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Abstract: Disease detection in plants is essential for food security and economic stability. Unmanned
aerial vehicle (UAV) imagery and artificial intelligence (Al) are valuable tools for it. The purpose
of this review is to gather several methods used by our peers recently, hoping to provide some
knowledge and assistance for researchers and farmers so that they can employ these technologies
more advantageously. The studies reviewed in this paper focused on Scab detection in Rosaceae
family fruits. Feature extraction, segmentation, and classification methods for processing the UAV-
obtained images and detecting the diseases are discussed briefly. The advantages and limitations
of diverse kinds of UAVs and imaging sensors are also explained. The widely applied methods for
image analysis are machine learning (ML)-based models, and the extensively used UAV platforms
are rotary-wing UAVs. Recent technologies that cope with challenges related to disease detection
using UAV imagery are also detailed in this paper. Some challenging issues such as higher costs,
limited batteries and flying time, huge and complex data, low resolution, and noisy images, etc.,
still require future consideration. The prime significance of this paper is to promote automation and
user-friendly technologies in Scab detection.

Keywords: Scab; Rosaceae fruits; disease detection; UAVs; artificial intelligence (AI); machine
learning (ML)

1. Introduction

Rosaceae fruits are grown extensively and cultivated globally. Among Rosaceae family
members, apples, peaches, cherries, strawberries, avocadoes, and almonds, are produced
on a larger scale due to their higher nutritional values. The production of these fruits is
highly influenced by pests and different diseases. Among these diseases, the Scab is the
most acute fungal disease that infects the leaves as well as the fruits. It is a threat that
results in inadequate quality and heavy wastage of Rosaceae fruits. Serious considerations
and accurate detection systems are essential to detect this disease at the initial stages [1,2].
Rosaceae fruits have abundant leaves that are observed to detect diseases and sustain
production. This observation requires automation through advanced technologies such
as artificial intelligence (Al)-driven unmanned aerial vehicles (UAVs) that can capture
multiple and enormous quantities of data, store images, reduce timely processes, allow
spraying on the required infected areas only, and so on. Similarly, by using subdomains
of Al, deep learning (DL), and machine learning (ML) algorithms, healthy and infected
leaves can be identified and classified with greater accuracy. The studies reported in [3,4]
employed these technologies and detected Scab disease with greater accuracies, resulting
in sustainable production.

Background: Earlier experts were hired for manual tree monitoring, foliage exami-
nation, and disease detection [5]. They were skilled in their domains and had complete
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awareness of the diseases and their treatments. However, this manual diagnosis was
troublesome, error-subjective, less accurate, expensive, time-consuming, labor-intensive,
and required expertise. In the early 1960s, mechanical laboratories, livestock variables, and
fertilizer usage expanded the scale of agricultural production. To improve detection effi-
ciency, automatic detection technology emerged as the times required. Automatic detection
systems explored by Al techniques replaced manual work with mechanical work and gave
highly accurate disease detection in less time [6,7].

Related Work: Many studies have employed Al techniques for Scab detection in
Rosaceae fruits. The outcomes of their research show the significance of applying DL
and ML approaches for feature extraction, image segmentation and classification, and
the use of UAV imagery. The analysis in [8] provides reviews on various remote sensing
techniques, features, models, and algorithms to monitor pests, Scab, and other diseases in
apples, peaches, and other plants. One study [9] suggests remote sensing using UAVs for
detecting diseases and weeds, estimating the quality and production of fruits, classifying
trees, etc. It concludes that UAVs serve as powerful tools not only for site management but
also for individual tree management. Analysis in [10] reviews current applications of UAV
imaging for mapping and detection of diseases, pests, and weeds. Research in [11] lists
various Internet of Things (IoT) devices such as UAVs, sensors, and harvesting drones for
agricultural tasks. It describes the benefits of these devices that dominate the barriers to
disease detection and other agricultural tasks.

The study in [12] reviews the previous work of numerous authors who describe
the use of hyperspectral imaging to detect Scab and other diseases. The findings show
that using UAVSs, preprocessing of hyperspectral images, vegetation index, ML, and DL
methods provide efficient results for disease detection. Extensive literature on image
processing and ML techniques is given in [13]. The best results for Scab and various
disease detection, classification, and other applications related to the Rosaceae family and
other fruits were obtained by using DL approaches. In [14], the researchers applied a DL
algorithm and three classical ML algorithms to detect Scab and other diseases in apples,
peaches, cherries, and various fruits. The results prove the dominance of the DL algorithm
over ML algorithms in terms of accuracy and simplicity. The study in [15] details challenges
and trends for Scab and other disease detection while applying DL techniques. It also
exhibits the significance of using different sample sizes and hyperspectral imaging for
detecting diseases at preliminary stages.

Motivation and Contribution: Agricultural researchers are adopting these advanced
technologies and systems for Scab detection. The motivation for this paper is to update
them concerning these trending technologies, identify gaps in methodologies, and provide
comprehensive knowledge on approaches for overseeing the gaps. We not only discuss
recent challenges in using UAVs for disease detection, but also compare and gather into
a single platform the novel Al approach employed by previous researchers. Relevant
articles from 2017 to 2022 are summarized for assisting farmers and researchers. We used
Google Scholar along with other scientific repositories: ScienceDirect, SAGE Journals,
SpringerLink, IEEE Xplore, and Wiley Online Library Journal to search for relevant articles.
The search was conducted with a combination of terms from three groups. The first group
has the terms “Scab” and “Venturia inaequalis” and the second group has the terms “UAV”,
“unmanned aerial vehicles”, and “drones”. The third group contains the names of Rosaceae
family fruits: “apple”, “peach”, “pear”, strawberry”, and “cherries”. After selecting the
first set of references, the related articles were also searched. This research focused on
articles using DL methods and imaging sensors. Other articles that are focused on other
sensors are excluded. The contributions of this paper include:

i Evaluating challenges faced in Scab detection based on UAV images.

ii. Providing extensive analysis of Al techniques and categorizing them into feature
extraction, segmentation, and classification groups.

iii. Exploring UAV imagery approaches.
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Summarizing the strengths and limitations of applied technologies in the reputed
articles.

Organization: This paper is divided into sections as shown in Figure 1. Section 2
presents the state-of-the-art in the research field. Section 3 describes Scab disease in
Rosaceae fruits. Section 4 explains recent challenges in Scab detection. Section 5 details
current methodologies to overcome the challenges. Section 6 evaluates feature extraction
techniques and reviews studies that applied these techniques for Scab detection in Rosaceae
fruits. Section 7 analyzes the segmentation and classification methods of datasets and
provides a comparative analysis of research papers that employed them for Scab detec-
tion. Section 8 discusses and reviews the literature that describes different UAV imagery
approaches. Section 9 presents the discussion and concludes this review paper; Section 10
highlights challenges with prospects.

* Background, related work, motivation and contribution, and
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Figure 1. Structure of the paper.

2. State-of-the-Art in the Research Field

Automation and digitalization were increasingly adopted for monitoring purposes in
various sectors during the coronavirus disease 2019 (COVID-19) pandemic. The automatic
technologies obtained by combining Al techniques with UAVs resulted in enhancing
agricultural production [16]. This high-tech innovation is becoming an integral part of
numerous research activities and is broadly enhancing the agriculture sector. UAVs use
simultaneous localization and mapping (SLAM) technology for autonomous driving [17].
Being equipped with a camera or other sensors, it identifies obstacles, recognizes its position,
and avoids collision with other UAVs. These are boosted with improved communication
and data-processing speed. The widely applied categories of UAVs are fixed-wing and
rotary-wing. Rotary-wing UAVs are further categorized into helicopters, quadcopters,
hexacopters, and octocopters [18]. These are becoming more efficient, dependable, and
robust tools in detecting diseases at their initial stages and for spraying fungicides. Being
equipped with sensors, UAVs are highly effective in disease assessment [19]. These detect
diseases, allow correct decision-making, and apply appropriate control measures. UAVs
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offer high-resolution imagery for efficient disease detection and analysis. These collect
data with a higher resolution even in challenging weather conditions, thus providing
accurate fruit health assessment and decision-making. Spraying fungicides using UAVs is
a current means of disease control [20]. Researchers are optimizing different parameters
such as speed, altitude, duration of the flight, tank capacities, etc., for efficacy. Operating at
lower heights reduces mass spraying whereas operating at higher heights allows disease
management in mountainous areas as well [21]. Their rotors generate downward airflow
that makes droplets penetration easier. These are considered safer for mapping larger or
uneven areas.

All the benefits are enhancing the application of UAVs in the agriculture sector. The
United States (US), Australia, India, South Africa, Japan, China, Europe, Canada, and other
countries are using swarm technology on a wider scale [22]. Additionally, these countries
are employing controller systems, propulsion systems, navigation systems, camera sys-
tems, frames, batteries, and other devices for numerous agricultural purposes [23]. Major
purposes are field mapping, disease detection, crop spraying, livestock monitoring, smart
greenhouse, and others. In the US, the agriculture drone market is growing rapidly due
to numerous applications of UAVs in agriculture [24]. In Australia, growers in Queens-
land are using this technology for improving on-farm tasks. Currently, Pakistan is also
employing UAVs equipped with sensors and other IoT devices for disease detection, pest
monitoring, temporal and geospatial sampling, mapping, fertilization, and others [25]. In
India, the agriculture department of Rajasthan is employing UAVs for multiple purposes
while improving parameters and ensuring safety features. They have used this technol-
ogy for fighting locust attacks. South Africa is adopting smart agriculture not only to
expand production but also to contribute to the environment by cutting costs and saving
resources [12]. Researchers in China and Japan are employing UAVs, satellites, and Al
techniques to formulate such strategies that will diagnose the disease before it becomes
visible [26]. They are applying robotics with deep learning to propel the harvesting task.
Soft grippers are making harvesting tasks possible for UAVs. However, this requires further
improvement of technology and tools for perfection. Moreover, researchers are working on
multirobot technologies for agriculture [27]. In the coming years, they will use UAVs and
UGVs (unmanned ground vehicles) for performing combined tasks. Table 1, summarize
the recent technologies that is used for UAV imagery.

Table 1. Summary of recent technologies used for UAV imagery.

Technologies with UAVs Usage Reference No.
Al . Enhance agricultural production [16]
SLAM . Allow autonomous driving [17]
Camera/ Sgnsor, improved . Allow obstacles identification, position
communication protocol and recognition, and collision avoidance [18]

speedy data processors

. Assess disease efficiently and apply control
measures.

. Offer high-resolution imagery in
challenging weather.

. Reduce mass spraying by operating at
lower heights and manages diseases in
hilly areas by operating at higher heights

Sensors [19-21]
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Table 1. Cont.

Technologies with UAVs Usage Reference No.

. Different countries are using them for field
mapping, disease detection, crop spraying,

Swarm technology, advanced livestock monitoring, smart greenhouse,
. . . [12,22-25]
systems, and IoT devices temporal, and geospatial sampling,
fighting against locust attacks,
environmental contributions, etc.
Satellites and Al, robotics with . Diagnose disease before visibility.
DL, and soft grippers . Perform harvesting tasks [26]
Multirobots . Perform combined agricultural tasks [27]

3. Scab Disease in Rosaceae Fruits

Scab is a serious disease that produces lesions or dark blotches on the fruits, leaves,
and young twigs of Rosaceae fruits. The symptoms of Scab are not identical at all stages
and depend upon when the infection took place [28]. At first, chlorotic or yellow spots
appear on leaves, and as the disease progresses olive or dark-colored spots appear not only
on leaves but also on fruits. When the disease becomes severe, velvety spots appear on
the leaves” undersurface. Leaves turn yellow and start falling. Then, these spots formed
on stems force the flower to drop. The fruits affected by these spots, which first appear
as olive-green spots, later become black or brown lesions. The fruits can become cracked
and malformed and dropped by the plant prematurely [29]. Sometimes Scab appears as
black spots on Rosaceae fruits. Scabs cause severe surface blemishing that results in high
crop losses.

3.1. Causes of Scab Disease

Foothill and coastal areas have moist and cool early summer and spring weather.
These are favorable areas and conditions for pathogen development. In addition to these
factors, heavy rain is also a major factor that causes Scab [30]. Scab is caused by the
pathogen fungus Venturia inaequalis. This pathogen found in all the regions where Rosaceae
fruits are grown. It can infect the trees at any time, especially in spring. It affects the leaves
and then produces and releases spores into the air. These spores are carried by rain, wind,
irrigation, or developing fruit. If the spores are dropped on the surface, these spores remain
stuck to the surface, break through the cuticle, germinate, and develop a new secondary
infection. This secondary infection occurs in specific periods, within 9-17 days, and may
repeat its cycle several times during the growing season [31]. This fungal disease is a
main issue in the production of commercial Rosaceae fruits. It affects the quality of the
fruits and reduces production. If it is not treated properly, it weakens the trees and flower
bud formations, which leads to an increase in economic loss. This disease has no proper
treatment; therefore, prevention and early detection are important for its control.

3.2. Ways of Prevention

The best way to prevent Scab is to select disease-resistant varieties, which have a wide
range from moderately resistant to very resistant. Another preventive measure is to plant
trees with sufficient spaces and in open canopies where sunlight is available. Planting trees
with spaces allows trees to mature properly and sunlight will dry the leaves quickly. This
reduces the chances for spore germination [19]. The other important measure is pruning.
Removing fallen leaves is required not only in autumn but also during the entire growing
season. Leaves diagnosed with Scab must not be thrown in the compost; however, they
must be disposed of properly. The application of urea after harvest is also beneficial. Proper
sanitation is also a prime prevention measure. Changing the schedule to water trees and
covering the soil with compost also prevents the spread of Scab. If a tree loses most of its
leaves, then the application of fungicide is the only option. The fungicide does not have any
effect on the infected trees, but it breaks the disease cycle by creating a protective coating
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that keeps the spores inactive. For effective disease management, the timing of fungicide
application is quite important [3].

3.3. Early Detection Methods

Numerous ways can be adopted to perceive the pathology of Rosaceae fruits. Some-
times the symptoms appear randomly, therefore these are mostly ignored. Similarly, over-
crowded trees and leaves hinder symptoms and when these symptoms become noticeable
it becomes difficult to take any precautions or to treat Scab. These reasons pose challenges
in Scab identification and treatment; therefore, early Scab diagnosis is essential through
precise and automatic disease identification [32]. The agriculture industry is adopting
sensors, advanced Al tools, and information perception systems for achieving images and
information to make precise decisions for the prevention, identification, and classification
of diseases. In [33], three imaging devices: a thermal camera, a multispectral camera, and a
3D sensor, were used for early Scab detection in apples. The study reported in [34] applied
a modified MobileNet CNN model for diagnosing Scab and other diseases at the initial
stages in avocados. In [35], a promising PeachNet structure comprising VGG-19, mask
R-CNN, and a regional proposal network (RPN) was used for the early detection of Scab
in peaches.

4. Recent Challenges in Scab Detection

Automatic operations for Scab detection require no direct human interactions. The
most appropriate solution for this is the use of UAVs equipped with imaging sensors
and advanced Al algorithms [19]. This combined technology has benefits in agricultural
operations; however, owing to challenges, their usage is still unpopular and restricted in
many countries. Figure 2 highlights these challenges that limit UAV application for Scab
detection, which are described in the following subsections.

Anomalies of
Symptoms and

Lab Analysis
for Scab
Detection Capacity
. Limitations of
Application UAV
Issues of Components
UAVs that Restrict
Flying
Recent Challenges in
Scab Detection using
UAVs
Requisite of’ E%fgiésst()f
Segmafggatlon Attributes on
Classification Limitations of L}ﬁl\a/gzrsld

Sensors and
Factors
Causing
Visibility
Issues in
Images

Figure 2. Possible challenges in Scab detection in Rosaceae fruits using UAVs.

4.1. Anomalies of Symptoms and Lab Analysis for Scab Detection

Diseases are first detected by analyzing the symptoms. In some cases, symptoms of
Scab disease are quite like other diseases because of fine-grained multiscale distribution, the
same color texture between background and disease, and the growth of multiple diseases on
a leaf [36]. Owing to this symptom relevancy, appropriate Scab detection becomes difficult.
However, sometimes Scab shows variation in symptoms. This occurs due to several
reasons such as environmental factors, disease developmental stages, presence of other
diseases. Environmental factors such as humidity, sunlight, temperature, wind, etc., affect
the symptoms of Scab disease in various parts of trees, whereas Scab also exhibits different
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symptoms at different developmental stages. In [37], many images were obtained during
four months under different environmental conditions and developmental stages on old
and young leaves of apples. The dataset of Scab images showed the variation in symptoms,
and many other images contained several similar-appearing symptoms that required
further expert confirmation. Moreover, molecular techniques and laboratory analysis
for Scab detection for every fruit are not possible in forests or larger fields. Additionally,
transmission charges are also incurred to send the images to distant laboratories for analysis.
Therefore, such methodologies are required that will overcome all of these challenges.

4.2. Capacity Limitations of UAV Components That Restrict Flying

We discussed limitations of UAVs in previous papers that include challenges of control,
path planning, obstacle detection and avoidance, navigation and guidance, and others [38].
In this paper, various restricted capacity issues are discussed that hinder the performance
of UAVs in larger fields of Rosaceae fruits. These issues are limited capacities of payload,
battery, and in-built data storage. Most UAVs have limited payload capacity that constrains
the battery size and sensor. The limited battery demands shorter flying time and requires
a quick interchange of batteries for covering larger agricultural areas of apple orchards.
Only flying at higher altitudes can cover these areas, but this results in lower resolution
images [39]. UAVs have less in-built storage capacity, so the captured data must be sent
to other platforms. To cope with these challenges, secure and cost-effective devices along
with strong Internet connections or IoT devices are also core requirements [40].

4.3. Effects of Forest Attributes on UAV's and Images

Farms and forests have different-sized trees, uneven areas, and uncertain climatic
conditions. Owing to variations in the heights and thickness of trees, UAVs require proper
obstacle-avoidance and path planning. While flying above different-sized Rosaceae fruit
trees, the complex motion of UAVs must manage to allow accurate maneuvers. UAVs
must be capable of entering or exit any tree row and navigate to the other rows easily [41].
Uneven areas have varying altitudes owing to which different elevation angles are formed
between the farmland and UAVs. Both issues result in path loss and influence the coverage
radius and network services, which lead to crashes. Especially fixed-wing UAVs in such
rough places are usually subject to crashes. Climate plays a significant part in obtaining
plant images through UAVs. The speed of UAVs is influenced by high winds and rain [42].
This causes angular movement leading to overlapping and distortions among images.
Moreover, high wind changes the position of leaves and affects visibility. This leads to
inconsistencies in images and improper disease detection [43]. Therefore, the effects in
images resulting from all these issues need further analysis and interpretation. It is also
essential to gather knowledge regarding the attributes of forests and larger fields before
deploying UAVs.

4.4. Limitations of Sensors and Factors Causing Visibility Issues in Images

The interaction process between the Scab pathogen and Rosaceae fruits can be de-
termined by biochemical and physiological parameters but are restricted to be reflected
in specific reflectance wavelength. Sensors provide higher spatial, spectral, radiometric,
and temporal resolution images. While obtaining images of Rosaceae fruits via UAVs,
sensors play an important role but have different impacts on different dimensions of reso-
lution [44]. The altitude of the sensor above the ground governs the spatial resolution. If
the sensor is closer to the Rosaceae fruit, then the coverage is smaller, however, the spatial
resolution is greater. Red, green-blue (RGB) sensors capture higher spatial resolution
images as compared to multispectral and hyperspectral sensors. RGB sensors provide
finer details about Scab, but they are restricted to measuring only three electromagnetic
spectrum bands; therefore, they give less accuracy in Scab detection in terms of spectral
resolution. Multispectral sensors can capture high spatial resolution and determine re-
flectance in the near-infrared (NIR) bands. They assist in early Scab detection but are the
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least affordable sensors. Similarly, hyperspectral sensors are also expensive but may deliver
images with low spatial resolution. Multispectral and hyperspectral sensors yield higher
spectral resolution than RGB sensors. Hyperspectral sensors collect a large amount of
spectral data, which causes difficulties in acquiring relevant details about Scab disease.
They yield continuous and high spectral ranges that help in differentiating Scab from other
diseases, even in the presence of minor differences and early detection of Scab. Thermal
sensors provide the temperature of the surrounding objects in the images. Therefore, they
provide low dimensions of resolution in images for Scab detection.

Different field-based platforms for Scab detection are vehicles, tripods, UAVSs, satellites,
helicopters, etc. These platforms retain high spatial resolution and refine the measure-
ment throughput to a certain extent. The satellite platform provides free images while
covering large areas. These images complement UAV imagery but are restricted to low
resolution [20]. Therefore, it is not suitable for Scab detection. Satellites give the low-
est spatial resolution whereas UAV platforms offer high spatial and temporal resolution
along with high throughput; therefore, they are best for Scab detection. However, flight
parameters and stability influence the sensors, dimensions of the resolution, and spectral
discrimination. For example, changes in UAV speed and altitude also restrict the sensor to
capture clear images. Another factor is the noise of these sensors that influence the visibility
of images. All these factors result in overlapping, uneven resolution, and distortion in
images. Considering different sensors and platforms, none can yield high resolution in
all dimensions. Researchers are still exploring sensors that can provide high-resolution
temporal, spatial, spectral, and radiometric data, which remain uninfluenced by all these
factors. Moreover, high-resolution spectral and spatial images are necessary for accurate
Scab detection in Rosaceae fruits, so that features can be distinguished properly [44,45].

Moreover, UAV platforms also affect the sensors and dimensions of resolutions.

4.5. Requisite of Segmentation and Classification

The UAV-captured data must have proper parameters such as disease differentiation,
detection, and severity quantification. Nevertheless, these images possess huge and com-
plex data. In most cases, mixed pixels of soil or shadows are usually inevitable, which
makes the background disorganized and noisy. Therefore, these images require multiple
operations such as feature extraction, segmentation, and classification for accurate Scab
detection. The segmentation is complicated if the target fruit, for example, green apple,
matches the color of the background [46]. If the part or features are not extracted and
segmented properly, the classification or Scab detection accuracy will decline, which leads
to incorrect disease identification. Segmentation and classification are performed with
DL models and algorithms. However, they cannot extract effective features with too few
convolutional layers. To achieve satisfying outcomes, CNN requires more convolutional
layers, which will exceed the computational time and require a large training dataset and
IoT system support [47].

4.6. Application Issues of UAVs

Farmers and researchers have several concerns regarding UAVs that give rise to user-
acceptance issues [48]. Some reasons include handling issues, privacy issues, security
issues, permission issues, huge investments, and other miscellaneous factors. Managing
the drones properly is not easy for farmers; therefore, there is a risk of damage and injuries.
In [39], during its first flight, the UAV became unresponsive due to mechanical failure.
Similarly, they are concerned about the privacy of the captured data as well as cyber security
issues. The study reported in [49] emphasized the security analysis of drones. It suggested
that security requirements vary according to the use case. Lightweight hardware also was
proposed in that it ensures the integrity and confidentiality of the data sent by the drone
and the ground station. This hardware solution proved to be a power-efficient computation
platform; however, owing to extra weight, its application was restricted. Additionally,
the high sensor dependency and malware of drones along with the dynamic nature and
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complexity of wireless communication networks were considered security vulnerabilities
for the application of drones. In this study, global positioning system (GPS) spoofing, data
interception, denial of service, malware infection, the man-in-the-middle, wormholes, and
jammers were all detailed as possible threats and attacks that jeopardize the security and
reliability of drone communication.

Operating UAVs on farms requires special permission from regulating authorities.
Many authorities do not allow UAV integration due to several reasons [50]. For example,
permission was granted only after several days by Transport Canada to deploy UAVs in
apple orchards [39]. Moreover, huge investments are essential for advanced components
and sensors for UAVs. Small-scale farmers are unable to make such arrangements. Other
miscellaneous factors that negatively influence its adoption include the location of farms,
compatibility of existing practices with new and complex techniques, and others [51]. All
these challenges are barriers to the application of UAVs for Scab identification and other
agricultural purposes. More advanced and feasible solutions are essential to overcome
these issues.

5. Recent Methodologies to Overcome Challenges

This section describes various trending methodologies that efficiently manage the
hurdles of the abovementioned challenges. All these evolving technologies are significant
for accurate Scab identification even in the presence of symptom anomalies and for ex-
tending the capacities of UAV components along with flight duration [52]. Additionally,
these approaches provide solutions to overcome the effects of forest attributes on UAVs and
images, limitations of the sensors, and reduce the visibility issues in images [53]. Moreover,
some developed algorithms and methods for better segmentation and classification of
datasets are evaluated in this section. Different solutions that resolve the application issues
of UAVs for agricultural purposes are also detailed in this section.

5.1. Advanced Approaches That Assist in Scab Detection in the Presence of Symptom Anomalies
and Laboratory Analysis

Diseases are first identified based on symptoms which sometimes show relevancy or
sometimes show variances [44]. Therefore, detecting Scab disease in such cases requires
high-resolution images of fruits or leaves. In this context, the use of UAVs with advanced
sensors is a good option. These sensors not only capture images with high spatial resolution,
but also give pure pixels of trees, parts of trees, tissues, and pathogens. These mountable
sensors, especially hyperspectral ones, along with platform flexibility have enabled UAVs
to span leaf, plant, and observation scales that benefit the Scab detection process [54].
Connected and sensor-equipped smartphones are also advantageous in disease detection,
especially in the presence of symptom anomalies [55]. Different software in smartphones
performs the preprocessing of images. These smartphones can be deployed on UAVs to
assist not only in detecting anomalies but also to identify the location of anomalies and
reduce the transmission costs of sending the images to distant laboratories for analysis. Fur-
thermore, the recent DL techniques are capable of identifying and differentiating a disease
correctly with relevant or variable symptoms. This advancement allows early detection of
Scab as well. Different researchers applied hyperspectral or multispectral imaging with the
DL techniques to distinguish accurately the Scab diseases with anomalies of symptoms [56].
This combined approach analyzes and classifies UAV-acquired images of fruits or leaves
with higher accuracy. Moreover, this technique applies to both laboratory analysis and
UAV-based conditions. The severity of Scab disease can be measured by determining the
total diseased area of fruit or by calculating the amount of disease penetration through
quantification methods.

5.2. Evolving Techniques That Extend the Capacity of UAV Components and Flight Duration

With progress in technology, researchers are employing several methodologies to cope
with payload or capacity issues of inbuilt components of UAVs [57]. The best solutions are
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the application of miniature sensors, flying at higher altitudes, usage of solar technology,
software-defined storage, etc. Sensor miniaturization solves the payload constraints. Flying
at higher altitudes or flying in formation will not only limit the battery resource but also
saves time. Replacing the usage of larger UAVs with solar energy-equipped UAVs enhances
the durability, power, and flight time of UAVs to cover larger areas [55]. Moreover, solar
panels are lighter in weight, so they maintain the agility of UAVs by ensuring that UAV is
lightweight. Software-defined storage such as cloud-based data storage is a cost-effective
solution for in-built restricted capacity with strong Internet signals [58]. Another option is
virtual storage, which is also a low-cost solution for real-time applications. For example,
Bramor UAVs utilize a high-speed Internet protocol (IP) link for transmitting and storing
data to its computing infrastructure, cloud computing, or ground control station (GCS) [59].
To overcome the routing and strong Internet connections, researchers are using wireless
networking technologies such as the Fifth Generation (5G) and smart Bluetooth [60]. All
these solutions excel in the performance and flying of UAVs.

5.3. Recent Technologies That Handle Effects of Forest Attributes

Forests have different-sized trees, uneven terrain, and different climatic conditions [61].
All these attributes affect the performance of UAVs and sensors. The advances in UAVs and
IoT devices have led to the development of an unmanned aerial system (UAS) that is widely
applied by numerous researchers. UASs provides complete details regarding the features of
individual trees and analyzes the surface topology and unevenness in forests [62]. Another
solution is the developed architectures of UAVs with different regression models and
artificial neural network (ANN)-based models that forecast and update weather conditions.
This real-time information enables UAVs to stay unaffected by all these factors. Furthermore,
it helps in operating UAVs safely without any damage or crashes. With the evolving
technology, various kinds of UAV platforms are progressing that are significant for larger
fields and forest deployments. For example, miniature UAVs, which also called low-
altitude platforms, are privileged to deploy in forests because of their high mobility with
less cost [63]. They can stay in the air for a longer time, remaining unaffected by harsh
climatic conditions and site conditions during takeoff. They easily retain the high spatial
resolution and refine the measurement throughput. Another widely applied UAV platform
is a multirotor UAV that can fly at different altitudes. It can fly vertically as well as
horizontally and needs a smaller space for landing and takeoff. An optical sensor equipped
with it can easily capture clear three-dimensional (3D) resolution images. The vertical
takeoff and landing (VTOL) system in UAVs is a recent development that allows ease in
maneuvering [64]. VTOL UAVs also remain unaffected by the attributes of forests and
climatic conditions. Moreover, if image distortion is caused by platform tilt, position or
vibration of UAVs, uneven terrains or earth curvature, or other reasons, then geometric
correction can be applied to remove it.

5.4. Advanced Sensors and Approaches That Reflect Visibility in Images

The integration of sensors on a UAV depends upon their application, size, and weight.
The widely applied advanced spectral sensors are RGB, thermal, multispectral, hyperspec-
tral, and light detection and ranging (LiDAR) sensors [65]. Multispectral and RGB are
cost-effective and provide higher resolutions. Besides these optical sensors, researchers
are using other camera options as well that also show advantages. For example, the study
reported in [66] designed a cost-effective and ultralight UAV oblique photogrammetry
(OP) system using smartphones. Five digital cameras were removed from smartphones
and mounted on a UAV platform. This UAV OP system obtained images from different
angles and the results proved the accuracy and quality of the developed system. Similarly,
researchers are focusing on using Meta optics for inexpensive and small electro-optical
sensors in miniature UAVs. Sometimes the UAV-obtained images are not visible. As a
solution to this issue, fixed-wing UAVs equipped with fast shutter and speedy imaging
sensors can be used [67]. This limits the blurring issues while capturing images. Fur-
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thermore, advanced Al preprocessing methods can remove blur effects, visibility, noise,
and distortion issues in UAV-obtained images. These methods depend upon the type and
quality of an image. Some data preprocessing methods are spectral calibration, atmospheric
calibration, and geometric correction [68]. These approaches are significant in removing
errors. Spectral calibration employs complex techniques such as spectral interpolation,
spectral normalization, and radiation transfer models. Atmospheric calibration helps to
reduce surface reflectivity errors that are due to atmospheric absorption and scattering.
Geometric correction removes distortion in images, as discussed above. Moreover, image
enhancement, spectral smoothing, and data filtering techniques can be applied to remove
disorganized and noisy data by highlighting the targeted characteristics [69]. Spectral
smoothing techniques include Savitzky—Golay smoothing, minimum noise-fraction rota-
tion, moving average smoothing, and others. Data filtering techniques include Gaussian
filtering, linear filtering, etc. Image enhancement techniques include homomorphic filtering,
histogram equalization, and others.

5.5. Recent Methodologies That Allow Effective Segmentation and Accurate Classification

Segmentation and feature extraction processes are essential for UAV-generated im-
ages [19]. These processes organize the data following discriminative information. The
commonly applied techniques for segmentation are thresholding, region-based, edge-based,
clustering-based, and neural network (NN)-based methods [70]. Gray-level co-occurrence
matrix (GLCM), principal component analysis (PCA), discrete wavelet transforms (DWT),
and NN-based models used extensively for feature extraction [71]. All these approaches
enable classification with accuracy. Technological advancements have developed many
classification algorithms and models that categorize diseases efficiently, accurately, and
rapidly. ML classifiers are widely applied for the classification of diseases and early detec-
tion [72]. These classifiers are rooted in image segmentation and feature extraction. The
CNN models are the current approaches for solving the data complexity and removing
noisy and disorganized backgrounds in images. The deep convolutional neural network
(DCNN) model achieves higher than 90% accuracy and the multilayer convolutional neu-
ral network (MCNN) achieves more than 95% accuracy in many kinds of research while
classifying healthy and diseased leaves appropriately [73]. Moreover, these can identify
multiple diseases. Current studies have employed semi supervised classification methods
for creating more diverse images [74]. This reduces the discrepancy in dataset accuracy.
An extensive description of recent techniques of segmentation, feature extraction, and
classification processes is provided in the next sections.

5.6. Solutions That Address the Application Issues of UAVs

The reasons that hinder the application of UAVs are user-acceptance issues, handling
issues, safety issues, privacy issues, security issues, permission issues, the need for huge
investments, and other miscellaneous factors [4]. There are numerous solutions to address
these application issues. As an example, developments of Android applications provide
ease in operating UAVs and ensure safety for farmers [75]. These applications connect with
the farmers via a Bluetooth module, which is embedded in the UAVs. Gyro, accelerome-
ter, and magnetometer help in managing the balance, aerial stability, and orientation of
UAVs [76]. Intel has developed efficient and low-cost Bluetooth-interfaced UAV structures
that avoid collisions and ensure safety from equipment damage [77]. This framework
provides wireless communications among all the UAVs and shares data about their current
location, direction, altitude, and speed. The Bluetooth technology adaptation is highly
beneficial, gives higher efficiency, and is cost-effective. Similarly, smartphones equipped
with cameras and GPS sensors are promising tools for farmers [78]. Smartphones, being
affordable and easy to use, are a better option to overcome the handling and security issues
for farmers. Another solution is the merger of formal techniques with ML techniques
that develops dependable learning-enabled systems. This merger provides excellent per-
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formance with the assurance of safety and security of systems through a specification
language [79]. Moreover, formal methods verify the application of Al techniques [80].

Al manages all the data security issues, especially those that are evoked in trans-
ferring data. ANN-based approaches, blockchain, mobile edge computing (MEC), and
physically unclonable function (PUF) schemes are the security countermeasures against
cyberattacks [81]. These schemes protect the integrity and confidentiality of data. Another
study [82] analyzed threats and attacks as the risks of cybersecurity and proposes ML
techniques, blockchain, software-defined networks (SDN), and fog computing as coun-
termeasures. Additionally, a combination of the CNN model and the Internet of drones
(IoD) is advantageous [83]. This study uses wireless communication technology that de-
velops a more optimized system security for the model and suggests that the clustering
algorithm developed on node energy gives the best performance. Another study [84] solves
the security and communication issues by designing an authentication protocol over the
Fifth Generation (5G) technology. This enhanced protocol provides better security and
resists privileged insider attacks, impersonation attacks, drone capture attacks, mutual
authentication, user anonymity, perfect forward secrecy, man-in-the-middle attacks, tempo-
rary information disclosure attacks, and untrace ability. Furthermore, nations are slowly
making transitions from “banning” to “guiding” policies. The management measures
also show development from various aspects. The recent efforts of regulatory authorities
and local governments serve a pioneering role in composing management regulations for
UAVs [85]. Smartphone applications allow paperless work, and communication between
farmers, officials, and researchers, and provide the solution to farming issues [86]. This
study presents an analysis of the apps developed by Indian governmental institutes. Trend-
ing methodologies are developing budget-friendly UAVs and related equipment. UAV
imagery provides automatic and rapid analysis of forests and farms that reduces project
costs. Instead of employing labor, expensive surveying tools, and heavy machinery, this
technology produces data with higher accuracy and less expense. Moreover, UAVs can
frequently survey farms for monitoring purposes that provide the current growth and con-
dition of trees and reduces the chances of Scab and other diseases. This also prevents food
and economic losses. UAVs are environmentally friendly. Most of the UAVs have electric
motors so they use no fossil fuels while some use fewer fossil fuels; in both cases, they
produce no or negligible greenhouse gas emissions. Furthermore, UAV imagery improves
the environmental conditions that hugely contribute to the sustainable development of
agriculture. All these solutions will lead to user-acceptance and extensive application of
UAVs. Table 2 highlights the key points of this section.

Table 2. Summary of recent methodologies used for scab disease detection.

Challenge Advanced Methodologies to Counter the Challenges Reference No.

e Advanced sensors equipped in UAVs give
high-resolution images.
. Hyperspectral sensors with flexible platforms enable
UAUVs to span leaves.
Anomalies of Symptoms @ UAVs mounted with smartphones detect anomalies,
and Laboratory Analysis identify the location of anomalies, and reduce [44,54-56]
for Scab Detection transmission costs for laboratory analysis.
. DL techniques differentiate diseases with similar or
different symptoms accurately.
. The quantification method determines the severity
of diseases
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Table 2. Cont.

Challenge

Advanced Methodologies to Counter the Challenges

Reference No.

Capacity Limitations of
UAV Components that
Restrict Flying

Miniature sensors handle payload constraints.
Flying at higher altitudes or in formation reduces
battery consumption.

Solar technology increases durability, power, and
flight time

Software-defined storage and virtual storage provide
extra storage.

Wireless networking technologies provide strong
Internet connections

[55,57-60]

Effects of Forest
Attributes on UAV
and Images

UAS provides details of trees and analyzes surface
topology and unevenness in forests.

Regression models and ANN in UAV architectures
forecast weather.

Miniature UAVs, multirotor UAVs, and VTOL UAVs
remain unaffected by attributes of forests and

harsh climates.

UAVs with optical sensors capture

3D-resolution images.

Geometric correction removes distortion in images

[61-64]

Limitations of Sensors
and Factors Causing
Visibility Issues in Images

Advanced optical sensors are RGB, thermal,
multispectral, hyperspectral, and LiDAR sensors.
Ultralight UAV OP system captures images with
accuracy and quality.

Meta optics can provide low-cost and small
electro-optical sensors.

Speedy imaging sensors in fixed-wing UAVs can click
visible images.

Methods to remove blur effects, visibility, noise, and
distortion issues are Al preprocessing methods, spectral
calibration, atmospheric calibration, geometric
correction, image enhancement, spectral smoothing,
and data filtering techniques

[65-69]

Requisite of Segmentation
and Classification

UAV-generated images require segmentation and
feature extraction.

Segmentation techniques are thresholding,
region-based, edge-based, clustering-based, and
NN-based methods

Feature extraction methods are GLCM, PCA, DWT, and
NN-based models

Classification techniques categorize diseases accurately,
allow early detection, solve data complexity, remove
noisy and disorganized backgrounds, and create more
diverse images

[19,70-74]

Application Issues of
UAVs for
Agricultural Purposes

Android apps, Bluetooth-interfaced UAVs,
smartphones with GPS sensors, and formal techniques
with ML techniques handle the operating and safety
issues of UAVs.

ANN?-based approaches, blockchain, MEC, PUF, ML,
SDN, fog computing, and a combination of CNN and
IoD are countermeasures against cyberattacks

and threats.

Guiding policies and management regulations manage
permission issues.

Smartphone apps provide solutions to farmers’ queries.
Budget-friendly UAVs and equipment solve the
investment problems.

[4,75-83,85,86]

6. Feature Extraction Techniques in Image Analysis of Rosaceae Fruits

In Scab disease detection using UAVs, feature extraction is considered one of the
prime pillars [87]. Essential information and features are predetermined in this phase.
These isolated features are combined and optimized to form new feature vectors and then
forwarded for the classification process. The extraction techniques improve the accuracy of
the classification and allow efficient Scab detection. Moreover, feature extraction secures the
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spectral information and operates dimension reduction in hyperspectral data images [88].
The processing features are extracted according to the study. A study in [89] used the
sped-up robust feature (SURF) technique to extract desired regions of interest from a
segmented image of an apple. Three widely focused visual contents: shape, color, and
texture, were extracted by various techniques [87]. Binary image algorithms and horizontal
and vertical segmentation were applied for shape extraction. The histogram intersection
(HI) method, Zernike chromaticity distribution moments, and color histogram are color
extraction methods. Similarly, the gray-level co-occurrence matrix (GLCM), edge detection,
and texture-law measures are some texture extraction approaches [90].

Certain techniques are used to extract a single feature while some techniques are
capable in extracting multiple features [45]. The GLCM approach extracts grayscale global
features. Similarly, for color edge detection, binary quaternion-moment-preserving (BQMP)
can be applied. BOMP uses a histogram to show regions of an image with certain colors.
For size, distance, and location extraction, a spatial gray-level dependence matrix can
be employed. Histogram of gradients (HOG) is a fast feature extraction method. ML
techniques play a significant role in extracting multiple and deep features [44]. To obtain a
deep learning network, CNN architectures are optimal solutions. These models comprise
two significant functions, namely convolution and pooling, which detect pattern edges
and reduce the image sizes. Classic CNN, InceptionV3, AlexNet, ResNet, and VGG are
the commonly applied architectures for visual feature extraction [91]. Table 3 provides an
analysis of different studies that employed these techniques for Scab detection in Rosaceae
family fruits.

Table 3. Feature extraction techniques for Scab detection in Rosaceae family fruits.

Feature Extraction

Rosaceae Family

Extracted Feature Reference No. Technique Fruit Accuracy Strengths
Median fil d Preserves shape
Shape [92] M e l:larll ! .terle?} Apple NA Removes noise and
orphological filter other regions
Blob analysis o Separates the infected
Color [93] (Thresholding) Apple 91.66% areas
o Gives more reliable
Texture [94] GLCM Apple 96.43% results
RGB model Decreases the space
Shape, Texture, [95] HSI Igol €, d Appl Training set—95.48% dimensionality
and Color SGDM rmodel ppie Test set—94.22% Improves the
mode accuracy
VGG-s and
Apple, Peach and o Enhances
Deep Features [96] AlexNet-based Cherry 97.8% classification accuracy
DCNN
o Peaches, Apples, Describes the vast
T Color, Spsc;'lal, [97] StalnStl.C il ML Strawberries, and Higher applications and
exture, an ape algorithms others benefits
CNN
¢ Strawberry,
Edges, RBG values, (98] VGG_baSZd CNN, Blueberry, Cherry, 98 Proves to be an
and Others an Raspberry, Peach, ° efficient technique
InceptionV3-based Apple. and others
CNN PP
Original
; : dataset—94.24% Improves the noise
Multiscale Features [99] iResNet Apple Preprocessed robustness
dataset—94.99%
Improves
isualizati
Grayscale, Color, and [100] CNN Apple 99.6% visualization

Segmented Features

Color images enhance
performance




Drones 2023, 7,97

15 of 32

7. Segmentation and Classification of Datasets
7.1. Image Segmentation

After image acquisition, proper analysis of imagery data is essential and uses image
segmentation and classification techniques [45]. Image segmentation is the process of split-
ting a digital image into components that give meaningful data. It is a process of assigning
an object class to every single pixel of an image. It provides complete details of all the object
classes in an image. Different approaches for segmentation are thresholding, edge-based,
region-based, watershed, clustering-based, and neural networks-based methods [101].

7.1.1. Thresholding Segmentation

The segmentation technique that works on the histogram features of an image and
helps to segment images containing bright objects or patches is known as thresholding [102].
This technique transforms a colored or grayscale image into a binary (black and white)
image that helps in further processes and minimizes difficulties. The thresholding process
can be global, local, and dynamic based on gray levels and neighborhood attributes [46]. In
disease detection, it proves to be the simplest and ideal for real-time segmentation but can
be influenced by noise.

7.1.2. Edge-Based Segmentation

Edge-based segmentation techniques are based on marking discontinuities of numer-
ous factors such as colors, gray levels, and others [103]. These techniques blend detected
edges into edge chains for constructing borders or object boundaries. Some operators for
edge detection are Sobel, Prewitt, Roberts, and Laplacian, Marr-Hilclrath, and Canny [104].
In Scab detection, these approaches perform segmentation on images that possess better
contrast among objects. However, in some cases, these methods give false edges that reduce
the detection accuracy.

7.1.3. Region-Based Segmentation

Region-based segmentation techniques group together pixels that possess identical
features for producing homogeneous regions in an image [105]. Gray levels of pixels are
the widely used criteria for homogeneities. These segmentations are further classified into
region mergers, region splits, and splits and mergers [106]. The main advantage of these
methods is they can easily define similarity criteria and remain unaffected due to noise.

7.1.4. Watershed Segmentation

Another widely applied region-based method for segmentation is watershed segmen-
tation [107]. The watersheds are the lines that decompose an image by dividing water areas
into catchment basins. Moreover, watersheds keep these basins apart and assign every
single pixel to a watershed or a region [108]. It gives faster and more accurate segmentation
with complete image division but sometimes results in excessive segmentation and is
sensitive to noise.

7.1.5. Clustering-Based Segmentation

Clustering-based segmentation uses unsupervised cluster algorithms. Fuzzy C-means
and K-means approaches are commonly applied. Fuzzy C-means provide soft and K-means
hard segmentation results. The main goal of clustering is to use unlabeled training data
for creating decision boundaries [89]. The prime advantages of clustering-based methods
are their easy application and disease detection, but they need to define the k-value of the
cluster and do not give the optimum answer in a few Scab detection studies.

7.1.6. Neural Networks for Segmentation

Neural network (NN) is a supervised segmentation method [109]. ANN algorithms
are widely applied for segmentation purposes both in unsupervised and supervised modes.
ANN-based models contain an enormous number of processing elements that are intercon-
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nected and work together for solving specific issues. These models can learn adaptively,
possess self-organizing capabilities, and solve complex problems. However, these models
need to train before segmentation application and require more time for it.

7.1.7. Analysis of Various Segmentation Approaches for Scab Detection

Table 4 represents an evaluation of image segmentation techniques for detecting
Scab disease in Rosaceae fruits by various researchers. We collected the segmentation
methods that have been used from 2019 to 2022. This literature review comprises some
traditional segmentation methods and the widely used NN-based methods in recent times.
The traditional methods effectively extract the appropriate data and objects from the
background, whereas NN-based models perform binary and multiclass segmentation tasks
successfully, identify minor spots effectively, predict disease with higher accuracy and
provide robust results on validation datasets.

Table 4. Analysis of different segmentation approaches.

Authors Reference No. Segmentation Approach Advantages
Douarre et al. [110] SegNet-based CNN v Gives robust results on the validation dataset
Karpyshev et al. [111] Mask R-CNN-based DNN v Describes the location of separate leaves
Logashov et al. [112] Computer-vision v' Gives a promising solution
ANNSs, K-means, DT, SVMs, v Helps to extract appropriate data
Neupane and Baysal-Gurel [113] KNN, and Regression v Enhances the identification accuracy
- v’ Separates diseased areas potentially
Prasad et al. [114] EfficientDet-based DCGAN v Shows high performance
Different CNN- based v Performs binary and multiclass segmentation tasks
Abade et al. [115] architectures successfully
Ahmed and Reddy [116] CNN v Helps in disease detection
o v Detects accurate pixel boundaries
Rehman et al. [117] Modified mask R-CNN v Identifies minor spots
Tensorflow-based mask v . . .
Afzaal et al. [118] Allows instance segmentation effectively
R-CNN
. FCN, SegNet, UNet, and v Reviews popular segmentation techniques
Liu and Wang [119] Mask R-CNN v/ Obtains lesion information
Edge-based,
Wan et al. [12] Thresholding, and v Extracts objects from the background effectively
Region-based
v Gives accurate annotations
Ahmad et al. [120] DL v UNet and Mask R-CNN are common
Mask R-CNN with ResNet-50,
St tal 191 MobileNeaV3-Large-Mobile, v ResNet-50 backbone gives promising results and
orey etal. [121] and MobileNetV3-Large higher accuracy
backbones
UNet with atrous skip v Predicts disease quickly
Raman et al. [122] connections v' Achieves a higher dice score

7.2. Image Classification

The process to identify and mark vectors or pixel groups in an image following distinct
criteria is called classification [123]. Classification law depends upon the usage of single
or multiple spectral bands features, for example, color, shape, texture, etc. Figure 3 shows
an evaluation for the segmentation of interested regions and classification of diseases in
peaches using mask R-CNN [35]. The categorization of classifiers is based on various rules
such as parametric and nonparametric, object-based, and pixel-based. Supervised and
unsupervised methods are the two broad assortments of these classifiers [124].
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Figure 3. Mask R-CNN for classification.

7.2.1. Unsupervised Classification Method:

Unsupervised classification is a fully automated approach that does not require train-
ing samples by its user [125]. The user selects the algorithm for the software and designates
the number of output classes for image classification. The software groups the pixels based
on the feature similarity into classes in a systematic way. It employs pattern recognition or
clustering. The commonly applied unsupervised classifiers are K-means clustering, iterative
self-organizing data analysis techniques (ISODATA), hierarchical clustering, self-organizing
map (SOM), etc.

i K-Means Clustering: K-means clustering is one of the simple and widely applied
clustering algorithms for classification [126]. In K-means clustering, a dataset is
split into several clusters. Among all the clusters, a minimum of one component
must possess the image of the principal space of the diseased component [127]. The
major drawback is the users are restricted to defining the number of clusters for
image classification of diseased fruits.

ii. Iterative Self-Organizing Data Analysis Techniques (ISODATA): ISODATA is an-
other category of unsupervised classifiers [128]. Two parameters strongly influence
the classification results. These parameters are the distance threshold that is re-
quired for cluster union and the typical deviation threshold that is required for
cluster deviation. ISODATA allows good classification in Scab detection and visual
interpretation of feature differences in images but shows rare missing point errors.

iii. Hierarchical Clustering: Another simple unsupervised classifier like K-means is
hierarchical clustering. The only difference is that the number of clusters is not fixed
and changes in all the iterations. This is further categorized into agglomerative
clustering and divisive clustering [129]. The prime reasons for using this clustering
in disease detection are its easy implementation and no requirement for advanced
specification of the number of clusters. However, it experiences slow classification
and does not classify well in images having outliers and noise.

7.2.2. Supervised Classification Method

Supervised classification allows the user to choose a set of sample pixels, representing
classes, in an image and instructs the software to utilize them as references for other pixel
classifications within that image [130]. The user designates which similar spectral features
are essential for grouping input data and assigns the number of classes for image classifica-
tion. The widely used supervised classifiers are k-nearest neighbor (KNN), support vector
machine (SVM), logistic regression, naive Bayes, random forest (RF), and deep learning
(DL) models [131]. All these classifiers achieve high accuracy. Some are discussed below:

i. K-Nearest Neighbor (KNN): The simplest among all supervised classification meth-
ods is the k-nearest neighbor rule [132]. It requires selecting k, the number of
neighbors essential for classification. The KNN classifier is not commonly used
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ii.

iii.

iv.

Vi.

alone because it requires associated visualization; however, it may be applied as a
baseline classifier for comparison with other classifiers [133]. The main advantage
is it is simple and easily applicable for small datasets and uses less time for training
but shows higher computational complexity.

Support Vector Machine (SVM): SVM selects extreme points for producing a hyper-
plane [134]. A hyperplane is the best decision boundary that causes n-dimensional
space segregation into appropriate classes. Earlier SVM was applicable for binary
classification only, but now it is modified to perform multiclass classification [135].
The other key advantages of SVM are that it is robust, provides simple geometric
interpretations, and shows low computational cost. Some drawbacks are the need
for large support vectors and slow training.

Logistic Regression: Despite its name, logistic regression is a powerful supervised
classifier instead of a regression model [136]. It applied for predictive analysis. It
is developed on probability notion and sigmoid function. This classifier is appli-
cable for linear and binary classification [36]. It is a simple, easy-to-realize, and
a more efficient classification method for disease detection in plants. Neverthe-
less, it is restricted to giving only linear solutions and requires the compilation of
data assumptions.

Naive Bayes: A probabilistic classifier formed on the Bayes theorem is called naive
Bayes [137]. It assumes that all the features being independent have no interactions
among them. Being simple in application and fast in computation, it gives better
performance for large datasets [138]. Therefore, it can be used for real-time applica-
tions also. However, in some cases classification accuracy is reduced due to class
conditional independence.

Random Forest (RF): Another supervised classifier is random forest, which classifies
large data accurately [139]. It uses an ensemble apprenticeship approach for training
and sums up the prediction results of individual trees. Unlike other decision tree
algorithms, RF does not utilize profit knowledge [140]. It acts as a tree predictor and
so0 helps in assorting trees randomly in forests. In image classification of diseased
plants, RF handles large databases efficiently and estimates significant variables.
However, it results in excessive fitting in some cases due to noise.

Deep Learning (DL): The subset of machine learning (ML), in which a computer
model imitates human biological learning, is called deep learning (DL) [141]. It
contains multiple processing layers such as ANNSs rather than classical neural
networks. It includes all the steps, data acquisition, classification, and results
evaluation. The most applied neural network (NN) is an artificial neural network
(ANN) [142]. It is an image-learning and classification tool. NN models perform
activities identical to human brains. While knowing previous data, these models are
trained to work on related data. Convolutional neural networks (CNNSs), recurrent
neural networks (RNNs), and generative adversarial networks (GANSs) are some
commonly applied ANN models [143]. These models need fewer formal statistics,
efficiently manage noisy data, and give higher accuracy in Scab detection, but tend
toward excessive fitting due to many layers and huge computations.

7.3. Analysis of Various Classification Approaches

This section provides a comprehensive analysis of various classification algorithms

and models used by numerous researchers for Scab detection in Rosaceae fruits. The
models are developed with deep, complex, and high parameters to achieve high accuracy
with a limitation of complex computation. VGGNet, InceptionV3, AlexNet, GoogLeNet,
and XceptionNet are widely used DL models [144]. Some models are developed to achieve
computation efficiency with a restriction of adequate accuracy. These models work ef-
ficiently on mobiles like ResNet. [145] applied several ML and DL methods for disease
detection and the result showed that VGG16 achieved the highest classification accuracy.
This evaluated that the number of layers in the NN model indicates the network complexity
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and too many layers may affect the results. Table 5 provides a detailed analysis of the
classification used by scholars for image analysis.

Table 5. Classification techniques for Scab detection in the Rosaceae family.

Classification Diseases-Rosaceae L. e e s
Algorithm/Model Reference Fruits Contributions Limitations
. .. Allows .
Bayesian Decision environmental Requires
Theory, and [90] Scab—Apple feedback on tree readjustment of
A-Scab Model status values
Healthy, Scab, Black rot, Gives early and Gives an average
[146] and Cedar effective detection accuracy
rust—Apples
GooglLeNet Healthy, Scab, Black rot, Shows high accuracy
[147] and Cedar Surpasses the Dataset is limited
rust—Apples expert’s detection
SVM, . KNN outperforms Similar features lead
KNN, [148] Scab and. Marsonina th MLp del to misclassification in
DT, and coronaria—Apples other modadels a few situations
Naive Bayes
Shows high Employs no sensors
Fuzzy Logic [92] Scab—Apple performance or advanced
Gives precise results equipment
Gives the highest
Healthy, Black Scab accuracy among ML Works on leaves one
FCNN-LDA [149] ea(; (}j// d ac X)t’ lca ’ approaches by one
and Ledar—Apples Takes 7 sec for y
computation
Allows early
Healthy and detection
PLSDA [150] Scab—Apples Proves the water N/A
content effects
Scab, Rust, and Bla§k chlier\&e;s higiﬂer Exceeds
) rot—Apples, Bacterial Ececfliac geiecision computational time
Multiclass-SVM [95] spots—Peach, and o Y, P 3 , Reduces accuracy of
. Powdery neastre, an features fusion
Mildew—Cherry sensitivity
Healthy, Scab and
Simple CNN, . multiple Detects with a higher Does not include
VGG{ and [96] dlseases—Apples, accuracy real-time images
InceptionV3 Peaches, different
berries, and other
th q Gives efficient results
MobileNetV2 [151] Headt Y EOt’ Mi ﬁew, for few data Limited data is
and Scab—Peaches Does not misclassify considered
Detects diseases and
fruit surface defects . .
Normal, Scab, Black effectively Still requires
PCNN-IPELM [110] spot, Brown rot, and improvement in

Anthracnose—Peaches

Shows improved
accuracy and
convergence speed

accuracies
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Table 5. Cont.

Classification Diseases-Rosaceae e e .
Algorithm/Model Reference Fruits Contributions Limitations
. Healthy, Cedar rust, Achieves higher Longer training time
VGG16-based iCNN [152] Scab, and Frogeye accuracy for small datasets
spot—Apples Converges faster
Minimizes
Healthy, Cedar rust, complexity and size Does not predict
CNN [99] Scab, and Black Allows quick severity.
rot—Apples convolution
, Healthy, Scab, Rot, and Gives higher
Naive Bayes [93] Blotch—Apples accuracy
DenseNet121, Includes only 2 foliar
EfﬁcientNet, Healthy, Cedar rust, Performs accurately diseases .
NqsyStudent, ar}d [153] Scab, and other Saves costs and time Does not perform
EfficientNetB7 with diseases—Apples well for multiple
Ensemble image diseases
VGG, L
Healthy, Scab, Rust, ResNetV2 Requires increment
ResNetVZ, [154] and multiple outperforms among in the number of
InceptionV3, and diseases—Apples all instances
MobileNetV2 bp
Detects the diseases
Healthy, Scab, and exactly Lacks real-field
VGGI6 [112] Rust—Apples Reduces mass detection
spraying
Predicts disease
precisely Various limitations
Linear Regression (ML) [29] Scab—Apple Provides improved for large-scale
parametric implementation
information
EfficientNetB0 model
InceptionV3, Healthy, Scab, and gives the highest
InceptionResNetV2, [155] other diseases—Apple, accuracy Does not include
MobileNetV2, and Peach, Strawberry, MobileNetV2 model real-time images
EfficientNetB0 Cherry, and others limits operations and
parameters
Model C gives the
best sensitivity and Gives higher
Scab and Marsonina accuracy accuracy for a higher
Three CNN Models [156] coronaria—Apple Shows dominancy number of images
over four ML only
algorithms
Gives higher
accuracy
MCNN [157] Cedar rust, Black rot, Detects diseases and Sezrllf’:i(;;jjii(:ases
and Scab—Apples classifies them
properly
Xception, Faster-RCNN gives
EfficientDet-DO, 158 Scab and other diseases the highest accuracy Lacks performance in
YOLOV4, and [158] and pests—Apples and detects small a few categories

Faster-RCNN

spots easily




Drones 2023, 7,97

21 of 32

8. Utilization of UAV in Scab Detection

UAUVs are categorized into fixed-wing UAVs, rotary-wing UAVs, and vertical takeoff
and landing (VTOL) according to their flight platforms [159]. The payload is designed
according to the task requirement and better functions are achieved with the sacrifice of
certain performances. UAVs have many benefits with a few limitations. Owing to this
reason, UAVs of different platforms and payloads are employed for different purposes.
Some imaging sensors that are essential for UAVs in plant monitoring and Scab detection
are explained below.

Imaging Sensors Required for UAV Monitoring

Whenever we focus on applications of UAVs in any field, one of the foremost factors
that we consider is the kind and quality of the sensor for aerial imaging. The nature
of research, the type of sensor, and the required image quality decide the selection of a
UAV platform. These imaging sensors work on the conversion principle of light rays into
electrical signals. The widely applied sensors for acquiring images in agriculture are RGB,
near-infrared (NIR), multispectral, hyperspectral, thermal, and depth sensors. The optical
features of sensors along with electromagnetic ranges are important factors for detecting
plant diseases [141].

i RGB (Red-Green-Blue) Sensors: RGB spectral sensors are the visible light sources
that are commonly used. These sensors measure only the intensities of three colors
and evaluate each in every pixel. The naked eye is sensitive to three color bands:
red, blue, and green; therefore, the RGB sensor gives images that can be easily
recognized by humans. These sensors are utilized with other sensors to improve
their accuracy. If a red filter replaces a NIR filter, then it is named modified RGB.
These sensors are the least expensive and are easily available but give low spectral
resolution images. These capture images with high spatial resolution and allow
finer spatial details. These can formulate 3D models of plants and can be used
for plant inspection in harsh weather. Moreover, RGB images give details on LAB
where L stands for lightness and AB are dimensions of the color opponent, YCBCR
where Y stands for the luma component, CB and CR are the blue difference and
red difference, Hue, Saturation, and Value (HSV), and others [160]. These help
in identifying diseases in plant leaves and fruits. However, their spectral range
varies from 380 to 750 nm only, and this range cannot be used to identify diseases
appropriately.

ii. Multispectral Sensors: Multispectral sensors are capable in capturing images having
exceptional spatial resolution and determine reflectance in the infrared (IR) bands.
These sensors use various spectral bands such as red, blue, green, NIR, and red-edge.
Multiple bands in these sensors give high accuracy. These are classified into two
groups according to bandwidth: broadband sensors and narrowband sensors. These
allow appropriate analytics for agriculture; therefore, these are highly crucial for
researchers and farmers. Multispectral together with NIR sensors form vegetable
indices (VI) that rely either on NIR or other light bands [161]. For automatic disease
detection, multispectral sensors capture images in both regions, namely visible and
NIR. The absence of multispectral data would hinder early disease detection, pests
and weed detection, and vegetation biomass calculation of plants. The drawbacks
of these sensors are high cost and enhanced calibration efforts for certain tasks [53].

iii. Hyperspectral Sensors: The extremely capable hyperspectral images can capture
images in spatial and spectral ranges. These sensors collect light with multiple
narrow-size bands for every single pixel in the captured image. Furthermore, these
sensors have area detectors for quantifying the captured light that resulted from
the incident photon conversion into electrons [77]. This conversion is obtained
through two sensors, namely, charge-coupled-device (CCD) sensors along with
complementary metal-oxide—semiconductor (CMOS) sensors. These sensors are
used for minimizing the shortcomings of multispectral sensors, for capturing infor-
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iv.

mation in lesser spectral differences, and for detecting and discriminating against
target objects. The commercial success of these sensors in UAVs to measure a
hundred bands and perform data processing is guaranteed. The prime advantage
of these sensors in agriculture is that they can detect plant stress with the disease
or pathogen responsible for it. Major limitations include higher costs and huge
unnecessary data if not properly calibrated [162].

Thermal Sensors: Thermal sensors capture the thermal energy of an object through
optical lenses and IR sensors fit in thermal sensors, which data are then used to
generate images with the information collected. These sensors detect the radiation
related to their wavelengths and generate heat while converting these radiations
into grayscale images. Furthermore, they can generate colored images with yellow
representing warmer images and blue representing cooler images [163]. Their costs
are relatively low and RGB sensors with a few modifications can be converted
into thermal sensors. These sensors are widely used for agricultural tasks such as
disease detection, irrigation management, mapping, and monitoring. These sensors
generate images with comparatively low resolution and huge data, which is their
major drawback [123].

Depth Sensors: Depth sensors allow an extra depth of features in RGB pixels. The
depth is the distance between an object and the depth sensor when the image is
captured. These are widely equipped on UAVs for agricultural purposes and are
used to enhance the accuracy of other sensors. LiDAR, red-green-blue-depth (RGB-
D), and time of flight (ToF) are some depth sensors. Light detection and ranging
(LiDAR) is considered the most prevalent depth sensor. The prime difference be-
tween LiDAR and RGB-D is that LIDAR implies laser pulses for distance calculation
whereas RGB-D is dependent on the light reflection intensities [164]. Therefore,
LiDAR is used more than RGB-D for 3D modeling, disease detection, phenotyping,
etc. The major drawback is that sometimes these sensors provide lower intensity
counts as these cannot detect objects after a specific distance.

We list the 2017-2022 studies in Table 6. This table illustrates different imaging sensors
and UAV types, and their achieved benefits for detecting Scab in Rosaceae fruits and other
fruits. Some prime advantages of using UAVs equipped with sensors are accurate and pre-
cise results in Scab detection, early detection, and monitoring of health and growth in plants.
These advanced technologies not only save crops and time but also enhance production.

Table 6. Advantages of sensors for acquiring UAV-based images.
References UAV Type Rosaceae Fruit Imaging Sensors Advantages
v Helps in classification,
9% Octocopter with a Appl Multispectral feature extraction, and
561 3-axis gimbal ppie Thermal LDI index evaluation
v" Gives early detection
RGB v Provides accurate and
UAV and other Thermal precise results in
[165] airborne remote Apple and others Multispectral disease detection
sensors Hyperspectral v' Helps in pest
Fluorescence management
v' Details comparative
analysis of DL tools for
identification,
UAVs and manual Apple, Peaches, prediction,
[166] devices Strawberry, and others Hyperspectral quantification, and

classification
v/ Attains reliability and
accuracy
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Table 6. Cont.

References UAV Type Rosaceae Fruit Imaging Sensors Advantages
Autonomous mobile Visible
[1 10] robot Apple Hyperspectral Identifies disease early
Multispectral
MUIisé);Ctral Evaluates the benefits
[111] Fixed-wing and Apple, Peaches, Thermal of automatic disease
rotary-wing UAVs Strawberry, and others DA detection using UAVs
H LiD Rt i and ML techniques
yperspectra
Multispectral Gives incredible
167 U%V and othe:[r Apol d oth Hyperspectral diagnostics results
[167] air| orrr11e rfmo e pple and others Fluorescence Evades excessive
SENsos Thermography pesticide usage
Fixed-wine UAV. Multli{sg;ngctral UAVs provide accuracy
168 . 1xe 'Wm% AV S d Apple, Almonds, Th i and efficiency
[168] rotary-wing S an Peaches, and others erma Enables health and
VTOL / LiDAR
Hyperspectral growth in plants
. Highlights potentials of
Mul’;l;ggctral ML, DL, and remote
UAV and other Thermal sensing
[44] airborne remote Strawberry LiDAR Advances in growth
sensors i 1 monitoring, and
uorescence disease and pest
Hyperspectral detection
[169] near- rU ArYd?;ld digital Strawberr RGB UAV beats other
ear-g (gmerag gita awberry Digital imaging in speed
Thermal Achieves a closer
Rotary-wing drones, RGB survey
[170] fixed-wing d.rones, and Apples Multispectral Detects diseases and
satellites NIR pests effectively
Hyperspectral
RGB
Multispectral ;
Apple, Cherry/ Peaches, Saves Crops and time
[11] UAVs and other robots and others Hyperspizi%i;Thermal Enhances production
RGB-D

9. Discussion and Conclusions

9.1. Discussion

This manuscript discusses UAV imagery for image acquisition and various Al tech-
niques for image processing for Scab detection in Rosaceae family fruits. Challenges in
Scab detection and the recent methodologies to address them are evaluated. Miniature
and high-resolution sensors with flexible UAV platforms, IoT-based data storage, solar
technology for batteries, and DL approaches proved to be the best solutions to cope with
the stated challenges. Employing NN-based models for color, shape, and texture extraction
separates the infected areas, improves the noise robustness and visualization, and enhances
the classification accuracy. Reviewing all the segmentation methods, CNN-based models,
especially Mask R-CNN, SegNet, and UNet, perform binary and multiclass segmenta-
tion tasks successfully, detect accurate pixel boundaries and minor spots, separate the
potentially Scab-diseased areas, and enhance the identification accuracy. Similarly, the
supervised classification methods categorize the healthy and the diseased leaves in their
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respective classes appropriately. Among them, CNN-based architectures, namely classic
CNN, VGG, MobileNetV2, and InceptionV3, outperform other ML and CNN models by
restricting operation, complexity, size, and other parameters, allowing quick convolution
and detecting Scab with higher accuracy, precision, and G-measure. Being fast and ef-
ficient, UAVs show outstanding application prospects in image acquisition of Rosaceae
fruits among other devices. A comparative study of various research shows rotary-wing
UAVs are extensively used for Scab detection; therefore, they are better adapted for use in
agricultural fields. Different sensors are observed to be utilized, but all these sensors have
many benefits along with restrictions. Depth sensors are not observed to be commonly
exploited because of their expense. Sections of segmentation, classification, and sensors
have relevant conclusions; thus, it is evident that the fusion of AI with UAV imagery has
the potential to close the gap between recent trends and disease detection.

9.2. Conclusions

Scab disease in fruits causes food insecurity and economic loss. However, Scab detec-
tion is still challenging among researchers and farmers. This manuscript gives preliminary
insight into the selection of state-of-the-art UAV-based and Al-based techniques for Scab
detection in Rosaceae family fruits. This paper presents challenging issues associated with
Scab detection via UAV imagery and current methodologies that resolve these challenges.
From the perspective of an organized framework, it categorizes all of the current method-
ologies into three sections, namely feature extraction, segmentation and classification, and
UAV imagery. Additionally, an extensive literature review is given in all these sections
along with the significance and limitations of each study. In the end, this paper describes
some challenges that still require further integration efforts to optimize UAV applications
for Scab detection. This will help UAV imagery to reach milestones in disease detection
and economic stability.

10. Challenges with Future Prospects

With technological advancement, certain challenges still require modifications. In
this section, we highlight some issues and opportunities of current approaches that need
consideration in the future. Automation aspects from image acquisition to data processing,
interpretation, and disease detection will enhance the utility of technology. Proper detection
of diseases with minimal error will be possible with better images generated by lightweight
UAVs and high-resolution sensors. Such UAV systems are required that can serve as
rotary-wing and fixed-wing UAVs simultaneously according to the requirement. Enhanced
flight duration and reduced costs still require solutions for efficiently assessing the overall
plant status at larger farms and in forests. This will be possible with energy-efficient and
wireless charging systems. Platforms must be capable to alter their speed and altitude to
manage climatic conditions. Additionally, 3D flight paths will be a better option to address
the inconsistency in sampling distance from the ground.

Multiple sensors interfaced on combined platforms will be capable to reduce payload
and measure a variety of physiological parameters. The selection of sensors and their
spectral range is aided by the nature of the disease. The wider the spectral ranges, the
better will be the differentiation of disease symptoms. The image suffers from reflections
and shadows if they are captured during daylight. Illumination backscatter X-ray imaging
needs to be controlled. The low resolution of sensors reflects thermal radiation, which
requires careful calibration of sensors. Accurate thermography will assist thermal sen-
sors in measuring real and accurate temperatures. Furthermore, huge and complex data
generated by UAVs still require advanced data analysis software. The advanced coding
and data training, and maintenance of this software must be considered in the future.
Moreover, ML algorithms give more accurate results for larger datasets, but overcoming
the insufficiency of larger training and validation datasets needs to be developed. All of
these expansions will make these technologies user-friendly and highly and universally
adaptable for disease detection.
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Acronyms Definitions

3D 3-Dimensional

5G Fifth Generation

Al Artificial Intelligence

ANN Artificial Neural Network

BLDC Brushless Direct Current Motor

BLOB Binary, Large Object

BOMP Binary Quaternion-Moment-Preserving
CCD Charge-Coupled Device

CFS Correlation-based Feature Selection
CMOS Complementary Metal-Oxide-Semiconductor
CNNs Convolutional Neural Networks
COVID-19 Coronavirus Disease 2019

DCGAN Deep Convolutional Generative Adversarial Networks
DCNN Deep Convolutional Neural Network
DL Deep Learning

DNN Deep Neural Network

DT Decision Tree

DWT Discrete Wavelet Transform

ESC Electronic Speed Controller

Faster-RCNN
FCN

Faster-Region Based Convolutional Neural Network
Fully Convolutional Networks

FCNN-LDA  Faster Convolutional Neural Network-Linear Discriminant Analysis
FPV First-Person View

GA Genetic Algorithm

GANs Generative Adversarial Networks

GCS Ground Control Station

GLCM Gray-Level Co-occurrence Matrix

GPS Global Positioning System

HI Histogram Intersection

HOG Histogram of Gradients

HSI Hue, Saturation and Intensity

HSV Hue, Saturation, and Value

iCNN Improved Convolutional Neural Network

ToD Internet of Drones

ToT Internet of Things

P Internet Protocol

IPELM Linear Particle Swarm Optimized Extreme Learning Machine
IR Infrared

iResNet Improved ResNet

ISODATA Iterative Self-Organizing Data Analysis Techniques

Kg Kilogram
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KNN K Nearest Neighbors

LDA Linear Discriminant Analysis

LDI Leaf Development Index

LiDAR Light Detection and Ranging

Mask R-CNN  Mask Region-Based Convolutional Neural Network
MCNN Multilayer Convolutional Neural Network
MEC Mobile Edge Computing

Min Minutes

MKSVM Multiple Kernel Support Vector Regression
ML Machine Learning

NIR Near-Infrared

nm Nanometer

NN Neural Network

op Oblique Photogrammetry

PCA Principal Component Analysis

PCNN Parallel Convolution Neural Network
PLS-DA Partial Least-Squares Discriminant Analysis
PUF Physically Unclonable Function

RF Random Forest

RGB Red-Green-Blue

RGB-D Red-Green-Blue-Depth

RNNs Recurrent Neural Networks

RPN Regional Proposal Network

Sec Seconds

SGDM Spatial Gray-Level Dependence Matrices
SLAM Simultaneous Localization and Mapping
SOM Self-Organizing Map

SURF Sped-Up Robust Feature

SVM Support Vector Machine

ToF Time of Flight

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

UGVs Unmanned Ground Vehicles

us United States

VI Vegetable Indices

YOLOv4 You Only Look Once v4

VTOL Vertical Takeoff and Landing
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