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Annual Report for the Period 

15th September 1987 to 31st August 1988 

Project Title : Structure of Computations in Parallel Complexity Classes. 

NSF grant number : CCR-8711749 

Principal Investigator : H. VENKATESWARAN 

1. During this period, I undertook a study of semi-unbounded fan-in 

circuits as a model of computation. (A family of Boolean circuits 

is said to have semi•-unbounded fan-in if there exists a constant 

C >t 0 such that in any circuit in the family all the AND gates have 

fan-in at most C and any OR gate can have unbounded fan-in) New 

characterizations of nondeterministic space and time classes were 

obtained on this model. Of particular interest is the definition of 

the important class NP as the class of languages accepted by uniform 

families of semi-unbounded fan-in circuits of exponential size and 

logarithmic depth. This is the first uniform circuit characterization 

of the class NP. It provides a framework to study some interesting 

questions about the class NP. The enclosed report "Circuit Definitions 

of Nondeterministic Complexity Classes" contains more details about 

the consequences of these characterizations. 

I also studied other Boolean circuit characterizations of nondeterministic 

complexity classes. This was found useful in obtaining monotone arithmetic 

circuit characterizations of counting classes based on nondeterministic 



time bounded computations. (Monotone arithmetic circuits are arithmetic 

circuits over the domain of non•negative integers and which use only 

the addition and multiplication operations.) An interesting consequence 

of this characterization is the definition of the well known counting 

class #P as the set of functions computed by uniform families of 

monotone arithmetic circuits that have polynomial depth and polymonial 

degree. The degree measure here refers to the algebraic degree of 

the polynomial associated with the circuit. 

A paper entitled, "Circuit Definitions of Nondeterministic Complexity 

Classes"* containing these results has been accepted for presentation 

at the eight annual conference on 'Foundations of Software Technology 

and Theoretical Computer Science' to be held in Pune, India during 

21-23 December 1988. A Georgia Institute of Technology technical 

report (GIT-ICS-88-09) with the same title as above and containing 

these results is enclosed herewith. 

E 
2. During this period, I also obtained some results about the complexity 

of some problems related to the computation of matchings in graphs. 

Given an undirected graph G, a matching M in G is a collection of 

edges of G such that no two edges in M share a vertex. One of the 

important open questions in parallel computation is to find an NC 

algorithm to compute a maximum cardinalty matching in a graph. 

A random NC algorithm for this problem is known [Karp, upfal and 

Wigderson, "Constructing a Maximum Matching is in Random NC", 



Combinatorica, 1986, pp.35-48]. I have shown that deciding whether 

a given matching is a maximum cardinlkity matching is complete for 

the class NLOG (the class of problems solvable by nondeterministic 

Turting machines in logarithmic space). It follows that computing 

a maximum matching is unlikely to be in NC
I.

. 

A Georiga Institute of Technology technical report (GIT-ICS-88-10) entitled, 

"The Complexity of Some Problems Related to Matching", containing these 

results in enclosed herewith. 

3. The following travels were undertaken during this period. 

(a) I attended the 20th Annual ACM Symposium on Theory of Computing 

(STOC) Conference held in Chicago in May 1988. 

(b) I visited Dr. Martin Tompa at the IBM Thomas J. Watson Research 

Center at Yorktown Heights in February 1988. While there I 

presented a seminar entitled, "Circuit Definitions of Nondeterministic 

Complexity Classes". 

(H. VENKATESWARAN) 



Circuit Definitions of Nondeterministic 
Complexity Classes 1  

Technical Report GIT-ICS-88-09 

H. Venkateswaran 

March 1988 

School of Information and Computer Science 

Georgia Institute of Technology 

Atlanta, Georgia 30332-0280 

Abstract 

We consider restrictions on Boolean circuits and use them to obtain new uniform circuit 

characterizations of nondeterministic space and time classes. We also' obtain characteri-

zations of counting classes based on nondeterministic time bounded computations on the 

arithmetic circuit model. It is shown how the notion of semi-unboundedness unifies the 

definitions of many natural complexity classes. 

'This material is based upon work supported by the National Science Foundation under grant CCR-8711749. 



1 Introduction 

The Boolean circuit model has provided a very useful framework to study some of the important 

issues that arise in Turing machine based complexity theory. A major difficulty in translating 

questions from the Turing machine model to the circuit model is the non-uniform nature of circuits. 

An approach to handle this difficulty is to introduce a notion of uniformity for circuits. Uniformity 

for Boolean circuits was first suggested by Borodin[2], and later studied in-depth by Ruzzo[14] (see 

also the papers by Cook [4] and Pippenger [11]). Close connections have been established between 

complexity classes based on uniform circuits with those based on the machine model [2,6,11,12,14]. 

In one direction, complexity classes defined using the circuit model have been characterized using 

the machine model. NC is a well known example of such a complexity class defined using the 

uniform Boolean circuit model [11] that has been characterized using the alternating Turing machine 

model by Ruzzo [14]. In the other direction, traditional complexity classes based on the machine 

model have been characterized in the circuit model. The definition of the class P using Boolean 

circuits [8,12] is probably the first such result. Other results of this nature are the characterizations 

in the circuit model of the classes AC' [16] and LOGCFL [18]. The results by Ruzzo [14] also make 

it possible to obtain circuit characterizations of complexity classes defined using alternating Turing 

machines. 

In the first part of this paper, we extend these results to characterize classes defined using 

nondeterministic Turing machines. We consider restrictions of Boolean circuits and use them to 

characterize nondeterministic space and time classes. We define skew circuits as ones in which 

all but one input of every AND gate are circuit inputs and use it to characterize nondeterminis-

tic space and time classes. Nondeterministic space is defined in terms of the size of such circuits 

and nondeterministic time is shown to correspond to the depth of these circuits. This should be 

contrasted with the well known correspondences between deterministic time and Boolean circuit 

size [12] and between nondeterministic space and Boolean circuit depth [2]. We had earlier con-

sidered a model of computation, called semi-unbounded fan-in circuits, in which the AND gates 

had bounded fan-in [18] and obtained a characterization of LOGCFL on this model. We show here 

how nondeterministic time can be defined in terms of semi-unbounded fan-in circuits. This cor-

respondence is not surprising given the characterization of nondeterministic time by Ruzzo [13] 

using the tree-size resource on alternating Turing machines, and the close connections between 

tree-size and semi-unboundedness [18]. The semi-unbounded circuit model seems useful to capture 

the definitions of many nondeterminisitic complexity classes. 

In the second part of the paper, we use the monotone arithmetic circuit model to characterize 
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counting classes based on nondeterministic time bounded computations. Monotone arithmetic 

circuits are arithmetic circuits over the domain of non-negative integers and which use only the 

addition and multiplication operations. An interesting consequence of this characterization is the 

definition of the well known counting class OP as the set of functions computed by uniform families 

of monotone arithmetic circuits that have polynomial depth and polynomial degree. The degree 

measure here refers to the algebraic degree of the polynomial associated with the circuit. 

It would be appropriate to mention some interesting consequences of the characterization results 

presented here. 

• The circuit characterizations of NP presented here are, to our knowledge, the first uniform 

circuit characterizations of this important complexity class. Of particular interest is the 

definition of NP as the class of languages accepted by uniform families of semi-unbounded 

circuits of exponential size and log depth. This provides a framework to study some interest-

ing questions about the class NP. Recently, Borodin et al. [3] proved that the language classes 

accepted by size and depth-bounded semi-unbounded fan-in circuits are closed under comple-

ment. The semi-unbounded fan-in circuit in their construction for complement recognition 

has depth 0(D+ log Z), where Z is the size and D is the depth of the given semi-unbounded 

fan-in circuit. Hence their result does not apply directly to NP. The relevant question here is 

whether the classes accepted by size Z and depth o(log Z) semi-unbounded fan-in circuits are 

closed under complement. It is known that the classes accepted by size Z and depth o(log n) 

semi-unbounded fan-in circuits are not closed under complement [18]. Another complexity 

question pertaining to NP that can be phrased in this model is its relationship with the other 

classes definable using semi-unbounded fan-in circuits. A candidate class for comparison 

would be the class LOGCFL. It is known that LOGCFL can be characterized as the class of lan-

guages accepted by uniform families of polynomial size and log depth semi-unbounded fan-in 

circuits [18]. Therefore, the separation between NP and LOGCFL now becomes a question of 

the relative power of exponential size and polynomial size semi-unbounded fan-in circuits. 

• The skew Boolean circuits provide a model to rephrase many of the famous separation ques-

tions among complexity classes. Thus the relationship between P and NLOG translates into 

the question of the relative power of polynomial size Boolean circuits and polynomial size 

skew Boolean circuits. The P versus PSPACE question becomes one of the relative power 

of polynomial size Boolean circuits and exponential size skew Boolean circuits. As another 

interesting example, the NP versus PSPACE question can be phrased as the question about 

polynomial depth for skew Boolean circuits versus polynomial depth for general Boolean 

circuits. 
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• The arithmetic characterization of OP presented here is the first alternative characterization of 

this class. It enables us to rephrase the famous open question about the relationship between 

P and NP in terms of the relative power of arithmetic and Boolean circuits. It also touches 

on the power of arithmetic circuits over monotone arithmetic circuits. 

• These characterizations also make it possible to identify appropriate circuit value problems 

that are complete for each of these complexity classes. 

This paper is organized as follows. Section 1.1 contains some preliminary definitions. Boolean 

circuit characterizations of nondeterministic space and time classes are in section 2. Some char-

acterizations of nondeterministic time that follow as simple consequences of known results are 

presented in section 3. Monotone arithmetic circuit characterization of counting classes based on 

nondeterministic time is presented in section 4. 

1.1 Preliminaries 

Boolean Circuits: A Boolean circuit G„ with n inputs is a finite acyclic directed graph with 

vertices having indegree zero or two and labelled as follows. Vertices of indegree zero are labelled 

from the set {0,1, x i , x2 , ... ,x,,,,71 ,72,...,7n}. All other vertices (also called gates) are labelled 

either AND or OR. It should be noted that not including negation gates in the definition of a 

Boolean circuit is done with no loss of generality. Vertices with outdegree zero are called outputs. 

The evaluation of G„ on inputs of length n is defined in the standard way. Typically, only circuits 

with one output vertex will be considered. This makes it convenient to consider circuits as language 

acceptors. 

The size C(G n) of a circuit G n  is the number of edges in G n . The depth of a vertex v in a 

circuit is the length of a longest path from any input to v. The depth of a circuit is the depth of 

its output vertex. 

The language L„ accepted by a Boolean circuit G„ is the set of all length n strings on which 

G n  evaluates to one. 

A family of circuits is a sequence {G, j n = 0, 1,2, ...}, where the n-th circuit G„ has n inputs. 

The language L accepted by a family {G n } of circuits is defined as follows: L = U n>oL n , where Ln 

is the language accepted by the n-th member G n  of the family. 

Skew Boolean Circuits: Let G be a Boolean circuit. An AND gate v in G is said to be a 

skew gate if it has at most one input that is not an input of G. Without loss of generality, we will 
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assume that all but one of its inputs are inputs to the circuit G. We will refer to the input of v 
that is not an input to G as a non-skew input of v. The circuit G is said to be a skew circuit if 

all AND gates in it are skew gates. A family {G ri } of Boolean circuits is said to be a skew circuit 

family if all its members are skew circuits. 

Note: One can define skewness with respect to OR gates also, but we will not pursue that in 

this paper. 

Semi-Unbounded Fan-in Boolean Circuits: A family of Boolean circuits is said to have 
semi-unbounded fan-in if there exists a constant c > 0 such that for any circuit in the family, the 

OR gates in the circuit can have unbounded fan-in and all the AND gates have fan-in at most c. 

Semi-Unbounded Alternating Turing Machines: An alternating Turing machine is semi-

unbounded if there are no two consecutive universal configurations along any path in the computa-

tion tree of the machine. Without loss of generality, we will assume that every universal configu-

ration of a semi-unbounded alternating Turing machine has exactly two existential configurations 

as immediate successors. 

Uniformity: We will use the following notion of uniformity, called Up-uniformity, defined by 

Ruzzo [14]. Define the direct connection language LDC of a family of Boolean circuits to be the 

set of strings of the form < n, g, y > such that either (i) g and y are gate names and y is an input 

of the gate g, or (ii) g is a gate name and y is the type of the gate g, that is, y is one of AND or 

OR or an input to or its negation. A family {G„} of Boolean circuits of size C(n) is said to 
be uniform if the corresponding direct connection language can be recognized by a deterministic 

Turing machine in time O(logC(n)). 

For the space characterization results in section 2, it would have been sufficient to consider log-

space uniformity defined by Borodin and Cook [4]. But a stronger uniformity condition is needed 

for the time characterization results to avoid the possibility of having a uniformity machine that is 

more powerful than the class being characterized. Such will be the case, for instance, in theorem 7 

if we had used log-space uniformity since NTIME(T(n)) C DSPACE(T°(1 )(n)). 

Accepting Subtrees [19]: The notion of an accepting subtree of a Boolean circuit given an 

input on which it evaluates to one is analogous to the notion of accepting subtrees of machines. 

Let B be a Boolean circuit, and let T(B) be its tree equivalent. (The tree-equivalent of a graph 

is obtained by replicating vertices whose outdegree is greater than one until the resulting graph is 

a tree). Let x be an input on which B evaluates to one. An accepting subtree H of the circuit B 

on input x is a subtree of T(B) defined as follows: 

• H includes the output gate, 
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• for any AND gate v included in H, all the immediate predecessors of v in T(B) are included 

as its immediate predecessors in H, 

• for any OR gate v included in H, exactly one immediate predecessor of v in T(B) is included 

as its only immediate predecessor in H, and 

• any input vertex of T(B) included in H has value one as determined by the input x. 

It is easy to verify the fact that the circuit B evaluates to one given the input x if and only if 

there is an accepting subtree of T(B) on input x. 

Tree-Size [19]: The tree-size measure for Boolean circuits can now be defined analogous to 

the tree-size measure for alternating Turing machines [14]. 

The circuit Br, is said to have tree-size Z(n) if, for every input x accepted by Br' , there exists 

an accepting subtree with at most Z(n) vertices. 

Degree: We define the degree of a circuit to be the algebraic degree of the polynomial computed 

by the circuit. Thus, the constants have degree zero, the circuit inputs have degree one, the degree 

of an OR vertex is the maximum of the degrees of its inputs, and the degree of an AND vertex is 

the sum of the degrees of its inputs. 

The following lemma [18] establishes a relationship between the measures degree and tree-size 

for Boolean circuits. 

Lemma 1 Let D(n), Z(n), and d(n) be the degree, tree-size, and depth respectively of a Boolean 

circuit 	Then, 

Z(n) < D(n) d(n) + 1. 

Proof: The result to be proved also holds when the Boolean circuits considered, have unbounded 

fan-in. Let the OR gates have fan-in at least k and the AND gates have fan-in at least 1. 

Let x be an input accepted by the circuit B. By hypothesis, there is an accepting subtree H of 

Br, of size at most Z(n). Let v be any vertex in H. Then the lemma follows from the claim below. 

Claim: Let Z(v) be the number of vertices in the subtree of H rooted at v, D(v) be the degree 

of v, and d(v) be the depth of v. Then, 

Z(v) 5_ D(v) d(v)+ 1. 

Proof of the Claim: The proof of this claim is by induction on the depth of v. 
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The claim is clearly true when the depth of a vertex is zero. Assume that the claim holds for 

all vertices with depth less than d(v). For the induction step, there are two cases: 

Case 1: Let v be an OR gate with inputs vi, ... , vk with at least one non-constant input. Then, 

Z(v) < max{Z(vi), Z(v2),... , Z(vk)} + 1 

< max{D(vi )d(vi ), D(v2 )d(v 2 ),. . . , D(vk)d(vk)} + 2 

< max{(D(vi), D(v2), . . . , D(v0} (d(v) — 1) + 2 

< D(v) d(v) — D(v) + 2 

The claim follows from this since D(v) > 1. 

Case 2: Let v be an AND gate with inputs vi, ... ,vi with at least one non-constant input. Then, 

Z(v) = z(vi ) + z(v2) + ... + Z(vt) + 1 

• D(vi)d(vi) + D(v2)d(v2) + ... + D(q)d(vi) + 1 + 1 

' 	(D(vi) ± D(v2) ± ... + D(v1)) (d(v) — 1) + 1 + 1 

< D(v) d(v) — D(v) + 1 ± 1 

The claim follows from this since D(v) > 1.0 

2 Characterizations of Space and Time Classes 

This section contains the characterizations of nondeterministic space and time classes in terms of 

skew circuits and semi-unbounded fan-in circuits. Theorem 6 relates simultaneous space and time 

bounded nondeterministic classes to simultaneous size and depth bounded skew circuits. In this 

respect, it is similar to the result of Ruzzo [14] relating simultaneous space and time bounded 

alternating classes to simultaneous size and depth bounded circuits. However, the correspondence 

between the time and depth bounds in theorem 6 is only within a polynomial as opposed to the 

correspondence within a constant factor between circuit depth and alternating time shown by 

Ruzzo [14]. 

In the proof of lemma 3 below, we choose to use the alternating Turing machine model instead 

of directly constructing a semi-unbounded circuit corresponding to a skew circuit. This is done to 
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simplify the proof since we can use known simulation techniques. It also provides a new charac-

terization of nondeterministic time on the alternating Turing machine model (see theorem 9). The 

correspondence between the machine and circuit models will be established through a sequence of 

lemmas. 

Lemma 2 For S(n) = fi(log n), T(n) =11(n), and. S(n) T(n), 

NSPACE,TIME(S(n),T(n)) C Uniform Skew Circuit SIZE,DEPTH(2 °(S(n) ), T(n)). 

Proof: Let L be accepted by a nondeterministic Turing machine M in S(n) space and T(n) 

time. The construction of a circuit family {G n } that accepts the same language as M can be 

done using standard techniques [14,18]. For the sake of completeness, we will outline below the 

construction of G„, the n-th member of this family. 

The configurations of M can be classified into two types: existential and read. We will assume 

that M is deterministic while reading inputs. 

.For 0 < t < T(n), and a configuration c of M using space 5(n), there is a gate in the circuit 

in one of the following forms: [t, c], or [t,c,i], or [t,c,i,b], where 0 < i < n is an integer and b is 

either zero or one. The first component t in a gate name is used to avoid cycles in the circuit. The 

type of a gate of the form [t, c] c, 1], [t,c,i,b] ) is OR (OR, AND respectively). 

Let cr be the initial configuration of M. The output gate is [0, ci]. 

The inputs of a gate are constructed as follows. Consider a gate [t, c] corresponding to a non-

read configuration c of the machine. If t + 1 > 7'(n), it has only one input, namely the constant 

zero. Otherwise, its inputs are constructed from the set D of all configurations reachable by M in 

one move from c. There will be one input corresponding to each d E D. For any d E D, if d uses 

space > S(n), then the corresponding input is the constant zero. For all other d E D, there are 

two cases. If d is an existential configuration the corresponding input is the gate [t 1, di and its 

inputs are constructed recursively. If d is a read configuration in which M reads the ith symbol, 

the corresponding input is an OR gate [t + 1, d, i] wit;h two inputs: [t + 1, d,1,0] and [t + 1, d, i, 1]. 

The gate [t + 1, d,i, 0] is an AND gate with two inputs: a constant one (zero) if the ith input has 

value zero (respectively, one), and the gate [t + 2, e], where e is the configuration to which M moves 

from the read configuration d, if the ith input read has value zero. The inputs of the gate [t + 2, e] 

are constructed recursively. The gate [t 1, d, i, 11 is constructed in an analogous fashion. 

It is clear from the construction of G n  above that it is a skew circuit. The only AND gates 

constructed correspond to the read configurations of M. It is easy to show that {G n } accepts the 

same language as M. The size of the resulting circuit is 2 ° (s(n)). Its depth is T(n). 
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It can be verified that the direct connection language of {G n } can be recognized by a determin-

istic Turing machine using O(S(n)) time, thus showing that the circuit family {G n } is uniform. ❑ 

Lemma 3 For S(n) = 11(log n), T(n) = fl(n), and S(n) < T(n), 

Uniform Skew Circuit SIZE,DEPTH(2°( 5 (n)) , T (n)) C 

Uniform Semi-Unbounded Circuit SIZE,DEPTH(2 °(5(n)) , log T (n)). 

Proof: Let {G n } be a uniform family of skew circuits with the given size and depth bounds. 

Then {G n } has tree-size that is polynomial in T(n). An alternating Turing machine M that sim-

ulates G n  on an input x of length n can be constructed as in the simulation by Ruzzo [14] of a 

space and tree-size bounded alternating Turing machine by a space and time bounded alternat-

ing Turing machine. The machine M is semi-unbounded and uses space O(S(n)), alternations 

O(log T(n)), and time T°( 1)(n). Let the time used by M be T'(n) = T a (n) for some constant 

a > 1. Furthermore, M is in a normal form such that only one input symbol is read along any 

path of the machine's computation tree. A uniform family {H4 of semi-unbounded fan-in circuits, 

with size 2 0(5(n))  and depth O(log T(n)), that accepts the same language as M can be constructed 

by adapting known techniques [18]. The basic idea of the construction is to make as inputs to 

an OR (AND) gate all non-existential (non-universal) configurations of M reachable through only 

existential (universal) configurations. 

We will outline the construction of the n-th member H n  of this family. The configurations of 

M are assumed to be one of the following three types: existential, universal, and read. 

Let D(n) = flog 2 Ti (n)1. 

Gates in the circuit Hn  are all of the form kJ, or [d'], or [c, d], or [s, c, d], or [s, c, d, e], where 

0 < s < D(n), and c, d and e are all configurations of M. The output gate of H n  is [ro], where ro 

is the initial configuration of M. In general, the type of a gate of the form [c] is OR (AND) if the 

type of the configuration c is existential (respectively, universal). Given a gate [c], its inputs are 

defined as follows. 

Case 1: [c] is an OR gate. Its inputs are gates [c, d] for all configurations d that are not 

existential. Each of the gates [c, d] is an AND gate and it has two inputs [0, c, d] and [d'] defined as 

follows. 

• The gate [0, c, d] is the output of an D(n) depth semi-unbounded fan-in circuit that checks 

that in M the configuration d is reachable from the configuration c using only existential 

configurations of M. The following is a description of such a reachability circuit [18]. 
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Given a gate [s, c, di with 0 < s < D(n), the goal is to describe a subcircuit of which this 

gate is the output, such that the subcircuit checks that c is reachable from d in G n  using by 

a path of at most 2 D(n)"' OR gates (see also the construction by Borodin [2[). 

If d is an immediate predecessor of c in Gn , then [s, c, d] is the constant one. Otherwise, if 

s 1 > D(n), then [s,c,d] is the constant zero. Otherwise, the gate [s, c, di is an OR gate. 

Its inputs are gates [s + 1, c, d, e] for all OR gates e in G n . Each of the gates [s + 1, c, d, e] is 

an AND gate, and it has the two inputs [s +1, c, e] and [s + 1, e, d]. These two subcircuits are 

constructed recursively. 

• The gate [d'] is an OR gate with a single input [d] defined as follows. If d is a read configuration 

with a, i on its index tape, then [d] is the ii-th input to Hn . Otherwise, d is a universal 

configuration. Then [d] is an AND gate. Its inputs are constructed recursively. 

Case 2: [c] is an AND gate. Let d1, d2 be the existential configurations of M that immediately 

succeeds the configuration c. The inputs to [c] are the OR gates [di ] and [d2]. The inputs to these 

two OR gates are constructed recursively. 

The circuit Hn  has size 2°(s(n)) and depth O(log T(n)). Note that the OR gates in Hn  may 

have exponential fan-in whereas the fan-in of the AND gates is bounded by a constant. It is easy 

to show that Gn  and Hn  accept the same language. It is also straightforward to check that the 

direct connection language for the circuit family {Hn } can be recognized by a deterministic Turing 

machine in time 0 (S (n)). ❑ 

Lemma 4 For S(n) = 11(log n), T(n) = 12(n), and S(n) < T (n), 

Uniform Semi-Unbounded Circuit SIZE,DEPTH(2°(S(n)) ,log T(n)) C 

NSPACE,TIME(S(n) log T (n), T° ( 1 )(n)). 

Proof: This follows from the simulation of semi-unbounded fan-in circuits by nondeterministic 

auxiliary pushdown automata by Venkateswaran [18]. In this case, we are interested in the space 

and time used in the simulation. 

Let L be accepted by {G n }, a uniform family of semi-unbounded fan-in circuits with size 20 ( 5 (n)) 

and depth O(logT(n)). Given x of length n, a nondeterministic machine M checks whether the 

circuit evaluates to one on x by doing a depth-first evaluation. The machine M maintains a stack 

to do the circuit evaluation. 
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M begins the simulation with the output gate ro. Given a gate v and its type, M checks that 

v evaluates to one on x as follows. Let C(v) denote the configuration of M as it begins checking 

the gate v. 

Case 1: v is an OR gate. M existentially guesses one of its true inputs u and its type and 

verifies with the uniformity machine that the guesses are correct. It then recursively checks that 

the gate u evaluates to one. 

Case 2: v is an AND gate. Then it has a constant number, say k, inputs. M existentially 

guesses these inputs, say, vi, • • • , vk, and their types and verifies with the uniformity machine that 

the guesses are correct. M then pushes the gates v 2 , • • • , vk  onto the stack. Along with a gate its 

type is also pushed onto the stack. M then recursively checks that v1 evaluates to one. 

Case 3: v is an input to the circuit. If its value is zero, M rejects. Suppose v has value one. 

M makes its final pop move and accepts if the stack is empty. Otherwise, M pops a gate u and its 

type from the stack and recursively checks that u evaluates to one. 

For correctness, it can be shown, by induction, that the output ro of the circuit G r, evaluates 

to one on input x if and only if M accepts starting from C(r o) and an empty stack [18]. 

Consider the space used by M on input x E L of length n. In checking a gate v, M must 

remember the gate v and its type. If v is an OR gate, M needs space to record information 

pertaining to a true input of v. This uses space O(S(n)). The space used for the gate v can be 

reused at the next level of recursion. If v is an AND gate, the information pertaining to all but 

one of its inputs is stored in the stack. This uses space O(S(n)). But, since the depth of the 

circuit is bounded by 0(log T(n)), the stack may have 0(log T (n)) such pieces of information using 

altogether 0 (S(n) log T (n)) space. The uniformity machine uses 0 (5 (n)) space. Therefore, the 

total space used in the simulation by M is O(S(n) log T(n)). 

For the time bound of M, we first note that any accepting subtree of the circuit will have size 

T° ( 1 )(n). The machine M, in verifying whether G y, accepts its input, traverses such an accepting 

tree in a depth-first fashion visiting every vertex at most twice. For each node visited, M uses time 

O(S(n)) to guess the information pertaining to the node and time O(S(n)) to invoke the uniformity 
machine to verify its guesses. Recall that the uniformity machine is a determinsitic machine using 

time 0(5(n)). Since S(n) < T (n), the total time used by M is T° ( 1)(n). ❑ 

In the proof of lemma 4 above, the space used for the stack can be completely avoided if the 
circuits being simulated are skew circuits. This observation leads immediately to the following 

lemma: 
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Lemma 5 For S(n) = fl(log n), T(n) = 11(n), and S(n) < T(n), 

Uniform Skew Circuit SIZE,DEPTH(2°(S(n)) TO(1)  (n)) C NSPACE,T]ME(S(n), T° ( 1 ) (n)). ❑ 

Lemmas 2 and 5 yield the following theorem: 

Theorem 6 For S(n) = 11(log n), T(n) = 12(n), and (n) < T (n), 

NSPACE,TalE(S(n),T° ( 1) (n)) = — Uniform Skew Circuit SIZE,DEPTH(2°(S(n)), To(1) (n)). 
❑ 

The following characterizations of nondeterministic time using skew circuits and semi-unbounded 

fan-in circuits are now immediate from lemmas 2, 3, and 4. 

Theorem 7 For T(n) = 11(n), the following complexity classes are equal: 

1. NTIME(T° ( 1)(n)) 

2. Uniform Skew Circuit DEPTH(T°(1) (n)) 

3. Uniform Semi-Unbounded Circuit SIZE,DEPTH(2°(T(")) , log T(n)) ❑ 

As interesting consequences of theorems 6 and 7, we obtain the following Boolean circuit char-

acterizations of the classes NLOG, PSPACE, and NP. 

Corollary 8 . 1. NLOG = Uniform Skew Circuit SIZE(n°(1) ). 

2. PSPACE = Uniform Skew Circuit SIZE(2 n°(1) ). 

3. NP = Uniform Skew Circuit DEPTH(e (1) ). 

A. NP = Uniform Semi-Unbounded Circuit SIZE,DEPTH(r 0(1)  , log n). ❑ 

3 Other Characterizations of Nondeterministic Time 

This section contains some characterizations of nondeterministic time that follow as simple conse- 

quences of known results. We will only consider bounded fan-in Boolean circuits in this section. 

Perhaps the most interesting of the characterizations here is the one using the depth and degree 
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measures for Boolean circuits. This suggests the characterization results in section 4 of counting 

classes based on nondeterministic time bounded computations. 

Ruzzo [13] showed that nondeterministic time T(n) is the class of languages accepted by alter-

nating Turing machines simultaneously using space O(T(n)) and tree-size 0 (T (n)) . This combined 

with the simulation by Ruzzo [13] of space and tree-size bounded alternating Turing machines by 

space and time-bounded alternating Turing machines (used in the proof of lemma 3) provides a 

new characterization of nondeterministic time bounded classes on the alternating Turing machine 

model. The close relationship between Boolean circuits and alternating Turing machines [14] also 

leads to another Boolean circuit characterization of nondeterminstic time in terms of size and tree-

size. Finally, the correspondence between degree and tree-size for Boolean circuits (see lemma 1) 

yields yet another Boolean circuit characterization of these classes in terms of degree and depth 

resources. 

We will summarize these three characterizations in theorem 9 below. The proof of this theorem 

can be reconstructed from the results mentioned. 

Theorem 9 For T(n) = 12(n), the following complexity classes are equal: 

1. NTIME(T° ( 1)(n)) 

2. Semi-Unbounded ATIME,ALTERNATIONS (T°(1)  (n), log T (n)) 

3. Uniform Circuit SIZE,TREESIZE(27""  (n), T°( 1 ) (n)) 

4. Uniform Circuit DEPTH,DEGREE(V (1 )(n), T° ( 1 )(n)).0 

Thus, for instance, NP has the following characterization in terms of degree and depth of 

Boolean circuits: 

Corollary 10 NP = Uniform Circuit DEPTH,DEGREE(n°(1), no(1)) .  ❑ 

The Boolean circuit characterization of NP in Corollary 10 should be contrasted with the 

following bounded fan-in Boolean circuit characterization of PSPACE [2,14]: 

PSPACE = Uniform Circuit DEPTH(n°(1) ) = Uniform Circuit DEPTH,DEGREE(n °(1) , r°") ). 

Constant Depth Circuits: Before concluding this section, we mention another definition of 

NP using constant depth unbounded fan-in circuits. We will show this by exhibiting a uniform 

family of constant depth Boolean circuits for the conjunctive normal form satisfiability problem. 
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Let SAT denote the language consisting of all strings that are (reasonable) encodings of satisfi-

able conjunctive normal form formulas. Let all length r strings in SAT encode satisfiable formulas 

that have n variables and m clauses. The r-th member G,. of a uniform circuit family {G r } that 

accepts SAT is described below. See figure 1. 

• The output of G r  is an OR gate labelled [0,n, rr]. This gate evaluates to one on input x if 

and only if the formula encoded by x is satisfiable. 

• The OR gate [0,n, ml has as inputs AND gates labelled [1, n, m, j] for 0 < j 5 2n  — 1. An AND 

gate [1, n, m, j] evaluates to one if and only if the input formula evaluates to one when the 

variables in the formula are assigned bit values from the integer j. 

• Each AND gate labelled [1, n, m, j] has as inputs OR gates labelled [2, n, m, j, k} for 1 < k < m. 

An OR gate [2, n, m, j, k] evaluates to one if and only if the k-th clause in the input formula 

evaluates to one when the variables in the formula are assigned bit values from the integer j. 

• The inputs of an OR gate labelled [2, n, m, j, k] are OR gates labelled [3, n, m, j, k,I] for 1 < 

I < n. An OR gate [3, n, m, j,k,1] is the output of a subcircuit that evaluates to one if and 

only if the /-th variable occurs in the k-th clause as a positive (negative) literal and the I-th 

bit of j is one (respectively, zero). If the I-th variable does not occur in clause k then a gate 

of the form [3,n, m,j,k,1] evaluates to zero. 

The family of Boolean circuits have size 0(m2n) and constant depth. The OR gates have fan-in 

at most 2n  and the AND gates have fan-in at most m. It can be verified that the direct connection 

language for {G r} can be recognized by a deterministic Turing machine in polynomial time, thus 

showing that this is a uniform family of circuits. 

4 Monotone Arithmeic Circuits and Counting Classes 

This section contains the characterizations of counting classes based on nondeterministic time 

bounded computations on the monotone arithmetic circuit model. A monotone arithmetic circuit 

is an arithmetic circuit using only the addition and multiplication operators and whose inputs are 

nonnegative integers. We will also characterize these classes in terms of the number of accepting 

subgraphs in the Boolean circuit model. As corollaries, we obtain characterizations of the class tlP 

on these models. 
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Figure 1: Constant Depth Unbounded fan-in Circuits for CNF Satisfiability 

14 



4.1 Definitions 

It will be convenient to consider Boolean circuits in which every AND gate has exactly two inputs. 

Monotone Arithmetic Circuits: These are defined just as Boolean circuits, (thus, for in-

stance, every product gate has exactly two inputs), except that the gates compute the sum and 

product of their inputs instead of computing the OR and AND functions. Although the results in 

this section, especially lemma 13, can be strengthened to handle n bit integers as inputs to the 

circuit, it suffices to consider only single bit inputs. 

We will denote a gate computing the sum (product) of its inputs as a PLUS (respectively, MULT) 

gate. 

Uniformity: We will slightly modify the definition of uniformity in section 1.1 to do a parsi-

monious simulation in lemma 15. 

Define the direct connection language of a family {G,,,} of Boolean circuits to be the set of strings 

of the form < n,g,y,p > such that either (i) g is a OR gate and y is an input of g, or (ii) g is a 

AND gate and y is a left (right) input of g if p is L (respectively, R), or (iii) g is a gate name and 

y is the type of the gate g. A family {G,} of Boolean circuits of size C(n) is said to be uniform if 

the corresponding direct connection language can be recognized by a deterministic Turing machine 

in time 0 (log C(n)). 

The uniformity condition for monotone arithmetic circuits is defined exactly as for Boolean 

circuits with PLUS (MULT) gates replaced for OR (respectively, AND) gates. 

Degree: The degree measure for monotone arithmetic circuits is defined anlaogous to Boolean 

circuits (see section 1.1). Thus, the constants have degree zero, the circuit inputs have degree one, 

the degree of a PLUS vertex is the maximum of the degrees of its inputs, and the degree of a MULT 

vertex is the sum of the degrees of its inputs. 

Notations: Let .A.1 denote the set of natural numbers. 

A function f : {0, 1}* --+ .Y is in Uniform Circuit SIZE,DEPTH,DEGREE(Z(n), d(n), D(n)) if and 

only if there exists a uniform family {G„,} of Boolean circuits of size 0(Z(n)), depth 0(d(n)), and 

degree O(D(n)) such that for all strings x of length n, f (x) is the number of accepting subtrees of 

Gn  on input x. 

The other counting classes are defined in a similar fashion. 
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4.2 The Characterization Results 

The following fact can be used to set up a correspondence between Boolean and monotone arithmetic 

circuits. The proof of this fact is a direct consequence of the definition of an accepting subtree of 

a Boolean circuit (see section 1.1). 

Fact 11 Let B be a Boolean circuit that evaluates to one an input x. Given x as an input, the 

number of accepting subtrees of B rooted at an OR (AND) gate v is the sum (respectively, product) 

of the number of accepting subgraphs of B rooted at the inputs of v. ❑ 

It may be noted that lemmas 12, 13, and 14 below are stronger statements than needed to prove 

the main results of this section, namely lemma 15 and theorem 17. 

Lemma 12 Let B be a Boolean circuit of size Z, depth d, and degree D. Then there exists an 

arithmetic circuit A of size Z, depth d, and degree D such that B has p accepting subtrees on an 

input x on which it evaluates to one if and only if A has value p on input x. 

Proof Sketch: Given a Boolean circuit B, let the arithmetic circuit A be obtained by replacing 

all the OR (AND) gates of B by PLUS (respectively, MULT) gates. Then the conclusion follows by 

using fact 11. ❑ 

Lemma 13 Let A be a monotone arithmetic circuit of size Z, depth d, and degree D with n inputs 

from {0,1}. Then there exists a Boolean circuit B of size Z, depth d, and degree D such that A 

has value p if and only if B has p accepting subtrees given this input. 

Proof Sketch: Given a monotone arithmetic circuit A, consider the Boolean circuit B con-

structed from A replacing all PLUS (MULT) gates by OR (respectively, AND) gates. The proof then 

follows by a simple inductive argument. ❑ 

The circuits involved in the lemmas 12 and 13 above can be made uniform thereby showing the 

following correspondence between monotone arithmetic circuits and Boolean circuits. 

Lemma 14 For Z(n),D(n) = 

IlUniform Circuit SIZE,DEPTH,DEGREE(Z °(1) (n), d(n), D(n)) = 

Uniform Monotone Arithmetic Circuit SIZE,DEPTH,DEGREE(V (1) (n),d(n), D(n)).1=1 
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Lemma 15 below establishes the correspondence between the number of accepting paths in 

nondeterministic Turing machines and the number of accepting subtrees of Boolean circuits. 

Lemma 15 For T(n) = 12(n), 

IINTIME(T°( 1)(n)) = PUniform Circuit DEPTH,DEGREEV°(1) (n), T°( 1 ) (n)) 

Proof: Let M be a nondeterministic Turing machine that runs in time T(n). By theorem 7, 

there exists a uniform family {Bn } of O(T(n)) depth bounded skew circuits that accepts the same 

language as M. The degree of B n  is O(T(n)). This is due to the fact that the degree of a depth d 

skew circuit cannot exceed d. Any accepting subtree of Bn , given an input on which it evaluates 

to one, is a completely skewed binary tree. We claim that M has p accepting paths on an input x 

of length n if and only if Bn  has p accepting subtrees. 

To simplify the proof, we will assume that M is deterministic while reading its inputs, and that 
the immediate successor of a read configuration is an existential configuration. 

Let x be an input of length n accepted by M. Then Bn  evaluates to one on x. We will show 
that there is a bijective function that maps the accepting paths in the computation tree of M on 
input x with the accepting subtrees of B n  on input x. 

Let p be an accepting path of M on input x. The starting vertex of p is labelled by the initial 

configuration ci of M. Consider the following subtree A(p) of B n  on input x. The root of A(p) 
is the output gate p, c,1 of Bn . In general, the construction proceeds as follows. For the t-th 

vertex of p labelled with an existential configuration c, pick the corresponding gate [t, c] of Bn . The 
configuration d that immediately succeeds c along p is either an existential configuration or a read 

configuration. If d is an existential configuration pick as the input of the gate [t, c] its input labelled 
[t + 1, d]. Suppose d is a read configuration in which M reads the i-th input symbol and moves 
to an existential configuration e (f) if the i-th input is zero (respectively, one). Consider the case 

when the i-th input symbol is zero. (The construction in the case when the i-th input symbol is 

one is analogous.) Then d has the configuration e as its immediate successor along p. Pick the gate 

[t + 1, d, i] as the input of the gate [t, c], the AND gate [t + 1, d,i, 0] as the input of [t + 1, d, and 
the gate [t + 2, e] as the input of the gate [t + 1, d,i 3 O]. It is easy to see that A(p) is an accepting 
subtree of Bn  on input x. 

The mapping described above from accepting paths of M on input x to accepting subtrees of 
Bn  on input x is well-defined. We will now argue that it is also a bijective function. 

Suppose p and q are two distinct accepting paths of M on input x. Let A(p) and A(q) be the 
corresponding subtrees defined by the above mapping. Now, p and q both have the same start 
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vertex namely, the one labelled with the initial configuration ci. Let the initial common segment 

of p and q have t vertices. Let the t-th vertex be labelled by the configuration c. Then c must be 

an existential configuration. The corresponding gates in A(p) and A(q) are labelled by [t, c]. Since 

the immediate successor of c in p is different from that of c in q, the input of the gate [t, c] in A(p) 

is different from that of [t, c] in A(q). 

Suppose A is an accepting subtree of Br, on input x of length n. We claim that there is 

an accepting path p of M on input x such that A is the image of p as defined by the mapping 

above. The path p is constructed as follows. The starting vertex of p is labelled with the initial 

configuration ci. Let [t, c] be a vertex in A where c corresponds to an existential configuration of 

M on input x. There are two cases. 

Case 1: Suppose the gate [t + 1, di is included in A as the input of the gate [t, c]. Then d is an 

existential configuration and it is an immediate successor of the configuration c of M. Since A is 

an accepting subtree on input x, the gate [t + 1,4 evaluates to one on input x. It follows that d is 

an accepting configuration of M on input x. Include a vertex labelled d as the immediate successor 

of the vertex labelled c along p. 

Case 2: Suppose the gate [t +1,d,i] is included in A as the input of the gate [t, c]. Then d 

is a read configuration that is an immediate successor of c. If [t + 1, d,1,0] ([t + 1, d, 1, 1]) is the 

input of [t + 1, d, 1] that is included in A, the i-th input symbol must be zero (respectively, one). 

Consider the case when the i-th input symbol is zero. (The case when the i-th input symbol is 

one is analogous.) Let the input of [t + 1, d, i ,0] included in A be the gate [t + 2, e]. Then include 

the vertex labelled d as the immediate successor of c and the vertex labelled e as the immediate 

successor of d along p. It is easy to verify that p is an accepting path of M on input x and A is an 

image of p defined by the above mapping. 

Conversely, let {Bn } be a uniform family of Boolean circuits of depth T°( 1 )(n) and degree 

T°( 1 )(n). Let M be a nondeterministic Turing machine that simulates B„ on an input x of length 

n in a depth-first fashion as in the proof of lemma 4. The one difference here is the need to ensure 

that the simulation of an AND gate maintains the correspondence between the number of accepting 

paths of the machine and the number of accepting subtrees of the circuit. Let C(v) denote the 

configuration of M as it begins checking the gate v. 

In simulating an AND gate v, M does the following. It guesses the right input, say v 2 , of v, 

verifies with the uniformity machine that the guess is correct, and pushes v 2  onto the stack. It then 

guesses the left input, say v 1 , of v, verifies with the uniformity machine that the guess is correct, 

and verifies that v 1  evaluates to one. This will guarantee that there is a single accepting path 

segment from the configuration C(v) to the configuration C(v i ). 
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Then it follows, from the claim below, that M has p accepting paths on r if and only if B„ has 

p accepting subtrees on input x. 

Claim: Let v be a vertex in B, thit evaluates to one on input x. If M begins its simulation 

at v, it has p accepting paths rooted at C(v) if and only if there are p accepting subtrees of Bn 

rooted at v. 

Proof of the claim: This is by induction on the depth d(v) of the vertex v. 

The claim is clearly true for an input vertex v with value one. 

Suppose v is an OR gate that evaluates to one on x. Let 	, v,n  be its inputs. Let 1 < q < m 

of these inputs, say vii, vi2, 	, viq  evaluate to one on input x. The machine M, in checking 

whether v evaluates to one, existentially chooses one of these q inputs. Thus, the number of 

accepting paths rooted at C(v) is given by the sum of the number of accepting paths rooted at 

C(vii),C(vi2),...,C(N). By induction hypothesis, this sum is equal to the sum of the accepting 

subtrees rooted at vi i , vi2, ,vo. Since this is equal to the number of accepting subtrees of B, 

rooted at v, the claim follows. 

Suppose v is an AND gate that evaluates to one on x. Let vi and v2 be its inputs. By con-

struction, the number of accepting paths rooted at C(v) is equal to the number of accepting paths 

rooted at C(v i ). That is, if M begins its simulation with the gate v, there is a single accepting 

path segment from C(v) to C(vi). Thus, the number of accepting paths rooted at C(v) is the same 

as the number of accepting paths rooted at C(vi). The machine M, in verifying v i , traverses an 

accepting subtree of B, rooted at vi. It then pops the vertex v2. Hence there is a vertex labelled 

C(v2) along every accepting path of M rooted at C(vi). Therefore, the number of accepting paths 

rooted at C(vi) is the product of the number of accepting path segments from C(v i ) to C(v2) with 

the number of accepting paths rooted at C(v2). By induction hypothesis, the number of accepting 

path segments from C(v i ) to C(v2 ) is the number of accepting subtrees rooted at v 1  of B,,, and the 

'umber of accepting paths rooted at C(v2) is the number of accepting subtrees of B n  rooted at v2. 

:t follows that the number of accepting paths rooted at C(v) is the number of accepting subtrees 

'ooted at v of Bn . 

By lemma 1, the tree-size of B, is T° ( 1) (n). Since B,, has size at most exponential in T°( 1 )(n), 

t follows, as in the simulation of lemma 4, that M uses time T °(1) (n). ❑ 

In lemma 15 above, we could have used semi-unbounded fan-in circuits instead of bounded 

in-in circuits to obtain the following result: 
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Theorem 16 For T(n) = 17(n), 

ONTIME(T°( 1)(n)) = 

Uniform Semi-unbounded Fan-in Circuit SIZE,DEPTH,DEGREE(2 7.°(1)(n) , T°(1) (n), T° (1) (n)).0 

Lemmas 14 and 15 together imply the following theorem: 

Theorem 17 For T(n) = 11(n), 

#NTIME(T°(1)(n)) =- 

Uniform Monotone Arithmetic Circuit DEPTH,DEGREE(T c)(1) (n),T°(1) (n)). 

As a special case of the above theorem, we obtain the following new characterization of the 

important counting class IfP: 

Corollary 18 

= Uniform Monotone Arithmetic Circuit DEPTH,DEGREE(n °(1) , n°(1) ). 0 

4.3 Some Consequences 

In this section, we will examine some consequences of the results in section 4.2. 

Unique SAT: The Unique SAT problem is defined as follows [10]: Given an instance of SAT, 

does it have a unique solution? As another interesting corollary of theorem 17, we can identify an 

arithmetic circuit value problem that is equivalent to the Unique SAT problem. 

Let M be a fixed uniformity machine for a family {G n } of monotone arithmetic circuits of 

polynomial depth and polynomial degree. Given as input n and an n bit vector x, the MCVP1 

problem is to determine whether the circuit G n  evaluates to one on input x. 

Corollary 19 There is a log space transformation from Unique SAT to MCVP1 and vice versa. ❑ 

The Class UP and Arithmetic Circuits: The class UP was defined by Valiant [17] as 

;he class of languages accepted by polynomial time unambiguous Turing machines. These are 

iondeterministic Turing machines that are guaranteed to have at most one accepting computation 

or each input. 

Define a monotone arithmetic circuit to be unambiguous if it evaluates to one or zero for all its 

1puts. Then he corollary below can be shown using the results in section 4.2. 



Corollary 20 The MCVP1 problem for unambiguous monotone arithmetic circuits is complete 

for the class UP. 0 

New NP-Complete problems: Theorem 17 suggests a new arithmetic circuit value problem 

that is complete for NP. Let M be a fixed uniformity machine for a family {G yz } of monotone 

arithmetic circuits of polynomial depth and polynomial degree. Given as input n and an n bit 

vector x, the MCVP problem is to determine whether the circuit G, evaluates to a non-zero value 

on input x. 

Proposition 21 The MCVP problem is NP-complete. 0 

Theorem 17 also suggests versions of complete problems for 11/ 3  that could be complete for NP. 

Define the NONZERO PERMANENT problem as follows: 

Input: An n by n matrix A with entries from {0,1). 

Property: The permanent of A > 0. 

The reduction used by Valiant [17], in showing that computing the value of the permanent of a 

matrix is complete for OP, can also be used to show that this problem is NP-complete. 

Proposition 22 The NONZERO PERMANENT problem is NP-complete.0 

Characterizing OPSPACE Using Monotone Arithmetic Circuits: Using the known char-

acterization of Boolean circuit depth by alternating time [14], the following analogue of lemma 15 

can be proven using the techniques in the proof of that lemma: 

Lemma 23 For T(n) = Cl(log n), 

ATEM:E V° ( 1)  (n)) = Uniform Circuit DEPTH(T°(I) (n)). ❑ 

This lemma combined with lemma 14 and the result by Ladner [9] that OPSPACE = OATIME(e( 1 )) 

implies the following theorem: 

Theorem 24 

gPSPACE = Uniform Monotone Arithmetic Circuit DEPTH(n °  (1)). ❑ 

It should be noted here that Bertoni et al. [1] also characterized IIPSPACE as the class of 

functions computed by polynomial time Random Access Machines with the operations of addition, 

integer subtraction, multiplication, and integer division. 



2n0(1)  /bounded 
2n°(1>  /bounded 2nc)(1)  2nc)(1)  PSPACE 

2 n°(1)  /bounded 2n()(1)  /bounded 2n°`" PSPACE 

DEGREE1 OR fan-in AND fan-in 	SIZE DEPTH CLASS 

n° ( 1) /bounded n°(1)/bounded 	nO ( 1)  n°(1)  LOGCFL 

n° ( 1 ) bounded 	n° ( 1 ) log n LOGCFL 

n°(1 ) 	n°(1 ) 	n°(1 ) log n AC 1  

n°( 1 )/bounded I n°( 1)/bounded 	n° ( 1 ) 	 P 

2n°" )  bounded row log n NP 

2n°(1)  /bounded 2nc)(1)  /bounded 2nO(1)  no(1 ) no(i) NP 

Table 1: Circuit Definitions of Complexity Classes 

5 Conclusion 

This work provides a circuit framework in which some well-known open problems of complexity 

theory can be studied. We considered two constraints on the Boolean circuit model, namely skew-

ness and semi-unboundedness, and used it to define nondeterministic space and time complexity 

classes. We also considered monotone arithmetic circuits to define counting classes based on non-

deterministic time. 

The known uniform Boolean circuit characterizations of classes between LOGCFL and PSPACE 

are summarized in table 1 (the definitions of the classes LOGCFL and P in this table use log-space 

uniformity). It should not be too difficult to construct entries for classes above PSPACE. 

As a consequence of these characterizations, we can define for each of these complexity classes 

a Boolean :ircuit value problem that is a natural complete problem for the class. For example, the 

following circuit value problem is NP-complete. Let M be a fixed uniformity machine for a family 

{GO of Boolean circuits of polynomial depth and polynomial degree. Given as input n and an n 

bit vector x, the problem is to determine whether the circuit G n  evaluates to one on input x. 

We will conclude with a few remarks about the relevance of the semi-unboundedness notion for 

questions in complexity theory. From table 1, it can be seen that many of the well-known space 

and time complexity classes have definitions in terms of semi-unbounded fan-in circuits. Thus, for 



instance, the following are definitions of some well known classes using the semi-unbounded fan-in 

circuit model: 

LOGCFL = Uniform Semi-Unbounded Circuit SIZE,DEPTH(n c)(1) , log n) 

P = Uniform Semi-Unbounded Circuit SIZE,DEPTH(e (1) ,n0(1)) 

NP = Uniform Semi-Unbounded Circuit SIZE,DEPTH(2 n°(1)  , log n) 

PSPACE = Uniform Semi-Unbounded Circuit SIZE,DEPTH(2 n°(1)  , nO ( 1)) 

One can define an analogue of the polynomial time hierarchy using semi-unbounded alternating 

Turing machines. Then, by theorem 9, NP is the class languages accepted by polynomial time semi-

unbounded alternating Turing machines using 0(log n) alternations. This is interesting because 

it shows that with the constraint of semi-unboundedness O(log n) alternations is in NP, whereas 

without this constraint, even constant alternations is not known to be in NP. 
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1 Introduction 

Given an undirected graph G, a matching M in G is a collection of edges of G such that no two 

edges in M share a vertex. The problem of computing a maximum cardinality matching in a 

graph has been well studied (see, for example, the survey by Gall [6]). In this paper, we examine 

the complexity of deciding whether a given matching is a maximum cardinality matching. Let 

NLOG denote the class of decision problems accepted by a nondeterministic Turing machine in 

space O(log n). We show that deciding the existence of an augmenting path with respect to a 

given matching in a graph is complete for NLOG under NCI  reduciblity (see section 2 below for a 

definition of NCI reducibility). This is then used to show that deciding whether a given matching is 

a maximum cardinality matching is complete for NLOG. These completeness results also hold when 

the graphs considered are bipartite. Let DLOG denote the class of decision problems accepted by 

a deterministic Turing machine in space O(log n). The results about complete problems for NLOG 

help to identify problems that are complete for DLOG. 

Natural complete problems for the class NLOG are interesting because it is unlikely that they are 

solvable in logarithmic depth by a uniform family of Boolean circuits or in deterministic logarithmic 

space. It is also not known whether they can be implemented in simultaneous polynomial time and 

polylog space[16]. The first complete problem for NLOG was discovered by Savitch [15]. This 

problem is to decide whether there exists a directed path between two specified vertices in a 

directed graph. Since then many other natural problems have been shown to be complete for this 

class (see, for instance, Jones et al. [9] and Cook [3]). The purpose of this paper is to show that 

certain problems related to matching in graphs are also complete for NLOG. One of the important 

open questions in parallel computation has been to find a deterministic NC algorithm to compute a 
maximum cardinality matching in a graph. It has been shown by Karp et al. [11] that this problem 

is in Random NC. It follows from the results here that this problem is at least hard for NLOG, and 
hence unlikely to be in NCI. The question of finding a deterministic NC algorithm for computing 

a maximum cardinality matching in a graph remains open. 

Section 2 contains some preliminary definitions and observations. The completeness results are 

presented in section 3. 

2 Preliminaries 

Augmenting Path: Let G = (V, E) be an undirected graph. Given a matching M in G, a path 
from a vertex s to a vertex t in G is said to be an augmenting path [13] if 
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1. s and t have no edges from M incident on them, and 

2. every alternate edge along the path belong to M. 

The following lemma, due to Berge [1] and Norman and Rabin [12], provides a characterization 

of a maximum cardinality matching in terms of augmenting paths. See the text by Papadimitriou 

and Steiglitz [13] for a proof. 

Lemma 1 A matching M in a graph G is a maximum matching if and only if there is no augmenting 

path with respect to M in G. ❑ 

NC I  Reduciblity: We will use alternating Turing machines [2] to define the notion of NC' 

reducibility. This is adapted from a definition by Cook [3]. 

Consider a function f : {0,1}* —• {0, 1}*. Let L1, the set associated with the function f be 

defined as: {< x,i > I the ith bit of f (x) is 11. The function f is said to be NCI computable if for 

all x E {0, 1}" of length n, I f (x)I = now , and the set Lf associated with f can be recognized 

by an alternating Turing machine using time O(log n). A language LI is said to be NCI. reducible 

to a language L2 if there exists an NC I  computable function f such that x E L I  if and only if 

f(x) E L2. 

Completeness: A language L is said to be complete for NLOG (DLOG) if (a) it is in NLOG (re-

spectively, DLOG), and (b) for all languages L' in NLOG (respectively, DLOG), L' is NCI reducible 

to L. 

3 The Completeness Results 

In this section, we show that deciding whether a given matching in a graph is a maximum one is 

complete for NLOG with respect to NC' reducibility. We begin by showing that a certain two 

color path problem for undirected graphs is complete for NLOG. Then we use this to show that 

the problem of finding an augmented path between two vertices in a graph given a matching in 

the graph is complete for NLOG. By reducing this problem to that of deciding whether a given 

matching in a graph is not a maximum matching, we show that the latter problem is complete for 

NLOG. Since NLOG is closed under complement[7], it follows that the problem of deciding whether 

a given matching in a graph is a maximum matching is also complete for NLOG. We also show 

some related problems complete for the class DLOG under NCI  reducibility. 

In section 3.1, we will consider several path problems that will be useful in establishing the 

results about matching. The matching results themselves are presented in section 3.2. 
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3.1 Path Problems 

TWO COLORED PATH: 

Input: An undirected graph G = (V, E) whose edges are colored black and red, and two vertices 

t E V. 

Property: There is a path in G between a and t that begins and ends with a black edge, and the 

edges along the path strictly alternate in color. 

We will refer to a path with the above property as a two colored path. 

Lemma 2 The TWO COLORED PATH problem is complete for NLOG under NCI reducibility. 

Proof Sketch: A nondeterministic Turing machine can decide this problem using O(log n) 

space by guessing a path between 8 and t one vertex at a time and verifying that it is indeed a two 

color path. 

To show that this problem is hard for NLOG, we reduce the directed graph reachability problem 

to this problem. The directed graph reachability problem is: given a directed graph and two vertices 

a and t in it, is there a directed path in the graph from 8 to t? It is well known that this problem is 

complete for NLOG[15]. The reduction from the directed graph reachability problem to the TWO 

COLORED PATH problem is an adaptation of the reduction of the directed Hamilonian circuit to 

the undirected Hamiltonian circuit problem (see, for instance, Karp[10]). 

Given a directed graph G = (V, E) and two vertices a, t E V, construct an edge colored undi-

rected graph G' = (V', E') as follows: 

For every vertex v E V, add to V' two vertices (v, 0) and (v,1), and add to E' a black edge 

between (v, 0) and (v, 1). For every directed edge u v in E, add to E' a red edge between (u, 0) 
and (V, 1). 

It is easy to show that there exists a directed path in G from s to t if and only if there exists a 

two colored path in G' from (8, 0) to (t, 1). 

Let the vertices of G be numbered from 0 to n — 1. Let x be the bit string consisting of A, the 
adjacency matrix of G, and the two vertices 8 and t of G. Let f (x) be the bit string consisting of 

B, the adjacency matrix of G' and the two vertices (s, 0) and (t, 1) of G'. Note that B will be a 
matrix with 2n rows and columns. It can be verified that an alternating Turing machine, on input 

x, can decide in time O(log n) whether the ith bit of f (x) is a one. ❑ 
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We now make several interesting observations about this reduction. First, note that the graph 

constructed in this reduction is a bipartite graph. This leads to the following corollary to lemma 2: 

Corollary 3 The TWO COLORED PATH problem for bipartite graphs is complete for NLOG 

under NCI reducibility. ❑ 

More interestingly, the graphs constructed have the property that every vertex has exactly one 

incident black edge. This makes it possible to identify a complete problem for NLOG that provides 

a link to problems concerning maximum matchings in graphs. 

Corollary 4 The TWO COLORED PATH problem for graphs (both general and bipartite) with 

at most one incident black edge per vertex is complete for NLOG under NC I  reduciblity. ❑ 

The reduction in lemma 2 above also suggests a problem that is complete for DLOG under 

NCI reducibility. Let a bipartite graph G = (V 1,V 2, E), in which every vertex in V2 has degree 

at most two, be referred to as a restricted bipartite graph. 

Let G = (111, V3, E) be a restricted bipartite graph whose edges are colored black and red such 

that every vertex in G has at most one black edge incident on it. Consider the TWO COLORED 

PATH problem when the input consists of the graph G and the vertices s E VI  and t E V2. 

Theorem 5 The TWO COLORED PATH problem for restricted bipartite graphs is complete for 

DLOG under NC' reduciblity. 

Proof Sketch: A deterministic machine D initializes a counter to the number of vertices in G. 

It then starts from the vertex a E VI  and traverses the unique black edge incident on it. This brings 

it to a vertex in V2 that has at most two incident edges. The machine D accepts if this vertex is t. 

If the vertex is not t and it has only one incident edge, then D rejects. If the vertex is not t and 
it has two incident edges, D decrements the counter and traverses the edge that is not used. This 

can go on until either D halts accepting its input, or it halts rejecting its input, or the count has 

become zero. In the last case, D rejects its input. It is clear that the machine uses logarithmic 

space. 

For showing that this problem is hard for DLOG, we use the graph reachability problem for 

directed graphs of outdegree one, a problem known to be complete for DLOG (see Jones [8] or 
Cook and McKenzie [4]). It is straightforward to check that the reduction in the proof of lemma 2 

produces a restricted bipartite graph if the input graph is a directed graph with outdegree one. ❑ 
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Before we conclude this section, it is interesting to note that the undirected graph reachability 

problem is NC 1  equivalent to the following version of the TWO COLOR PATH problem. 

SAME COLORED PATH: 

Input: An undirected graph G = (V, E) whose edges are colored black and red, a color c E 

{black,red}, and two vertices s,t E V. 

Property: There is a path in G between s and t in which all edges have color c. 

Theorem 6 The SAME COLORED PATH problem is NC 1  equivalent to the undirected graph 

reachability problem. 

Proof Sketch: In one direction, given an undirected graph G and two vertices s and t, one 

can color all edges of G black so that there is a path in this graph from s to t consisting of all black 

edges if and only if there is a path from s to t in the input graph G. 

In the other direction, given a graph G whose edges are colored red and black, two vertices s 

and t, and a color c E {black,red}, construct the following graph H. For each vertex v in G have 

two copies vb and v,.. For each edge (u, v) of G, if the edge is colored red (black) add an edge 

between u,. and vr  (respectively, ub and vb). It is easy to show that there is a path from s c  to t, in 

the graph H if and only if there is a path from s to t with all edges colored c. C1 

3.2 Matching Problems 

The TWO COLORED PATH problem for graphs with no more than one incident black edge 

per vertex suggests a close relationship with the problem of finding an augmenting path given a 

matching in a graph. We show below that this problem is also complete for NLOG. 

ST-AUGMENTING PATH: 

Input: An undirected graph G = (V, E), a matching M C E of G, and two vertices s, t E V. 

Property: There is an augmenting path with respect to M in G between s to t. 

Theorem 7 The ST-AUGMENTING PATH problem (for both general and bipartite graphs) is 

complete for NLOG under NCI reducibility. 
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Proof: A nondeterministic machine first checks that 8 and t have no incident matching edges, 

and then it guesses a path between a to t that strictly alternates between an unmatched edge and 

a matched edge. All these can be done in logarithmic space. 

To show NLOG-hardness, we reduce the TWO COLORED PATH problem for graphs with at 

most one incident black edge to this problem. The theorem will then follow by corollary 4. 

Given such a graph G = (V, E) and two vertices s and t, construct a graph G' = (V', E'), a 

matching M, and two vertices s' and t' as follows. The vertex set V' consists of all vertices in V 

and two additional vertices s' and t'. The edge set E' consists of all edges in E and two additional 

edges (s, s') and (t, t'). The matching M consists of all edges of E that are colored black. 

The reduction above can be slightly modified if the input graph is bipartite. Given the bipartite 

graph G = E), construct a bipartite graph G' = (1/1 1  ,V2' , E'), a matching M, and two 

vertices s' and t' as follows. Without loss of generality, we will assume that a E V1 and t E V2. 

The vertex set V1 ' (V2') consists of all vertices in V].  (respectively, V2), and an additional vertex t' 

(respectively, s'). The edge set E' consists of all edges in E and two additional edges (s, s') and 

(t, t'). The matching M consists of all edges of E that are colored black. 

We will outline an encoding of the input and the output of these reductions that shows that 

they are NCI reductions. Let the vertex set of G be {0,1, , n — 1}. Define the matrix A as 

follows: for 0 < i,j < n — 1, if there is no edge between vertex i and vertex j, A(i,j) = 00, if 
there is a black edge between vertex i and vertex j, A(i,j) = 01, and finally, if there is a red 

edge between vertex i and vertex j, A(i, j) = 10. Let the input x be the bit string consisting 

of the matrix A and the two vertices s and t. For representing the output, define the matrix B 

corresponding to the graph G' in a similar fashion. The matrix B will have n + 2 rows and columns. 

Let s' be the vertex n and t' be the vertex n + 1. Then, B(i,j) = A(i,j) for 0 < i,j < n — 1, and 

B(s, n) = B(n,$) = B(t, n + 1) = B(n + 1,t) = 10. Let f (x) be the bit string consisting of the 

matrix B and the two vertices a' and t'. It can be seen from this description that the function f is 

NC' computable. 

The correctness of the reductions follow from the claim below which is easily proved. 

Claim: There exists an augmenting path with respect to M in G' between s' to t' if and only 

if there is a two color path in G between s and t.0 
	 •I 

The next step in our reductions, namely the problem of deciding whether a given matching in 

a graph is not a maximum matching, is facilitated by lemma 1. We show that this problem is also 

complete for NLOG. 

NOT MAXIMUM MATCHING: 
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Input: An undirected graph G = (V, E), and a matching M C E of G. 

Property: M is not a maximum cardinality matching in G. 

Theorem 8 The NOT MAXIMUM MATCHING problem (for both general and bipartite graphs) 

is complete for NLOG under NCI reduciblity. 

Proof: By lemma 1, it suffices to decide whether there is an augmenting path with respect to 

the matching M in the graph. A nondeterministic machine guesses two vertices s and t with no 

incident matching edges, and guesses an augmenting path between s and t. 

The theorem now follows from theorem 7 and the following reduction from the ST-AUGMENTING 

PATH problem to the NOT MAXIMUM MATCHING problem. 

Given a graph G = (V, E), s, t E V, and a matching M, construct a graph C' = (V', E') and 
a matching M' as follows. The vertex set V' consists of all vertices V, the edge set e consists of 

all edges in E, and the matching M' consists of all edges in M. In addition, these three sets also 

contain the following new elements: for each vertex w E V such that w # s, and w t, if w has no 

edge from M incident on it, add a new vertex s,,, to r and a new edge (s,„, w) to E' and M'. 

If the input graph is a bipartite graph, then the following modification to the reduction above 

works. Given a bipartite graph G = V2, E), s E VI , t E V2, and a matching M, construct a 

bipartite graph G' = (VI', V2', E') and a matching M' as follows. The vertex set VI ' (V2 ') consists 
of all vertices in V1 (respectively, V2), the edge set E' consists of all edges in E, and the matching 

M' consists of all edges in M. In addition, these three sets also contain the following new elements: 

For each vertex w E V1  such that w s, if w has no edge from M incident on it, add a new vertex 

siu  to V21  and a new edge (s„„ w) to E' and M'. Similarly, for each vertex w E V2 such that w t, 

if w has no edge from M incident on it, add a new vertex si,, to V1' and a new edge (s,,„ w) to E' 

and M'. 

It can be verified that these reductions are NC' reductions. The correctness of these reductions 
follow from the two claims below. 

Claim 1: M' is a matching in G'. 

Claim 2: M' is not a maximum cardinality matching in G' if and only if there is an augmenting 

path with respect to M in G from s to t. 

Proof of Claim 1: Any edge in M' is either an edge in M or a new edge added in the 
construction of G'. Consider an edge e = (wl, w2) in M. 
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Case 1: e E M. Then no new edge added in the construction is incident on w1 or w2. Since no 

other edge from M shares a vertex with e, it follows that no other edge from M' shares a vertex 

with the edge e. 

Case 2: e E 	— E. Let w1  be the new vertex added in the construction. The other case is 

analogous. Then, the vertex w2 has no edges from M incident on it, and furthermore, from M' 

only the edge e is incident on w 2 . Since wl has only one incident edge, namely e E M', it follows 

that no other edge from M' shares a vertex with the edge e. 

Proof of Claim 2: By construction, every vertex in G', except possibly s and t, have an edge 

from M' incident on it. The two vertices s and t in V' will have no edge from M' incident on them 

if and only if hey have no edges from M incident on them in G. Therefore, any augmenting path 

with respect to M' in G', if it exists, must be between s and t. Claim 2 now follows from claim 3 

below as follows. Suppose there is an augmenting path with respect to M in G between s and t 

then, by claim 3, there will be an augmenting path with respect to M' in G' which, by lemma 1, 

implies that M' is not a maximum cardinality matching. In the other direction, if M' is not a 

maximum cardinality matching in G' then, by lemma 1, there is an augmenting path with respect 

to M' in G'. Since any augmenting path with respect to M' in G' is between s and t, it follows, 

from claim 3 below, that there is an augmenting path with respect to M in G between s and t. 

Claim 3: There exists an augmenting path with respect to M' in G' between s and t if and 

only if there is an augmenting path with respect to M in G between .9 and t. 

Proof of Claim 3: Suppose there is an augmenting path p with respect to M in G between s 

and t. Then s and t have no edges from M incident on them in G. Therefore, s and t will have no 

edges from M' incident on them in G'. Since all edges in M are also present in M', it follows that 

any matched edge with respect to M in G along the path p is also a matched edge with respect to 

M' in G'. For any edge e E E along p such that e is not a matched edge with respect to M in G, 

e is also not a matched edge with respect to M' in G' since M' consists of only edges from M and 

the new edges in E' added by the construction of G'. Finally, since every edge along p is also an 

edge in E', p is an augmenting path with respect to M' in GI  between s and t. 

Conversely, let p be an augmenting path with respect to M' in G' between s and t. Clearly, 

s, t E V. Since s and t have no edges from M' incident on them in G', it follows that s and t 

have no edges from M incident on them in G. Now, for any edge e E E' such that e ¢ M', it is 

true that e M and e E E. Therefore, if an edge e along the path p is an unmatched edge with 

respect to M' in GI , it is also an unmatched edge with respect to M in G. Consider a matched 

edge e = (wl, w2) E E' n M' along p. Each of w1 and w2, since they occur along the path p, have 
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at least two incident edges. Therefore, the edge e cannot be a new edge, because at least one vertex 

of a new edge has only one incident edge. That is, the edge e is also present in E, Since e E M', we 

conclude that it is in M. It follows that p is also an augmenting path with respect to M in G. ❑ 

We now consider the complement of this problem, namely that of deciding whether a given 

matching in a graph is a maximum cardinality matching. 

MAXIMUM MATCHING: 

Input: An undirected graph G = (V,E), and a matching M C E of G. 

Property: M is a maximum cardinality matching in G. 

The completeness of this result is a consequence of the following result of Immerman[7] that 

shows that the class NLOG is closed under complement. 

Lemma 9 ([7]) For any space constructible s(n) log n, the class NSPACE(s(n)) is closed under 

complement. ❑ 

Therefore, from theorem 8 and lemma 9, we obtain the following corollary: 

Corollary 10 The MAXIMUM MATCHING problem (for general and bipartite graphs) is com-

plete for NLOG under NC' reducibility. 0 

Finally, we want to note that for restricted bipartite graphs, the three problems considered in 

this section, namely the ST-AUGMENTING PATH problem, the NOT MAXIMUM MATCHING 

problem and the MAXIMUM MATCHING problem, are complete for DLOG. The reductions are 

the same as those in the corresponding problems for bipartite graphs. 

Let G = (Vi , V2 E) be a restricted bipartite graph, and M be a matching in G. Consider the 
ST-AUGMENTING PATH problem when the input consists of the graph G and the vertices s E V2 

and t E 

Theorem 11 The ST-AUGMENTING PATH problem, the NOT MAXIMUM MATCHING prob-

lem and the MAXIMUM MATCHING problem for restricted bipartite graphs are complete for 
DLOG under NCI  reducibility. 
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Proof Sketch: The proofs are analogous to those for bipartite graphs. The main difference is 

in showing that these problems are in DLOG. We will only show this for the ST-AUGMENTING 

PATH problem. The proof that the other two problems are in DLOG follow similar arguments. 

That the ST-AUGMENTING PATH problem is in DLOG can be shown using an argument very 

similar to the upper bound argument in theorem 5. A deterministic machine D begins by checking 

that the vertices a and t do not have any incident matched edges. It then initializes a counter 

to the number of vertices in G. Let s have two neighbors, say, u i  and v1  in V1. The machine D 

starts from a and traverses the edge that takes it to the vertex u1. It accepts if u 1  is t. Otherwise, 

the machine decrements its counter, and if ui has a matching edge incident on it, D traverses it 

and gets to a vertex in V2. If ui  has no matching edge incident on it, D rejects its input. If this 

vertex has only one incident edge, D rejects. If this vertex has two incident edges, D decrements 

the counter and traverses the edge that is not used to get to a vertex that is in V1. The machine 

D continues this unitl it either accepts, or rejects, or the counter has value zero In the last case, it 

rejects its input. This traversal takes only logarithmic space. ❑ 

4 Concluding Remarks 

We will conclude by identifying some related problems all of which can be shown to be hard for the 

class NLOG by the results in section 3. Consider the problem of computing the size of a maximum 

matching in a graph. Since testing whether a given matching M in a graph G is a maximum 

matching can be done by testing whether the cardinality of M is equal to the size of a maximum 

matching in G, it follows by corollary 10, that computing the size of a maximum matching is at 

least hard for NLOG. This is true even in the case of bipartite graphs. Any problem to which the 

problem of computing the size of a maximum matching can be reduced is also NLOG-hard. Such 

problems include testing whether a graph has a perfect matching, finding a maximum matching in 

a graph, and computing the rank of a certain matrix of indeterminates [6]. 
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Final Project Report 

I was funded by a two year NSF grant CC R-8711749 beginning in September 1987. A 

one year no-cost extension of this grant was given when I was on a leave of absence for a year 

during 1988-89 from the Georgia Institute of Technology. The research activities supported 

by this grant and the results obtained are listed below. The papers and technical reports that 

have resulted thus far from the research conducted under this award are listed separately, 

and are referred to in this page. 

1. A simple circuit based proof has been obtained for Toda's theorem which states that 

(BP is hard for the Polynomial Hierarchy under randomized reductions (paper 1). This 

approach starts with uniform circuit definitions of the Polynomial Hierarchy and EDP, 
and applies the Valiant-Vazirani lemma on these circuits. 

2. New circuit characterizations were obtained for well known complexity classes, in-

cluding a characterization of NP in terms of uniform semi-unbounded fan-in Boolean 

circuits. This work also showed that many standard complexity classes can be defined 

in terms of uniform semi-unbounded fan-in Boolean circuits. A new uniform mono-

tone arithmetic circuit characterization of the counting class OP was also obtained. The 

definitions of NP and OP were the first uniform circuit definitions of these classes. A 

paper containing these results was presented at the eighth annual conference on Foun-

dations of Software Technology and Theoretical Computer Science held at Pune, India 

in December 1988 (paper 2). This has also been submitted to the SIAM Journal of 

Computing. 

3. Some preliminary results were obtained for the computation versus verification problem 

for the maximum matching problem. It was shown that the problem of verifying 

whether a given matching in a graph is a maximum one is hard for the class NLOG, 

the class of problems solvable by nondeterministic Turing machines using logarithmic 

work space (paper 3). 

4. An extension of the one-person pebble game on Boolean circuits, in which the gate 

types are taken into account, was considered. The extended games were shown to 

1 



be more powerful than the original games for two natural circuits, corresponding to 

the Cocke-Kasami-Younger algorithm and the Warshall's algorithm (paper 4). Among 

other things, this showed that lower bounds based on the one-person game are for an 

oblivious evaluation of circuits, but there may exist other small space evaluations that 

are not oblivious. 

5. The dual two-person pebble game defined by Venkateswaran and Tompa (SIAM J. 

of Computing, Vol. 18, June 1989, pp.533-549) was extended to model, among other 

things, the polynomial-time hierarchy (paper 5). 

6. In addition to the theoretical aspects of parallel computation, I have also been pursuing 

some practical aspects such as the issues in implementing parallel algorithms designed 

for theoretical models on real parallel architectures. In this latter area, work is in 

progress in the following two directions: 

• Experimentation with parallel algorithms designed for models such as PRAMs on 

available parallel architectures such as Sequent and the Butterfly (paper 6). 

• Exploring new models and paradigms for message passing parallel architectures 

(paper 7). 
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1 Introduction 

In this paper we give a simple proof of Toda's result (Toda, 1989) which states that eP is hard 

for the Polynomial Hierarchy (PH ) under randomized reductions. The class GP is the class of all 

languages L such that L is accepted by a polynomial time nondeterministic Turing machine that 

accepts an input iff it has an odd number of accepting computations (Papadimitriou and Zachos, 

1983). The original proof of this theorem is by Toda (1989) who uses it to prove the result that 

PH C PPP . Our approach is circuit-based in the sense that we start with uniform circuit definitions 

of PH (Vinay, Venkateswaran and Veni Madhavan, 1990) and apply the Valiant-Vazirani (1986) 

lemma on these circuits. 

Our results demonstrate the usefulness of uniform circuit characterizations of standard com-

plexity classes such as NP . These circuit definitions served as a motivation to investigate the 

applicability of recent circuit complexity results to exponential size circuits. We claim that such 

characterizations have made it possible to isolate the combinatorial essence of Toda's proof more 

clearly. We also give new uniform circuit characterizations of the class eP and BP.eP . Here 

BP.eP is the class of all languages L for which there exists a language A E eP and a con-

stant 6 > 0 such that, for any randomly chosen polynomial length string y, the probability that 

[(x, y) E A iff x E L] is at least 1/2 + 6. These circuit characterizations provide a combinatorial 

and algebraic framework to study the properties of these classes. 

Allender (1989) motivated by Toda's proof technique, studied the simulation of constant depth 

polynomial size circuits by threshold circuits. Later, this result was extended in (Allender and 

Hertrampf, 1990) to uniform circuits. Our results, which were discovered independently, are proved 

for exponential size circuits. Considering exponential size circuits makes it possible to present 

Toda's proof in a circuit framework. The uniformity condition used here is also different and 

is based on recognition of the connection language of the circuits rather than generating circuit 

descriptions. The language recognition version of the uniformity condition is used since the circuits 

considered have exponential size. The focus of the results in (Allender and Hertrampf, 1990) is on 

depth reduction for unbounded fan-in circuits whereas our focus was on providing a simple proof 

of Toda's theorm using well known circuit techniques. Although it is not too difficult to derive 

our results and the simulation in (Allender and Hertrampf, 1990) of AC °  by a uniform family of 
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constant depth threshold circuits as corollaries of a general theorem, we believe that an explicit 

proof of Toda's theorem will be quite useful. Both our results use a lemma from Valiant and 

Vazirani (19S6) to achieve uniformity. 

2 Preliminaries 

The Boolean circuits that we consider are, in general, uniform unbounded or semi-unbounded fan-in 

circuits. It is assumed that the negations appear only at the inputs. By semi-unbounded fan-in 

circuits we mean circuits where there is an asymmetry in the fan-in of the gates depending on the 

gate type. The uniformity condition for the circuit families considered is based on the recognition 

of the direct connection language defined as follows (Ruzzo, 1981): The direct connection language 

LDC of a family {Gn } of Boolean circuits is the set of strings of the form (n,g, y) such that either 

(i) g and y are gate names and y is an input of the gate g, or (ii) g is a gate name and y is the 

type of the gate g. A family {Gn } of Boolean circuits of size C(n) is said to be uniform if its direct 

connection language can be recognized by a deterministic Turing machine in time O(logC(n)). 

We will say that a language is recognized by a uniform family of randomized circuits {G n } if, 

• the circuit GT, has exactly q(n) random (supplementary) inputs (q is a polynomial), in addition 

to the original n inputs. 

• for all inputs of length n in the language, GT, evaluates to 1 for more than two-thirds of the 

random inputs, and 

• for all inputs of length n not in the language, G n  evaluates to 1 for less than one-third of the 

random inputs. 

Our results use uniform circuit characterizations of NP, PH and eP . It is known (Venkateswaran, 

1988) that NP is the class of languages recognized by a uniform family of semi-unbounded fan-in 

circuits of exponential size and constant depth with the restriction that the OR gates can have 

exponential (2
nOW

) fan-in but AND gates can have only polynomial fan-in. The characterizations 

• of PH and eP given below can all be obtained in a straightforward manner from the results in 

(Venkateswaran, 1988; Vinay, Venkateswaran and Veni Madhavan, 1990). We sketch their proofs 
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for completeness. It should be noted here that this characterization of PH also follows from a 

parallel random access machine characterization of PH in (Immerman, 1989) and the well known 

correspondence between such machines and unbounded fan-in Boolean circuits (Stockmeyer and 

Vishkin, 1984). 

Lemma 1 PH is exactly the class of languages recognized by a uniform family of constant depth, 

exponential size 'unbounded fan-in circuits over {AND ,OR }. ( We call such circuits PH -circuits.) 

Proof. From the above definition of NP , it follows that Co - NP is the class of languages accepted 

by a uniform family of exponential size and constant depth semi-unbounded fan-in circuits with 

AND -gates with exponential fan-in and OR.-gates with polynomial fan-in. A simple induction on 

k can then be used to prove that El is characterized by a uniform family of exponential size and 

constant depth circuits with alternating layers of NP and Co-NP circuits, beginning with an NP 

-layer. 0 

Lemma 2 eP is exactly the class of languages recognized by a uniform family of constant depth, 

exponential size unbounded fan - in circuits over { XOR ,AND ,OR } with the restriction that the 

XOR gates can have exponential fan-in but the other gates have polynomial fan-in. ( We call such 

circuits eP -circuits.) 

Proof. One direction follows from the fact that PARITY—SAT(the set of all conjunctive normal 

form formulas with an odd number of satisfying assignments) is complete for eP . For the other 

direction, note that it is sufficient to consider a circuit with XOR and AND gates only. A simulation 

of such a circuit by a polynomial time nondeterministic Turing machine can be done as described in 

lemma 15 in (Venkateswaran, 1988). The machine maintains a stack to do the circuit evaluation. At 

an XOR gate, the machine existentially guesses and recursively simulates an immediate predecessor. 

At an AND gate, the machine guesses the input gate names of the gate in order and pushes them on 

the stack. (The uniformity machine can be easily modified to verify the order of the inputs of an 

AND gate.) The machine then recursively simulates the first input of the AND gate. At a circuit 

input, the machine rejects if the input has value zero. If the circuit input has value one the machine 

either accepts or pops the gate on the top of the stack and recursively simulates it depending on 
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whether the stack is empty or not. It is not difficult to see that the time taken by this machine is 

at.most the maximum AND fan-in raised to the depth and that the machine accepts if and only if 

the eP circuit evaluates to a one. ❑ 

Corollary 3 BP.eP is exactly the class of languages recognized by a uniform family of randomized 

eP -circuits.0 

3 The Result 

The lemmas in the previous section together with the following theorem prove Toda's theorem. 

Theorem 4 Let {Gr } be a family of uniform PH - circuits. Then, there is a uniform family of 

randomized (DP -circuits that recognize the same language as {Gr}. 

Proof. We assume that the fan-in of all the gates is exactly 2P. We will replace every unbounded 

fan-in gate, v, by a randomized ep -circuit Ft,. Consider an OR gate v in G,.. We use the following 

lemma by Valiant and Vazirani (1986). Note that the inner product used is over (XOR , AND ). 

Lemma 5 Let S be a nonempty subset of {0,1}P. Let w 1 , • • • , wp  be random p bit vectors, and let 

Si = E S,j • wi  j = 0} for each 1 < i < p. Then, the probability that 

Isil = 1 for some 1 < i < p is at least 114.0 

Our randomized circuit has a random d(r) x p matrix W as supplementary input (d(r) to be 

determined later). For 1 < i < d(r), row i of this matrix consists of p entries wo, • • • each 

of which is a p -bit vector. All Fv  receive the same set of random bits as supplementary 

input. 

Replace v by an OR gate v' with d(r) input gates. Let these input gates be denoted as 

al , • • • Ud(r)• Each of the gates ui of v' is an OR gate. For 1 < i < d(r), the gate ui has as 

inputs p XOR gates aik, 1 < k < p. Each of these XOR gates ail, have as inputs 2P AND gates uiki 

for 0 < j < 2P — 1. An AND gate /La has two inputs: (a) the gate that is the j-th input of v, and 
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(b) a subcircuit that verifies that, for all 1 < h < k, the inner product of the p-bit binary vector 

representing j with the p-bit vector wik is zero. 

If the chosen gate v were an AND gate in G,-, the above construction is used after transforming 

v into an OR gate using DeMorgan's law and NOR gates. It is easy to check that the final circuit 

so obtained is a P -circuit if d(r) is chosen to be a polynomial. 

Let 7-1, denote the constructed circuit. We first show that the circuit family {7-1,1r > 1} is 

uniform by giving a scheme to label the gates of H r . The labeling is illustrated for the circuit 

replacing the gate v. 

Let v be labeled as L(v) in Gr . The output gate v' is labeled L(v) also. For 1 < i < d(r), 

let ui be labeled as [L(v), i]. For 1 < i < d(r), 1 < k < p, let uik be labeled as [L(v), For 

1 < i < d(r), 1 < k < p, 0 < j < 2' — 1, let uik, be labeled as [L(v),i,k,j]. 

To complete the proof, we have to show that the error committed by the resulting circuit is 

quite small. Let C be the size of the circuit 7-G. and let depth(u) denote the depth of the gate u in 

this circuit. By choosing the set S in lemma 5 to be {j jth input of v in Gr  evaluates to 1}, it can 

be verified that the error committed at any gate u in N r  is at most CdePth(u)*(4)d(f). So choosing 

d(r) to be a suitably large polynomial we can make this error as small as possible. It should be 

noted that the number of random bits used is p2  x d(r) which is a polynomial since d(r) is. ❑ 

The corollary below shows that unboundedness does not help over semi-unboundedness for 

certain uniform families of circuits. The proof follows from the characterization of BP.63113  in 

corollary 3 and the proof of theorem 4, which shows how to replace unbounded fan-in OR and 

AND gates by randomized eP -circuits. 

Corollary 6 BP.eP is exactly the class of languages recognized by a uniform family of constant 

depth, exponential size unbounded fan-in randomized circuits over the basis {XOR , OR , AND }. ❑ 

Acknowledgements: The first and the third author thank the Forschungsinstitut fiir Discrete 

Mathematik and Institut fiir Operations Research of the University of Bonn. The second author 

is thankful to Gil Neiger, Gary Peterson, Larry Ruzzo and Martin Tompa for some very useful 
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We consider restrictions on Boolean circuits and use them to obtain new uniform circuit char-
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1 Introduction 

Uniform Boolean circuits have provided a very useful framework to study some of the important 

issues that arise in Turing machine based complexity theory. Close connections have been estab-

lished between complexity classes based on uniform circuits with those based on the machine model 

[2, 6, 11, 12, 14]. In one direction, complexity classes defined using the circuit model have been 

characterized using the machine model. NC is a well known example of such a complexity class 

defined using the uniform Boolean circuit model [11] that has been characterized using the alter-

nating Turing machine model by Ruzzo [14]. In the other direction, traditional complexity classes 

based on the machine model have been characterized in the circuit model. The definition of the 

class P using Boolean circuits [8, 12] is probably the first such result. Other results of this nature 

are the characterizations in the circuit model of the classes AC' [16] and LOGCFL [18]. The results 

by Ruzzo [14] also make it possible to obtain circuit characterizations of complexity classes defined 

using alternating Turing machines. The work reported here extends these results to characterize 

classes defined using nondeterministic Turing machines. 

In the first part of this paper, we consider restrictions of Boolean circuits and use them to 

characterize nondeterministic space and time classes. This includes a characterization of nondeter-

ministic time classes on the semi-unbounded fan-in circuit model. Semi-unbounded fan-in circuits, 

which are Boolean circuits in which the OR gates are allowed arbitrary fan-in and the AND gates 

have bounded fan-in, have been previously used to define the class LOGCFL [18]. We define skew 

circuits as Boolean circuits in which all but one input of every AND gate are circuit inputs and use 

them to characterize nondeterministic space and time classes. Nondeterministic space is defined in 

terms of the size of such circuits and nondeterministic time is shown to correspond to the depth 

of these circuits. This should be contrasted with the well known correspondences between deter-

ministic time and Boolean circuit size [12] and between nondeterministic space and Boolean circuit 

depth [2]. 

In the second part of the paper. we use the monotone arithmetic circuit model to characterize 

counting classes based on nondeterministic time bounded computations. Monotone arithmetic 

circuits are arithmetic circuits over the domain of non-negative integers and which use only the 

addition and multiplication operations. An interesting consequence of this characterization is the 

definition of the well known counting class as the set of functions computed by uniform families 

of monotone aril hmetic circuits that have polynomial depth and polynomial degree. The degree 

m e;H ilr e hop ,  r eh , F .; 1 (1  Ph,' algebraic di , gr e o III the pol y wnitial associ a ted whi, the circuit. 

It would he ;ujlpropri;ut ti, moillion seine Interesting consequences of Inc characterization results 



presented here. 

• The circuit characterizations of NP presented here are, to our knowledge, the first uniform 

circuit characterizations of this important complexity class. Of particular interest is the 

definition of NP as the class of languages accepted by uniform families of semi-unbounded 

fan-in circuits of exponential size and log depth. This provides a framework to study some 

interesting questions about the class NP. Recently, Borodin et al. [3] proved that if a language 

is accepted by a family of semi-unbounded fan-in circuits of size Z(n) and depth D(n), then 

its complement is accepted by a family of semi-unbounded fan-in circuits of size polynomial 

in Z(n) and depth O(D(n) -F log Z(n)). Their result does not apply directly to NP, since 

it only shows that CO-NP is accepted by semi-unbounded fan-in circuits of exponential size 

and polynomial depth. The relevant question here is whether the classes accepted by size 

Z(n) and depth o(log Z(n)) semi-unbounded fan-in circuits are closed under complement. It 

is known that the classes accepted by polynomial size and o(log n) depth semi - unbounded 

fan-in circuits are not closed under complement [18]. Another complexity question pertaining 

to NP that can be phrased in this model is its relationship with the other classes definable 

using semi-unbounded fan-in circuits. A candidate class for comparison would be the class 

LOGCFL. It is known that LOGCFL can be characterized as the class of languages accepted 

by uniform families of polynomial size and log depth semi-unbounded fan-in circuits [18]. 

Therefore, the separation between NP and LOGCFL now becomes a question of the relative 

power of exponential size and polynomial size semi-unbounded fan-in circuits of logarithmic 

depth. 

• The skew Boolean circuits provide a model to rephrase many of the famous separation ques-

tions among complexity classes. Thus the relationship between P and NLOG translates into 

the question of the relative power of polynomial size Boolean circuits and polynomial size 

skew Boolean circuits. The P versus PSP.%CE question becomes one of comparing the rela-

tive power of polynomial size Boolean circuits and exponential size skew Boolean circuits. As 

another interesting example. the NP versus PSPACE question can be phrased as the ques-

tion about polynomial depth for skew Boolean circuits versus polynomial depth for general 

Boolean circuits. 

• The aril hmetic characterization of 	presented here is the first alternative characterization of 

	

his class. It enables us to rephrase 	 question about the relationship between 

P 	in terms of the relati ve 	 arithmetic and Boolean circuits. It, also touches 

u the lover of arithmetic circuits over monotone a ri t II met ic circuits. 



• These characterizations also make it possible to identify appropriate circuit value problems 

that are complete for each of these complexity classes. 

• The semi-unbounded fan-in circuit model seems useful to capture the definitions of many 

nondeterministic complexity classes (see table 1). 

This paper is organized as follows. Section 1.1 contains some preliminary definitions. Boolean 

circuit characterizations of nondeterministic space and time classes are in section 2. Some char-

acterizations of nondeterministic time that follow as simple consequences of known results are 

presented in section 3. A monotone arithmetic circuit characterization of counting classes based on 

nondeterministic time is presented in section 4. 

1.1 Preliminaries 

Boolean Circuits: A Boolean circuit G, with n inputs is a finite acyclic directed graph with 

vertices having indegree zero or at least two and labelled as follows. Vertices of indegree zero are 

labelled from the set {0,1, xi, x2, ,xn,71,72, •• • ,7772}. All other vertices (also called gates) are 

labelled either AND or OR. It should be noted that not including negation gates in the definition of 

Boolean circuit is done with no loss of generality. Vertices with outdegree zero are called outputs. 

The evaluation of Gn  on inputs of length n is defined in the standard way. Typically, only circuits 

with one output vertex will be considered. This makes it convenient to consider circuits as language 

acceptors. 

The size C(G„) of a circuit G„ is the number of edges in G. The depth of a vertex v in a 

circuit is the length of a longest path from any input to v. The depth of a circuit is the depth of 

its output vertex. 

The language L„ accepted by a Boolean circuit G„ is the set of all length 71 strings on which 

C n  evaluates to one A family of circuits is a sequence {(7n  I  n = 0,1.2....1„ where the n-th circuit 

C a  has n inputs. The language L accepted by a family {G,} of circuits is defined as follows: 

L = U n >oLn . where L, is the language accepted by the n-th member G„ of the family. 

Skew Boolean Circuits: Lot C lie a 'Boolean circuit. An AND gate r in G is said to be a. 

slaw yule if it has at most one input that is not an input of G. Without loss of generality, we will 

assume that all but one of its inputs are inputs to the circuit G. We will refer to the input of v 

that is nit an input to C as a non-skt tr input of r. The circuit said to he a .skew circuit if 

ll :1:\ I) gates in it are skew gates. A family {l;„; of Boolean circuits is said to be a ski.w• circuit 

family if all its members are skew circuits. 
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Note: One can define skewness with respect to OR gates also, but we will not pursue that in 

this paper. 

Semi-Unbounded Fan-in Boolean Circuits: A family of Boolean circuits is said to have 

semi-unbounded fan-in if there exists a constant c > 0 such that for any circuit in the family, the 

OR gates in the circuit can have unbounded fan-in and all the AND gates have fan-in at most c. 

Semi-Unbounded Alternating Turing Machines: An alternating Turing machine is semi-

unbounded if there are no two consecutive universal configurations along any path in the computa-

tion tree of the machine. Without loss of generality, we will assume that every universal configu-

ration of a semi-unbounded alternating Turing machine has exactly two existential configurations 

as immediate successors. 

Uniformity: We will use the following notion of uniformity, called Up-uniformity, defined by 

Ruzzo [14]. Define the direct connection language Lipc, of a family of Boolean circuits to be the 

set of strings of the form < n., g, y > such that either (i) g and y are gate names and y is an input 

of the gate g, or (ii) g is a gate name and y is the type of the gate g, that is, y is one of AND or 

OR or an input to G, or its negation. A family {GO of Boolean circuits of size C(n) is said to 

be uniform if the corresponding direct connection language can be recognized by a deterministic 

Turing machine in time 0(logC(n)). 

For the space characterization results in section 2, it would have been sufficient to consider log-

space uniformity defined by Borodin and Cook [4]. But a stronger uniformity condition is needed 

for the time characterization results to avoid the possibility of having a uniformity machine that is 

more powerful than the class being characterized. Such will be the case, for instance, in theorem 7 

if we had used log-space uniformity since NTIME(T(n)) C DSPACE(r (1) (n)). 

Accepting Subtrees [19]: The notion of an accepting subtree of a Boolean circuit given an 

input on which it evaluates to one is analogous to the notion of accepting subtrees of machines. 

Let 13 be a I3oolean circuit, and let T( B) be its tree equivalent. (The tree-equivalent of a graph 

is obtained by replicating vertices whose outdegree is greater than one until the resulting graph is 

a tree). Let z be an input on which B evaluates to one. An accepting subtrec II of the circuit B 

on input is a subtree of T(I3) defined as follows: 

• -II includes the output gate. 

• for any AN)  gate c included it: //. all the immediate predecessors of r in 1 - ( 13) are included 

as it.,  immediate predecessor, in II. 



• for any OR gate v included in II, exactly one immediate predecessor of v in T(B) is included 

as its only immediate predecessor in II, and 

• any input vertex of T(B) included in H has value one as determined by the input x. 

It is easy to verify the fact that the circuit B evaluates to one given the input x if and only if 

there is an accepting subtree of T(B) on input x. 

Tree - Size [19]: The tree-size measure for Boolean circuits can now be defined analogous to 

the tree-size measure for alternating Turing machines [14]. 

The circuit B, is said to have tree-size Z(n) if, for every input x accepted by B,, there exists 

an accepting subtree with at most Z(n) vertices. 

Degree: We define the degree of a circuit to be the algebraic degree of the polynomial computed 

by the circuit. Thus, the constants have degree zero, the circuit inputs have degree one, the degree 

of an OR vertex is the maximum of the degrees of its inputs, and the degree of an AND vertex is 

the sum of the degrees of its inputs. 

The following lemma [18] establishes a relationship between the degree and tree-size measures 

for Boolean circuits. 

Lemma 1 Let D(n), Z(n), and d(n) be the degree, tree-size, and depth respectively of a Boolean 

circuit B. Then. 

Z(n) < D(n) d(n) + 1. 

Proof: The result to be proved also holds when the Boolean circuits considered have unbounded 

fan-in. Let the OR gates have fan-in at least k and the AND gates have fan-in at least 1. 

Let x be an input accepted by the circuit B. By hypothesis, there is an accepting subtree I/ of 

11„ of size at most Z(n). Let v be any vertex in II. Then the lemma follows from the claim below. 

Claim: Let Z(v) be the number of vertices in the subtree of H rooted at v, D(v) be the degree 

of r, and d(v) be the depth of v. Then. 

Z( 	) (1( ) + 1. 

Proof of the Claim: The proof of this cla1m is by induction on Ilw depth of r. 

The claim is clearly true when the depth oh a vertex is zero. Assume that. the claim holds for 

all vertices with depth less than (4 r). For the induction step. there are Iwo cases: 



Case 1: Let v be an OR gate with inputs v1,...,vk with at least one non-constant input. Then, 

Z(v) < max-{Z(v1),Z(v2)•• • • , Z(vk)} + 

• max{D(v i )d(v i ),D( v2)d(v2), • • • , Myk)d(vk)} + 2 

• max{(D(v i ), D(v2 ), 	, D(vk)} (d(v) — 1) -I- 2 

• D(v) d(v) — D(v) + 2 

The claim follows from this since D(v) > 1. 

Case 2: Let v be an AND gate with inputs v 1 , ...,v/  with at least one non-constant input. Then, 

Z(v) = Z(v i ) + Z (v2) + 	+ Z(vi) + 1 

< D(v i )d(v i ) + D(v2)d(v2) + ... + D(vi)d(vi) + 1 + 1 

• (D(v i ) + D(v2 ) + 	+ D(vj))  (d(v) — 1) + 1 + 1 

< D(v) d(v) — D(v) + 1 + 1 

The claim follows from this since D(v) > 1. ❑ 

2 Characterizations of Space and Time Classes 

This section contains the characterizations of nandeterministic space and time classes in terms of 

skew circuits and semi-unbounded fan-in circuits. Theorem 6 relates simultaneous space and time 

bounded nondeterministic classes to simultaneous size and depth bounded skew circuits. In this 

respect, it is similar to the result of Ruzzo [1-t; relating simultaneous space and time bounded 

alternating classes to simultaneous size and depth hounded circuits. llowever, the correspondence 

between the tiine and depth bounds in theorem 6 is only within a polynomial as opposed to the 

correspondence within a constant factor between circuit depth and alternating time shown by 

Ruzzo [LI]. 

In the proof of lemma 3 below, we choose to use the alternating Turing machine model instead 

of directly constructing a semi-unbounded fan-in circuit corresponding to a skew circuit. This is 

done to simplify the proof since we can use known simulation techr iques. ft. also provides a new 

characteritat ion of nondeterministic lime on the alternating Turing machine model (see theorem 9). 

1 Ike correspondence between t he machine and circuit models will In' established through a sequence 



Lemma 2 For S(n) = ft(log n), T(n) = ft(n), and 5(n) <T(n), 

NSPACE,TIME(S(n),T(n)) C Uniform Skew Circuit SIZE,DEPTII(2 °(S H ) ,T(n)). 

Proof: Let L be accepted by a nondeterministic Turing machine M in S(n) space and T(n) 

time. The construction of a circuit family {G,} that accepts the same language as M can be 

done using standard techniques [14, 18]. For the sake of completeness, we will outline below the 

construction of Gn , the n-th member of this family. 

The configurations of M can be classified into two types: existential and read. We will assume 

that ill is deterministic while reading inputs. 

For 0 < t < T(n), and a configuration c of Al using space S(n), there is a gate in the circuit in 

one of the following forms: [t, c], or [t, c, i], or [t,,c,i,b], where 0 < i < n is an integer and b is either 

zero or one. The first component t in a gate name is used to avoid cycles in the circuit. The type 

of a gate of the form [t,c] ) is OR (OR, AND respectively). 

Let ci be the initial configuration of M. The output gate is [0,c/]. 

The inputs of a gate are constructed as follows. Consider a gate [t, c] corresponding to a non-

read configuration c of the machine. If t + 1 > T(n), it has only one input, namely the constant 

zero. Otherwise, its inputs are constructed from the set D of all configurations reachable by M in 

one move from c. There will be one input corresponding to each d E D. For any d E D, if d uses 

space > S(n), then the corresponding input is the constant zero. For all other d E D, there are 

two cases. If d is an existential configuration the corresponding input is the gate [t + 1,4 and its 

inputs are constructed recursively. If d is a read configuration in which M reads the i-th symbol, 

the corresponding input is an OR gate [t 1, d, i] with two inputs: [t 0] and [t 1, d. i, 1]. 

The gate [t +1,d, i. 0] is an AND gate with two inputs: NOT xi, where .r is the i-th input, and the 

gate [t + 2, c]. where c is the configuration to which Al moves from the read configuration d, if the 

i-th input read has value zero. The inputs of the gate [t + 2,c] are constructed recursively. The 

gate [1 + 1, 4, i, 1] is constructed in an analogous fashion. 

It is clear from the construction of G„ above that it is a skew circuit. The only AND gates 

con structed correspond to the read configurations of M . It. is easy to show that {C„} accepts the 

same language as M. The size of the resulting circuit is 2 0(s" ) . its depth is T(n). 

It can he verified that the direct connection language of {l „ can he recognized by a determin-

i,(ic Turing machine using 0(.5. (0) time. thus showing that the circuit family (G„) is uniform.: 



Lemma 3 For S(n) = Si(log n), T(n) = f/(n), and S(n) < T(n), 

Uniform Skew Circuit SIZE,DEPT11(2 °(S(n)) , T(n)) C 

Uniform Semi-Unbounded Fan-in Circuit SIZE,DEPTII(2 °(S(n)) , log T(n)). 

Proof: Let {G,,} be a uniform family of skew circuits with the given size and depth bounds. 

Then {G„} has tree-size that is polynomial in T(n). An alternating Turing machine Al that simu-

lates C n  011 an input x of length 71 can be constructed as in the simulation by Ruzzo [13] of a space 

and tree-size bounded alternating Turing machine by a space and time bounded alternating Turing 

machine. The machine M is semi-unbounded and uses space O(S(n)), alternations 0(log T(n)), and 

time T°( 1 )(n). Let the time used by M be T 1  (n) = Ta(n) for some constant a > 1. Furthermore, 

M is in a normal form such that only one input symbol is read along any path of the machine's 

computation tree. A uniform family {H,2 } of semi-unbounded fan-in circuits, with size 2c(s(n)) and 

depth 0(log T(n)), that accepts the same language as Al can be constructed by adapting known 

techniques [18]. The basic idea of the construction is to make as inputs to an OR (AND) gate all 

non-existential (non-universal) configurations of M reachable through only existential (universal) 

configurations. 

We will outline the construction of the n-th member lin  of this family. The configurations of 

M are assumed to be one of the following three types: existential, universal, and read. 

Let D(n) 	[log2 7'001. 

Gates in the circuit H„ are all of the form [Cl.  or [d i], or [c, d]. or [s. c. d]. or [s, c, d. e], where 

0 < s < D(n), and c.d and ( are all configurations of M. The output gate of H„ is [r0], where r0 

 is the initial configuration of M. In general, the type of a gate of the form [c] is OR (AND) if the 

type of the configuration c is existential (respectively, universal). Given a gate [c]. its inputs are 

defined as follows. 

Case 1: [c] is an OR gate. Its inputs are gates [c,(1] for all configurations d that are not 

existential. Each of the gates [c,d] is an AND gate and it has two inputs [0. c, di and [d'] defined as 

follows. 

• The gate [0,c,d] is the output of an D(n) depth semi-unbounded fan-in circuit that checks 

that in .11 the configuration (1 is reachable from the configuration c using only existential 

configurations of .1/. The following is a description of such a reachability circuit [18]. 

Given a gate [:. r. d] with 0 < 	< 1)(7?), the goal is to describe a subcircuii of which this gate 

the output, such that the sukcircuit checks that c is reachable front d in (7,, using a path 

of at most 9/ ' ( '' )- ' 01; gates (see also the construction by lh 	[21). 



If d is an immediate predecessor of c in G„, then [s, c, d] is the constant one. Otherwise, if 

s + 1 > D(n), then [s, c, d] is the constant zero. Otherwise, the gate [s, c, d] is an OR gate. 

Its inpUts are gates [s 1, c, d, e] for all OR gates e in G n . Each of the gates [s 1, c, d. e] is 

an AND gate. and it has the two inputs [s +1, c. e] and [s + 1, e, d]. These two subcircuits are 

constructed recursively. 

• The gate [d 1 is an OR gate with a single input [d] defined as follows. Suppose d is a read 

configuration with a,i on its index tape. Then [d] is the i-th input to H„, if a = 1, and [d] 

is the complement of the i-th input to H, if a = 0. If d is not a read configuration, then [d] 

is an AND gate. Its inputs are constructed recursively. 

Case 2: [c] is an AND gate. Let d 1 , d2  be the existential configurations of M that immediately 

succeeds the configuration c. The inputs to [c] are the OR gates [d1 ] and [d2]. The inputs to these 

two OR gates are constructed recursively. 

The circuit 11„ has size 2° (s (n)) and depth 0(log T(n)). Note that the OR gates in H, may 

have exponential fan-in whereas the fan-in of the AND gates is bounded by a constant. It is easy 

to show that G„ and H, accept the same language. It is also straightforward to check that the 

direct connection language for the circuit family {H,} can be recognized by a deterministic Turing 

machine in time 0 (5' (n)) .0 

Lemma 4 For S(n) = 1-2(log n), T(n) = St(n), and 8(n) < T(n), 

Uniform Semi-Unbounded Fan-in Circuit SIZE,DEPTH(2 °(S", log T( n)) C 

NSPACE.TIME(S(n) log T(n).T ° ( 1 ) (n)). 

Proof: This follows from the simulation of semi-unbounded fan-in circuits by nondeterministic 

auxiliary pushdown automata by Venkateswaran [18]. In this case, we are interested in the space 

and time used in the simulation. 

Let 1, be accepted by {G„}, a uniform family of semi-unbounded fan-in circuits with size 2 ()(s t" )) 

 and depth 0(logT(0). Given x of length it. a nondeterministic machine At checks whether the 

circuit evaluates to one on .r by doing a depth-first evaluation. The machine M maintains a stack 

to do the circuit evaluation. 

.If 	tho simulation with t he output gate r 0 . Given a gate r and its type. A/ checks that 

et-,t111:11e to nut` nil ,r as 1(11hkvs. Let C(r) denote t he configuration of .1/ as it begins checking 

I l u "4;0e r. 
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Case 1: v is an OR gate. M existentially guesses one of its true inputs v and its type and 

verifies with the uniformity machine that the guesses are correct. It then recursively checks that 

the gate u evaluates to one. 

Case 2: 	is an AND gate. Then it has a constant number, say k, inputs. M existentially 

guesses these inputs, say, v 1 , • • • ,v., and their types and verifies with the uniformity machine that 

the guesses are correct. M then pushes the gates v 2 , • • • , v k  onto the stack. Along with a gate its 

type is also pushed onto the stack. M then recursively checks that v 1  evaluates to one. 

Case 3: c is an input to the circuit. If its value is zero, M rejects. Suppose v has value one. 

M makes its final pop move and accepts if the stack is empty. Otherwise, M pops a gate n and its 

type from the stack and recursively checks that u evaluates to one. 

For correctness, it can be shown, by induction, that the output r 0  of the circuit G„ evaluates 

to one on input x if and only if M accepts starting from C(r0) and an empty stack [18]. 

Consider the space used by M on input x E L of length n. In checking a gate v, M must 

remember the gate v and its type. If v is an OR gate, M needs space to record information 

pertaining to a true input of v. This uses space 0(5(n)). The space used for the gate v can be 

reused at the next level of recursion. If v is an AND gate, the information pertaining to all but 

one of its inputs is stored in the stack. This uses space 0(5(n)). But, since the depth of the 

circuit is bounded by 0(log T(n)), the stack may have 0(logT(n)) such pieces of information using 

altogether 0(5(n) log T(n)) space. The uniformity machine uses 0(S(n)) space. Therefore, the 

total space used in the simulation by M is 0(5(n) log T(n)). 

For the time bound of M, we first note that any accepting subtree of the circuit will have size 
TOW (  The machine M, in verifying whether G, accepts its input, traverses such an accepting 

tree in a depth-first fashion visiting every vertex at most twice. For each node visited. ,1/ uses time 

O(S( it)) lo guess the information pertaining to the node and time 0(S(n)) to invoke the uniformity 

machine to verily its guesses. Recall that the uniformity machine is a determinsitic machine using 

time 0( S(D)). Since .9(n) < T(n), the total time used by M is T ° ( 1) (n). 

In the proof of lemma 4 above, the space used for the stack can be completely avoided if the 

circuits being simulated are skew circuits. This observation leads immediately to the following 

lemma: 

Lemma 5 For S( ) = S2( log n). 1 . (11) = c2(o), and S(n) < 7'(1). 

l'Hiforill Skew circuit SIZI.:.1)1.:1)111(2 (".( 'W 1' O(1) ( 1r)) C NSPACE,TIN11.:( S( 	). TQ(1) ( 01.0 
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Lemmas 2 and 5 yield the following theorem: 

Theorem 6 For S(n) = St(log n), T(n) = S2(n), and S(n) < T(n), 

NSPACE,TIME(S(m),T°(1) (n)) = Uniform Skew Circuit SIZE,DEPTII(2 °(S(a)) .T0(1 )(n)).0 

The following characterizations of nondeterministic time using skew circuits and semi-unbounded 

fan-in circuits are now immediate from lemmas 2, 3, and 4. 

Theorem 7 For T(n) = f2(n), the following complexity classes are equal: 

1. NTIME( TO(1)( n )) 

2. Uniform Skew Circuit DEPTH(TO ( 1 )(n)) 

3. Uniform Semi-Unbounded Fan-in Circuit SIZE,DEPTH(2 °(T(n)) ,Iog T(n)) ❑ 

As interesting consequences of theorems 6 and 7, we obtain the following Boolean circuit char-

acterizations of the classes NLOG, PSPACE, and NP. 

Corollary 8 	1. NLOG = Uniform Skew Circuit SIZE(n °(1) ). 

2. PSPACE = Uniform Skew Circuit SIZE(2 na' 1) ). 

3. NP = Uniform Skew Circuit DEPTH(n 0(1) ). 

NP = Uniform Semi-Unbounded Fan-in Circuit SIZE,DEPTH(2 n 	 0 

3 Other Characterizations of Nondeterministic Time 

This section contains some characterizations of nondeterministic time that follow as simple conse-

quences of known results. We will only consider bounded fan-in Boolean circuits in this section. 

Perhaps the most interesting of the characterizations here is the one using the depth and degree 

measures for Boolean circuits. This suggests the characterization results in section 4 of counting 

classes based On nondeterministic time bounded computations. 

[ 1 : 1 showed hat nondeterministic time 	is the class of languages accepied by alter- 

nating Turing machines simultaneously using space O(C(n)) and I ree-size O(T(n)). This combined 



with the simulation by Ruzzo [13] of space and tree-size bounded alternating Turing machines by 

space and time-bounded alternating Turing machines (used in the proof of lemma 3) provides a 

new characterization of nondeterministic time bounded classes on the alternating Turing machine 

model. The close relationship between Boolean circuits and alternating Turing machines [14] also 

leads to another Boolean circuit characterization of nondeterminstic time in terms of size and tree-

size. Finally, the correspondence between degree and tree-size for Boolean circuits (see lemma 1) 

yields yet another Boolean circuit characterization of these classes in terms of degree and depth 

resources. 

We will summarize these three characterizations in theorem 9 below. The proof of this theorem 

can be reconstructed from the results mentioned. 

Theorem 9 For T(n) = S2(n), the following complexity classes are equal: 

1. NTIME(T°(1) (0) 

2. Semi-Unbounded ATIME.ALTERNATIONS(T°( 1 )(n), log T.(n)) 

3. Uniform Circuit SIZE,TREESIZE(2T°(1) (n), V (1 )(n)) 

4. Uniform Circuit DEPTH,DEGREE(r( 1 )(n),V( 1 )(n)).E1 

Thus, for instance. NP has the following characterization in terms of degree and depth of 

Boolean circuits: 

Corollary 10 NP = Uniform Circuit DEPTH.DEGREE( n o(1) , noo.)) .0  

The Boolean circuit characterization of NP in Corollary 10 should be contrasted with the 

following bounded fan-in Boolean circuit characterization of PSPACE [2. 1:1]: 

PSPACE = Uniform Circuit DEPTII(n °(1) ) = Uniform Circuit DEPTH,DEGREE( 0(1).9nc")). 

Constant Depth Circuits: Before concluding this section, we mention another definition of 

NI) using constant depth unbounded fan-in circuits. We will show this by exhibiting a uniform 

fancily of constant depth Boolean circuits for the conjunctive normal form satisfiability problem. 

Let SAT denote the language consisting of all strings that are (reasonable) encodings of satisfi-

;,1,10 conjunct ive normal form formulas. Let all length r strings in SAT encode satisfiable formulas 

111;11 have H variables and a, clauses. The •-th member Cr of a uniform circuit family {(;',..} that 

accepts SAT is described below. See figure 1. 



• The output of Cr is an OR gate labelled [0, n, m]. This gate evaluates to one on input x if 

and only if the formula encoded by x is satisfiable. 

• The OR gate [0,n, m] has as inputs AND gates labelled [1,n, m, j] for 0 < j < 2' — 1. An AND 

gate [1, n , m, evaluates to one if and only if the input formula evaluates to one when the 

variables in the formula are assigned bit values from the integer j. 

• Each AND gate labelled [1, n, m, j] has as inputs OR gates labelled [2, n, m, j, k] for 1 < k < m. 

An OR gate [2,n, m, j, k] evaluates to one if and only if the k-th clause in the input formula 

evaluates to one when the variables in the formula are assigned bit values from the integer j. 

• The inputs of an OR gate labelled [2, n,m,j,k] are OR gates labelled [3, n, m, j.k,p] for 1 < 

p < 77. An OR gate [3, n,m,j,k,p] is the output of a subcircuit that evaluates to one if and 

only if the p-th variable occurs in the k-th clause as a positive (negative) literal and the p-th 

bit of j is one (respectively, zero). If the p-th variable does not occur in clause k then a gate 

of the form [3, n,m,j,k,p] evaluates to zero. 

The family of Boolean circuits have size 0(m2n) and constant depth. The OR gates have fan-in 

at most 2n and the AND gates have fan-in at most m. It can be verified that the direct connection 

language for {G 7.1 can be recognized by a deterministic Turing machine in polynomial time, thus 

showing that this is a uniform family of circuits. 

4 Monotone Arithmeic Circuits and Counting Classes 

This section contains the characterizations of counting classes based on nondeterministic time 

bounded computations on the monotone arithmetic circuit model. A monotone arithmetic circuit 

is an arithmetic circuit using only the addition and multiplication operators and whose inputs are 

nonnegative integers. We will also characterize these classes in terms of the number of accepting 

saktrees in the Boolean circuit model. As corollaries. we obtain characterizations of the class ;;P 

(Ail these models. 

4.1 Definitions 

It will he convenient, to consider Boolean circuits in which every AND gate has exactly two inputs. 

-Monotone Arithmetic Circuits: These are defined just as Itooloan circuits. (thus, ror in-

stance. every product gate has • exactly two inputs), except that the gates compute the sum and 
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Figure 1: Constant Depth Unbounded fan-in Circuits for CNF Satisfiability 



product of their inputs instead of computing the OR and AND functions. Although the results 

in this section, especially lemma 13, can be strengthened to handle n bit nonnegative integers as 

inputs to the circuit, it suffices to consider only single bit inputs. 

We will denote a gate computing the sum (product) of its inputs as a PLUS (respectively, MULT) 

gate. 

Uniformity: We will slightly modify the definition of uniformity in section 1.1 to do a parsi-

monious simulation in lemma 15. 

Define the direct connection language of a family {G,} of Boolean circuits to be the set of strings 

of the form < n,g,y.p> such that either (i) g is an OR gate and y is an input of g, or (ii) y is an 

AND gate and y is a left (right) input of y if p is L (respectively, R), or (iii) g is a gate name and 

y is the type of the gate g. A family {G,} of Boolean circuits of size C(n) is said to be 'uniform if 

the corresponding direct connection language can be recognized by a deterministic Turing machine 

in time 0(logC(n)). 

The uniformity condition for monotone arithmetic circuits is defined exactly as for Boolean 

circuits with PLUS (MULT) gates replaced for OR (respectively, AND) gates. 

Degree: The degree measure for monotone arithmetic circuits is defined anlaogous to Boolean 

circuits (see section 1.1). Thus, the constants have degree zero, the circuit inputs have degree one, 

the degree of a PLUS vertex is the maximum of the degrees of its inputs, and the degree of a MULT 

vertex is the sum of the degrees of its inputs. 

Notations: Let .fir denote the set of natural numbers. 

A function f : {0,1} -  — A' is in :Uniform circuit SIZE,DEPTH,DEGREE(Z( n), d(n), D(n)) if and 

only if there exists a uniform family {G,) of Boolean circuits of size 0( Z(n)). depth 0(d(n)). and 

degree 0( D(n)) such that for all strings x of length n. f(x) is the number of accepting subtrees of 

(;,, On input x. 

The other counting classes are defined in a similar fashion. 

4.2 The Characterization Results 

"l'he Following fact. can he used to set up a correspondence between I3oolean and monotone arithmetic 

druid's. 'Hie proof .  Of Iltis fact is a direct consequence of the definition of an accepting subt roe of 

itoolean circuit (s" 	section 1.1). 
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Fact 11 Let B be a Boolean circuit that evaluates to one an input x. Given x as an input, the 
number of accepting subtrees of B rooted at an OR (AND) gate e' is the sum (respectively, product) 

of the number of accepting subtrees of B rooted at the inputs of v. ❑ 

It may be noted that lemmas 12, 13, and 14 below are stronger statements than needed to prove 

the main results of this section, namely lemma 15 and theorem 17. 

Lemma 12 Let B be a Boolean circuit of size Z. depth d, and degree D. Then there exists an 

arithmetic circuit A of size Z, depth d, and degree D such that B has p accepting subtrees on an 

input .r on which it evaluates to one if and only if A has value p on input x. 

Proof Sketch: Given a Boolean circuit B, let the arithmetic circuit A be obtained by replacing 

all the OR (AND) gates of B by PLUS (respectively, MULT) gates. Then the conclusion follows by 

using fact 11. ❑ 

Lemma 13 Let A be a monotone arithmetic circuit of size Z, depth d, and degree D with n inputs 
from {0,1). Then there exists a Boolean circuit B of size Z, depth d, and degree D such that A 
has value p if and only if B has p accepting subtrees given this input. 

Proof Sketch: Given a monotone arithmetic circuit A, the Boolean circuit B is obtained from 
A by replacing all PLUS (MULT) gates by OR (respectively, AND) gates. The proof follows by a 
simple inductive argument. ❑ 

The circuits involved in the lemmas 12 and 13 above can be made uniform thereby showing the 

following correspondence between monotone arithmetic circuits and Boolean circuits. 

Lemma 14 For Z(n).D(n) = Q(n). 

:1niform Circuit. SIZE,DEPT1I.DEGREE( Z °(11 (it ). 41( 	D( n )) =- 

Uniform Monotone Arithmetic Circuit SIZE.DEPTILDEGREErZ °(1) (0.(1(1). 1)(n )). ❑ 

Lemma 15 below establishes the correspondence between the number of accepting paths in 

polideterministic Turing machines and the number of accepting subtrees of Boolean circuits. 

Lemma 15 For 	) = 	). 

I IMF( r ) I I) (o)) = 	Uniform circuit 1)1T111,1)1.:(;REE(i . " (1) ( 	),P )(1) ( 	)). 



Proof: Let Al be a nondeterministic Turing machine that runs in time T(n). By theorem 7, 

there exists a uniform family {B,} of O(T(n)) depth bounded skew circuits that. accepts the same 

language as M. The degree of B, 1  is 0(T(n)). This is due to the fact that the degree of a depth d 

skew circuit cannot exceed d. Any accepting subtree of B„, given an input on which it evaluates 

to one. is a completely skewed binary tree. We claim that M has p accepting paths on an input x 

of length n if and only if B„, has p accepting subtrees. 

To simplify the proof, we will assume that M is deterministic while reading its inputs, and that 

the immediate successor of a read configuration is an existential configuration. 

Let x be an input of length n accepted by M. Then B„, evaluates to one on x. We will show 

that there is a bijective function that maps the accepting paths in the computation tree of M on 

input z with the accepting subtrees of B r, on input x. 

Let p be an accepting path of /V/ on input x. The starting vertex of p is labelled by the initial 

configuration ci of Al. Consider the following subtree A(p) of B n  on input x. The root of A(p) 

is the output gate [0, ci] of B„. In general, the construction proceeds as follows. For the t-th 

vertex of p labelled with an existential configuration c, pick the corresponding gate [t, c] of fi n . The 

configuration d that immediately succeeds c along p is either an existential configuration or a read 

configuration. If d is an existential configuration pick as the input of the gate [t, c] its input labelled 

[t 1, d]. Suppose d is a read configuration in which M reads the i-th input symbol and moves 

to an existential configuration e ( f) if the i-th input is zero (respectively, one). Consider the case 

when the i-th input symbol is zero. (The construction in the case when the i-th input symbol is 

one is analogous.) Then d has the configuration e as its immediate successor along p. Pick the gate 

[1 + 1. d. 1] as the input of the gate [t, c], the AND gate ]t + 1, d, i, 0] as the input of [t + 1.d,i], and 

the gate [t + 2. c] as the input of the gate [t 1, d. i. 0]. It is easy to see that A(p) is an accepting 

subtree of B r, on input x. 

The mapping described above from accepting paths of M on input x to accepting subtrees of 

B„ oft input .r is well-defined. We will now argue that it is also a bijective function. 

Suppose p and q are two distinct accepting paths of A/ on input x. Let A(p) and A(q) he the 

corresponding subtrees defined by the above mapping. Now. 7) and q both have the same start 

vertex namely, the one labelled with the initial configuration Q. Let the initial common segment. 

of p and q have t vertices. Let the t-th vertex be labelled by the configuration c. Then c must be 

all eXkl('Illial configuration. The corresponding gates in .-1(p) and .-l(q) arc labelled by [t,c]. Since 

H iminediale sin . cout of ! in p is different from that of cin 47. the input of the gate [I,c] in :l(p) 

is different from Ihat of [t, c] in ii(q). 
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Suppose A is an accepting subtree of B, on input x of length n. We claim that there is 

an accepting path p of M on input x such that A is the image of p as defined by the mapping 

above. The path p is constructed as follows. The starting vertex of p is labelled with the initial 

configuration ci. Let [t,c] be a vertex in A where c corresponds to an existential configuration of 

Al on input x. There are two cases. 

Case 1: Suppose the gate [t +1.d] is included in A as the input of the gate [t, c]. Then d is an 

existential configuration and it is an immediate successor of the configuration c of Al. Since A is 

an accepting subtree on input x, the gate [t 1,d] evaluates to one on input x. It follows that d is 

an accepting configuration of Al on input x. Include a vertex labelled d as the immediate successor 

of the vertex labelled c along p. 

Case 2: Suppose the gate [t 	1, d, i] is included in A as the input of the gate [t, c]. Then d 

is a read configuration that is an immediate successor of c. If [t 1, d, i, ([t 1,d,i,1]) is the 

input of [i + 1, d, i] that is included in A, the i-th input symbol must be zero (respectively, one). 

Consider the case when the i-th input symbol is zero. (The case when the i-th input symbol is 

one is analogous.) Let the input of [t 1,d,i, 0] included in A be the gate [t 2,e]. Then include 

the vertex labelled d as the immediate successor of c and the vertex labelled e as the immediate 

successor of d along p. It is easy to verify that p is an accepting path of M on input x and A is an 

image of p defined by the above mapping. 

Conversely, let {B,} be a uniform family of Boolean circuits of depth T°(1 )(n) and degree 

P (1) (72). Let Al be a nondeterministic Turing machine that simulates B, on an input x of length 

it in a depth-first fashion as in the proof of lemma 4. The one difference here is the need to ensure 

that the simulation of an AND gate maintains the correspondence between the number of accepting 

paths of the machine and the number of accepting subtrees of the circuit. Let C(v) denote the 

configuration of .1/ as it begins checking the gate• . 

In simulating an AND gate c, Al does the following. It guesses the right input. say •. 2 . of e. 

verifies with the uniformity machine that the guess is correct, and pushes 1.9 onto the stack. It then 

ouesses the left input. say v 1 , of v. verifies with the uniformity machine that the guess is correct. 

and verifies that v t  evaluates to one. This will guarantee that there is a single accepting path 

soginelil front I he configuration C(v) to the configuration C( 

Then it follows, from the claim below, that A/ has p accepting paths on x if and only if B„ has 

p accepting subtrees on input r. 

C'lainl: Lit r he a vertex in ii, that evaluates to one on 111p11! 	If begins its simulation 

t r. it has p accepting paths rooted at (Iv) if and only if there are p accepting subtrees of 11„ 

1? 



rooted at v. 

Proof of the claim: This is by induction on the depth d(v) of the vertex v, 

The claim is clearly true for an input vertex v with value one. 

Suppose v is an OR gate that evaluates to one on x. Let v i , 	, vm  be its inputs. Let 1 < q < m 

of these inputs, say vi i , vi 2 ,... , ri g  evaluate to one on input x. The machine AI , in checking 

whether v evaluates to one, existentially chooses one of these q inputs. Thus, the number of 

accepting paths rooted at C(v) is given by the sum of the number of accepting paths rooted at 

,C(viq ). By induction hypothesis, this sum is equal to the sum of the accepting 

subtrees rooted at vil, v,2, ... , vi q . Since this is equal to the number of accepting subtrees of Bn 

rooted at v, the claim follows. 

Suppose v is an AND gate that evaluates to one on x. Let v 1  and v2  be its inputs. By con-

struction, the number of accepting paths rooted at C(v) is equal to the number of accepting paths 

rooted at C(v i ). That is, if Al begins its simulation with the gate v, there is a single accepting 

path segment from C(v) to C(v i ). Thus, the number of accepting paths rooted at C(v) is the same 

as the number of accepting paths rooted at C(v i ). The machine M, in verifying v 1 , traverses an 

accepting subtree of B r, rooted at v 1 . It then pops the vertex v 2 . Hence there is a vertex labelled 

C(v2 ) along every accepting path of M rooted at C(v i ). Therefore, the number of accepting paths 

rooted at C(v i ) is the product of the number of accepting path segments from C(v i ) to C(v 2 ) with 

the number of accepting paths rooted at C(v2). By induction hypothesis, the number of accepting 

path segments from C(v 1 ) to C(v2) is the number of accepting subtrees rooted at v i  of 13,, and the 

number of accepting paths rooted at C(v 2 ) is the number of accepting subtrees of B, rooted at v2 . 

It follows that the number of accepting paths rooted at C(v) is the number of accepting subtrees 

rooted at t' of B„. 

l3y lemma 1. the tree-size of B r, is T °( "(n). Since B, has size at most exponential in r (1) ( n), 

it follows. as in the simulation of lemma -1. that M uses time T °(11 (71 ). ❑ 

In lemma 15 above, we could have used semi-unbounded fan-in circuits instead of bounded 

fan-in circuits to obtain the following result: 

Theorem 16 For 7- (n) = S-2( n). 

N't'INti::(T ° ( 1) (n)) = 

:1* Ilik,rm Semi-unbounded Fan-in Circuit SIZE,DEI )TII.DEGREEC rc"1 ",7 -()(1) (n).7 .°(1) (71)).0 

1.0111111 ■ 1S I I and IT) together imply the following theorem: 
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Theorem 17 For T(n) = f/(70, 

NTIME(T°(1) (7)) = 

Uniform Monotone Arithmetic Circuit DEPTH,DEGREE(T°(1) (n),T" ) (n)).0 

As a special case of the above theorem, we obtain the following new characterization of the 

important counting class tP: 

Corollary 18 

= Uniform Monotone Arithmetic Circuit DEPTH,DEGREE(ne (1 ), n° ( 1 ))0 

4.3 Some Consequences 

In this section, we will examine some consequences of the results in section 4.2. 

Unique SAT: The Unique SAT problem is defined as follows [10]: Given an instance of SAT, 

does it have a unique solution? As another interesting corollary of theorem 17, we can identify an 

arithmetic circuit value problem that is equivalent to the Unique SAT problem. 

Let M be a fixed uniformity machine for a family IGO of monotone arithmetic circuits of 

polynomial depth and polynomial degree. Given as input n and an n bit vector x, the MCVP1 

problem is to determine whether the circuit C0  evaluates to one on input x. 

Corollary 19 There is a log space transformation from Unique SAT to MCVP1 and vice versa. ❑ 

New NP-Complete Problems: Theorem 17 suggests a new arithmetic circuit value problem 

that is complete for NP. Let M be a fixed uniformity machine for a family {G 0 } of monotone 

arithmetic circuits of polynomial depth and polynomial, degree. Given as input 11 and an it hit 

vector r. the MCVP problem is to determine whether the circuit G„ evaluates to a non-zero value 

on input . 

Proposition 20 The MCV1) problem is NP-complete. ❑ 

Characterizing :PSPACE Using Monotone Arithmetic Circuits: Using the known char-

art eri/at iou Itoole.m circuit depth by alternating time [11]. the following analogue of lemma 15 

can be proven using the techniques in the proof of that lemma: 
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Lemma 21 For T(n) = f?(log n), 

;; ATIME(T°( 1) ( n)) = Uniform Circuit DEPTH(T °(1) (0). ❑ 

This lemma combined with lemma 14 and the result by Ladner [9] that PSPACE = tATIME(n°(1) ) 

implies the following theorem: 

Theorem 22 

':,PSPACE = Uniform Monotone Arithmetic Circuit DEPTH(n ° (1)).0 

It should be noted here that Bertoni et al. 	also characterized tPSPACE as the class of 

functions computed by polynomial time Random Access Machines with the operations of addition, 

integer subtraction, multiplication, and integer division. 

5 Conclusion 

This work provides a circuit framework in which some well-known open problems of complexity 

theory can be studied. We considered two constraints on the Boolean circuit model, namely skew-

ness and semi-unboundedness, and used it to define non.deterministic space and time complexity 

classes. We also considered monotone arithmetic circuits to define counting classes based on non-

deterministic time. 

The known uniform Boolean circuit characterizations of classes between LOGCFL and PSPACE 

are summarized in table 1 (the definitions of the classes LOGCFL and P in this table use log-space 

uniformity). It should not be too difficult to construct entries for classes above PSPACE. 

As a consequence of these characterizations, we can define for each of these complexity classes 

a Boolean circuit value problem that is a natural complete problem for the class. For example. the 

following circuit value problem is NP-complete. Let 11/ be a fixed uniformity machine for a family 

{G„} of Boolean circuits of polynomial depth and polynomial degree. Given as input 71 and an 

bit vector .r. the problem is to determine whether the circuit. G n  evaluates to one on input :•. 

\VP will conclude with a few remarks about the relevance of the semi-unboundedness notion for 

q uestions in complexity theory. From table 1. lt can be seen that many of t he well-known space 

and time complexity classes have definitions in terms of semi-unbounded fan-in circuits. Thus. for 

	

the 	are definitions of 	 L;111)\l'll CLISSO:-; 11511112 IIIo 	 1)1)1111(14 fan-in 

circuit 	inc ^ cl 	l: 
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OR fan-in AND fan-in SIZE 

 

DEPTH FEGREE 

 

CLASS 

       

       

n°(1) /bounded n°( 1) /bounded n°(1) nom LOGCFL 

n°(1)  bounded n° ( 1 ) log n LOGCFL 

71 0(1) 71 0(1) nom log n AC' 

n o  ( ' ) /bounded n°( 1 )/bounded 	n°( 1 ) P 

2'
00)  

bounded 2'
00)  

log n NP 

2 71°(1) /bounded 2n °( ' )  /bounded 212o(') no(i) no(1) NP 

9"°" )  /bounded 2710" /bounded 2710(1) r
oo) 

PSPACE 

2'
0W

/bounded 2'
0(1)

/bounded 
2'0(1) 

. 	n° ( 1 ) PSPACE 

Table 1: Circuit Definitions of Complexity Classes 

LOGCFL = Uniform Semi-Unbounded Fan-in Circuit SIZE,DEPTH(n °(1) , log n) 

P = Uniform Semi-Unbounded Fan-in Circuit SIZE,DEPTH(n°(i), nom) 

NP = Uniform Semi-Unbounded Fan-in Circuit SIZE,DEPTH(2 n°(1) ,10g n) 

PSPACE = Uniform Semi-Unbounded Fan-in Circuit SIZE,DEPTH(r c") , nO( 1 )) 

One can define an analogue of the polynomial time hierarchy using semi-unbounded alternating 

Turing machines. Then. by theorem 9. NP is the class languages accepted by polynomial time senii-

-unbounded alternating Turing machines using 0(logn) alternations. This is interesting because 

it shows that with the constraint of semi-unboundedness 0(log n) alternations is in NP. whereas 

without this constraint. even constant alternations is not known to be in NP. 
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DUPLICATE 
111 : 11(' 1 	1,11: 1 

Two Dynamic Programming Algorithms 

for Which Interpreted Pebbling Helps 

.5(1100J '  01 

Genrcli: Inciltutc 

	

We consider extensions of •nc-pet,...i 	 pehrtic 

;r,10 account the Ixpes of the gates of the ctreutt,s on wht;:h the games arc p,a ■ en 

.A simple relationship is established between he extended eames and he corre-

sponding original games. This is useful in showing that the extended Lames allow 

more efficient pebbling than the ericinal games on certain netu ai c.,rcui:s for 

problems such as context-free language closure of 

directed graphs. 	r 1991 Aeirdcrrne-  Press. Inc. 

1. INTRODUCTION 

Pebble games have provided convenient models to study the space and 
time used in straihg.t-line implementations of circuits. In this paper, we con-
sider the evaluation of Boolean circuits using one-person and two-person 
pebbling techniques. The one-person pebble game models the space used in 
a deterministic evaluation of circuits (see, for example, the survey by 
Pippenger, 1980). The two-person pebble game models the time used in an 
alternating evaluation of circuits (Dymond and Tompa, 198.5). We consider 
these two games extended to take into account the types of the gates of the 
circuits on which the games are played. A pebbling strategy in such an 
extended game corresponds to an evaluation strategy that depends on the 
input values. We show a simple relationship between the extended games 
and the corresponding original games. This relationship uses the notion of 
an accepting subtree of a Boolean circuit on an input for which it evaluates 
to one. Specifically, we show that an extended game on a Boolean circuit 
with an input for which it evaluates to one corresponds to the original 
game on an accepting subtree of the circuit on that input. A consequence 
of this would be that Boolean circuits that have small (say. polynomial 
size) accepting, subtrces have efficient pebblings in the extended games. 
These efficient pebblings lead to the evaluation of the corresponding 
Boolean circuits using small space/parallel time. 

We then show the following results for Boolean circuits that correspond 
to the Cocke—Kasami—Younger algorithm for context-free language 
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recognition 	 I t'.11'; 1 or 
of a Boolean nlatriv. 

1. Any one-person t\\ o-person. respeetivei:, pebbling sti - iteg ■ on 1H.: 
—be- --- 

pebbles (linear time. respeeli ei' I. 

2. The circuits corresponding to WarshaTs 	\e closure 
)ivopcynomii.h size ..ecer.tHg 

The 	former 	result 	sho.:,.1 	eonsted 	with 	:he 	Fact 	thul 
Coeke-Kasami-Younger cireuns have polynomial size accepting subtrees 
(Ruzzo. 19S01. The latter result should he contrasted with a linear lower 
bound on the number of pebbles in the one-person pebble game on 

Warshall's circuits (Tompa. 19S2). Thus, the extended games are (exponen-
tially ) more powerful than the original games on the Boolean circuits 
corresponding to these algorithms. 

Although it is easy to construct Boolean circuits for which an exponen-
tial separation between the extended and original games can be shown. the 
results here are interesting because the circuits considered correspond to 
well-known algorithms for two natural problems. Another point of interest 
about the results in this paper is that they show that lower bounds based 
on the one-person pebble game are on the space required for an oblivious 
evaluation of circuits, but there may exist other small space evaluations 
that are not oblivious. Because of the relationship between the space in the 
one-person pebble game and the time in the two-person pebble game 
(Tompa, 1983), the same observation holds for small depth implementa-
tions of Boolean circuits. 

Finally, the result that Warshall's circuits have an efficient parallel 
implementation is of independent interest. As far as we know, this thas not 
been observed before. In this context, it may be noted that Warshall's 
circuits have exponential degree unlike the Cocke-Kasami--Younaer 
circuits which have polynomial degree. (Here, the degree measure refers to 
the algebraic degree of the formal polynomial computed by the circuit.) 
Thus known parallelization techniques such as the one by Valiant, Skyum, 
Berkowitz, and Rackoff (198$) do not seem to be applicable to Warshall's 
circuits. 

2. PRELIMINARIES 

-).1. Boolean Circuits 

DEFINITIONS. A Boolean circuit G,, with n inputs is a finite acyclic direc-
ted graph with vertices having indegree zero or at least two and labelled as 



ro li ovis.  All vertices with indcgrec two iL:k0 called 1a1(. ,  ,,:c labelled either 

AND or OR. The input of the circuit is a set of 2i; vertices of inciegree zero 

labelled as X,. 	 X„ .k,,. Ad other \ ertices of indegrec zero are 

labelled from the set 	l',. Vertices with outdegrcc zero are called 

The si.r.o C(G„) of a circuit G„ is the number of gates in 	The The aor12 

of a vertex r in a circuit is the length 	a longest path from any input to 

r. The depth of a circuit is the depth of its output \ erlex. 

Not including 	 in 	 Booleiln 

done with no loss of generality as the re iS l;nown technique for 

simulating. with a doubling of size and no increase in depth. a Boolean 

circuit with negations by a Boolean circuit in which the negations appear 

only at the inputs. (See. for example. Goldschlager. I977.) 

Let x= , . 	x„ be a length 17 bit string. The ralue of a vertex r of G„. 
on input .y, is defined as follows. If u is an input vertex labelled X,. for some 

1 < i < 17, the value of r is defined to be the bit 	If u is an input vertex 

labelled for some 1 i< n, the value of r is defined to be the com-
plement of the bit x 1 . If r is a gate of type AND (OR), its value is defined 

to be the value of the Boolean function OR (AND) of its two inputs. The 

value of a circuit G,,, on an input is defined to be the value of its output 

gate. The evaluation of a circuit G„. on some input x, consists of computing 

the value of the circuit on input x. 

Circuits when considered as language acceptors will be assumed to have 

only one output vertex. The language L„ accepted by such a Boolean 

circuit G„ is defined as the set of all input strings of length n on which G,, 
evaluates to one. A family of circuits is a sequence I,G„ n = 0, 1, 2, 

where the nthe circuit G„ has n inputs. The language L accepted by a 

family {G„} of circuits is defined as follows: L=U„,0 L„, where L„ is the 

language accepted by the nth member G„ of the family. 

3. THE PEBBLE GAMES 

3.1. The Uninterpreted One-Person Game 

The one-person pebble game models a deterministic evaluation of 

circuits. This same, which will be referred to as the uninterpreted one-
person game, has found a wide range of applications in computer sience. 

The survey by Pippenger (1980) is an excellent source on this topic. 

This game is played on the vertices of a directed acyclic graph G 
according to the following rules: a pebble may be placed on a vertex iff all 

of its immediate predecessors have pebbles on them, and a pebble may be 

removed from a vertex at any time. Starting with a pebble-free graph, the 

goal is to pebble a certain vertex or a ste of vertices at some time. 



If G is a circuit computing some function. then a play of this game 
corresponds to evaluating this circuit as follows: placing a pebble 
corresponds to computing the value at a vertex of the circuit knowing the 
values of its inputs and storing it in a register. and removing a pebble 
corresponds to freeing a register. 

Resources. The space in this game is defined to be the maximum 
number of pebbles on. the graph at any point in the game. and time is the 
number of pebble placements. 

3.2. The Umme•preled Two-Person 

A two-person pebble game to model computations by alternating Turing 
machines was introduced by Dymond and Tampa (1985). This game, 
which will be referred to as the uninterpreted Iwo-person game. when played 
on a Boolean circuit can be viewed as an alternating implementation of the 
circuit. 

This game is played on the vertices of a directed acyclic graph G by two 
players called the Challenger and the Pebble,-  according to the following 
rules. 

The Challenger begins the game by challenger any vertex. The game now 
procedds in rounds with each round consisting of a pebbling move followed 
by a challenging move. In a pebbling move, the Pebbler picks up zero or 
more pebbles from vertices already pebbled and places pebbles on any non-
empty set of vertices. In a challenging move, the Challenger either 
rechallenges the currently challenged vertex, or challenges one of the 
vertices that acquired a pebble in the current round. 

The Challenger loses the game at a vertex v if, immediately following the 
Challenger's move, v is the currently challenged vertex and all immediate 
predecessors of v have pebbles on them. The Challenger loses the game if 
it loses at some vertex v. 

If G is thought of as a circuit computing some function, then a play of 
this two-person game corresponds to an alternating implementation of that 
circuit, in the following sense. A pebble placed on a vertex v by the Pebbler 
corresponds to existentially guessing the value computed at v. A move of 
the Challenger corresponds to universally verifying each of those guesses, 
plus the fact that those guesses lead to the correct value computed at the 
current challenged vertex. 

Resources. As in the case of the one-person game. the space used is the 
maximum number of pebbles on the graph at any point in the game, and 
the time used is the number of pebble placements. 

The game on a graph with n inputs is said to take space p(n) time 1(n)) 
if there is a winning strategy for the Pebbler such that, for all plays by the 
Challenger, the Pebbler uses at most space p(n) (time 1(n)). L. 



The time measure in the uninterpreted two-person pebble game is eloser . 
 related to the space measure in the uninterpreted one-person pebble game. 

This reflects the relationship between alternating time and deterministic 
space in the case of Turning machines. 

LEMMA I (Tompa. 1983). If the umnterpreted two-person game can he 
played on a graph Gin time T. then the uninterpreted one-person game can 
be, ployea G using r -r I pebbles. 

This lemma is useful in translating lower bounds on space in the one-
person pebble game to lower bounds on time in the two-person pebble 
game. In fact. we will use this result and prose only a lower bound on the 
number of pebbles needed for any uninterpreted one-person game on the 
considered circuit family. In the other direction. our upper bound 
arguments are for the interpreted two-person game. 

3.3. The Interpreted One-Person Game 

We will refer to the uninterpreted one-person game modified to take into 
considerations the gate types of the circuit on which it is played as the 
interpreted one-person game. This game is essentially the same as a game 
known as the AND/OR pebble game. This game has been previously used 
to define complete problems for the class PSPACE (Lingas, 1978; Gilbert, 
Lengauer, and Tarjan, 1980) and the class P (Immerman, 1979; 
Sudborough, 1980). 

This game is played on a Boolean circuit G,, together with its input x 
according to the following rules: 

• A pebble may be placed on an input vertex if its value is one. 

• A pebble may be placed on an OR gate if at least one of its 
immediate predecessors has a pebble on it. 

• A pebble may be placed on an AND gate if all of its immediate 
predecessors have pebbles on them. 

• A pebble may be removed from a vertex at any time. 

The player wins the game if, starting from a pebble-free graph, it can 
place a pebble on the output gate of the circuit G„ in a finite number of 
moves. It is easy to verify that the player in this aame has a winning 
strategy on the circuit G„ with input x iff the circuit evaluates to one on 
input x. 

A circuit G„ is said to be pehbleahle in the one-person interpreted game 
in space p(n) (time /OM if, for all x e L of length n, there is a strategy for 
the player that uses at most p(n) pebbles (t(n) time). 



3.4. The Interpreted Two-Person Game 

The uninterpreted two-person game %Nils extended by Venkateswaran 

and Tompa (1989) in two ways. One extension to the game takes into 
account the t ■.pes of the gates of the circuit on which the game is played. 
The second extension incorporates duality between the two players. This 
extended two-person game, called the dual interpreted game, was used b ∎  
Venkateswaran and Tompa (1989) to characterize two natural parallel 
complexity classes. In this paper. we will be concerned with the first men-

tioned extension of the uninterpreted game. namely considering the types 

of the gates of the circuit on which it is played. We will refer to this 
modified game as the interpreted two-person game. 

This aame is played by two playes called Player 1 and Player 0 
on a Boolean circuit G,, together with its input .v. The rules of the game. 

as eiven below, are analogous to those of the uninterpreted eame with 

Player 0 acting as the Challenger and Player 1 acting as the Pebbler. The 
modifications show up in the winning/lsoing conditions. 

Player 0 begins the game by challenging an output vertex. The game 

now proceeds in rounds with each round consisting of a pebbloing move 
followed by a challenging move. In a pebbling move, Player 1 picks up 

zero or more pebbles from vertices already pebbled and places pebbles 

on any nonempty set of vertices. In a challenging move, Player 0 either 

rechallenges the currently challenged vertex, or challenges one of the 
vertices that acquired a pebble in the current round. 

Player 1 wins the game if, immediately following Player 0's move, the 
current challenged vertex is an input with value one, or an OR gate at least 

one of whose immediate predecessors is pebbled, or an AND gate both of 

whose immediate predecessors are pebbled. Player 0 wins the game if 
Player 1 cannot win a finite number of rounds. 

It is easy to verify that Player 1 in this game has a winning startegy on 
the circuit G, with input x if the circuit evaluates to one on input x. 

A circuit G,, is said to be pebbleable in the two-person interpreted game 
in space p(n) (time 1(n)) if, for all inputs on which G, evaluates to one, 
there is a strategy for Player 1 such that, for all plays by Player 0, 
Player 1 wins using at most p(n) pebbles (1(n) time). 

3.5. A Relationship Between the Uninterpreted and Interpreted Games 

We now show a simple relationship between the interpreted games on a 

circuit given an input that it accepts, and the uninterpreted gaes on a 

certain subgraph of the circuit defined by that input. This uses the notion 
of accepting subtrees for Boolean circuits. 

Accepting Subtrees (Venkateswaran and Tompa, 1989). We define 
accepting subtrees for Boolean circuits by analogy to the notion of 



accepting subtrees for alternating Turing machines iRRuzzo. 1980). This is 
done by considering the tree-equiralent TIG) of a circuit G. obtained by 
modifying it so that every vertex in T(G). except its output. has outdegree 
one. and T(G) accepts the same language as G. Let E L be of length ;:. An 
accepting subtree H of a circuit G on input .v is Li subtree of T(G). its tree-
equivalent. defined as follows: 

• H includes the output gate. 

• for any AND gate u: included in H. all the immediate predecessors 
of r in T(G) are included as its immediate predecessors in H. 

• for any OR gate 1) included in H, exactly one immediate predecessor 

of t: in T(G) is included as its only immediate predecessor in H, and 

• any vertex of indegree zero included in H has value one as deter-

mined by the input x. 

It can be shown, by a straightforward application of the definition of an 

accepting subtree, that a Boolean circuit G evaluates to one on input x if 

and only if there exists an accepting subtree of G on input x. 

Lemma 2 below shows a relationship between the interpreted two-person 

game played on a circuit given an input that it accepts, and the uninter-

preted two-person game on an accepting subtree of the circuit on that 

input. 

LEMMA 2. Let G be a Boolean circuit that evaluates to one on input x. 
Then Player 1 can win in the interpreted two-person game on G together with 
x using space p and time t if there is some accepting subtree H of G on input 
x such that the Pebbler can win in the uninterpreted two-person game on H 
with space p and time t. 

--- - 
Proof. Let G evaluate to one on input x. Let H be an accepting subtree 

of G on which the Pebber can win the uninterpreted two-person game 
using space p and time t. Consider the interpreted two-person game on G 
with input x. A winning strategy for Player 1 that uses no more than p 
pebbles and t steps is to simulate the moves of the Pebbler in the uninter-

preted game on H. Thus, Player 1 pebbles a gate whenever any of its copies 

in H are pebbled, and removes the pebble from a gate chanever all of its 
copies in H become pebble-free. 

That Player 1 wins on G in the same round as the Pebbler would win 
in the uninterpreted game on H follows from the definition of an accepting 
subtree and the rules of the two games, as follows. If the Challenger loses 
at an input of H in the uninterpreted game. then the corresponding input 
in G must evaluate to one, so Player 1 wins in the interpreted game. If the 7- 



Challenger loses at an OR gate u of H in the uninterpreted game. it must 
be because the child of r in H has a pebble on it. in this case. the gate in 
G corresponding to the child of r in H is also pebbled in the interpreted 
game, so Player 1 wins in the interpreted game. Finally, if the Challenger 
loses at an AND eate u of H in the uninterpreted game. then both inputs 
of the corresponding AND eate in G are pebbled in the interpreted game. 
so Player l wins in the interpreted game. I 

A relationship between the interpreted and the uninterpreted one-person 
games analogous to the two-person case of Lemma 2 is expressed in the  
lemma below. The proof of this lemma is an easy adaptation of the above 
proof and is imitted here. 	 i. 

t , LEMMA 3. Let G he a Boolean circuit that evaluates to one on input x. 	 t 
The player can Win in the interpreted one-person game on G together with x  
using space p and time r if there ix some accepting suhtree H of G on input 
x whcih can be pebbled in the uninterpreted one-person game with space p  
and time t. 	 1 

i t 

4. Two ALGORITHMS FOR WHICH INTERPRETED PEBBLING HELPS 

It is easy to construct examples of circuits for which the interpreted 
games are exponentially more powerful than the corresponding uninter-
preted versions. We show in this section that Boolean circuits for two 
natural problems have this behavior. 

The upper bounds on time to play the interpreted two-person game on 
the considered circuits are based on an efficient pebbling of binary trees in 
the uninterpreted two-person game (see Lemma 5 below). This pebbling of 
binary trees is a pebbling reformulation of the technique used by Ruzzo 
(1980) to simulate space and tree-size bounded alternating Turing 
machines by space and time bounded alternating Turing machines (see also 
Venkateswaran and Tompa, 1989). This technique is based on a tree-
cutting lemma (see Lemma 4 below) that was first used by Lewis, Stearns, 
and Hartmanis (1965) to show that context-free languages are recognized 
by deterministic Turing machines using space 0(log' n). 

LEMMA 4. Let T be a tree with N vertices, each of which has at most two 
children. Then there is a vertex s of T such that the sub tree rooted at s has 
p vertices, where N/3 p < 2N/3 + 1. 

(For a proof of this lemma, see Lewis, Stearns, and Hartmanis (1965), 
or Hoperoft and Ullman (1969).) 



LFNimA 5. Lei 	irce wirn ,\' rcrrircv. each of which hay ar mos: 
ciii/drch. T/kJ/ rhc uninierpreied 	 .1;ame 017 T can hr plaT(d III 
(711 1 pcbIlles and 0(log :V) time. 

For a proof. see \'enkateswaran and Tompa. 1989.) 
We first define a Boolean circuit family that corresponds to the Cocke-

Kasami-Younger algorithm for context-free language recounition and 
show flat at least a linear number of pebbles are required to play the unin-
terpreted one-person game on these circuits. The contrast with the inter-
preted version will then follow by the observation that these circuits have 
polynomial size accepting subtrees. Second. we consider a Boolean circuit 
family that corresponds to Warshalis algorithm for transitive closure and 
show that these circuits have polynomial size accepting subtrees. By a 
result of Tompa (19821, a linear number of pebbles are required to play the 
uninterpreted one-person game on these circuits. 

4.1. The Cocke-Kasanii-Younger Circuits 

Let G be a context-free grammar over the alphabet {0, 1} and let G be 
in Chomsky normal form. Although the alphabet set is restricted to be 
{0, 1} to simplify the presentation of a circuit family that accepts the 
language generated by G, the resulting circuits have sufficiently rich struc-
ture to demonstrate the characteristics of context-free language recognition, 
in particular a linear lower bound on the time to play the uninterpreted 
game on them. 

Given a string x = x 7 , 	x„ of length n, let x 11  denote the substring 
x j ,..., xi  of x. The Cocke-Kasami-Younger dynamic programming algo-
rithm decides whether x is in the language generated by G. It does this by 
determining for each i (1 i and for each j (n j i) and for each 
nonterminal A whether A 4. x i; . This algorithm can be described induc-
tively as follows. (See Hoperoft and Ullmin, 1979; Ruzzo, 1980.) 

For j= i„4'4. x i)  if and only if A -4 x i  is a production in G. For j> 

A '4 x i;  if and only if there is some production A -4 BC in G and some 
integer k, i.-<„k<j such that B 	x i);  and C 	x - k + j• Finally, the 
membership of x in the language defined by G is determined by checking 
whether S x 1 „. 

For a fixed grammar G, a Boolean circuit family {G„} that accepts the 
language generated by G can be derived from this algorithm. The nth mem-
ber G„ of such a circuit family is described below. 

A gate in the circuit G„ has one of the following forms: 

• [A, i , j], for some nonterminal A and integers i and j such that 
n. This is an OR gate that evaluates to one on input .v if and 

only if A 



• [B. C. i. j, k]. for some inteaers i and j such that 1 	< 	n. for 
all pairs of nonterminals B and C for which A — ■ BC is a production for 
some nonterminal A, and for some integer k such that i k < j. This is an 
AND gate that has two inputs [B. i, ti] and [C. 	1.1]. and it evaluates 
to one on input .v if and only if B 	and C 	.v, 

The output gate is [S. ]. n]. where S is the start symbol in the grammar 
G. The inputs to a gate of the form [A. 1. j] are. for I< j. all gates of the 
form [B. C. 1, j, k]. where i k <1 and A 	BC is a production in the 
grammar. The gate [.4. 1. 	has a single input which is one of the 
following: 

• the constant 1 if both the productions .4 —0 0 and A —0 1 are in the 
grammar, and the constant 0 otherwise, 

• X„ the ith input if A —.1 is a production in the erammar, 
• .17,, the negation of the ith input if A — ■ 0 is a production in the 

grammar. 

For each context-free grammar in Chomsky normal form, there is one 
such Boolean circuit family that can be derived from the Cocke—Kasami-
Younger algorithm. The objective here is to show that there is a context-
free grammar for which the uninterpreted game on the corresponding 
circuits takes at least linear time. 

Consider the grammar G with a single nonterminal C, the terminal 
alphabet {0, 1} and the productions C-4. CC and C --■ 1. It should be noted 
that, for each n, the language generated by the grammar G has a single 
string, namely 1". That is, the corresponding circuits in the family compute 
the AND function. The construction, as described above, of the nth mem-
ber G„ of the circuit family {GO corresponding to this grammar is presen-
ted below. This circuit is quite similar to the graphs corresponding to some 
other dynamic programming algorithms for problems such as optimum 
binary search trees (Aho, Hoperoft, and Ullman. 1974). The general circuit 
described above will be referred to as a CFL-circuit to distinguish it from 
the circuit referred to as a DP-pyramid below. 

In describing this circuit, a gate of the form [C, i, j] will be denoted as 
C„,. and a gate of the form [C, C, i, j, k] will be denoted as 

There are three types of vertices: OR, AND, and input vertices. The 
input vertices are labeled C„, for 1 -5 i < n. All non-input vertices in G„ have 
indegree at least two. Given two vertices labeled C„ and Ck +1/  for some 
j, k in the range 1 i k < j n, there is an AND vertex labeled with 

these two vertices as immediate predecessors. The j— i AND vertices Cf ., 
for i:c_k‘,j— 1 form the inputs of an OR vertex labeled as 

This circuit will be referred to as a DP-pyramid. The DP-pyramid Io 



C11 C22 C33 C44 

FIG. 1. DP-pyramid. 

for n= 4 is shown in Fig. 1. Note that in these circuits the OR gates have 
fan-in at least two while the AND gates have fan-in two. 

THEOREM 6. The uninterpreted one-person game on the DP-pyramid G„ 
with n inputs requires Q(n) space. 

Proof A subgraph of the given DP-pyramid will be picked and the 
lower bound will be proved for this subgraph. The theorem then follows by 
the simple fact below. 

Fact 7. Let G = (V, E) be a graph with bounded indegree. Let 
G' = (V', E') be a subgraph of G. Then, if any vertex of G can be pebbled 
with p.pebbles in the uninterpreted one-person gae, then any vertex of G' 
can be pebbled using at most p pebbles in the uninterpreted one-person 
eame. 

(1) A subgraph of a DP-pyramid is picked level by level as described 
below. Level zero consists of the input vertices. At level s, 1 s < n, for all 
i and j such that 0 i<j....cn and j— i= s. retain from the original graph 
only the following vertices and the edges between them: C' ) , CT. 
This causes the deletion of (1 — i —2) AND vertices 	..., C-1,,7 2 . For 11 

4 



2, for the AND vertex C, , delete the edge from its immediate 
predecessor C,,. Similarly. for,/ — r 2. for the AND vertex C:; ' delete the 
edge from its immediate predecessor C,, Note that at any level both OR 
and AND vertices arc included. Let the sabgraph  so picked he denoted as 
H„. See Fig. 2 for the subgraph N h  corresponding to the DP-pyramid G, 
shown in Fig. 1. 

(2) The lower hound proof for the graph H. follows an argument that 
was first used by Cook (19741 to prove such a lower bound for a class of 
graphs called pyramid graphs. Initially. all paths from inputs to C,„ are 
pebble-free. When C,,,, is pebbled no paths from inputs to C 1 „ are pebble-
free. Consider the first move that results in every such path having a 
pebble. This must involve pebbling an input vertex of a path p that was 
pebble-free just before this move. Now. consider the set P, of vertices in 
path p consisting of the input vertex, the AND vertex at level I, and the 

— 2 OR vertices above level 1. With each vertex x e P,, there is associated 
a unique path p, that coincides with p in the segment from C,.„ through 
x and disjoint from p in the segment from x to an input vertex. Further-
more, these It paths can be so picked that they are also disjoint from each 
other on the segments not in p. It must be true at this point that not two 
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of these 17 disjoint paths can share a pebble. This is because, they can have 
no input vertex in common. any non-input vertex that is common to them 
must be a vertex in the pebble-free path p. and the considered move 
involves pebbline an input vertex. Therefore. after this move at least n 
vertices must have pebbles on them. 1 

COROLLARY S. The imimerpreted two-person game 017 the DP-pyramid 

G„ With 17 inputs rcquires 141; ) time. 

Proof This follows from the above theorem and Lemma 1. I 

THEOREM 9. Let G be a fixed comext-frec grammar in Chomsk1 normal 
_form and let -`,G„ be the _famil• of CFL-circuits that accept the language 
generated by G. Given an input string Qflength 11 in the language, the inter-
preted two-person game on G„ can be played in 0(loen) time using a 
aconstam number of pebbles (the player in the interpreted one-person game 
on G„ can win using 0(iog n) space). 

Proof. There is an accepting subtree H of G„ on input x that is a binary 
tree of linear size. (Actually, this corresponds to a parse tree for x. i From 
Lemma 2 above, Player 1 can win the interpreted two-person game in 
space p and time t if the Pebbler can win the uninterpreted two-person 
game on this accepting subtree within these resources. That the Pebbler 
can so win in the uninterpreted two-person game follows from Lemma 5. 
The one-person version can be proved similarly using Lemmas 1, 3, 
and 5. 1 

4.2. THE WARSHALL CIRCUITS 

Let A be an orde n Boolean matrix. Warshall's algorithm to compute the 
transitive closure A* of A is given below (see, for instance, Aho, Hoperoft, 
and Ullman, 1974): 

FOR 1 	Ctij  I--  (I OR A) 0 ; 
FOR k .4- 1 TO DO 

FOR 1 	)7 DO 
OR (C,A.-1  AND  Cr'); 

Here 1 is the order it identity matrix. 
A Boolean circuit family {G„,} corresponding to this algorithm can be 

defined in a straightforward manner. Let in= n'. The non-input vertices in 
G,„ are labeled as either C''"; or for 1 k n. The input vertices are 
labeled as 	for I z i, j n. The vertices labeled 	for 1 	are out- 13 



put vertices. A vertex 1.1beied t 	;or ; 	 n is an OR 	v•T'Lh tyvc ,  

inputs: C. 	and 	. A crtex labeled C' , 	< /: is an AND 

ertex with two inputs: 	and 

Thrnr:: 	 shown that the Warsht.fl circtiits require at least a 

linear number of pebbles in the uninterpreted one-pe•son pebble game. 

LE! .•:\lA 	 A be ,a; 	. Boolean .matri.y. Lc 	= 	Let G„. be 
the 	c7r cai1 2/h i Ul7ihirlCf Tnt 	 elosarc 	1 1 1 ■ IC1 r7  13001Car% 

MilTrCC.. On lriplii A. n 	labeled C. '„tOr 	 G„. evaluates to 
one ti andonly it :11C1c: L'Xi.k1.c . 	p ■ plynontie.tl 	accepting vubtree of .  G„. 
roo:ea ui C" 

Proof. It is clear that the existence of an accepting subtree rooted at 

on input .4 guarantees that C.' evaluates to one. 

In the other direction. let H denote the directed araph with vertex set 

2..... ; and adjacency matrix A. Let evaluate to one on in A for 

some I i , j n. Then there is a simple path P from vertex i to vertex .j in 

the graph H. Let k be the maximum intermediate vertex along this path for 

some 1 k n. Then in the circuit G n , the vertices q, for all k y ri. will 

evaluate to one. An accepting subtree rooted at C-7:  begins as a chain of 

vertices from C. to C. 
Now the path P can be divided into two segments P, and P, such that 

P, is a directed simple path from vertex i to vertex k and P2 is a directed 

simple path from vertex k to vertex j. All intermediate vertices in these two 

segments will be at most k— 1. Therefore, the vertices C`, / -1  and Ct: in 

the circuit G n, will evaluate to one. Hence, the AND vertex Chi-kJ  will also 

evaluate to one. The child of C in the accepting subtree being constructed 

will be the vertex C:ki  which, in turn, has as its children in this tree the two 

vertices C/k-1  and OW'. Note that the paths P, and P., do not share any 

vertices. We can repeat the argument above for the vertices C i;k—i  and C A,; 77 1 

 to obtain a binary tree that is an accepting subtree of G,,, rooted at 

The accepting subtree so constructed has polynomial size since all its 

vertices have distinct labels. 1 

Theorem 11 below now follows as in the case of Theorem 9. 

THEOREM II. Let .4 he an order n Boolean matrix and let the (1, j)th 

entry o its transitive closure he one for some I 1 , .1 n. Let in =17 2 . Let G,,, 
he the Warshall circuit that computes the transitive closure of order )7 

Boolean matrices. On input A, with the initial challenge on G„,. Player 
I can win the interpreted two-person game in 0Hog )71 time using a constant 
number of pebbles. (On input .4. the player in the interpreted one-person 
game on G„ can It'in using 0(logn) space). 



5. CONCLUDING REMARKS 

We have considered one-person and two-person pebble games on 
Booleancircuits that take into account the gate types. These extended 
games are useful in discovering new parallel implementations of sequential 
algorithms. The result about the Warshall circuits in this paper is an exam-
ple of such a parallelization. One direction for furter research is 10 identify 
natural problems and algorithms for these problems which can he 
parallelized in this manner. It would also be interesting lc ,  identify natural 
circuits which are hard for interpreted pebbling. 

Finally, we note that the result that the Warshall circuits have polyno-
mial size accepting subtrees shows an asymmetry between the tree-size and 
the degree measure for Boolean circuits. It is known that polynomial size 
circuits with polynomial degree have polynomial size accepting subtrees 
(Venkateswaran, 1987). But, as exemplified by the Warshall circuits, it is 
not ncicssary that the degree should be polynomial fro accepted subtrees to 
be polynomial. This is interesting because in the case of homogeneous 
Boolean circuits degree and accepting tree s:ize can be seen to be polyno-
mially related. (A Boolean circuit is homogeneous if all inputs of all OR 
gates in the circuit have the same degree.) 
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1 Introduction 

We give characterizations of nondeterministic com-
plexity classes such as NP and PSPACE and the classes 
in the polynomial time hierarchy in the two-person 
pebble game model [VT89]. These characterizations 
motivate the definitions of these classes using first-
order sentences extending the results in [Im82]. It 
is shown that the role-switches resource in the pebble 
games closely model the levels of the polynomial time 
hierarchy. These characterizations are made possible 
by explicitly considering circuit-size in the pebbling 
characterizations and the size of the underlying uni-
verse in the first-order characterizations. 

A dual interpreted game to model parallel compu-
tations was defined in [VT89]. They used this game to 
obtain characterizations of parallel complexity classes 
such as LOGCFL and AC 1  . This paper carries this 
work further to obtain characterizations of the class 
NP and the classes in the polynomial time hierarchy 
in the game model. A resource called role-switches 
was used in the dual game [VT89] to capture the dif-
ference between computations in the classes LOGCFL 

and AC'. Subsequently, Borodin et al. [BCDRT89] 
showed that constant number of role-switches do not 
help when the underlying circuits have polynomial 
size. We show that role-switches model the alter-
nating time hierarchy more accurately and thus their 
collapse implies the collapse of hierarchies such as the 
polynomial time hierarchy. Specifically, we show that 
the k-th level of the polynomial time hierarchy uses 
k — 1 role-switches. In this respect, it is very simi-
lar to a recent result in [JK88] that shows that for 
all k > 1, the k-th level of the polynomial time 
hierarchy coincides with the (k 1)-st level of a cer-
tain alternating auxiliary pushdown hierarchy. To get 
our results, we generalize the dual game to consider 
both the size and the fan-in of the circuits on which 
the game is played. This makes it possible to ex-
tend the pebble game to exponential size circuits and 
unbounded fan-in circuits. The extended game pro-
vides a unified framework in which the earlier peb-
ble game characterizations of the classes LOGCFL and 
AC' [VT89] and the new characterizations can be ex-
pressed. 

We also give a uniform first-order sentence charac-
terization of NP and PSPACE. These are definitions 
over an exponential universe. The characterization of 
PSPACE here when compared with the one in [Im82] 
shows an interesting tradeoff between the size of the 
underlying universe and the size of a sentence. One 
of the objectives of this work was to explore the re-
lationship between two-person pebble games and ex- 

pressibility using first order sentences. These results 
suggest that the number of variables correspond to 
the number of pebbles and the size of the formula 
corresponds to pebbling time (rounds). 

This work was motivated by the semi-unbounded 
fan-in circuit characterization of NP in [Ve88]. The 
results here illustrate the importance of the notion 
of semi-unboundedness. Semi-unbounded fan-in cir-
cuits (exponential fan-in for OR gates and polyno-
mial fan-in for AND gates) of constant depth charac-
terize NP whereas unbounded fan-in circuits of con-
stant depth characterize classes in PH. Thus semi-
unboundedness captures an essential difference be-
tween the computations in NP and PH. It is in-
teresting to note that the circuit characterization of 
PH is one of the first uniform circuit characteriza-
tions of this very important complexity hierarchy. It 
may also be noted that the classes defined by con-
stant depth semi-unbounded fan-in circuits (polyno-
mial fan-in OR gates and log n fan-in AND gates) 
and unbounded fan-in circuits (polynomial fan-in for 
both OR and AND gates) at the low-level are known 
to be different. 

One of the contributions of this paper is that it 
shows the robustness of all the complexity classes 
which have very similar definitions in the models 
that we have considered, namely, Boolean circuits, 
pebble games and logic. They isolate some model-
independent abstract properties that the computa-
tions in these classes seem to possess. 

2 Game Characterizations 

In this section, we present the characterizations of 
the class NP and the polynomial time hierarchy us-
ing the dual interpreted game model of [VT89]. The 
game characterizations use uniform Boolean circuit 
definitions of NP and PH. 

2.1 Definitions and Notations 

Ek-Unbounded fan-in Boolean circuits: This is 
a family of unbounded fan-in circuits in which the 
output is an unbounded fan-in OR gate and along 
any path, from any circuit input to the output gate, 
no more than k — 1 unbounded alternations occur. 
(Note that the gates that do not have unbounded 
fan-in have constant fan-in.) For k = 1, such a 
family of circuits will be called semi-unbounded fan-
in circuits. We will assume that any circuit in this 
family can be divided into k distinct layers such that a 



gate v is in layer p if and only if the maximum number 
of unbounded alternations along any path from the 
output gate to v is p — 1. 

A family of IIk -Unbounded fan-in Boolean cir-
cuits is defined in a dual fashion. 

We will assume that the circuit families consid-
ered are all Up-uniform [Ru81]. See the paper by 
Ruzzo [Ru81] for a definition of this uniformity no-
tion. 

Let SemiUnbounded USIZE,DEPTH (Z(n), D(n)) de-
note the class of languages accepted by a uni-
form family of semi-unbounded fan-in circuits 
with size O(Z(n)) and depth O(D(n)). The 
classes Unbounded USIZE,DEPTH (Z(n), D(n)) are de-
fined similarly. We will also be interested 
in unbounded fan-in circuit families in which 
the AND gates have polynomial fan-in. Let 
Unbounded USIZE,DEPTH,AND (Z(n), D(n), f (n)) de-
note the class of languages accepted by a uni-
form family of unbounded fan-in circuits with size 
O(Z(n)), depth O(D(n)) and, in which, all AND 
gates have fan-in at most f (n). 

2.2 The dual interpreted two-person 
pebble game 

This game, introduced in [VT89], is played by two 
players called Player 0 and Player 1 on the vertices 
of a bounded fan-in Boolean circuit Gn  together with 
its input x. The objective of Player 0 (Player 1) is to 
establish that the output of the circuit evaluates to 0 
(1). Thus, a pebble placement or challenge on a gate 
v by Player 0 (Player 1) corresponds to asserting that 
v evaluates to 0 (1). At any point, one of the players 
takes on the role of the Challenger and the other that 
of the Pebbler. The role of a player is automatically 
determined as part of the circuit information as fol-
lows. The gates in Gn  are partitioned into two sets, 
those of "challenge type" 0 and those of "challenge 
type" 1. A challenge placed on a gate of challenge 
type 0 (challenge type 1) causes Player 0 (Player 1) 
to be the Challenger in the next round. It is assumed 
that this additional bit per vertex is available as part 
of the circuit description. 

A challenge by Player 0 (Player 1) will be referred 
to as a 0-challenge (1-challenge). Similarly, a pebble 
placed by Player 0 (Player 1) will be referred to as a 
0-pebble (1-pebble). 

Rules: The initial challenge is on the output gate. 
The game proceeds in rounds with a round consist-
ing of the following three parts. (a) If the game is not  

over at the currently challenged vertex u according to 
the conditions below, then Player 0 is the Challenger 
for this round if u is of challenge type 0 and the Peb-
bler otherwise. (b) In the pebbling move, the Peb-
bler picks up zero or more of its own pebbles from 
vertices already pebbled and places pebbles on any 
nonempty set of vertices. (c) In the challenging move, 
the Challenger either rechallenges the currently chal-
lenged vertex, or challenges one of the vertices that 
acquired a pebble in the current round. 

Player 1 wins the game if, immediately following 
the Challenger's move, the current challenged vertex 
is an input with value 1, or an OR gate at least one 
of whose immediate predecessors is 1-pebbled, or an 
AND gate all of whose immediate predecessors are 1-
pebbled. Player 0 wins if immediately following the 
Challenger's move, the current challenged vertex is 
an input with value 0, or an OR gate all of whose im-
mediate predecessors are 0-pebbled, or an AND gate 
at least one of whose immediate predecessors is 0-
pebbled. The winner in an infinite play of the game 
is the player who has been the Pebbler for only finitely 
many rounds. 

Resources: The four resources of interest in a 
play of this game are: space, time, rounds, and role 
switches. 

The game on a circuit Gn  with input x E L of 
length n is said to use space p(n) (time t(n), rounds 
r(n), role switches s(n) resp.) if and only if there is a 
strategy for Player 1 such that, for all plays by Player 
0, Player 1 wins using at most p(n) 1-pebbles (t(n) 
1-pebble placements, r(n) rounds in which Player 1 is 
the Pebbler, s(n) role switches between pebbling and 
challenging roles reap.). Resources when x ¢ L are 
defined by interchanging Player 0 and Player 1. A cir-
cuit Gn  with input x is said to be pebbleable in space 
p(n),time t(n), rounds r(n), role switches s(n) if the 
winner has a winning strategy using no more than 
p(n) pebbles, t(n) pebble placements, r(n) alterna-
tions between the players and s(n) role-switches be-
tween the pebbling and challenging roles. Note that 
only the winner's resources are counted. 

2.3 Extensions to the dual interpreted 
game 

We now consider extensions of the dual interpreted 
game to facilitate playing the game on Boolean cir-
cuits that have exponential size and/or unbounded 
fan-in. 

To extend the game to exponential size circuits, 
we introduce a purely syntactic parameter called 



weight. For our results here, the weight of a peb-
ble is O(log Z(n)), where Z(n) is the size of the cir-
cuit on which the pebble game is played. This helps 
to distinguish between complexity classes which have 
otherwise the same pebbling resource characteristics. 

For playing the dual interpreted game on un-
bounded fan-in circuits, we will first introduce a sim-
ple rule about challenge types of gates that is suffi-
cient for the purposes of this paper. 

Rule (*): Any unbounded fan-in OR (AND) gate 
is of challenge type 0 (1). 

The modifications needed to extend the game to 
unbounded fan-in Boolean circuits are reflected in the 
way resources are counted. For this purpose, we con-
sider two possibilities. One possibility is to use rule 
(**) below. This is motivated by the observation that 
a gate with fan-in f can be regarded, for our purposes, 
as a bounded fan-in circuit of depth log f . 

Rule (**): If the game is lost at an unbounded 
fan-in gate, the pebbler of that round is charged 
log log f rounds and time, where f is the fan-in of 
that gate. 

The other possibility is to not use this rule. In 
other words, the resources for playing the game on 
bounded fan-in Boolean circuits and unbounded fan-
in Boolean circuits are treated the same way. We will 
refer to this as the unit - cost game model. 

These two variations on counting resources lead to 
two different pebble game characterizations of NP and 
PH. 

2.4 The Characterization Results 

Let E(II) — PB,RND,SW,WT(p(n), r(n). s(n), w(n)) be 
the class of languages L accepted by uniform fam-
ily {Gn } of Boolean circuits of size 2°°"(n)), wherein 
Player 1 (Player 0) begins the game as the Pebbler, 
and such that Gn  is pebbleable in p(n) pebbles, r(n) 
rounds, and s(n) role switches. 

Let 
UE (UII) — PB,RND,SW,WT(p(n), r(n), s(n), w(n)) be 
the class of languages L accepted by a uniform fam-
ily IGn ) of Boolean circuits of size 2°(w(n)), wherein 
Player 1 (Player 0) begins the game as the Pebbler, 
and such that Gn  is pebbleable in p(n) pebbles, r(n) 
rounds and s(n) role switches in the unit-cost model. 

Note: The classes are defined in terms of rounds 
rather than time. This seems more natural when non-
constant pebbles are used. In the case when constant  

pebbles are used, it is easy to see that the number of 
rounds and the time differ only by a constant factor. 

We drop the E(ll) prefix if either player can begin 
the game as the Pebbler. 

Theorem 1 below follows from corollaries 5, 7, 10, 
12, 14 and 15 below. 

Theorem 1 1. 
NP = E — PB,RND,SW,WT(O(1), log n, 0, n °(1) ). 

2. NP = 
UE — PB,RND,SW,WT(n °(1) , 0(1), 0, n°(1) ). 

5. Ek = 
E — PB,RND,SW,WT(O(1), log n, k — 1, nO(1) ). 

4. LE  of cp  FBI = 
PB,RND ,SW,WT(O(1), 

ND  
,SW,WT(0(1), 0(log n), 0, O(log n)). 

5. AC' = 
E 
PB,RND,SW,WT(O(1), O(log n), O(log n), O(log n)). 

The pebbling characterization of PH in theo-
rem 1 above should be contrasted with the results 
in [BCDRT89] where they show that constant role-
switches may not help when polynomial size circuits 
are considered. 

It is interesting to look at other classes defined by 
uniform fimilies of exponential circuits that are not 
constant depth. Thus, for instance, we can define 
NAC 1  to be the class of languages recognized by al-
ternating Turing machines in polynomial space and 
alternation depth O(log n). By a result of Cook and 
Ruzzo [Co85], this class is equivalent to the class of 
languages accepted by uniform families of unbounded 
fan-in circuits of size 2n depth O(log n). This 
class which is contained in PSPACE is interesting be-
cause it contains NP and is closed under complement. 
A pebbling characterization of NAC 1  is given in the-
orem 2 below whose proof follows from corollaries 12 
and 14. 

Theorem 2 
NAC 1  = PB,RND,SW,WT(0(1),logn,logn,e( 1 )). 

Finally, a pebbling characterization of PSPACE is 
given in theorem 3 below whose proof follows from 
corollaries 5 and 14. 

Theorem 3 PSPACE = PB,WT(0(1), n°( 1 )). 



2.5 Pebbling Semi-Unbounded Fan-in 
Circuits 

To obtain an alternative pebbleing characterization 
of NP, we have the following theorem: 

Pebble games on semi-unbounded fan-in circuits are 
interesting because many natural complexity classes 
have definitions using semi-unbounded fan-in cir-
cuits [Ve87, Ve88]: 

Facts: 
LOGCFL = SemiUnbounded USIZE,DEPTH (n °(1) , log n). 

NP = SemiUnbounded USIZE,DEPTH (2" °(1) , log n). 
NP = 
Unbounded USIZE,DEPTH,AND (2'0(1) , OM, n°( 1 )). 
P = SemiUnbounded USIZE,DEPTH (n°( 1 ), n°( 1 )). 
PSPACE = 

SemiUnbounded USIZE,DEPTH (2"
c,(1) 

 , n 
oi 

 +11. 

Considering a general semi-unbounded fan-in cir-
cuit family of size Z(n) and depth D(n), we have the 
following result: 

Theorem 4 
SemiUnbounded USIZE,DEPTH (Z(n), D(n)) C 
E — PB,RND,SW,WT 

(0(1), max(log log Z(n), D(n)), 0, log Z(n)). 

Proof Sketch: We use the following definition of 
NP: SemiUnbounded USIZE,DEPTH (2n°(1) , log n). All 
gates in the circuit have challenge type 0. Let the 
circuit evaluate to 1 on the given input. Consider a 
depth-first pebbling of a proof in the circuit. Since 
the AND gates are bounded, by Rule (**), the time 
taken by Player 1 to pebble the circuit would be no 
more than max(log log Z(n), D(n)) using a constant 
number of pebbles. If the circuit evaluates to 0, the 
Player 0 wins without using any resources. ❑ 

Considering unbounded fan-in circuits in which the 
OR gates are restricted to have bounded fan-in, it is 
straightforward to prove a dual version of theorem 4 
above. So, we have the following corollaries: 

Corollary 5 1. LOGCFL C 
E — PB,RND,SW,WT(O(1), O(log n), 0, O(log n)). 

2. NP C 

E — PB,RND,SW,WT(O(1), O(log n), 0, n°( 1 )). 

3. CONP C 

H — PB,RND,SW,WT(O(1), O(log n), 0, n°( 1 )). 

4. PSPACE C 
E — PB,RND,SW,WT(O(1), n ° ( 1 ), 0, n°( 1 )). 

5. P C 
E — PB,RND,SW,WT(O(1), n°( 1 ), 0, O(log n)). 

Theorem 6 
Unbounded USIZE,DEPTH,AND (Z(n), D(n), f (n)) C 
UE — PB,RND,SW,WT(f(n), D(n), 0, log Z(n)). 

Proof Sketch: The proof is similar to that of the-
orem 4, when the following definition of NP is used: 
Unbounded USIZE,DEPTH,AND (2 nO(1) , 0(1), ri ()(1) ), 
All gates in the circuit have challenge type 0. Let 
the circuit evaluate to 1 on the given input. Con-
sider a depth-first pebbling of a proof in the circuit. 
Player 1 can win the game using at most f (n) pebbles 
in D(n) rounds since the AND gates have fan-in at 
most f (n). If the circuit evaluates to 0, the Player 0 
wins without using any resources. ❑ 

This theorem yields the following corollary: 

Corollary 7 NP C 
UE — PB,RND,SW,WT(n°( 1 ), 0(1), 0, n°( 1 )). 

To obtain a pebbling characterization of the poly-
nomial time hierarchy, we begin with a uniform 
Boolean circuit characterization of the polynomial 
time hierarchy. 

Theorem 8 Er 
Ek — Unbounded USIZE,DEPTH (2" °(1) , log n). 

Proof Sketch: Let L be a language in Er and 
M be an NP machine with an NP oracle that accepts 
L. We will assume that M makes an oracle query 
only once along a computation path. Using the cir-
cuit characterization of NP in terms of uniform E 1

-Unbounded fan-in circuits and CONP in terms of  lIl-
Unbounded fan-in circuits, we can combine them to 
obtain a two-layered circuit that simulates M. 

In the other direction, a uniform E2-Unbounded 
fan-in circuit of size 2 7.40(1)  and depth O(log n) can be 
evaluated by an NP machine M with an NP oracle as 
follows: M existentially guesses a proof in the circuit 
till it reaches an unbounded AND gate at which point 
it will simulate a CONP machine to verify that this 
AND gate is accepting. ❑ 

The resources for playing the pebble game on the 
circuits defining PH is given by the following theorem: 

Theorem 9 
Ek — Unbounded USIZE,DEPTH (Z(n), D(n)) C 
E — PB,RND,SW,WT 
(0(1), max(log log Z(n), D(n)), k — 1, log Z(n)). 



Proof sketch: It is clear that only odd (even) 
numbered layers have unbounded fan-in OR(AND, 
respectively) gates. Since all gates in the odd (even) 
numbered layers are assigned challenge type 0 (chal-
lenge type 1, resp.), the game can be confined to one 
layer using 0(1) pebbles and k —1 role-switches. Since 
any one layer is a semi-unbounded fan-in circuit or its 
dual, the result follows. ❑ 

Corollary 10 Er C 
E — PB,RND,SW,WT(O(1), O(log n), k — 1, nO( 1 )). 

2.6 Pebbling Unbounded Fan-in Cir-
cuits 

Considering unbounded fan-in circuits, we can prove 
the following analog of theorem 4: 

Theorem 11 
Unbounded USIZE,DEPTH (Z(n), D(n)) C 
E — PB,RND,SW,WT 
(0(1), max(log log Z(n), D(n)), D(n), log Z(n)). 

The following two corollaries of this theorem are 
now immediate: 

Corollary 12 1. AC 1  C 
E 
PB,RND,SW,WT(O(1), O(log n), O(log n), O(log n)). 

2. NAC 1  C 

PB,RND,SW,WT(O(1), O(log n), O(log n), n°( 1 )). 

2.7 Simulating the Game by an Alter-
nating Turing Machi 

The following theorem, which gives! 	•sources used 
by an alternating Turing machine 	simulate the 
game, generalizes theorem 11 in [V I ,; and can be 
proved by slightly modifying the proof of that theo-
rem. 

Theorem 13 If L is accepted by a uniform family 
IG,2 1 of bounded fan-in circuits of ci7e Z(n) such 
that On  is pebbleable in p pebbles, t time, and r 
rounds in the dual game, then L is accepted by an al-
ternating Turing machine within space O(p • w(n))., 
time 0(max(t • w(n), w(n) • log w(n)) and alterna-. 
tions 0(max(r,log w(n)). Here, w(n) is taken to be 
log Z(n). If, in addition, Player 1 is always the Peb-
bler, then L is accepted within space O(p • w(n)) and 
tree-size max(w 2 (n), p°(r)). 

Proof Sketch: The proof is analaogous to that of 
theorem 11 in [VT89]. Recall now that the direct 
connection language of the circuits involved can be 
recognized in time O(w(n)) by a deterministic Tur-
ing machine, since the circuits are Up-uniform. But, 
this can be simulated by an alternating Turing ma-
chine with space O(w(n)), time O(w(n) • log w(n)), 
alternations O(log w(n)) and tree-size 0(w 2 (n)).0 

The following corollaries now follow from known 
relationships. 

Corollary 14 1. 
E — PB,RND,SW,WT(O(1), O(log n), 0, O(log n)) 
C LOGCFL. 

2. E — PB,RND,SW,WT(O(1), O(log n), 0, n°( 1 )) 
C NP. 

3. UE — PB,RND,sw,wT(n°( 1 ), 0(1), 0, n ° ( 1 )) 
C NP. 

H — PB,RND,SW,WT(O(1), O(log 40, n°( 1 )) 
C CONP. 

5. E 	 — 
PB,RND,SW,WT(O(1), O(log n), O(log n), O(log n)) 

C ACI . 

6. E 	 — 
PB,RND,SW,WT(O(1), O(log n), O(log n), nO( 1 )) 
C NACI . 

The simulation of a k — 1 role switch game in ex-
ponential size circuits by a Er machine is captured 
by the following corollary. 

Corollary 15 E 
PB,RND,SW,WT(O(1), O(log n), k — 1, n°( 1 )) C Er. 

Proof sketch: We show this for k = 2. An NP 
machine can simulate the game until a role-switch 
occurs. When the role switch does occur, Player 
0 becomes the Pebbler and there are no more role 
switches. The outcome of the game, given its cur-
rent configuration, can thus be determined by an NP 
oracle.° 

Remarks: It is straightforward to give a pebbling 
characterization of the polynomial time hierarchy in 
the unit-cost game model analogous to such a char-
acterization of the class NP (see theorem 1). Such a 
characterization is possible because PH can be charac- 
terized as Unbounded USIZE,DEPTH (2'10(1)  , 0(1)). It 
is also not too difficult to define uniform AO in the 
pebble game model. The details will appear in the 
full version of this paper. 



3 Logic Characterizations 

The main result in this section is the characteriza-
tion of NP using first order sentences. In [Im82], 
two resources on first order sentences, namely vari-
ables and size were introduced to obtain character-
izations of simultaneous resource bounded classes. 
In [Im81, Im82, Im87], it is assumed that all vari-
ables carry no more than log n bits of information. 
Motivated by the results in the previous section, we 
introduce variables which carry w(n) > log n bits of 
information. 

We also define uniformity for first order sentences 
by introducing the notion of a direct connection lan-
guage analogous to those for Boolean circuits [Ru81]. 
All the symbols in the formula are indexed and since 
a variable may occur in more than one place, the 
index distinguishes them. Note that not more than 
log Z(n) bits are necessary to index a formula with 
at most Z(n) symbols. Queries such as, "Is variable 
v at position p universally quantified?" can all be an-
swered by the uniformity machine. In the case where 
constant number of variables are used, the syntactic 
uniformity from [Im82] can also be used. 

3.1 The Characterization results 

Let VAR,SIZE,WT(V(n), Z(n), W(n)) denote a se-
quence of uniform first order sentences {F,-,} where 
F„ has V(n) variables, 0(Z (n)) symbols and the 
quantifiers range over a universe whose cardinality is 
2°("))  Let VAR,SIZE,WT (BV)(V (n), Z(n), W(n)) 
be defined as above except that now the universal 
quantifiers range over a Boolean universe. 

We prove the following theorems whose proofs fol-
low from corollaries 18, 20 and 22. 

Theorem 16 1. 
NP = VAR,SIZE,WT (BV)(0(1), O(log n), e( 1 )). 

2. PSPACE = VAR,SIZE,WT(O(1), n0(1), nom). 

The characterization of PSPACE by Immer-
man [Im82], when phrased using the weight resource 
would be VAR,siZE,wT(0(1),2n °(1) , log n). Thus 
these two characterizations of PSPACE provide a 
weight-size tradeoff. 

The characterization results above will be proved 
by relating first order expressibility to alternating 
Turing machine resources. 

Theorem 17 For W(n) > log n, S(n) > log n, 

ASPACE,TREESIZE(S(n), Z(n)) C 

VAR,SIZE,WT (BV)(0( 	• log Z(n), W(n)). 

Proof: The proof is adapted from the second in-
clusion in theorem B.1 of [Im82] with modifications 
needed to accomodate the weight resource. The 
space used by the machine is S(n) and every vari-
able contains W(n) bits of information. Hence, no 
more than 0( S  n) variables are needed to code 
any configuration. The size of the sentences will be 
0( s  n  log Z(n)). 0 

Corollary 18 1. LOGCFL C 
VAR,SIZE,WT (BV)(0(1), O(log n), O(log n)). 

2. NP C 
VAR,SIZE,WT (BV)((0(1), O(log n), n °(1) ). 

To characterize PSPACE we consider the rela-
tionship between first order expressibility and time 
bounded alternating Turing machines. In one direc-
tion, we have the following theorem. We omit the 
easy proof. 

Theorem 19 For W(n) > logn, S(n) > logn, 

ASPACE,TIME“ , .5)(n), T (n)) C 
vAR tsizE,wr(o(i54'n ), T(n), W(n)). 

Corollary 20 1. P C 
VAR,SIZE,WT(O(1), n°( 1 ), O(log n)). 

2. PSPACE C 

VAR,SIZE,WT(O(1), n°( 1 ), n °(1) ). 

The containments in the other direction follow from 
the theorem below whose proof is omitted from this 
extended abstract. 

Theorem 21 If L is expressible by a uniform family 
of senetences {Fn } that uses V(n) variables, T(n) size 
and W(n) weight, then L is accepted by an alternat-
ing Turing machine within space 0 (V (n) • W (n)) and 
time O(T(n) • W(n)). If, in addition, the universal 
quanifiers are Boolean, then L is accepted by such a 
machine with treesize cT(n) for some constant c. 

Corollary 22 1. 
VAR,SIZE,WT (BV)(0(1), O(log n), O(log n)) 
C LOGCFL. 



2. VAR,SIZE,WT (BV)(0(1), O(log n), n°( 1 )) 
	

order characterizations of PSPACE. What are 
C NP. 	 some general tradeoff relations between weight 

3. VAR,SIZE,WT(O(1), n°( 1 ), O(log n)) 
	 and size? 

C P. 

VAR,SIZE,WT((O(1), n°( 1 ), n°( 1 )) 
C PSPACE. 

4 Open Problems 

We will conclude by stating some open problems. 

• Do role switches in two-person pebble games 
help? It is known that for certain polynomial 
size circuit hierarchies constant number of role 
switches do not help. But, our characterization 
of PH in terms of role switches suggest that tak-
ing weight into consideration may alter this situ-
ation. It would also be quite interesting to iden-
tify circuits for natural problems for which role 
switches help. 

• The circuit characterization of complexity classes 
suggests the definition of new classes. We de-
fined one such class NAC 1  that seemed like a 
good analog of AC 1 . An interesting question 
here is to identify natural complete problems 
for this and other such classes. In this connec-
tion, it is worth mentioning that Chandra and 
Tompa [CT88] have shown that a class of short 
two-person games are complete for AC 1 . These 
problems may suggest similar problems complete 
for NAC 1 . 

• Semi-unboundedness 	versus 	unbounded- 
ness: Semi-unboundedness seems like a useful 
concept to capture the computations in many 
natural complexity classes [Ve88]. An impor-
tant question in this area concerns the relation-. 
ship between this notion and that of unbounded-. 
ness. For instance, in the uniform Boolean cir-
cuit model, this may shed light on the relation-
ship between NP and PH. 

• First order expressibility versus second order ex-
pressibility: It is well known that NP is identical 
with the class of second order existential formu-
las [Fa74]. What is the link between the first 
order characterization of NP in this paper and 
second order formulas? 

• Tradeoffs between weight and size: We have ex-
hibited a weight and size tradeoff in the first 
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Abstract 

The results of experimenting with three parallel algo-
rithms on the Sequent Symmetry architecture and the 
BBN Butterfly architecture are reported. The main ob-
jective of this study is to understand the impediments to 
the efficient implementation of parallel algorithms, devel-
oped for theoretical models of parallel computation, on . 
realistic parallel architectures. Scheduling, task granular-
ity, and synchronization are the issues that are explored in 
implementing these algorithms on the two architectures. 

In the case of BBN Butterfly, which is a distributed shared 
memory architecture,data distribution in the distributed 
memories is also studied. The key findings are that syn-
chronization is not a significant cost for the algorithms 
we studied on the two architectures; the bus is not a bot-
tleneck for the configuration of the Sequent machine that 
we experimented with; and a fairly simple minded data 
distribution may be as good as any other on the BBN 
Butterfly. 

1 Introduction 

Parallel Computation provides some of the most challeng-
ing problems in computer science. The term parallel com-
putation covers a broad spectrum of research ranging from 
purely theoretical models for complexity analysis of par-
allel algorithms, to detailed system performance issues of 
large problems that lend themselves to parallel implemen-
tations. Both ends of the spectrum have one thing in com-
mon, namely, to understand the performance potential of 
parallel computation. A computation is expressed as a 
task graph and the objective is to determine the speedup 
that is realizable for the computation. While the theo-
retical models are concerned with the asymptotic limits 
of computing in parallel, the system-oriented studies are 
concerned with determining the best heuristic mapping 
for a computation on a target architecture that would re-
sult in the best (average case) performance. Each study 
has its merits and de-merits. The asymptotic limits give 
a ceiling for maximum achievable performance for a given 

This work has been funded in part by NSF grants CCR-
8711749, CCR-8619886, and MIPS-8809268.  

algorithm based on an abstract model of parallel architec-
tures. The average case results are useful for determining 
what is achievable in reality. 

Understanding the performance of parallel computation 
requires a knowledge of the capabilities of the underlying 
parallel architecture. Further, the performance limits de-
pend on the mapping of the problem on to the parallel 
architecture. Theoretical models abstract away real life 
limits such as the number of processors, synchronization 
requirements, scheduling and data distribution to derive 
the asymptotic limits. On the other hand, system-oriented 
studies are so concerned with mapping the algorithm to 
real architectures that it is difficult to know from the re-
sults of such studies where the parallelism inherent in the 
algorithm has been lost. The aim of this study is to ad-
dress some of the issues in the interface between theory 
and architecture, from the point of view of algorithmic 
performance. 

Parallel algorithms for certain problems theoretically 
guarantee a certain amount of speedup. But when these 
algorithms are implemented on existing architectures, 
the results may not agree with the expected theoretical 
speedup. Some inherent features in the algorithm, its im-
plementation, and the hardware capabilities of the ma-
chine together contribute to the slow-down. The parallel 
algorithms usually assume a certain minimum number of 
processors to be available with an underlying intercon-
nection topology between them. To implement such algo-
rithms, we may have to make do with a limited number 
of processors and simulate the assumed interconnection. 
The language run time and the operating system may fur-
ther introduce synchronization costs not inherent in the 
algorithm but are necessary to implement them on the 
parallel machine. And lastly, the hardware capabilities 
like synchronization primitives, memory access times and 
caching strategies may introduce further slow-down. 

One straightforward way to understand the architec-
tural impact on parallel computation is to implement algo-
rithms with intrinsic parallelism on parallel architectures 
and interpret the results with respect to the above factors. 
Therefore, we have chosen to perform our experiments on 
two parallel machines - the Sequent Symmetry and the 
BBN Butterfly- with entirely different architectures. The 
Sequent is a bus based shared memory multiprocessor ma- 
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