415 research outputs found

    On the Complexity of Temporal-Logic Path Checking

    Full text link
    Given a formula in a temporal logic such as LTL or MTL, a fundamental problem is the complexity of evaluating the formula on a given finite word. For LTL, the complexity of this task was recently shown to be in NC. In this paper, we present an NC algorithm for MTL, a quantitative (or metric) extension of LTL, and give an NCC algorithm for UTL, the unary fragment of LTL. At the time of writing, MTL is the most expressive logic with an NC path-checking algorithm, and UTL is the most expressive fragment of LTL with a more efficient path-checking algorithm than for full LTL (subject to standard complexity-theoretic assumptions). We then establish a connection between LTL path checking and planar circuits, which we exploit to show that any further progress in determining the precise complexity of LTL path checking would immediately entail more efficient evaluation algorithms than are known for a certain class of planar circuits. The connection further implies that the complexity of LTL path checking depends on the Boolean connectives allowed: adding Boolean exclusive or yields a temporal logic with P-complete path-checking problem

    Parallel Transitive Closure and Point Location in Planar Structures

    Get PDF
    AMS(MOS) subject classifications. 68E05, 68C05, 68C25Parallel algorithms for several graph and geometric problems are presented, including transitive closure and topological sorting in planar st-graphs, preprocessing planar subdivisions for point location queries, and construction of visibility representations and drawings of planar graphs. Most of these algorithms achieve optimal O(logn) running time using n/logn processors in the EREW PRAM model, n being the number of vertices

    Model checking finite paths and trees

    Get PDF
    This thesis presents efficient parallel algorithms for checking temporal logic formulas over finite paths and trees. We show that LTL path checking is in AC1(logDCFL) and CTL tree checking is in AC2(logDCFL). For LTL with pastime and bounded modalities, which is an exponentially more succinct logic, we show that the path checking problem remains in AC1(logDCFL). Our results provide a foundation for efficient algorithms of various applications in monitoring, testing, and verification as well as for query processing for tree-datastructures, e.g. XML documents. The presented path and tree checking algorithms are based on efficient parallel evaluation strategies for monotone Boolean circuits. We reduce the evaluation of product circuits to the problem of evaluating one-input-face monotone planar Boolean circuits: for a monotone Boolean circuit that is a product of a tree and a path, we provide an AC1-reduction; for a monotone Boolean circuit that is a product of two trees, we provide an AC2-reduction. We develop a classification of Kripke structures with respect to the complexity of LTL model checking: Kripke structures for which the problem is PSPACE- complete, Kripke structures for which the problem is coNP-complete, and Kripke structures for which the problem is in NC.Wir präsentieren effiziente parallele Algorithmen zum Überprüfen der Erfülltheit von temporal logischen Formeln auf Pfaden und Bäumen. Wir zeigen, dass für die Logik LTL das Überprüfen von Ausführungspfaden in der Komplexitätsklasse AC1(logDCFL) liegt. Für die Logik CTL ist das Überprüfen von Bäumen in AC2(logDCFL). Für Erweiterungen von LTL mit Vergangenheit und beschränkten zeitlichen Modalitäten beweisen wir, dass Pfade ebenfalls in AC1(logDCFL) überprüft werden können, obwohl die Logik exponentiell kompakter ist als einfaches LTL. Unsere Resultate bielden eine Grundlage für effiziente Algorithmen für verschiedene Anwendungen in den Bereichen der Systemüberwachung, des Testens und der Verfikation sowie für die Anfragebearbeitung für Baumdatenstrukturen, wie zum Beispiel XML Dokumente. Die präsentierten Algorithmen zum Überprüfen von Pfaden und Bäumen basieren auf effizient parallelen Strategien zur Evaluierung von monotonen Boolschen Schaltkreisen. Wir reduzieren die Evaluierung von Produkt-Schaltkreisen auf das Problem der Evaluierung von monoton planaren Boolschen Schaltkreisen, bei denen sich alle Eingaben auf dem äußeren Rand befinden. Für monotone Boolsche Schaltkreise, die das Produkt von einem Baum und einem Pfad sind, geben wir eine AC1-Reduktion an. Für monotone Boolsche Schaltkreise, die das Produkt von zwei Bäumen sind, geben wir eine AC2-Reduktion an. Wir entwickeln eine Klassifizierung von Kripkestrukturen im Hinblick auf die Komplexität des Erfülltheitsproblems für LTL: Kripkestrukturen, für die das Problem PSPACE-vollständig ist, Kripkestrukturen, für die das Problem coNP- vollständig ist, und Kripkestrukturen, für die das Problem in NC liegt

    Balancing Bounded Treewidth Circuits

    Full text link
    Algorithmic tools for graphs of small treewidth are used to address questions in complexity theory. For both arithmetic and Boolean circuits, it is shown that any circuit of size nO(1)n^{O(1)} and treewidth O(login)O(\log^i n) can be simulated by a circuit of width O(logi+1n)O(\log^{i+1} n) and size ncn^c, where c=O(1)c = O(1), if i=0i=0, and c=O(loglogn)c=O(\log \log n) otherwise. For our main construction, we prove that multiplicatively disjoint arithmetic circuits of size nO(1)n^{O(1)} and treewidth kk can be simulated by bounded fan-in arithmetic formulas of depth O(k2logn)O(k^2\log n). From this we derive the analogous statement for syntactically multilinear arithmetic circuits, which strengthens a theorem of Mahajan and Rao. As another application, we derive that constant width arithmetic circuits of size nO(1)n^{O(1)} can be balanced to depth O(logn)O(\log n), provided certain restrictions are made on the use of iterated multiplication. Also from our main construction, we derive that Boolean bounded fan-in circuits of size nO(1)n^{O(1)} and treewidth kk can be simulated by bounded fan-in formulas of depth O(k2logn)O(k^2\log n). This strengthens in the non-uniform setting the known inclusion that SC0NC1SC^0 \subseteq NC^1. Finally, we apply our construction to show that {\sc reachability} for directed graphs of bounded treewidth is in LogDCFLLogDCFL

    Space-Efficient Algorithms for Reachability in Directed Geometric Graphs

    Get PDF
    The problem of graph Reachability is to decide whether there is a path from one vertex to another in a given graph. In this paper, we study the Reachability problem on three distinct graph families - intersection graphs of Jordan regions, unit contact disk graphs (penny graphs), and chordal graphs. For each of these graph families, we present space-efficient algorithms for the Reachability problem. For intersection graphs of Jordan regions, we show how to obtain a "good" vertex separator in a space-efficient manner and use it to solve the Reachability in polynomial time and O(m^{1/2} log n) space, where n is the number of Jordan regions, and m is the total number of crossings among the regions. We use a similar approach for chordal graphs and obtain a polynomial time and O(m^{1/2} log n) space algorithm, where n and m are the number of vertices and edges, respectively. However, for unit contact disk graphs (penny graphs), we use a more involved technique and obtain a better algorithm. We show that for every ? > 0, there exists a polynomial time algorithm that can solve Reachability in an n vertex directed penny graph, using O(n^{1/4+?}) space. We note that the method used to solve penny graphs does not extend naturally to the class of geometric intersection graphs that include arbitrary size cliques

    Structure of computations in parallel complexity classes

    Get PDF
    Issued as Annual report, and Final project report, Project no. G-36-67

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF
    corecore