10,363 research outputs found

    Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees

    Full text link
    Greedy optimization methods such as Matching Pursuit (MP) and Frank-Wolfe (FW) algorithms regained popularity in recent years due to their simplicity, effectiveness and theoretical guarantees. MP and FW address optimization over the linear span and the convex hull of a set of atoms, respectively. In this paper, we consider the intermediate case of optimization over the convex cone, parametrized as the conic hull of a generic atom set, leading to the first principled definitions of non-negative MP algorithms for which we give explicit convergence rates and demonstrate excellent empirical performance. In particular, we derive sublinear (O(1/t)\mathcal{O}(1/t)) convergence on general smooth and convex objectives, and linear convergence (O(et)\mathcal{O}(e^{-t})) on strongly convex objectives, in both cases for general sets of atoms. Furthermore, we establish a clear correspondence of our algorithms to known algorithms from the MP and FW literature. Our novel algorithms and analyses target general atom sets and general objective functions, and hence are directly applicable to a large variety of learning settings.Comment: NIPS 201

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    Learning to Rank Academic Experts in the DBLP Dataset

    Full text link
    Expert finding is an information retrieval task that is concerned with the search for the most knowledgeable people with respect to a specific topic, and the search is based on documents that describe people's activities. The task involves taking a user query as input and returning a list of people who are sorted by their level of expertise with respect to the user query. Despite recent interest in the area, the current state-of-the-art techniques lack in principled approaches for optimally combining different sources of evidence. This article proposes two frameworks for combining multiple estimators of expertise. These estimators are derived from textual contents, from graph-structure of the citation patterns for the community of experts, and from profile information about the experts. More specifically, this article explores the use of supervised learning to rank methods, as well as rank aggregation approaches, for combing all of the estimators of expertise. Several supervised learning algorithms, which are representative of the pointwise, pairwise and listwise approaches, were tested, and various state-of-the-art data fusion techniques were also explored for the rank aggregation framework. Experiments that were performed on a dataset of academic publications from the Computer Science domain attest the adequacy of the proposed approaches.Comment: Expert Systems, 2013. arXiv admin note: text overlap with arXiv:1302.041

    Predictive Framework for Imbalance Dataset

    Get PDF
    The purpose of this research is to seek and propose a new predictive maintenance framework which can be used to generate a prediction model for deterioration of process materials. Real yield data which was obtained from Fuji Electric Malaysia has been used in this research. The existing data pre-processing and classification methodologies have been adapted in this research. Properties of the proposed framework include; developing an approach to correlate materials defects, developing an approach to represent data attributes features, analyzing various ratio and types of data re-sampling, analyzing the impact of data dimension reduction for various data size, and partitioning data size and algorithmic schemes against the prediction performance. Experimental results suggested that the class probability distribution function of a prediction model has to be closer to a training dataset; less skewed environment enable learning schemes to discover better function F in a bigger Fall space within a higher dimensional feature space, data sampling and partition size is appear to proportionally improve the precision and recall if class distribution ratios are balanced. A comparative study was also conducted and showed that the proposed approaches have performed better. This research was conducted based on limited number of datasets, test sets and variables. Thus, the obtained results are applicable only to the study domain with selected datasets. This research has introduced a new predictive maintenance framework which can be used in manufacturing industries to generate a prediction model based on the deterioration of process materials. Consequently, this may allow manufactures to conduct predictive maintenance not only for equipments but also process materials. The major contribution of this research is a step by step guideline which consists of methods/approaches in generating a prediction for process materials
    corecore