Given a formula in a temporal logic such as LTL or MTL, a fundamental problem
is the complexity of evaluating the formula on a given finite word. For LTL,
the complexity of this task was recently shown to be in NC. In this paper, we
present an NC algorithm for MTL, a quantitative (or metric) extension of LTL,
and give an NCC algorithm for UTL, the unary fragment of LTL. At the time of
writing, MTL is the most expressive logic with an NC path-checking algorithm,
and UTL is the most expressive fragment of LTL with a more efficient
path-checking algorithm than for full LTL (subject to standard
complexity-theoretic assumptions). We then establish a connection between LTL
path checking and planar circuits, which we exploit to show that any further
progress in determining the precise complexity of LTL path checking would
immediately entail more efficient evaluation algorithms than are known for a
certain class of planar circuits. The connection further implies that the
complexity of LTL path checking depends on the Boolean connectives allowed:
adding Boolean exclusive or yields a temporal logic with P-complete
path-checking problem