381 research outputs found

    Ground Profile Recovery from Aerial 3D LiDAR-based Maps

    Get PDF
    The paper presents the study and implementation of the ground detection methodology with filtration and removal of forest points from LiDAR-based 3D point cloud using the Cloth Simulation Filtering (CSF) algorithm. The methodology allows to recover a terrestrial relief and create a landscape map of a forestry region. As the proof-of-concept, we provided the outdoor flight experiment, launching a hexacopter under a mixed forestry region with sharp ground changes nearby Innopolis city (Russia), which demonstrated the encouraging results for both ground detection and methodology robustness.Comment: 8 pages, FRUCT-2019 conferenc

    A new explainable DTM generation algorithm with airborne LIDAR data: grounds are smoothly connected eventually

    Full text link
    The digital terrain model (DTM) is fundamental geospatial data for various studies in urban, environmental, and Earth science. The reliability of the results obtained from such studies can be considerably affected by the errors and uncertainties of the underlying DTM. Numerous algorithms have been developed to mitigate the errors and uncertainties of DTM. However, most algorithms involve tricky parameter selection and complicated procedures that make the algorithm's decision rule obscure, so it is often difficult to explain and predict the errors and uncertainties of the resulting DTM. Also, previous algorithms often consider the local neighborhood of each point for distinguishing non-ground objects, which limits both search radius and contextual understanding and can be susceptible to errors particularly if point density varies. This study presents an open-source DTM generation algorithm for airborne LiDAR data that can consider beyond the local neighborhood and whose results are easily explainable, predictable, and reliable. The key assumption of the algorithm is that grounds are smoothly connected while non-grounds are surrounded by areas having sharp elevation changes. The robustness and uniqueness of the proposed algorithm were evaluated in geographically complex environments through tiling evaluation compared to other state-of-the-art algorithms

    lidR : an R package for analysis of Airborne Laser Scanning (ALS) data

    Get PDF
    Airborne laser scanning (ALS) is a remote sensing technology known for its applicability in natural resources management. By quantifying the three-dimensional structure of vegetation and underlying terrain using laser technology, ALS has been used extensively for enhancing geospatial knowledge in the fields of forestry and ecology. Structural descriptions of vegetation provide a means of estimating a range of ecologically pertinent attributes, such as height, volume, and above-ground biomass. The efficient processing of large, often technically complex datasets requires dedicated algorithms and software. The continued promise of ALS as a tool for improving ecological understanding is often dependent on user-created tools, methods, and approaches. Due to the proliferation of ALS among academic, governmental, and private-sector communities, paired with requirements to address a growing demand for open and accessible data, the ALS community is recognising the importance of free and open-source software (FOSS) and the importance of user-defined workflows. Herein, we describe the philosophy behind the development of the lidR package. Implemented in the R environment with a C/C++ backend, lidR is free, open-source and cross-platform software created to enable simple and creative processing workflows for forestry and ecology communities using ALS data. We review current algorithms used by the research community, and in doing so raise awareness of current successes and challenges associated with parameterisation and common implementation approaches. Through a detailed description of the package, we address the key considerations and the design philosophy that enables users to implement user-defined tools. We also discuss algorithm choices that make the package representative of the ‘state-of-the-art' and we highlight some internal limitations through examples of processing time discrepancies. We conclude that the development of applications like lidR are of fundamental importance for developing transparent, flexible and open ALS tools to ensure not only reproducible workflows, but also to offer researchers the creative space required for the progress and development of the discipline

    Analysis of filtering techniques for investigating landslide-induced topographic changes in the Oetz Valley (Tyrol, Austria)

    Get PDF
    Landslides endanger settlements and infrastructure in mountain areas across the world. Monitoring of landslides is therefore essential in order to understand and possibly predict their behavior and potential danger. Terrestrial laser scanning has proven to be a successful tool in the assessment of changes on landslide surfaces due to its high resolution and accuracy. However, it is necessary to classify the 3D point clouds into vegetation and bare-earth points using filtering algorithms so that changes caused by landslide activity can be quantified. For this study, three classification algorithms are compared on an exemplary landslide study site in the Oetz valley in Tyrol, Austria. An optimal set of parameters is derived for each algorithm and their performances are evaluated using different metrics. The volume changes on the study site between the years 2017 and 2019 are compared after the application of each algorithm. The results show that (i) the tested filter techniques perform differently, (ii) their performance depends on their parameterization and (iii) the best-performing parameterization found over the vegetated test area will yield misclassifications on non-vegetated rough terrain. In particular, if only small changes have occurred the choice of the filtering technique and its parameterization play an important role in estimating volume changes.publishedVersio

    ANALYSIS OF FILTERING TECHNIQUES FOR INVESTIGATING LANDSLIDE-INDUCED TOPOGRAPHIC CHANGES IN THE OETZ VALLEY (TYROL, AUSTRIA)

    Get PDF
    Abstract. Landslides endanger settlements and infrastructure in mountain areas across the world. Monitoring of landslides is therefore essential in order to understand and possibly predict their behavior and potential danger. Terrestrial laser scanning has proven to be a successful tool in the assessment of changes on landslide surfaces due to its high resolution and accuracy. However, it is necessary to classify the 3D point clouds into vegetation and bare-earth points using filtering algorithms so that changes caused by landslide activity can be quantified. For this study, three classification algorithms are compared on an exemplary landslide study site in the Oetz valley in Tyrol, Austria. An optimal set of parameters is derived for each algorithm and their performances are evaluated using different metrics. The volume changes on the study site between the years 2017 and 2019 are compared after the application of each algorithm. The results show that (i) the tested filter techniques perform differently, (ii) their performance depends on their parameterization and (iii) the best-performing parameterization found over the vegetated test area will yield misclassifications on non-vegetated rough terrain. In particular, if only small changes have occurred the choice of the filtering technique and its parameterization play an important role in estimating volume changes

    Advances in the Derivation of Northeast Siberian Forest Metrics Using High-Resolution UAV-Based Photogrammetric Point Clouds

    Get PDF
    Forest structure is a crucial component in the assessment of whether a forest is likely to act as a carbon sink under changing climate. Detailed 3D structural information about the tundra–taiga ecotone of Siberia is mostly missing and still underrepresented in current research due to the remoteness and restricted accessibility. Field based, high-resolution remote sensing can provide important knowledge for the understanding of vegetation properties and dynamics. In this study, we test the applicability of consumer-grade Unmanned Aerial Vehicles (UAVs) for rapid calculation of stand metrics in treeline forests. We reconstructed high-resolution photogrammetric point clouds and derived canopy height models for 10 study sites from NE Chukotka and SW Yakutia. Subsequently, we detected individual tree tops using a variable-window size local maximum filter and applied a marker-controlled watershed segmentation for the delineation of tree crowns. With this, we successfully detected 67.1% of the validation individuals. Simple linear regressions of observed and detected metrics show a better correlation (R2) and lower relative root mean square percentage error (RMSE%) for tree heights (mean R2 = 0.77, mean RMSE% = 18.46%) than for crown diameters (mean R2 = 0.46, mean RMSE% = 24.9%). The comparison between detected and observed tree height distributions revealed that our tree detection method was unable to representatively identify trees 15–20 m to capture homogeneous and representative forest stands. Additionally, we identify sources of omission and commission errors and give recommendations for their mitigation. In summary, the efficiency of the used method depends on the complexity of the forest’s stand structure

    Ground Profile Recovery from Aerial 3D LiDAR-based Maps

    Get PDF
    The paper presents the study and implementation of the ground detection methodology with filtration and removal of forest points from LiDAR-based 3D point cloud using the Cloth Simulation Filtering (CSF) algorithm. The methodology allows to recover a terrestrial relief and create a landscape map of a forestry region. As the proof-of-concept, we provided the outdoor ?ight experiment, launching a hexacopter under a mixed forestry region with sharp ground changes nearby Innopolis city (Russia), which demonstrated the encouraging results for both ground detection and methodology robustness
    corecore