2,471 research outputs found

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    An Extended Stable Marriage Problem Algorithm for Clone Detection

    Full text link
    Code cloning negatively affects industrial software and threatens intellectual property. This paper presents a novel approach to detecting cloned software by using a bijective matching technique. The proposed approach focuses on increasing the range of similarity measures and thus enhancing the precision of the detection. This is achieved by extending a well-known stable-marriage problem (SMP) and demonstrating how matches between code fragments of different files can be expressed. A prototype of the proposed approach is provided using a proper scenario, which shows a noticeable improvement in several features of clone detection such as scalability and accuracy.Comment: 20 pages, 10 figures, 6 table

    The Requirements Editor RED

    Get PDF

    Performance Evaluation of Automated Static Analysis Tools

    Get PDF
    Automated static analysis tools can perform efficient thorough checking of important properties of, and extract and summarize critical information about, a source program. This paper evaluates three open-source static analysis tools; Flawfinder, Cppcheck and Yasca. Each tool is analyzed with regards to usability, IDE integration, performance, and accuracy. Special emphasis is placed on the integration of these tools into the development environment to enable analysis during all phases of development as well as to enable extension of rules and other improvements within the tools. It is shown that Flawfinder be the easiest to modify and extend, Cppcheck be inviting to novices, and Yasca be the most accurate and versatile

    FlashLight: A Dynamic Detector of Shared State, Race Conditions, and Locking Models in Concurrent Java Programs

    Get PDF
    Concurrent Java programs are difficult to understand and implement correctly. This difficultly leads to code faults that are the source of many real-world reliability and security problems. Many factors contribute to concurrency faults in Java code; for example, programmers may not understand Java language semantics or, when using a Java library or framework, may not understand that their resulting program is concurrent. This thesis describes a dynamic analysis tool, named FlashLight, that detects shared state and possible race conditions within a program. FlashLight illuminates the concurrency within a program for programmers who are wholly or partially in the dark about their software\u27s concurrency. FlashLight also works in concert with the Fluid assurance tool to propose Greenhouse-style lock policy models based on a program\u27s observed locking behavior. After review by a programmer to ensure reasonableness, these models can be verified by the Fluid assurance tool. The author\u27s combination of a dynamic tool with a program verification system focused on concurrency fault detection and repair is the primary contribution of this research. He applied FlashLight to several concurrent Java programs, including a large commercial web application server. His case study experiences induced him to improve FlashLight to do the following: (1) allow the programmer to specify interesting time quantums (e.g., this is the start-up phase of the program), and (2) support the common Java programming idiom of not locking shared state during object construction. Both improvements help to reduce false positives. FlashLight introduces an overhead of roughly 1.7 times the original execution time of the program. The most significant limitation of FlashLight is that it is not fully integrated into the Fluid assurance tool with respect to the user experience

    Utilizing static and dynamic software analysis to aid cost estimation, software visualization, and test quality management

    Get PDF
    The main results presented in the thesis are related to the semi- or fully-automated analysis of the software and its development processes. My overall research goal is to provide meaningful insights, methods, and practical tools to help the work of stakeholders during various phases of software development. The thesis statements have been grouped into three major thesis points, namely "Measuring, predicting, and comparing the productivity of developer teams"; "Providing immersive methods for software and unit test visualization"; and "Spotting the structures in the package hierarchy that required attention using test coverage data"

    JWalk: a tool for lazy, systematic testing of java classes by design introspection and user interaction

    Get PDF
    Popular software testing tools, such as JUnit, allow frequent retesting of modified code; yet the manually created test scripts are often seriously incomplete. A unit-testing tool called JWalk has therefore been developed to address the need for systematic unit testing within the context of agile methods. The tool operates directly on the compiled code for Java classes and uses a new lazy method for inducing the changing design of a class on the fly. This is achieved partly through introspection, using Java’s reflection capability, and partly through interaction with the user, constructing and saving test oracles on the fly. Predictive rules reduce the number of oracle values that must be confirmed by the tester. Without human intervention, JWalk performs bounded exhaustive exploration of the class’s method protocols and may be directed to explore the space of algebraic constructions, or the intended design state-space of the tested class. With some human interaction, JWalk performs up to the equivalent of fully automated state-based testing, from a specification that was acquired incrementally

    1st Workshop on Refactoring Tools (WRT'07) : Proceedings

    Get PDF

    Model-Based Run-time Verification of Software Components by Integrating OCL into Treaty

    Get PDF
    Model Driven Development is used to improve software quality and efficiency by automatically transforming abstract and formal models into software implementations. This is particularly sensible if the model’s integrity can be proven formally and is preserved during the model’s transformation. A standard to specify software model integrity is the Object Constraint Language (OCL). Another topic of research is the dynamic development of software components, enabling software system composition at component run-time. As a consequence, the system’s verification must be realized during system run-time (and not during transformation or compile time). Many established verification techniques cannot be used for run-time verification. A method to enable model-based run-time verification will be developed during this work. How OCL constraints can be transformed into executable software artifacts and how they can be used in the component-based system Treaty will be the major task of this diploma thesis.Modellgetriebene Entwicklung dient der Verbesserung von Qualität und Effizienz in der Software-Entwicklung durch Automatisierung der notwendigen Transformationen von abstrakten bzw. formalen Modellen bis zur Implementierung. Dies ist insbesondere dann sinnvoll, wenn die Integrität der ursprünglichen Modelle formal bewiesen werden kann und durch die Transformation gewährleistet wird. Ein Standard zur Spezifikation der Integrität von Softwaremodellen ist die Object Constraint Language (OCL). Eine weitere Forschungsrichtung im Software-Engineering ist die Entwicklung von dynamischen Komponenten-Modellen, die die Komposition von Softwaresystemen im laufenden Betrieb ermöglichen. Dies bedeutet, dass die Systemverifikation im laufenden Betrieb realisiert werden muss. Die meisten der etablierten Verifikationstechniken sind dazu nicht geeignet. In der Diplomarbeit soll ausgehend von diesem Stand der Technik eine Methode zur modellbasierten Verifikation zur Laufzeit entwickelt werden. Insbesondere soll untersucht werden, wie OCL-Constraints zur Laufzeit in ausführbare Software-Artefakte übersetzt und in dem komponentenbasierten System Treaty verwendet werden können
    • …
    corecore