Variations of score values
	4.1.4 Overall results

	4.2 RQ2: scoring without similar bugs
	4.3 RQ3: VSM's contribution

	5 RQ4: user study
	5.1 Study design
	5.2 Results
	5.2.1 Pre-session interview findings
	5.2.2 Post-session findings

	5.3 Evaluation of the results

	6 Discussion
	6.1 Threats to validity

	7 Concluding remarks
	Acknowledgements
	References

