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Abstract—The paper presents the study and implementation of
the ground detection methodology with filtration and removal
of forest points from LiDAR-based 3D point cloud using the
Cloth Simulation Filtering (CSF) algorithm. The methodology
allows to recover a terrestrial relief and create a landscape map
of a forestry region. As the proof-of-concept, we provided the
outdoor flight experiment, launching a hexacopter under a mixed
forestry region with sharp ground changes nearby Innopolis city
(Russia), which demonstrated the encouraging results for both
ground detection and methodology robustness.

I. INTRODUCTION

The recent success in development of low power and light

weight 3D LiDARs for mobile applications have allowed to

acquire precise data about terrestrial relief and built high-

resolution digital terrain models (DTMs) for ground detection,

landscape simulation, forestry monitoring, land-cover classifi-

cation and many other applications [1], [2], [3], [4], [5], [6].

Since creation of 3D LiDAR enabled the acquisition of 3D

point clouds in forests and a detailed 3D analysis of forest

structures. Depending on the density of points, some methods

working on the stand and plot level have become operational,

providing valuable forest parameters for the inventory. There-

fore, there are a lot of investigations developed for forest

technologies based on 3D point cloud from terrestrial LiDAR

[7], [8], [9], [10], [11], [12]. Some studies are based on

deletion tree points from 3D point cloud to recover and detect

individual trees, their shapes, canopy, tree height, biomass,

leaf inclination angle for which lots of software was devel-

oped [13], [14], [15], [16]. Since geological organizations

are interested in individual tree detection from point cloud,

the paper [10] presents an automatic individual tree detection

through analysis of forest terrestrial relief from point cloud that

processed due to terrestrial LiDAR. As results, they achieve

tree detection with high accuracy and each tree canopy seg-

mentation. The research [11] describes the automatic approach

for wood-leaf separation from point cloud that processed

also due to terrestrial relief using density based clustering

algorithm. As a result, it was proposed the method of wood

component extraction from 3D point clouds for broad leaved

non-deciduous trees. Unlike most of the published algorithms

that detect individual trees from a LiDAR-derived raster

surface, the authors [17] worked directly with the LiDAR

point cloud data to separate individual trees and estimate tree

metrics.

Some investigations for extracting individual trees and forest

segmentation connect airborne and terrestrial measurements

[18], [19], [20]. Thus, the authors [18] propose a method

which uses a random forest classifier to estimate the matching

probability of each terrestrial-reference and aerial detected

tree pair within a terrestrial sample plot to aerial detected

trees. However, there appeared many recent researches related

to detecting individual trees and forest patch delineations

from airborne laser scanning (ALS) point clouds based on

[21], [22], [23], [24]. Aimed at error reduction and accuracy

refinement, the research [25] presents an adaptive mean shift-

based clustering scheme aided by a tree trunk detection tech-

nique to segment individual trees and estimate tree structural

parameters based solely on the airborne LiDAR data. [26]

developed an algorithm to segment individual trees from the

small footprint discrete return airborne LiDAR point cloud.

Method works by segmenting trees individually in sequence

from the point cloud by taking advantage of the relative

spacing between trees. [27] develop a 3D tree delineation

method which uses graph cut to delineate trees from the full

3D LiDAR point cloud, and also makes use of any optical

imagery available.

Thanks to flying unmanned aerial vehicles (UAVs) at low

altitudes, high-density point clouds for accurate representation

of a terrain relief are generated [28], [29]. Moreover, UAV-

based laser scanning is proposed for enabling automated

3D mapping in forests with Simultaneous Localization and

Mapping (SLAM) in a combination with the robust graph

optimization after loop closures, called graph-SLAM, as a

component of forest monitoring [4].

The ground detection task is very important itself for land

classification in terms of cost and suitability for construction

and agriculture, since it strongly depends on ground flatness

and presence of height changes. In addition, after removing

ground points, the forestry region can be separately investi-

gated in terms of tree biomass and forest structure. To generate

DTMs, ground and non-ground measurements have to be

separated from the LiDAR point clouds by filtering methods,

which remove points of ground objects and extract ground

points. This is an important process for most environment

modeling applications and is performed using various types

of commercial and non-commercial software. Thus, the author

[30] proposed a slope method for filtering laser data. A

common assumption of slope-based algorithms is that the
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change in slope usually occurs in the neighborhood gradually,

while the change in slope between trees and the ground is

large. Rashidi and Rastiveis [31] also proposed the Slope

and Progressive Window Thresholding (SPWT) for ground

filtering of LiDAR data, which is based on both multiscale

and slope methods. The limitation of slope-based algorithms

is acquiring an optimal slope threshold that can be applied

to terrain with different topographic features. The paper [32]

proposes an adaptive filter to overcome such limitation. The

paper [33] presents the Cloth Simulation Filtering (CSF)

algorithm as an effective filtering method, which needs a few

easy-to-set integer and Boolean parameters to achieve high

accuracy of separating point clouds into ground and non-

ground measurements (the achieved average total error was

about 5%).

In this work, the CSF algorithm was chosen as the base

algorithm to extract ground points from LiDAR point cloud

according to the paper [3], where CSF was compared with the

ground filtering algorithms of several softwares widely used

for processing ALS point clouds and demonstrated the best

filtering results. Therefore, we apply the methodology of of-

fline ground detection from LiDAR-based 3D point cloud with

the CSF algorithm in CloudCompare software, implementing a

terrestrial relief extraction with the preliminary outlier removal

and point cloud normalization. As the proof-of-concept, we

provided the outdoor flight experiment with DJI M600Pro
Hexacopter, launching the UAV under a mixed forestry region

with sharp ground changes nearby Innopolis city (Russia)

and acquiring 3D data with the stabilized Velodyne VLP16

LiDAR. The experiment demonstrated that applying the pro-

posed methodology allows achieving encouraging results for

ground profile detection, having about 20% of ground points

from the total amount of the 3D point cloud from LiDAR

rawdata for the flight under the mixed forest in the middle

of autumn. Although, the total changes in relief height was

about 40 meters, the proposed methodology of ground filtering

shown the robustness to these conditions.

The technological contribution of the paper consists in the

integration of airborne 3D LiDAR data processing solutions

into the applied methodology for ground detection using

filtration and removal of forest points from three-dimensional

point cloud based on the Cloth Simulation Filtering (CSF)

algorithm. The main limitation of the research is that although

the reconstructed ground profile obtained during flight exper-

iments is credible, it must be metrologically verified using

other more accurate and proven technologies.

The rest paper is structured as follows. Section II introduces

the methodology for LiDAR mapping from a copter with

ground detection. Section III describes our hexacopter con-

figuration and software used. Sections IV and V outline aerial

mapping system and the logics of ROS-based sensor data pro-

cessing correspondingly. Section VI presents the experimental

results with comparative analysis for point cloud data before

and after filtering. Finally, we conclude in Section VII.

II. METHODOLOGY

The methodology of ground detection from LiDAR-based 3D

point cloud consists of 6 steps, the schematic overview of

which is presented in Fig. 1. During the stage of LiDAR

data acquisition the forestry region was investigated with

Velodyne LiDAR mounted on a hexacopter with recording

LiDAR dataset to the UAV memory for the following offline

processing. The chosen forestry region is located nearby In-

nopolis city, in the Republic of Tatarstan, Russia. In Section IV,

all details regarding to the outdoor experiment are presented.

Fig. 1. The block-scheme of the proposed methodology for ground detection
using filtration and removal of forest points from airborne 3D LiDAR-related
point cloud based on the Cloth Simulation Filtering (CSF) algorithm

A. The first step: 3D point cloud generation

3D point cloud was created offline from recorded LiDAR

data with ROS packages. The Section V describes sensor data

processing and point cloud generation.

B. The second step: Outlier detection and removal

As known, the 3 sigma-rule is a widely used heuristic for

outlier detection of some statistical hypotheses whose test

statistics are normalized that can be applied to geodetic data

adjustment as shown in the paper [34]. In our case, we

could programmatically choose the sigma coefficient from the

array [1..3]. In the results of practical calculations we get

the best result with sigma coefficient that is equal to 1.2.

Moreover, since we have the huge point cloud dataset in

small geographical region, we selected 20 nearest points for

calculation of mean distances.
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C. The third step: Cloth Simulation Filtering (CSF) imple-
mentation

At using the Cloth Simulation Filtering (CSF) method, 3D

point cloud is splitted into two parts: ground and environment

points. Taking a closer look at CSF method for filtering

ground points [33], we recognize that the ground detection

and relief recover can be processed by implementation filtering

of point cloud based on Cloth Simulation. This algorithm is

based on separating point clouds into ground and non-ground

measurements, using a simulation. For this reason, the original

point cloud is turned upside down, and then a cloth falls on

the inverted surface from above. Analyzing the interactions

between the nodes of the cloth and the corresponding LiDAR

points, the final shape of the cloth can be determined and

used as a base to classify the original points into ground and

non-ground parts [29]. The main idea of the CSF algorithm is

illustrated in Fig. 2.

Fig. 2. The illustration of the Cloth Simulation Filtering (CSF) algorithm.

The original point cloud is turned upside down, and then a simulated fabric

falls on the inverted surface from above, dividing the point clouds into

ground and non-ground parts. © c Courtesy of Zhang, et al. [33]

The CSF algorithm applies four user-defined parameters: a

grid resolution (GR), which represents the horizontal distance

between two neighboring particles; a time step (dT) that

controls the displacement of particles from gravity during each

iteration; a rigidness (RI), which describes the cloth rigidness;

and a steep slope fit factor (ST), which is an optional parameter

for indicating whether the post-processing of handling steep

slopes is required or not.

According to [33] the optimal value of the time step (dT) is

equal to 0.65 that is achieved by the number of maximum

iterations of 500. The grid resolution number (GR) is set to

0.1. Although, to increase the resolution of the filtered point

cloud it is necessary to choose the minimal grid resolution

value. However, since the configuration of the system does not

allow to set value less than 0.1, the results presented in the

section VI are based on this value. The parameter of the steep

slope fit factor is Boolean and consists of two values ”true” or

”false” that denote the existence or absence of a steep slope.

Since we have a steep slope in the point cloud, this factor is

set to ’true’ value that provides the additional post-processing.

The rigidness is set to 2 that means the presence of terraced

slopes in the relief because of the character of the investigated

forestry area with with ravines. The rigidness parameters of

1 and 3 define areas with high steep slopes and gentle slopes

(flat surface) respectively.

D. The forth step: Point cloud normalization and Building
terrestrial relief

To normalize point cloud which represents terrestrial relief

for building surface. Finally, to build surface that represents

terrestrial relief.

For normalization of point cloud and surface plotting we

should calculate normal vectors as a base for surface. The

surface, which is normal to a point, estimates the surrounding

neighborhood points that support the point (also called k-

neighborhood). It is known that the best choice of k depends

on the data and, as a rule, larger values of k reduces noise

influence on the classification, but make boundaries between

classes less clear [35]. Then after choosing groups of neigh-

bors it is necessary to build a plane, plotting normals to each

of plane. For this part of our task it is sufficient to choose

default parameters for normals plotting:

• k-neighborhood = 100;

• number of planes = 1000;

• Accumulator steps = 15;

• Number of rotations = 5;

• Tolerance angle = 90 deg.;

• Neighborhood size for density estimation = 5.

III. SYSTEM SETUP

For filtration and deletion of the trees’ points with the consec-

utive ground points’ detection from 3D point cloud of LiDAR-

data we used the following system configuration, containing

Hexacopter, Velodyne LiDAR and a Laptop with installed

Ubuntu 16.04 (Xenial Xerus).

In our outdoor experiments we used DJI M600Pro Hexacopter

with the stabilized Velodyne VLP16 LiDAR. Although this

LiDAR was mainly developed for transport vehicles as a low-

cost collision avoidance sensor, nevertheless it has been widely

used for unmanned aerial vehicles (UAVs) [36], [37], [38], [4],

indoor mapping platforms [39], mobile robots [40] and au-

tonomous vehicle designs [41] as the primary mapping device

for acquiring high resolution 3D models. The accuracy and

stability analysis of the VLP16 laser scanner was studied at the

work [42]. The hardware and software system configuration is

presented in the Table I.

To process points from Velodyne LiDAR and build the whole

point cloud by a filtration algorithm, we utilized Robot Op-

erating System (ROS) framework in Kinetic Kame version.

Additionally, the 3D point cloud processing software of Cloud-
Compare 2.9.1 Omnia is an open source software for 3D point
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TABLE I. COMPUTATIONAL SYSTEM SPECIFICATION

System Configuration
Laptop LENOV OTM ideapad 320S

Operating System x64, Windows 10
RAM 8 GB

CPU IntelR CoreTM i5

cloud processing that was used for filtering ground and non-

ground points with CSF filtering, recovering terrestrial relief.

The main advantage of this algorithm is that it uses very

few easy-to-set parameters. Alternatively, the Cloth Simulation

Filtering (CSF) can be utilized in MATLAB with the CSF

library available on the MathWorks website.

Fig. 3. The experimental aerial mapping system based on the DJI M600Pro
Hexacopter with the stabilized Velodyne VLP16 LiDAR

IV. AERIAL MAPPING SYSTEM

Aerial mapping system was implemented in research [43],

which contains example of usage of point cloud map, gathered

from drone, for UGV traversable path planning. We utilize

the same approach for data gathering, but use it for another

application, namely trees filtering and ground surface estima-

tion. We used DJI Matrice 600 Pro developer drone with A3
Pro flight controller equipped with real-time kinematic (RTK)

system used to enhance the precision of position data derived

from satellite-based positioning systems. Sensor module is

mounted on DJI Ronin MX gyrostabilized gimbal and includes

3d LiDAR and camera with optional Xsens IMU.

Onboard computer with ROS Indigo is used to process navi-

gation and sensor data. We use DJI Onboard SDK to commu-

nicate with A3 flight controller via UART interface. LiDAR

interface is Ethernet, camera and optional IMU are connected

via USB. At current experiment we saved all data to ROS bag
file during flight for further processing on laptop.

We used DJI GroundControl iOS app for mission planning.

Thus, the flight was executed at the height of about 50m in

a preliminary set flight zone within the boundaries assigned

by the hexacopter GPS coordinates. During the flight operator

could see RViz GUI window with camera and LiDAR data

visualization, which is done onboard and transmitted from

computer HDMI port by DJI Lightbridge transmission system.

Fig. 4. DJI GroundControl app with RViz GUI

V. SENSOR DATA PROCESSING

After completion of mapping mission, we process rosbag file

to get point cloud map of environment. The Fig. 5 shows

the dataflow of the environment and 3d point cloud map

constructing by processing a sequence of sensor data from

the dataset. The dataset consists of navigation data, namely

RTK position, IMU data, velocity data, gimbal angles data, and

sensors data, namely LiDAR packet (converted to point cloud)

and compressed images from camera. The Geo2loc node forms

/tf coordinate frames tree and local ENU frame /odometry data

for further projection of sensor data from current drone body

frame to earth ENU frame, which is done by project points
node. The Project points node could optionally utilize camera

data to colorize LiDAR point cloud in camera field of view.

The Mapper node combines all point clouds from separate

LiDAR measurements in united cloud map, which is saved

from ROS topic to .pcd and .ply files for further processing.

VI. EXPERIMENTAL RESULTS

The mixed forest area located nearby Innopolis city, the

Republic of Tatarstan, Russia, as shown in the Fig. 6 was

scanned during the UAV flight experiment in the middle of

October 2018. The photo of data gathering flight at the start

of the experiment is shown in the Fig.7. The initial point cloud

of the forestry area obtained from LiDAR rawdata (after ROS

processing, but before filtration) is presented in the Fig. 8.

After receiving point cloud, several experiments was produced

to find optimal values. As described in the Section II the
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Fig. 5. Rosbag processing dataflow for 3d point cloud map construction by
processing a sequence of sensor data from the onboard Hexacopter dataset

Fig. 6. The experimental mapping area location nearby Innopolis city, the
Republic of Tatarstan, Russia

Fig. 7. The photo of the mapping area (a mixed forest nearby Innopolis city,
the Republic of Tatarstan, Russia) investigated by flight experiments of DJI
M600Pro Hexacopter with the stabilized Velodyne VLP16 LiDAR

Fig. 8. The initial point cloud of the forestry region from LiDAR rawdata
(after ROS processing, but before filtration)

optimal parameter of the standard deviation was set to 1.2,

and the number of nearest points was selected to 20. In the

Fig. 9 point cloud is presented without noise.

Fig. 9. 3D point cloud of the forestry region without outliers

The next step is 3D point cloud filtering with Cloth Simulation

algorithm considered in the Section II-C. According to the

algorithm, the threshold of 0.6 splits the points into two

groups: ground and non-ground. The Fig. 10 shows the results

after Cloth Simulation Filtering. If we zoom in the figure,

we can see that the point clouds have no dense structure in

some parts. This issue is connected to ground points which are

not reflected back to the LiDAR. Nevertheless, the described

procedure allows to obtain a satisfactory contour. The Table

II presents the quantitative analysis for points in each point

cloud groups that were generated, and amount of points in

both outliers and LiDAR rawdata. The table demonstrates

that applying the proposed methodology allows achieving

the ground profile detection, having about 20% of ground

points from the total amount of the 3D point cloud from

LiDAR rawdata for the flight under the mixed forest in the

middle of autumn. It illustrates the robustness of the proposed

methodology of the ground detection.
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Fig. 10. Point cloud after filtering with the Cloth Simulation Filtering (CSF)
algorithm that reconstructs the ground points

After applying default algorithm for plotting surface based on

normals we get surface. The Fig. 11 represents such surface.

The method added some points around ground points to create

a complete square outline. The main interest is the points in the

middle of the recovered terrain, which show that the surface

is based on the maximum number of points remaining after

filtering. The comparison of ground models before and after

filtering is shown in Fig. 12.

Fig. 11. The profile of the forestry region recovered from point cloud by the
algorithm of plotting surface based on normals

Fig. 12. Original point cloud superimposed on a half of the surface
(representing a comparison between ground models before and after 3D
LiDAR data filtering)

Also we can say that the proposed methodology is applicable

to rather difficult conditions, because, for example, in the cut

region under consideration in the Fig. 13 there are pines with

a dense coating of needles and high crowns. What is more,

the Fig. 14 and Fig. 15 demonstrate the large differences

in relief profile changes, which undoubtedly complicates the

algorithm implementation for ground filtering. Although, the

total changes in relief height is about 40 meters, nevertheless,

the proposed methodology shown robustness to these condi-

tions.

Fig. 13. The region of point cloud (dark points) with the cut (the light line)
for exploring the height profile using a zoom

Fig. 14. The relief profile changes in the cut region indicated in the Fig. 13,
with the marked height of the tree

Fig. 15. The profile of the ravine relief with trees in the cut region, indicated
in Fig. 13, with the marked delta of the ground height in the cut
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TABLE II. THE QUANTITATIVE ANALYSIS FOR POINTS IN EACH POINT

CLOUD GROUPS

Point Cloud types Amount of points Percent
Point Cloud without outliers 20 805 983 93.75

Outliers 1 387 160 6.25
Ground Point Cloud 4 480 098 20.19
Trees Point Cloud 16 325 885 73.56

Point Cloud from Rawdata 22 193 143 100

VII. CONCLUSIONS

In this research, we technologically contributed into the de-

velopment and implementation of methodology of offline

ground detection from airborne 3D LiDAR-related dataset by

integration of data processing solutions using filtration and

removal of forest points from three-dimensional point cloud

based on the Cloth Simulation Filtering (CSF) algorithm.

Such a methodology is quite important and applicable for

land classification in terms of cost and suitability for con-

struction and agriculture (especially in suburbs nearby cities

and villages), since it strongly depends on ground flatness and

presence of ravines and hills.

We realized this methodology in CloudCompare software,

executing a terrestrial relief extraction with the preliminary

outlier removal and point cloud normalization. The applied

methodology allowed to recover the terrestrial relief. In ad-

dition, after removing ground points, the forestry region can

be investigated separately in terms of tree biomass and forest

structure. After analyzing the received results of 3D point

cloud, the optimal values was found for noise decrease.

As the proof-of-concept, we provided the outdoor flight ex-

periment with DJI M600Pro Hexacopter, launching the UAV

under a mixed forestry region with sharp ground changes

nearby Innopolis city (the Republic of Tatarstan, Russia) and

acquiring 3D data with the stabilized Velodyne VLP16 Li-

DAR. DJI GroundControl iOS app was used for UAV mission

planning, executing the flight at the height of about 50m under

a preliminary set forest zone within the boundaries assigned

by the hexacopter GPS coordinates. An onboard computer

with Robot Operating System (ROS) was applied to process

the UAV autonomous navigation and sensor data acquisition.

The experiment demonstrated that exploiting the implemented

methodology allows achieving encouraging results for ground

profile detection, having about 20% of ground points from the

total amount of the 3D point cloud from LiDAR rawdata for

the flight under the mixed forest in the middle of autumn.

Although, the total changes in relief height was about 40

meters, the proposed methodology of ground filtering shown

the robustness to these conditions.

In future work, for better estimation of experimental results it

is proposed to use the aerial laser scanning for a preselected

and geodesically measured forest area, and then, after the 3D

point cloud filtering, analyze the accuracy of the algorithm.
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performances of commercial and non-commercial software for ground
filtering of uav-based point clouds,” International Journal of Remote
Sensing, pp. 1–27, 2018.

[4] M. Pierzchała, P. Giguère, and R. Astrup, “Mapping forests using an
unmanned ground vehicle with 3d lidar and graph-slam,” Computers
and Electronics in Agriculture, vol. 145, pp. 217–225, 2018.

[5] N. Pfeifer and G. Mandlburger, “Lidar data filtering and digital terrain
model generation,” Topographic Laser Ranging and Scanning: Princi-
ples and Processing, p. 349, 2018.

[6] C. K. Toth and G. Petrie, “Airborne and spaceborne laser profilers and
scanners,” in Topographic laser ranging and scanning, pp. 89–157, CRC
Press, 2018.

[7] S. Bauwens, H. Bartholomeus, K. Calders, and P. Lejeune, “Forest
inventory with terrestrial lidar: a comparison of static and hand-held
mobile laser scanning,” Forests, vol. 7, no. 6, p. 127, 2016.

[8] A. Michez, S. Bauwens, S. Bonnet, and P. Lejeune, “Characterization
of forests with lidar technology,” in Land Surface Remote Sensing in
Agriculture and Forest, pp. 331–362, Elsevier, 2016.

[9] A. K. Aijazi, P. Checchin, L. Malaterre, and L. Trassoudaine, “Auto-
matic detection and parameter estimation of trees for forest inventory
applications using 3d terrestrial lidar,” Remote Sensing, vol. 9, no. 9,
p. 946, 2017.

[10] K. Itakura and F. Hosoi, “Automatic individual tree detection and canopy
segmentation from three-dimensional point cloud images obtained from
ground-based lidar,” Journal of Agricultural Meteorology, vol. 74, no. 3,
pp. 109–113, 2018.

[11] R. Ferrara, S. G. Virdis, A. Ventura, T. Ghisu, P. Duce, and G. Pellizzaro,
“An automated approach for wood-leaf separation from terrestrial lidar
point clouds using the density based clustering algorithm dbscan,”
Agricultural and Forest Meteorology, 2018.

[12] M. van Leeuwen and M. Disney, “3.08 vegetation structure (lidar),”
2018.

[13] A. Ferraz, S. Saatchi, C. Mallet, S. Jacquemoud, G. Gonçalves, C. Silva,
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