24 research outputs found

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    Image-set, Temporal and Spatiotemporal Representations of Videos for Recognizing, Localizing and Quantifying Actions

    Get PDF
    This dissertation addresses the problem of learning video representations, which is defined here as transforming the video so that its essential structure is made more visible or accessible for action recognition and quantification. In the literature, a video can be represented by a set of images, by modeling motion or temporal dynamics, and by a 3D graph with pixels as nodes. This dissertation contributes in proposing a set of models to localize, track, segment, recognize and assess actions such as (1) image-set models via aggregating subset features given by regularizing normalized CNNs, (2) image-set models via inter-frame principal recovery and sparsely coding residual actions, (3) temporally local models with spatially global motion estimated by robust feature matching and local motion estimated by action detection with motion model added, (4) spatiotemporal models 3D graph and 3D CNN to model time as a space dimension, (5) supervised hashing by jointly learning embedding and quantization, respectively. State-of-the-art performances are achieved for tasks such as quantifying facial pain and human diving. Primary conclusions of this dissertation are categorized as follows: (i) Image set can capture facial actions that are about collective representation; (ii) Sparse and low-rank representations can have the expression, identity and pose cues untangled and can be learned via an image-set model and also a linear model; (iii) Norm is related with recognizability; similarity metrics and loss functions matter; (v) Combining the MIL based boosting tracker with the Particle Filter motion model induces a good trade-off between the appearance similarity and motion consistence; (iv) Segmenting object locally makes it amenable to assign shape priors; it is feasible to learn knowledge such as shape priors online from Web data with weak supervision; (v) It works locally in both space and time to represent videos as 3D graphs; 3D CNNs work effectively when inputted with temporally meaningful clips; (vi) the rich labeled images or videos help to learn better hash functions after learning binary embedded codes than the random projections. In addition, models proposed for videos can be adapted to other sequential images such as volumetric medical images which are not included in this dissertation

    Reconstruction, Classification, and Segmentation for Computational Microscopy

    Full text link
    This thesis treats two fundamental problems in computational microscopy: image reconstruction for magnetic resonance force microscopy (MRFM) and image classification for electron backscatter diffraction (EBSD). In MRFM, as in many inverse problems, the true point spread function (PSF) that blurs the image may be only partially known. The image quality may suffer from this possible mismatch when standard image reconstruction techniques are applied. To deal with the mismatch, we develop novel Bayesian sparse reconstruction methods that account for possible errors in the PSF of the microscope and for the inherent sparsity of MRFM images. Two methods are proposed: a stochastic method and a variational method. They both jointly estimate the unknown PSF and unknown image. Our proposed framework for reconstruction has the flexibility to incorporate sparsity inducing priors, thus addressing ill-posedness of this non-convex problem, Markov-Random field priors, and can be extended to other image models. To obtain scalable and tractable solutions, a dimensionality reduction technique is applied to the highly nonlinear PSF space. The experiments clearly demonstrate that the proposed methods have superior performance compared to previous methods. In EBSD we develop novel and robust dictionary-based methods for segmentation and classification of grain and sub-grain structures in polycrystalline materials. Our work is the first in EBSD analysis to use a physics-based forward model, called the dictionary, to use full diffraction patterns, and that efficiently classifies patterns into grains, boundaries, and anomalies. In particular, unlike previous methods, our method incorporates anomaly detection directly into the segmentation process. The proposed approach also permits super-resolution of grain mantle and grain boundary locations. Finally, the proposed dictionary-based segmentation method performs uncertainty quantification, i.e. p-values, for the classified grain interiors and grain boundaries. We demonstrate that the dictionary-based approach is robust to instrument drift and material differences that produce small amounts of dictionary mismatch.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/102296/1/seunpark_1.pd

    Agricultural Monitoring System using Images through a LPWAN Network

    Get PDF
    Internet of things (IoT) has turned into an opportunity to connect millions of devices through communication networks in digital environments. Inside IoT and mainly in the technologies of communication networks, it is possible to find Low Power Wide Area Networks (LPWAN). Within these technologies, there are service platforms in unlicensed frequency bands such as the LoRa Wide Area Network (LoRaWAN). It has features such as low power consumption, long-distance operation between gateway and node, and low data transport capacity. LPWAN networks are not commonly used to transport high data rates as in the case of agricultural images. The main goal of this research is to present a methodology to transport images through LPWAN networks using LoRa modulation. The methodology presented in this thesis is composed of three stages mainly. The first one is image processing and classification process. This stage allows preparing the image in order to give the information to the classifier and separate the normal and abnormal images; i.e. to classify the images under the normal conditions of its representation in contrast with the images that can represent some sick or affectation with the consequent presence of a particular pathology. For this activity. it was used some techniques were used classifiers such as Support Vector Machine SVM, K-means clustering, neuronal networks, deep learning and convolutional neuronal networks. The last one offered the best results in classifying the samples of the images. The second stage consists in a compression technique and reconstruction algorithms. In this stage, a method is developed to process the image and entails the reduction of the high amount of information that an image has in its normal features with the goal to transport the lowest amount of information. For this purpose, a technique will be presented for the representation of the information of an image in a common base that improves the reduction process of the information. For this activity, the evaluated components were Wavelet, DCT-2D and Kronecker algorithms. The best results were obtained by Wavelet Transform. On the other hand, the compres- sion process entails a series of iterations in the vector information, therefore, each iteration is a possibility to reduce that vector until a value with a minimum PSNR (peak signal to noise ratio) that allows rebuilding the original vector. In the reconstruction process, Iterative Hard Thresholding (IHT), Ortogonal MAtching Pur- suit (OMP), Gradient Projection for Sparse Reconstruction (GPSR)and Step Iterative Shrinage/Thresholding (Twist) algorithms were evaluated. Twist showed the best performance in the results. Finally, in the third stage, LoRa modulation is implemented through the creation of LoRa symbols in Matlab with the compressed information. The symbols were delivered for transmission to Software Defined Radio (SDR). In the receptor, a SDR device receives the signal, which is converted into symbols that are in turn converted in an information vector. Then, the reconstruction process is carried out following the description in the last part of stage 2 - compression technique and reconstruction algorithms, which is described in more detailed in chapter 3, section 3.2. Finally, the image reconstructed is presented. The original image and the result image were compared in order to find the differences. This comparison used Peak Signal-to-Noise Ratio (PSNR) feature in order to get the fidelity of the reconstructed image with respect of the original image. In the receptor node, it is possible to observe the pathology of the leaf. The methodology is particularly applied for monitoring abnormal leaves samples in potato crops. This work allows finding a methodology to communicate images through LPWAN using the LoRa modulation technique. In this work, a framework was used to classify the images, then, to process them in order to reduce the amount of data, to establish communication between a transmitter and a receiver through a wireless communication system and finally, in the receptor, to obtain a picture that shows the particularity of the pathology in an agricultural crop.Gobernación de Boyacá, Colfuturo, Colciencias, Universidad Santo Tomás, Pontificia Universidad JaverianaInternet of things (IoT) has turned into an opportunity to connect millions of devices through communication networks in digital environments. Inside IoT and mainly in the technologies of communication networks, it is possible to find Low Power Wide Area Networks (LPWAN). Within these technologies, there are service platforms in unlicensed frequency bands such as the LoRa Wide Area Network (LoRaWAN). It has features such as low power consumption, long-distance operation between gateway and node, and low data transport capacity. LPWAN networks are not commonly used to transport high data rates as in the case of agricultural images. The main goal of this research is to present a methodology to transport images through LPWAN networks using LoRa modulation. The methodology presented in this thesis is composed of three stages mainly. The first one is image processing and classification process. This stage allows preparing the image in order to give the information to the classifier and separate the normal and abnormal images; i.e. to classify the images under the normal conditions of its representation in contrast with the images that can represent some sick or affectation with the consequent presence of a particular pathology. For this activity. it was used some techniques were used classifiers such as Support Vector Machine SVM, K-means clustering, neuronal networks, deep learning and convolutional neuronal networks. The last one offered the best results in classifying the samples of the images. The second stage consists in a compression technique and reconstruction algorithms. In this stage, a method is developed to process the image and entails the reduction of the high amount of information that an image has in its normal features with the goal to transport the lowest amount of information. For this purpose, a technique will be presented for the representation of the information of an image in a common base that improves the reduction process of the information. For this activity, the evaluated components were Wavelet, DCT-2D and Kronecker algorithms. The best results were obtained by Wavelet Transform. On the other hand, the compres- sion process entails a series of iterations in the vector information, therefore, each iteration is a possibility to reduce that vector until a value with a minimum PSNR (peak signal to noise ratio) that allows rebuilding the original vector. In the reconstruction process, Iterative Hard Thresholding (IHT), Ortogonal MAtching Pur- suit (OMP), Gradient Projection for Sparse Reconstruction (GPSR)and Step Iterative Shrinage/Thresholding (Twist) algorithms were evaluated. Twist showed the best performance in the results. Finally, in the third stage, LoRa modulation is implemented through the creation of LoRa symbols in Matlab with the compressed information. The symbols were delivered for transmission to Software Defined Radio (SDR). In the receptor, a SDR device receives the signal, which is converted into symbols that are in turn converted in an information vector. Then, the reconstruction process is carried out following the description in the last part of stage 2 - compression technique and reconstruction algorithms, which is described in more detailed in chapter 3, section 3.2. Finally, the image reconstructed is presented. The original image and the result image were compared in order to find the differences. This comparison used Peak Signal-to-Noise Ratio (PSNR) feature in order to get the fidelity of the reconstructed image with respect of the original image. In the receptor node, it is possible to observe the pathology of the leaf. The methodology is particularly applied for monitoring abnormal leaves samples in potato crops. This work allows finding a methodology to communicate images through LPWAN using the LoRa modulation technique. In this work, a framework was used to classify the images, then, to process them in order to reduce the amount of data, to establish communication between a transmitter and a receiver through a wireless communication system and finally, in the receptor, to obtain a picture that shows the particularity of the pathology in an agricultural crop.Doctor en IngenieríaDoctoradohttps://orcid.org/0000-0002-3554-1531https://scholar.google.com/citations?user=5_dx9REAAAAJ&hl=eshttps://scienti.minciencias.gov.co/cvlac/EnRecursoHumano/query.d

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    A comprehensive review of scab disease detection on Rosaceae family fruits via UAV imagery

    Get PDF
    Disease detection in plants is essential for food security and economic stability. Unmanned aerial vehicle (UAV) imagery and artificial intelligence (AI) are valuable tools for it. The purpose of this review is to gather several methods used by our peers recently, hoping to provide some knowledge and assistance for researchers and farmers so that they can employ these technologies more advantageously. The studies reviewed in this paper focused on Scab detection in Rosaceae family fruits. Feature extraction, segmentation, and classification methods for processing the UAV-obtained images and detecting the diseases are discussed briefly. The advantages and limitations of diverse kinds of UAVs and imaging sensors are also explained. The widely applied methods for image analysis are machine learning (ML)-based models, and the extensively used UAV platforms are rotary-wing UAVs. Recent technologies that cope with challenges related to disease detection using UAV imagery are also detailed in this paper. Some challenging issues such as higher costs, limited batteries and flying time, huge and complex data, low resolution, and noisy images, etc., still require future consideration. The prime significance of this paper is to promote automation and user-friendly technologies in Scab detection

    A review on deep-learning-based cyberbullying detection

    Get PDF
    Bullying is described as an undesirable behavior by others that harms an individual physically, mentally, or socially. Cyberbullying is a virtual form (e.g., textual or image) of bullying or harassment, also known as online bullying. Cyberbullying detection is a pressing need in today’s world, as the prevalence of cyberbullying is continually growing, resulting in mental health issues. Conventional machine learning models were previously used to identify cyberbullying. However, current research demonstrates that deep learning surpasses traditional machine learning algorithms in identifying cyberbullying for several reasons, including handling extensive data, efficiently classifying text and images, extracting features automatically through hidden layers, and many others. This paper reviews the existing surveys and identifies the gaps in those studies. We also present a deep-learning-based defense ecosystem for cyberbullying detection, including data representation techniques and different deep-learning-based models and frameworks. We have critically analyzed the existing DL-based cyberbullying detection techniques and identified their significant contributions and the future research directions they have presented. We have also summarized the datasets being used, including the DL architecture being used and the tasks that are accomplished for each dataset. Finally, several challenges faced by the existing researchers and the open issues to be addressed in the future have been presented
    corecore