2,334 research outputs found

    Generating functions of bipartite maps on orientable surfaces

    Full text link
    We compute, for each genus g0g\geq 0, the generating function LgLg(t;p1,p2,)L_g\equiv L_g(t;p_1,p_2,\dots) of (labelled) bipartite maps on the orientable surface of genus gg, with control on all face degrees. We exhibit an explicit change of variables such that for each gg, LgL_g is a rational function in the new variables, computable by an explicit recursion on the genus. The same holds for the generating function FgF_g of rooted bipartite maps. The form of the result is strikingly similar to the Goulden/Jackson/Vakil and Goulden/Guay-Paquet/Novak formulas for the generating functions of classical and monotone Hurwitz numbers respectively, which suggests stronger links between these models. Our result complements recent results of Kazarian and Zograf, who studied the case where the number of faces is bounded, in the equivalent formalism of dessins d'enfants. Our proofs borrow some ideas from Eynard's "topological recursion" that he applied in particular to even-faced maps (unconventionally called "bipartite maps" in his work). However, the present paper requires no previous knowledge of this topic and comes with elementary (complex-analysis-free) proofs written in the perspective of formal power series.Comment: 31 pages, 2 figure

    Invariants of algebraic curves and topological expansion

    Get PDF
    For any arbitrary algebraic curve, we define an infinite sequence of invariants. We study their properties, in particular their variation under a variation of the curve, and their modular properties. We also study their limits when the curve becomes singular. In addition we find that they can be used to define a formal series, which satisfies formally an Hirota equation, and we thus obtain a new way of constructing a tau function attached to an algebraic curve. These invariants are constructed in order to coincide with the topological expansion of a matrix formal integral, when the algebraic curve is chosen as the large N limit of the matrix model's spectral curve. Surprisingly, we find that the same invariants also give the topological expansion of other models, in particular the matrix model with an external field, and the so-called double scaling limit of matrix models, i.e. the (p,q) minimal models of conformal field theory. As an example to illustrate the efficiency of our method, we apply it to the Kontsevitch integral, and we give a new and extremely easy proof that Kontsevitch integral depends only on odd times, and that it is a KdV tau-function.Comment: 92 pages, LaTex, 33 figures, many misprints corrected, small modifications, additional figure

    Algebraic methods in random matrices and enumerative geometry

    Get PDF
    We review the method of symplectic invariants recently introduced to solve matrix models loop equations, and further extended beyond the context of matrix models. For any given spectral curve, one defined a sequence of differential forms, and a sequence of complex numbers Fg . We recall the definition of the invariants Fg, and we explain their main properties, in particular symplectic invariance, integrability, modularity,... Then, we give several example of applications, in particular matrix models, enumeration of discrete surfaces (maps), algebraic geometry and topological strings, non-intersecting brownian motions,...Comment: review article, Latex, 139 pages, many figure

    Geometry of Spectral Curves and All Order Dispersive Integrable System

    Full text link
    We propose a definition for a Tau function and a spinor kernel (closely related to Baker-Akhiezer functions), where times parametrize slow (of order 1/N) deformations of an algebraic plane curve. This definition consists of a formal asymptotic series in powers of 1/N, where the coefficients involve theta functions whose phase is linear in N and therefore features generically fast oscillations when N is large. The large N limit of this construction coincides with the algebro-geometric solutions of the multi-KP equation, but where the underlying algebraic curve evolves according to Whitham equations. We check that our conjectural Tau function satisfies Hirota equations to the first two orders, and we conjecture that they hold to all orders. The Hirota equations are equivalent to a self-replication property for the spinor kernel. We analyze its consequences, namely the possibility of reconstructing order by order in 1/N an isomonodromic problem given by a Lax pair, and the relation between "correlators", the tau function and the spinor kernel. This construction is one more step towards a unified framework relating integrable hierarchies, topological recursion and enumerative geometry

    Efficient Recursive Methods for Partial Fraction Expansion of General Rational Functions

    Get PDF
    Partial fraction expansion (pfe) is a classic technique used in many fields of pure or applied mathematics. The paper focuses on the pfe of general rational functions in both factorized and expanded form. Novel, simple, and recursive formulas for the computation of residues and residual polynomial coefficients are derived. The proposed pfe methods require only simple pure-algebraic operations in the whole computation process. They do not involve derivatives when tackling proper functions and require no polynomial division when dealing with improper functions. The methods are efficient and very easy to apply for both computer and manual calculation. Various numerical experiments confirm that the proposed methods can achieve quite desirable accuracy even for pfe of rational functions with multiple high-order poles or some tricky ill-conditioned poles

    Universal scaling limits of matrix models, and (p,q) Liouville gravity

    Get PDF
    We show that near a point where the equilibrium density of eigenvalues of a matrix model behaves like y ~ x^{p/q}, the correlation functions of a random matrix, are, to leading order in the appropriate scaling, given by determinants of the universal (p,q)-minimal models kernels. Those (p,q) kernels are written in terms of functions solutions of a linear equation of order q, with polynomial coefficients of degree at most p. For example, near a regular edge y ~ x^{1/2}, the (1,2) kernel is the Airy kernel and we recover the Airy law. Those kernels are associated to the (p,q) minimal model, i.e. the (p,q) reduction of the KP hierarchy solution of the string equation. Here we consider only the 1-matrix model, for which q=2.Comment: pdflatex, 44 pages, 2 figure

    Generating functions of bipartite maps on orientable surfaces (extended abstract)

    Get PDF
    International audienceWe compute, for each genus gg ≥ 0, the generating function LLgg ≡ LLgg(tt;pp1,pp2,...) of (labelled) bipartite maps on the orientable surface of genus gg, with control on all face degrees. We exhibit an explicit change of variables such that for each gg, LLgg is a rational function in the new variables, computable by an explicit recursion on the genus. The same holds for the generating function LLgg of rooted bipartite maps. The form of the result is strikingly similar to the Goulden/Jackson/Vakil and Goulden/Guay-Paquet/Novak formulas for the generating functions of classical and monotone Hurwitz numbers respectively, which suggests stronger links between these models. Our result strengthens recent results of Kazarian and Zograf, who studied the case where the number of faces is bounded, in the equivalent formalism of dessins d’enfants. Our proofs borrow some ideas from Eynard’s “topological recursion” that he applied in particular to even-faced maps (unconventionally called “bipartite maps” in his work). However, the present paper requires no previous knowledge of this topic and comes with elementary (complex-analysis-free) proofs written in the perspective of formal power series.Nous calculons, pour chaque genre gg ≥ 0, la série génératrice LLgg ≡ LLgg(tt;pp1,pp2,...) des cartes bipartites (étiquetées) sur la surface orientable de genre gg, avec contrôle des degrés des faces. On exhibe un changement de variable explicite tel que pour tout gg, LLgg est une fonction rationnelle des nouvelles variables, calculable par une récurrence explicite sur le genre. La même chose est vraie de la série génératrice LLgg des cartes biparties enracinées. La forme du résultat est similaire aux formules de Goulden/Jackson/Vakil et Goulden/Guay-Paquet/Novak pour les séries génératrices de nombres de Hurwitz classiques et monotones, respectivement, ce qui suggère des liens plus forts entre ces modèles. Notre résultat renforce des résultats récents de Kazarian et Zograf, qui étudient le cas où le nombre de faces est borné, dans le formalisme équivalent des dessins d’enfants. Nos démonstrations utilisent deux idées de la “récurrence topologique” d’Eynard, qu’il a appliquée notamment aux cartes paires (appelées de manière non-standard “cartes biparties” dans son travail). Cela dit, ce papier ne requiert pas de connaissance préliminaire sur ce sujet, et nos démonstrations (sans analyse complexe) sont écrites dans le language des séries formelles

    PolyLogTools - Polylogs for the masses

    Full text link
    We review recent developments in the study of multiple polylogarithms, including the Hopf algebra of the multiple polylogarithms and the symbol map, as well as the construction of single valued multiple polylogarithms and discuss an algorithm for finding fibration bases. We document how these algorithms are implemented in the Mathematica package PolyLogTools and show how it can be used to study the coproduct structure of polylogarithmic expressions and how to compute iterated parametric integrals over polylogarithmic expressions that show up in Feynman integal computations at low loop orders.Comment: Package URL: https://gitlab.com/pltteam/pl

    Techniques for high-multiplicity scattering amplitudes and applications to precision collider physics

    Get PDF
    In this thesis, we present state-of-the-art techniques for the computation of scattering amplitudes in Quantum Field Theories. Following an introduction to the topic, we describe a robust framework that enables the calculation of multi-scale two-loop amplitudes directly relevant to modern particle physics phenomenology at the Large Hadron Collider and beyond. We discuss in detail the use of finite fields to bypass the algebraic complexity of such computations, as well as the method of integration-by-parts relations and differential equations. We apply our framework to calculate the two-loop amplitudes contributing to three process: Higgs boson production in association with a bottom-quark pair, W boson production with a photon and a jet, as well as lepton-pair scattering with an off-shell and an on-shell photon. Finally, we draw our conclusions and discuss directions for future progress of amplitude computations
    corecore