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ABSTRACT

Model Driven Development is used to improve software quality and efficiency by automatically
transforming abstract and formal models into software implementations. This is particularly sen-
sible if the model’s integrity can be proven formally and is preserved during the model’s transfor-
mation. A standard to specify software model integrity is the Object Constraint Language (OCL).
Another topic of research is the dynamic development of software components, enabling soft-
ware system composition at component run-time. As a consequence, the system’s verification
must be realized during system run-time (and not during transformation or compile time). Many
established verification techniques cannot be used for run-time verification.

A method to enable model-based run-time verification will be developed during this work. How
OCL constraints can be transformed into executable software artifacts and how they can be used
in the component-based system Treaty will be the major task of this diploma thesis.

The work contains:

• An introduction into the theoretical foundations,

• An investigation of related work,

• The requirement analysis and a prototypical design of a run-time verification process,

• A prototypical implementation of the designed system,

• And its validation using an example case.
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1 INTRODUCTION

Even if proof techniques and tools eventually become available, one may suspect that
run-time checks will not go away, if only to cope with hard-to-predict events such as
hardware faults, and to make up for possible bugs in the proof software itself [...]

Betrand Meyer [Mey97, p. 399]

Since programming has lead to source code being too large to be structured in a single file in a
readable way, software engineers have been trying to structure their software more efficiently.
In the 1970s, Software Modules [Par72] became popular to structure software more intelligent,
readable and secure. Examples for modular programming languages are Modula-2, Delphi, Pascal
and Ada-83 [Aßm03, p. 64f]. The next step towards powerful programming languages was
Object-oriented Programming [Mey97] which organizes the software modules in a more intuitive
and logical way and introduces the concept of object initialization at run-time. Examples for
object-oriented programming languages are ADA-95, Sather, C++ and Java [Aßm03, p. 3].

Software Components [Szy02] can be used “to encapsulate data and programs into [boxes] that
operate[s] predictable [BJPW99].” Software components can be considered as a higher program-
ming paradigm than object-oriented programming, because they improve modularity, interface
standardization and provide more dynamic connection mechanisms [Aßm03, p. 67]. According to
Szyperski [Szy02, p. 35ff], a software component is a unit of independent deployment that is well
separated from its environment and other components and can be of third-party composition. A
software component has no (externally) observable state and encapsulates its implementation.
It communicates with the environment via well-defined interfaces. A software component can
be loaded into and activated in a particular system. Software components are highly modular
and interchangeable. “[...] one component may replace another even if it has a different internal
implementation, as long as its specification includes he interfaces that the client component re-
quires.” [LC02, Sect. 1] Components of that only the interfaces are visible are called Blackbox
Components. Components that provide also access to their internal structure are called White-
box Components instead. Also hybrid components, so-called Graybox Components exist [Szy02,
p. 544ff]. In this work the term Component will represent blackbox components.

Component-Based Software Engineering (CBSE) is becoming a mainstream approach. The ad-
vantages of CBSE are quicker development times, secure investments through reuse of existing
components and the ability to compose software interactively [GZ01]. Component-based soft-
ware is portable, interoperable, extensible, configurable and maintainable [LSNA97]. A central
question in CBSE is how to trust foreign or third-party components. Beugnard [BJPW99] points
out that mission-critical systems cannot be rebooted easily if an error occurs during their run-time
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and some components may behave unexpectedly. Thus, we have to determine whether we can
trust and use given components before and during component interaction. We need the ability to
verify that software components conform to their specification [Hei03], some sort of high-quality
specifications in the middle, often called Contracts [Szy00]. A contract “[...] protects the client by
specifying how much should be done [... and] the contractor by specifying how little is acceptable
[...]” [Mey92, p. 41] Contracts are a well-known mechanism for achieving trustworthy software
[ABH+06, Mey97].

Traditionally, collaborations in component models are described by interface compatibility [DJ08].
“Technically an interface is a set of operations that can be invoked by clients.” [Szy02, p. 50]
An interface defines which methods are provided and required by a component to interact with
other components. Such interfaces can be regarded as syntactic contracts. “The notion of con-
tracts as interfaces–annotated with pre- and postconditions and, perhaps, invariants–is simple
and practical. However several important issues are not covered.” [Szy02, p. 55] Besides, in-
terface compatibility contracts can be defined on properties of software instances. Changes of
object states at run-time can invalidate properties and contracts at run-time [ABH+06, p. 155].
Contracts defined on properties of instances can be considered as Dynamic Contracts [ABH+06,
p. 157]. In modern component systems components can be dynamically discovered, loaded,
started, terminated and unloaded.

Thus, other types of contracts are required as well. “[... C]ontracts need to go far beyond
establishing functional requires and provides clauses.” [Szy00] Beugnard [BJPW99] separates
component contracts into four categories:

1. Basic Syntactic Contracts: Syntactic contracts define the interfaces components pro-
vide to communicate with other components. Traditionally, a description language like the
Interface Definition Language (IDL) or an object-oriented programming language like Java
can be used to define such interfaces.

2. Behavioral Contracts: Besides the interface definition, the component user has to ensure
that the used component does what the component is expected to do. “You can never be
sure the component will perform correctly, only that it will perform as specified.” [BJPW99]
Thus, behavioral contracts are used to define the component semantics. Typically, such
Design by Contract [Mey97, p. 331ff] is realized by defining pre- and postconditions in con-
straint languages like Eiffel [ECM06] or the Object Constraint Language (OCL) [OMG06c].
“The client has to establish the precondition before calling the operation and the provider
can rely on the precondition being met whenever the operation is called. The provider has
to establish the postcondition before returning to the client and the client can rely on the
postcondition being met whenever the call to the operation returns.” [Szy02, p. 53]

3. Synchronization Contracts: In multi-user scenarios or distributed systems synchronization
contracts are used to ensure that the components communicate in the right order. Paral-
lelism, and sequences of method execution can be defined. Synchronization in terms of
transactional behavior can be realized as well.

4. Quality of Service Contracts: A fourth group of contracts defines Quality of Service
(QoS) requirements that are commonly known as Non-Functional or Extra-Functional re-
quirements. E.g., QoS contracts can define response times or result throughputs for multi-
object answers.

Dietrich [DJ08] names some other types of contracts besides the four categories depicted by
Beugnard, including Security, Trust and Licensing. Aßmann et al. [ABH+06] point out that con-
tracts defined on software connections can be separated in Simple and Multi-Point Contracts.
Simple contracts focus on one extension or connection of components whereas multi-point con-
tracts focus on combinations of extensions.
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As mentioned above, one possibility to design behavioral contracts is the Object Constraint
Language (OCL) [OMG06c]. A tool for supporting OCL constraints defined on models in different
Domain-Specific Languages (DSLs) (e.g., UML or EMF Ecore) is Dresden OCL2 for Eclipse. A con-
tract system to define functional and non-functional constraints on software components and to
evaluate them at component run-time is provided by the contract language Treaty [DJ08, URL09s].
This work presents an approach to extend the contracting language Treaty with the definition of
OCL constraints by combining Dresden OCL2 for Eclipse with Treaty. It is examined how OCL
can be used for run-time verification of behavioral contracts on components. A solution that is
independent of the underlying component language and implementation is presented.

This work is structured as follows: Chapter 2 introduces some foundations like the Object Con-
straint Language (OCL) and presents a motivating example for the definition of behavioral con-
straints using OCL. Chapter 3 discusses related work and systems that have already been trying
to realize run-time verification on component systems or have investigated similar research tasks.
Chapter 4 analyses the requirements and discusses different architectural designs that could be
used to combine Dresden OCL2 for Eclipse and Treaty. In Chapter 5 some implementation details
are documented and explained. Chapter 6 illustrates how the implementation presented in this
work has been tested. Chapter 7 finishes the work by shortly summarizing and evaluating the
presented work and highlighting some challenges for future works.

Typographical and graphical conventions used in this work:

• Italics are used to highlight important keywords and scientific terms.

• Typewriter font is used to sign model elements or language constructs of different
programming and modeling languages such as Java or OCL.

• Small typewriter font is used to show coding examples in listings.

• Small, blue, bold typewriter font is used to highlight keywords in listings.

• Small, red typewriter font is used to highlight strings in listings.

• Small, green typewriter font is used to highlight comments in listings.

• Blue color is used to denote hyperlinks between references.

• Class diagrams and component models are illustrated according to the Unified Modeling
Language (UML) [OMG09c]. A good introduction into UML can be found in the book
UML@Work by Martin Hitz et al. [HKKR05] and in The Unified Modeling Language Ref-
erence Manual by James Rumbaugh et al. [RJB04].

• The illustration of role models was inspired by Riehle et al. [RG98].
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2 FOUNDATIONS

The difference between “theory” and “practice” is that in theory there is no difference
between theory and practice, but in practice, there is.

Jan L. A. van de Snepscheut and/or Yogi Bera
(according to Rosenberg and Stephens [RS07, p. XXVII])

This chapter presents some theoretical foundations that are necessary to understand the content
of this work. The term Verification is shortly defined and discussed with the focus on Run-time
Verification in Section 2.1. In the Sections 2.2 and 2.3 the Object Constraint Language (OCL)
and the Generic Three Layer Metadata Architecture are introduced. Afterwards, two different
approaches to verify constraints on software objects are presented in Section 2.4. In the Sections
2.5 and 2.6 the Dresden OCL Toolkit and an example component model to explain the use of OCL
constraints on component interfaces are presented. Furthermore, the Consumer/Supplier role
model is introduced in Section 2.7. Additionally, the term Aspect-Oriented Programming (AOP)
and the Eclipse/OSGi platform and component model are explained in the Sections 2.8 to 2.10.
Readers who are familiar with these topics can skip this chapter but are recommended to have
a look at the component model example in Section 2.6 to which the following chapters will refer
multiple times.

2.1 VERIFICATION VS. VALIDATION

Before I discuss the tasks and results of my diploma thesis, I will shortly define a central term
of my thesis: Software Verification. Furthermore, I will present the difference between software
verification and Software Validation.

2.1.1 Software Verification

According to Zuser et al. [ZGK04, p. 356], Verification guarantees that results of a project de-
velopment phase are consistent to the preceding project development phases. Balzert [Bal98, p.
101] and Hinzel et. al [HHMS06, p. 18] define verification as a planned and systematic process
with the target to ensure that a product conforms to its requirements and its specification–that
the product was developed as specified.
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Furthermore, they conclude that Software Verification is a formal and exact method to prove the
consistence between specification and implementation of a software component using mathe-
matics [Bal98, p. 396 and p. 446]. Thus, software verification results in higher certainty for the
absence of bugs than software tests [Bal98, p. 446]. The central question of software verification
can be described as: “Did we develop the product right?” [Bal98, p. 101] [HHMS06, p. 18]
[ZGK04, p. 356].

For software verification, only information of proceeding project phases are required and the
customer or software user has not to be involved into the verification process [ZGK04, p. 356].
The basis for software verification are the functional and non-functional requirements defined
during the requirement analysis [ZGK04, p. 356]. Hindel [HHMS06, p. 190] points out that instead
of Software Validation, software verification can be realized for both whole software systems and
single software modules or components during the whole development process.

Balzert [Bal98, p. 446] names the use of assertions like pre-, postconditions, and invariants one
possible form of software verification. Thus, the topic of this work, using the Object Constraint
Language (including pre-, postconditions, and invariants) on software components can indeed be
considered a software verification technology.

2.1.2 Software Validation

In contrast to software verification, software Validation is defined as the applicability or the value
of a product in respect to its application purpose [Bal98, p. 101]. Zuser [ZGK04, p. 356] defines
validation as the inspection whether or not the results of a project conform to the requirements
of its customer. Hindel [HHMS06, p. 18] calls validation a planned, systematic process with the
target to demonstrate that a product conforms to the planned application and environment. The
central question during validation can be considered as being “Did we develop the right product?”
[Bal98, p. 101] [HHMS06, p. 18] [ZGK04, p. 356].

Zuser [ZGK04, p. 356] emphasizes that the customer or user of a software has to be involved
into the software’s validation. Software validation is often used as a software acceptance test
[HHMS06, p. 190]. An important precondition for such a software validation by the customer is a
proceeding software verification by the software developer [HHMS06, p. 190].

2.1.3 Run-time Verification

Software Validation can be considered the final step during software development while Software
Verification is a continuous process during the whole software development process instead.
Run-time Verification is the use of verification techniques at the developed software’s run-time.
“Runtime verification supplements static analysis and formal verification with more lightweight
dynamic techniques when the static techniques fail due to complexity issues. [...] Runtime ver-
ification uses some form of instrumentation to extract, during test or in operation, a trace of
observations from a program run and then applies formal verification to this trace.” [FHRS08, p.
2]. In the context of run-time verification it is important to emphasize the fact that run-time verifi-
cation realizes software verification during the software’s execution. Thus, run-time verification is
continued after the software’s validation and will not be finished when the software development
process of a software project is completed with its acceptance test and the software is shipped
to the customer.
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2.2 THE OBJECT CONSTRAINT LANGUAGE

The Object Constraint Language (OCL) is originally a “standard add-on of the Unified Modeling
Language (UML)” [WK04, p. 19]. OCL enables the software developer to extend UML diagrams
with additional and more precise information. New attributes, associations and methods can be
defined, initial and derived values or operation bodies can be added. The main feature of OCL is a
Design by Contract (DBC) [Mey97, p. 331ff] notation for the definition of preconditions (conditions
which must be valid before the execution of a method), postconditions (conditions which must
be valid after the execution of a method) and invariants (conditions which must be valid during the
lifetime of an UML object). As mentioned above, OCL has been designed as an extension of the
UML. But today, OCL is also used to define constraints on other modeling languages and DSLs.

The first version of OCL was developed by IBM around 1995 [PDD+09]. In 1997, OCL became
part of the Unified Modeling Language (UML) and was released as an Object Management Group
(OMG) specification in the version 1.1 [OMG97, Wik09]. In 1999, the development of UML 2.0
and OCL 2.0 was started with the UML 2.0 and UML 2.0 OCL Request for Proposals [Wik09]. In
September 2004, the 2.0 versions of UML and OCL were released. The OCL 2.0 specification
has been published by the OMG and is available at the OMG website [OMG06c]. The OCL 2.1
specification is currently in development. A preview of the 2.1 specification is available at the
OMG website [OMG09a]. A general and detailed introduction into OCL has been published by
Warmer and Kleppe [WK04].

2.3 THE GENERIC THREE LAYER METADATA ARCHITECTURE

Each modeling language is defined in another language, its meta-modeling language. For exam-
ple, the Unified Modeling Language is defined using the Meta Object Facility (MOF) [OMG06b],
the standardized meta-meta language of the OMG. The MOF is used to describe the UML meta-
model that can be used to model UML models. Generally speaking, each model requires a meta-
model that is used to describe the model. The model can be instantiated by model instances (for
example a UML class diagram could be instantiated by a UML object diagram). One may also
say, that the model is an instance of its meta-model. This model to meta-model instance-of rela-
tionship can be considered as relative, because every model is an instance of a meta-model. The
meta-model is again an instance of a meta-meta model (the meta-model’s meta-model). Each
model can be enriched with OCL constraints that are defined on the model and can then be
verified for instances of the model.

The OMG introduced the MOF Four Layer Metadata Architecture [OMG06b][OMG09b, p. 16ff]
which is used to arrange and structure the meta-model, the model, and its model instances into
a layered hierarchy (see Figure 2.1; the layout of the illustration is oriented at the conceptual
framework introduced by Matthias Bräuer [Brä07, p. 28]). Generally, four layers exist, the Meta-
Meta-Model Layer (M3), the Meta-Model Layer (M2), the Model Layer (M1), and the Model
Instance Layer (M0).

OCL constraints can be defined on both meta-models and models to verify models (Model-Level
Constraints) respectively instances (Instance Level Constraints). Thus, the four layer metadata
architecture can be generalized to a Generic Three Layer Metadata Architecture in the scope of
an OCL definition (see Figure 2.2) [DW09]. On the Mn+1 Layer is the meta-model that is used
to define the model that shall be constrained. On the Mn Layer is the model that is an instance
of the meta-model and can be enriched by the specification of OCL constraints. Finally, on the
Mn-1 Layer is the model instance on that the OCL constraints shall be verified. Please note that
in the context of this generic layer architecture an instance can be both a model (like a UML class
diagram) or a model’s instance (e.g., a set of objects like Java run-time objects). This is illustrated
in Table 2.1.
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Figure 2.1: The MOF Four Layer Metadata Architecture.
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Figure 2.2: The Generic Three Layer Metadata Architecture.
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Model-Level Constraints
(defined on the Meta-Model

Instance-Level Constraints
(defined on the Model)

Mn+1 Meta-Meta Model Meta-Model
Mn Meta-Model Model
Mn-1 Model Instance

Table 2.1: Constraints can be defined on both meta-models and models and thus, evaluated on
models (model-level constraints) or instances (instance-level constraints).

.

2.4 TWOWAYS TO VERIFY CONTRACTS AT RUN-TIME

Generally, two different approaches exist to verify contracts at component run-time: the Inter-
pretative and the Generative Approach [DW09]. The interpretative approach verifies contracts by
interpreting them on a model and its instances, the generative approach instead generates code
or queries that can be executed to verify the contracts. Both approaches are shortly defined in
the following.

2.4.1 The Interpretative Approach

The first possible approach for contract verification is the Interpretative Approach. The interpreta-
tive approach uses a model and at least one model instance to verify the contract on this instance
using an interpreter (see Figure 2.3, part A). The interpretative approach for example can be used
to verify that the attribute age of an object Person is positive

2.4.2 The Generative Approach

The second possible approach is the Generative Approach. The generative approach uses a code
generator to generate code that can be executed for contract verification (see Figure 2.3, part B).
E.g., Java code (that ensures a set of OCL constraints defined on a UML class diagram, during
code execution) could be generated. Different techniques like Aspect-Oriented Programming
(AOP) or Java Assertions [GJSB05, p. 373ff] could be used.

2.5 DRESDEN OCL

The Dresden OCL Toolkit has been developed at the Technische Universität Dresden (TUD) since
1998. It provides a collection of tools that can be used by other case tool developers to integrate
them into their software. E.g., the OCL2 Parser of the toolkit can be integrated into a UML Case
Tool to enrich UML diagrams with OCL constraints. Today, the toolkit is one of the major software
projects at the software technology group and three different versions of the toolkit have already
been released. Figure 2.4 shows a time line illustrating the different releases of OCL and the
Dresden OCL Toolkit.

2.4 Two Ways to Verify Contracts at Run-time 9
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Figure 2.4: The different releases of OCL and the Dresden OCL Toolkit.

2.5.1 The Dresden OCL Toolkit

A preliminary OCL study at the Technische Universität Dresden was done by Andreas Schmidt
[Sch98] in 1998, examining how OCL could be mapped to the Structured Query Language (SQL).
The first base for the toolkit was realized by Frank Finger in 1999 [Fin99, Fin00]. An OCL standard
library and possibilities to load and parse UML models and OCL constraints and furthermore the
possibility to generate Java code from OCL constraints were implemented. The instrumentation
of the created Java code was realized by Ralf Wiebicke [Wie00]. This first released version of the
toolkit was called Dresden OCL Toolkit (DOT).

2.5.2 The Dresden OCL2 Toolkit

The development of a second version of the toolkit started in 2003. The basis of this version was
created with the adaptation of the Dresden OCL Toolkit to the Netbeans Metadata Repository
(Netbeans MDR) by Stefan Ocke [Ock03]. This version of the toolkit was named Dresden OCL2
Toolkit (DOT2). It was based on the OCL standard in the version 2.0 [OMG06c]. The DOT2
provided the loading and parsing of UML models and OCL constraints and the transformation
of constrained models into SQL [Hei05, Hei06]. The possibility to generate and instrument Java
code for OCL constraints was adapted from the Dresden OCL Toolkit to the Dresden OCL2 Toolkit
by Ronny Brandt in 2006 [Bra06].

2.5.3 Dresden OCL2 for Eclipse

Since 2007 the Dresden OCL2 Toolkit has been replaced by a third version. The implementation
of a Pivot Model by Matthias Bräuer [Brä07] made the newest version of the toolkit indepen-
dent from specific repositories and it can therefore be adapted to many different meta-models.
By now, adaptations to the UML2 meta-model of the Eclipse Model Development Tools Project
[URL09e] and to the EMF Ecore meta-model are supported. This newest version of the toolkit is
called Dresden OCL2 for Eclipse (DOT4Eclipse) because it is based on the Eclipse/OSGi compo-
nent model. In addition to the implementation of the pivot model, the OCL2 Parser to load and
verify OCL constraints [Thi07], the OCL2 Interpreter [Bra07] and the OCL22Java Code Generator
[Wil09] have been reimplemented and integrated into Dresden OCL2 for Eclipse.

The Architecture of Dresden OCL2 for Eclipse

The architecture of Dresden OCL2 for Eclipse is shown in Figure 2.5. The architecture is the
result of the work of Matthias Bräuer [Brä07] and can easily be extended. The architecture can
be separated into three layers: The Back-End, the Basis and the Tools Layer.

2.5 Dresden OCL 11
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Figure 2.5: The architecture of Dresden OCL2 for Eclipse.
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Figure 2.6: The architecture of Dresden OCL2 for Eclipse in respect to the Generic Three Layer
Metadata Architecture.
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The back-end layer represents the repository and the meta-model that can easily be exchanged
because all other packages of the Dresden OCL2 for Eclipse do not directly communicate with the
meta-model but use the Pivot Model that delegates all requests to the meta-model instead. For
example, a possible meta-model is the UML2 meta-model of the Eclipse Model Development
Tools (Eclipse MDT) Project [URL09e]. The second layer is the toolkit basis layer and contains
the Pivot Model, Essential OCL and the Model Bus. The use of the pivot model was explained
before. The package Essential OCL extends the pivot model to provide meta-model elements
for OCL expressions.1 The package Model Bus loads, manages and provides access to models
and model instances the user wants to work with. The third layer contains all tools that are
provided by the toolkit. This layer contains the OCL2 Parser (which is essential, because the other
tools require models that are enriched with already parsed and syntactically and semantically
checked constraints), the OCL2 Interpreter, and the OCL22Java Code Generator. All the tools
use the packages of the second layer to access models and model instances and to work on OCL
constraints.

Dresden OCL2 for Eclipse has been developed as a set of Eclipse/OSGi plug-ins. All packages that
are located in the basis and tools layer are implemented as different Eclipse plug-ins. Additionally,
Dresden OCL2 for Eclipse contains some plug-ins to provide GUI elements such as wizards and
examples to run Dresden OCL2 for Eclipse with some simple models and OCL expressions.

Dresden OCL2 for Eclipse and The Generic Three Layer Metadata Architecture

The architecture of Dresden OCL2 for Eclipse was designed in respect to the Generic Three Layer
Metadata Architecture (introduced in Section 2.3, see Figure 2.6). At the Mn+1 Layer, different
meta-models can be adapted to the toolkit by adapting them to the pivot model. Afterwards,
models defined with the elements of these meta-models can be loaded into the toolkit at the
Mn Layer. The models can be enriched with OCL constraints that are described using their own
meta-model Essential OCL, which is described at the Mn+1 Layer by extending the pivot model.
At the Mn-1 Layer model instances of models loaded before can be imported into the toolkit
and OCL constraints can be verified on these model instances by using the OCL2 Interpreter or
the OCL22Java Code Generator. Please note that model instances inside the toolkit can be both
models like UML class diagrams or model instances like Java objects.

2.6 A MOTIVATING EXAMPLE

This section will introduce a motivating example for a component interface contract to which this
work will refer multiple times. It has been developed by Jens Dietrich [DJ08, Sect. 2] to explain
contract-able components. The so-called Clock Example is shown in Figure 2.7.

The example contains two components, a Clock and a DateFormatter component. The
Clock component is responsible to display the current time and date on a screen. The com-
ponent defines a port called dateformatter that can be bound by any DateFormatter com-
ponent that provides a date format mechanism whose results can be displayed by the clock
component. This date format mechanism can be a Java interface implementation of the required
interface Clock.dateformatter.class, or an XML-Schema implementation of the required
interface Clock.dateformatter.formatdef. At least one of these two interfaces must be
bound by a DateFormatter component to provide the required dateformatter service. At
run-time, different DateFormatters can be connected to the Clock component (see Figure
2.8) and the user can decide, which DateFormatter he wants to use in his Clock view. Listing

1The Essential OCL implementation does not conform completely to the Essential OCL package as specified in the
OCL specification [OMG06c]. Some minor redesigns have been done by Matthias Bräuer, who implemented Essential
OCL for the toolkit. A documentation of his Essential OCL implementation can be found in [Brä07, Appendix B].
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<<component>>
Clock
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service-
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<<component>>
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class

formatdef
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Figure 2.7: A simple Clock Example.

� �
1 public interface DateFormatter {
2
3 String format(java.util.Date date);
4
5 String getName();
6 }� �

Listing 2.1: The DateFormatter interface.

:Clock

a:DateFormatter

class

formatdef

b:DateFormatter

c:DateFormatter

Figure 2.8: At run-time, different DateFormatter components can be bound to the Clock compo-
nent using different interfaces of the port Clock.dateformatter.
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2.1 shows the required interface that must be implemented by DateFormatter components
that bind the port using the Clock.dateformatter.class interface. The interface declares
two methods. The method getName() has to return the name of the date format and the method
format(Date) can be used to convert java.util.Date objects into formatted Strings.

Dietrich uses the clock example for component contract definitions of different types that can be
verified by the component verification language Treaty (see also Section 3.1). Such contract defi-
nitions can be inheritance relationships between Java interfaces and classes, XML Schemata and
XML files, and JUnit tests to check functional and non-functional requirements on Java methods.

The functional JUnit tests that are provided with the Clock Example test the method format
(Date) of the Java DateFormatter interface. Listing 2.2 shows the functional JUnit tests.
These functional tests can also be described using OCL constraints. Listing 2.3 shows the same
contract as a set OCL constraints. The first two OCL expressions are definitions that define new
functions that are required to verify the following constraints. The function contains(String,
String) checks if the second given String is contained in the first. This method must be de-
fined manually because the OCL type String does not define a contains() method like the
String type in Java. The second method getMonth() is used to extract from a given Date ob-
ject the English name of its month. The method is not completely shown in the listing because it
contains eleven nested if-clauses which are not very interesting. The three following constraints
check whether or not the result of the method format(Date) of every DateFormatter con-
tains the year, the month and the day of the given Date.

The example OCL contract shows that OCL is a very powerful constraint language that can be
used to describe functional constraints on component interfaces. Although the OCL Standard
Library does not provide many operations to reason on the OCL types, more operations can be
defined using definitions to extend the power of OCL.2 During this work, OCL will be used to
define contracts on component interfaces such as in the clock example. Because OCL does not
support non-functional expressions, only functional constraints will be supported in the OCL con-
tracts. The non-functional constraints contained in the clock example (e.g., the format(Date)’s
execution time) will still be expressed using JUnit tests and the JUnit vocabulary of Treaty.

2.7 THE CONSUMER/SUPPLIER ROLE MODEL

As already mentioned in Chapter 1, components interact via required and provided interfaces.
Each of such interactions is realized by at least two components, one component having a re-
quired interface and one component implementing this interface with a provided interface. This
relationship can be described using a simple Role Model [RG98, Section 3]. The component defin-
ing a required interface plays the Consumer role because it consumes the interface provided by
another component and the component providing the interface plays the Supplier role [DJ08] (See
Figure 2.9. The illustration of role models was inspired by the work of Dirk Riehle and Thomas
Gross [RG98]). The Consumer/Supplier role model applied to the Clock Example (introduced in
Section 2.6) is shown in Figure 2.10.

This Consumer/Supplier role model is able to describe a simple connection relationship between
components, but no contract definition on such a connection. Szyperski [Szy00] points out that
contracts are “most naturally expressed as constraints and conditions over model variables [...]
that do not relate to an implementation. [... Implementations] need to establish the mapping
between their implementation variables and the abstract model variables.” In addition to that,
the role model is extended by two other roles, the Legislator role and the Contractor role. Ev-
ery component playing the Consumer role can also play the Legislator role. This means that the
component defines a contract specifying the required interface of his Consumer role in more

2Furthermore, the OCL 2.1 specification–that is currently in development–will contain some additional methods that
will improve the power of the OCL standard library [OMG09a].

2.7 The Consumer/Supplier Role Model 15



� �
1 public class DateFormatterFunctionalTests {
2
3 private DateFormatter formatter = null;
4 private Date testedDate = null;
5
6 public DateFormatterFunctionalTests(DateFormatter formatter) {
7 super();
8 this.formatter = formatter;
9 }

10
11 @Before
12 public void setUp() {
13 testedDate = new GregorianCalendar(1987, 6, 21).getTime();
14 }
15
16 @After
17 public void tearDown() {
18 testedDate = null;
19 formatter = null;
20 }
21
22 @Test
23 // At least the last two digits of the year should be printed.
24 public void test1() {
25 String s = formatter.format(testedDate);
26 assertTrue(s.contains("87"));
27 }
28
29 // The month should be printed either as a number or using its name.
30 @Test
31 public void test2() {
32 String s = formatter.format(testedDate);
33 assertTrue(s.contains("7") || s.contains("July"));
34 }
35
36 // The day should be printed.
37 @Test
38 public void test3() {
39 String s = formatter.format(testedDate);
40 assertTrue(s.contains("21"));
41 }
42 }� �
Listing 2.2: The functional JUnit tests defined on the DateFormatter interface (the interface
Clock.dateformatter.class that can be implemented by Java classes). The code has been taken
from the SVN available at the Treaty project’s website [URL09s]. The Java-doc comments have
been adapted for graphical reasons.
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� �
1 −− A method checking whether or not string2 is a substring of string1.
2 context DateFormatter
3 def:
4 contains(string1: String, string2: String): Boolean =
5 if (string1.size() < string2.size()) then
6 false
7 else
8 Set{1 .. (string1.size() − string2.size())}
9 −> exists(index : Integer | string1

10 .substring(index, index + string2.size()) = string2)
11 endif
12
13 −− A helper method to convert a Date into the English name of its month.
14 context DateFormatter
15 def:
16 getMonth(aDate: Date): String =
17 if (aDate.getMonth() = 0) then
18 ’January’
19 else
20 −− ... 10 following nested if statements ...
21 endif
22
23 −− At least the last two digits of the year should be printed.
24 context DateFormatter::format(aDate: Date): String
25 post containsYear:
26 let
27 year: String = aDate.toString().substring(27, 28)
28 in
29 self.contains(result, year)
30
31 −− The month should be printed either as a number or using its name.
32 context DateFormatter::format(aDate: Date): String
33 post containsMonth:
34 let
35 month1: String = aDate.toString().substring(5, 7)
36 in
37 let
38 month2: String = self.getMonth(aDate)
39 in
40 self.contains(result, month1) or self.contains(result, month2)
41
42 −− The day should be printed.
43 context DateFormatter::format(aDate: Date): String
44 post containsDay:
45 let
46 day: String = aDate.toString().substring(9, 10)
47 in
48 self.contains(result, day)� �
Listing 2.3: Three OCL constraints defined on the DateFormatter interface Clock.dateformat-
ter.class that can be implemented by Java classes. Please note that the constraints are defined
using the Java class java.util.Date. Thus, the method substring(..) can be used to convert the
Date into strings representing the day, the month, and the year of the date (lines 27, 35, and 46).

2.7 The Consumer/Supplier Role Model 17
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Figure 2.9: The Consumer/Supplier role model.
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Figure 2.10: The Consumer/Supplier role model applied to a Clock and a DateFormatter compo-
nent.
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Figure 2.11: The extended Consumer/Supplier role model.
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Figure 2.12: The extended Consumer/Supplier role model applied to a Clock and a DateFormatter
component.
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<<component>>
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<<component>>
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<<component>>
Supplier

<<uses>>
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Figure 2.13: The difference between a classical Client/Server and a Consumer/Supplier relation-
ship. In a Client/Server relationship the user has to implement a Client that uses a provided
service and fulfills a Server’s contract. In a Consumer/Supplier relationship the user has to im-
plement a Supplier that provides a required services and fulfills a code Consumer’s contract. The
components that must be implemented by users are drawn with dashed lines.

details. Every component that wants to provide an interface required by a Consumer that is also
a Legislator has to fulfill the Legislator’s contract and thus, has also to play the Contractor role.
The extended Consumer/Supplier role model is shown in Figure 2.11. The extended Consumer/-
Supplier role model applied to the Clock/DateFormatter example is shown in Figure 2.12.

One may argue that the Consumer/Supplier role model is similar to the Client/Server relationship
that–for example–is used by Bertrand Meyer [Mey97, p. 331ff] to describe pre- and postcondi-
tions in the context of Design by Contract (DBC). But there is a big difference between these
two role models! In classical design by contract, the pre- and postconditions are defined on a
provided method of the Server component that can be invoked by user-defined Clients (see Fig-
ure 2.13, top). In the Cosumer/Supplier role model the situation is different. The Consumer uses
a service provided by the Supplier, but the contract is defined on the required interface of the
Consumer (see Figure 2.13, bottom). The user must provide an interface that fulfills the given
contract. Instead of calling the provided method, the user has to implement the provided method
and its contract. Furthermore, in the Client/Server relationship the same service can be called
by multiple clients. In the Consumer/Supplier relationship the same service can be implemented
multiple times instead.

The defined contracts on required interfaces must be verified at any time a Contractor component
binds the required interface of a Legislator component. As mentioned above, components can
be loaded, executed and unloaded at run-time. Thus, the contracts of contract-able components
must be validated at run-time, when the Contractor component is bound to the Legislator or the
Legislator invokes a provided operation of the Contractor. If contracts are violated, the contracting
system must decide, if an exception has to be thrown, the user must be informed or the violation
should simply be logged.

2.7 The Consumer/Supplier Role Model 19



2.8 ASPECT-ORIENTED PROGRAMMING

Aspect-Oriented Programming (AOP) is a programming paradigm that solves some problems
that cannot be solved by object-oriented programming such as Crosscutting Concerns [AK07].
Crosscutting concerns are “design and implementation problems that cut across several places
in [a] program.” [AK07]. They occur in many software systems and their implementation leads
to Code Tangling, Scattering and Code Replication [AK07]. A typical example for crosscutting
concerns are logging mechanisms that log some run-time events such as the entry of every
method. If such a logging mechanism will be implemented manually, every method of every class
that shall be logged has to be refactored by adding additional lines for the logging mechanism. If
the logging mechanism shall be removed or adapted, every of these methods has to be refactored
again. Another typical example for crosscutting concerns are constraint instrumentations into run-
time code [Eis06, p. 32].

AOP defines additional code fragments in separate files called Aspects. According to the AspectJ
concept, an aspect is a piece of code which [ABR06, AK07]:

1. Specifies one or several points in the control flow of the running program (join points),

2. Specifies sets of join points (pointcuts),

3. Defines what happens if one of the pointcuts is reached; meaning which code will be exe-
cuted additionally at these points (advices).

Aspects are always defined in relation to a core, are specified separately from this core and are
woven into this core by an Aspect Weaver [Aßm03, p. 260]. For the logging example such an
aspect must define a pointcut that describes the entry joinpoint of any method that shall be
logged. Furthermore, an advice describing the additional logging code that shall be executed
before the execution of any of these methods must be provided.

Some languages that realize aspect-oriented programming are AspectJ, AspectC++ and Eos
[AK07]. Aspects defined by AspectJ are basically separated into pointcut definitions and advice
definitions. A simple AspectJ aspect is shown in Listing 2.4. It describes all public methods of
a class SampleClass in its pointcut publicMethods(SampleClass) (lines 3-5) and a simple
advice that is executed before the call of these methods (lines 7-9). AspectJ provides instru-
mentation technologies for all constraint types defined in OCL and thus can be used to integrate
transformed OCL constraints into Java classes [Wil09, p. 8]. A detailed documentation of As-
pectJ is available in the book Aspektorientierte Programmierung mit AspectJ 5 from Oliver Böhm
[Böh06] and at the AspectJ website [URL09c].

� �
1 public aspect LoggingAspect {
2
3 protected pointcut
4 publicMethods(SampleClass aClass):
5 call(public SampleClass.∗(..)) && this(aClass);
6
7 before(SampleClass aClass) : publicMethods(aClass) {
8 System.out.println("Entered a public method.");
9 }

10 }� �
Listing 2.4: A simple logging aspect.
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2.9 THE ECLIPSE/OSGI COMPONENT MODEL

An example for a successful component model is the universal tool platform Eclipse [ABH+06,
DJ08]. The first version of Eclipse has been released by IBM in in November 2001 [Dau06, p. 1].
Today, Eclipse provides the de facto standard development environment for Java applications. All
components of Eclipse are available at the Eclipse Website [URL09g].

Eclipse is based on a very small core that is responsible for the life cycle management of all
other components of Eclipse. The components of Eclipse are called plug-ins [Dau06, p. 363f].
As well as components, plug-ins have a specific life cycle and can be identified, loaded, exe-
cuted and unloaded at run-time [DHG07]. Eclipse plug-ins are plugged together using Extension
Points and Extensions (see Figure 2.14). Plug-ins providing extension points can be considered
as Consumers, plug-ins implementing extension points with extensions can be considered as
Suppliers (see also Section 2.7). Each plug-in is organized as a file directory or JAR archive and
can contain an Extensible Markup Language (XML) file called plugin.xml [Dau06, p. 364].
The plugin.xml describes all extension points provided and all extension points extended by
the plug-in. For every provided extension point, the plugin.xml references an extended XML
schema definition in that the extension point is specified in more details [ABH+06]. Additional
settings of the plug-in–like its name, id and optionally its activator class–are defined in the plug-ins
MANIFEST.MF in its META-INF directory.

2.9.1 The Extension Point Schema

An Extension Point Schema provides the possibility to define highly polymorphic contracts and
complex logical expressions [DJ08]. The extension point schema architecture is shown in Figure
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Figure 2.14: The Eclipse/OSGi component model.
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2.14. Via its ExtensionPointSchema, an ExtensionPoint defines a set of Extension-
PointAttributes that must be provided by any component extending the ExtensionPoint

with an Extension. An example extension point schema using the clock example is shown in
Listing 2.5. Each extension point schema has the same name as the corresponding extension
point’s id followed by .exsd. Each schema must define a root node named <extension>

containing the three attributes point, id and name to define an extension belonging to the
defined extension point [Dau07, p. 42]. Inside the root element <extension> more attributes
can be defined to specify the extension in more details. Attributes can be nested using the special
elements <sequence> and <choice> that can be altered by defining multiplicities [Dau07, p.
42].

Defined attributes can be of the types String and Boolean. String types can be altered by
adding an Attribute Kind of the type Java, Resource, or Identifier [Dau07, p. 42]. String
attributes of the kind Java reference Java classes and interfaces that must be provided by the ex-
tension. For Java attributes abstract classes or interfaces can be defined that must be extended
and implemented to extend the extension point. Resource attributes can be used to adress every
type of file that is located in the plug-in’s directory or a sub directory (e.g., class files, source code,
images and property files). The attributes of an extension point schema can be set as required
or optional and can provide a default value [Dau07, p. 42]. Furthermore, attributes can
be depricated or translatable to be configured in a property file for different languages.
Each element and attribute can be described using a <documentation> field in the schema file
[Dau07, p. 42].

The extension point schema shown in Listing 2.5 defines an extension point called net.java

.treaty.eclipse.example.clock.dateformatter that contains an element service-
Provider that can be configured by an attribute class providing a Java file to implement the
date formatter or by an attribute formatdef providing an XML resource describing the date
format of the extended date formatter (this extension point is used to define the dateformatter
extension point of the motivating example presented in Section 2.6).

2.9.2 The Plug-in.xml File

Whenever an extension extends a defined extension point, the extension must be defined ac-
cording to the extension point schema [ABH+06]. Listing 2.6 shows a plugin.xml file that
extends the clock example’s extension point. It defines the <extension> element and provides
the required attributes id, name and point. Furthermore, it defines the <serviceprovider>

element and defines a class that provides the date formatter service of this extension.

Figure 2.15 shows the relationship between the plugin.xml file and the extension point schema
according to Aßmann et al. [ABH+06, p. 163]. Eclipse controls whether or not the specification
of the extension point is fulfilled. By using XML to define extension points, “[...] the plugin
description is machine-processable and can be used to check whether technical constraints are
met, both of static and dynamic nature [ABH+06].”

The extension point schema enables the user to define simple contracts like interface or subclass
relationships and thus, can be considered as an implementation of the Legislator/Contractor Role
Model (introduced in Section 2.7). But extension point schemata do not support the complete
set of expressions provided by the Object Constraint Language nor non-functional (e.g., Quality
of Service (QoS)) constraints.
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� �
1 <?xml version=’1.0’ encoding=’UTF−8’?>
2 <schema targetNamespace="net.java.treaty.eclipse.example
3 .clock">
4 <annotation>
5 <appInfo>
6 <meta.schema plugin="net.java.treaty.eclipse.example
7 .clock" id="net.java.treaty.eclipse.example
8 .clock.dateformatter" name="dateformatter"/>
9 </appInfo>

10 <documentation>
11 An extension point to provide a date formatter for
12 this clock plug−in.
13 </documentation>
14 </annotation>
15
16 <element name="extension">
17 <complexType>
18 <attribute name="point" type="string"
19 use="required" />
20 <attribute name="id" type="string" />
21 <attribute name="name" type="string">
22 <annotation>
23 <appInfo>
24 <meta.attribute translatable="true"/>
25 </appInfo>
26 </annotation>
27 </attribute>
28 </complexType>
29 </element>
30
31 <element name="serviceprovider">
32 <complexType>
33 <attribute name="class" type="string">
34 <annotation>
35 <appInfo>
36 <meta.attribute kind="java"/>
37 </appInfo>
38 </annotation>
39 </attribute>
40 <attribute name="formatdef" type="string">
41 <annotation>
42 <appInfo>
43 <meta.attribute kind="resource"/>
44 </appInfo>
45 </annotation>
46 </attribute>
47 </complexType>
48 </element>
49 </schema>� �
Listing 2.5: An extension point schema file for the clock example (Taken from the SVN available
at the Treaty project’s website [URL09s]).
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� �
1 <?xml version="1.0" encoding="UTF−8"?>
2 <?eclipse version="3.2"?>
3 <plugin>
4 <extension
5 id="net.java.treaty.eclipse.example.clock
6 .longdateformatter"
7 name="net.java.treaty.eclipse.example.clock
8 .longdateformatter"
9 point="net.java.treaty.eclipse.example.clock

10 .dateformatter">
11 <serviceprovider class="net.java.treaty.eclipse
12 .example.clock.longdateformatter
13 .LongDateFormatter"/>
14 </extension>
15 </plugin>� �
Listing 2.6: A plug-in manifest file for the clock example (Taken from the SVN available at the
Treaty project’s website [URL09s]). The required Java interface DateFormatter is implemented by
the class LongDateFormatter (line 11ff).

<schema ...>
<element name=“plugin“>
…
</element>
<element name=“extension-point“>
  <attribute name=“id“ type=“string“ />
  <attribute name=“name“ type=“string“ />
  <attribute name=“schema“ type=“string“ />
</element>
</schema>

plugin.xsd

<schema ...>
...
<element name="serviceprovider">
  <complexType>
    <attribute name="class" type="string">
      <annotation>
        <appInfo>
          <meta.attribute kind="java"/>
        </appInfo>
      </annotation>
    </attribute>
    …
  </complexType>
</element>
</schema>

plugin.xsd

<plugin>

  <extension-point 
    id="net.java.treaty.eclipse.example.clock
    .dateformatter" 
    name="dateformatter" 

    schema="schema/net.java.treaty.eclipse
      .example.clock.dateformatter.exsd"

    />

</plugin>

plugin.xml (consumer)

<plugin>

  <extension 
    id="net.java.treaty.eclipse.example.clock
      .longdateformatter" 
    name="net.java.treaty.eclipse.example.clock
      .longdateformatter" 
    point="net.java.treaty.eclipse.example.clock
      .dateformatter">
    <serviceprovider class="net.java.treaty
      .eclipse.example.clock.longdateformatter
      .LongDateFormatter"/> 
  </extension>

</plugin>

plugin.xml (supplier)

  <extension 
    id="net.java.treaty.eclipse.example.clock
      .longdateformatter" 
    name="net.java.treaty.eclipse.example.clock
      .longdateformatter" 
    point="net.java.treaty.eclipse.example.clock
      .dateformatter">
    <serviceprovider class="net.java.treaty
      .eclipse.example.clock.longdateformatter
      .LongDateFormatter"/> 
  </extension>

<<instance-of>> <<instance-of>>

<<instance-of>>

<extension-point 
    id="net.java.treaty.eclipse.example.clock
    .dateformatter" 
    name="dateformatter" 

    schema="schema/net.java.treaty.eclipse
      .example.clock.dateformatter.exsd"

    />

<<refers-to>>

<<extends>>

Figure 2.15: The relationship between the plug-in.xml files and their schema definitions (according
to Aßmann et al. [ABH+06, p. 163]).
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2.10 ECLIPSE EQUINOX ASPECTS

The Eclipse/OSGi component model has been introduced above (see Section 2.9). The OSGi im-
plementation of Eclipse is called Equinox [LS08]. Equinox defines a dynamic component language
that provides the possibility to load components as late as possible. The separate components
(called Bundles or Plug-ins) can be developed and tested in isolation (regarding their dependen-
cies) [SG08].

2.10.1 The Equinox Architecture

Equinox realizes the three OSGi framework layers that are the Module Layer, the Life Cycle
Layer, and the Service Layer [LS08]. The Module Layer defines the module/bundle concept and
manages the dependencies between bundles. The Life Cycle Manager manages the bundles’
life cycle and supports installation, update and deinstallation of bundles at component run-time.
The Service Layer implements services for a service-based bundle interaction in the Java Virtual
Machine (JVM).

The three framework layers are connected to the Eclipse platform via the Framework Adapter
API [LS08]. Since the release of Eclipse 3.2 the standard implementation of this adapter contains
points of variability, so-called Hooks [Aßm03, p. 109] to extend the adapter services. Such hooks
can be AdapterHooks to adapt methods of the adapter, or BundleWatchers that observe the
bundle life cycle. Another important hook is the ClassLoadingHook that can be used to modify
the class loading process [LS08].

2.10.2 The Equinox Aspects Project

To extend the Equinox architecture with run-time verification, the bundle load and class load
mechanisms could be extended with constraint check code. Constraint integration can be con-
sidered as a Crosscutting Concern because often the same constraint has to be evaluated on
different interfaces of different components. A well-known technique for crosscutting concerns
is Aspect-Oriented Programming (AOP) [ILB+08, p. 26] (see also Section 2.8).

The Eclipse Equinox Aspects Project tries to combine OSGi and AOP [URL09i]. The project ex-
tends the Equinox architecture by adapting the Framwork Adapter to support so-called Load-Time
Aspect-Weaving [LS08]. Load-time aspect-weaving weaves the aspects into the classes not at
compile time but at run-time, when the classes are loaded by the class loader [SG08]. Via a Class-
loadingHook the Java byte code is modified, before the classes are loaded into the JVM’s run-time
environment. Additionally, a BundleFileWrapperFactoryHook modifies the bundles’ manifest files
to register bundle dependencies that may have occured [LS08].

To weave aspects into Eclipse bundles, the aspects files are defined in a new bundle, containing
an aop.xml file in its META_INF directory adressing all aspects that shall be woven into other
bundles. Additionally, the packages where these aspects are located must be exported in the
MANIFEST.MF file. There are two different ways to declare into which bundles the aspects shall
be woven at run-time. In the MANIFEST.MF of the aspect bundle, all bundles can be declared, into
that the aspects shall be woven using the Eclipse-SupplementBundle field. Alternatively, in
a bundles MANIFEST.MF file all aspect bundles can be declared that shall be woven into this
bundle using the Eclipse-SupplementImporter field. In both fields bundles are described
by their id, wildcards like * can be used to describe sets of bundles [SG08].

The Eclipse Equinox Aspects Project seems to provide a good solution to weave contract check
code even into plug-ins that have been developed by third parties and for which no source code
is available.
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3 RUN-TIME VERIFICATION
APPROACHES

[...] everything is a model. Requirements are models, designs are models, imple-
mentations are models and even the description of the system at run-time could be a
model as well.

Christian Hein et al. [HRW07]

This chapter presents other works and projects that are related to the topic of this thesis. Some
projects realizing run-time verification on component models and some projects focusing on simi-
lar tasks are discussed. Furthermore, some requirements and considerations of different projects
are presented.

3.1 TREATY

Treaty is a platform-independent component contract language that has been developed by the
team of Jens Dietrich at the School of Engineering and Advanced Technology (SEAT) at the Turitea
(Palmerston North) Campus of Massey University, New Zealand [DHG07, DJ08]. The project and
further information can be found at the project’s website [URL09s].

Treaty can be used to define contracts between components providing and consuming services.
Such contracts are based on a modular and extensible vocabulary and are precise enough to
be verified at component run-time using an interpretative verification mechanism (see Subsec-
tion 2.4.1). Treaty is largely independent of the underlying component model. A prototypical
implementation of Treaty based on the Eclipse/OSGi component architecture is available at the
project’s website [URL09s]. The prototype supports contract definitions using different resource
types. By now, supported resource types are Java classes and interfaces, XML documents and
XML Schema definitions. Furthermore, modified JUnit test cases are supported to define con-
tracts on semantic and quality of service aspects.
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3.1.1 Contract Definition

In Treaty, contracts are defined between components requiring and providing interfaces. Treaty
uses the Consumer/Supplier role model (introduced in Section 2.7) to define contracts. XML files
are used to define these contracts on the required interfaces of components. In the prototypical
Eclipse implementation the contracts are saved in the meta-data folder of the consumer plug-in
and have the same name as their extension point followed by .contract.

Such an XML contract file defines three different sections:

1. The Consumer Section defines the resources provided by the consumer component to
verify the contract. Such resources are constants which are defined by their name and
type.

2. The Supplier Section defines the resources provided by the supplier components to fulfill
the contract. Such resources are variables which are defined by their name and type. The
values of the variables are bound during contract verification to the provided resources of
the supplier components.

3. The Constraint Part defines the relationships between the resources provided by the con-
sumer and supplier. Standard logical connectives such as AND, OR, and XOR are available
to group constraints to complex contracts. Furthermore, value properties and existence
conditions are supported.

Additionally, Treaty supports a fourth optional contract section called External Section. The exter-
nal section can be used to define resources that are not provided by the consumer or supplier
component but by another component that is known by the component containing the defined
contract file.

Listing 3.1 shows a simple contract example. In the consumer section a Java interface re-
source called aPackage.AnInterface is defined. The supplier section defines a class vari-
able called serviceprovider/@class that must be bound by any component that provides
the required service. The constraint part defines a simple contract which declares that any
value to that the serviceprovider/@class variable is bound must implement the interface
aPackage.AnInterface.

3.1.2 Contract Vocabularies

The shown example in Listing 3.1 uses the Java Vocabulary that is provided with the Treaty
implementation. Other vocabularies can easily be defined and added to the Treaty environment.
The vocabulary definitions in Treaty are flexible and extensible using an own component model.

Each Treaty vocabulary must define:

1. A set of defined types,

2. a set of defined properties,

3. a method to load given references and resource types,

4. and a method that can be used to verify the defined properties.
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� �
1 <contract ...>
2 <consumer>
3 <resource id="Interface">
4 <type>http://www.treaty.org/java#AbstractType</type>
5 <name>aPackage.AnInterface</name>
6 </resource>
7 </consumer>
8 <supplier>
9 <resource id="Class">

10 <type>http://www.treaty.org/java#InstantiableClass</type>
11 <ref>serviceprovider/@class</ref>
12 </resource>
13 </supplier>
14 <constraints>
15 <relationship resource1="Class" resource2="Interface"
16 type="http://www.treaty.org/java#implements"/>
17 </constraints>
18 </contract>� �

Listing 3.1: A simple Treaty contract example.

JavaType

<<implements>>
AbstractType Instanstiable

Class

Figure 3.1: The taxonomy of the Treaty Java vocabulary.

<<interface>>
ContractVocabulary

check(condition : ExistsCondition)
check(condition : PropertyCondition)
check(condition : RelationshipCondition)
getContributedPredicates() : Collection<URI>
getContributedTypes() : Collection<URI>
load(type : URI,name : String,connector : Connector) : Object

Figure 3.2: The ContractVocabulary interface.
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The definition of types, properties and relationships is realized by an ontology (only used as a tax-
onomy) defined in the Web Ontology Language (OWL) [W3C04a]. Each vocabulary must provide
such an OWL file. The OWL taxonomy of the existing Java vocabulary is shown in Figure 3.1. It
defines the types AbstractType and InstantiableClass, and an implements relationship
between these two types.

Additionally, each vocabulary must provide a Java class implementing the interface Contract-
Vocabulary that provides the required methods for resource loading and contract verification.
The ContractVocabularay interface is shown in Figure 3.2. The interface contains meth-
ods to load resources of all types provided by the vocabulary and to check the relationships
defined between these resource types. For example, the Java vocabulary must implement the
method check(RelationshipCondition) by checking implements relationships between
given classes and interfaces or abstract classes.

3.2 THE CALICO APPROACH

The Component AssembLy Interaction Control framewOrk (CALICO) is a model-based frame-
work for run-time interaction verification developed at the Université Lille, France [WSLMD08,
URL09d]. CALICO can be used to model component-based applications that are described using
an Architecture Descripton (AD) Model that combines a Platform-Independent Model (PIM) and
a Platform-Specific Model (PSM). The PIM is used to describe the structure, its constraints, and
the control flow of the application. Additionally, so-called Validation Points1 can be annotated that
specify interactions between components that shall be checked at run-time. “The system struc-
ture AD meta-model enables architects to insert validation points into component ports, which
specifies that a message sent or received through the port needs to be reified for debugging
purpose. A validation point contains a message filtering condition. This condition is a boolean op-
eration that is evaluated on the data values contained in the messages.” [WSLMD08] The PSM
consists of OCL constraints defining platform-specific modeling constraints. “A Platform Profile
defines a set of PSM properties that an architect is allowed to specify, and the set of constraints,
written in OCL that must be satisfied by the application model in order to make sure that the
application can be loaded on a given platform.” [WSLMD08]

The AD model is used to generate both the skeleton code of the application and interceptor
components that are used to perform the checks described in the validation points. The generated
code can then be executed and verified or debugged at run-time. “At runtime, the interceptors
check the component interactions and report to the architects the detected errors.” [WSLMD08].
The whole development process can be iterated multiple times and the component model can be
altered using an update model that modifies the running system by detecting, which components
must be unloaded, recompiled and loaded again.

CALICO has been implemented in Eclipse using the Eclipse Modeling Framework (EMF). By
contrast with Treaty, the CALICO project uses a generative approach (see Subsection 2.4.2) to
verify composition and communication at run-time. Another difference is that the framework is
explicitly designed for debugging during development and not for run-time verification after the
end of the software development phase. The CALICO framework is designed generically and
thus–similar to Treaty–can be adapted to multiple component languages. CALICO is currently in
its beta development phase. The source code is available from the SVN linked on the project
page [URL09d].

1The CALICO approach uses the term of validation instead of verification as defined in Section 2.1. The following
examination will show that CALICO uses verification techniques but can be considered as a validation tool because its
aim is support during the software development process and not verification at the end-user’s software run-time.
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3.3 RUN-TIME ERROR DETECTION IN THE TRADER PROJECT

In 2007, Hooman et al. [HT07] presented an approach for Model-Based Run-Time Error Detec-
tion as part of the Trader Project. They developed a framework for event- and time-based error
detection at run-time in embedded systems such as TVs or smart phones. Such systems often
include third-party components or provide additional downloadable components. Thus, it can be
considered impossible to test all different feature combinations and interactions during the de-
velopment process. The framework shall enable the devices to become aware of their run-time
errors and to correct these errors themselves [HT07].

The developed framework provides the possibility to model the behavior of electronic devices in
state machines and to generate code for such state flows that are executed and simulates the
current state of the device at run-time. At certain points, the state of the simulated state machine
is compared with the state of the real device [HT07]. Their approach uses code generation for
run-time verification (or monitoring) and thus can be considered as a generative approach (see
Subsection 2.4.2).

In comparison with Treaty, the Trader project focuses more on technical devices than on software
components. These components should become aware of their inner state and should become
able to correct themselves. This is different than in Treaty. Also different is the approach to
describe the running system as a state machine. Furthermore, the Trader project uses a gener-
ative, Treaty uses an interpretative approach. Although the Trader approach does not use class
diagrams nor OCL constraints, the work is important and interesting for this work because it high-
lights some important design decisions that should be made during the requirements analysis and
design of a run-time verification or monitoring system [HT07]:

• Which part of the system has to be modeled? Often only some parts of a system have to
be modeled for verification, because only these parts shall be verified. E.g., in this work,
only the interfaces between components shall be verified. Thus, it is unnecessary to model
the whole components for verification purpose only.

• Which models are most suitable for run-time error detection? Often the question, which
type of model do fit the requirements best has to be asked. Should a model with a static
semantic like a class diagram, or a model with a dynamic semantic like a state machine be
used?

• How to obtain suitable models? Often, no model description of the system that shall be
verified exists. How can such information be retrieved with minimal effort?

• How to increase the confidence in the model; how to evaluate model quality and fidelity?
How can it be ensured that the model describes what it shall describe and that it describes
these things in an easy and uncomplicated way?

• When to compare system observations with the model? The question, when the system
shall be verified is often of outcome importance because the system could be in an invalid
state during the computation of some tasks. Thus, it should be well considered, when the
model shall be verified. In the context of this work, the model should be verified before and
after the components’ interface execution, and during component load time.

• When to report an error exactly? Which errors shall be reported, which can be ignored?
How often should an error occur before it is necessary to inform the system’s user or
administrator?

More information about the Trader project is available at the project’s website [URL09a]. But
currently, no executable code is available.
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3.4 THE SATIN APPROACH

Another research project on run-time verification has been realized at the University of Nice-
Sophia Antipolis, France. Run-time verification was used to verify the consistency of component-
based software applications during adaptation processes [ODP04, ODPR08a, ODPR08b]. Such
adaptations include the loading and unloading of software components into and from the appli-
cation and the behavioral modification of loaded components by techniques like aspect-oriented
programming [ODPR08b]. The developed verification service ensures that such an adaptation
does not lead to erroneous states and that all required conditions are fulfilled after the adapta-
tion.

The Satin verification system can be considered as generic because it does not compute the
verification directly on a component system but uses an abstract component model to describe
the involved components and the adaptation steps performed on these components. The de-
veloped Satin Safety Model can be used to describe components independently of a specific
component language or platform [ODP04]. The Satin Safety Model focuses on three kinds of
adaptations: Type Evolution, Behavioral Composition, and Assembly Modification [ODPR08b]. It
uses Adaptation Patterns to describe adaptations that are enriched with Safety Properties which
are formalized as sets of OCL constraints that are described on the meta-model classes of the
Satin Safety Model [ODP04, ODPR08b]. For example a safety property can be used to verify that
a component model adaptation does not cause cycles and that every required functionality is still
provided.

A Satin Safety Model is available at run-time via a provided service that can be queried by clients
to verify its component model’s adaptation steps. Thus, it can be used to ensure that the software
system remains consistent after adaptations. A prototypical implementation of the Satin approach
has been realized using the OCL2 Interpreter of the Dresden OCL2 Toolkit [ODPR08a].

The Satin approach demonstrates, how run-time verification can be realized by using an abstract
component model of the software system at run-time. An OCL interpreter can be used to verify
constraints against run-time objects (an interpretative approach; see also Subsection 2.4.1). Addi-
tionally, the approach demonstrates that it is possible to develop systems for run-time verification
that are independent of the underlying component language. The biggest difference between the
Satin approach and the Treaty approach is that the Satin approach provides a service that must
be queried by the clients. The approach presented in this work instead extends the run-time
environment of the components to ensure the verification. Furthermore, Satin can be used to
ensure the correctness of software adaptation defined on the component meta-model and must
be ensured for all verified component models. The scope of the run-time verification presented
in this work lays on the verification of constraints that are defined on the component model and
thus are model-specific. Although according to their publications [ODPR08b] their approach has
been implemented using the Dresden OCL2 Toolkit, no source code of Satin was available.

3.5 CONSTRAINT MONITORING IN USE

In 2005, Richters et al. [RG03] presented an aspect-oriented monitoring approach for OCL con-
straints on Java objects, based on the UML-based Specification Environment (USE) case tool
[URL09t]. They used the OCL interpreter of USE to monitor OCL constraints on Java objects
during run-time (using an interpretative approach; see Subsection 2.4.1).

Their approach is structured as follows: The USE framework is used to model the parts of a
Java program that shall be constrained. Afterwards, AspectJ [URL09c] code is generated for
both collecting state information and monitoring the run-time objects. The USE framework is
connected with the run-time software via a network connection and retrieves messages sent
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by the aspect code. Such state information is used to interpret the model representation of
the running system [RG03]. The user can decide if he wants to monitor the system parallel by
showing the system state in a System State Behavior Diagram inside the USE case tool, or if he
wants to retrieve and store the state information to analyze and verify it asynchronously.

States of the running system recorded by USE are:

• object creation and destruction,

• attribute modification,

• association link insertion and removal.

Compared with Treaty, an important difference is the fact that by using the USE monitor approach
the running system and the verification monitor are only loosely coupled and thus, do not need to
know each other [RG03]. They only communicate via network connections. USE does not know
which software implementation has sent the state information and the software has not to know
the USE case tool. The only part of the software knowing the network connection is the gener-
ated aspect code. Another difference is the fact that the USE case tool allows the user to decide
between run-time verification and a deferred verification. Because of its generative approach,
the USE approach is platform specific, Treaty instead is platform independent. Furthermore, the
contract vocabulary of Treaty is generic and can be extended. Unfortunately, not code of the USE
approach was available.

3.6 THE RISC SYSTEM

In 2003, Heineman [Hei03] presented a Run-time Interface Specification Checker (RISC) with the
ability to check pre- and postconditions in component models at run-time. He limited contracts to
user-defined assertions that can be evaluated either before or after method invocations as defined
in an interface.

Heineman pointed out some requirements for run-time verification component models and sep-
arated them into three groups: component vendor requirements, component assembler require-
ments and component model vendor requirements. The most important of these requirements
are [Hei03]:

Component Vendor Requirements:

• Behavioral contracts and standardized interfaces must be defined together.

• Contracts for interfaces should only contain local assertions.

• It should be possible to define restrictions on the component execution environment as
well.

• Component source code must remain private.

Component Assembler Requirements:

• The assembler must be able to define global contracts that are enforced at run-time.

• All defined behavioral contracts should be enforced at run-time.

• New defined contracts should be discovered and added or removed dynamically.
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Component Model Vendor Requirements:

• The support of run-time contract verification should not force the vendors to alter their
development process.

Heineman presented a component model similar to Enterprise Java Beans (EJB). He used Active
Interfaces supporting pre- and postconditions. Active interfaces are a technology for creating
black-box adaptable software components. “An active interface decides whether to take action
when a method is called [... and] will enforce it behavioural contracts at run-time [Hei03].” Active
interfaces are different from wrappers. They are compiled into black-box components and do not
cause the overhead associated with wrappers. Active interfaces are able to enforce contracts
when one of the methods they define is called internally or externally.

Heineman presented an Active Interface Deployment Environment that automatically instruments
the source code to contain hooks before and after each method’s execution. The vendor has
to instrument its components and then they can be released as black-box components. The
component assembler can add more contracts that shall be enforced at run-time. During run-time
the instrumented components are registered with the RISC Monitor when they are instantiated.
Afterwards, they call the RISC monitor to ensure that their contracts are fulfilled. Thus, the
approach uses a combination of a generative and an interpretative approach (see Subsections
2.4.1 and 2.4.2) to implement run-time verification. As mentioned above, the contracts in RISC
support the definition of pre- and postconditions. A syntax that is rather similar to OCL is used to
express constraints. Besides pre- and postcondtions some special properties like @pre, @next
and @past are supported.

As well as Treaty, RISC focuses on contracts on interfaces. Some of the depicted requirements
are also important for the adaptation of Dresden OCL2 for Eclipse to Treaty. The major differ-
ence is that RISC uses code generation and thus is platform specific. Treaty instead is platform
independent. No source code of RISC was available for further investigations.

3.7 THE JAVA MODELING LANGUAGE

The Java Modeling Language (JML) “[...] is a formal behavioral interface specification language
for Java that contains the essential notations used in DBC as a subset.” [LC06]. JML enables the
specification of syntactic Java interfaces and also the behavior of the defined operations.

JML specifications are annotated in the JavaDoc sections of an interface’s or class’ method sig-
natures. The statements are encapsulated using the special annotation /*@ ... @*/ [LC06].
The keywords and statements supported by Java Modeling Language (JML) are similar to the
keywords used in contract languages like the Object Constraint Language or Eiffel [ECM06]. Pre-
and postconditions are defined by using the keywords requires and ensures. Additionally,
keywords like result and pre exist. Quantifiers like forall, exists, sum, product, min,
and max are supported. Similar to OCL, JML supports the possibility to define new variables for
specification statements, so-called Model Fields. Listing 3.2 shows a class Person with a simple
invariant defined in JML that denotes that the name of a Person must not be empty.

The annotated Java or JML code can be compiled into Java Byte Code, including generated check
code for the constraints defined in JML [LC06]. Thus, JML uses a generative approach to verify
constraints at run-time (see Subsection 2.4.2). In addition to a byte code compiler, the JML
provides other tools to generate JUnit test code, and HTML documentation for the JML code.
JML can be considered as a model-specific run-time verification tool (the models are the Java
classes) that enables users to easily extend Java with Design by Contract (DBC). In relation to
Treaty, JML is more platform specific and do not support abstract descriptions (models) of the
system that shall be constrained. Thus, Treaty can be considered as more abstract and generic
than JML. JML is hosted as a Sourceforge project. The source code is available at the project’s
website [URL09l].
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� �
1 /∗@ public invariant !name.equals("");@∗/
2 public class Person {
3
4 private String name;
5
6 ...
7 }� �

Listing 3.2: A simple invariant in JML (adapted from [LC06]).

3.8 THE CONTRACTING SYSTEM CONFRACT

In 2005, Collet et al. [CRCR05, COR06] presented the contracting system ConFract, a contracting
system for hierarchical components using the component model Fractal. The component model
Fractal is a general component model including composite components. Components can be
connected through provided and required interfaces. For composite components Fractal provides
the concept of internal interfaces. Every internal interface is connected with an external interface
of the composite component [CRCR05]. More information about the Fractal component model
is available at the Fractal website [URL09j]. ConFract does not restrict contracts to the scope of
interfaces. Contracts are considered on component connections as well as on internal structures
of components.

3.8.1 Requirements in ConFract

The requirements depicted during the development of the ConFract system are the following
[CRCR05]:

• Contracts can be either functional or non-functional and can be evaluated statically or dy-
namically. They can be related to interfaces, but also to the components themselves.

• The definition of pre- and postconditions on connections between components is sup-
ported.

• Contracts are updated and evaluated when dynamic reconfigurations occur.

• Responsibilities among the contract participants must also be clearly defined to enable the
developers to precisely handle contract violations.

3.8.2 The Contract Language CCL-J

ConFract uses the Component Constraint Language for Java (CCL-J) that was inspired by the
Object Constraint Language (OCL) to define contracts. It supports the language constructs pre,
post, inv, rely and guarantee [CRCR05]. Rely and guarantee can be used to express
conditions on that a method can rely during its complete execution respectively must guarantee
during its complete execution. CCL-J contracts can refer to a method of a Java interface but to
compositional properties as well, referring to several interfaces or several components. According
to Collet et al., this is the main contribution of the CCL-J language [CRCR05].

The ConFract system distinguishes four types of contracts [CRCR05]:
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• Interface Contracts are defined on the connection between a provided and required inter-
face.

• External Composition Contracts are defined on the external interfaces of a component,
called the component’s Membrane in ConFract. They express the external behavior of their
component.

• Internal Composition Contracts are defined on the internal interfaces of a component
and the external interfaces of its subcomponents. They constrain the internal composition
structure and function.

• Library Contracts are defined on reusable units of the underlying language of the ConFract
components. They are only relevant for component implementation.

3.8.3 Contract Closure and Checking

ConFract uses a dynamic contract model that differentiates between Provision Templates and
Closed Provisions. For every contract a provision template that is closed when all contributing
components of the contract are bound is created. The template provision is then closed and
becomes a provision [CRCR05]. If components are unbound again, a provision can be reconverted
into a provision template if any of its contributors has been unbound.

Every contract is checked when the related event (e.g. an method invocation) occurs. Invariants
are checked at the component models configuration time. Pre- and postconditions are checked
at run-time when their related method will be executed. The constraints are evaluated begin-
ning with interface contracts followed by external and internal component contracts [CRCR05].
ConFract uses a byte code generator that relies on an AOP-like mechanism based on Mixins and
Interceptors [CRCR05]. Thus, their verification approach can be considered as generative (see
Subsection 2.4.2).

In comparison to Treaty there are some differences. Both approaches focus on run-time veri-
fication of software components. ConFract uses an generative approach, Treaty uses an inter-
pretative approach. ConFract is platform specific, Treaty is platform independent. ConFract also
supports contracts on the internal structure of components, Treaty focuses on component con-
nection contracts and a generic contract vocabulary. Unfortunately, no source code of ConFract
was available.

3.9 SNAPSHOT VERIFICATION FOR CORBA COMPONENTS

In 2007, Hein et al. [HRW07] presented an approach for a system management approach for
Common Object Request Broker Architecture (CORBA) components. They developed an ap-
proach, to monitor a software system at run-time, by interpreting periodically created snapshots
of the system. The run-time data is captured by an adapter implemented as a CORBA server that
collects all required model data from the run-time system and interprets this data as an instance
of a model on that OCL constraints are defined. Thus, the OCL constraints can be verified for
each snapshot of the system [HRW07]. The constraints are verified by interpreting them using
the Open Source Library for OCL (OSLO) [URL09p] (and thus, using an interpretative approach;
see Subsection 2.4.1).

The major difference between this snapshot verification approach and the Treaty approach is
that for their CORBA snapshot verification, the model data must be collected again and again
from the run-time system. Treaty (or especially the presented OCL vocabulary) instead uses the
run-time system as a model instance itself and thus does not have to care about inconsistencies
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between different snapshots and the current run-time system. Furthermore, snapshot verification
can be considered a weaker form of run-time verification because the system is only periodically
checked at certain points during execution time. Additionally, the CORBA snapshot approach
only uses weak OCL expressions (that contain only a subset of the full OCL standard library) to
avoid troubles caused by inconsistencies between models and model instances. Unfortunately,
no source code of the implemented CORBA service used for verification was available.

3.10 THE PECOS APPROACH

The Pervasive Component Systems (PECOS) have been developed from October 2000 to Sep-
tember 2002 at the Forschungszentrum Informatik, Kalsruhe, Germany [URL09q]. “The goal
of PECOS is to enable the component-based software development of embedded systems by
providing an environment that supports the specification, composition, configuration checking,
and deployment of embedded systems built from software components [GZ01].”

One part of the PECOS project was the development of an approach to correct-by-construction
software composition. Genssler et al. presented this approach that separates the general term
of contracts into Rules and Contracts [GZ01]. “Rules and contracts specify constraints on a
component or composition [GZ01, p. 4].” Rules are constraints that only refer to static information
and thus can be checked statically. Contracts can define pre-, postconditions, and invariants over
a component’s methods and are checked before or/and after a method’s execution.

PECOS uses first-order predicate logic to check rules. The rules are transformed into Horn clauses
and afterwards translated into Prolog and evaluated. Check code is generated for each contract
and executed before or after the constrained method’s invocation (generative approach, see Sub-
section 2.4.2). Unfortunately no further information about the generated code or the mechanisms
used to verify the constraints at run-time was available. The biggest differences between PECOS
and Treaty seems to be there generative respectively interpretative approach. Furthermore, Treaty
can be considered as more generic than PECOS because its vocabulary is extensible.

3.11 RUN-TIME VERIFICATION IN EJB

In 2001, Brucker and Wolff [BW01a, BW01b] presented an approach for code generation for run-
time checking of Enterprise Java Beans (EJB) components based on UML class diagrams and
OCL constraints. The approach supported dynamic constraint checking of pre-, postconditions,
and invariants from UML diagrams annotated with OCL constraints for EJB components.

Because the original version of EJB does not provide a concept of a Specification, they adapted
the EJB components and introduced some design patterns. They proposed to generate code
for both the Abstract and the Concrete View (the Home Interface, the Remote Interface and
the Bean Implementation). Their check code is executed at the entry and/or exit of method
bodies depending on the constraint’s type and is generated into every bean implementation of
the abstract and the concrete view (generative approach, see Subsection 2.4.2).

Furthermore, invariants are verified in methods provided by EJB to manage the life cycle of EJB
components. EJB components have no constructors but create-, finder- and remove-methods
controlling the life cycle instead. Invariants are checked after the execution of ejbPostCre-
ate(), ejbRemove(), ejbActivate(), ejbPassivate(), ejbLoad() and before and after
the execution of ejbStore(). The approach has been implemented into the commercial MDA-
Tool Arc-Styler from Interactive Objects [URL09b]. Compared with Treaty, both tools support
run-time verification on component models. But, Brucker’s approach is based on EJB, Treaty
instead is platform independent and extensible. Unfortunately, no code of the EJB approach was
available.

3.10 The PECOS Approach 37



3.12 ARCHITECTURAL CONSTRAINTS IN MADAM

In 2008, Khan et al. [KRG08] published their approach of integrating architectural constraints in
the model-driven development of self-adaptive applications. The presented approach is based on
an example using the SatMotion application of the Mobility and Adaptation Enabling Middleware
(MADAM) project [URL09n]. They examined architectural constraints in the domain of Personal
Digital Assistants (PDA) and pointed out that “[t]he performance and quality of applications run-
ning on those devices depend on the resource constraints and the dynamically changing proper-
ties of the execution context” [KRG08].

They generated code from a UML model to compute all possible application variants of an ap-
plication using architectural constraints at run-time. In their approach, variants do not express
different functionalities, but make sure that the application remains useful in a changing context.
They used architectural constraints like uniqueness and compatibility of components but did not
support OCL constraints. Their constraints were applied to features of a feature model and were
checked at run-time by the adaptation manager when computing the application variants (an in-
terpretative approach, see Subsection 2.4.1). Interpreting and verifying OCL invariants by the
middle-ware is a topic of their current research. Those OCL constraints could dictate Quality of
Service (QoS) constraints like consumption of system memory or component execution speed.

The model they built was automatically transformed into source code using transformation tools
of the Eclipse environment. MOFScript was used for model-to-text transformation and the Eclipse
UML2 meta-model to describe their feature models. As mentioned above, they are planning
to improve their approach by supporting OCL constraints. This task will be realized in another
research project called Self-Adapting Applications for Mobile Users in Ubiquitous Computing
Environments (MUSIC) [URL09o]. In comparison to Treaty, MADAM focuses on architectural
constraints, Treaty focuses on functional and non-functional constraints. Both can be used to
verify their contracts at run-time (for Treaty this is planned in future works). Unfortunately, no
source code of MADAM was available at the project’s website [URL09n].

3.13 SUMMARY

Table 3.1 shows a summary of all related works presented here. Many different approaches that
aim the scope of contract run-time verification exist. Both verification approaches, the interpreta-
tive and the generative approach (see Section 2.4) are implemented by many tools. Some of the
tools use OCL for contract specifications, others use similar contract definitions. Some tools sup-
port real run-time verification, others support monitoring approaches that only verify the running
system at certain points during execution. Many of the approaches are platform independent and
many of them support contract definitions on component interfaces (whereas just some tools
support other contracts like internal structure constraints or feature contracts), but there is only
one tool–the Treaty contract language and its verification system–that supports a generic contract
vocabulary that can be extended to define new types of contracts.
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4 ANALYSIS AND ARCHITECTURAL
DESIGN

As Pragmatic Programmers, our base material isn’t wood or iron, it’s knowledge. We
gather requirements as knowledge, and then express that knowledge in our designs,
implementations, tests, and documents.

Andrew Hunt and David Thomas [HT09, p. 73]

This Chapter presents the requirement analysis of this work and discusses multiple design de-
cisions. Different resources required for run-time verification of components are evaluated and
different possible architectural designs are presented.

4.1 REQUIREMENT ANALYSIS

This section presents and discusses the requirements for a component contract system sup-
porting run-time verification of OCL constraints. The requirements result from the analysis of
related work presented in Chapter 3. The requirements are particularly based on the require-
ments presented in the works of Dietrich et al. [DHG07, DJ08], Collet et al. [CRCR05, COR06],
and Hooman et al. [HT07]. Some of the depicted requirements are already fulfilled by the current
Treaty implementation. Nevertheless, they are enlisted below for sake of completeness. The
requirement numeration is oriented by the scheme to numerate software functionalities of Hel-
mut Balzert [Bal98, Bal00]. The requirements for an OCL constraint run-time verification system
can be separated into three categories: Contract Definition Requirements, Contract Verification
Requirements, and Delimited Features. All three categories are presented below. Some require-
ments are hierarchically ordered. The parent requirement of a set of requirement is enlisted in
bold font. An overview over the requirements and a shorty analysis, how far they were fulfilled
by this work is shown in Table 7.1 in Chapter 7.

4.1.1 Contract Definition Requirements

The definition of component contracts requires the following features and functionalities:
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/R110/ Contracts should be definable on component connections.
This includes the following requirements:

/R111/ The ability to reference resources provided by the consumer and the supplier component
is required.

/R112/ The ability to define contracts on referenced resources is required.

/R113/ The ability to compose multiple contract relationships between resources of consumer
and supplier components is required.

/R114/ The vocabulary for contract definitions should be extensible and exchangeable.

/R115/ The contract system should be extensible with new model and model instance resource
types.

/R115/ Full support of Essential OCL in contract definitions (directly or referenced) is required.

/R116/ Support of model resources used for OCL verification is required.

/R117/ Constrained components must not be modeled completely, only the constrained parts
are required in the model (e.g., the component interface on that constraints are defined).

/R118/ It should be possible to load parts of the components themselves as models (e.g., a
Java interface could be used as a model for the verification of a Java object). This im-
proves consistency between model and model instances and avoids redundancy in the
components through extra provided abstract component models besides the component
code.

/R119/ Support of model instance resources used for OCL verification is required.

/R120/ The contract system should be independent of the underlying component lan-
guage. This includes the following requirements:

/R121/ The contract system should not alter the underlying component language.

/R122/ The contract system should not use language specific constructs or resources, but
should only use its own contract definition to evaluate the defined contracts.

/R123/ The model to describe constrained resources must be abstract and independent of the
implementation language.

The requirements /R111/ to /R115/ and /R120/ to /R123/ are already fulfilled by the Treaty contract
language. The requirements /R116/ to /R119/ will be fulfilled by combining Treaty with Dresden
OCL2 for Eclipse.

4.1.2 Contract Verification Requirements

The verification of component contracts requires the following features and functionalities:

/R210/ Component contracts should be evaluated at run-time.
This includes the following requirements:

/R211/ Contracts shall be evaluated when components are connected or operations of provided
interfaces are invoked.

/R212/ Contracts shall be re-evaluated when dynamic reconfigurations occur.
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/R213/ Additional support of model instance context information (for example which method is
currently executed using which parameters) is required.

/R214/ The component source code must remain private, only their interfaces are used for con-
tract evaluation.

/R220/ The user should be informed if contracts are violated.
This includes the following requirements:

/R221/ User definable actions should be performed if contracts are violated.

/R222/ The user should be able to define different reaction strategies for different contracts (e.g.,
logging, retry, exception throwing, ignoring).

Analysis shows that the current Treaty implementation for Eclipse/OSGi misses some of the
required features. Currently, the implementation does not support run-time, but only Snapshot
Verification directly invoked by the user. Thus, the requirements /R211/, /R212/, and /R213/ are
currently not supported by Treaty. Due to the fact that the main focus of this work lies on the
Treaty/OCL adaptation, this requirements are not solved during this work. /R214/ can easily be
realized if the OCL verification mechanism only uses the components’ interfaces for method
invocations. Furthermore, currently the user is only informed via the Treaty Contract View if a
contract has been violated for some suppliers. Thus, the requirements /R221/ and /R222/ are
currently not supported. As well as the requirements mentioned above, this requirements are
not in the main focus of this work and are not solved during this work.

4.1.3 Delimited Features

/R310/ No support of component internal contracts.

/R320/ No support of auto-correction of violated contracts.

/R330/ Only the concept of required and provided interfaces will be constrained. This
includes the following delimitations:

/R331/ No constraint support for other resource types than models and model instance types
providing attributes and/or operations that can be invoked.

/R332/ No support of global constraints on the run-time environment.

/R340/ Only OCL constraints and the instance-of relationship between models and model
instances are supported. No support of non- or extra-functional constraints.

The delimited features do not require further discussion. Maybe the requirement /R340/ could be
a topic of future works.

4.2 EVALUATION AND DECISION OF REQUIRED RESOURCES

As already discussed in Subsection 2.5.3, to generate or interpret code using Dresden OCL2 for
Eclipse, three different types of resources are required:

1. A model in a Domain-Specific Language (DSL) (e.g., a UML class diagram or an EMF Ecore
model) on which constraints shall be defined. In the context of component run-time verifi-
cation the DSL would be some sort of Interface Definition Language (IDL) that is used to
describe the provided and/or required interfaces of the components.
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DSL
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Figure 4.1: The different resources required for component verification using Dresden OCL2 for
Eclipse.

2. At least one text (.ocl) file containing OCL constraints for that code shall be generated or
whose constraints shall be interpreted.

3. At least one instance of the model (e.g., a set of Java objects or an Eclipse/OSGi plug-in) for
that the constraints shall be interpreted or into which generated code shall be integrated. In
the context of component run-time verification a model instance would be a component or
at least the modeled part of the component on that the constraints should be verified. E.g.,
for an Eclipse plug-in, the model instance could be an interface implementation provided as
a Java object of a Java class that implements a required interface of a plug-in’s extension
point.

Figure 4.1 shows the required resources in the context of component models and the The Generic
Three Layer Metadata Architecture (see Section 2.3). The relationships between DSL, Pivot
Model, Essential OCL and OCL constraints that were already introduced are not shown in the fig-
ure). As mentioned above, different Domain-Specific Languages (DSLs) can be used to describe
models used for interpretation and code generation. Additionally, different model instances (or
components respectively parts of components) in different languages can be used.

In the following I investigate which different DSLs could be used to define interface or extension
point models for the definition of constraints on component interfaces. Requirements to evaluate
such DSLs are figured out. Furthermore, I evaluate which DSL fits best to the presented require-
ments and is used to describe models for run-time verification using Treaty and Dresden OCL2
for Eclipse.

4.2.1 Possible Domain-Specific Languages

To interpret constraints on components or create constraint code for them, a component model
that describes the parts of the components that shall be constrained using OCL is required.
Dresden OCL2 for Eclipse uses a Pivot Model and thus provides the possibility to use different
Domain-Specific Languages (DSLs) to define models. In this section I present the requirements
for a DSL to describe component interfaces and evaluate which of the presented Domain-Specific
Languages fits to the discussed requirements best.
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Requirements

The focus of the presented requirements is on run-time verification. The requirements enlisted
below only handle the scope of interface or extension point definition and not the full require-
ments of a component model or language. Aßmann [Aßm03, p. 34ff] presented detailed require-
ments for component models and languages.

• Type and Operation Concepts: A DSL used to describe component interfaces must pro-
vide the concepts of classes or data types and operations.

• OS Independence: A DSL for component interfaces should be independent of the used
Operating System (OS). It should be usable on different machines using different operating
systems.

• Language Independence: A DSL for component interfaces should be independent of the
implementation language of related components, because the developed run-time verifica-
tion system should be independent of the underlying component system.

• DSL Acceptance: A DSL for component interfaces should be generally accepted by the
CBSE community and industry. It would not make any sense to support a Domain-Specific
Language that is not used or supported by any companies or communities.

• DSL Standardization: A DSL for component interfaces should be standardized and well-
defined to avoid ambiguous or unclear notations. Such standards should be defined by
neutral standardization organizations such as the ISO or the OMG [Aßm03, p. 32].

• Multi-Point Support: It should be possible to define contracts over multiple interfaces of
the same component. E.g., a constraint could be defined saying “if interface A of compo-
nent X is bound with interface A of component Y, then interface B of component X must be
bound with interface B of component Z”. This concept is already supported by Treaty using
the logical operators like AND and OR in contracts. Thus, multi-point support is not required
for the discussed DSLs.

• Adaptability: A DSL for component interfaces should be easily adaptable to and imple-
mentable by Dresden OCL2 for Eclipse and its Pivot Model.

In the following, multiple DSLs are shortly presented and evaluated as a DSL for component
models or at leas to describe component interfaces. Some of the requirements are only evaluated
as present or absent, others are graded with five different grades (++ (very good), + (good) ~(ok),
- (bad), - - (very bad).

The Extension Point Definition Schema as DSL

At first sight, the Extension Point Definition Schema (EXSD) of the Eclipse/OSGi component
model (introduced in Subsection 2.9.1) seems to be a good solution as a DSL to describe com-
ponent interfaces. EXSD provides possibilities to enrich extension points with further information
like required Java classes and resources that have to be provided by an extension of the extension
point.

Unfortunately, as the evaluation shows, the EXSD can not be considered a good choice to de-
scribe component interfaces with Dresden OCL2 for Eclipse (see Table 4.1). The EXSD is based
on the Eclipse/OSGi component model therefore and strongly connected to the Eclipse/OSGi
standardization. Thus, it can be considered as OS independent1 but not as language indepen-
dent. It only supports Java classes, interfaces, and abstract resources. Furthermore, it can be
considered very complicated to adapt the EXSD to Dresden OCL2 for Eclipse. The Extension
Point Definition Schema covers only the required resources of an extension point, but no de-
tailed information about the required interfaces. Such information is contained in the related Java
classes. The adaptation would be very hard, because a combination of an XML parser and a Java
class loader would have to be implemented.

1As far as Eclipse itself is OS independent.
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EXSD
Type Concepts X
Operation Concepts X
OS Independence X
Language Independence no
DSL Acceptance ~
DSL Standardization +
Adaptable to Dresden OCL2 for Eclipse - -

Table 4.1: Evaluation of the EXSD as DSL for component interfaces.

Java
Type Concepts X
Operation Concepts X
OS Independence X
Language Independence no
DSL Acceptance ~
DSL Standardization +
Adaptable to Dresden OCL2 for Eclipse +

Table 4.2: Evaluation of Java as DSL for component interfaces.

Java as DSL

Another possible Domain-Specific Language could be Java. Java is an object-oriented language
developed by Sun Microsystems that is platform independent and generally accepted [GJSB05].
Java supports OS independence but is language specific. The acceptance of Java can be con-
sidered as good (although normally not as a modeling language) and Java is well standardized.
The OMG provides a UML meta-model specification for Java [OMG04] that eventually could be
used to adapt Java to Dresden OCL2 for Eclipse. Another meta-model implementation of Java is
provided by the Java Model Parser and Printer (JaMoPP), developed at the Software Technology
Group, Technische Universität Dresden [URL09k]. The complete evaluation of Java as DSL for
component interfaces is illustrated in Table 4.2.

The CORBA Interface Definition Language as DSL

The Common Object Request Broker Architecture (CORBA) has been developed and standardized
by the Object Management Group (OMG) in the 1990s. CORBA 1.1 was released by the OMG
in 1991 [Szy02, p. 231]. Today, CORBA is available in the version 4.0 at the OMG website
[OMG06a]. The main goal of CORBA is the adaptation of software components independent
of their (world-wide) location, platform, and implementation language [Aßm03, p. 34] [Szy02,
p. 231]. One part of the CORBA is the Interface Definition Language (IDL). IDL is used by
CORBA to describe components language independently and to generate adaptation and glue
code between components implemented in different programming languages [Aßm03, p. 34].
IDL provides concepts like primitive and structured types (including integers, floats, characters
and strings). Besides data types and attributes, provided operations can be described using
CORBA [Szy02, p. 233ff].

IDL is specified as part of CORBA 3.0 [OMG02]. In CORBA 4.0 IDL was extended and replaced
by the Component Implementation Definition Language (CIDL) [OMG06a, Sect. 7]. Because
IDL has been developed with the focus on language and OS independence both requirements
are supported well (see Table 4.3). IDL is genrally known and widely spread. Unfortunately,
CORBA was too complicated to be used as a major component model in the CBSE industry.
IDL is specified by the Object Management Group, but no specification in UML exists. The IDL
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IDL
Type Concepts X
Operation Concepts X
OS Independence X
Language Independence X
DSL Acceptance ~
DSL Standardization ~
Adaptable to Dresden OCL2 for Eclipse -

Table 4.3: Evaluation of the IDL as DSL for component interfaces.

XML
Schema

Type Concepts X
Operation Concepts no
OS Independence X
Language Independence no
DSL Acceptance ++
DSL Standardization ++
Adaptable to Dresden OCL2 for Eclipse ~

Table 4.4: Evaluation of XML Schema as DSL for component interfaces.

specification is provided in a EBNF-like syntax. Thus, it would be time-consuming to adapt IDL to
Dresden OCL2 for Eclipse. On top of that, a text parser would be required to load IDL files into
the toolkit.

XML Schema as DSL

XML Schema is a meta-model for XML documents that describes XML structure by using the con-
cepts of XML itself. Both XML Schema and XML have been standardized by the World Wide Web
Consortium (W3C) [W3C04b, W3C06]. XML and XML Schema do not provide the basic concepts
of operations but are still interesting as a DSL for component interfaces because Eclipse/OSGi
plug-ins often use XML documents to specify parts of their extension points. E.g., the clock
example (presented in Section 2.6) can be extended by using an XML file conforming to a given
XML Schema. Thus, XML Schema would be an interesting candidate for a supported DSL as well.
XML Schema is OS independent but requires implementations in XML and thus is not language
independent. XML Schema is accepted well and well standardized. An adaptation to Dresden
OCL2 for Eclipse would be possible. The evaluation of XML Schema is summarized in Table 4.4.

The Unified Modeling Language as DSL

The Unified Modeling Language (UML) has been developed in the 1990s by Grady Booch, James
Rumbaugh and Ivar Jacobson. In September 1997, UML 1.1 became standardized by the OMG
[HKKR05, p. 4]. Since 1997, the UML has been steadily improved and is available in version 2.2
as an OMG specification [OMG09c] today. UML is the de facto standard modeling language in
the software development process.

UML class diagrams can be used as a Domain-Specific Language for component interfaces. UML
is both OS independent and independent of the underlaying programming language. The stan-
dardization and acceptance of UML can be considered as very good. Furthermore, the UML class
diagrams are already adapted to and supported by Dresden OCL2 for Eclipse. The evaluation of
UML as a component interface DSL is summarized in Table 4.5.
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UML
Type Concepts X
Operation Concepts X
OS Independence X
Language Independence X
DSL Acceptance ++
DSL Standardization ++
Adaptable to Dresden OCL2 for Eclipse ++

Table 4.5: Evaluation of the UML as DSL for component interfaces.

EMF Ecore
Type Concepts X
Operation Concepts X
OS Independence X
Language Independence X
DSL Acceptance ++
DSL Standardization +
Adaptable to Dresden OCL2 for Eclipse ++

Table 4.6: Evaluation of the EMF Ecore meta-model as DSL for component interfaces.

EMF Ecore as DSL

The Eclipse Modeling Framework (EMF) is “[...] a framework and code generation facility [...]”
[SBPM09, p. 14] that is based on the Eclipse Software Development Kit (Eclipse SDK) (intro-
duced in Section 2.9). The EMF project provides the possibility to combine modeling and code
generation. The Eclipse Modeling Framework is available at the EMF website [URL09f].

Developers can model their software by defining UML class diagrams, XML Schematas or pro-
gramming Java interfaces. All these kinds of models can be connected via an EMF Ecore Model
that is similar to a UML Class Diagram. All supported model types can be generated from and
converted into EMF Ecore models. Furthermore, the EMF supports tool generation; e.g., model
editor plug-ins for meta-models defined in EMF Ecore [SBPM09, p. 14ff].

The EMF Ecore meta-model is highly attractive as a Domain-Specific Language (DSL) for software
component interfaces in the context of run-time verification. EMF Ecore fulfills all the denoted
requirements (see Table 4.6). The EMF Ecore meta-model is OS and language independent
and widely accepted in the Eclipse community. Today, many companies develop software and
CASE tools based on EMF Ecore (e.g., IBM, Oracle and RedHat). The EMF Ecore meta-model
is standardized by the Eclipse Foundation and provides a good tool support. Moreover, the EMF
Ecore meta-model is already supported by Dresden OCL2 for Eclipse.

DSL Decision

Six languages have been presented and evaluated as DSLs for defining component interfaces.
The evaluation of the languages is summarized in Table 4.7. As the evaluation has shown, the
languages UML and EMF Ecore fit best to the depicted requirements. Both languages are already
adapted to Dresden OCL2 for Eclipse and are well accepted by the CBSE community and industry.
Both languages support an abstract and easy definition of component interfaces. Furthermore,
EMF Ecore models can be automatically generated from UML class diagrams, XML Schema
definitions and Java classes.

However, it would be nice to use Java interfaces as DSL models for contract definition as well
which would avoid an extra model generation from existing Java code in many use cases. That’s
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EXSD Java IDL
Type Concepts X X X
Operation Concepts X X X
Platform Independence X X X
Language Independence no no X
DSL Acceptance ~ ~ ~
Standardization ++ + ~
Adaptable to Dresden
OCL2 for Eclipse

- - + -

XML
Schema

UML EMF Ecore

Type Concepts X X X
Operation Concepts X X X
Platform Independence X X X
Language Independence no X X
DSL Acceptance + ++ ++
Standardization + ++ +
Adaptable to Dresden
OCL2 for Eclipse

~ ++ ++

Table 4.7: Evaluation of the DSLs used for component interface modeling.

why I decided to support three DSLs as model types of the developed OCL vocabulary: UML,
EMF Ecore and Java. In future works it would also be interesting to implement support of XML
Schema as well to investigate how appropriate Dresden OCL2 for Eclipse could be used for OCL
interpretation on a DSL that does not support the operational but only the type and attribute
concepts of the Pivot Model. Furthermore, such an implementation would enrich the support of
resources used in Eclipse/OSGi extension points supported by the current Treaty implementation
as contractible objects.

4.2.2 Required Model Instance Types

Due to the generic architecture, Dresden OCL2 for Eclipse allows the user to load different types
of model instances for the same type of model and vice versa.2 For example, on the one hand, a
UML class diagram can be instantiated by a UML object diagram or by a Java object. On the other
hand, a Java object (or a set of Java objects) can be an instance of both a UML class diagram
or a Java class. This genericity raises the question, on which types of model instances OCL
constraints can be verified at run-time. It is clear that besides the component models that can
be platform- and OS-independent, component instances are definitely language- and platform-
specific.

Thus, each component system requires its own type(s) of component instances. For a prototyp-
ical implementation based on the Eclipse/OSGi environment, required model instance types are
at least Java objects. The behavior of Eclipse plug-ins is realized by Java classes and objects.
Additionally, components can contain any other type of resource and all these resources types
could theoretically be constrained using OCL. But is it sensible to define OCL constraints on
icons, property files or other resources? The general answer is no. OCL was designed to de-
scribe structural and behavioral constraints that cannot be described using UML. But behavioral
constraints do not make any sense on some sort of static resource like an icon or a property file.
Thus, the major required model instance type for Eclipse/OSGi plug-ins is a model instance types
for Java objects. Other types would be interesting as well but not that important. For example,

2At least this is possible since the refactoring of the architecture presented in Subsection 5.5.1.
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OCL could be used to ensure the structural constraints of and could be used to query on XML
files that could also instantiate the statical semantic of a UML class diagram.

For the prototypical implementation of this work the support of different model instance types
will be limited to Java objects. Future works could be investigate if it is useful to implement
other types of model instances. It is clear that if Treaty would be adapted to another component
language than Eclipse/OSGi, other types of model instances could be required to adapt the OCL
support in contracts. Due to the fact that a Java model instance type is already supported by
Dresden OCL2 for Eclipse, no further implementation of model instance types is required for this
work.

4.2.3 OCL Constraint Integration

As mentioned in Subsection 3.1.1, Treaty uses XML files for contract definitions. All required and
provided resources are referenced and contracted by a .contract file. Generally, two different
solutions exist to define OCL constraints on resources referenced in such a contract file:

1. The OCL constraints could be referenced by the contract file like any other resource and
would be contracted via a relationship to a model instance resource in the Constraint Part
of the contract file (see Listing 4.1).

2. The constraint part of the contract file could be used to define OCL constraints directly
inside the contract file (see Listing 4.2).

Both solutions come with advantages and disadvantages. Thus, both solutions are evaluated in
the following and a design decision is presented.

Using OCL Constraint References

OCL constraint verification by referencing the OCL file is obviously the simpler of both solutions.
The advantages and disadvantages of this solution are the following:

• Pro: References to OCL files can easily be implemented in Treaty using the current Treaty
vocabulary component model. Existing elements of the Treaty language like Resource and
Relationship definitions can be used to realize this solution.

• Pro: The adaptation of Dresden OCL2 for Eclipse is easy because the toolkit can be com-
pletely hidden inside the new defined Treaty OCL vocabulary. The OCL2 Parser and Inter-
preter of the toolkit can be reused without modifying them.

• Contra: To realize the relationship between model, model instance and constraint in the
current Treaty language component model, two Relationship assignments are required.
One relationship between model and model instance (instanceOf) and one relationship
between model instance and OCL file (fulfillsContract).

• Contra: The solution separates the resource declaration from the contract definition. If
a user wants to know which contracts a Supplier component has to fulfill, he has to look
inside the OCL file. On the other hand it could be argued that the user has to look into
the model file as well to understand the OCL contract completely. The same disadvantage
occurs for every other Treaty vocabulary. It can rather be considered as a disadvantage of
the Treaty vocabulary component model than of the discussed OCL integration solution.
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� �
1 <contract ...>
2 <consumer>
3 <resource id="aModel">
4 <type>http://www.treaty.org/ocl#Model</type>
5 <name>/resources/simple.uml</name>
6 </resource>
7 <resource id="anOCLFile">
8 <type>http://www.treaty.org/ocl#OclFile</type>
9 <name>/resources/constraints.ocl</name>

10 </resource>
11 </consumer>
12 <supplier>
13 <resource id="aModelInstance">
14 <type>http://www.treaty.org/ocl#ModelInstance</type>
15 <ref>serviceprovider/@modelinstance</ref>
16 </resource>
17 </supplier>
18 <constraints>
19 <relationship resource1="aModelInstance" resource2="aModel"
20 type="http://www.treaty.org/ocl#instanceOf"/>
21 <relationship resource1="aModelInstance" resource2="anOCLFile"
22 type="http://www.treaty.org/ocl#fulfillsContract"/>
23 </constraints>
24 </contract>� �

Listing 4.1: OCL constraints referenced in a contract file.� �
1 <contract ...>
2 <consumer>
3 <resource id="aModel">
4 <type>http://www.treaty.org/ocl#Model</type>
5 <name>/resources/simple.uml</name>
6 </resource>
7 </consumer>
8 <supplier>
9 <resource id="aModelInstance">

10 <type>http://www.treaty.org/ocl#ModelInstance</type>
11 <ref>serviceprovider/@modelinstance</ref>
12 </resource>
13 </supplier>
14 <constraints>
15 <relationship resource1="aModelInstance" resource2="aModel"
16 type="http://www.treaty.org/ocl#instanceOf"/>
17 <property resource="aModelInstance" operator="fulfillsContract"
18 value="context aClass inv: anAttribute > 0"/>
19 </constraints>
20 </contract>� �

Listing 4.2: An OCL constraint directly defined in a contract file.
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Defining OCL Constraints Inside the Contract File

At first sight, defining OCL constraints directly inside the contract file seems to be a rather good
solution. However, the evaluation shows that this solution comes with advantages and disadvan-
tages as well:

• Pro: The direct OCL declaration is easier to understand, although the model information is
still referenced to the model file.

• Pro: The contract definition is more explicit because each Consumer and Supplier plug-in
has to define one resource to describe the contract. OCL constraints as properties are
defined in the contract file directly and have not the status of resources and therefore as a
contractor partner in the contract.

• Contra: As for the first solution, to realize the relationship between model, model instance
and constraint in the current Treaty vocabulary component model, two contract assign-
ments are required. One Relationship between model and model instance (instance-
Of) and one Property on the model instance and OCL file (fulfillsContract).

• Contra: The OCL constraint defined as an element property of the simple type String
cannot be read easily (especially for more complicate constraints than the constraints in the
shown example).

• Contra: If the OCL constraint is defined in the property file, the package declaration inside
the constraint file becomes useless and thus the OCL Parser of Dresden OCL2 for Eclipse
should be refactored to support the parsing of constraints with an external package decla-
ration. Although this is not required it would be recommended to simplify the constraint
definition inside the contract file.

Decision

The evaluation showed that both solutions have advantages and disadvantages. In the scope of
this work using the first and simpler solution would fulfill the enlisted requirements. Thus, OCL
constraints will be referenced as external resources in the Treaty contract. Nevertheless, it could
be investigated if the second solution could be realized in future works.

4.3 DISCUSSION OF MULTIPLE SOFTWARE ARCHITECTURES

To realize contract run-time verification of software component interfaces, different architectural
solutions using Treaty and Dresden OCL2 for Eclipse are possible. The most obvious solution
would be an adaptation of the OCL2 Interpreter of Dresden OCL2 for Eclipse as a Treaty vocab-
ulary. Alternatively, however, the Java Code Generator could be used to generate JUnit code
that could be verified using the Treaty JUnit vocabulary. A third solution would be the use of the
Java Code Generator to generate aspect-oriented code (e.g., AspectJ code) to verify the OCL
constraints at run-time. All three solutions are evaluated in the following. Their advantages and
disadvantages are discussed. Finally, a decision which of the three solutions fits best to the
requirements of this work is presented and implemented.
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4.3.1 Adapting the OCL2 Interpreter as a Treaty Vocabulary

As mentioned above, the most obvious solution would be an adaptation of the OCL2 Interpreter
of Dresden OCL2 for Eclipse as a Treaty vocabulary. Because Treaty provides a high modular
vocabulary mechanism, new vocabularies can easily be adapted to and integrated into Treaty (see
also Subsection 3.1.2). The OCL2 Interpreter would be encapsulated inside the Treaty vocabulary
and would be invoked during contract verification (see Figure 4.2).

The adaption can be realized very easily. A new Eclipse plug-in must be implemented that extends
the extension point net.java.treaty.eclipse.vocabulary (see Figure 4.3). This exten-
sion point requires two files, an ontology (OWL) file that describes the types and relationships
defined by the vocabulary and a Java class that implements the interface net.java.treaty.
ContractVocabulary and provides all methods required to evaluate contracts based on the
new vocabulary. The interface net.java.treaty.ContractVocabulary is shown in Figure
4.4.

The methods getContributedTypes() and getContributedPredicates() return a Col-
lection containing the URIs of all types and predicates defined in the OWL file of the vocabu-
lary. An OCL vocabulary adapting Treaty to the OCL2 Interpreter would have to provide at least
one model, one model instance and an OCL constraint resource type. Additionally, a relationship
predicate between model and model instance like isInstanceOf and a relationship predicate
between model instance and constraint like fulfillsContract would have to be provided.
The load() method of the vocabulary is responsible to load all resource types if necessary, it
would have to be adapted to the model, model instance and constraint file import wizards of Dres-
den OCL2 for Eclipse. The check() methods would be responsible to check the relationships
of the vocabulary. Because the OCL vocabulary would only need relationship conditions, the
check() methods for ExistsConditions and PropertyConditions could remain empty.
The check() method for RelationshipConditions would have to be adapted to the OCL2
Interpreter. Additionally, the method would have to check the instanceOf relationship between
models and model instances. This could be realized by an adaptation to the Model Bus of Dres-
den OCL2 for Eclipse.

The adaptation of the OCL2 Interpreter as a Treaty vocabulary has both advantages and disadvan-
tages:

• Pro: The adaptation could be realized easily.

• Pro: The OCL2 Interpreter could be reused.

Contract
Definition

Load Model,
Constraints &

Model Instance
(DOT4Eclipse)

Contract
Verification

(DOT4Eclipse Interpreter)

Contract Verification 
(Treaty OCL Vocabulary)

Figure 4.2: OCL contract verification using the OCL2 Interpreter.
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<<component>>
EclipseTreaty

vocabulary

class ontology

<<component>>
OCLVocabulary

class ontology

<<component>>
DOT4Eclipse

Figure 4.3: Extending Treaty with an OCL vocabulary adapting Dresden OCL2 for Eclipse.

<<interface>>
ContractVocabulary

check(condition : ExistsCondition)
check(condition : PropertyCondition)
check(condition : RelationshipCondition)
getContributedPredicates() : Collection<URI>
getContributedTypes() : Collection<URI>
load(type : URI,name : String,connector : Connector) : Object

Figure 4.4: The ContractVocabulary interface that must be implemented by the class of a vocab-
ulary that is bound to the EclipseTreaty component’s extension point attribute vocabulary.class.

54 Chapter 4 Analysis and Architectural Design



• Contra: Currently, the Eclipse implementation of Treaty only provides a Contract View that
can be used to evaluate contracts manually. Using the OCL2 Interpreter, the contracts
would have to be evaluated at every time, when a required interface’s operation would be
invoked. To realize such a run-time observer mechanism by hand could be complicated,
especially for pre- and postcondition evaluation.

• Contra: Pre- and postcondition evaluation requires context information. Which method
will be or has been invoked? Of what kind were its parameter values and what was the
result? Which class instance is the source of the method’s invocation? All this information
is currently not provided when invoking the vocabularies’ check() methods.

• Contra: It is unknown how the Treaty vocabulary could access the model instance that
shall be interpreted. Treaty allows the definition of resources in contracts but resources
lead to static files like classes or value descriptions, not to run-time objects that can be
interpreted. How can it be ensured that the Interpreter interprets the same model instances
the consumer component uses? The current model instance could be considered part of
the required interpretation context as well that is currently not provided by Treaty.

4.3.2 Generating JUnit Test Code for Treaty Using the Java Code Generator

A second possible implementation could be realized by using the JUnit [URL09m] vocabulary
of Treaty that already exists. The JUnit vocabulary supports contract definitions by providing
modified JUnit test classes that are parameterized using a constructor that binds the test classes
to the Java object that shall be tested. Thus, the test class is bound at run-time with the model
instance that shall be verified [DHG07, p. 3]. Such test classes can be used to verify both
functional and non-functional contracts.

These JUnit test classes could also be used to verify OCL constraints if JUnit code would be
generated for these constraints. Listing 4.3 shows a simple OCL constraint that declares that the
result of an ExtensionClass’ getName() method must not be null. Listing 4.4 contains the
JUnit code that could be generated from this constraint and could be used in a contract of the
JUnit vocabulary of Treaty.

To generate such JUnit code, the OCL22Java Code Generator of Dresden OCL2 for Eclipse could
be adapted. Currently, this code generator generates AspectJ code that can be used to instru-
ment Java classes with OCL constraints. The code generator generates the Java code in two
steps, (1.) the fragment generation and (2.) the fragment instrumentation [Wil09]. In the first
step, the expressions of OCL constraints are transformed into Java expressions. In the second
step, these fragments are inserted into AspectJ files that describe how the AspectJ Weaver
should instrument the constraints into the Java classes. To generate JUnit code instead of As-
pectJ code, only the second step would have to be adapted. The new code generator would
only need a new instrumentation code generator that would create test cases instead of aspects.
Therfore, the fragment code generation (that supports transformation for all OCL expressions)
could be reused.

Generally, two different possibilities exist to adapt the OCL22Java Code Generator to Treaty. On
the one hand, the tools could be arranged in a simple tool chain. The user would start by using
Dresden OCL2 for Eclipse to generate the JUnit code. Afterwards, he would define his contracts
by using the generated code and would use Treaty to verify these contracts (See Figure 4.5 Part
A). On the other hand, the Code Generator of Dresden OCL2 for Eclipse could be encapsulated
inside a Treaty OCL vocabulary. The user would not need to know about Dresden OCL2 for E-
clipse at all. He would define his contracts using the OCL vocabulary. During contract verification,
the OCL vocabulary would use the OCL22Java Code Generator internally to generate JUnit code.
He would adapt the contract with the newly generated code and would use the JUnit vocabulary
to verify the contract (See Figure 4.5 Part B).

Both solutions have advantages and disadvantages:
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� �
1 context ExtensionClass::getName()
2 post: not result.isOclUndefined()� �

Listing 4.3: A simple OCL constraint.� �
1 public class ConstraintTest {
2
3 private ExtensionClass extClass = null;
4
5 public OperationTest(ExtensionClass extClass) {
6 this.extClass = extClass;
7 }
8
9 @Test

10 public void test1() {
11 String result;
12
13 result = this.extClass.getName();
14
15 assertTrue(result != null);
16 }
17 }� �

Listing 4.4: JUnit code for a simple OCL constraint.

• Pro: The JUnit vocabulary has already been implemented and could be reused for both
solutions.

• Pro: Only the fragment instrumentation of the OCL22Java Code Generator would have to
be adapted. This could be realized easily because the code generator uses the template
language String Template [URL09r] for instrumentation code generation.

• Contra: For the first solution Dresden OCL2 for Eclipse would be a pre-compiler of Treaty
and would not be really adapted to Treaty (see Figure 4.5, Part A). The OCL constraints
could not be directly defined into the Treaty contracts, instead the user would have to use
the OCL22Java Code Generator first to generate its JUnit test classes and then would have
to define its JUnit based Treaty contracts.

• Contra: For the second solution, the code generator could be integrated into Treaty (see
Figure 4.5, Part B). But such an implementation would be complex and complicated, be-
cause the OCL vocabulary would have to adapt the defined contracts after code generation.
Furthermore, this solution would introduce a dependency between the OCL and the JUnit
vocabulary that would violate the independence of different Treaty vocabularies.

• Contra: Here, as in the OCL2 Interpreter solution, the context problem exists. Addition-
aly, the parameterization of the JUnit test classes with the model instance that shall be
checked, additional information like method parameters and results are required. Such con-
text information is currently not supported by the JUnit vocabulary of Treaty.

4.3.3 Generating Aspect Code Using the Java Code Generator

A third possible solution would be the use of Aspect-Oriented Programming (AOP) to realize
component run-time verification. (AOP has already been introduced in Section 2.8). OCL-based
contracts could be transformed into implementation-language specific AOP code (e.g., AspectJ
[URL09c] code for Java implementations). For the Eclipse/OSGi implementation these aspects
could be integrated into the components (or bundles) using the Eclipse Equinox Aspects Project
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Figure 4.5: The two different possibilities to combine Dresden OCL2 for Eclipse and Treaty via
the JUnit Vocabulary. A: Tool Chain, B: Encapsulation of Dresden OCL2 for Eclipse in an OCL
Vocabulary.
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Contract
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(During run-time by AOP)

Figure 4.6: Eclipse Equinox Aspect code generation using Dresden OCL2 for Eclipse.

(already introduced in Section 2.10) and weaving the aspects into classes by Load-Time Weaving,
during bundle loading and activation.

Figure 4.6 illustrates which steps such a code generation would require. Again, the OCL22Java
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Code Generator of Dresden OCL2 for Eclipse (that already generates AspectJ code for OCL
constraints) could be reused. The code generation would only have to be extended to generate
the required meta files for the Equinox Aspects weaving technology while the code generator
itself could remain unchanged.

As the two solutions discussed before, this solution comes with advantages and disadvantages
as well:

• Pro: The OCL22Java Code Generator could be reused with only marginal adaptations.

• Pro: AOP is responsible for contract verification invocations, no problems with required
context information for contract verification occur.

• Contra: The AOP solution must be implemented for every component language that should
be contracted. The AOP solution would not be component language independent.

• Contra: The solution would not use a combination of Treaty and Dresden OCL2 for Eclipse
but would only use the Java Code Generator to generate contract code for Eclipse/OSGi
bundles. The solution could be encapsulated in a Treaty vocabulary but some problems
would remain. The current Treaty implementation uses a interpretative approach (see Sub-
section 2.4.1). The Treaty vocabularies are only responsible to provide check() methods
that can be invoked by Treaty during contract verification. But the vocabularies are not de-
signed to verify their contracts individually and independent of the Treaty environment (this
generative approach would do exactly that). AOP could be used to modify the Treaty frame-
work to enable real run-time verification instead of Snapshot Verification but should not be
used directly in the vocabularies.

4.3.4 Architectural Design Decision

The three solutions presented above all come with different advantages and disadvantages. The
aspect-oriented solution presented in Subsection 4.3.3 is the only one that solves the problem
of the missing context information in the current Treaty implementation. But the aspect-oriented
solution does not fit to the architecture and interfaces of Treaty. The JUnit code generation
solution presented in Subsection 4.3.2 causes dependencies between a new developed OCL
vocabulary and the already existing JUnit vocabulary. Thus, the interpretative solution presented
in Subsection 4.3.1 seems to fit best to the current Treaty architecture. Treaty provides the
mechanisms and operations to implement such an interpretative vocabulary very easily. Only the
already mentioned context information problem remains.

To adapt Treaty with the OCL2 Interpreter of Dresden OCL2 for Eclipse, the following problems
and tasks must be solved:

• Implementation of a new OCL Vocabulary,

– OWL taxonomy declaration,
– ContractInterface implementation and adaptation to Dresden OCL2 for Eclipse,

• Implementation of a new Java meta-model for Dresden OCL2 for Eclipse,

• Adaptation of the Treaty architecture to invoke vocabulary operations with context informa-
tion,

• Adaptation of the Treaty architecture to retrieve context information (not solved in this work),

• Tests of the Treaty OCL vocabulary.

The implementation and realization of the enlisted tasks is documented in the following chapter.

58 Chapter 4 Analysis and Architectural Design



5 DESIGN AND IMPLEMENTATION

Rather than construction, software is more like gardening–it is more organic than
concrete. You plant many things in a garden according to an initial plan and conditions.
Some thrive, others are destined to end up at compost.

Andrew Hunt and David Thomas [HT09, p. 184]

In the previous chapter I evaluated the requirements for an adaptation of Dresden OCL2 for E-
clipse as a new Treaty vocabulary. At its end I highlighted all required steps to implement such an
adaptation. In this chapter I present the results of the adaptation and explain how the implemen-
tation has been realized. First, in Section 5.1 I present the refactorings of the Treaty Architecture
required for run-time verification. In Section 5.2 I present my OCL vocabulary implementation for
Treaty, in Section 5.3 follows the meta-model adaptation of Java to Dresden OCL2 for Eclipse. In
Section 5.4 I shortly present two different approaches to collect context information for run-time
contract verification. The chapter finishes with the presentation of changes and refactorings done
at the architecture and the OCL2 Interpreter of Dresden OCL2 for Eclipse in Section 5.5.

5.1 REFACTORING OF THE TREATY ARCHITECTURE

As already mentioned during the discussion of multiple architectural adaptations between Treaty
and Dresden OCL2 for Eclipse in Section 4.3, the current Treaty architecture comes with some
design problems. The problems become aware if Treaty shall be used for run-time verification of
contract languages like OCL.

5.1.1 Problems of the Current Treaty Architecture

Figure 5.1 again shows the ContractVocabulary interface of Treaty that must be imple-
mented by any vocabulary that shall be used in Treaty contracts. Currently, the interface only
provides three methods for contract verification, the methods check(ExistsCondition),
check(PropertyCondition), and check(RelationshipCondition). In the Eclipse/OSGi
implementation these check() methods are only invoked if the user requests contract verifica-
tion manually (Snapshot Verification).
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Unfortunately, the check() methods do not provide any argument that can be used to add
additional context information that specifies at which point of time during execution the check()
method has been invoked and on which run-time objects the condition should be verified. The
problem of missing context information already exists in the Treaty JUnit vocabulary, where JUnit
test cases are used to verify a given Java class. The only information, the JUnit vocabulary
gets from the Treaty environment is the URL that describes the location of the class that shall
be verified. But no instance of this class, on that the JUnit tests shall run is given. The JUnit
vocabulary solves this problem by creating a new instance of the given class file using Java
Reflections (more precisely the method java.lang.Class.newInstance()).

This solution seems to be simple but does not solve all the problems arising by the missing
context. A new Java object can be instantiated and tested. But instantiating a new Java object
at any time a JUnit contract shall be verified does not fulfill the intention of run-time verification.
Not the run-time objects are tested, but an instance of the classes in its initialized state is tested.
What happens if the state of an object becomes invalid during run-time? The JUnit vocabulary
would never know, as long as the constructor would create an object in a valid state.

If a constraint defined in OCL or a similar Design by Contract language shall be evaluated (e.g., a
pre- or a postcondition) further information besides the run-time object is required. If a precondi-
tion should be verified, the precondition is defined on an operation and can contain checks on the
arguments with whose the operation shall be invoked. Currently, such information is not available
using the ContractVocabulary interface. The verification of a postcondition could require
these arguments and the operation as well but could also require the result of the operation’s
invocation.

All in all, the evaluation of the Treaty infrastructure shows that currently, Treaty is designed to
check constraints on static objects. Thus, they do not depend on a run-time context. Constrain-
able objects are only described by a URL which works well when verifying XML files but does
not work well when verifying dynamic run-time objects. Treaty requires the support of contracts
defined on dynamic objects.

5.1.2 The Refactored Treaty Architecture

Thus, I decided to refactor the ContractVocabulary interface and to introduce new methods
supporting the evaluation of run-time objects and their contexts. Figure 5.2 shows the refac-
tored ContractVocabulary interface and related classes. First, I introduced a new enumera-
tion LifecycleEvent that can be used to tell a ContractVocabulary at which point during
execution a condition shall be checked. Currently, LifecycleEvent describes five different
states. The default state is ManualVerification. It represents a check operation invoked
by a contract view as in the current Treaty/Eclipse implementation. The four other states are
ComponentLoadTime, ComponentUnloadTime, InterfaceInvocation, and Interface-
InvocationReturn. Static contracts that do no depend on a context could be verified dur-
ing ComponentLoadTime to verify that a bound component can be used at all. The states

<<interface>>
ContractVocabulary

check(condition : ExistsCondition)
check(condition : PropertyCondition)
check(condition : RelationshipCondition)
getContributedPredicates() : Collection<URI>
getContributedTypes() : Collection<URI>
load(type : URI,name : String,connector : Connector) : Object

Figure 5.1: The current Treaty ContractVocabulary interface.
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<<interface>>
ContractVocabulary

check(ExistsCondition)
check(PropertyCondition)
check(RelationshipCondition)
getContributedPredicates() : Collection<URI>
getContributedTypes() : Collection<URI>
load(URI, String, Connector) : Object

<<interface>>
IDynamicContractVocabulary

check(ExistsCondition, LifecycleEvent, IRuntimeContext)
check(PropertyCondition, LifecycleEvent, IRuntimeContext)
check(RelationshipCondition, LifecycleEvent, IRuntimeContext)

AbstractDynamicContractVocabulary
{abstract}

check(ExistsCondition)
check(PropertyCondition)
check(RelationshipCondition)

<<enumeration>>
LifecycleEvent

manualVerification
componentLoadTime
componentUnloadTime
interfaceInvocation
interfaceInvocationReturn

<<interface>>
IRuntimeContext

OperationInvocationContext

source: Object
operationSignature: String
argumentTypes: String[]
arguments: Object[]
result: Object

Figure 5.2: The refactored Treaty ContractVocabulary interface.

InterfaceInvocation and InterfaceInvocationReturn are the required states for the
OCL vocabulary, required to verify constraints before and/or after a method’s invocation. The
last state ComponentUnloadTime could be used to check some conditions before a compo-
nent is unloaded and some information would be stored in a database or file system. The
LifecycleEvent enumeration could be extended in the future, of course, if other vocabular-
ies will show other events that could cause contract verification during run-time.

With the LifecycleEvent I introduced a new interface IRuntimeContext that could be used
to deliver a vocabulary a context required for a condition’s evaluation. Currently, this interface
is implemented by the class OperationInvocationContext that contains all information re-
quired by the OCL vocabulary to verify a pre- or postcondition. The OperationInvocation-
Context contains the source, an object on that an operation shall be (precondition) or has been
(postcondition) invoked. Furthermore, it contains a String containing the signature or name
that identifies the operation that will be (respectively has been) invoked, an array containing the
arguments with which the operation will be (or has been) invoked, the type of these arguments
and eventually the result of the operation’s invocation.

To refactor the ContractVocabulary interface, I decided to extend the interface instead of
refactoring it, in order to ensure that the already designed Treaty vocabularies will still work.
The new interface IDynamicContractVocabulary introduces three new check() methods
by adding two arguments (the LifecycleEvent and the IRuntimeContext). An abstract
implementation of this interface called AbstractDynamicContractVocabulary adapts the
old check() methods of the ContractVocabulary interface by calling the new check()
methods using the default LifecycleEvent (manualVerification) and using a null value
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instead of an IRuntimeContext. Thus, any vocabulary that implements the IDynamicCon-
tractVocabulary still has to implement three check()methods that are called from a specific
LifecycleEvent and that could be invoked with an IRuntimeContext. By the adaptation
of the old ContractVocabulary the snapshot verification mechanism of the current Treaty
implementation will still work for the old and for all newly defined vocabularies.

Currently, the newly introduced classes and interfaces are located in a new plug-in with the
id net.java.treaty.dynamic. In future works they should be refactored into the Treaty
core packages. Furthermore, the Treaty infrastructure should be refactored and should use
the LifecycleEvent and the IRuntimeContext to support dynamic run-time verification.
Additionally, a mechanism to collect the required context information during the execution of
Eclipse/OSGi plug-ins should be implemented (see also Section 5.4).

5.2 TREATY OCL VOCABULARY IMPLEMENTATION

This section presents, how the Treaty OCL vocabulary has been implemented. First, I illustrate
the OWL taxonomy that describes all resource types and relationships provided by the OCL
vocabulary. Afterwards, I explain the implementation of the AbstractDynamicContractVo-
cabulary.

5.2.1 The Taxonomy of the OCL Vocabulary

As mentioned in Subsection 3.1.1, each Treaty Vocabulary must provide an OWL ontology that
describes the taxonomy of all resources and relationships supported by the vocabulary for Treaty
contracts. Figure 5.3 shows the taxonomy of the OCL vocabulary. The OCL vocabulary defines
three different types of resources: Models, ModelInstances, and OCLFiles. Because Dres-
den OCL2 for Eclipse supports different types of meta-models and model instances, the OCL
vocabulary must differentiate between different types of models and model instances as well.
Thus, the Model type is sub-classed by types representing the supported meta-models or DSLs.
These sub-classes are EMFEcoreModel, UML2Model, and JavaModel. The ModelInstance
is currently only sub-classed by the type JavaModelInstance. In future works, additional
types of models and model-instances could be introduced into the OCL vocabulary, e.g. an
XMLSchemaModel and an XMLModelInstance type as proposed in Subsection 4.2.1.

With the resource types, the taxonomy describes also the possible relationships between these
resources. The OCL vocabulary supports two different relationships, an instanceOf relation-
ship between a Model and a ModelInstance type, and a fullfilsContract relationship
between a ModelInstance and an OCLFile. The instanceOf relationship does not require
further explanation. But the fullfilsContract relationship can raise some questions. Why
is this relationship defined between model instances and constraints and not between models
and constraints? Theoretically, this would also be possible. Effectively, OCL constraints have a
relationship to both models and model instances. They are defined on models and evaluated on
model instances (see Section 2.3). But in this context, the relationship between model instances
and OCL constraints is the more important one because the contracts define the verification part
of the contract, the “What shall be verified?” Thus, I decided that the user who uses OCL con-
straints in his Treaty contracts has to define this relationship. The relationship between models
and constraints exists transitively. Every OCLFile that must be fulfilled by a ModelInstance is
defined on the Model, of which the ModelInstance is an instance of.
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Model ModelInstance
<<instance-of>>

OCLFile
<<fullfils-contract>>

UML2Model

JavaModel

EMFEcoreModel

JavaInstance

Figure 5.3: The Taxonomy of the OCL Vocabulary.

5.2.2 The Implementation of the Vocabulary Interface

Figure 5.4 illustrates, how the ContractVocabulary has been implemented by the OCLVo-

cabulary. To keep the interface of the OCLVocabulary simple, I extracted the commu-
nication to Dresden OCL2 for Eclipse into another class called OCLToolkitManager. The
OCLVocabulary implements the AbstractDynamicContractVocabulary and thus sup-
ports the dynamic verfication of OCL contracts. Both the loading of the different resources
required for contract verification and the verification itself are delegated to the methods of the
OCLToolkitManager.

The methods loadModel(URL, String), loadJavaModel(String, Connector), load-
JavaModelInstance(String, Connector), and loadConstraintFile(URL) are used
to load the different resource types. The loading mechanism for Java models and model in-
stances is implemented in separate methods because a Java model requires the Connector of
the plug-in that provides the Java model to get the ClassLoader that is required to load the
model’s class(es). The methods internally use Dresden OCL2 for Eclipse to load models, model
instances and to parse constraint files.

The methods checkIsInstanceOf(Resource, Resource) and checkIsContractFul-

filled(Resource, Resource, LifecycleEvent, IRuntimeContext) are responsible
to verify the different conditions of OCL contracts. The method checkIsInstanceOf(...)

simply checks if an already loaded model instance belongs to a given model. The method
checkIsContractFulfilled(...) is more complicated. First, the method checks if any
constraints given in the resources for verification must be prepared for interpretation (e.g., a
body expression that is used in another constraint must be prepared to be known by the OCL2
Interpreter). Afterwards, the method checks, which type of LifecycleEvent is given. If the
given LifecycleEvent is of the type InterfaceInvocation, invariants and preconditions of
the given operation are verified. If the given LifecycleEvent is of the type InterfaceIn-

vocationReturn, postconditions of the given operation and invariants are verified. Else only
invariants are verified, because they can be verified without a given invocation context.
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AbstractDynamicContractVocabulary
{abstract}

check(ExistsCondition)
check(PropertyCondition)
check(RelationshipCondition)
check(ExistsCondition, LifecycleEvent, IRuntimeContext)
check(PropertyCondition, LifecycleEvent, IRuntimeContext)
check(RelationshipCondition, LifecycleEvent, IRuntimeContext)
getContributedPredicates() : Collection<URI>
getContributedTypes() : Collection<URI>
load(URI, String, Connector) : Object

OCLVocabulary

check(ExistsCondition, LifecycleEvent, IRuntimeContext)
check(PropertyCondition, LifecycleEvent, IRuntimeContext)
check(RelationshipCondition, LifecycleEvent, IRuntimeContext)
getContributedPredicates() : Collection<URI>
getContributedTypes() : Collection<URI>
load(URI, String, Connector) : Object

OCLToolkitManager

loadModel(URL, String): IModel
loadJavaModel(String, Connector): IModel
loadJavaModelInstance(String, Connector): IModelInstance 
loadConstraintFile(URL): Constraint[]
checkIsInstanceOf(Resource, Resource)
checkIsContractFulfilled(Resource, Resource, LifecycleEvent, IRuntimeContext)

myManager

Figure 5.4: The OCL Vocabulary implementation of the AbstractDynamicContractVocabulary.
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5.3 JAVA META-MODEL ADAPTATION

In Subsection 4.2.1 I discussed different Domain-Specific Languages (DSLs) that could be used
to describe components for interface contract definition. I decided to support UML, EMF Ecore
and Java as possible languages for interface specification. For UML and EMF Ecore, the meta-
models are already adapted to and supported by Dresden OCL2 for Eclipse. For Java, such an
adaptation or implementation was missing.

5.3.1 Different Possible Adaptations

I investigated two different possibilities to adapt Java as a DSL to Dresden OCL2 for Eclipse. On
the one hand the Java Model Parser and Printer (JaMoPP) [URL09k], developed at the Software
Technology Group, Technische Universität Dresden could be adapted. On the other hand a Java
meta-model could directly implemented by adapting the Pivot Model of Dresden OCL2 for E-
clipse to the Java Reflections mechanism [Ull09, Chapter 24]. Both approaches are presented in
the following.

Adapting JaMoPP as Java Meta-Model

The Java Model Parser and Printer (JaMoPP) is part of the EMFText - Reuseware project that
enables software developers to model their DSLs in EMF and to generate both a model parser
and a model editor [URL09h, URL09k]. JaMoPP provides interfaces to load Java source and
byte code as classes and to analyze their model structure. Furthermore, JaMoPP contains an
EMF Ecore model that describes a meta-model for Java that provides all elements required to
adapt a meta-model to the pivot model of Dresden OCL2 for Eclipse. Dresden OCL2 for Eclipse
contains a Pivot Model Adapter Generator [WT09, Chapter 5] that can be used to generate a
pivot model adapter from an EMF Ecore model that contains annotations that allocate the meta-
model elements to the pivot model elements. The generated adapter is not directly executable
but contains all the skeleton code necessary for such an adaptation. Only some methods that
delegate the required pivot model operations to operations of the adapted meta-model have to
be implemented manually.

Thus, at first glance, adapting JaMoPP as a Java meta-model to Dresden OCL2 for Eclipse seems
to have only advantages. However, during an adaptation approach I realized that the JaMoPP also
comes with some disadvantages. The major disadvantage is that using JaMoPP, every resource
that should be loaded as a Java file must be registered at the JaMoPP. This leads to some
problems. E.g., if I try to load a class Person with an attribute profession of the type Job,
I also have to load the class Job to find the type of profession in the model. But using
JaMoPP, the class Job is only found if I registered the resource of the source or byte code of
this class before. This manual registration of classes is possible in many use case where all
classes that should be loaded into Dresden OCL2 for Eclipse are known. But by using Java to
describe interfaces of software components, I do not have such information. If I try to load a
class describing an interface, I do not know where the class files of all types used in operation
declarations inside this interface are located. They could be located in the same package or plug-
in, but they could also be located in another JAR or plug-in on that the Person class’ plug-in
depends on.

Along with this resource managing problem the JaMoPP meta-model currently misses some
methods that would be useful to adapt the required operations of the pivot model, for example a
method like Type.getSuperTypes(). Such a method must currently be implemented manually
using many casts and instanceOf checks between different JaMoPP meta-model elements
which leads to some execution overhead.
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Implementing a Java Meta-Model Using Reflections

“Reflection is thinking and computing about oneself with help of the metadata.” [Aßm03, p.
48] E.g., a Java class can reflect over its contained attributes by using the method java.lang.
Class.getFields(). Thus, “Java can be regarded as a simple reflective system.” [Aßm03, p.
50] Java provides all reflection mechanisms that are required to implement the methods of the
pivot model to adapt Java as a DSL. Java supports reflective methods to retrieve all attributes and
operations of a class and to retrieve all super types. The Java class loading mechanism allows
to navigate from one class to another without telling the Java Virtual Machine (JVM) where the
required class is located in the file system. The class loader searches through all registered class
paths to find a class for which the user only has to provide the canonical name [Ull09, Section
10.4]. This solution fits to the interface contracting scenario better, because only the resource
of one class file must be known and all related classes can be found without explicitly providing
their resources. Furthermore, tests have shown that a direct implementation of the pivot model
adapters by using Java reflections works faster than adapting the JaMoPP.

Java Meta-Model Adaptation Decision

The investigation of the JaMoPP and the Java reflections mechanism has shown that reflections
come with some advantages in contrast to the JaMoPP solution. Classes can be referenced
without explicit resource declaration an the required methods can be implemented using less
instanceOf checks and castings. Thus, I decided to implement the Java meta-model for Dres-
den OCL2 for Eclipse using Java reflections. Nevertheless, an adaptation of the JaMoPP to the
Dresden OCL2 for Eclipse would be interesting in many other use cases and should be consid-
ered for future works in the context of Dresden OCL2 for Eclipse.

5.3.2 The Realized Adaptation

Dresden OCL2 for Eclipse and its pivot model support an easy adaptation mechanism for meta-
models and DSLs. A Pivot Model Adapter Generator exists [WT09, Chapter 5] that can be used
to generate the skeleton code of all pivot model elements that have to be adapted. The generator
retrieves the required information for the adapter generation from an annotated EMF Ecore model
representation of the meta-model that shall be adapted. I tested the adapter generator, when I
tried to adapt the JaMoPP meta-model to Dresden OCL2 for Eclipse.

Unfortunately, for the Java reflections meta-model no satisfying meta-model representation that
could be easily modeled in a EMF Ecore model existed. I had to retrieve such meta-model in-
formation myself. By adapting the meta-model by hand I figured out which Java classes of the
package java.lang.reflect I needed to realize the adaptation. Thus, I adapted the Java re-
flection mechanisms without using the pivot model adapter generator. A detailed documentation
of the adaptation would be too large for the scope of this work. However, in the following I want
to highlight some problems that occurred during the adaptation.

Missing Package Meta-Model Element in Java

One important element of the pivot model that must be adapted to any meta-model is the
Namespace element. Inside Dresden OCL2 for Eclipse, a Namespace contains other Name-
spaces, Types and Constraints. In Java, name spaces are called Packages [GJSB05, p.
153ff]. Unfortunately, the Java meta-model elements do not contain a Package class that allows
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Condition on adapted Java class isMultiple() isOrdered() isUnique()
instanceof java.util.List true true false
instanceof java.util.Set true false true
instanceof java.util.Collection true false false
instanceof java.util.Map true false false
isArray() true true false
else false true true

Table 5.1: Java types and their adaptation in the pivot model for isMultiple(), isOrdered(), and
isUnique().

to retrieve package specific information. In Java a packages exist implicitly. When a class is de-
clared a member of the package, the package exists automatically. The java.lang.Class class
does not provide a method getPackage(). Inside the Java meta-model, packages only exist as
defined by the canonical names of classes (a combination of all package names and the class
name [GJSB05, p. 145f]). Thus, no element that could be adapted to the Namespace element of
the pivot model exists in Java.

I solved this problem by adapting the canonical name of a package (in a String representation)
as a Namespace element. Every time a tool of Dresden OCL2 for Eclipse invokes a method on
the Java meta-model to retrieve package information, this information is retrieved based on this
name space name information. E.g., if the method Namespace.getOwnedTypes() is invoked,
the model searches for all types those canonical name identify them as a member of the given
Namespace.

Adaptation of Collections and Arrays

Another interesting point was the question how Java arrays and collections should be mapped to
the pivot model. After some consideration I figured out that a Java array can be interpreted as
a set of instances of the array type or as an instance of the type having multiple values. In the
pivot model, both Property and TypeParameter can contain multiple instances of the same
type which is identified by their operation isMultiple(). Thus, a Java field which describes
an array can be adapted to a Property that is multiple. An operation which returns an array in
Java can be adapted to an Operation that has a return parameter (TypeParameter) that is
multiple. The same adaptation is possible for collections. If a Java collection has a generic type,
the pivot model element contains multiple Type instances of the adapted generic type of the
collection in Java. If a collection has no generic type, the pivot model element contains multiple
Type instances of the adapted Java class java.lang.Object.

With the operation isMultiple() other operations of the pivot model can be adapted as well by
reasoning whether or not a Java class is an array or a collection. The operations isOrdered(),
and isUnique() depend on the type of collection or array adapted to the pivot model element.
Table 5.1 summarizes the different adaptations of these operations depending on their adapted
Java type.

Support of Inner Classes in Java Models

Java provides the possibility to declare inner types inside a Java class such as inner classes,
interfaces or enumerations [GJSB05, p. 181ff]. Due to the fact that the pivot model does not
differentiate between private and public properties and operations, the types declared inside a
Java class could be visible when they are used in attribute or operation declarations of their
container class. Thus, these types must be adapted by the pivot model as well. If an inner class,
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interface or enumeration is adapted to the pivot model Type element, their container class is
interpreted as their name space. Thus, classes can be adapted to both Type and Namespace.
Again, the adaptation of a Java class as a name space is realized by only adapting the canonical
name of the class as a Namespace element (see Subsection 5.3.2).

Transitive Model Browsing and Adaptation

Normally, a model adapted to the pivot model of Dresden OCL2 for Eclipse describes all types
that are used in the property or operation declarations of its model elements or only refers to
primitive types declared in its meta-model. But if a Java class shall be loaded into Dresden OCL2
for Eclipse this is not possible, because the class could use all types defined in the Java Standard
Library without defining them inside the class. It could also refer to other classes and interfaces
defined in the same package or other packages that are imported in the class declaration.

Thus, I decided that during the adaptation of a Java class to an IModel inside the toolkit, all types
used inside the class’ declaration are interpreted as also being a part of the imported model. If a
ClassA is imported into the toolkit containing an attribute of the type ClassB, ClassB is also
part of the model and is imported and adapted into the toolkit. ClassB could contain an operation
having the return type ClassC and thus ClassC would also be part of the model. After short
consideration it should be clear that such a transitive import mechanism has both advantages and
disadvantages. On the one hand, only one class has to be imported into the toolkit and the toolkit
(or the Java meta-model) handles the import of all other classes that are required to be adapted
as Type objects. On the other hand, such a transitive mechanism could lead to a more or less
complete import and adaptation of the Java standard library if the main class or a transitive class
uses these types inside its declaration. Thus, I decided to support a transitive import mechanism
that only imports and adapts such types if they are required inside the toolkit.

If a ClassA is imported into the toolkit, the type of ClassA and all types that are directly related
to this class are imported and adapted. E.g., a ClassB used in a property of ClassA would be
imported, a related ClassC used in ClassB would not be imported (see Figure 5.5). If other
types are requested during the work of tools on the imported model (e.g., if a tool requests the
operation ClassB.getOwnedOperations(), all newly required types would be imported as
well. This deferred transitive adaptation mechanism avoids that all types never used inside the
toolkit are imported and adapted and cause overhead and maintenance problems.

Caching During Adaptation

The standard pivot model adaptation mechanism of Dresden OCL2 for Eclipse uses a MetaMo-
delAdapterFactory that is responsible to create all adaptation objects during model loading.
Inside this factory, maps are used to cache adapted model objects to avoid phenomenons like
Object Schizophrenia [SR02] between different adaptations of the same type. The MetaModel-
AdapterFactory is implemented using the Singleton Pattern [GHJV95, p. 127ff] for each meta-
model. In the other meta-models this combination of singleton implementation and caching does

ClassA ClassB
propertyB

ClassC
propertyC

Figure 5.5: Deferred transitive import into Dresden OCL2 for Eclipse. ClassB, directly referenced
from ClassA is imported. ClassC that is not directly referenced and thus, not imported immedi-
ately.
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not cause problems, because the adapted meta-model objects of the adapted model are used
as keys in the maps to store the adapted objects. In UML and EMF Ecore each adapted model
has its own unique model objects used as keys in the map. But in Java, where Java classes
(java.lang.Class objects) are used as keys, this singleton caching mechanism can lead to
problems. The same class can be used as a key in different models and the cached objects are
therefore not model specific. I solved the problem by using an adapter factory for Java models
that do not implement the singleton pattern. Each Java model uses its own factory that caches
its adapted model objects.

5.4 CONTEXT INFORMATION CAPTURING AND ADAPTATION

As already mentioned in Subsection 5.1.1, the current Treaty Eclipse/OSGi implementation does
not provide contract verification at run-time and does not collect any context information. In
Subsection 5.1.2 I described, how the Treaty architecture could be refactored to support the ver-
ification of contracts at run-time based on context information. The question, how such context
information is collected during run-time remains unanswered.

Different solutions to implement a context information collecting mechanism into Treaty exist.
In this Section I want to present two possible solutions shortly. The first solution would be a
context information capturing mechanism based on Aspect-Oriented Programming (AOP). The
second solution would be a service-based mechanism.

5.4.1 Aspect-Oriented Information Retrieval

The first solution to capture context information at run-time would be an aspect-oriented ap-
proach. The Treaty contract framework could implement or generate an aspect for every Java
class on that a contract has been defined (if Treaty would be implemented for another language
than Java, the aspects would have to be generated for that language). The aspects would be
responsible to observe the methods of the constrained class, to collect the context information
and to invoke the verification mechanism.

Listing 5.1 shortly presents such an approach implemented in AspectJ. An aspect Context-
Collector is defined that contains two advices that are invoked before and after any method
invocation of the class AJavaClass. The advices use the special field thisJoinPoint that
is available in every AspectJ advice and can be used to get all required information for the
OperationInvocationContext of the current method’s invocation. It provides all required
information: the object on which the current method is invoked, the invoked method and also the
current parameters of the method’s invocation. After the context capturing, the object on that the
method is invoked must be adapted to all conditions that are defined in any Treaty contract on this
object (in this example only one RelationshipCondition). Finally, the EclipseVerifier is
used to verify these conditions with the given context and LifecycleEvent.

Of course this solution only shortly presents the general idea of such a context retrieval mech-
anism. The details of the mechanism must be investigated in future works. I implemented a
similar aspect file to the test the Treaty OCL vocabulary with context information which showed
that such a context retrieval mechanism is generally possible (see also Section 6.1). An important
fact is that such an aspect-oriented approach is only possible for Treaty implementations on com-
ponent systems based on programming languages that support aspect-oriented technologies.
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1 public aspect ContextCollector {
2
3 before() : call(∗ AJavaClass.∗(..)) {
4
5 OperationInvocationContext context;
6
7 /∗ Use the field thisJoinPoint to retrieve the context information ∗/
8 context = ...;
9

10 /∗ Load the resource required for verification. ∗/
11 RelationshipCondition condition = ...;
12
13 EclipseVerifier verifier = new EclipseVerifier();
14
15 try {
16 verifier.check(condition, LifecycleEvent.INTERFACE_INVOCATION,
17 context);
18 }
19
20 catch (Exception e) {
21 throw new RuntimeException(e);
22 }
23 }
24
25 after() returning (Object result): call(∗ ContextTestInterface.∗(..)) {
26
27 OperationInvocationContext context;
28
29 /∗ Use the field thisJoinPoint to retrieve the context information ∗/
30 context = ...;
31
32 /∗ Load the resource required for verification. ∗/
33 RelationshipCondition condition = ...;
34
35 EclipseVerifier verifier = new EclipseVerifier();
36
37 try {
38 verifier.check(condition,
39 LifecycleEvent.INTERFACE_INVOCATION_RETURN, context);
40 }
41
42 catch (Exception e) {
43 throw new RuntimeException(e);
44 }
45 }
46 }� �
Listing 5.1: An example for an AspectJ aspect that collects the context information for a
constrained Java class at run-time.
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:ComponentA :ComponentB :RuntimeEnvironment :Treaty

invoke(ComponentB, anOperation, arguments[])

verify(Context)

ok

invoke(anOperation, arguments[])

result

verify(Context)

ok

result

invoke(ComponentB, anOperation, arguments[])

verify(Context)

fail

fail

Figure 5.6: Service-based information capturing and verification for both successful and unsuc-
cessful contract verification.

5.4.2 Service-Based Information Capturing

The second solution for context information capturing would be the implementation of a simple
verification service in the Treaty framework. Such a service could be invoked by every component
language’s run-time environment that wants to use Treaty contracts. The run-time environment
itself would be responsible for the collection of its run-time context information. The Treaty
framework would only provide the interfaces required for contract verification. The run-time en-
vironment would then decide when a verification method of the Treaty framework would have to
be invoked.

Figure 5.6 illustrates a service-based information capturing approach in a sequence diagram. A
ComponentA invokes an operation of a ComponentB. It calls its runtime environment to invoke
the operation. The runtime environment calls the Treaty service to verify the precondition con-
tract, afterwards the operation on the ComponentB is invoked. After the operation’s invocation
Treaty is called again to verify postcondition contract. If the verification fails, a fail is returned to
ComponentA, else the invocation’s result is returned.

The component run-time environment itself could of course use aspect-oriented techniques to
collect the context information. Thus, this approach is similar to the aspect-oriented approach
but is more general and implementation independent. Future works should investigate how the
context capturing mechanism could be implemented in the best and most generic way.

5.5 REFACTORING OF DRESDEN OCL2 FOR ECLIPSE

During the adaptation of Dresden OCL2 for Eclipse as a Treaty vocabulary I figured out that the
adaptation required some changes and refactorings of the OCL2 Interpreter’s and the toolkit’s
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Figure 5.7: Left: The relationship between DSL, model and model instance in Dresden OCL 2 for
Eclipse. Right: The internal relationship between DSL, model types and model instance types
(The figure shows the architecture before the redesign).
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Figure 5.8: A UML2 class diagram with different instances (which was not possible in Dresden
OCL2 for Eclipse before the redesign).
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architecture. In this section I shortly document the major changes of the architecture.

5.5.1 Changes in the Model to Model Instance Relationship

During the evaluation of different model instance types (presented in Subsection 4.2.2) I noticed
that there was an architectural design error in Dresden OCL2 for Eclipse. As mentioned above,
Dresden OCL2 for Eclipse uses meta-models (or DSLs) to define models (e.g. component inter-
faces) for that instances can be imported on that the OCL2 Interpreter can interpret constraints
(see left part of Figure 5.7).

The right part of Figure 5.7 shows the internal relationship between a DSL, its model types, and
model instance types in Dresden OCL2 for Eclipse. Each DSL defines exactly one model type
which is correct. E.g., the UML2 meta-model defines the UML2 model type, the EMF Ecore
meta-model defines the Ecore model type. The design error lay in the relationship between the
model type and the model instance type. Each model type knew one type of model instances
which was a mess because models can have different types of model instances. E.g., the same
UML2 class diagram could have UML2 object diagrams and Java objects as instances (see Figure
5.8).

To understand why a model in Dresden OCL2 for Eclipse had only one type of possible model
instances, an introduction into the internal model architecture of Dresden OCL2 for Eclipse is
required. The component structure of Dresden OCL2 for Eclipse has been presented in Section
2.5.3. A central component is the Model Bus that manages all known meta-models, models, and
model instances that are currently loaded into the toolkit. The component architecture is shown
in Figure 5.9. The model bus component provided two extension points called metamodels and
models which can be used to extend the toolkit with multiple meta-models and multiple types
of model instances (I have to highlight the fact that the toolkit had been extended with model
instance types via and extension point called models!).

Each meta-model or model instance type had to provide an id and a MetaModelProvider
respectively a ModelInstanceProvider enabling the toolkit to load meta-models or model
instances using the provider. Furthermore, the model bus component provided an interface to
get the Meta-Model Registry (containing all meta-models known by the toolkit) and the Model
Registry containing all models that are currently imported for the known meta-models.

But how did model instance types get known by the tools of the toolkit when the model bus
component did not provide a registry containing them? The answer is simple: The model bus
component did not really know the model instance types! The extension point existed but nothing
was done with the extension point inside the component. Model instance types were not man-
aged by the model bus component but by the meta-model components! This was a mis-design
because the meta-models should be independent of the model instances. Both, meta-models
and model instances are defined relatively to the Pivot Model and should not know each other.

Before the redesign, the toolkit worked as follows (see Figure 5.11). The MetaModelRegistry
contained a list of IMetaModels representing the different meta-models. Each meta-model
provided an IModelProvider to load IModels of the related meta-model. After loading,
the model was registered in the IModelRegistry which contains a list of all IModels re-
lated to their meta-models. Each IModel knew exactly one (!) IModelInstanceProvider to
load IModelInstances. The model knew the IModelInstanceProvider because its meta-
model provided the IModelInstanceProvider. This was the reason why each meta-model
and consequently each model only supported one type of model instances.
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Figure 5.9: The old component model of meta-models and model instances in Dresden OCL2 for
Eclipse.
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Figure 5.10: The redesigned component model of meta-models and model instances in Dresden
OCL2 for Eclipse.
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Figure 5.11: The architecture of meta-models, models and model instances in Dresden OCL2 for
Eclipse before the redesign.

The Redesigned Architecture of Dresden OCL2 for Eclipse

The redesign of the architecture of Dresden OCL2 for Eclipse was simple but efficient. First, I
renamed the extension point models into modelInstanceTypes because it is used to extend
the toolkit with model instance types and not with models (see Figure 5.10). Additionally, I
introduced a new registry, the ModelInstanceTypeRegistry containing a list of all model
instance types known by the toolkit via the extension point. Furthermore, I renamed the Model

components into ModelIstanceType components to avoid name misunderstandings.

The IModelInstanceProviders are not provided by the IModels anymore. The registry can
be used to get an IModelInstanceType which now knows its IModelInstanceProvider

to load model instances of this type (see Figure 5.12). The improvements gained by this redesign
are enormous. Now, the toolkit can be extended by meta-models and model instance types
independent of each other which was not possibly before the redesign was done. Each model
instance type can now be used by all meta-models and vice versa. In the old architecture, the
support of Java object instances was realized twice, for the UML 1.51 and 2.0 meta-model. These
two components have easily been replaced by one component. Thus, the code length of the
toolkit has been reduced and the extensibility has been improved. All adapted meta-models now
support all adapted model instance types.

1Shortly after the redesign, the UML 1.5 meta-model became deprecated and will now not be supported anymore.
But the meta-model independent Java model instance type can now also be used to provide instances of EMF Ecore and
Java models.
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Figure 5.12: The redesigned architecture of meta-models, models and model instances in Dres-
den OCL2 for Eclipse.
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5.5.2 Refactoring of the Model Instance Architecture

Another problem I found during the toolkit’s adaptation was a mis-design in the model instance
architecture. Inside a model instance, all elements of the model instance were adapted to the
interface IModelObject (see Figure 5.13, top). Thus, all elements of a model instance had the
same interface and the interpreter had to decide how to handle the different elements during
interpretation. In some cases this lead to real problems, because the Interpreter had to investi-
gate, whether a given IModelObject was a primitive type, an enumeration literal, a collection,
or another object. Also a type object could be represented by an IModelObject (A type in this
sense is similar to a Class object in Java, on that static operations can be invoked). To investigate
all these different kinds of IModelObjects the Interpreter had to know the internal structure of
the model instance elements’ adaptation.

Thus, I decided to introduce new sub-interfaces of IModelObject to already separate the differ-
ent kinds of model instance elements during model instance’s import procedure (see Figure 5.13,
bottom). This refactoring at least solved the major problems during interpretation but it seems
that further refactorings of the IModelObject architecture could (and should!) be done in fu-
ture works (e.g., the name IModelObject seems to be wrong to represent elements of model
instances). Furthermore, there are also still dependencies between the OCL standard library
implementation of Dresden OCL2 for Eclipse and the Java model instance type. These should
be removed in future works. Then, the same OCL standard library could be used to interpret
constraints on different model instances of different model instance types.

5.5.3 Refactoring of the Java Model Instance Type

During adaptation of Java model instances as resources for Treaty contracts I discovered some
problems in the design of the Java model instance type. In Dresden OCL2 for Eclipse the import
of a Java model instance works as follows: A model, describing the classes of the instance
is imported into the toolkit. Afterwards, the Java instance must be imported. To initialize all
elements of the Java model instance, a so-called Provider Class that contains a method that
returns all objects of the model instance as a collection is used [Bra06, p. 44]. An example for
such a provider class is shown in Listing 5.2.

The use of Java model instances for run-time verification has shown that this approach is useless
to describe model instance elements. An operation that provides all elements of the model in-
stance at run-time could hardly exist. Thus, I implemented an alternative approach to describe a
Java model instance during run-time. An empty Java model instance can now be created for any
given model by using the operation JavaModelInstanceTypePlugin.createEmptyModel
Instance(IModel). At any time, when a constraint shall be verified on an object during run-
time, the object can be added to the model instance by using the operation JavaModelIn-
stanceTypePlugin.addModelObjectToInstance(Object, IModelInstance). Thus,
the Java model instance contains only the objects on that constraints shall be verified. When
a run-time object is not referenced by any other run-time object anymore it is removed from the
model instance again (because the adapted objects are now internally stored in a WeakHashMap).

This approach works very well but comes with two major disadvantages: Two operations pos-
sible on all OCL objects do not work any more. These are the operations allInstances()
and oclIsNew(). The operation allInstances() can be used to retrieve all objects of a
model type that exist at a certain point during run-time [OMG06c, p. 139]. The operation
oclIsNew() can be used in postconditions to check whether or not a model instance object
has been created during the method’s invocation [OMG06c, p. 138]. If the Java model instance
only contains the run-time objects that are currently required for contract verification, the opera-
tion allInstances() does not work because, the model instance does not know all existing

5.5 Refactoring of Dresden OCL2 for Eclipse 77



objects that shall be returned. Thus, also the operation oclIsNew() does not work. The prob-
lem could be solved if a mechanism would be integrated into the Treaty framework that collects
all instances of model instance objects during run-time (e.g., based on AOP). But such a mech-
anism would be very time and resource consuming because in some situations many objects
would have to be stored in collections or similar structures and these structures would have to
be updated very often (as mentioned in the OCL book of Warmer and Kleppe [WK04, Section
3.10.3]).

5.5.4 Refactoring of the OCL2 Interpreter

The adaptation of the OCL2 Interpreter as a Treaty vocabulary has also shown that the inter-
preter’s interface required some refactorings that would improve the general use of the Inter-
preter, in the context of Treaty and also for other use cases. Figure 5.14 shows the major refac-
torings. Instead of providing only a single operation for constraint preparation and interpretation,

getAdaptedObject(): Object

<<interface>>
IModelInstanceObject

<<interface>>
IModelObject

getAdaptedObject(): Object
getName(): String
getQualifiedName(): String
getType(): Type
getResults(): OclRoot
isInstanceOf(Type): boolean

<<interface>>
IModelObject

getName(): String
getQualifiedName(): String
getTypes(): Type[]
isInstanceOf(Type): boolean

getContainedElements(): ImodelObject[]
isOrdered(): boolean
isUnique(): boolean

<<interface>>
IModelInstanceCollection

getLiteral(): Enum

<<interface>>
IModelInstanceEnumerationLiteral

getBoolean(): Boolean

<<interface>>
IModelInstanceBoolean

getInteger(): Long

<<interface>>
IModelInstanceInteger

getReal(): Double

<<interface>>
IModelInstanceReal

getString(): String

<<interface>>
IModelInstanceString

getAdaptedType(): Class
getModelType(): Type

<<interface>>
IModelInstanceTypeObject

Figure 5.13: Top: The old IModelObject interface. Bottom: The redesigned IModelObject inter-
face and its sub-interfaces.
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1 public class InstanceProviderClass {
2
3 public static List<Object> getModelObjects() {
4
5 List<Object> result;
6
7 Person person1;
8 Person person2;
9

10 result = new ArrayList<Object>();
11
12 person1 = new Student();
13 person1.setAge(22);
14 result.add(person1);
15
16 person2 = new Professor();
17 person2.setAge(42);
18 result.add(person2);
19
20 return result;
21 }
22 }� �

Listing 5.2: An example for a ProviderClass used to describe a Java model instance.

I introduced specific operations for the interpretation of collections of constraints and divided the
preparation operation into the preparation of constraints with a required IModelObject as con-
straint context (e.g., a postcondition) and the preparation of constraints without such a context
(e.g., definitions must only prepared once for all model instance elements). Pre- and postcon-
ditions are now treated separately by interpretation and preparation operations that handle all
required context settings in the interpreter’s environment internally.

Another important refactoring is the result of the interpretation operations. Before the IModel-
Object refactoring each IModelObject stored the results of its interpretation internally. I ex-
tracted this information from the IModelObjects and introduced a new interface IInter-
pretationResult that stores a triple of an IModelObject, for that a Constraint was inter-
preted resulting in an OclRoot (see also Figure 5.13). I decided that such a design would be more
appropriate because an IModelObject should not know the results of its interpretation in a cer-
tain context. This would introduce a dependency between IModelObjects and OclRoot ob-
jects that are instance elements of EssentialOCL and should not be visible for IModelObjects.
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<<interface>>
IOclInterpreter

interpret(Constraint, IModelObject): OclRoot
prepare(Constraint, ImodelObject)
...
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IOclInterpreter

interpretConstraint(Constraint, IModelObject): IInterpretationResult
interpretConstraints(Constraint[], IModelObject): IInterpretationResult[]  
interpretConstraintsOfKind(Constraint[], IModelObject, ConstraintKind): IInterpretationResult[] 
interpretPreConditions(IModelObject, Operation, IModelObject[], Constraint[]): IInterpretationResult[]
interpretPostConditions(IModelObject, Operation, IModelObject[], IModelObject, Constraint[]): IInterpretationResult[]
prepareConstraint(Constraint)
prepareConstraint(Constraint, IModelObject)
prepareConstraints(Constraint[]) 
prepareConstraints(Constraint[], IModelObject) 
preparePostConditions(IModelObject, Operation, IModelObject[], Constraint[]) 
...

<<interface>>
IInterpretationResult

getModelObject(): IModelObject
getResult(): OclRoot
getConstraint(): Constraint

Figure 5.14: Top: The old IOclInterpreter interface. Bottom: The redesigned IOclInterpreter
interface and its sub-interfaces (Not all operations of the interfaces are shown).
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6 TESTING

You can never be sure the component will perform correctly,
only that it will perform as specified.

Antoine Beugnard et al. [BJPW99]

This chapter shortly presents how the adaptation of Dresden OCL2 for Eclipse to Treaty has been
tested. In Section 6.1 I show how the OCL vocabulary itself has been tested. In Section 6.2
follows a short presentation of the test mechanism I used to test the newly implemented Java
meta-model. Finally, in Section 6.3 I also show how I tested the implemented OCL vocabulary by
using the motivating example presented in Section 2.6.

6.1 TESTING THE TREATY OCL VOCABULARY

The Treaty OCL vocabulary has been tested at two different levels. First, the loading of all different
resource types (UML, EMF Ecore, and Java models, Java model instances, and constraint files)
and the verification of simple relationship conditions between these resource types have been
tested in a JUnit test suite called TestSnapshotVerification. The test suite contains 13
test cases that validated that the loading of resources of all different model and model instance
types and the verification of OCL constraints has been adapted to Dresden OCL2 for Eclipse
appropriately. After that, the verification of OCL contracts with context information has been
tested in another JUnit test suite called TestDynamicVerification containing 10 additional
test cases.1

To capture the context information, I used an AspectJ file that defines two advices that are exe-
cuted before and after any method invocation on my test model interface called TestInterface.
The AspectJ file is shown in Listing 6.1. The two advices are defined in the lines 3 to 26. Both
advices are very similar. That is the reason why the second advice is not shown in the listing
completely. Inside the advices first, the OperationInvocationContext is created by using
the method createContext(JoinPoint, Object) (lines 28 to 50). The context is created
using the special AspectJ keyword thisJoinPoint that provides all required information like

1This small number of test case seems to sound insufficient but the OCL2 Interpreter of Dresden OCL2 for Eclipse
has already been tested with more than 200 JUnit tests. Thus, only the adaptation and not the full power of OCL had to
be tested in these additional test cases.
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the object on which the method will be invoked and the invocation’s arguments. Afterwards, the
source object of the method’s invocation is used to create a RelationshipCondition by us-
ing the method loadRelationship(Object) (lines 52 to 56, not shown completely). Finally,
this RelationshipCondition is verified using the OCL vocabulary. If the contract has been
violated, a DynamicOclVocabularyTestException is thrown.

The presented AspectJ aspect helped to create the required context information for the test
of the OCL vocabulary. The aspect was required because currently, Treaty cannot be used to
collect context information required for run-time verification (how Treaty could be redesigned
and extended to collect such context information has been presented in Section 5.4). The class
TestDynamicVerification contains test methods that invoke the methods of the Java model
TestInterface. Before and after the method’s invocation, the aspect captures the required
context information and invokes the OCL vocabulary to verify a contract of defined OCL con-
straints.

Using this mechanism I tested at run-time:

• Method invocations with and without arguments,

• Method invocations with and without results (single and multiple results),

• Recursive method invocations with verification of constraints before and after each invoca-
tion,

• Verification of invariants before and after the methods’ invocation,

• Verification of preconditions before the methods’ invocation,

• Preparation of postconditions before and verification of postconditions after the methods’
invocation,

• Verification of postconditions using the special operator @pre,

• Verification of constraints using def, body, derive and let expressions.

The test suite to test the OCL vocabulary with provided run-time context information showed
that the vocabulary works as it was planned to and that Treaty can be refactored to support
real run-time verification. As already mentioned, some operations provided by OCL are currently
not supported correctly by the OCL vocabulary (although, they are generally supported by the
OCL2 Interpreter of Dresden OCL2 for Eclipse). Currently, the methods allInstances() and
oclIsNew() do not work correctly because only some objects of the run-time structure are
adapted to Dresden OCL2 for Eclipse. Thus, the toolkit does not know all instances of a specific
model type during run-time (see also Subsection 5.5.3). Furthermore, the OCL2 Interpreter does
not support the interpretation of preconditions according to Liskov’s Substitution Principle (LSP)
which defines that a precondition could be weakened by preconditions defined on a sub-class of
the constrained class [WK04, p. 145]. If these operations and functionalities will be implemented
in future works, they should also be tested inside the TestDynamicVerification test suite.
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1 public aspect ContextCollector {
2
3 before() : call(∗ TestInterface.∗(..)) {
4
5 OperationInvocationContext context;
6 context = ContextCollector.createContext(thisJoinPoint, null);
7
8 try {
9 IDynamicContractVocabulary oclVocabulary;

10 RelationshipCondition condition;
11
12 oclVocabulary = DynamicOclVocabularyTestServices.getInstance()
13 .getOclVocabulary();
14 condition = loadRelationship(context.getSource());
15
16 oclVocabulary.check(condition,
17 LifecycleEvent.INTERFACE_INVOCATION, context);
18 }
19 catch (Exception e) {
20 throw new DynamicOclVocabularyTestException(e);
21 }
22 }
23
24 after() returning (Object result): call(∗ TestInterface.∗(..)) {
25 ...
26 }
27
28 private static OperationInvocationContext createContext(
29 JoinPoint joinPoint, Object invocationResult) {
30
31 OperationInvocationContext result;
32
33 String signature = joinPoint.getSignature().getName();
34 Object source = joinPoint.getTarget();
35 Object[] arguments = joinPoint.getArgs();
36 Class<?>[] argumentTypes = ((CodeSignature) joinPoint.getSignature())
37 .getParameterTypes();
38 String[] argumentTypeNames = new String[argumentTypes.length];
39
40 int index = 0;
41 for (Class<?> anArgumentType : argumentTypes) {
42 argumentTypeNames[index] = anArgumentType.getCanonicalName();
43 index++;
44 }
45
46 result = new OperationInvocationContext(signature, source,
47 arguments, argumentTypeNames, invocationResult);
48
49 return result;
50 }
51
52 private static RelationshipCondition loadRelationship(Object source)
53 throws Exception {
54 ...
55 return condition;
56 }
57 }� �

Listing 6.1: The AspectJ file to create the required context information.
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Figure 6.1: Testing a meta-model adaptation using the Generic Meta-Model Adaptation Test Suite:
The test suite executes the implemented meta-model operations and expects to retrieve specific
elements from a Test Model instance of the newly adapted meta-model.

6.2 TESTING THE ADAPTED JAVA META-MODEL

In Section 5.3 I explained how I implemented a Java meta-model for Dresden OCL2 for Eclipse by
adapting Java reflections to the pivot model. Although the pivot model improves the adaptation of
meta-models, such an adaptation is still error-prone and can be the cause of many errors occurring
during OCL parsing or interpretation. Thus, testing a meta-model adaptation to the pivot model
is strongly recommended.

During my work at the Dresden OCL Toolkit project I developed a Generic Meta-Model Adapta-
tion Test Suite that can be used to test the adaptation of a meta-model to the pivot model of
Dresden OCL2 for Eclipse [WT09, Chapter 8]. The test suite can be instantiated by providing a
model implemented in the adapted meta-model that conforms to the specification of a test model
used to test all adapted meta-model operations (see Figure 6.1). E.g., the model has to contain
a class TestPropertyClass that has to contain properties called nonmultipleProperty

and multipleProperty that are used to test the adaptation of the pivot model operation
Property.isMultiple(). During the test suite’s execution the test model implemented in
the new adapted meta-model is loaded into the toolkit and all adapted operations are invoked and
tested using JUnit Assertions [URL09m].

The generic test suite helped to ensure that the adaptation of Java reflections has been imple-
mented appropriately. Especially critical parts like the adaptation and implementation of the oper-
ations isMultiple(), isUnique(), and isOrdered() for Java arrays and collections or the
adaptation of inner classes and the name space concept have been validated using the generic
test suite.
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6.3 TESTING SNAPSHOT VERIFICATION

To test the Treaty OCL vocabulary with the snapshot verification mechanism, I adapted the Clock
Example presented in Section 2.6. I modified the contract of the extension point net.java.
treaty.eclipse.example.clock.dateformatter and replaced the functional JUnit tests
with OCL constraints that express the same rules as the functional JUnit tests (The constraints
were already presented in Listing 2.3). The modified contract of the extension point net.java.
treaty.eclipse.example.clock.dateformatter is shown in Listing 6.2.

The investigation of the clock example has shown that OCL is powerful enough to test the func-
tional rules expressed with the JUnit contracts. Currently, the biggest difference between the
JUnit vocabulary and the OCL vocabulary is the fact that the JUnit vocabulary checks the pro-
vided interface implementation independently of the run-time context via snapshot verification
invoked by the user of the system. Each time, the JUnit tests of the JUnit contract are executed,
a new DateFormatter instance is created. The OCL vocabulary instead can be used to check
these functional contracts during run-time, verifying the constraints on the same run-time object,
on that an operation should be invoked at run-time!

During snapshot verification, the OCL vocabulary has no context information and thus does not
know which operation of the DateFormatter interface shall be invoked. Thus, the OCL vo-
cabulary only checks invariants on a newly created object, when it is invoked without a run-time
context. The postconditions that describe the rules how the formatted date has to look like are
not checked during snapshot verification. That’s why the TooShortDateFormatter that vio-
lates the contract of the DateFormatter interface is not detected as wrong implemented by
the OCL vocabulary during snapshot verification. The OCL vocabulary would detect such an error
during run-time after the invocation of the TooShortDateFormatter.format(Date) opera-
tion.
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1 <contract ...
2
3 <consumer>
4 <resource id="QoSTests">
5 <type>http://www.treaty.org/junit#TestCase</type>
6 <name>net.java.treaty.eclipse.example.clock.

DateFormatterPerformanceTests</name>
7 </resource>
8 <resource id="DateFormatDef">
9 <type>http://www.treaty.org/xml#XMLSchema</type>

10 <name>/dateformat.xsd</name>
11 </resource>
12 <resource id="DateFormatterInterface">
13 <type>http://www.treaty.org/ocl#JavaModel</type>
14 <name>net.java.treaty.eclipse.example.clock.DateFormatter</name>
15 </resource>
16 <resource id="OCLConstraints">
17 <type>http://www.treaty.org/ocl#OCLFile</type>
18 <name>/constraints/DateFormatter.ocl</name>
19 </resource>
20 </consumer>
21
22 <supplier>
23 <resource id="Formatter">
24 <type>http://www.treaty.org/java#InstantiableClass</type>
25 <ref>serviceprovider/@class</ref>
26 </resource>
27 <resource id="FormatString">
28 <type>http://www.treaty.org/xml#XMLInstance</type>
29 <ref>serviceprovider/@formatdef</ref>
30 </resource>
31 <resource id="DateFormatterImplementation">
32 <type>http://www.treaty.org/ocl#JavaInstance</type>
33 <ref>serviceprovider/@class</ref>
34 </resource>
35 </supplier>
36
37 <constraints>
38 <xor>
39 <and>
40 <relationship resource1="DateFormatterImplementation"
41 resource2="DateFormatterInterface"
42 type="http://www.treaty.org/ocl#instanceOf"/>
43 <relationship resource1="DateFormatterImplementation"
44 resource2="OCLConstraints"
45 type="http://www.treaty.org/ocl#fulfillsContract"/>
46 <relationship resource1="Formatter" resource2="QoSTests"
47 type="http://www.treaty.org/junit#verifies"/>
48 </and>
49 <relationship resource1="FormatString" resource2="DateFormatDef"
50 type="http://www.treaty.org/xml#instantiates"/>
51 </xor>
52 </constraints>
53
54 </contract>� �

Listing 6.2: The changed DateFormatter contract using the OCL vocabulary.

86 Chapter 6 Testing



7 EVALUATION AND FUTURE
WORKS

Always in motion is the future.

Yoda, Star Wars: Episode V - The Empire Strikes Back, 1980

This chapter evaluates the implementation presented in the previous chapters. Are all require-
ments fulfilled? Which topics and tasks remain open for future works? Section 7.1 evaluates the
implementation in respect to the requirements presented in Section 4.1. Afterwards, Section 7.2
presents some possible tasks and challenges for future works. Finally, the work finishes with a
summary in Section 7.3.

7.1 EVALUATION

Section 4.1 presented requirements for the definition of contracts as well as for the verification of
contracts at run-time. This section will shortly analyze if the presented requirements are fulfilled
and which requirements remain open for future works.

7.1.1 Contract Definition Requirements

The evaluation of all contract definition requirements is summarized in Table 7.1. As already men-
tioned in Subsection 4.1.1, the requirements to provide an extensible and component-language
independent contracting language (/R111/ to /R114/ and /R120/ to /R123/) were already fulfilled by
Treaty. The requirement /R115/ (full support of Essential OCL in Treaty contracts) has almost com-
pletely been fulfilled by the OCL vocabulary implementation. Only the constructs oclIsNew()
and allInstances() are not supported; Liskov’s Substitution Principle (LSP) is not enforced
during the interpretation of preconditions (see also Section 6.1). The requirements /R116/ to
/R119/ (support of model and model instance resources for OCL verification, and support of Java
classes as model resources) have been fulfilled completely. The OCL vocabulary provides UML,
EMF Ecore and Java models for the definition of OCL constraints and Java model instances for
the constraint verification. The generic structure of Dresden OCL2 for Eclipse allows to add other
model and model instance resource types to the vocabulary in future works.
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7.1.2 Contract Verification Requirements

The evaluation of all contract verification requirements is summarized in Table 7.2. As presented
in Subsection 4.1.2, the current Treaty Eclipse/OSGi implementation does not provide run-time
verification. The requirements /R211/ to /R213/ are currently not fulfilled. Section 5.4 shortly
explained how this mis-design in the Treaty architecture could be refactored, but the task of the
implementation remains open for future works. The requirement /R214/ (private source code,
only interface invocation for verification) is fulfilled by using UML, EMF Ecore, or Java models
for the run-time structure description. The OCL vocabulary only knows the provided interfaces
required for verification, not their internal implementation.

The requirements /R220/ to /R222/ are currently not supported by Treaty. The question what
should happen if a contract is violated and how the user can configure this reaction remains
unanswered. Possible reactions would be error logging, retry, exception throwing and handling,
or ignoring. The topic of configurable contract-violation handling remains open for future works.

7.1.3 Delimited Features

Of course, the delimited features, presented in Subsection 4.1.3 have not been implemented.
However, one of the presented features could be an interesting topic of future works. It could be
investigated, how the Object Constraint Language could be extended to support also Quality of
Service contracts (e.g., limitation of the as execution time) (/R340/). As well as the evaluation of
all contract verification requirements, the evaluation of the delimited features is summarized in
Table 7.2.

7.2 FUTURE WORKS AND SCIENTIFIC CHALLENGES

This section shortly summarizes the tasks and topics of future works that have been presented
during this work. Furthermore, some scientific challenges are enlisted that could be the topic of
future research projects and theses. The tasks are structured according to their context (e.g. the
Treaty framework, the OCL vocabulary, or Dresden OCL2 for Eclipse) and to their significance.

7.2.1 Future Works on Treaty

The major challenge of the future developments and refactorings of the Treaty language is the
support and implementation of real run-time verification. Some important tasks would be:

• Of paramount importance are the changes in the Treaty infrastructure to enable the retrieval
of run-time context information and run-time verification. Two solutions to solve these prob-
lems have shortly been presented in Section 5.4.

• The changes on the Treaty ContractVocabulary that introduced the interface IDyna-
micContractVocabulary are currently located in an own Eclipse plug-in called net.
java.treaty.dynamic (see also Subsection 5.1.2). I recommend to integrate them into
the Treaty core package/plug-in when Treaty is refactored for run-time verification support.
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• A nice feature would be a mechanism to inform the user of the running system, if a contract
has been violated. The contract-violation handling should be designed as user configurable
to decide between warnings, error logs and exceptions (see also Subsection 4.1.2). It would
also be possible to provide a mechanism to annotate the different contracts with priorities.
Depending on their priority, the different contracts could then cause warnings or exceptions.

• Currently, Treaty is implemented for the Eclipse/OSGi platform. But Treaty has been de-
signed as language and platform independent. It would be interesting to provide a second
implementation of Treaty for another component language to proof and demonstrate its
platform independence and its generic architecture.

7.2.2 Future Works on the Treaty OCL Vocabulary

The implementation and adaptation of Dresden OCL2 for Eclipse as a Treaty OCL vocabulary
presented in this work has shown some minor problems and mis-designs that could be solved in
future works. These tasks are:

• Currently, the OCL vocabulary does not support the OCL operations oclIsNew() and
allInstances() because the OCL vocabulary does not know all existing objects of the
run-time environments (see also Section 6.1). It could be investigated, if it is possible to im-
plement these methods without spending too much run-time resources on the task. Maybe
such a mechanism could also be deactivatable and activatable. Nevertheless, for common
use cases this task would be of minor importance because the resource expensive method
allInstances() should be avoided anyway.

• The definition of OCL constraints could be integrated directly into the Treaty contract files as
Property elements to improve the readability of the contracts (see also Subsection 4.2.3).
This would be another tasks of minor importance because this would only improve the
readability of the contract for human users and would not improve the contracting system
itself.

7.2.3 Future Works on Dresden OCL2 for Eclipse

The evaluation and implementation of an adaptation of Dresden OCL2 for Eclipse to Treaty has
also shown some possible features that could be implemented and added to Dresden OCL2 for
Eclipse in future works. Theses tasks are:

• The model instance archictecure of Dresden OCL2 for Eclipse should be refactored and re-
designed more carefully (see also Section 5.5.1). This is a very important task that should
be solved immediately. Currently, the relationships between the toolkit’s model instance
types, the OCL standard library and the OCL2 Interpreter are not well separated. Further-
more, as sooner these mis-design would be removed, the less refactorings in other tools
depending on the toolkit–like Treaty’s OCL vocabulary–must be realized.

• The support of Liskov’s Substitution Principle (LSP) would be another challenge for the OCL2
Interpreter of Dresden OCL2 for Eclipse (see also Section 6.1). It would interesting to see,
how such a complex logical task could be integrated into the interpreter’s internal logic.
Furthermore, the support of LSP would improve the conformance of Dresden OCL2 for
Eclipse to the OCL specification.
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• XML Schema could be adapted as a meta-model of Dresden OCL2 for Eclipse and provided
as a model resource type of the Treaty OCL vocabulary (see Subsection 4.2.1). Further-
more, XML could be adapted as a model instance type of Dresden OCL2 for Eclipse and
provided as a model instance resource type of the Treaty OCL vocabulary (see Subsection
4.2.2). The adaptation of XML Schema and XML would demonstrate that OCL could also be
used to check constraints on languages and data structures that do not contain operational
semantic.

• The Java Model Parser and Printer (JaMoPP) could be adapted as a meta-model of Dresden
OCL2 for Eclipse (see also Section 5.3). This would be another interesting test of the
meta-model adapter generator and also an interesting test of the Java Model Parser and
Printer (JaMoPP) implementation.

7.2.4 Scientific challenges

This work demonstrated that OCL can be used to contract component interfaces and that it is also
possible to evaluate these contracts at component run-time. But besides functional constraints,
also other constraints and contracts could be evaluated. This section enlists some challenges of
future research that could improve the power of OCL and the Treaty contract language.

• Today, the Object Constraint Language (OCL) has been developed and improved since fif-
teen years. More or less, OCL is accepted as a contract language and as an extension of the
UML. At least in sciences, OCL has been used by many different researchers and projects
as a contract language and to verify software at both design and run-time. OCL has been
designed as a contract language for functional constraints and its main focus lies on Design
by Contract. Besides, today OCL has also become a query language. But–as the first chap-
ter of this work already presented–functional contracts or not enough. Synchronization and
Quality of Service contracts are required as well [BJPW99]. Further tasks could be Security,
Trust and Licensing contracts [DJ08]. Currently, OCL does not provide keywords to define
QoS or synchronization contracts. But multiple researchers have already addressed the task
to modularize OCL [CBC05, Thi08]. Thus, it could be investigated, which extensions of the
Object Constraint Language (OCL) are required to express QoS constraints (see also Sec-
tion 6.3) or licensing contracts. Also synchronization would be an interesting task for OCL.
These different extensions of OCL could then be structured into additional OCL modules.

• When run-time verification is used to detect run-time errors, the next challenge is to answer
the question of how to react on these violations. Often, let the program fail is the only
possible thing to do [HT09, p. 120]. But it would be also interesting to investigate which
other reactions are possible to be implemented. An approach would be to examine if its
is possible–at least in some situations–to let the system decide whether to reconfigure or
whether to ask the user for further help. Such a self-corrective system would be a real
challenge for future research.

• Treaty has been designed to define contracts on component interfaces. Although the con-
tract language has been designed as platform independent, the main focus lies on software
components. Today, the term Ubiquitous Computing [Wei91] becomes more and more a
topic of current research. Computers and software exist everywhere, components connect,
communicate, and interact dynamically in environments changing during the software’s run-
time. Thus, it would be interesting as well, to investigate if Treaty and its contract language
could be adapted to such highly dynamic software environments that change dynamically
and combine PCs, cellulars and other electronic devices.
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7.3 SUMMARY AND CONCLUSION

This work presented and implemented an approach to verify OCL constraints defined on a model
on a system at run-time. By combining Treaty and Dresden OCL2 for Eclipse I have shown that
the architecture of the Treaty contract framework is generic enough to integrate a complex Design
by Contract language like OCL and that Dresden OCL2 for Eclipse provides interfaces that can
be used by other tools, to integrate the toolkit into their architecture very easily. Although some
refactorings in both projects are recommended, the approach to use the toolkit as a verification
tool for Treaty contracts works and it is possible to express behavioral contracts on component
interfaces that are verified at run-time.

I have also shown that Dresden OCL2 for Eclipse and its pivot model are generic enough to com-
bine the toolkit with different meta-models that can now be used in Treaty contracts. A user
who defines a new contract on a component’s interface can decide, if he wants to model the
interface’s structure in UML or EMF Ecore, but he can also use an existing Java class that the
toolkit–and thus, also Treaty–will interpret as a model as well. The generecity also provides the
possibility to load different types of instances on that the contracts can be verified at run-time.
Although, only Java objects can be verified at run-time by now. Furthermore, I enlisted some rec-
ommended refactorings of Treaty’s architecture to change Treaty into a real run-time verification
tool. The combination of Dresden OCL2 for Eclipse and Treaty resulted in a powerful contract
system that is still independent of the underlying component model and its implementation (as
long as the model and its implementation can be mapped to the toolkit’s pivot model). This is
the major difference between Treaty and the other tools presented in Chapter 3. The tool can be
used for different component models and on different platforms. Another important fact is the
genericity of Treaty. The OCL contracts can be combined with other contract vocabularies that
can express non-functional constraints. Thus, the combined contract vocabularies result in a very
powerful contracting language.

The tests of the OCL vocabulary–based on the Clock Example–have shown that during snapshot
verification not all constraints of the OCL vocabulary can be verified. Pre- and postconditions
can only verified with a given run-time context that indicates the operation and arguments that
shall be checked. Currently, this is the biggest difference between the OCL vocabulary and
the JUnit vocabulary that can also be used to verify functional constraints in Treaty. But the
JUnit vocabulary always creates a new instance of the contracted object when a contract is
verified. The OCL vocabulary instead uses the objects from the given run-time context to check
the defined constraints. Thus, the constraints are verified on the same object that is used to
invoke the constrained operation at run-time. This fact is very important, to detect also errors
in the given object’s internal structure that do not directly occur after its initialization, but later
on in its life cycle. Another difference between the two vocabularies is the fact that the JUnit
vocabulary can be used to verify Quality of Service (QoS) contracts as well. Currently, OCL does
not contain expressions to specify the QoS semantics of constrained operations. Future works
could investigate, which extensions would be required to the Object Constraint Language to
support QoS contracts as well.

As illustrated by presenting related work in Chapter 3, the approach to verify constraints at run-
time is a topic that is currently investigated by many different universities, software projects, and
researchers. Nevertheless, one could ask if it is useful to analyze contracts at run-time. When
the run-time environment detects an illegal state in the running system, the error has already
happened. But this argument is shortsighted. Using run-time verification helps to avoid errors
caused by misuse of components and functionalities or invocation of interfaces with wrong input
data. Run-time verification and Design by Contract can help to avoid errors caused by misuse of
components that have been developed by third parties especially in Component-Based Software
Engineering (CBSE).

As already mentioned by Andrew Hunt and David Thomas [HT09], detecting errors as soon as
possible helps to avoid following errors or states we cannot control anymore: “One of the benefits
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of detecting problems as soon as you can is that you can crash earlier. And many times, crashing
your program is the best you can do. The alternative may be to continue, writing corrupted data
to some vital database or commanding the washing machine into its twentieth consecutive spin
cycle.” [HT09, p. 120]. Early error detection helps us to localize errors and to detect what went
wrong more clearly. Thus, verification is also important at software run-time.

The Object Constraint Language (OCL) defines what a program is allowed and not allowed to do
but the OCL does not define what should happen when a constraint is violated. Thus, run-time
verification should be configurable by the user of the running system to decide how he will handle
eventually occurring contract violations. However, the presented adaptation of Dresden OCL2 for
Eclipse to Treaty has been only the first step. As long as Treaty will not support real run-time
verification, the OCL vocabulary will not show its full power.

Additionally, other use cases of Treaty and the Object Constraint Language vocabulary would
be interesting as well. Future work could examine how the Object Constraint Language could
be extended for non-functional constraints like QoS or licensing. Treaty could be used to verify
other types of components. E.g., the use of run-time verification would be very interesting in the
context of embedded systems or ubiquitous computing.
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