8,749 research outputs found

    Transparent Orchestration of Task-based Parallel Applications in Containers Platforms

    Get PDF
    This paper presents a framework to easily build and execute parallel applications in container-based distributed computing platforms in a user-transparent way. The proposed framework is a combination of the COMP Superscalar (COMPSs) programming model and runtime, which provides a straightforward way to develop task-based parallel applications from sequential codes, and containers management platforms that ease the deployment of applications in computing environments (as Docker, Mesos or Singularity). This framework provides scientists and developers with an easy way to implement parallel distributed applications and deploy them in a one-click fashion. We have built a prototype which integrates COMPSs with different containers engines in different scenarios: i) a Docker cluster, ii) a Mesos cluster, and iii) Singularity in an HPC cluster. We have evaluated the overhead in the building phase, deployment and execution of two benchmark applications compared to a Cloud testbed based on KVM and OpenStack and to the usage of bare metal nodes. We have observed an important gain in comparison to cloud environments during the building and deployment phases. This enables better adaptation of resources with respect to the computational load. In contrast, we detected an extra overhead during the execution, which is mainly due to the multi-host Docker networking.This work is partly supported by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316 project, by the Generalitat de Catalunya under contracts 2014-SGR-1051 and 2014-SGR-1272, and by the European Union through the Horizon 2020 research and innovation program under grant 690116 (EUBra-BIGSEA Project). Results presented in this paper were obtained using the Chameleon testbed supported by the National Science Foundation.Peer ReviewedPostprint (author's final draft

    Challenges for the comprehensive management of cloud services in a PaaS framework

    Full text link
    The 4CaaSt project aims at developing a PaaS framework that enables flexible definition, marketing, deployment and management of Cloud-based services and applications. The major innovations proposed by 4CaaSt are the blueprint and its lifecycle management, a one stop shop for Cloud services and a PaaS level resource management featuring elasticity. 4CaaSt also provides a portfolio of ready to use Cloud native services and Cloud-aware immigrant technologies

    Interoperability standards for cloud architecture

    Get PDF
    Enabling cloud infrastructures to evolve into a transparent platform raises interoperability issues. Interoperability requires standard data models and communication technologies compatible with the existing Internet infrastructure. To reduce vendor lock-in situations, cloud computing must implement common strategies regarding standards, interoperability and portability. Open standards are of critical importance and need to be embedded into interoperability solutions. Interoperability is determined at the data level as well as the service level. Relevant modelling standards and integration solutions shall be analysed in the context of clouds

    Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud

    Full text link
    With the advent of cloud computing, organizations are nowadays able to react rapidly to changing demands for computational resources. Not only individual applications can be hosted on virtual cloud infrastructures, but also complete business processes. This allows the realization of so-called elastic processes, i.e., processes which are carried out using elastic cloud resources. Despite the manifold benefits of elastic processes, there is still a lack of solutions supporting them. In this paper, we identify the state of the art of elastic Business Process Management with a focus on infrastructural challenges. We conceptualize an architecture for an elastic Business Process Management System and discuss existing work on scheduling, resource allocation, monitoring, decentralized coordination, and state management for elastic processes. Furthermore, we present two representative elastic Business Process Management Systems which are intended to counter these challenges. Based on our findings, we identify open issues and outline possible research directions for the realization of elastic processes and elastic Business Process Management.Comment: Please cite as: S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch (2015). Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud. Future Generation Computer Systems, Volume NN, Number N, NN-NN., http://dx.doi.org/10.1016/j.future.2014.09.00

    CodeCloud: A platform to enable execution of programming models on the Clouds

    Full text link
    This paper presents a platform that supports the execution of scientific applications covering different programming models (such as Master/Slave, Parallel/MPI, MapReduce and Workflows) on Cloud infrastructures. The platform includes (i) a high-level declarative language to express the requirements of the applications featuring software customization at runtime, (ii) an approach based on virtual containers to encapsulate the logic of the different programming models, (iii) an infrastructure manager to interact with different IaaS backends, (iv) a configuration software to dynamically configure the provisioned resources and (v) a catalog and repository of virtual machine images. By using this platform, an application developer can adapt, deploy and execute parallel applications agnostic to the Cloud backend.The authors wish to thank the financial support received from both the Spanish Ministry of Economy and Competitiveness to develop the project "Servicios avanzados para el despliegue y contextualizacion de aplicaciones virtualizadas para dar soporte a modelos de programacion en entornos cloud", with reference TIN2010-17804.Caballer Fernández, M.; Alfonso Laguna, CD.; Moltó, G.; Romero Alcalde, E.; Blanquer Espert, I.; García García, A. (2014). CodeCloud: A platform to enable execution of programming models on the Clouds. Journal of Systems and Software. 93:187-198. https://doi.org/10.1016/j.jss.2014.02.005S1871989
    corecore