
Abstract—Automated static analysis tools can perform

efficient thorough checking of important properties of, and

extract and summarize critical information about, a source

program. This paper evaluates three open-source static

analysis tools; Flawfinder, Cppcheck and Yasca. Each tool

is analyzed with regards to usability, IDE integration,

performance, and accuracy. Special emphasis is placed on

the integration of these tools into the development

environment to enable analysis during all phases of

development as well as to enable extension of rules and other

improvements within the tools. It is shown that Flawfinder

be the easiest to modify and extend, Cppcheck be inviting to

novices, and Yasca be the most accurate and versatile.

Index Terms—static, code, analysis, automation.

I. INTRODUCTION

HE demand for reliable, quality software has grown

in all areas, from consumer and business applications

to mission-critical commercial, industrial and

governmental applications. It is however not feasible to

exhaustively test all possible executions and to remove all

potential risks from large complex software product.

However, the use of automated software analysis tools

has enabled organizations to produce products that are as

defect free as practically possible. Automated analysis,

while not a replacement for human effort, is a substantial

aid to developers particularly where software quality is of

primary importance [13]. Automated software analysis

tools can perform efficient and thorough checking of

various properties, and can extract and summarize critical

information of the source program.

There are two main categories of automated software

analysis tools: dynamic and static. Dynamic analysis is

performed at runtime on the executable images of the

software. Tests are conducted on specific behaviors, such

Manuscript received February 29, 2012.

Cathleen F. Blackmon was with Cal Poly Pomona, Pomona, CA
91768 USA,

Daisy F. Sang is with Cal Poly Pomona, Pomona, CA 91768 USA,

(e-mail:fcsang@csupomona.edu).
Chang-Shyh Peng is with California Lutheran University, Thousand

Oaks, CA, 91360, USA (phone: 805-493-3819; fax: 440-296-8002; e-

mail:peng@callutheran.edu).

as memory corruption, memory leaks and race conditions,

of software during execution. Since defects will not be

discovered until late in the software development

lifecycle, dynamic analysis can be costly. On the other

hand, static analysis tools perform analysis on source

code or byte code modules. It does not require any

instrumentation or development of test cases, and can be

utilized upon the availability of the code. Static analysis

tools can go through all paths of the code and uncover

significantly more and wider range of defects, including

detect logic errors, dead code, security vulnerabilities, and

so on.

Static analysis techniques range widely. Simple style

checkers identify poorly written code that may violate

coding standards or consistency rules. Bug pattern

checkers search for common error patterns not caught by

the compiler, such as memory leaks and out of bounds

errors. Dataflow and control flow analysis techniques,

which can apply intra-procedurally or inter-procedurally,

use annotations to reduce the occurrence of false positives.

Model checkers test whether the software meets

specification. Formal methods apply mathematical

techniques to perform in-depth analysis for more accurate

results. Other techniques, such as data mining, have also

been successful in implementing static analysis.

Static analysis tools each deploys selected technique

and exhibits unique features. FindBugs [8], [9], [10] and

XFindBugs [16] implement bug pattern matching. They

perform effective analysis and keep the false positive rate

low. They offer an intuitive user interface and friendly

reporting mechanism. However, FindBugs and

XFindBugs can detect only limited types of software

defects and has to make trade-offs in order to achieve low

false positive or false negative rates. ESC/Java [6] uses

modular checking with the help of annotated code, and

provides more formal theorem-proving techniques. While

it aims to reach some middle ground of cost vs. usability,

ESC/Java requires developers to set up annotations for

each routine. DSD-Crasher [5] adopts a dynamic-static-

dynamic hybrid approach. In the first step, dynamic

inference, DSD-Crasher captures the execution behavior

and detects program invariants dynamically. Secondly, a

static analysis is performed to exhaustively analyze the

program paths within the restricted input domain. Lastly,

Performance Evaluation of Automated

Static Analysis Tools
Cathleen L. Blackmon, Daisy F. Sang, and Chang-Shyh Peng

T

DOI: 10.5176_2010-2283_2.1.153

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

214 © 2012 GSTF

in dynamic verification, test cases are automatically

generated to test the results of the static analysis. DSD-

Crasher inherits the limitation of dynamic analysis, and is

limited by the paths designated in the applied test cases.

CP-Miner [12] implements data mining to find replicated

code in large software suites. Due to its significant

overhead in the implementation of data mining techniques,

CP-Miner is more suitable for large developments.

Abstract interpretation [2], [3] is a mathematics-based

formal method. It is commonly used for mission-critical

embedded systems in avionics, aerospace, railway and

automotive industries. Abstract interpretation techniques

have been applied to memory usage analysis, timing

analysis, bug finding, inter- and intra-procedural analyses

including control flow and data flow analysis, stack

analysis, and more [2], [3], [4], [7], [11], [14], [17], [18].

Earlier research showed evaluations for avionics industry

[1] and for detecting buffer overflow vulnerabilities [19].

In this paper, three relatively new and open source

static analysis tools are studies. Section 2 introduces

these three tools and test platforms. In section 3, test

cases and results are presented. Section 4 concludes with

future work.

II. STATIC ANALYSIS TOOLS AND PLATFORM

Among all available open source static analysis tools

for the C/C++ language, three were identified based upon

their ease of use, report method, result interpretation,

installation, user interface, extensibility, and IDE

integration. They are Flawfinder, Cppcheck, and Yasca.

Flawfinder [25] is an open-source static analysis tool.

It was developed in Python, and designed to detect

security vulnerabilities in C and C++ source code.

Flawfinder was written primarily in Python, requires the

installation of both Python and Cygwin, and can run in

Linux/Unix and Windows. Flawfinder is a command line

tool that is simple and intuitive to use. Flawfinder rates

potential security flaws, called hits, from level 0 (very

little risk) to level 5 (high risk). By default the program

reports only flaws with a minimum risk level of 1, but the

user has the option of selecting the minimum level. There

are various filtering options.

The output of the analysis is limited to HTML or

plain text file formats. Reports provide mostly standard

information, including filename, line numbers and types

of the flaws, and remediation advice.

Cppcheck [23] is a standalone, and open source,

static analyzer. Cppcheck was written in C++ and can

analyze C/C++ code for common defects such as memory

leaks. Cppcheck is designed to promise a low false

positives rates. Its setup in Windows is straightforward.

Cppcheck has four levels of severity: error, possible error,

style, possible style. By default, only errors are reported.

Cppcheck provides both the command line and GUI

usages. The command line usage can specify warning

levels, output format/template, etc. The GUI usage

supports seven languages. While the GUI usage is

friendlier, the command line usage is more versatile.

Yasca is a command line open source static analysis

tool designed to assist in quality assurance testing and

vulnerability scanning. It was developed with Java and

PHP. This tool is an aggregation of the Yasca core

software and various open source tools embedded in

Yasca. It includes plug-ins for Antic, ClamAV, Grep,

Jlint, Javascriptlint, Fxcop, Findbugs, Findbugs-plugin,

Grep, Rats, PMD, Pixy, Phplint, Cppcheck, Clamav.

Since this paper focuses on C/C++ source code, only the

Antic, ClamAV, Grep, Rats and Cppcheck plug-ins were

enabled. The Yasca core itself is not meant to be

modified except as an official release; however the plug-

ins can be modified as needed. Yasca is fairly intuitive to

use. Yasca does not offer as many options as Flawfinder

or Cppcheck, but does provide flexible output formats

including that of MySQL.

These three tools are to be evaluated on a set of

carefully selected test cases, which are embedded with

various classes of flaws. The primary IDE in this project

is Eclipse [24]. It is chosen for its versatility, ease of use,

and wide acceptance in industry and education

environments. Eclipse has the native support of Java, and

can support other languages with corresponding plug-ins.

Other supporting utilities include version control tool

Subversion [20], [21], [26], [27] and Visual C++ IDE.

III. TEST CASES AND EVALUATIONS

Source code analyzed in this project is freely

available online from the National Institute of Standards

and Technology (NIST) Software Assurance Metrics And

Tool Evaluation (SAMATE) Project [15]. This paper

used SAMATE Test Suites 9, 45, 46, 47, 57, 58, and 59,

with a total of 225 C/C++ source code files (test cases).

Many of these test cases include both a bad version (with

flaws or weaknesses) and a good version (with flaws or

weaknesses removed). These 225 cases represent twenty-

three Common Weakness Enumeration (CWE) flaw

classes [22].

Within this set of test cases, virtually all could be

classified as potential security vulnerabilities under

various circumstances. 137 cases represent high or very

high security risks. There are 32 code injection

vulnerabilities (command, XSS, SQL, and resource

injection). Injection vulnerabilities can allow attackers to

compromise the system. There are 20 buffer overflow

(heap and stack) vulnerabilities. Buffer overflows

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

215 © 2012 GSTF

represent a serious threat to system stability and security,

and have been the target of a multitude of attacks in

recent years. There are 5 cases of uncontrolled format

strings. Uncontrolled format strings can cause buffer

overflow in some instances. There are 11 test cases that

can cause memory leaks. 125 cases can lead to invalid or

corrupted data, or data loss (without a malicious attack

present). Nearly all weaknesses can cause the system to

crash or hang. Quality issues like data errors and memory

leaks can lead to system freeze up or crash. Also of great

concerns are errors that cause the program to display

erroneous information. In life-safety situations, such as

medical, aviation, and automotive fields, these errors can

TABLE I

TEST CASES AND RISKS

Weakness Test Cases Bad Good Description Risks

CWE-078 18 10 8 Command Injection (OS) High security risk.

Malicious attack - read/modify data, execute commands.
CWE-079 16 8 8 Cross-site Scripting (XSS)

Injection (Web-based)

Very high security risk.

Malicious attack -inject malicious script execution.

CWE-089 13 6 7 SQL Injection (DB Server) Very high security risk.
Malicious attack - read/modify/delete sensitive data including

username/password

CWE-099 16 8 8 Resource Injection (System) High security risk.
Malicious attack - modify/access protected system resources.

CWE-121 21 11 10 Buffer Overflow (Stack) High security risk.

Malicious attack - execute code/subvert security, System can crash or
hang, Data corruption.

CWE-122 19 9 10 Buffer Overflow (Heap) High security risk.

Malicious attack - execute code/subvert security, System can crash or
hang, Data corruption.

CWE-134 10 5 5 Uncontrolled Format String Very high security risk.

Malicious attack - execute arbitrary code/access confidential
information, Buffer overflow risk, System can crash or hang.

Incorrect data representation error.

CWE-170 10 5 5 Improper Null Termination Security risk.
Malicious attack - Disclosure of sensitive information/execute arbitrary

code, Overflow risk due to off-by-one errors, Write-what-where

condition, System crash, Segmentation fault crash,
Corrupted data.

CWE-244 1 1 0 Heap Inspection Security risk.
Malicious attack - Sensitive information not removed from heap could

be read by attacker.

CWE-251 10 5 5 Misused String Manipulation Potential buffer overflow condition leading to security risks, system
crashes, data corruption, etc.

CWE-259 19 10 9 Use of Hard-coded Password High security risk.

Malicous attack - Attacker given access to account.
CWE-362 4 2 2 Race Condition Possible security risk - if in security-critical mode.

System crash or hang.

CWE-367 4 4 0 Time-of-check Time-of-use
(TOCTOU) Race Condition

Possible security risk - if in security-critical mode.
System crash or hang.

CWE-391 4 2 2 Unchecked Error Condition Security risk - Unexplained behavior hard to attribute to an attack,

Hard to diagnose unexpected program behavior.
CWE-401 11 4 7 Memory Leak Possible security risk if attacker triggers a memory leak causing denial-

of-service attack, Memory not released after last use - program can

crash or hang when memory is too low, Data corruption or loss of data.
CWE-411 2 1 1 Resource Locking Possible security risk, Inability to control access to resources.

CWE-412 2 2 0 Unrestricted Externally

Accessible Lock

Possible security risk if attacker gains control of lock, Denial-of-

service.
CWE-415 10 6 4 Double Free Security risk.

Malicious attack - execute arbitrary code, Write-what-where condition,

Corrupted data, data loss.
CWE-416 10 6 4 Use After Free Security risk.

Malicious attack - execute arbitrary code.

Write-what-where condition.
Invalid or corrupt data.

CWE-457 5 3 2 Use of Uninitialized Variable High security risk - can contain previously-used memory.

Unpredictable or unintended system behavior, Possible data loss.
CWE-468 4 2 2 Incorrect Pointer Scaling Security risk.

Potential for buffer overflow, Corrupt data or data loss, System may

crash or hang.
CWE-476 15 7 8 NULL Pointer Dereference Medium security risk - if combined with other flaws.

Failure of software - crash or exit, Invalid data, possible data loss.

CWE-489 2 1 1 Leftover Debug Code Security risk - sensitive information may be accessed by attacker.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

216 © 2012 GSTF

have serious consequences. Table I summarizes the test

cases and corresponding risks.

Flawfinder, Cppcheck, and Yasca are evaluated on

detection rate and detection accuracy, and are

benchmarked by the SAMATE Flaw Classification

Schema. Detection rate measures the ability to accurately

identify the weaknesses in the source code. There are 4

categories: true positive, false positive, true negative, and

false negative. True positive is when true errors/flaws

were detected and reported correctly. False positive is

when errors were reported when there were actually none.

True negative is when no errors were found, because the

source was in fact error/flaw-free. False negative is

when existing flaws were not detected. Detection

accuracy indicates the ability to detect the error correctly

according to the following criteria: high, medium, low,

and none. High accuracy is when a tool could detect

flaws correctly in more than 70% of the cases. Medium

accuracy is when a tool could detect flaws correctly in

40% to 69% of the cases. Low accuracy is when a tool

could detect flaws correctly in less than 40% of the cases.

None accuracy is when a tool was not able to detect any

existing flaws at all. Results are as follows.

Flawfinder reported a total of 156 flaws in 79 of the

117 bad source files, but was unable to detect flaws in the

remaining 38 bad files. Flawfinder correctly detected 68%

of files with true errors, but also had a high false positive

rate of 60%. The tool detected a total of 92 (with 42 of

level 2 and higher) flaws in 50 of the 108 good files. At

the default setting of security flaw level 2 Flawfinder was

able to detect flaws in all but five flaw classes; including

memory leaks and buffer overflows. When the security

flaw level was set to 1, Flawfinder could detect all flaw

classes except CWE-457 and CWE-468.

Due to its design to reduce the false positive rate,

Cppchecker missed many true flaws in the test cases.

Cppcheck failed to detect any flaws in 16 of the 23 flaw

classes. Among the ones being detected, Cppcheck

reported flaws in 32% of the bad source files with a false

positive rate of 16%. Cppcheck detected 25% of test

cases with memory leak flaws. And Cppcheck caught

44% of the heap overflow cases, 18% of the stack

overflow cases, 40% of the OS command injection cases,

and 29% of the null pointer dereference cases.

Yasca reported a total of 270 flaws in 117 bad test files

and another 212 flaws in the 108 good test files. Yasca

reported 73% of all known flaws; the highest of the three

tools. The false positive rate was high as well at 67%. Of

the true flaws that were detected, the RATS plug-in

detected 113 flaws in 70 test cases. The Antic and Yasca

plug-in detected a dozen flaws between them. The GREP

plug-in detected 98 flaws in 51 test cases. These plug-ins

worked nicely together and accomplished more detections

than they would have separately. Yasca accurately

detected 100% of the known flaws in nine of the flaw

TABLE II
DETECTION RATE

Tool True Positives False Negatives False Positives True Negatives

CPPCHECK 32% 68% 16% 84%

FLAWFINDER 68% (54%) 32% (46%) 60% (46%) 40% (54%)

YASCA 73% 27% 67% 33%

TABLE III

DETECTION ACCURACY

SAMATE ERROR CODE FLAW CPPCHECK FLAWFINDER YASCA

CWE-078 OS Command Injection Medium High High
CWE-079 Cross-site scripting XSS Low Medium Medium

CWE-089 SQL Injection None Medium Medium

CWE-099 Resource Injection None High High
CWE-121 Buffer Overflow (Stack) Low High High

CWE-122 Buffer Overflow (Heap) Medium Medium High

CWE-134 Uncontrolled Format String None High High
CWE-170 Improper Null Termination None High High

CWE-244 Heap Inspection None None High

CWE-251 String Management None High High
CWE-259 Hard-Coded Password None None Low

CWE-362 Race Condition None Medium Medium

CWE-367 TOUTOU Race Condition None High Medium
CWE-391 Unchecked Error Condition None Medium High

CWE-401 Memory Leak Low Low Medium

CWE-411 Resource Locking None High None
CWE-412 Unrestricted Lock on Critical Resource None High None

CWE-415 Double Free Low Low Low

CWE-416 Use After Free None Medium High
CWE-457 Use of Uninitialized Variable None None Low

CWE-468 Incorrect Pointer Scaling None None None

CWE-476 Null Pointer Dereference Low Low Low
CWE-489 Leftover Debug Code None None High

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

217 © 2012 GSTF

classes, and was very effective in the recognition of buffer

overflows, string errors, and command injection

vulnerabilities.

IV. SUMMARY

Table II summarizes the detection rates among

Flawfinder, Cppcheck, and Yasca. And Table III presents

the detection accuracy among these three tools. Flawfinder

was shown to be the easiest to modify and extend.

Cppcheck provided an easy-to-use GUI interface that may

be attractive to novices. Yasca provided the most accurate

results, and its hyperlinked HTML report was the most

useful and versatile. Open source tools are experimental in

nature. If used early in the software development process,

these tools can catch common errors and offer suggestions

for improvement. For small and/or educational

developments, these tools can be particularly valuable.

V. REFERENCES

[1] Bartholomew, R., Evaluation of Static Source

Code Analyzers for Avionics Software

Development. Ada Letters. Volume XXVIII, Issue

1. pp 83-87. April 2008.

[2] Cousot, P., Cousot, R. Abstract interpretation: a

unified lattice model for static analysis of programs

by construction or approximation of fixpoints.

POPL '77: Proceedings of the 4th ACM SIGACT-

SIGPLAN Symposium on Principles of

ProgrammingLanguages. Los Angeles, CA,

January 1977. pp. 238-252. ACM Press.

[3] Cousot, P., Cousot, R. Systematic design of

program analysis frameworks. POPL '79:

Proceedings of the 6th ACM SIGACT-SIGPLAN

Symposium on Principles of Programming

Languages. San Antonio, TX, January 1979. pp.

269-282. ACM Press.

[4] Cousot, P., Cousot, R., Feret, J., Mine, A.,

Mauborgne, L., Monniaux, D., Rival, X. Varieties

of Static Analyzers: A Comparison with ASTREE.

TASE '07: First Joint IEEE/IFIP Symposium on

Theoretical Aspects of Software Engineering. 2007.

IEEE.

[5] Csallner , C., Smaragdakis, Y. DSD-Crasher: a

hybrid analysis tool for bug finding. Proceedings

of the 2006 international symposium on Software

testing and analysis. July 17-20, 2006. Portland,

Maine, USA.

[6] Flanagan, C., Rustan, K., Leino, M., Lillibridge,

M., Nelson, G., Saxe, J., Stata, R. Extended static

checking for Java, Proceedings of the ACM

SIGPLAN 2002 Conference on Programming

language design and implementation, June 17-19,

2002, Berlin, Germany.

[7] Heckmann, R., Ferdinand, C. Verifying Safety-

Critical Timing and Memory-Usage Properties of

Embedded Software by Abstract Interpretation.

DATE '05: Proceedings of the conference on

Design, Automation and Test in Europe - Volume 1.

IEEE Computer Society. pp 618-619. March 2005

[8] Hovemeyer, D., Pugh, W. Finding bugs is easy.

ACM SIGPLAN Notices. Volume 39 Issue 12. pp

92-106. December 2004.

[9] Hovemeyer,D., Pugh, W. Finding more null

pointer bugs, but not too many. ACM PASTE '07:

Proceedings of the 7th ACM SIGPLAN-SIGSOFT

workshop on Program analysis for software tools

and engineering. June 2007.

[10] Hovemeyer, D., Spacco, J., Pugh, W. Evaluating

and tuning a static analysis to find null pointer

bugs. PASTE '05: Proceedings of the 6th ACM

SIGPLAN-SIGSOFT workshop on Program

analysis for software tools and engineering.

January 2006.

[11] Kaestner, D. Safe worst-case execution time

analysis by abstract interpretation of executable

code. LCTES '07: Proceedings of the 2007 ACM

SIGPLAN/SIGBED conference on Languages,

compilers, and tools for embedded systems. p 135.

San Diego, CA USA. July 2007.

[12] Li, Z., Lu,S., Myagmar, S., Zhou, Y., CP-Miner:

Finding Copy-Paste and Related Bugs in Large-

Scale Software Code. IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 32, NO.

Louridas, P., Static Code Analysis. IEEE Software,

pages 58-61. July/August 2006. IEEE Computer

Society.

[13] Pezze, M., Young, M., Software Testing and

Analysis: Process, Principles, and Techniques.

John Wiley & Sons, Inc. 2008. ISBN-13: 978-0-

471-45593-6

[14] Regehr, J., Reid, A., Webb, K. Eliminating stack

overflow by abstract interpretation. ACM

Transactions on Embedded Computing Systems

(TECS). Volume 4 Issue 4. pp 751-778. November

2005.

[15] SAMATE Reference Dataset, National Institute of

Standards and Technology,

http://samate.nist.gov/SRD/

[16] Shen, J., Zhang, S., Zhao, J., Fang, J., Yao, S.

XFindBugs: eXtended FindBugs for AspectJ.

PASTE '08: Proceedings of the 9th ACM

SIGPLAN-SIGSOFT workshop on Program

analysis for software tools and engineering.

November 9-10. Atlanta, Georgia USA. 2008.

[17] Thesing, S. Modeling a system controller for

timing analysis. EMSOFT '06: Proceedings of the

6th ACM & IEEE International conference on

Embedded software. pp 292-300. October 2006.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

218 © 2012 GSTF

[18] Wei-Ngan Chin, Huu Hai Nguyen, Corneliu

Popeea, Shengchao Qin. Analysing memory

resource bounds for low-level programs. ISMM '08:

Proceedings of the 7th international symposium on

Memory management. pp 151-160. June 2008.

[19] Zitser, M., Lippmann, R., Leek, T., Testing Static

Analysis Tools Using Exploitable Buffer

Overflows from Open Source Code.

SIGSOFT’04/FSE12, Oct. 31–Nov. 6, 2004,

Newport Beach, CA, USA. 2004. ACM

1581138555/04/0010.

[20] AnkhSVN. http://ankhsvn.open.collab.net/

[21] Apache Subversion. http://subversion.apache.org/

[22] Common Weakness Enumeration (CWE).

http://cwe.mitre.org/index.html

[23] Cppcheck Project.

http://sourceforge.net/projects/cppcheck/

[24] Eclipse IDE. http://www.eclipse.org/downloads/

[25] Flawfinder Project.

http://sourceforge.net/projects/flawfinder/

[26] Subclipse. http://subclipse.tigris.org/

[27] VisualSVN Server Standard.

http://www.visualsvn.com/server/download/

Cathleen L. Blackmon is a Software

Engineer at Rockwell Collins in Cedar

Rapids, Iowa. She received B.S. and M.S.

degrees in Computer Science from

California State Polytechnic University

Dr. Daisy F. Sang is a professor in the

Department of Computer Science at

California State Polytechnic University.

She received both M.S. and Ph.D.

degrees from the University of Texas at

Dallas. Her research interests include

software testing, web services discovery

and composition, graph algorithms, and fault tolerant

distributed computing. She has supervised many graduate

and undergraduate research projects, funded by NASA

Partnership Awards for Integration Research, NSF

Advance, Women’s Educational Equity Act, Lockheed

Martin-CSU Partnership program, and local industry such

as Amptron Inc, GTE, and Southern California Edison.

Dr. Chang-Shyh Peng is the Professor

and Chair of the Computer Science

Department at California Lutheran

University. He received B.S. degree from

National Taiwan University, and the M.S.

and Ph.D. degrees from the University of

Texas at Dallas. His research interests

include data communication and networking, parallel

processing, client/server development, multimedia, and

software development. He has published various articles

in network simulations and modeling, network

applications, and design and analysis of algorithms.

GSTF Journal on Computing (JoC) Vol.2 No.1, April 2012

219 © 2012 GSTF

