761 research outputs found

    Highly Efficient Omnidirectional Integrated Multi-Band Wireless Energy Harvesters for Compact Sensor Nodes of Internet-of-Things

    Get PDF

    Ambient RF energy harvesting and efficient DC-load inductive power transfer

    Get PDF
    This thesis analyses in detail the technology required for wireless power transfer via radio frequency (RF) ambient energy harvesting and an inductive power transfer system (IPT). Radio frequency harvesting circuits have been demonstrated for more than fifty years, but only a few have been able to harvest energy from freely available ambient (i.e. non-dedicated) RF sources. To explore the potential for ambient RF energy harvesting, a city-wide RF spectral survey was undertaken in London. Using the results from this survey, various harvesters were designed to cover four frequency bands from the largest RF contributors within the ultra-high frequency (0.3 to 3 GHz) part of the frequency spectrum. Prototypes were designed, fabricated and tested for each band and proved that approximately half of the London Underground stations were found to be suitable locations for harvesting ambient RF energy using the prototypes. Inductive Power Transfer systems for transmitting tens to hundreds of watts have been reported for almost a decade. Most of the work has concentrated on the optimization of the link efficiency and have not taken into account the efficiency of the driver and rectifier. Class-E amplifiers and rectifiers have been identified as ideal drivers for IPT applications, but their power handling capability at tens of MHz has been a crucial limiting factor, since the load and inductor characteristics are set by the requirements of the resonant inductive system. The frequency limitation of the driver restricts the unloaded Q-factor of the coils and thus the link efficiency. The system presented in this work alleviates the use of heavy and expensive field-shaping techniques by presenting an efficient IPT system capable of transmitting energy with high dc-to-load efficiencies at 6 MHz across a distance of 30 cm.Open Acces

    A Co-Planar Waveguide Ultra-Wideband Antenna for Ambient Wi-Fi RF Power Transmission and Energy Harvesting Applications

    Get PDF
    This study proposes an ultra-wideband antenna for ambient radio frequency (RF) energy harvesting applications. The antenna is based on a co-planar waveguide (CPW) transmission line and incorporates a rectangular slot as an antenna harvester. The proposed antenna utilizes an evolutionary design process to achieve impedance matching of the 50 Ω CPW feeding line over the desired frequency bands. A parametric study investigates CPW elements and rectangular slot size. The harvester antenna is then connected to the primary rectifier circuit of the voltage doubler to examine the signal characteristics. The antenna covers the Industry, Science, and Medicine (ISM) Wi-Fi bands of 2.45 GHz and 5 GHz, achieving a realized gain of 3.641 dBi and 4.644 dBi at 2.45 GHz and 5 GHz, respectively. It exhibits a relatively broad frequency ranging from 2.16 GHz to 6.32 GHz, covering the ultra-wideband fractional bandwidth (FBW) of 105%

    A High-Efficiency RF Harvester with Maximum Power Point Tracking

    Get PDF
    This paper presents the implementation of a high-efficiency radiofrequency (RF) harvester, which consists of a rectenna and a maximum power point tracker (MPPT). The rectenna was characterized from -30 dBm to -10 dBm at 808 MHz, achieving an efficiency higher than 60% at -10 dBm. Experimental results also show that the rectenna can be well modelled as a Thévenin equivalent circuit, which allows the use of a simple ensuing MPPT. The complete RF harvester was tested, achieving an overall efficiency near 50% at -10 dBm. Further tests were performed powering a sensor node from a nearby antenna.Peer ReviewedPostprint (published version

    Architecture of an efficient dual band 1.8/2.5 GHz rectenna for RF energy harvesting

    Get PDF
    This paper presents a highly efficient rectenna of RF energy harvesting systems operating at 1.8 GHz and 2.5 GHz bands for battery-less sensor application. The antenna is designed by CST-MWS. The Schottky diode used for rectifying circuit is HSMS 286B in which designed by Agilent ADS. The key finding of the paper is that the simulated DC output voltage of the rectenna is 1.35 V for low input power of -25 dBm at a high resistance load of 1M Ω. Correspondingly, the RF-DC conversion efficiency of the rectification process is 59.51% and 45.75% at 1.8 GHz and 2.5 GHz, which are high efficiency and much better compared to literature respectively. The rectenna is capable to produce 1.8 V from an input power of -20 dBm. Thus, the proposed RF energy harvesting system offers a promising solution designed for efficient functionality at a low power level of RF energy in the dual band

    Power Management Circuits for Low-Power RF Energy Harvesters

    Get PDF
    The paper describes the design and implementation of power management circuits for RF energy harvesters suitable for integration in wireless sensor nodes. In particular, we report the power management circuits used to provide the voltage supply of an integrated temperature sensor with analog-to-digital converter. A DC-DC boost converter is used to transfer efficiently the energy harvested from a generic radio-frequency rectifier into a charge reservoir, whereas a linear regulator scales the voltage supply to a suitable value for a sensing and conversion circuit. Implemented in a 65 nm CMOS technology, the power management system achieves a measured overall efficiency of 20%, with an available power of 4.5 μW at the DC-DC converter input. The system can sustain a temperature measurement rate of one sample/s with an RF input power of −28 dBm, making it compatible with the power levels available in generic outdoor environments

    Octave and Decade UWB Rectifiers Based on Non-Uniform Transmission Lines for Energy Harvesting

    Get PDF

    Practical rectennas : far-field RF power harvesting and transport

    Get PDF
    corecore