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Abstract: In this thesis, we present state-of-the-art techniques for the computation
of scattering amplitudes in Quantum Field Theories. Following an introduction to
the topic, we describe a robust framework that enables the calculation of multi-scale
two-loop amplitudes directly relevant to modern particle physics phenomenology at
the Large Hadron Collider and beyond. We discuss in detail the use of finite fields
to bypass the algebraic complexity of such computations, as well as the method of
integration-by-parts relations and differential equations. We apply our framework
to calculate the two-loop amplitudes contributing to three process: Higgs boson
production in association with a bottom-quark pair, W± boson production with a
photon and a jet, as well as lepton-pair scattering with an off-shell and an on-shell
photon. Finally, we draw our conclusions and discuss directions for future progress
of amplitude computations.
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Chapter 1

Introduction

The understanding of elementary particles and their interactions is undoubtedly
one of the most fascinating quests of the scientific endeavour. Modern particle
physics has proven remarkably successful at explaining phenomena which occur at
size scales orders of magnitude smaller than what our brains evolved to comprehend.
The Standard Model (SM), which is a collection of Quantum Field Theories (QFTs)
that describe the subatomic world, allows us to rigorously test our ideas about how
the Universe functions at the most bare, fundamental level. It relies on a constant
interplay between theoretical predictions and their experimental verification (or
negation). From the perspective of a theoretical physicist, it is crucial to be able
to derive increasingly precise predictions for physically observable quantities that
can be measured in particle colliders such as the Large Hadron Collider (LHC) at
CERN. This theoretical precision should match what can be achieved experimentally.
The growing amount of data from Run 3 at the LHC makes this a challenge for the
theoretical community, pushing us to constantly improve our computational tools in
order to refine our predictions.

The subject of this thesis is precisely the story of trying to overcome the current
limitations in an effort to exploit the predictive power of QFT to an even greater
extent. It is a famous fact of physics that QFT computations cannot be performed
exactly, apart from the most trivial cases. Instead, one follows an approximate
description through the so-called perturbation theory. In this approach, the leading-
order (LO) terms in the computation are low in number and complexity. They
represent a crude, almost ‘back-of-the-envelope’ estimation of the full answer. The
next-to-leading-order (NLO) terms increase in number and are harder to calculate.
Nonetheless, they provide a refinement of the LO result and are absolutely necessary
for precision phenomenology. Roughly speaking, the cutting edge of QFT computa-
tions is currently at the next-to-next-to-leading-order (NNLO) for 2→ 3 processes
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and at N3LO for 2 → 2 processes. They can involve millions of individual terms,
each of which can be incredibly hard to evaluate.

In this thesis, we will focus on the description of one of the key ingredients needed
for QFT computations, i.e. the scattering amplitudes. We will provide the reader
with a solid understanding of why they are important in the first place, how they
are calculated and the difficulties that we have to overcome in practice. Naturally,
we cannot jump into full detail straightaway. We hope that this thesis will be
approachable to someone who already possesses basic knowledge of QFT, but we
certainly do not assume previous experience in this topic at research level. For this
reason, we dedicate the rest of Chapter 1 to reviewing the rudimentary information
needed further on. This content should be familiar from a thorough introductory
course to QFT. Next, in Chapter 2 we introduce more advanced and specialised
techniques that are used to compute scattering amplitudes. We hope that despite
the breadth of the concepts covered and often heavy mathematical detail, this chapter
will not be too hard to follow. Our reward will come in the following chapters, where
we will use the techniques described thus far to compute scattering amplitudes
necessary for the precise description of three selected processes that have been deemed
of high priority by the particle physics community. The biannual Les Houches report
provides a wishlist of processes whose improved theoretical description would greatly
contribute to our understanding of fundamental particles [4]. Amongst others, the
two-loop QCD amplitudes relevant to Higgs boson production in association with a
bottom-quark pair, pp → bb̄H, as well as to W± boson production with a photon
and a jet, pp → W±γj, are highly desired. They are described in Chapters 3 and
4 and represent some of the first results for five-point processes with an external
massive leg at this loop order. In Chapter 5, we switch our focus to the QED process
0→ ll̄γγ∗, which is required to achieve the precision goal of the MUonE experiment.
For this purpose, we will construct a basis of special functions for integrals needed to
describe any four-point process with an off-shell leg at the two-loop order. Finally, in
Chapter 6, we draw our conclusions and discuss directions for future work. Further
technical detail and supplementary material is provided in several Appendices.

1.1 QFT background

The rest of this introduction is meant to provide the reader with a bridge between
elementary knowledge of QFT and state-of-the-art techniques that are used to ex-
tract predictions from it. We start by providing a brief summary of the relevant
information about QFTs, and in particular QCD. Next, in Section 1.3 we describe
how to connect this theory to physical observables that can be measured experi-
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mentally. This introduces the notion of a scattering amplitude in Section 1.4, which
will be the main focus of this thesis. Finally, in Section 1.5 we discuss the famous
problem of divergences in QFT computations and show how in the process of trying
to keep them under control, we discover a surprising feature of QCD interactions.
At the end, we will be ready to tackle the more advanced topics in Chapter 2.
One of the central equations of QFT, which describes all spin-1/2 particles, is the
Dirac equation:

(i/∂ −m)ψ(x) = 0 . (1.1.1)

Its solutions are given by the four-component Dirac spinors ψ(x), which transform in
the irreducible

(
1
2 , 0

)
⊗
(
0, 1

2

)
representation1. There are four plane-wave solutions,

which admit both positive and negative frequencies:

ψ(x) = us(p)e−i p·x and ψ(x) = vs(p)e+i p·x , (1.1.2)

where s ∈ {1, 2}. The momentum space spinors u(p) and v(p) are interpreted
as describing particles and antiparticles with positive energies. They satisfy the
momentum space Dirac equations:

(/p−m)u(p) = 0 ,
(/p+m)v(p) = 0 , (1.1.3)

as well as the following completeness relations, which are useful when performing
spin sums in QFT computations:

∑
s∈{1, 2}

us(p)ūs(p) = /p+m,

∑
s∈{1, 2}

vs(p)v̄s(p) = /p−m. (1.1.4)

Moreover, it is convenient to split the spinors into two separate components:

ψ(x) =
ψL(x)
ψR(x)

 , (1.1.5)

where the left- and right-handed Weyl spinors ψL(x) and ψR(x) transform in the(
1
2 , 0

)
and

(
1
2 , 0

)
representations, respectively. It is important to note that Eq. 1.1.1

mixes these two components, which can be appreciated by writing it explicitly in
matrix notation. In the so-called Weyl (or chiral) basis, the Dirac matrices are:

γµ =
 0 σµ

σ̄µ 0

 , (1.1.6)

1Not to be confused with the usual four-vectors xµ, which transform in the
( 1

2 , 1
2
)

representation.
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with σµ ≡ (1, σi) and σ̄µ ≡ (1,−σi), and σi for i = 1, 2, 3 are the Pauli matrices.
Thus, the Dirac equation is: −m iσµ∂µ

iσ̄µ∂µ −m

ψL(x)
ψR(x)

 = 0 , (1.1.7)

where each entry is in itself understood to be a (2× 2) matrix. Crucially, we can see
that in the absence of mass, the two components fully decouple and can be treated
separately. It is also useful to define an additional γ5 matrix:

γ5 ≡ i γ0γ1γ2γ3 , (1.1.8)

which in the Weyl representation is just:

γ5 =
−1 0

0 1

 . (1.1.9)

The fifth γ-matrix plays a surprisingly important role in QFT. First, the Weyl spinors
can be extracted from the Dirac spinors by applying appropriate projectors:

PL = 1− γ5

2 =
1 0

0 0

 , PR = 1 + γ5

2 =
0 0

0 1

 , (1.1.10)

according to ψL(x) = PLψ(x) and ψR(x) = PRψ(x). This allows us to associate ψL

and ψR with the helicity of a particle, which is the projection of its spin onto the
direction of motion. The corresponding helicity values for left- and right-handed
particles are −1 and +1, respectively1. Weyl spinors will play a key role in the
discussion of the spinor-helicity formalism in Section 2.4. Moreover, the PL projector
appears in the V − A coupling of the charged W± bosons to quarks and leptons,
reflecting the fact that they interact only with left-handed fermions. Finally, as we
will see in Chapters 3 and 4, γ5 allows us to introduce a pseudo-scalar invariant
which is needed to capture the parity information of the kinematic phase space.

Apart from fermions, we also need to know how to deal with bosons. In particular,
spin-1 bosons are described by vector fields Aµ, which transform in the (1

2 ,
1
2) repres-

entation of the Lorentz group. For the massive gauge bosons, that is W± and Z0,
imposing their equations of motion leads to three distinct solutions labelled εs

µ(p)
and referred to as polarisation vectors. Similarly to the completeness relations for
spin-1/2 fermions, Eq. 1.1.4, the polarisation vectors of the massive gauge bosons

1Strictly speaking, the left- and right-handed Weyl spinors are eigenstates of the chirality
operator γ5. However, for m = 0, helicity and chirality eigenstates coincide.
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satisfy the following property:
∑

s∈{0,1,2}
εs

µ(p)(εs
ν(p))∗ = −gµν + pµpν

M2 . (1.1.11)

On the other hand, massless gauge bosons, i.e. photons and gluons, have only two
polarisations, which can be interpreted as helicity eigenstates. Their completeness
relation reads:

∑
s∈{−,+}

εs
µ(p, q)(εs

ν(p, q))∗ = −gµν + pµqν + pνqµ

p · q
, (1.1.12)

where qµ 6= pν is an arbitrary reference vector which is introduced to help decompose
the four-component vectors εµ into two-component objects, similarly to the decom-
position of the Dirac spinor into Weyl spinors. The end result of any computation
is independent of qµ, which reflects gauge invariance (we will elaborate on this fact
in Section 2.4).

Finally, the Standard Model famously includes a scalar particle — the Higgs bo-
son. This boson is responsible for electroweak symmetry breaking and, as a direct
consequence, giving mass to the electroweak gauge bosons W± and Z0.

1.2 Quantum Chromodynamics

In this thesis, we will concern ourselves with the study of interactions involving
mainly quarks and gluons. As such, a brief refresher of the relevant information is
in order. SM particles carrying colour charge interact via the strong force, which is
mathematically described by QCD. Its Lagrangian can be schematically represented
as a sum of three parts:

LQCD = Lclassical + LRξ
+ Lghosts . (1.2.1)

We begin by discussing the classical part. It is given by:

Lclassical = −1
4G

a
µνG

a µν +
nf∑
q

ψ
i
q

(
i /Dij −mqδij

)
ψj

q , (1.2.2)

where:
Ga

µν = ∂µA
a
ν + ∂νA

a
µ + gsf

abcAb
µA

c
ν (1.2.3)

is the gluon field strength, while:

(Dµ)ij = δij∂µ − igs(T a)ijA
a
µ (1.2.4)
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is the covariant derivative introduced to ensure gauge invariance under SU(Nc)
transformations1.

The QCD Lagrangian contains three types of fields. Quarks and antiquarks, cor-
responding to ψi

q and ψ
i
q , respectively, transform in the fundamental and antifunda-

mental representations of SU(Nc). In QCD, they have nf = 6 flavours. The indices
i ∈ {1, . . . , Nc} denote the colour charge of the (anti)quarks. It is common to drop
the colour index and write ψq, which is understood as ψq ≡

(
ψr

q , ψ
b
q, ψ

g
q

)T
. The

fundamental fields are acted on by the N2
c − 1 fundamental generators of SU(Nc)

with dimensions (Nc ×Nc). For SU(3), they are given by:

(T a)ij = 1
2(τa)ij , (1.2.5)

where τa are the eight (3× 3) Gell-Mann matrices. Similarly, the antifundamental
fields are acted on by the generators in the antifundamental representation, T a =
− (T a)∗. The fundamental generators are normalised according to:

tr(T aT b) = TF δ
ab . (1.2.6)

Usually, in QCD we take TF = 1
2 or 1. Finally, let us list one more useful relation:

(T a)ij(T a)kl = TF

(
δilδjk −

1
Nc

δijδkl

)
, (1.2.7)

which is known as the Fierz identity.

The third type of a field, the gluon field, is represented by Aa
µ. It transforms in

the adjoint representation, i.e. under the action of N2
c − 1 adjoint generators with

dimensions (N2
c − 1×N2

c − 1): (
T a

adj

)bc
= −ifabc , (1.2.8)

where a, b, c ∈ {1, . . . , N2
c − 1} are the colour indices and the totally antisymmetric

objects fabc are known as the structure constants. Typically, the adjoint generators
are normalised such that tr(T a

adjT
b
adj) = Ncδ

ab.

SU(Nc) generators (in any representation) satisfy the following defining relation of
the Lie algebra: [

T a, T b
]

= ifabcT c . (1.2.9)

Note that for Abelian groups, the structure constants vanish. For the non-Abelian
SU(3) group of QCD, they are non-vanishing and it is useful to invert the above

1We will keep the degree Nc of the group SU(Nc) generic in the discussion below, but of course
we are interested in the QCD case of Nc = 3.
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relation in terms of the fundamental generators:

fabc = − i
TF

tr
([
T a, T b

]
T c
)
. (1.2.10)

Thus, the structure constants, which are associated with 3- and 4-gluon vertices in
Feynman diagrams, can be written in terms of traces of fundamental generators. This
fact, along with the Fierz identity, becomes very useful when computing scattering
amplitudes in QCD, as we will see in Section 2.2.

In the process of deriving the QCD gluon propagator, the notion of gauge invariance
leads to two important qualitative features. First of all, just as in the case of
the photon propagator in QED, instead of explicitly fixing the gauge, we find it
convenient to introduce an auxiliary (i.e. non-propagating) field ξ. We write:

LRξ
= − 1

2ξ
(
∂µAa

µ

)2
, (1.2.11)

which yields the gluon propagator:

Πµν(p) = −i δab

p2 + iε

(
gµν − (1− ξ) pµpν

p2 + iε

)
. (1.2.12)

As an example, with the term Eq. 1.2.11 included in the full QCD Lagrangian,
for small ξ we must have that ∂µAa

µ → 0 in order to prevent the exponential of
L from blowing up, such that we can still minimise the action. Thus, the choice
ξ = 0 is equivalent to the Lorenz gauge and spares us from having to impose the
Lorenz condition throughout the entire computation. Other choices are possible, of
course. In fact, the most common prescription is to set ξ = 1, which is known as the
Feynman-’t Hooft gauge. It is also possible to keep ξ generic — gauge invariance
ensures that the results of computations of physical quantities will be free of ξ at
the end.

The second feature, which appears only in non-Abelian gauge theories, is that gauge
fixing the Lagrangian implies that not only the physical transverse modes of Aa

µ

can propagate. To cancel the unphysical degrees of freedom propagating through
gluon loops in Feynman diagrams, it is necessary to include in the Lagrangian
Grassmann-valued fields c and c̄ representing Faddeev-Popov ghosts and antighosts:

Lghosts = (∂µc̄ a)(δac∂µ + gsf
abcAb

µ)cc . (1.2.13)

These particles are not physical states. In fact, it is possible to work in non-covariant
gauges, such as the axial gauge or the lightcone gauge, where ghosts decouple
from physical particles and can be neglected. However, the cost of doing so is a
more complicated expression for the gluon propagator, which may lead to tougher
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computations. Thus, we usually accept ghosts as a peculiarity of working with non-
Abelian gauge theories and include them in our computations. They couple only to
gluons (and not to quarks) and receive their own Feynman rules for the propagator
and the vertex.

1.3 Particle scattering

Having introduced the QFTs that describe the most fundamental particles our nature
has to offer, one might rightfully wonder about the rewards for our intellectual effort
(beyond personal satisfaction). After all, amongst our non-physicist friends, it is
common to think that the word ‘theoretical’ in ‘theoretical physics’ is synonymous
with ‘hypothetical’. Not much could be further from the truth and we dedicate this
section to illustrating the immense predictive power of QFTs.

Consider a typical particle physics experiment. Two beams of particles, travelling in
opposite directions, interact briefly and produce a host of new states that fly away
in various directions until they are registered by some kind of a detector. Naturally,
the number of such scattering events is proportional to the number of particles in
the two beams, Na and Nb, as well as to the area common to the beams, A. The
ratio of these quantities is known as the scattering cross section:

σ ≡ number of scattering events
NaNbA

. (1.3.1)

Typically, apart from just counting the total number of events, we want to differ-
entiate between the type of outgoing particles, their momentum, angle of collision,
etc. However, if we specify an exact value for a continuous variable such as the
momentum, the numerator of Eq. 1.3.1 becomes infinitesimal. To avoid this issue,
we usually work with a differential cross section, e.g. dσ/(dp1 . . . dpn), such that its
integral over some small range of pi gives the total cross section in that region of
momentum space. While cross sections can be measured in particle colliders, it is
the task of QFT to make predictions for them.

In the case of hadron collisions, there is one additional complication which needs
to be taken into account. The fundamental objects of QCD are quarks and gluons,
however they cannot be observed individually due to colour confinement — only
their colourless combinations can be detected in a collider. The LHC, being a proton-
proton collider, requires a more complicated model of the interactions than just the
scattering of point particles. As we will soon see, QCD exhibits a behaviour known as
asymptotic freedom. That is, the coupling constant αs decreases with energy (i.e. at
small distances) and its value determines whether we are allowed to use perturbation
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theory or not. Roughly speaking, above the scale ΛQCD ∼ 200 MeV, αs becomes small
enough so that the perturbative expansion is justified. The individual ‘partons’ (i.e.
quarks, antiquarks and gluons) act like free particles and undergo ‘hard’ scattering [5].
On the other hand, physics at energies below ΛQCD is necessarily non-perturbative
due to large αs values. Its effects are captured by the Parton Distribution Functions
(PDFs) fi(x, µF ), which give the probability of finding in a hadron a given parton i

with momentum fraction x of this hadron. Here, µF is a factorisation scale which
separates the high- and low-energy physics. In fact, the PDFs run with µF , similarly
to the running of the QCD coupling αs, and their evolution is given by the DGLAP
equations1. Overall, the factorisation of soft and hard physics allows us to write the
cross section for the scattering of two hadrons h1, h2 to the final state X as [6]:

dσh1h2→X =
∑
i,j

∫ 1

0
dx1dx2 fi(x1, µF )fj(x2, µF ) dσ̂ij→X

(
µF , µR, Q

2
)

+O
(

Λ2
QCD

Q2

)
,

(1.3.2)
where i, j are the partons of hadrons h1 and h2, respectively, and σ̂ij→X is the
partonic cross section for the scattering of i, j into the final state. The higher-order
terms can be neglected as long as the scale Q at which we are probing the hard
scattering is significantly greater than ΛQCD. Since the PDFs describe effects at large
αs, they cannot be calculated using perturbative QCD. Instead, they are extracted
from experimental data (see e.g. Refs. [7–11]). On a positive note, they are universal,
i.e. process independent, so once they have been determined from some experiment,
they can be re-used in the description of any other hadron interaction.

Contrary to the PDFs, the partonic cross sections are computed using perturbative
QCD. Before turning our full attention to these objects, let us briefly remark that
even after the scattering has taken place, a lot of interesting physics is still ongoing
(see Fig. 1.1). The final state partons can radiate a cascade of other partons in a
phenomenon referred to as parton showers. Furthermore, these coloured partons
cannot be detected in a collider — as the energy scale falls below ΛQCD, they combine
together to form colourless hadrons. Finally, unstable hadrons may decay into further
products. What is actually detected in a collider is then a collimated spray of hadrons
and other particles referred to as a jet. Using the so-called jet algorithms and jet
definitions, one then tries to reverse engineer the collision of individual partons. We
refer the reader to Refs. [12,13] for a closer look at these topics.

1The origin of µF will be discussed in more detail in Section 1.5.2.
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Figure 1.1: A schematic representation of a collision between two
hadrons, h1 and h2, with total momenta P1, P2. A parton i carrying
momentum x1P1 undergoes hard scattering with a parton j carry-
ing momentum x2P2. Their factorisation from hadrons is described
by the PDFs fi(x1, µF ) and fj(x2, µF ), while their interaction is
described by the partonic cross section dσ̂ij. The splitting lines
represent subsequent parton showers, which then undergo hadron-
isation as the energy scale falls below ΛQCD. Further decays and
jets are not shown. Image courtesy of Ryan Moodie [14].

1.4 From cross sections to scattering amplitudes

Having decoupled the high- and low-energy physics within a hadron, let us now
address the computation of the hard scattering between partons. The partonic cross
section σ̂i→f is related to the probability of starting with some initial state i and
ending up with the final state f , that is: P = |〈f |i〉|2. These interacting states are
not the free wave packets with well-defined momenta that we know how to handle
using the QFT machinery. However, they do become free in the limit as t→ −∞,
i.e. before the interaction, as well as t→∞, i.e. after the interaction. The idea is
then to view the scattering in the following way: an asymptotically free state |i〉t=−∞

evolves to a real-world state |i〉, undergoes scattering (of negligible duration) into the
real-world state |f〉, which finally evolves into the free state |f〉t=∞. The evolution of
the real states from and to the asymptotic states is captured by the S-matrix, which
is calculated from the Hamiltonian in the ‘interaction representation’. Specialising
to the scattering of two partons into n− 2 particles, we write the so-called S-matrix
elements using the free multi-particle states:

〈p3, . . . , pn|p1, p2〉 = t=∞〈p3, . . . , pn|S|p1, p2〉t=−∞ . (1.4.1)
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Furthermore, it is customary to split the S-matrix according to:

S = 1 + iT . (1.4.2)

In any scattering experiment, there is a large chance of the particles simply missing
each other and nothing happening, which is expressed by the identity matrix. The
interesting physics of interactions is captured by the transition matrix T :

t=∞〈p3, . . . , pn|iT |p1, p2〉t=−∞ = (2π)4δ(4)

p1 + p2 −
n∑

f=3
pf

 iA(p1, p2 → p3, . . . , pn) ,

(1.4.3)
where we included the overall δ-function to impose 4-momentum conservation. Here,
A(p1, p2 → p3, . . . , pn) is the n-particle scattering amplitude. Finally, to relate
the amplitudes to the partonic cross section, we insert Eq. 1.4.3 into Eq. 1.4.1 and
integrate over a small region d3p3 . . . d3pn. This integration encodes the probability
that the n−2 final particles will belong to that region of the momentum phase-space.
Overall, the recipe reads:

dσ̂ = 1
2E12E2|v1 − v2|

∏
f

d3pf

(2π)3
1

2Ef

 (2π)4δ(4)

p1 + p2 −
∑

f

pf

 |A(p1, p2 → pf )|2 .

(1.4.4)
The first term in this formula is a flux factor related to the relative velocity of
the two incoming beams in the laboratory reference frame, |v1 − v2|. Next, the
overall δ-function imposes Lorentz invariance on the phase-space integration over∏

f d3pf . In practice, the phase-space integration is carried out using Monte Carlo
event generators [15, 16]. Finally, the formula is completed by the square of the
amplitude.

Scattering amplitudes represent a vital bridge between theory an experiment. On one
hand, due to Eq. 1.4.4, they allow us to derive predictions for physical observables
that can be measured in a collider. On the other hand, due to their connection
with the S-matrix through Eq. 1.4.3, they are sensitive to our understanding of the
underlying theory of interactions. As such, computing amplitudes serves as a key
tool to challenge and improve our models of elementary particles. Unfortunately, in
all but the simplest cases these amplitudes cannot be calculated exactly. Instead,
we resort to an expansion in powers of the coupling constant:

A = αt
(
A(0) + α1A(1) + α2A(2) + . . .

)
. (1.4.5)

In this formula, each term is calculated from linear combinations of expressions
corresponding to Feynman diagrams. The expansion starts at the power t of the LO
term A(0). This term usually — but not always — corresponds to tree-level diagrams,
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i.e. diagrams with no closed loops. Higher-order terms A(L) gain additional powers
of α due to L-loop diagrams. Therefore, at high energies where the coupling constant
becomes small, we can approximate the full scattering amplitude by truncating the
expansion in Eq. 1.4.5 at a desired order.

Let us stress that the computation of each element described so far, i.e. the cross
sections, PDFs, the phase-space integration, amplitudes, parton showers, hadronisa-
tion and jets, is a tremendous effort undertaken by a multitude of particle physicists
around the world. This thesis is a small building block of the entire enterprise
and aims to shed light on just one of these aspects — the calculation of scattering
amplitudes.

1.5 Divergences and dimensional regularisation

Let us now devote our attention to the study of Feynman integrals and diagrams, a
fundamental tool used to compute scattering amplitudes. For a tree-level diagram,
all momenta are uniquely fixed by momentum conservation at the vertices and
no integration is necessary. However, each loop introduces an unconstrained ‘loop
momentum’ which needs to be integrated over (see Fig. 1.2). We will denote them
as kl, where 1 ≤ l ≤ L. It is a famous fact of QFT that many Feynman integrals
contain divergences. They come in two types:

• Ultraviolet divergences — these appear when k →∞,

• Infrared divergences — these arise in processes with massless particles and
are further subdivided into:

– Soft divergences — when k → 0,

– Collinear divergences — when the loop momentum k becomes collinear
to a massless external momentum.

1.5.1 UV divergence and renormalisation

The two types of divergences are handled in separate ways. Firstly, UV divergences
are dealt with using renormalisation. In short, we start by realising that the masses,
fields and couplings in the original Lagrangian of Eq. 1.2.2 are not ‘physical’, in the
sense that we have been using them to define the perturbative expansion, but they
do not correspond to the physical parameters that can be measured in a collider.
From this perspective, the fact that our attempts at deriving predictions from QFT
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k1 k2 kL
. . .

p3

pn

p2

p1

←→
L∏

l=1

(
µ2ε

∫ ddkl

i πd/2

)
N∏

i Di(k, p,m)

Figure 1.2: An L-loop Feynman diagram corresponds to an L-fold
Feynman integral. We continue the integrals from 4 to d dimensions
(see Section 1.5.3 for explanation). The numerator N is determined
by the Feynman rules of the underlying theory and contains objects
such as momenta, spinors and polarisation vectors. The correspond-
ing denominators have the form Di = (ki + qi)2 −m2

i + iε, where qi

are linear combinations of external (and potentially internal) mo-
menta and we have explicitly included the pole prescription.

result in an abundance of infinities does not shatter our dreams of having a sensible
theory of real-world interactions. One simply needs to move these infinities away
from the integrals and into the definitions of the naive, ‘bare’ couplings. It is
conventional to introduce into the Lagrangian so-called counterterms (with their
own Feynman rules and diagrams) designed precisely to cancel out divergences up
to a given order in perturbation theory. The inclusion of counterterms (which are
themselves divergent) is equivalent to shifting the couplings from their bare values
to the physical ones. This means that the predictions obtained using the physical
parameters will now be UV-finite. To obtain the values of the physical parameters
themselves, we need to relate them to some quantity that can be measured in an
experiment. This measurement can be performed at an arbitrary energy µR, which
is known as the renormalisation scale. Then, the relationship between the bare
and physical couplings allows us to write down the renormalised expression for the
scattering amplitude. Even though the renormalised amplitudes are a function of
the physical couplings as measured at some µR, the choice of this renormalisation
scale is arbitrary and the predictions obtained from the renormalised amplitudes are
independent of it.

The renormalisation of QCD has an immediate and astounding consequence. The
physical strong coupling constant is not, in fact, a constant, but rather depends on
a scale: αs ≡ αs(µ). It is then natural to wonder how the coupling evolves, or ‘runs’,
with this scale. The answer to this question is given by the famous β-function, which
in QCD takes the form [17,18]:

β(αs) ≡
dαs

d log µ2 = −
∞∑

i=0
βi

(
αs

4π

)i+2
. (1.5.1)
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It is currently known up to five loops [19]. Crucially, the first coefficient is:

β0 = 11
3 CA −

4
3TFnf , (1.5.2)

where nf is the number of light quarks, i.e. quarks with masses below the scale at
which we are probing the system. With CA = Nc = 3 and TF = 1/2, it is clear
that β0 > 0 as long as nf ≤ 16, which is of course the case in our world. Then, the
overall minus sign in Eq. 1.5.1 means that, perhaps counterintuitively, αs decreases
as we move towards higher energies. This phenomenon is known as asymptotic
freedom and motivates the factorisation of amplitudes in Eq. 1.3.2. Solving the
renormalisation group equation, Eq. 1.5.1, at the lowest order gives:

αs(µ) = 2π

β0 log
(

µ
ΛQCD

) , (1.5.3)

where ΛQCD arises as an integration constant and is the same scale we used in
Section 1.3 to separate the perturbative physics of high energies from the non-
perturbative PDFs of low energies.

Finally, we mention that not all theories are renormalisable, i.e. to remove all
their UV divergences, we would need to add an infinite number of counterterms.
Fortunately for us, QCD is indeed renormalisable (as a matter of fact, the entire
Standard Model is renormalisable). As such, we can go ahead with our computation
of SM scattering amplitudes and be sure that at the end of the day, we will be
able to obtain UV-finite predictions. In Appendix C.1, we will demonstrate the UV
renormalisation procedure explicitly for the process considered in Chapter 3. For
further details of renormalisation and related topics, we refer the reader to any of
the standard QFT textbooks.

1.5.2 IR divergences and the KLN theorem

The soft and collinear IR divergences arise not only from the special regimes of
the loop momentum k of the virtual particles in Feynman integrals. In fact, the
so-called ‘real emission’ of particles provides complementary singularities. From the
experimental perspective, any detector is bound by a certain resolution — it is not
able to detect additional particles emitted below a certain energy (soft particles) or
distinguish between a group of aligned particles and a single particle carrying the
same collective momentum (collinear particles). Regions of phase-space in which
this happens lead to divergent phase-space integrals. However, the Kinoshita-Lee-
Nauenberg (KLN) theorem guarantees the cancellation of virtual IR singularities
by those stemming from real emission in amplitudes with fewer loops [20,21]. This
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happens order by order in perturbation theory, but contrary to the treatment of UV
divergences with renormalisation, only at the level of the cross section. Nonetheless,
as individual amplitudes are not physical observables, their IR-divergent behaviour
before phase-space integration should not seem concerning. We remark that the
KLN theorem leaves uncancelled the singularities arising from collinear emissions
from the initial-state partons. Collinear particles with transverse momentum below
a certain threshold µF , known as the factorisation scale, can be absorbed into the
‘bare’ PDFs fi(x). This leads to the ‘renormalised’ PDFs fi(x, µF ) of Eq. 1.3.2 which
run with µF . For more details, we refer the reader to Sections 7 and 9 of Ref. [22]
and to Ref. [6].

The IR pole structure of amplitudes with massless QCD partons (and an arbitrary
number of particles with no colour) was originally elucidated in Ref. [23] up to the two-
loop level. It was subsequently extended to cover arbitrary loop level in Refs. [24–26].
For a comprehensive review of the topic, we refer the reader to Ref. [27]. Very briefly,
it turns out that IR divergences can be obtained from lower-loop amplitudes and
appropriate ‘pole operators’. We will use this fact in Sections 3.2 and 4.2 to subtract
the IR poles from the (already renormalised) two-loop amplitudes for the processes
pp → bb̄H and pp → W±γj, such that the leftover quantity is manifestly free of
both UV and IR divergences. An explicit derivation of the IR-divergent parts will
be given in Appendix C.2.

1.5.3 Dimensional regularisation

At intermediate stages of the computation, i.e. before the cancellation of divergences
has taken place, it is useful to have a way of tracking and controlling these divergences.
It has become standard practice to regularise both IR and UV divergences by moving
away from integrals in d = 4 and analytically continuing the dimension to d = 4− 2ε
in a process known as dimensional regularisation1 [30,31]. For virtual corrections,
it amounts to replacing each integration measure as:

∫ d4kl

i π2 −→ µ2ε
∫ ddkl

i πd/2 , (1.5.4)

where the arbitrary regularisation scale µ is needed to keep the mass dimension of
the coupling constant fixed (it is usually set to µR). For real corrections, dimensional
regularisation instead modifies the dimensionality of the phase-space integration for
the cross section to d = 4− 2ε. Overall, the resultant integrals are now a function of

1It is also common to compute integrals around e.g. d = 6−2ε or d = 8−2ε as they are often IR
and/or UV finite. Then, such integrals can be related to the ones in d = 4− 2ε using dimensional
recurrence relations. See Refs. [28, 29] and references therein.
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ε and the UV/IR divergences appear as poles in their Laurent expansion in ε. Any
cancellations between terms can then be tracked through this dimensional regulator.
Typically, when computing scattering amplitudes we are interested only in terms up
to O

(
ε0
)

since the four-dimensional result is recovered by setting ε = 0 at the end1.

The continuation of the dimension of the loop momentum to a generic d introduces an
ambiguity related to the various states and their polarisation sums. Many choices are
possible for how to handle the Dirac algebra in the numerators, leading to multiple
regularisation schemes (RS). For example, in the popular ’t Hooft-Veltman (HV)
scheme which we will use in Chapters 3–5, internal states live in d dimensions, but
external states are strictly four-dimensional. It is important to remember that the
meaning of ‘internal’ and ‘external’ here is not what we would expect intuitively.
Fields corresponding to virtual particles (i.e. divergent loop integrals) or to real
emission (i.e. soft and collinear singularities in phase-space integrals) are called
internal (or singular), while all other fields are called external (or regular). Different
RS choices have various advantages, e.g. preserving supersymmetric Ward identities
or simplifying the expressions obtained in calculations. We refer the reader to
Refs. [32,33] for an overview of various regularisation schemes and a mathematically
rigorous treatment of the spaces in which particles live.

Finally, let us remark that the dimensionally regulated Feynman integrals satisfy
the following properties [34]:

• Linearity:∫
ddk [af1(k) + bf2(k)] = a

∫
ddk f1(k) + b

∫
ddk f2(k) , (1.5.5a)

where a, b are arbitrary constants.

• Translational invariance:∫
ddk f(k + q) =

∫
ddk f(k) , (1.5.5b)

where q is an arbitrary vector that can depend on the external momenta p, as
well as the loop momenta k (or both).

• Scaling: ∫
ddk f(λk) = λ−d

∫
ddk f(k) , (1.5.5c)

where λ is an arbitrary positive constant.
1A common exception to this rule is when an (l < L)-loop amplitude is meant to be multiplied

by the pole operator mentioned above in order to derive the pole structure of the L-loop amplitude.
Then, terms beyond O

(
ε0) are required, usually up to O

(
ε2).
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For now, we give these properties simply for completeness. However, as we will see
in Section 2.8, they will lead to an extremely powerful method of simplifying the
computation of scattering amplitudes.

A final note

Finally, we remark that the cross section itself follows a perturbative expansion
similar to Eq. 1.4.5:

dσ = αt
(
dσLO + α1dσNLO + α2dσNNLO + . . .

)
. (1.5.6)

It is important to remember that the terms in Eq. 1.4.5 and Eq. 1.5.6 are not in
one-to-one correspondence, since an n-particle, NkLO cross section might receive
contributions from an (n + i)-particle, (k − i)-loop amplitude, where 0 ≤ i ≤ k.
From the experimental perspective, real emission of extra soft or collinear particles
is indistinguishable from the genuine n-point process. Thus, it needs to be included
when calculating the cross section, which introduces singularities that are cancelled
out by the virtual corrections coming from diagrams with loops. As an example, the
two-loop, five-point amplitudes we compute in Chapter 3 are relevant not only to
the process pp→ bb̄H at NNLO, but also to pp→ b(b̄)H at N3LO (where one b-jet
is tagged) and pp→ H at N4LO.

Overall, it is clear that precision particle phenomenology requires us to push our
computational capabilities and include terms of increasingly higher order in Eq. 1.5.6.
This in turn means the inclusion of scattering amplitudes with more loops and more
legs, but both of these frontiers pose significant challenges. On one side, Feynman
integrals with a high number of closed loops are notoriously difficult to evaluate and
often lead to special functions that exhibit complicated behaviour and branch cuts.
On the other hand, the inclusion of extra particles (or internal masses) means a
more complicated kinematic setup, with additional scales that exacerbate algebraic
complexity. A tremendous body of work has been done by the community on both
fronts. The next chapter is dedicated to a detailed, yet by no means comprehensive,
description of the tools used to compute scattering amplitudes. The reward for our
effort will be the ability to compute high-multiplicity amplitudes at the cutting edge
of knowledge, with direct relevance to precision physics at the LHC and beyond.



Chapter 2

Tools for calculating scattering
amplitudes

In this chapter, we focus on various aspects of the computation of loop scattering
amplitudes for high-multiplicity processes. It is important to note that there is
currently no one-size-fits-all approach that would allow us to compute all the desired
amplitudes at a press of a button. In practice, we use a collection of methods that
are most appropriate for the task at hand. For processes at the limit of current
capabilities, these tools need to be further improved or replaced with novel ideas.
To this end, much work has been done by the theory community in recent years.
Unfortunately, due to the overwhelming algebraic and analytic complexity, many
calculations still present challenges beyond the reach of current technology. The
goal of this chapter is to provide an overview of the methods we adopt in amplitude
computations, as well as the problems that invariably follow. The procedure involves
several highly non-trivial steps. To help the reader retain the ‘big picture’ of the
workflow, we present its schematic outline in Fig. 2.1. Each step is discussed in more
detail below.

2.1 Feynman diagrams

The starting point of our amplitude computation for a given process is the generation
of all Feynman diagrams contributing to this process at the desired loop order. Feyn-
man diagrams provide a pictorial representation of the ways in which the interaction
can occur. At the same time, the corresponding Feynman integrals can be easily
recovered using Feynman rules, which can be derived from the Lagrangian of the
theory under consideration. As such, these diagrams are an indispensable tool of any
perturbative calculation. In practice, it can be observed that usually their number



28 Chapter 2. Tools for calculating scattering amplitudes

Feynman diagrams Colour decomposition Helicity amplitudes

Integrand reduction onto
maximal topologiesIBP reductionExpansion of MIs onto

a special function basis

Pole subtraction Finite remainder Reconstruction

QGRAF Mathematica/FORM

finite fields

d = 4− 2ε

ε→ 0

Figure 2.1: A schematic overview of the workflow we adopt to
compute scattering amplitudes.

grows faster than exponentially as we increase the loop order or multiplicity (see
Table 2.1 for an example). To handle the combinatorial complexity, we generate the
relevant Feynman diagrams using QGRAF [35]. This programme has the advantage
of granting the user a large degree of control over the output. For example, one can
constrain it to generate diagrams without self-energy insertions or with a specified
total power of the coupling constant.

2.2 Colour decomposition

Having generated the Feynman diagrams, we substitute the Feynman rules for the
propagators and vertices using Mathematica. At this point, our QCD amplitude
contains both colour and kinematic information. The idea of colour ordering is
to reorganise the amplitude such that these two components separate: a purely
kinematic part is multiplied by the corresponding colour factor. In other words,
we perform the decomposition of the full amplitude in colour space, according to a

n 1 2 3 4 5 6 7 8
n gluons – – 1 4 25 220 2485 34300

qq̄ + n gluons 1 3 16 123 1240 15495 231280 4016775

Table 2.1: Number of tree-level diagrams contributing to selected
processes with n gluons.
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chosen colour basis. Roughly speaking:

An =
∑

i

(colour)i × An i , (2.2.1)

where An i are the colour-ordered amplitudes (also known as colour-stripped or partial
amplitudes). The motivation behind this decomposition is that the colour-ordered
amplitudes turn out to be significantly simpler to calculate.

The choice of the colour basis is not unique. We adopt the decomposition according
to traces of the SU(Nc) generators in the fundamental representation. As an example,
let us look at 4-gluon scattering at tree-level. The s-channel diagram is:

Aa2
µ2(p2)

Aa1
µ1(p1) Aa4

µ4(p4)

Aa3
µ3(p3)

colour−−−→ fa1a2bf ba3a4 . (2.2.2)

The colour factor of this diagram can be expressed in terms of the generators using
Eqs. 1.2.7 and 1.2.10:

fa1a2bf ba3a4 = − 1
TF

(
tr[T a1T a2T a3T a4 ]− tr[T a1T a2T a4T a3 ]

− tr[T a1T a3T a4T a2 ] + tr[T a1T a4T a3T a3 ]
)
. (2.2.3)

The colour factors of the t- and u-channels can be expressed in a similar way.
Combining the contributions from the three channels and using the cyclicity of
the trace, we can organise the 4-gluon amplitude at tree-level as follows:

A(0)
4 = g2

s

(
tr[T a1T a2T a3T a4 ]A(0)

4 [1234] + permutations of (234)
)
, (2.2.4)

where we have factored out g2
s ≡ 4παs for convenience. In the general case, this

formula reads:

A(0)
n = gn−2

s

∑
σ∈Sn−1

tr
[
T a1T σ(a2 . . . T an)

]
A(0)

n [1 σ(2 . . . n)] , (2.2.5)

where the sum is over the set of all non-cyclic permutations of n−1 particles. Similar
colour decompositions can be derived for amplitudes involving quarks, as well as
beyond tree level [36]. At loop level, in addition to single-trace structures the colour
basis contains products of traces.

The colour-ordered amplitudes An are calculated by adding up the kinematic parts
of all Feynman diagrams contributing to a given colour factor. They are gauge
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invariant and satisfy a number of important identities [37–39]:

An[123 . . . n] = An[23 . . . n 1] , cyclicity, (2.2.6)
An[123 . . . n] = (−1)nAn[n . . . 321] , reflection, (2.2.7)
An[123 . . . n] + An[213 . . . n] + An[231 . . . n] + . . .+ An[23 . . . 1n] = 0 ,

U(1) decoupling, (2.2.8)
An[1, α, n, β] = (−1)|β|∑

σ∈OP ({α}∪{β
T })

An[1, σ, n] , Kleiss-Kuiff relations. (2.2.9)

In the last line, the sum runs over permutations in the joint set {α} ∪ {βT} such
that the order within the individual sets is preserved, and {βT} is the reversal of the
set {β}. Crucially, these properties allow us to reduce the number of independent
amplitudes that need to be computed. In fact, for n-gluon scattering, this number
is just (n− 2)! .

2.3 Helicity amplitudes

After colour decomposition, our colour-ordered amplitude contains purely kinematic
information. The kinematic part of the Feynman rules for external states carries
information about the spins and polarisations of particles: for massless spin-1/2
fermions, we use ± helicity states to differentiate between the two solutions to the
Dirac equation, while for massless spin-1 bosons, they denote the two polarisation
vectors. From the experimental perspective, we are rarely interested in differentiating
between the spin states of individual particles. Usually, a beam of particles with
random spins undergoes scattering and we look at the total number of products
outgoing in a certain direction. Thus, to calculate the corresponding cross section,
we should average over the initial spin states and sum over the final ones. This can
be achieved in two different ways:

1. Perform the amplitude calculation without specifying the helicity states, then
square the amplitude and do the spin sums that appear at the level of |A|2

using completeness relations of Eqs. 1.1.4 and 1.1.12.

2. Specify the helicity states of external particles, compute each helicity amp-
litude separately, square them and sum over all relevant helicity configurations.

In our approach, we will adopt the latter method. We denote an L-loop helicity
amplitude as:

A(L), {h}
n ≡ A(L)

n (1h12h2 . . . nhn) , (2.3.1)
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where the superscript {h} is understood as the set of helicities hi of the n particles,
but will be usually omitted since we will exclusively compute helicity amplitudes.
The full, spin-summed amplitude can then be recovered through:

A(L)
n =

∑
helicity

configurations

A(L), {h}
n . (2.3.2)

At the cross section level, we get:∣∣∣A(L)
n

∣∣∣2 =
∑

helicity
configurations

∣∣∣A(L), {h}
n

∣∣∣2 . (2.3.3)

It is important to note that this sum includes only the squares of individual helicity
amplitudes — there are no interferences between different helicity configurations.

There are several strong advantages to this approach. Firstly, we can see that the
number of terms that need to be processed is significantly smaller than in method (1).
Consider the expansion of an amplitude in the coupling constant α up to two loops:

A = A(0) + αA(1) + α2A(2) +O
(
α3
)
. (2.3.4)

Then, at the level of the cross section, we have the following contributions:

|A|2 = |A(0)|2 + α 2 Re
(
A(0)∗A(1)

)
+ α2

(
2 Re

(
A(0)∗A(2)

)
+ |A(1)|2

)
+ O

(
α3
)
.

(2.3.5)
Let us also schematically write each L-loop amplitude as a sum of mL Feynman
diagrams: A(L) = d

(L)
1 + d

(L)
2 + . . .+ d(L)

mL
. Then, at tree level:

∣∣∣A(0)
n

∣∣∣2 =
∑
hel.

confs.

∣∣∣A(0), {h}
n

∣∣∣2 =
∑
hel.

confs.

∣∣∣d(0) ,{h}
1 + d

(0) ,{h}
2 + . . .+ d(0) ,{h}

m0

∣∣∣2 . (2.3.6)

Each term in this sum has all helicities fixed and there are no spin sums to be
performed (when evaluated at a chosen phase-space point, it is just a complex
number). Thus, the number of terms we need to process at LO is m0nh, where nh is
the number of independent helicity configurations. On the other hand, according to
method (1), we have:∣∣∣A(0)

n

∣∣∣2 =
(
d

(0)
1 + d

(0)
2 + . . .+ d(0)

m0

) (
d

(0)∗
1 + d

(0)∗
2 + . . .+ d(0)∗

m0

)
, (2.3.7)

which means we need to interfere the diagrams with each other and perform the spin
sums. Thus, there are m2

0 terms to be processed. The scaling for higher loop orders
is listed in Table 2.2. For small L, the advantage of using helicity amplitudes might
be minimal (or in fact, it might be detrimental to do so). For L ≥ 2, however, the
advantage becomes apparent, especially that due to the symmetries of colour-ordered
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# terms L = 0 L = 1 L = 2
Method (1) m2

0 m2
0 +m0m1 m2

0 +m0m1 +m2
1 +m0m2

Method (2) m0nh (m0 +m1)nh (m0 +m1 +m2)nh

Table 2.2: Number of terms to be processed in the computation
of the squared amplitude |A|2 up to and including a given loop
order, assuming there are mL diagrams at L loops. The meaning of
methods (1) and (2) is explained above Eq. 2.3.1.

amplitudes, nh is usually much smaller than 2n. Moreover, it turns out that not all
helicity amplitudes are equally challenging to compute, as we will see in the next
section. In fact, a host of them vanish altogether (at least at tree level). We remark
that guided by experience, it is possible to choose the reference vectors of external
polarisations such that the computation of the non-zero amplitudes becomes easier.
Helicity amplitudes can also provide us with more information about the scattering
process, for example when working with polarised cross sections. In Chapters 4
and 5, we will see how we can use them to attach the decay current of the W boson
and an off-shell photon, respectively, to an amplitude with an off-shell leg in order
to obtain an amplitude for a fully on-shell process at a higher multiplicity.

When dealing with helicity amplitudes, it is conventional to introduce nomenclature
encoding the number of positive/negative helicity particles involved in the pro-
cess. Consider 2→ (n− 2) gluon scattering where the outgoing momenta all have
opposite helicities to the incoming ones: 1−2− → 3+ . . . n+. We call such a con-
figuration ‘helicity violating’. We can cross particles 1 and 2 to the final state,
which changes their helicities: 0 → 1+2+ . . . n+. This corresponds to the ‘all-plus’
amplitude An(1+2+ . . . n+) with all momenta outgoing. In the next section, we
will show that for gluon scattering at tree-level, this amplitude vanishes for all n.
If we flip one helicity in the final state: 1−2− → 3− . . . n+, this corresponds to
An(1+2+3−4+ . . . n+), which also turns out to vanish at tree-level. The first non-zero
configuration is 1−2− → 3−4− . . . n+, which corresponds to: An(1+2+3−4−5+ . . . n+).
For this reason, amplitudes with exactly two negative helicity particles are called
maximally helicity violating (MHV). Similarly, amplitudes with exactly two
positive helicities are known as anti-MHV. Furthermore, configurations with 2 + k

negative/positive helicities are referred to as NkMHV/anti-NkMHV. Tree-level MHV
amplitudes are remarkably simple, as we will demonstrate in the next section.
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2.4 Spinor helicity formalism

In Section 1.1, we saw that for massless particles, the Dirac spinor splits into two
Weyl spinors that do not mix and are associated with the helicity of the particle.
Therefore, we might be tempted to think that helicity amplitudes are better described
using a notation specific to the two-component Weyl spinors, which are acted on by
the familiar Pauli matrices. Indeed, the powerful spinor-helicity formalism provides
a neat way to express helicity amplitudes based on these considerations1.

As a first step, let us see how we can move from working with the four-component
objects to two-component ones. We can write a ‘slashed’ momentum /p as:

/p = pµγ
µ = pµ

 0 (σµ)aḃ

(σ̄µ)ȧb 0

 ≡
 0 paḃ

pȧb 0

 , (2.4.1)

with both dotted and un-dotted indices running over {1, 2} and (σµ)aḃ ≡ (1, σi),
(σ̄µ)ȧb ≡ (1, −σi), where σi are the three Pauli matrices. The momentum bispinors
pȧb and paḃ can be thought of as (2× 2) matrices and it is easy to show that:

det paḃ = det pȧb = m2 . (2.4.2)

For massless particles, this determinant vanishes and the matrix can be expressed
as an outer product of two vectors2. The vectors we will choose are the momentum
space Weyl spinors λa and λ̃ȧ (sometimes referred to as helicity spinors). They are
the two-component, left- and right-handed equivalents of the u(p) and v(p) Dirac
spinors with the corresponding helicities − and +, respectively. We thus write:

paḃ = λaλ̃ḃ , pȧb = λ̃ȧλb , (2.4.3)

and the raising and lowering of indices is achieved through:

λa = εabλb , λ̃ȧ = εȧḃλ̃ḃ , (2.4.4)

with the two-dimensional Levi-Civita tensor defined as:

εab = εȧḃ = −εab = −εȧḃ =
 0 1
−1 0

 . (2.4.5)

In practice, it can be rather cumbersome to keep track of the dotted and un-dotted
1In case the notation that follows appears daunting, we refer the reader to Ref. [40] for an

in-depth discussion of the topic and useful exercises.
2The determinant of a matrix is 0 only if its column/row vectors are linearly dependent, which

for a (2× 2) matrix implies that its rank is 1. A rank-1, (n×m) matrix can always be expressed
as the outer product of two non-zero vectors of length n and m.
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indices, as well as their lower or upper positions at the spinors. It is more intuitive
to trade this notation for spinor brackets1:

λa → |p]a , λ̃ȧ → 〈p|ȧ ,

λa → [p|a , λ̃ȧ → |p〉ȧ . (2.4.6)

We can then write Eq. 2.4.1 as:

/p = |p〉 [p| , /p = |p] 〈p| , (2.4.7)

while the massless Dirac equation becomes the massless Weyl equation:

/p|p〉 = 0, /p |p] = 0 . (2.4.8)

In the above, /p is a small abuse of the ‘slashed’ notation — what it really means is
a contraction of pµ with σµ or σ̄µ, rather than γµ. The appropriate Lorentz vector
can be chosen by looking at the indices of the square/angle spinors that pµ is acting
on. However, the power of spinor-helicity formalism lies in the fact that in practice,
we do not ever need to perform such explicit summation over indices and instead
we work with identities at the level of angle and square brackets. Introducing the
shorthand notation |i〉 ≡ |pi〉, |i] ≡ |pi]:

〈ij〉 ≡ 〈i|ȧ|j〉ȧ, [ij] ≡ [i|a |j]a . (2.4.9)

It is straightforward to show that because the indices are raised and lowered using
the Levi-Civita symbol, these brackets must be antisymmetric:

〈ij〉 = −〈ji〉, [ij] = −[ji] . (2.4.10)

We can also formulate angle-square or square-angle brackets as follows:

〈ikj] ≡ 〈i|/k |j] , [ikj〉 ≡ [i| /k|j〉 . (2.4.11)

To choose the right /k from Eq. 2.4.7, we just need to remember that 〈ik] = [ik〉 = 0.
These brackets can be extended to arbitrary lengths by inserting additional slashed
momenta inside. We note some very useful identities:

〈ii〉 = [ii] = 0 by antisymmetry (2.4.12a)
sij = −〈ij〉[ij] (for massless momenta) (2.4.12b)

[ij]∗ = 〈ji〉 (for real momenta) (2.4.12c)

1The choice of assignment of dotted/undotted indices and angle/square brackets to either λ
or λ̃ is arbitrary. Different conventions are seen throughout literature — the only requirement is
internal consistency.
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n∑
i=1
|i] 〈i| =

n∑
i=1
|i〉 [i| = 0 momentum conservation (2.4.12d)

|i〉〈jk〉+ |j〉〈ki〉+ |k〉〈ij〉 = 0 Schouten identity (2.4.12e)
〈i|γµ |i] = 2pµ

i Gordon identity (2.4.12f)
〈i|γµ |j] = [j| γµ|i〉 (2.4.12g)
〈i|γµ |j]∗ = 〈j|γµ |i] (for real momenta) (2.4.12h)

〈i|γµ |j] 〈k|γµ |l] = −2〈ik〉[jl] Fierz identity . (2.4.12i)

Naturally, the Schouten, Gordon and Fierz identities also hold if we exchange all
angle and square brackets. Wherever γµ appears, it is understood as either σµ or
σ̄µ, as explained earlier.

In addition to massless fermions, we need to be able to write the polarisation vectors
of massless spin-1 bosons in the spinor-helicity language. They have to obey the
following identities:

p · ε±(p, q) = 0 , (2.4.13a)
q · ε±(p, q) = 0 , (2.4.13b)

ε±(p, q) · ε±(p′, q) = 0 , (2.4.13c)
ε±(p, q) · ε∓(p′, p) = 0 , (2.4.13d)
ε∗

±(p, q) · ε±(p, q) = −1 . (2.4.13e)

To find compatible expressions for the polarisation vectors, we note that setting
p′ = p in Eq. 2.4.13c gives ε±(p, q) ·ε±(p, q) = 0. This allows us to decompose εµ into
an outer product of two vectors, in analogy to Eq. 2.4.3. To this end, we introduce
a light-like reference vector qµ and write:

εµ
−(p, q) = 〈p|γ

µ |q]√
2[pq]

, εµ
+(p, q) = 〈q|γ

µ |p]√
2〈qp〉

. (2.4.14)

The choice of the reference vector is arbitrary (apart from the condition qµ 6∝ pµ),
which reflects gauge invariance. We can see this by noting that the Weyl spinors are
two-component objects and can be decomposed as |r〉 = 〈rq〉

〈pq〉 |p〉 −
〈rp〉
〈pq〉 |q〉. Therefore,

any shift in q must be of the form q → Aq + Bp, where A,B are constants. Then,
from Eq. 2.4.14 (and using Eq. 2.4.12f), it is easy to see that this shift will correspond
to εµ → εµ + Cpµ. For the amplitude to be Lorentz invariant, we need pµAµ = 0,
where Aµ is the amplitude stripped of its polarisation vectors. This is the famous
Ward identity for massless gauge bosons, which can be understood as a momentum-
space statement of gauge invariance. In practice, it is useful to choose qµ such that
contracting εµ with external momenta leads to the formation of vanishing spinor
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brackets, thus greatly simplifying the algebra.

At this point, we have all the tools we need to express any amplitude of massless
fermions and spin-1 bosons through the angle and square brackets. Its usefulness,
however, may not be immediately clear, especially given the notation which at
first appears daunting. As a quick demonstration of the power of spinor-helicity
formalism, let us consider the special case of 3-particle kinematics. For any three
massless momenta satisfying pµ

1 + pµ
2 + pµ

3 = 0, we have:

〈12〉[21] = s12 = p2
3 = 0 . (2.4.15)

Thus, either 〈12〉 = 0 or [12] = 0. If we assume 〈12〉 is non-vanishing, then by
momentum conservation and the massless Weyl equation:

〈12〉[23] = 〈1|/2 |3] = −〈1|(/1 + /3) |3] = 0 . (2.4.16)

Thus, [23] = 0 and in an analogous manner, we can show that [13] = 0 as well. Had
we assumed [12] 6= 0, we would have found that all angle brackets vanish instead:

[12] = [13] = [23] = 0 or 〈12〉 = 〈13〉 = 〈23〉 = 0 . (2.4.17)

Therefore, for 3-particle massless kinematics, the amplitude must depend on either
square or angle brackets only. However, note that this result makes sense only if
we work with complex momenta. Otherwise, through Eq. 2.4.12c, the angle and
square brackets are complex conjugates of each other and so both types must vanish
simultaneously. Amplitudes constructed from complex momenta are of course not
physical, nonetheless they provide a useful building block for higher-point amplitudes
in recursive techniques.

2.4.1 Little group scaling

In the previous section, we saw that the freedom in choosing the reference vector qµ

reflects gauge invariance of the amplitude. Here, we will see how another physical
principle places strong constrains on the form of helicity amplitudes. We begin
by observing that when trading the Weyl spinors for the bracket notation, there
is some freedom in how exactly we write down Eq. 2.4.6. That is, note that both
paḃ = |p]a 〈p|ḃ and pȧb = |p〉ȧ [p|b are invariant under the transformation:

|i〉 → z|i〉, |i]→ z−1 |i] ∀z ∈ C . (2.4.18)

This is known as little group scaling. Each external momentum has its own little
group transformation. This implies the following relations for spin-1 massless boson
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polarisations in Eq. 2.4.14:

εµ
−(p, q)→ z2εµ

−(p, q), εµ
+(p, q)→ z−2εµ

+(p, q) . (2.4.19)

Note that the polarisation vectors are invariant under such rescalings of the reference
momenta. Thus, for scattering of massless particles, the little group scaling of the
corresponding amplitude is determined by the helicities of the external particles.
Specifically, if we rescale the spinor brackets associated with the momentum pi, the
amplitude scales according to:

An (. . . , {pi, hi}, . . .)
|i〉→zi|i〉−−−−−→

|i]→z
−1
i |i]

z
−2hi
i An (. . . , {pi, hi}, . . .) , (2.4.20)

where hi = ±1
2 for fermions and hi = ±1 for massless spin-1 bosons. It turns out

that this property places a strong constraint on the spinor bracket expression of the
amplitude. We will consider tree-level 3-gluon scattering as a basic example. We
have already seen that for 3-particle massless kinematics, the amplitude must be
written in terms of angle or square brackets only, but we do not know the general
form of the expression. Let us rescale all three momenta with separate shifts z1, z2, z3

in an MHV configuration. Then:

A
(0)
3 (1−2−3+)→ z2

1z
2
2z

−2
3 A

(0)
3 (1−2−3+) . (2.4.21)

Assuming that this amplitude depends only on angle brackets:

A
(0)
3 (1−2−3+) ∝ 〈12〉x12〈13〉x13〈23〉x23 . (2.4.22)

We can then substitute Eq. 2.4.18 into Eq. 2.4.22 and compare with the expected
scaling, Eq. 2.4.21. Solving for the exponents, we get {x12 = 3, x13 = −1, x23 = −1}.
An identical exercise can be performed (assuming square brackets this type) for the
anti-MHV amplitude A(0)

3 (1+2+3−), leading to an analogous result. Therefore, the
3-point gluon amplitudes are fixed (up to an overall constant) by the special 3-point
kinematics and little group scaling:

A
(0)
3 (1−2−3+) = κ1

〈12〉3

〈23〉〈31〉 , A
(0)
3 (1+2+3−) = κ2

[12]3

[23][31] . (2.4.23)

We also note that flipping all helicities corresponds to exchanging 〈ij〉 ↔ [ji] 1. With
a wrong choice of the bracket type in Eq. 2.4.22, one can show by considering the
mass dimension of the amplitude that the couplings κ1 and κ2 would have to come

1Note the reversed order of momenta. Upon a parity transformation, all square brackets are
swapped for angle brackets and vice versa, together with their dotted/undotted indices. For
example, 〈ij〉 = 〈i|ȧ|j〉

ȧ ↔ |i]a [j|a = [j|a |i]a = [ji] = −[ij] .
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from terms in the Lagrangian that are non-local1. We thus reject them as unphysical.
Moreover, the same argument can be used to show that the (−−−) and (+ + +)
configurations must have vanishing amplitudes:

A
(0)
3 (1−2−3−) = 0, A

(0)
3 (1+2+3+) = 0 . (2.4.24)

In fact, the simplicity we have seen so far generalises to higher-point gluon amplitudes.
With a smart choice of reference vectors, it can be shown that:

A(0)
n (1−2− . . . n−) = 0, A(0)

n (1+2+ . . . n+) = 0 , (2.4.25)

as well as:

A(0)
n (1+2− . . . n−) = 0, A(0)

n (1−2+ . . . n+) = 0 . (2.4.26)

The first non-vanishing amplitudes are the MHV/anti-MHV configurations:

A(0)
n (1+2+ . . . i− . . . j− . . . n+) = 〈ij〉4

〈12〉〈23〉 . . . 〈n1〉 , (2.4.27)

A(0)
n (1−2− . . . i+ . . . j+ . . . n−) = (−1)n [ij]4

[12][23] . . . [n1] . (2.4.28)

This result is known as the Parke-Taylor formula [37,41]. It can be proved inductively
using the BCFW recursion relations [42, 43], with the 3-point MHV amplitudes of
Eq. 2.4.23 serving as the starting point. Overall, it is now clear that the spinor-helicity
formalism, together with little group scaling and locality of the Lagrangian, produce
astonishingly compact results for amplitudes which are traditionally calculated as
sums of hundreds or thousands of Feynman diagrams.

2.5 Momentum twistors

In the previous section, we have seen that the spinor-helicity formalism provides
a convenient framework to describe helicity amplitudes. By using spinor brackets,
which are intrinsically tied to helicity, we were able to exploit the properties of the
amplitudes to arrive at remarkably neat expressions. Nonetheless, this formalism
comes with certain drawbacks. Firstly, note that kinematic identities such as mo-

1The mass dimension of An in d = 4 is 4 − n. From Eq. 2.4.7, we see that both 〈 〉 and [ ]
must have mass dimension 1. Thus, the constants κ1 and κ2 in Eq. 2.4.23 have mass dimension 0,
which is consistent with the fact that they must have come from the 3-gluon interaction term in
the Lagrangian of Eq. 1.2.2, ~AµAν∂µAν . Had we assumed incorrect bracket types, both constants
would need to have dimension 2. Thus, the corresponding term in the Lagrangian would be
~AµAν ∂µ

� Aν , which is non-local (it describes an interaction whose effects become more important
with distance).
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mentum conservation are not automatically satisfied by the spinor brackets. We
can in theory use the properties listed in Eq. 2.4.12 to arrive at a minimal set of
these variables. In practice, however, this proves to be cumbersome, especially for
high-multiplicity processes. Moreover, the appearance of square roots complicates
our computational setup, which will be made clear in the next section. We would
therefore like to have a parametrisation of external kinematics which solves both
these problems simultaneously.

In recent years, many amplitude computations have exploited objects known as
momentum twistors (MTs) [44–46], which we will now introduce. As the first step,
we define dual-space coordinates xµ

i as:

pµ
i = xµ

i − x
µ
i+1 . (2.5.1)

Using the massless Weyl equation, Eq. 2.4.8, and the ‘slashed’ notation in the sense
of Eq. 2.4.1, it then follows that:

[µi| ≡ 〈i|/xi = 〈i|/xi+1 , (2.5.2)

The new variables allow us to define the momentum twistors ZI
i :

ZI
i =

 |i〉
[µi|

 . (2.5.3)

where the index I is understood as I = {ȧ, a}. We can also express [i| in terms of
ZI

i . To this end, the dual twistor is defined as:

WA
i =

|µi〉
[i|

 =
εABCDZ(i−1)BZiCZ(i+1)D

〈i− 1, i〉〈i, i+ 1〉 , (2.5.4)

where εABCD is the 4-dimensional Levi-Civita symbol. We can then expand this
equation and read off the last two components:

[i| = 〈i, i+ 1〉 [µi−1|+ 〈i+ 1, i− 1〉 [µi|+ 〈i− 1, i〉 [µi+1|
〈i− 1, i〉〈i, i+ 1〉 . (2.5.5)

Each ZI
i has four components, thus the matrix of all MTs has 4n entries for n-particle

scattering. However, not all of them are independent. Firstly, MTs are invariant
under the 10-dimensional Poincaré group. Additionally, they exhibit the U(1) sym-
metry as well, for each particle separately. We can see this from Eq. 2.5.2, which
implies that under the little group scaling of |i〉 → ti|i〉, with ti ∈ C, the MTs scale
as: Zi → tiZi. At the same time, this transformation does not affect the underlying
momentum pµ

i , thus Zi are defined projectively. Overall, the number of independent
variables needed to generate all Zi for n-particle scattering is 4n−10−n×1 = 3n−10.
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The momentum twistors1 Zi, together with their dual equivalents Wi, serve as a
useful way to generate numerical phase-space points according to the following recipe:

1. Fill the twistor matrix ZI
i , i = 1, . . . , n with random rational numbers.

2. Compute the dual twistor matrix W I
i .

3. Read off spinors |i〉 and [i|.

4. Calculate the momenta according to the Gordon identity, pµ = 1
2 [i| γµ|i〉.

Phase-space points generated in this manner are complex and rational. We can
also populate the twistor matrix with rational functions instead. The corresponding
phase-space parametrisation is guaranteed to automatically implement momentum
conservation and the Schouten identity. However, there is no algorithmic way of
choosing these functions such that the corresponding parametrisation leads to the
simplest possible amplitude expressions. We will present several judicious choices in
subsequent chapters.

A small drawback of using the MTs is that they lose the phase information carried by
the spinor brackets |i〉 and [i|. This is because in reducing the number of independent
variables from 4n to 3n− 10, imposing the symmetries essentially fixes the frame in
which we evaluate the kinematics. Thus, strictly speaking, only phase-free expres-
sions can be obtained in terms of MTs. On the other hand, each helicity amplitude
is a ‘phase-full’ quantity, thus we need to restore this information at the end of our
computation. This can be achieved by multiplying our amplitude written using MTs
by any factor with the same phase content as the amplitude, then dividing by the
MT expression of this factor. In practice, we most often choose this factor to be the
spinor-bracket expression of the tree-level amplitude for the corresponding helicity.

2.6 Finite fields

In the previous section, we have introduced a new, minimal set of independent
variables that automatically implement constraints such as momentum conservation.
Moreover, they may help us rationalise at least some of the square roots that appear
in our kinematics. This was not just an elegant mathematical exercise. It turns out
that MTs provide us with a powerful framework that goes hand in hand with yet
another tool we employ in amplitude computations.

1In amplitude jargon, the term ‘momentum twistors’ most often refers to the 3n−10 independent
variables, rather than the Zi’s themselves. We will also adopt this terminology below.
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2.6.1 Rational numbers

The problem of enormous algebraic expressions plagues almost every calculation
in QFT. At the same time, sweeping cancellations often occur, leading to much
more compact answers. Indeed, we have already seen how at tree level the MHV
gluon amplitudes can be described by remarkably simple expressions, despite the
fact that they come from hundreds, if not thousands, of Feynman diagrams. A key
idea that has emerged over the past several years is to avoid this complexity at
the intermediate stages of the computation by working with numerical expressions
instead [47–52]. Crucially, the analytic dependence can still be recovered from the
numerics at the very end of the calculation. In this section, we introduce the concept
of finite fields and show how it can be used to our advantage.

A finite field is a field with a finite number of elements. We are interested in finite
fields of non-negative integers:

Zn = {0, . . . , n− 1} , (2.6.1)

where n is referred to as the size of the field. In particular, we will work with fields
whose size is a large prime number p, as prime fields satisfy many properties which
make the corresponding arithmetic especially simple. Basic operations, such as
addition, subtraction and multiplication, are defined over Zp through the standard
modular arithmetic mod p. We can also define a multiplicative inverse b ∈ Zp for all
a 6= 0 ∈ Zp:

a−1 ≡ b mod p ⇐⇒ ab ≡ 1 mod p . (2.6.2)

In fact, the existence of the inverse for all non-zero a is guaranteed only for prime
fields. We can see this by considering the following set:

S = {a, 2a, 3a, . . . , (p− 1)a} . (2.6.3)

Now, note that for any two integers x, x′ such that: x 6≡ x′ mod p, we have:

a(x− x′) 6≡ 0 mod p (a 6= 0) . (2.6.4)

However, this holds only because gcd(a, p) = 1. It follows that the set S mod n

contains all unique, non-zero elements of Zp, one of which must be 1. This proves
the existence of the multiplicative inverse for all a 6= 0 (it can be calculated using the
‘extended Euclidean algorithm’, see e.g. Ref. [53]). Consequently, we can conclude
that rational operations over Zp are well-defined. Moreover, it allows us to define a
map from rational numbers to the prime field, Q→ Zp . For q = x

y
∈ Q :

q mod p =
(
x× (y−1 mod p

)
mod p . (2.6.5)
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This map is not invertible, since it maps infinitely many elements of Q onto the
finite set Zp. Nonetheless, the rational numbers q can be recovered from their
image in Zp with a very high probability using Wang’s algorithm [54, 55]. This
process is referred to as rational reconstruction. We remark that this algorithm
is successful if |x|, |y| <

√
p/2 . Therefore, p should be chosen sufficiently large so

that it is possible to reconstruct all rational numbers appearing in the problem.
However, as x, y grow in size, this defeats the purpose of using finite fields in the
first place, which was to keep the size of numbers below a certain bound imposed
by modular arithmetic mod p . Moreover, from the practical point of view, we
want to use the efficiency of machine-size integers, which means we are usually
constrained to p < 264. Fortunately, rational numbers exceeding such thresholds
can be reconstructed without using prohibitively large prime fields. This is due
to the ‘Chinese remainder theorem’: knowledge of the congruences of an integer x
modulo {n1, n2, . . . , nk}, where all the ni are pairwise co-prime, allows us to obtain
the congruence of x modulo n1n2 . . . nk. The same idea holds even for our map
Q→ Zp. Thus, by calculating several congruences:

q ≡ ap1 mod p1,

q ≡ ap2 mod p2,

...
q ≡ apk

mod pk , (2.6.6)

we can obtain:
q ≡ ap1p2...pk

mod (p1p2 . . . pk) . (2.6.7)

Hence, combining the images of q over several prime fields Zpi
allows us to use

Wang’s algorithm on Zp1p2...pk
and successfully reconstruct q ∈ Q.

2.6.2 Rational functions

So far, we have seen how we can exploit finite fields to keep the size of numerical
expressions from growing throughout our computation1. It should not come as a
surprise that this concept can be extended to allow for the reconstruction of not
only rational numbers, but also rational functions in multiple variables.

Let us consider the so-called ‘black box interpolation problem’. Suppose we have a
set of n variables x = {x1, x2, . . . , xn}. These variables will serve as the arguments of
a rational function f(x). In general, the analytic form of f is obtained by applying

1An alternative approach would be to use floating-point numbers instead of rational numbers,
however this would quickly lead to issues with precision.
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a series of rational operations on x . We do not know f analytically at any of these
steps, however we assume that we have a way of implementing them numerically

— this is what we call the ‘black box’. Specifically, the numerical operations will
be done over a prime field Zp. We start by evaluating the variables x at random
numerical values in Zp. We then apply the rational operations represented by f ,
all within the same prime field. After passing through this black box, the result is
a number within that field, which we denote as f(x) mod p. Therefore, we have
obtained one sample point of the analytic result, which corresponds to the initial
values we chose for x.

The key idea of finite field methods is that it is possible to reconstruct the full
analytic dependence of f(x), with coefficients of xi in Q, by sampling it in this
manner at multiple points. The first step of this procedure is in essence a linear fit
problem. Any multivariate rational function can be written as:

R(x) =
∑

α aαxα∑
β bβxβ . (2.6.8)

Here, aα, bβ ∈ Zp are coefficients of the multivariate monomials xα:

xα =
n∏

i=1
x

αi
i , (2.6.9)

and α denotes a collective set of exponents α = {α1, α2, . . . , αn}. It is also useful
to define the total degree of the monomial as the sum of all its exponents:

deg(xα) ≡ |α| =
n∑

i=1
αi . (2.6.10)

In the context of a rational function, the total degree deg
max

(f) is understood as the
maximal total degree of any of its monomials.

With this representation of f(x) in Eq. 2.6.8, we can try to reconstruct its analytic
dependence from the numerical samples over the prime field Zp. In a very naive
approach, we would construct the most general ansatz covering all possible monomials
up to degree deg

max
(f). We make this explicit by writing the ansatz as:

R(x) =

∑
α: |α|≤u

aαxα

∑
β: |β|≤v

bβxβ , (2.6.11)

where we have abbreviated the numerator/denominator total degrees as u = deg
max

(num(f))
and v = deg

max
(den(f)). We can then formulate a system of linear equations in aα, bβ

by evaluating both the monomials xα in the ansatz and the black box function f(x)
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at chosen values xj in Zp:
∑

|α|≤u

aαxα
j − f(xj)

∑
|β|≤v

bβxβ
j = 0 j ∈ {1, . . . , |R(x)|} . (2.6.12)

Finding the values of these coefficients requires solving the system using linear algebra
methods. In order for the system to close, we need to perform such evaluations on as
many sample points as the number of ansatz terms, |R(x)|. This is far from optimal,
since such a generic ansatz grows rapidly with both the degree as well as the number
of variables. In fact, one can show that the number of ansatz terms is [56]:

|R(x)| =
u+ n

n

+
v + n

n

 . (2.6.13)

Since the time complexity of the corresponding Gaussian elimination is O
(
|R(x)|3

)
,

this can prove prohibitively expensive. As an example, in practice we will be dealing
with cases such as six-variable functions with u = 30, v = 10, which gives |R(x)| ≈
2× 106. Row reducing such a system is simply not feasible. Another complication
arises due to the fact that in general, even though the black box operations are
implemented numerically over finite fields, obtaining each evaluation of f(x) in the
field Zp might still take a long time due to the number and complexity of these
operations. We refer to this as the ‘evaluation time per point’.

Overall, it is clear that if we want to efficiently interpolate a rational function from its
evaluations over finite fields, we need to decrease the number of needed sample points.
Besides, in most applications the polynomial degrees u and v are not known a priori,
so it is difficult to construct an ansatz in the first place. Fortunately, we can make use
of more elaborate interpolation methods1. For univariate polynomials, the strategy
is based on Newton’s polynomial representation [57]. This method is particularly
useful in cases where the total degree is not known, as it allows for the inclusion
of higher-degree terms until their coefficients are found to be 0, at which point the
iterative procedure terminates. For univariate rational functions, we distinguish
between two further cases based on whether the degrees u and v are known or not.
If they are known, it turns out that the naive ansatzing described above performs
well enough, as for n = 1 the ansatz length |R(x1)| in Eq. 2.6.13 is sufficiently small
to allow for efficient row reduction of the system. Finally, if the degrees are not
known, the reconstruction strategy is based on a rational generalisation of Newton’s
polynomial formula known as Thiele’s interpolation formula [57].

Multivariate reconstruction from finite fields can be achieved as well. For multivariate
polynomials, it is sufficient to apply the univariate Newton’s formula recursively.

1For a detailed description of these methods and their implementation, see Ref. [47].
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That is, a multivariate polynomial P (x) is first treated as a univariate polynomial
in x1 with coefficients that are polynomials in x2, x3, . . . , xn. These coefficients then
become the subject of (n− 1)-variable reconstruction and so forth. Reconstructing
multivariate rational functions is significantly more complicated. The strategy is also
based on a recursive use of Newton’s formula, but with some important modifications.
We refer the reader to Refs. [47,58] for details.

Having completed the interpolation through one of the methods above, the only thing
left to do is to recover the monomial coefficients in Q from their images aα, bβ ∈ Zp

using Wang’s algorithm. As explained earlier, if one prime field Zp1 is not enough,
we can always perform the interpolation in another field Zp2 and combine these
results with the Chinese remainder theorem to obtain the interpolation in Zp1p2 . In
this way, a rational function with arbitrarily large coefficients can be recovered. The
reconstruction time can be estimated according to:

Reconstruction time ≈ (number of sample points)× (evaluation time per point) .
(2.6.14)

It is of great practical importance to reduce both these factors as much as possible,
which renders the reconstruction of complicated rational functions possible. We will
elaborate on this topic in subsequent chapters.

Let us make three final remarks. Firstly, we emphasise that the reconstructed
function is minimal in terms of the numerator and denominator degrees, that is
gcd (num(f), den(f)) = 1. Note that this is also needed for the reconstruction
ansatz to be unique. Secondly, in our applications we can make the reconstruction
problem easier by reducing the number of variables by one. That is, we will usually
set s12 = 1 and recover its analytic dependence a posteriori through dimensional
analysis. Finally, recall that in the computation of amplitudes, we often have to deal
with the presence of square roots in the kinematics associated with the amplitude.
This is a problem, because it is not always possible to take a square root of a field
element a ∈ Zp. Specifically, for a field of size p > 2, there are only (p + 1)/2
so-called quadratic residues, i.e. integers a such that the congruence x2 ≡ a mod p

has a solution [59]. This fact is easy to understand as we can actually enumerate all
the residues. Note that this equation admits two solutions, since it is equivalent to
(x−b)(x+b) ≡ 0 mod p =⇒ x ≡ ±b mod p, where b2 = a. Thus, the set of solutions
{bi} ∈ Zp will lead to distinct quadratic residues only if no two bi are negatives of
each other in the field. This constrains us to the first half of the elements, i.e.
{0, 1, 2, . . . , (p− 1)/2}. Indeed, if we try to add another solution, (p+ 1)/2, it would
square to the same residue as (p− 1)/2, because b2

i ≡ (p− bi)2 mod p and we have
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precisely p− (p+ 1)/2 ≡ (p− 1)/2 mod p. Thus, the full set of distinct residues is:{
02, 12, . . . ,

(
p− 1

2

)2}
. (2.6.15)

This fact implies that we can take the square root of a field element almost exactly
50% of the time. One approach to dealing with the other half is to simply reject
the points for which the expressions under the square roots do not correspond to
residues and repeat the black-box sampling procedure at another point1. However,
in practice we find it convenient to deal with the square roots in a different manner,
which will be explained in detail in Chapters 3 and 4.

Overall, we have seen that any algorithm which can be expressed as a chain of rational
operations can be implemented over finite fields. This applies to both pure rational
numbers, as well as analytic expressions in the form of rational functions. This
turns out to be tremendously useful, since many of the steps required in amplitude
computations are precisely such rational transformations. By exploiting the finite
field methods, we can entirely circumvent the analytic complexity in the intermediate
stages, yet still enjoy the exact cancellations that occur, since we are not forced to
resort to floating-point numbers. The otherwise insurmountable task of computing
a function analytically has been replaced by the much simpler task of providing its
fast numerical evaluation over finite fields. Armed with this knowledge, we can move
on to the next steps in our procedure.

2.7 Reduction onto maximal topologies

Before we begin, let us briefly summarise what we have learnt so far about our work-
flow for computing scattering amplitudes (see Fig. 2.1). We started by generating
all Feynman diagrams that contribute to a desired loop amplitude. We then decom-
posed this amplitude in colour space and defined a new object, the colour-ordered
amplitude, by considering only the diagrams which contribute to a particular colour
factor. We then specified the helicities of external fermions and bosons in the so-
called helicity amplitudes. We have learned that not all such amplitudes are equally
challenging to compute (in fact, some will vanish or be free of divergences) and due
to symmetries, we will not even have to compute all possible helicity configurations.
We subsequently decided to employ a language which naturally captures the helicity
information of the particles, that is the spinor-helicity formalism. However, we have
also seen that it suffers from several drawbacks which can be remediated by one
last variable change — into MTs. Not only does this parametrisation of external

1It is also possible to adjoin the needed square roots to the finite field, i.e. Zp → Zp (
√

a) .
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(a) (b) (c)

Figure 2.2: Examples of diagram topologies associated with five-
particle Feynman diagrams. It is easy to see that topologies (a)
and (b) can be obtained from the maximal topology (c) by pinching
some of its propagators.

momenta automatically satisfy kinematic identities of Eq. 2.4.12, but it also allows
us to rationalise some of the square roots we need to deal with. Last, but not least,
we have also learnt that by performing numerical calculations over finite fields, we
can bypass the analytic complexity which typically characterises QFT problems. At
this point, the task of computing a colour-ordered helicity amplitude for n-particle
scattering amounts to computing loop integrals of the form:

A(L)
n

(
1h1 , 2h2 , . . . , nhn

)
=

∑
T ∈topologies

[
L∏

l=1

(
µ2ε

R

∫ ddkl

i πd/2

) ∑
i ci(p)×mi(k, p)∏

t∈T Dt(k, p)

]
.

(2.7.1)
The general structure of this formula can be understood simply by considering the
QCD Feynman rules and all the possible Lorentz contractions that follow from them.
The main sum runs over distinct integral topologies, that is sets of inverse propagators
Dt associated with a given Feynman diagram (see Fig. 2.2 for a few examples). Each
inverse propagator depends on external momenta p, as well as one or more loop
momenta k, which act as the integration variables for the d-dimensional integrals
(see Sec. 1.5). In the numerator of each topology, we have a sum of monomials mi of
both loop and external momenta, multiplied by coefficients ci(p) that depend only on
the external momenta p. The monomials are composed of scalar products ki ·kj, ki ·pj;
as well as the spinor brackets 〈i|ki |j] , 〈i|ki pM |j〉, [i| ki pM |j] , where pM denotes a
massive momentum, p2

M = M2 6= 0. Similar objects appear in their coefficients,
but because they do not contain any dependence on the loop momenta, we will
usually express their external kinematics through the MTs x = {x1, . . . , x3n−10}, i.e.
ci(p) ≡ ci(p(x)). This ensures the coefficients are parametrised through a minimal
set of variables and can be processed using the finite field framework. In fact, all the
remaining steps in our workflow that deal with the computation of the coefficients
will be implemented over finite fields.

We point out that not all topologies contributing to each helicity amplitude are
independent, in the sense that some topologies can be written as subtopologies of
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others. This is illustrated in Fig. 2.2. It is clear that topologies (a) and (b) can be
viewed as subtopologies of topology (c) with a few propagators absent. Topologies
with the maximum number of propagators allowed for L-loop, n-particle kinematics
are referred to as maximal topologies. All other topologies can be obtained from them
by ‘pinching’ appropriate propagators. Thus, the next step in our procedure is to
express all topologies which contribute to Eq. 2.7.1 as subtopologies of these maximal
topologies. Moreover, after this mapping we will seek to write the monomials mi(k, p)
in terms of the inverse propagators of the target maximal topology. In this way,
we will remove the loop momentum dependence from the numerators, so that the
amplitude will be a linear combination of scalar integrals over the maximal topologies,
with rational coefficients of external kinematics parametrised by the MTs.

2.7.1 Parametrising the loop momenta

Let us now discuss the aforementioned reduction of the amplitude onto scalar in-
tegrals. The key idea is to decompose the loop momenta in a D-dimensional space
spanned by a carefully chosen set of basis vectors. We start by splitting each k(D)

into the 4 and (−2ε)-dimensional parts:

k(D) = k(4) + k(−2ε) . (2.7.2)

Here and below, we have suppressed the Lorentz index for readability. Let us focus
on the 4-dimensional part first. We would like it to be spanned by the 4-dimensional
external momenta pi. However, due to momentum conservation, in an n-particle
scattering process only n− 1 momenta can be linearly independent. Thus, they can
span at most an (n − 1)-dimensional subspace, which we refer to as the ‘physical’
space (labelled using ‖). For n > 4, the 4-dimensionality of pi further restricts the
number of independent momenta to exactly 4. For n ≤ 4, the remainder of the
4-dimensional space needs to be completed by constructing 4 − (n − 1) = 5 − n

‘spurious’ vectors (labelled using ω). Their explicit representation is not unique and
we are free to choose any vectors satisfying the following orthogonality conditions1:

ωi · pj = 0 , ωi · ωj = 0 . (2.7.3)

The decomposition in Eq.2.7.2 then becomes:

k(D) = k(4), ‖ + k(4), ω + k(−2ε) . (2.7.4)

1It is also common to impose a stronger condition of orthonormality between the spurious space
vectors, ωi ·ωj = δij . However, this may require us to introduce square roots in their normalisations,
leading to problems when using the finite field approach.
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The spurious and (−2ε)-dimensional spaces taken together are often referred to as
the ‘transverse’ space. All three subspaces appearing in Eq. 2.7.4 are orthogonal to
each other, hence we can write:

k(D) · k(D) = k(4), ‖ · k(4), ‖ + k(4), ω · k(4), ω + k(−2ε) · k(−2ε) . (2.7.5)

Overall, we parametrise each loop momentum k
(D)
i according to:

k
(D)
i =

min(n−1, 4)∑
a=1

αiapa︸ ︷︷ ︸
k

(4), ‖
i

+
5−n∑
b=1

βibwb︸ ︷︷ ︸
k

(4), ω
i

+ k
(−2ε)
i . (2.7.6)

To find the parameters α, we take the scalar products of this equation with external
momenta. On the LHS, we express the products1 k

(D)
i · pj in terms of the inverse

propagators Dt(k, p) belonging to the maximal topology we have mapped our integral
onto. It turns out, however, that in certain cases not all such scalar products can
be expressed through the inverse propagators. The remaining products are then
referred to as the ‘irreducible scalar products’ (ISPs). They need to be included in
order to define a full integral family. More precisely, a simple counting argument
shows that ISPs are needed when [60]:

L ≥ max(2, 7− 2n) , (2.7.7)

where n and L are the number of legs and loops in a given Feynman diagram. Thus,
for self-energy diagrams (n = 2), ISPs appear at L ≥ 3, while for any process with
n ≥ 3, they appear already at L = 2. We point out that we will never encounter
ISPs at L = 1, no matter the number of external legs.

Returning back to Eq. 2.7.6, taking its scalar products with pj, but also wj and
k

(D)
j , produces a system of equations linear in α and β, which we can invert to

determine these parameters. This step can also be incorporated into the finite field
framework, for example using FiniteFlow’s linear solver [48]. The parameters α
in the physical space are then functions of the inverse propagators and potentially
the ‘physical ISPs’ introduced above, while the parameters β in the spurious space
are functions of the ‘spurious ISPs’, k(4), ω

i · wj. We also introduce a shorthand
notation for the scalar products between the (−2ε)-dimensional parts of the loop
momenta, µij ≡ −k

(−2ε)
i · k(−2ε)

j . Having determined the free parameters in Eq. 2.7.6,
we substitute this loop momentum decomposition into the numerator of the integral.

1Since we work in the HV scheme and the spurious space is orthogonal to the physical one,
k

(D)
i · pj = k

(4)
i · pj = k

(4), ‖
i · pj .
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p1 p2

p3p4

k1

Figure 2.3: One-loop massless box Feynman diagram. The corres-
ponding denominators are given by Eq. 2.7.8.

As an example, consider the one-loop box diagram with massless propagators and ex-
ternal momenta, Fig. 2.3. It has the following inverse propagators {D1, D2, D3, D4}:

{k2
1, (k1 − p1)2, (k1 − p1 − p2)2, (k1 + p4)2} . (2.7.8)

With L = 1 and n = 4, our parametrisation in Eq. 2.7.6 is:

k
(D)
1 = α11p1 + α12p2 + α13p3 + β11ω1 + k

(−2ε)
1 . (2.7.9)

Taking the scalar products of this equation with p1, p2, p3 and ω1, we find the following
parameters α1i and β11:

α11 = − s23

2s12s13
D1 + s13 + s23

2s12s13
D2 + s12 − s13

2s12s13
D3 −

1
2s13

D4 + s23

2s13
+ 1 ,

α12 = 1
2s12

D1 −
s13 + s23

2s12s23
D2 + s12 + s13

2s12s23
D3 −

1
2s23

D4 + 1
2 ,

α13 = 1
2s13

D1 + s13 − s23

2s13s23
D2 −

s12 + s13

2s13s23
D3 + s12

2s13s23
D4 −

s12

2s13
,

β11 = k
(4), ω
1 · ω1

ω2
1

. (2.7.10)

We can then substitute the parametrisation of Eq. 2.7.9 into the numerator monomi-
als associated with any topology that can be expressed as a subtopology of the
one-loop box in Fig. 2.3. For example:

〈1|/k(D)
1 |2] =

3∑
a=1

α1a〈1|/pa
|2]

= α13〈13〉[32] . (2.7.11)

The first line follows from the orthogonality properties of the loop momentum decom-
position, while in the second we have imposed the massless Weyl equation, Eq. 2.4.8.
We then collect the result in Dt, whose coefficients are given by rational functions
of external kinematics only. As another example, the square of the loop momentum
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will contain the spurious and (−2ε) terms:

k
(D)
1 · k(D)

1 3 (k(4), ω
1 · ω1)2

ω2
1

− µ11 . (2.7.12)

Most generally, such substitutions will also lead to the appearance of the phys-
ical ISPs, provided the condition in Eq. 2.7.7 is satisfied. Typically, we want to
avoid performing the substitution analytically due to the high rank of monomials
in Eq. 2.7.1 and the complexity of their coefficients. Fortunately, it can also be
performed numerically as an additional step in our finite field workflow.

In summary, the numerators of the Feynman integrals will contain the following
four types of terms after we substitute the parametrisations of Eq. 2.7.6 into them:
the inverse propagators Dt, the physical ISPs, the spurious ISPs and the extra-
dimensional scalar products µij. Let us now discuss how to eliminate the last two
types. For processes where n > 4, the external momenta span the 4-dimensional
space and there is no need to introduce the spurious space. In this case, each µij can
be traded for Dt and the physical ISPs using the orthogonality relation, Eq. 2.7.5.
On the other hand, if n ≤ 4, the spurious ISPs and µij can still be eliminated
using so-called ‘transverse integration’. This can be done in two different ways: one
alternative is to perform the transverse integration only in its spurious part, retaining
µij dependence which can be later removed through dimension-shifting relations [61].
In short, integrals with µij can be expressed as integrals of the same kinematic
configuration, but in higher dimensions [62]. This can improve their IR behaviour,
often leading to integrals which are finite or even vanish in the limit ε → 0. The
second alternative is to perform the integration over the full transverse space, i.e.
including the spurious and the (−2ε)-dimensional space. This completely removes
the scalar products µij from the integrands, albeit at the cost of introducing an
explicit dependence on ε. In our work, we follow this latter approach, even though
it means that our finite field setup will now depend on one more variable, making
the analytic reconstruction a bit more complicated. For examples of transverse
integration, we refer the reader to Ref. [63], as well as to Sections 3.4 and 3.5 of
Ref. [64].

Overall, we are left with only the first two types of terms in the numerators: the
inverse propagators Dt associated with the given maximal topology we map our
integral onto, as well as the physical ISPs needed to cover any possible scalar product
ki ·pj at this loop order and multiplicity. This completes the definition of an integral
family. The Dt terms will of course cancel out with their counterparts in the
denominators. What remains are either purely scalar integrals, i.e. with numerators
equal to 1, or integrals with numerators built from (monomials of) the physical ISPs.
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Any coefficients of such terms will depend on the external kinematics and ε only
and can be factored outside of the integrals. Once again, we remark that due to our
rational parametrisation of external momenta, all the steps described in this section
can be seamlessly integrated into the finite field workflow.

2.8 Integration-by-parts relations

Thanks to the effort in the previous section, the helicity amplitudes we need to
compute are now expressed as a sum of loop integrals in the following form:

A(L)
n

(
1h1 , 2h2 , . . . , nhn

)
=
∑
T ∈

maximal
topologies

∑
ν

eT,ν(p(x), ε)
[

L∏
l=1

(
µ2ε

R

∫ ddkl

i πd/2

)
1∏

t∈T D
νt
t (k, p)

]
.

(2.8.1)
Here, we have made the dependence of Dt on the exponents νt explicit. As explained
earlier, the index t must now run over not only the inverse propagators associated
with a given maximal topology, but also the physical ISPs that were introduced to
build a complete integral family. Overall, each element in the square brackets is a
d-dimensional integral defined by its maximal topology T and a set of exponents ν.
We write:

I
(L)
T (ν1, ν2, . . .) =

L∏
l=1

(
µ2ε

R

∫ ddkl

i πd/2

)
1∏

t∈T D
νt
t (k, p) , (2.8.2)

where νt ≥ 0 if Dt is an inverse propagator and νt ≤ 0 if Dt is an ISP. As one
might expect, not all IT are linearly independent. Within each family, it turns
out we can reduce these integrals onto a basis of so-called master integrals (MIs),
which we denote as MIT . The problem of identifying such a basis and computing
the reduction coefficients of each IT onto that basis is one of the most important
steps in our workflow. However, it also turns out to be extremely computationally
expensive. In the next few sections, we introduce the reader to the concept of
integration-by-parts reduction, as well as to the related concepts of differential
equations, uniform transcendentality and symbols. These key ideas are crucial not
only from the computational perspective, but also provide an insight into the analytic
structure of the amplitudes.

2.8.1 A brief introduction to IBP relations

We start by making the following observation: the routing of the loop momentum
k in Feynman integrals is arbitrary. It can be shifted by the external momenta or
even by another loop momentum (in the case of multi-loop integrals) — the value of
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the integral does not change. Surprisingly, this simple fact leads to powerful results.
To see this, consider an integrand f(k) and let us shift k → k + λq, where λ is a
small constant and q is an arbitrary momentum. First, assume that qµ = pµ. Then,
by translational invariance, Eq. 1.5.5b:∫

ddk f(k) =
∫

ddk f(k + λp) . (2.8.3)

Expanding the integrand for small λ, we have:
∫

ddk f(k) =
∫

ddk

[
f(k) + λpµ∂f(k)

∂kµ +O
(
λ2
)]
. (2.8.4)

Thus, at O (λ): ∫
ddk

∂(pµf(k))
∂kµ = 0 , (2.8.5)

where we deliberately moved pµ into the derivative.

In fact, the same equation holds even if qµ = kµ and the derivation is very similar.
In this case, note that due to the scaling relation Eq. 1.5.5c:∫

ddk f(k) = (1 + λ)d
∫

ddk f(k + λk) . (2.8.6)

Expanding for small λ:
∫

ddk f(k) =
(
1 + λd+O

(
λ2
)) ∫

ddk

[
f(k) + λkµ∂f(k)

∂kµ +O
(
λ2
)]
. (2.8.7)

Collecting terms at O (λ):
∫

ddk

[
kµ∂f(k)

∂kµ + d f(k)
]

=
∫

ddk
∂(kµf(k))

∂kµ = 0 , (2.8.8)

where we have moved kµ into the derivative by using ∂kµ/∂kµ = δµ
µ = d. Eqs. 2.8.5

and 2.8.8 also hold for any linear combination of external and loop momenta. Thus,
for a generic q: ∫

ddk
∂(qµf(k))

∂kµ = 0 . (2.8.9)

In other words, within dimensional regularisation, the boundary terms vanish. This
property is the basis of the so-called integration-by-parts (IBP) relations [65]. The
idea is to use Eq. 2.8.9 to generate a system of equations between d-dimensional
Feynman integrals I(L)

T (ν1, ν2, . . .) of Eq. 2.8.2. Each such identity leads to a relation
between integrals within the same integral family T , but with different exponents
ν (for plenty of worked out examples, see Chapter 5 of Ref. [66] or Chapter 6 of
Ref. [67]). Therefore, we can use these identities to lower or raise the indices until
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we arrive at a simpler integral1. Originally, this reduction was done by hand through
tedious analysis of all identities. This of course becomes infeasible, since the number
of required identities grows quickly with the loop order and number of external
particles. On the other hand, modern computations typically employ the Laporta
algorithm, which provides an algorithmic way of reducing integrals to MIs by solving
a finite linear system of identities using Gaussian elimination [69]. Many computer
programmes based on the Laporta algorithm — often in combination with other IBP
algorithms — are publicly available, e.g. AIR [70], LiteRed [29, 71], FIRE [72, 73],
Kira [74, 75] and Reduze [76, 77].

The IBP system is under-determined, which means that the values of the MIs cannot
be determined from it. However, we can express any integral included in the system
as a linear combination of these MIs, with their coefficients being rational functions
of the kinematics and the dimension d (usually expressed as d = 4 − 2ε). The
rationality is an important property in the context of our finite field tools in Sec. 2.6.
Very often, the growth of coefficients at the intermediate stages of the IBP reduction
poses a computational bottleneck. For this reason, it is extremely useful to be able to
exploit numerical arithmetic over finite fields in order to bypass this complexity [48].

We remark that in practice it is common to force the algorithm to reduce the families
onto a predetermined MI basis. This is because — while the choice of MIs is arbitrary

— some choices turn out to be better than others, in the sense that the integrals
satisfy certain properties that make them more elegant and also easier to evaluate.
We will explore this idea further in Section 2.9. The definitions of such predetermined
MIs can be added as additional equations to the IBP system. It is then possible to
assign a lower weight to these integrals during Gaussian elimination, which means
that they will be preferably chosen as the independent variables [48].

In order to decide which integrals are considered ‘simpler’, it is useful to define
the concept of sectors. A sector θ = {θ1, . . . , θN}, where N is the total number
of propagators and ISPs in the family, with θi ∈ {0, 1}, is the set of points ν =
{ν1, . . . , νN} in the lattice ZN such that:

H
(
νi −

1
2

)
= θi i ∈ {1, . . . , N} , (2.8.10)

where H(x) is the Heaviside step function. For example, an integral defined by the
indices ν = {1, 0, 2, 1} belongs to the sector θ = {1, 0, 1, 1}, while ν = {1, 0, 2,−1}
belongs to θ = {1, 0, 1, 0}. For the case N = 2, it is straightforward to visualise

1Let us remark that there exist other kinds of integral identities, such as Lorentz-invariance and
homogeneity relations (for details, see Refs. [29,60,68]). In fact, they can be shown to be equivalent
to linear combinations of the IBP relations. Nonetheless, they can still be useful in practice. They
are typically appended to the ‘raw’ IBP system and make it less under-determined.
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(a) Each point (ν1, ν2) in the lattice
Z2 corresponds to the d-dimensional
Feynman integral I(ν1, ν2). The lat-
tice is divided into sectors as defined
through Eq. 2.8.10. They are ordered
as θI > θII , θIII > θIV . In particu-
lar, sector θIV is trivially 0.
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(b) A hypothetical reduction pathway
within the top sector θI . An integral
I(5, 4) is reduced to the master integral
MI(1, 1) through a series of IBP relations
lowering the denominator exponents.

Figure 2.4: A lattice of points visualising the integrals and sectors
used in the IBP reduction (N = 2).

how sectors divide the lattice Z2 (see Fig. 2.4a). In general, the sector with the
maximal number of distinct propagators, i.e. θ = {1, 1, . . . , 1}, is known as the ‘top
sector’, while sectors with progressively more θi = 0 become ‘subsectors’ of the top
sector and of each other1. The strictly non-positive sector θ = {0, 0, . . . , 0} vanishes.
Furthermore, the point ν = {θ1, . . . , θN} is called the ‘corner point’ of sector θ. A
useful result is that if the integral at the corner point of a sector is 0, then the whole
sector is also 0 [68]. It is now possible to order (albeit not uniquely) the sectors
θ with respect to each other, as well as the integrals IT (ν) within each sector. It
is natural to think of sectors with fewer unique denominators as simpler. Thus,∑N

i=1 θi defines an ordering between the sectors. In the N = 2 example, we say
that the sector {1, 1} is higher than its subsectors {1, 0} and {0, 1}, which are both
higher than their subsector {0, 0} (which vanishes anyway). However, sectors {1, 0}
and {0, 1} are equal. Within such equal sectors, we can define further criteria, for
example based on the total power of the denominators, followed by the total power
of the ISPs, etc. With the help of an arbitrary ordering, we can replace higher IT (ν)

1Strictly speaking, in the case of families with ISPs, the top sector will contain a mixture of 0s
and 1s, where the zeros are in the position of the ISPs.



56 Chapter 2. Tools for calculating scattering amplitudes

p1 p2

p3p4

k1

Figure 2.5: One-loop box Feynman diagram Ibox(1, 1, 2, 1) with
a ‘dotted’ propagator. The corresponding denominators are:
{k2

1, (k1 − p1)2,
(
(k1 − p1 − p2)2

)2
, (k1 + p4)2} .

by lower ones through the IBP reduction procedure, as visualised in Fig. 2.4b. It
should not be surprising that the set of MIs remaining after this reduction depends
on the ordering. We remark that, depending on our needs, it is possible to choose
an ordering that leads to an ISP-free basis or conversely a dot-free basis, i.e without
propagators raised to powers ≥ 2 (see Fig. 2.5).

Overall, IBP relations allow us to express each helicity amplitude of Eq. 2.8.1 in
terms of a much smaller number of integrals:

A(L)
n

(
1h1 , 2h2 , . . . , nhn

)
=

|MI|∑
i=1

gi(p, ε)×MIi(p, ε) , (2.8.11)

where |MI| denotes the total number of linearly independent MIs in all the famil-
ies. Once again, the coefficients are functions of external kinematics, as well as the
dimensional regulator ε. We emphasise that the step of IBP reducing the integrals
involved in the amplitude can also be implemented over finite fields. In particu-
lar, the IBP system generated within the Laporta algorithm can be solved using
FiniteFlow’s linear solver (for details, see Section 5 of [48]). This is an important
simplification, since analytic IBP reduction often proves to be the bottleneck of the
whole computation.

Moreover, in many applications, we will be dealing with multiple permutations of
the maximal topologies appearing in Eq. 2.8.1. In such cases, it is advantageous to
implement an optimised strategy for obtaining the IBP solution in the permuted
families, which is particularly powerful when used in conjunction with finite field
techniques. It allows us to reduce the time and computational cost of the IBP
reduction. We invite the reader to familiarise themselves with Appendix A, where
we present this strategy in detail. We will exploit it when computing the QED
amplitudes of Chapter 5.
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2.9 Differential equations

Differential equations (DEs) satisfied by Feynman integrals were studied even be-
fore the invention of the IBP reduction technique (see, for example, Refs. [78, 79]).
However, it was these two concepts combined together that led to the development
of a powerful method for evaluating the MIs [28, 80–83]. The idea is as follows. If
we differentiate an integral IT (ν) with respect to the Mandelstam invariants, sij, or
internal masses, m2

i , we will obtain a linear combination of integrals within the same
family T , but with different exponents ν ′. These new integrals IT (ν ′) can then be
IBP reduced onto the MIs of family T . Thus, if we apply the differentiation to the
MI basis itself, we will obtain a set of first-order partial DEs (one for each kinematic
variable). It is convenient to group the MIs as a vector #  »MI. We then have:

∂
#  »MI
∂λ

= Aλ(Λ, ε) #  »MI , (2.9.1)

where λ ∈ Λ ≡ {sij,m
2
i } are the independent kinematic variables and Aλ is a

(|MI| × |MI|) matrix. Its entries are rational functions of Λ and ε, which is due to
the nature of IBP relations. It is also common to work with the total differential
rather than partial derivatives:

d #  »MI =
∑

λ

∂ #  »MI
∂λ

 dλ , (2.9.2)

as well as to define:
dA =

∑
λ

Aλdλ . (2.9.3)

Then, the system of DEs can be written as:

d #  »MI = dA(Λ, ε) #  »MI . (2.9.4)

Naturally, to solve this equation, we also need to provide boundary values. Some-
times, it can be convenient to use the values of MIs at a special kinematic point, for
example where one of the variables in Λ vanishes or is equal to another kinematic
variable. There, the MIs may become easier to evaluate.

2.9.1 The ε-form

In general, solving the DEs satisfied by MIs is hard. Note however, that typically we
are interested in only the first few coefficients of the Laurent expansion of Eq. 2.9.4
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around ε = 0. Consider a change of basis:

#  »MI→ #  »MI′ = B
#  »MI , (2.9.5)

where B is an arbitrary matrix that can depend on Λ and ε. Under this transforma-
tion, the partial DEs become:

∂
#  »MI′

∂λ
=
(
∂B

∂λ
B−1 +BAλB

−1
)

#  »MI′ . (2.9.6)

A key conjecture due to Ref. [84] is that it is always possible to choose B such that:(
∂B

∂λ
B−1 +BAλ(Λ, ε)B−1

)
= ε Ãλ(Λ) . (2.9.7)

That is, with an appropriate transformation, the ε dependence factorises out of the
matrices, which now contain only kinematic dependence. Note, however, that they
might contain algebraic (i.e. non-rational) factors such as square roots. Overall,
Eq. 2.9.1 becomes:

∂
#  »MI′

∂λ
= ε Ãλ(Λ) #  »MI′ , (2.9.8)

while Eq. 2.9.4:
d #  »MI′ = ε dÃ(Λ) #  »MI′ . (2.9.9)

This is known as DEs in the ‘ε-form’ 1. We will henceforth drop the superscript ′ on
the vector of MIs as we will always be dealing with DEs in this form. In particular,
Eq. 2.9.9 admits a solution in terms of the path-ordered exponential:

#  »MI(Λ, ε) = P exp
(
ε
∫

γ
dÃ
)

#  »MI(Λ0, ε) , (2.9.10)

where γ : [0, 1] → C|Λ| is a path in the space of the kinematic invariants, with
Λ = γ(1) and Λ0 = γ(0). We remark that the integral is independent of the path
taken as long as the two paths can be continuously deformed into each other without
crossing the poles of the DEs. Because the solution is expressed through a series
expansion of the matrix exponential, it is easy to see that the MIs are obtained as
iterated integrals of Ã. Given the Laurent expansion of the MI vector:

#  »MI(Λ, ε) =
∞∑

k=0
εk #  »MI(k)(Λ) , (2.9.11)

1Several packages exist for transforming the DEs into the ε-form. See Fuchsia [85], Libra [86],
INITIAL [87] and CANONICA [88]. See also [89] for a comprehensive review of different techniques.
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we can insert it into Eq. 2.9.10 and series expand both its sides in ε. Then, the
order-by-order DE solution becomes:

#  »MI(k)(Λ) =
k∑

j=0

∫
γ

dÃ · . . . · dÃ︸ ︷︷ ︸
j times

· #  »MI(k−j)(Λ0) . (2.9.12)

The integrals:∫
γ

dΩ1 · . . . · dΩj =
∫ 1

0

∂Ωj(γ(tj))
∂tj

dtj
∫ tj

0

∂Ωj−1(γ(tj−1))
∂tj−1

dtj−1 · · ·
∫ t2

0

∂Ω1(γ(t1))
∂t1

dt1 ,

(2.9.13)
where dΩi are exact one-forms, are known as Chen’s iterated integrals (CIIs) [90].
We refer the reader to Refs. [91,92] for a thorough discussion of their properties. The
empty CII, i.e. Eq. 2.9.13 for j = 0, is defined as 1. Finally, we point out that we
can assume that the Laurent expansion in Eq. 2.9.11 starts from ε = 0, because the
DEs are insensitive to a rescaling of the integrals by a factor which does not depend
on the kinematics. Thus, the MIs can be normalised to be finite, which moves any
potential singularities at ε = 0 into their coefficients.

2.9.2 The d log form and Goncharov Polylogarithms

Overall, we see that the MIs at O
(
εk
)

are given by sums of up to k-fold integrals.
The integration kernels are determined by the structure of the matrices Ã, which
deserves further discussion. Let us consider the singularities of the DEs. It can
be shown, for example by studying the Feynman parameter representation, that
Feynman integrals cannot contain so-called essential singularities, e.g. singularities
of the form e1/λ = 1+1/λ+1/(2!λ2)+ . . . at λ = 0. In particular, for each singularity
λ∗, the leading behaviour of Feynman integrals is ∼ (λ − λ∗)α for some power α.
This strongly constrains the form that the corresponding DE matrices can take [93].
Specifically, we expect them to have simple poles of the form ∼ α/(λ − λ∗) for
each λ∗. The ε-form DEs of Eqs. 2.9.8 and 2.9.9 satisfying this additional ‘fuchsian’
property are referred to as ‘canonical DEs’ 1.

Furthermore, in many cases of practical interest, it is possible to construct MI bases
which result in DEs in the so-called ‘d log form’:

dÃ =
|w|∑
i=1

ai × d logwi . (2.9.14)

1In practice, when constructing canonical DEs, we might encounter spurious double poles or
higher. For one-variable problems, they can be algorithmically removed by a suitable basis change
which leaves the DEs with only simple poles in this variable. However, for multi-variable problems,
it is a conjecture that this can be achieved simultaneously for all variables (see Ref. [89] for details).
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Here, wi are known as ‘letters’ (note that sometimes the differentials d logwi are
referred to as letters instead), while their collection w = {w1, w2, . . .} is the ‘alpha-
bet’. The matrices ai contain rational numbers only, free of any kinematic and ε

dependence. The letters play a central role in the analysis of DEs in the d log form,
since they control their singularities and determine which class of special functions
the MIs are written in terms of. As mentioned before, in general the kinematic
dependence of Ã might no longer be rational, as the transformation Eq. 2.9.5 needed
to bring DEs into canonical form might introduce non-rational functions into the
definitions of the corresponding canonical MIs. In this case, the letters wi are algeb-
raic functions of Λ. However, if the form of Eq. 2.9.14 can be reached using rational
transformations only, the letters are also rational functions. Then, it is particularly
easy to write down the order-by-order solution in Eq. 2.9.12, as the iterated integrals
become the well-known Goncharov Polylogarithms (GPLs)1 [94–96]:

Gn(a1, a2, . . . , an;x) =
∫ x

0

dt
t− a1

Gn−1(a2, . . . , an; t) , (2.9.15)

with the ‘empty’ GPL:

G0(;x) =

0 if x = 0 ,

1 if x 6= 0 .
(2.9.16)

Here, despite the somewhat suggestive notation, the indices ai do not have to be
numbers and are considered fully-fledged arguments of Gn, alongside x. The length
of the vector ~a = (a1, . . . an), i.e. |~a| = n, is called the weight (or depth) of Gn. The
GPLs are related to the usual logarithms through:

Gn(a, a, . . . , a;x) = 1
n! logn

(
1− x

a

)
if a 6= 0 , (2.9.17a)

Gn(0, 0, . . . , 0;x) = 1
n! logn x . (2.9.17b)

Aside from this special case of GPLs, the complexity of the integration kernels can
be estimated by studying the maximal cuts of the relevant Feynman integrals [97–99].
More generally, the letters might not be rational, or the kernels overall might not
be of the d log form. Then, more complicated functions appear in the solution of
the DEs. For example, the presence of internal masses in the Feynman diagrams
often leads to Elliptic Multiple Polylogarithms (eMPLs). We refer the reader to
Refs. [100–105] for a discussion of eMPLs and also to Refs. [106–108] for a closer
look at their application to Higgs+jet production with quark mass dependence.

1Also known as Multiple Polylogarithms (MPLs).
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2.9.3 Uniform transcendentality

When talking about the canonical DEs, it is also useful to introduce the idea
of ‘transcendentality’. For an iterated integral f , its transcendental weight T is
simply the number of iterated integrations needed to define f [84]. For example,
T (log x) = 1, while T (Gn(a1, . . . , an; x)) = n. From this definition, it follows
that T (f1f2) = T (f1) + T (f2), but note that T (f1 + f2) cannot be defined un-
less T (f1) = T (f2). Furthermore, algebraic functions and constants have weight 0.
Transcendental constants which can be obtained as values of transcendental func-
tions at algebraic arguments have the corresponding weight, e.g. T (π) = 1, since
log(−1) = ±iπ and T (i) = T (−1) = 0, while T (ζ(n)) = n, since ζ(n) = Lin(1) (for
n > 1)1. It is also convenient to assign T (ε) = −1. With this choice, it is clear that
every term in the solution of Eq. 2.9.10 has the same transcendental weight. This
property is referred to as ‘uniform transcendentality’ (UT). A simple example of a
UT function is f(x) = 1 + ε(log x + π) + ε2(log2 x + G2(1, 1; x)), with T (f) = 0.
Additionally, UT functions satisfying a more stringent condition:

T (df) = T (f)− 1 , (2.9.18)

are known as ‘pure’ function. In practice, this means that a pure function cannot
contain algebraic factors that are not constant — while they do not affect the
transcendental weight of a function, they affect the DE it satisfies2. As an example,
the function f(x) = log(x)/x+ iπ is UT, but not pure. It immediately follows that
the iterated integral solution to the ε-form DEs is built out of pure functions. The
reverse is also true: given a pure basis of MIs, the DEs they satisfy will be in the
ε-form. In practice, when constructing a MI basis, we can verify the validity of the
ε-free matrices Ãλ in Eq. 2.9.8 by checking the following conditions:

[Ãλi
, Ãλj

] = 0 , (2.9.19a)
∂λi
Ãλj
− ∂λj

Ãλi
= 0 , (2.9.19b)∑

λ∈Λ
λ Ãλ = diag([MI1], [MI2], . . .) , (2.9.19c)

where the sum runs over all kinematic scales and [MIi] is the mass dimension of MIi.
The first two equations follow from integrability conditions, while the last one follows
from Euler’s homogeneous function theorem. Finally, we point out an interesting
observation on the nature of dimensionally regulated amplitudes (see e.g. Ref. [109]).
For a Laurent expanded L-loop amplitude in d = 4− 2ε, it is conjectured that the

1Here, Lin(z) are the classical polylogarithms, which we discuss in Appendix B.
2Note that in literature, the term ‘UT’ is often implicitly taken to mean ‘pure’.
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External masses Type Topology Publications

0 planar penta-box [110–114]

non-planar hexa-box [113–119]
double-pentagon [113,114,120]

1 planar penta-box [98,111,121,122]

non-planar hexa-box [99,121,123,124]
double-pentagon [125]

Table 2.3: Selected works relevant to the computation of two-loop,
five-point pure MI bases. All propagators are massless.

O
(
εk
)

term contains functions of transcendental weight up to 2L+ k. For example,
to calculate a two-loop amplitude up to O

(
ε0
)
, we need to supply the MI expansions

up to weight 4. It is expected that in N = 4 Super Yang-Mills theory, this bound is
saturated, i.e. functions of weight exactly 2L+ k are required.

Overall, pure integrals have played a central role in the derivation and evaluation of
MI bases relevant to this thesis, that is bases for processes with a high number of
kinematic scales. For future convenience, in Table 2.3 we collect (without claiming
to be exhaustive) the publications dealing with the MI bases for two-loop, five-
point processes with up to one external mass and massless propagators. Finally,
before moving on, we invite the reader to familiarise themselves with the content of
Appendix B, which introduces the notion of a ‘symbol’. It is yet another concept
related to the study of DEs satisfied by Feynman integrals and we aim to show its
usefulness through several illustrative examples.

2.10 Evaluating master integrals

After a rather lengthy excursion into the world of IBPs and DEs, let us remind
ourselves where we currently stand in the workflow for computing amplitudes presen-
ted in Fig. 2.1. Having written down the helicity-dependent numerators of each
colour-ordered amplitude, we were faced with the task of integrating an enorm-
ous number of tensor integrals that belong to many integral topologies. Then, in
Section 2.7, we mapped all these integrals onto integrals within significantly fewer
maximal topologies. We then built a system of IBP relations for each of these
maximal topologies and reduced the integrals further onto a manageable set of MIs.
In principle, we can now end the amplitude computation. Our result is written
in terms of rational coefficients of external kinematics and ε, which are trivial to
evaluate over the full phase space, while the MIs that these coefficients multiply are
in general functions that are extremely hard to compute analytically and that exhibit
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a complicated branch cut structure. As we will see in the next section, there are
good reasons why we typically extend our workflow and express the MIs in terms of
appropriately chosen special functions. However, it is entirely possible to work with
the amplitude at the level of MIs. Indeed, in some cases we have no other choice,
since the expansion of the relevant MIs into special functions may not be known.
Having phenomenological applications in mind, we list below a few methods which
allow us to evaluate these MIs numerically at chosen kinematic points. In fact, we
will use the last two in subsequent chapters.

• Sector decomposition: This method relies on the parametrisation of integ-
rals in terms of the Feynman parameters and the U and F Symanzik polyno-
mials. The integration phase space of the parameters is split into sectors and
subsectors based on a relative ordering between the parameters. This allows
us to resolve the singularities present in the integrals and place them in simple
functions that can be integrated analytically. What remains to be computed
are the coefficients of the ε poles. They receive contributions from finite integ-
rals only and are computed numerically [126,127]. There exist several public
codes implementing this algorithm [128–131].

• Expansion by regions: In this method, the integration domain of the loop
momenta is divided into appropriate regions where a certain kinematic quant-
ity is small, e.g. m2

i /p
2
j � 1. For each such limit, the integrand is expanded in

the corresponding small parameter and the expansion is truncated at a certain
order, resulting in a simpler approximation. The expanded integrands are
then integrated over the full space of loop momenta. With certain conditions
[132], the original integral can be recovered by summing the individual contri-
butions from the various regions [133–137]. For numerical implementation, see
Refs. [129,138–140].

• Generalised series expansion: For integrals satisfying a set of DEs, it is
possible to integrate these DEs along a one-dimensional line segment1. If we
know the value of the integrals at one point in the kinematic phase space (i.e.
the boundary condition of the DEs) and want to know their value at another
point, we construct a path γ(t) between them and solve the DEs along it.
Thus, the task is reduced to a one-dimensional problem in the parameter t
of the path, with all the kinematic invariants set to numerical values. The
solution is then obtained by using an ansatz in the form of a series expansion.

1We stress that this method is applicable not only to MIs, but to any set of functions satisfying
DEs. We will explore this further in Chapter 3.
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s0 s

γ(t)

Figure 2.6: A pictorial representation of the generalised series ex-
pansion method. We connect the kinematic point s0 = γ(0), at
which the solution to the DEs is known, to the target point s = γ(1)
with a one-parameter path γ(t). The path is split into segments
as necessitated by singularities. On each segment, we express the
solution to the DEs in the form of a series expansion which has a
certain radius of convergence (marked by dashed circles). Stitching
together the solutions from individual segments allows us to trans-
port the solution from s0 to s.

Naturally, each such series has a certain radius of convergence within which it
is valid. Typically, it is the distance from the centre point of the expansion to
the nearest singularity. Thus, in order to obtain the full solution across the
entire length of γ(t), we split the path into multiple segments and solve the
DEs on them one by one. The value of the solution from the previous segment
can then serve as a boundary condition for solving the DEs in the subsequent
segment [107,108,141]. We provide a more intuitive, graphical representation
of this idea in Fig. 2.6. Recently, public implementations of this method have
been presented in Refs. [142,143].

• Auxiliary mass flow: This method relies on constructing the DEs not with
respect to the traditional kinematic invariants, but an auxiliary mass para-
meter η. The original integrals can then be recovered by solving the η-DEs
with η = ∞ as the boundary condition and letting η ‘flow’ from ∞ to iε−.
Crucially, the integrals involved in the boundary condition are simpler than
the ones we are aiming for. If these prove still too hard to compute, we can
iterate the procedure: set up new η′-DEs for these integrals, obtain the new
boundary condition in terms of even simpler integrals, and so on. Eventually,
the boundary terms can be expressed in terms of scaleless integrals (which van-
ish in DR) or single-scale vacuum integrals (which are very simple) [144,145].
A public implementation of this method has been made available in Ref. [146].
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2.11 Special functions and finite remainders

The techniques listed above are very flexible and general. They are not in principle
limited to a particular loop order or kinematic configuration, although naturally we
expect a drop in performance as we move to more complicated integrals. We also
point out that they do not require the MIs to be pure. Overall, following these
methods, we are able to evaluate a wide class of integrals. However, the evaluation
time is not fast enough for the phenomenological applications of the amplitudes
presented in our work. For this reason, we usually resort to a more fine-tuned
approach, which we describe below.

After reducing the amplitude onto a small set of MIs, we make use of the available
results for these MIs and expand them onto a basis of special functions, which we will
denote as {fi(p)} for now, with p indicating the collective dependence on external
momenta. These functions could involve, e.g. GPLs, eMPLs or other case-specific
functions better suited to a particular computation. More details on this topic will
be presented in Sections 3.4, 4.3.6 and 5.4. The expansion of MIs onto {fi(p)} can
be easily implemented over the finite fields as a multiplication of the MI coefficients
gi(p, ε) in Eq. 2.8.11 by a matrix encoding these MIs in terms of the special functions.
Schematically, we are left with:

A(L)
n

(
1h1 , 2h2 , . . . , nhn

)
=
∑

i

qi(p, ε)×moni

(
{fi(p)}

)
, (2.11.1)

where moni denote monomials formed from the special functions.

In contrast with the methods described in the previous section, special functions are
not a solution that generalises easily, in the sense that their construction is difficult
and has to be done case by case. Nonetheless, expanding the amplitude onto a basis
of special functions has several advantages. First and foremost, all cancellations and
simplifications are manifest, leading to a unique representation of the amplitude.
This is an important improvement in the context of the finite field framework, as it
means that we will not have to reconstruct additional, ‘unphysical’ coefficients. It
also unveils the analytic structure that is simply hidden within the MI representation.
Furthermore, having a basis of special functions grants us a more efficient numerical
evaluation of a minimal number of functions. Finally, it allows us to subtract from
the amplitude its UV and IR poles and define the so-called ‘finite remainder’:

F (L) = lim
ε→0

(
A(L) − P (L)A(0)

)
, (2.11.2)

where the L-loop pole operator P (L) contains both UV and IR divergences. We
stress that P (L) contains contributions from amplitudes at loop orders l < L. For a
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detailed discussion, we refer the reader to subsequent chapters and Appendix C.

A few words on why we want to work with the finite remainder are in order. Since
the UV poles of an amplitude are eliminated in renormalisation, while the IR poles
are determined from lower-loop information [23–26], the genuinely new information
we compute is contained solely in the non-singular terms. Moreover, the fact of
being able to subtract these pre-determined poles from our result, such that we are
left with a finite quantity in the limit ε → 0, is in itself already a strong check on
the calculation. Finally, it has been observed that finite remainders often exhibit
simpler analytic structure than the corresponding full amplitude, with certain special
functions dropping out after subtracting the poles. Thus, it is the finite remainder,
rather than the amplitude itself, that we take as the end point of our computational
algorithm in Fig. 2.1:

F (L)
n

(
1h1 , 2h2 , . . . , nhn

)
=
∑

i

ri(p)×moni

(
{fi(p)}

)
. (2.11.3)

Let us make three remarks about the finite remainder. First, we emphasise that it is
dependent on the renormalisation, regularisation and IR subtraction schemes. It is
important to bear that in mind when cross-checking results or trying to restore the
full amplitude from its remainder. Second, the pole subtraction in Eq. 2.11.2 can be
straightforwardly implemented over finite fields as a subtraction on the coefficients
qi in Eq. 2.11.1. Third, due to the simplifications that occur during this subtraction,
the reconstruction of the finite remainder coefficients ri is usually easier as compared
to the reconstruction of qi.

While the special functions {fi} that come from the MIs are complicated functions
with singularities and branch cuts, the coefficients ri are rational functions that are
computed and reconstructed from finite fields. We remind the reader that they will
be usually expressed in terms of the MTs (see Section 2.5). In practical applications
at the state of the art, the reconstruction processes can be enormously expensive
even on modern CPU clusters. For this reason, we find it unavoidable to implement
several tools which simplify the coefficients before we need to reconstruct them.
They lower the polynomial degrees and will be covered in detail when discussing the
reconstruction strategies in Sections 3.3 and 4.3.4.

We are now ready to take on the computation of scattering amplitudes at the
cutting edge of current knowledge. In subsequent chapters, we will use the workflow
developed here to tackle two-loop amplitudes for three processes directly relevant to
modern particle physics phenomenology.



Chapter 3

Two-loop helicity amplitudes for
pp → bb̄H production

In this chapter, we present the computation of the two-loop QCD helicity amplitudes
for the production of a Higgs boson in association with a bottom quark pair at a
hadron collider. We take the approximation of leading colour and work in the five
flavour scheme, where the bottom quarks are massless while the Yukawa coupling
is non-zero. We extract analytic expressions from multiple numerical evaluations
over finite fields and present the results in terms of an independent set of special
functions that can be reliably evaluated over the full phase space.

The chapter is organised as follows. After providing the necessary background and
context in which this work is situated, in Section 3.2 we describe the structure of the
bb̄H amplitudes at leading colour, followed by a brief outline of the methodology used
in deriving the analytic expression of the amplitudes in Section 3.3. A description of
the basis of special functions is presented in Section 3.4 and a number of validations
that we performed on the results derived in this work are discussed in Section 3.5.
We present benchmark numerical evaluations together with evaluations on a physical
phase space slice in Section 3.6. Finally, we draw our conclusions in Section 3.7.

3.1 Introduction

From the perspective of phenomenology, pp→ bb̄H production at the LHC has been
a subject of great interest due to its potential in directly measuring the bottom-quark
Yukawa coupling yb. In the SM, the coupling strengths of the Higgs boson to the
fermions and vector bosons are proportional to their mass, causing the rate of the
bb̄H production to be suppressed with respect to, for example, Higgs production in
gluon fusion (gg → H) or vector boson fusion (pp → Hjj), associated production
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with a vector boson (pp → V H), and associated production with a top-quark
pair (pp → tt̄H). The inclusive bb̄H production cross section is approximately
0.5 pb at 13 TeV, however at least one b-jet needs to be tagged to distinguish
this process from inclusive Higgs boson production, which lowers the detected rate
by orders of magnitude [147]. Recently, the possibility of isolating the relevant
signal from the background using machine learning algorithms has been studied in
literature [148,149].

In some new physics scenarios, such as the Two Higgs Doublet Models (2HDM’s)
and the Minimal Supersymmetric Standard Model (MSSM), yb can be dramatically
enhanced, resulting in a considerable increase of the bb̄H production rate [150,151].
Thus, the study of bb̄H production will allow us to constrain supersymmetric models
and other extensions of the SM that modify the bottom-quark Yukawa coupling.
The ratio of yb in a new physics scenario to yb in the SM, κb = yb/y

SM
b , is currently

known to 7% and will be measured more precisely at high-luminosity LHC [152].

The theoretical approach to obtaining predictions for the pp→ bb̄H process has been
subject of much discussion in the community. This is due to the fact that, in the
presence of bottom quarks, a theoretical prediction can be computed in either the
four-flavour scheme (4FS) or the five-flavour scheme (5FS). In the 4FS computation,
bottom quarks are treated as massive and they do not contribute to the PDFs, hence
only appearing in the final state. Large logarithms of the form log(mb/Q) with
Q ∝ mH arise when the integration over the bottom-quark phase space is performed,
and such contributions may spoil the convergence of the perturbative series. These
large logarithms can be resummed to all orders by introducing the bottom quark
PDFs. The 5FS approach stems from this prescription, where the bottom quarks
are included in the PDFs, allowed to appear in the initial state, and treated as
massless. We refer the reader to Ref. [153] for further discussion on the 5FS and
4FS approaches. In 5FS, the inclusive bb̄H production (where the tree level process
is bb̄ → H) has been computed up to N3LO QCD [154–162], while for the case
where a single bottom quark is observed NLO QCD [163], weak [164] and SUSY
QCD [165] corrections are available. In 4FS the bb̄H production has been calculated
up to NLO QCD [166–171], and the supersymmetric QCD corrections [172,173] are
also known. There have also been efforts in matching the 5FS and 4FS calculations
to obtain accurate predictions across the entire kinematic region [174–178]. A first
step towards a massive version of the five-flavour scheme (5FMS) has been devised
to naturally connect the 4FS and 5FS approaches [179,180].

In the following, we compute the two-loop QCD corrections to the gg → bb̄H,
qq̄/q̄q → bb̄H, bb̄/b̄b → bb̄H, bb → bbH and b̄b̄ → b̄b̄H reactions in the 5FS. These
two-loop amplitudes enter the computation of pp(bb̄) → H at N4LO, pp → b(b̄)H
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at N3LO when one b-jet is tagged, and pp → bb̄H at NNLO when two b-jets are
required in the final state. We note that beyond NLO, for the computation with
massless bottom quarks, a flavoured jet algorithm [181] would have to be employed
when identifying the b-jets, since the use of conventional kT or anti-kT jet algorithms
would render the fixed order computation infrared unsafe. We further remark that
the two-loop amplitudes for bb̄H production derived here can also be used in the
computation of Higgs decaying into a bottom quark pair in 5FS, by crossing initial
partons to the final state. Specifically, they will contribute in the N4LO H → bb̄,
N3LO H → bb̄j and NNLO H → bb̄jj computations. In addition, by crossing
the bb̄ pair to the initial state and the gg/qq̄ pair to the final state we obtain the
contribution of the bottom quark initiated channel to H+2j production (bb̄→ Hjj).

We present analytic results for the finite remainders after both UV and IR poles have
been subtracted. This is possible using a basis of special functions recently identified
in the context of Wbb̄ production [182]. We obtain numerical results valid across the
full phase space by applying the generalised series expansion approach [98,142,183]
to the DEs satisfied by the special functions appearing in the finite remainders.

3.2 Structure of the pp → bb̄H Amplitudes at
Leading Colour

We compute the two-loop QCD corrections in the leading colour approximation for
the following subprocesses:

0→ b̄(p1) + b(p2) + g(p3) + g(p4) +H(p5) , (3.2.1)
0→ b̄(p1) + b(p2) + q̄(p3) + q(p4) +H(p5) , (3.2.2)
0→ b̄(p1) + b(p2) + b̄(p3) + b(p4) +H(p5) , (3.2.3)

where all momenta are taken as outgoing:

5∑
i=1

pi = 0 . (3.2.4)

We work in the 5FS, where the bottom quark is taken as massless while its Yukawa
coupling to the Higgs boson is kept finite, so that:

p2
1 = p2

2 = p2
3 = p2

4 = 0 , p2
5 = m2

H , (3.2.5)
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where mH is the mass of the Higgs boson. The kinematics is described by six
independent scalar products, which we choose as:

(s12, s23, s34, s45, s15, p
2
5) ,

with sij = (pi+pj)2. It is also possible to form pseudo-scalar invariants by contracting
the Levi-Civita symbol εµνρσ with any four external momenta. The five-particle
kinematics is therefore fully determined by the scalar invariants above and by one
pseudo-scalar invariant, which captures all the space-time parity information of the
phase space. We choose:

tr5 = 4iεµνρσp
µ
1p

ν
2p

ρ
3p

σ
4 = [12]〈23〉[34]〈41〉 − 〈12〉[23]〈34〉[41] . (3.2.6)

It is related to the scalar invariants through:

tr2
5 = ∆5 := det

(
2pi · pj

) ∣∣∣
i,j=1,...,4

, (3.2.7)

where the right-hand side is a degree-four polynomial in the scalar invariants.

The colour decomposition of the L-loop amplitudes in the leading colour approxim-
ation is given by:

A(L)(1b̄, 2b, 3g, 4g, 5H) = nLg2
syb

[
(T a3T a4) ī1

i2
A(L)(1b̄, 2b, 3g, 4g, 5H) + (3↔ 4)

]
,

A(L)(1b̄, 2b, 3q̄, 4q, 5H) = nLg2
sybδ

ī1
i4
δ

ī3
i2
A(L)(1b̄, 2b, 3q̄, 4q, 5H) , (3.2.8)

A(L)(1b̄, 2b, 3b̄, 4b, 5H) = nLg2
syb

[
δ

ī1
i4
δ

ī3
i2

(
A(L)(1b̄, 2b, 3q̄, 4q, 5H) + A(L)(3b̄, 4b, 1q̄, 2q, 5H)

)

− δ ī1
i2
δ

ī3
i4

(
A(L)(1b̄, 4b, 3q̄, 2q, 5H) + A(L)(3b̄, 2b, 1q̄, 4q, 5H)

)]
,

where n = mεαs/(4π), αs = g2
s/(4π), mε = i(4π)εe−εγE , T a are the fundamental

generators of SU(Nc) normalised such that tr(T aT b) = δab, while gs and yb are
the strong coupling constant and bottom-quark Yukawa coupling, respectively. We
further decompose the partial amplitudes at one and two loops based on their closed
fermion loop contributions:

A(1) = NcA
(1),1 + nfA

(1),nf , (3.2.9)

A(2) = N2
cA

(2),1 +NcnfA
(2),nf + n2

fA
(2),n2

f , (3.2.10)

where nf is the number of light quarks circulating in the loop. Sample diagrams
for various closed fermion loop contributions at one and two loops are presented in
Figs. 3.1 and 3.2. The Feynman diagrams with the Higgs boson directly coupled to
a closed bottom-quark loop vanish since, for a massless bottom-quark, they contain
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A
(1),1

A
(1),nf

Figure 3.1: Sample Feynman diagrams corresponding to the various
closed fermion loop contributions at one loop as specified in Eq. 3.2.9.
Black-dashed, red, black-spiralled and black lines represent Higgs
bosons, bottom quarks, gluons and light quarks (bottom quarks
included), respectively.

A
(2),1

A
(2),nf A

(2),n2

f

Figure 3.2: Sample Feynman diagrams corresponding to the vari-
ous closed fermion loop contributions at two loops as specified in
Eq. 3.2.10. Black-dashed, red, black-spiralled and black lines repres-
ent Higgs bosons, bottom quarks, gluons and light quarks (bottom
quarks included), respectively.

a Dirac trace with an odd number of γ matrices. In our computation we do not
consider the closed top-quark loop contribution.

The pole structure of the unrenormalised amplitudes in the HV scheme at one and
two loops is given by [23–26]:

P (1) = 2I(1)(ε) + β0

ε
− 2s1, (3.2.11)

P (2) = 2I(1)(ε)
(
Â(1) − β0

ε
+ 2s1

)
+ 4I(2)(ε) +

(
2β0

ε
− 2s1

)
Â(1)

− β2
0

ε2 + β1

2ε − 4s2 + 2s1β0

ε
, (3.2.12)

where Â(1) is the unrenormalised one-loop amplitude normalised to the tree-level
amplitude. s1 and s2 are the bottom-quark Yukawa renormalisation constants, and
their expressions can be found in Appendix D. We used a mixed renormalisation
scheme where the strong coupling αs and the bottom-Yukawa coupling yb are renor-
malised in the MS scheme, while the bottom-quark mass and wave function are
renormalised in the on-shell (OS) scheme. This allows to keep yb finite while taking
the bottom-quark mass smoothly to zero (mOS

b → 0) [162]. Such a mixed renormal-
isation scheme can be used so long as pure QCD corrections are considered. In fact,
using the MS scheme to renormalise yb allows us to better control the convergence
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of the perturbative corrections by resumming the large logarithms that appear in
the OS scheme by running yb to a scale close to the Higgs mass. In the presence of
electroweak (EW) corrections, however, the relationship between yb and mb must be
imposed to guarantee the cancellation of UV singularities [147].

The I(2)(ε) operator is defined by:

I(2)(ε) = −1
2I

(1)(ε)
[
I(1)(ε) + β0

ε

]
+ N(ε)
N(2ε)

[
β0

2ε + γcusp
1
8

]
I(1)(2ε) +H(2)(ε) , (3.2.13)

while the I(1)(ε) operators for bb̄H production in both the gg and the qq̄ channels
are given at leading colour by:

I
(1)
b̄bq̄qH

(ε) = −Nc

N(ε)
2

(
1
ε2 + 3

2ε

)[
(−s23)−ε + (−s14)−ε

]
, (3.2.14)

I
(1)
b̄bggH

(ε) = −Nc

N(ε)
2

{(
1
ε2 + 3

4ε + β0

4Ncε

)[
(−s23)−ε + (−s14)−ε

]
+
(

1
ε2 + β0

2Ncε

)
(−s34)−ε

}
,

(3.2.15)

where N(ε) = eεγE/Γ(1− ε), s14 = s23 − s15 − s45 + p2
5 and:

H
(2)
b̄bq̄qH

(ε) = 1
16ε

{
4γq

1 − γ
cusp
1 γq

0 + π2

4 β0γ
cusp
0 CF

}
, (3.2.16)

H
(2)
b̄bggH

(ε) = 1
16ε

{
2 (γq

1 + γg
1)− 1

2γ
cusp
1 (γq

0 + γg
0) + π2

8 β0γ
cusp
0 (CF + CA)

}
. (3.2.17)

The β function coefficients and anomalous dimensions are given in Appendix D,
while in Appendix C we provide an explicit derivation of the pole operators.

The finite remainder of the L-loop partial amplitude is obtained by subtracting the
poles P (L) (which include both the UV and IR singularities) from the unrenormalised
partial amplitude A(L) and setting ε to 0:

F (L) = lim
ε→0

[
A(L) − P (L)A(0)

]
. (3.2.18)

The partial finite remainders F (L) inherit from the partial amplitudes the decompos-
ition in powers of nf :

F (1) = NcF
(1),1 + nfF

(1),nf , (3.2.19)

F (2) = N2
c F

(2),1 +NcnfF
(2),nf + n2

fF
(2),n2

f . (3.2.20)

The full finite remainders F (L) are obtained from the partial ones F (L) through a
colour decomposition analogous to that given in Eq. 3.2.8 for the bare amplitudes:

F (L)(1b̄, 2b, 3g, 4g, 5H) = nLg2
syb

[
(T a3T a4) ī1

i2
F (L)(1b̄, 2b, 3g, 4g, 5H) + (3↔ 4)

]
,
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F (L)(1b̄, 2b, 3q̄, 4q, 5H) = nLg2
sybδ

ī1
i4
δ

ī3
i2
F (L)(1b̄, 2b, 3q̄, 4q, 5H) , (3.2.21)

F (L)(1b̄, 2b, 3b̄, 4b, 5H) = nLg2
syb

[
δ

ī1
i4
δ

ī3
i2

(
F (L)(1b̄, 2b, 3q̄, 4q, 5H) + F (L)(3b̄, 4b, 1q̄, 2q, 5H)

)

− δ ī1
i2
δ

ī3
i4

(
F (L)(1b̄, 4b, 3q̄, 2q, 5H) + F (L)(3b̄, 2b, 1q̄, 4q, 5H)

)]
.

3.2.1 Tree-Level Amplitudes

The tree-level amplitudes can be obtained using the BCFW recursion relations [42,43]
within the spinor helicity formalism. In the b̄bggH case, we choose to shift the
momenta of gluons 3 and 4, while in the b̄bq̄qH case we choose particles 1 and 4 to
avoid shifting the momenta of adjacent quarks of the same flavour. Moreover, we
ensure that the shifted brackets [̂i〉, |ĵ] do not belong to particles of helicities i−, j+.
These choices are necessary for the validity of the recursion relations as they prevent
the shifted amplitude from having poles at infinity.

For the b̄bggH channel we obtain the following non-vanishing tree-level amplitudes:

A(0)(1+
b̄
, 2+

b , 3+
g , 4+

g , 5H) = s5

〈23〉〈34〉〈41〉 ,

A(0)(1+
b̄
, 2+

b , 3−
g , 4−

g , 5H) = − [12]2

[23][34][41] , (3.2.22)

A(0)(1+
b̄
, 2+

b , 3+
g , 4−

g , 5H) = 〈24〉〈4|5|1]2

s234〈23〉〈34〉〈2|5|1] −
s5[13]3

s134[14][34]〈2|5|1] .

The b̄, b quarks need to have the same helicity as that is the only way they can couple
to the Higgs boson. For the b̄bq̄qH channel the ‘all-plus’ and MHV configurations
vanish, and we are left with:

A(0)(1+
b̄
, 2+

b , 3+
q̄ , 4−

q , 5H) = 〈4|5|1]2

s234〈34〉〈2|5|1] + s5[31]2

s134[34]〈2|5|1] . (3.2.23)

In both cases, due to the colour decomposition of the full amplitudes given by
Eq. 3.2.8, theA(0)(1+, 2+, 3−, 4+, 5H) partial amplitude is related toA(0)(1+, 2+, 3+, 4−, 5H)
by swapping the particles 1↔ 2, 3↔ 4, and flipping the overall sign for the subpro-
cess b̄bggH. The remaining non-vanishing helicity configurations can be obtained by
parity transformations, that is by swapping the brackets 〈ij〉 ↔ [ji].

3.3 Amplitude Reduction and Reconstruction

To obtain the analytic form of the two-loop QCD helicity amplitudes, we employ
the framework thoroughly discussed in Chapter 2. Here, we provide a brief outline
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of it and supply process-specific details. We start by generating a set of Feynman
diagrams contributing to both the b̄bggH and b̄bq̄qH processes using QGRAF [35], and
perform diagram filtering, topology identification and colour decomposition using a
collection of in-house Mathematica and Form [184,185] scripts. In the leading colour
approximation, there are 749 (264) Feynman diagrams contributing to the two-loop
b̄bggH (b̄bq̄qH) QCD amplitudes, including all closed fermion loop contributions.
The numerators of the loop amplitudes are then computed for each independent
helicity configuration, and the spinor-helicity manipulations are carried out using
the library Spinney [186]. The helicity dependent loop numerators are written in
terms of spinor products (〈ij〉, [ij]), scalar products (pi · pj, ki · kj, ki · pj) and
spinor strings (〈i|ki|j], 〈i|p5|j], 〈i|kip5|j〉, [i|kip5|j]), where pi’s and ki’s are the
external and loop momenta, respectively. The numerators are therefore expressed
as linear combinations of monomials of loop-momentum dependent objects that
multiply coefficients which depend only on the external kinematics. As explained
in Section 2.5, the coefficients are built from spinor products and strings (free of ki)
which not only are not independent, but also incompatible with finite field arithmetic.

Both of these problems are solved by using MTs. To obtain a configuration for the
off-shell five-particle configuration, we begin with a massless configuration for six
particles. While the exact parametrisation is not important, the form presented in
Ref. [46] is a useful starting point. We can think of the massless process as the result
of the off-shell leg decaying into a pair of massless particles. There are 3n− 10 = 8
independent variables in the six-particle process, but we can reduce the degrees
of freedom by choosing one of the decay direction to be collinear with one of the
other massless legs in the five-point kinematics. Since the MTs are associated with
complex momenta, we consider the angle and square bracket spinors products to be
independent. We can write this explicitly as follows: the six massless momenta qµ

i

are related to the off-shell five particle momenta pµ
i by:

pµ
1 = qµ

1 , pµ
2 = qµ

2 , pµ
3 = qµ

3 , pµ
4 = qµ

4 , pµ
5 = qµ

5 + qµ
6 . (3.3.1)

We impose the constraints 〈q2q6〉 = 0 and [q2q6] = 0 to reduce the independent
variables to 6. We then apply a transformation onto the following choice of variables:

x1 = s12,

x2 = −tr+(1234)
s12s34

,

x3 = tr+(134152)
s13 tr+ (1452) ,

x4 = s23

s12
, (3.3.2)
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x5 = −tr−(1(2 + 3)(1 + 5)523)
s23 tr−(1523) ,

x6 = s45

s12
,

where tr±(ij · · · kl) = 1
2 tr((1±γ5)/pi/pj

· · · /pk/pl
). Some features of this parametrisation

are particularly convenient. For example, the only dimensionful quantity is x1,
and tr5 is rational. However, such a choice does break some symmetries in the
problem and so different helicity configurations will have different complexities.
For the process considered here, the complexity was manageable using this form.
Applications to other off-shell five-particle processes may require further thought.

Having set up a rational parametrisation of the external kinematics, the helicity
dependent loop numerators are constructed analytically and ready to be further
processed. This is the starting point of our numerical algorithm in the finite field
setup. In order to write the amplitude in terms of scalar integrals, we first define the
integral families for the 15 maximal topologies, which are shown in Fig. 3.3. Each
diagram topology appearing in the amplitude can be mapped onto at least one of
them. After that is done, the objects which depend on the loop momenta in the
numerators are written in terms of the 11 propagators and ISPs associated with the
chosen maximal topology. These mapping procedures are performed numerically
within the FiniteFlow framework [48]. We remark that since the maximal topologies
have five external momenta, they completely span the 4-dimensional space and there
is no need to introduce the spurious vectors. Thus, the integrand reduction technique
of Section 2.7 does not lead to an explicit dependence on ε into the numerators.
Therefore, the coefficients of these scalar integrals are functions of the external
kinematics only, in the form of MTs.

At this stage, the loop amplitude is expressed as a linear combination of scalar
integrals that can be reduced to a set of MIs using the IBP reduction method [65]
within the finite field setup. The IBP relations are generated using LiteRed [29]
and solved numerically over finite fields using the Laporta algorithm [69]. The
IBP reduction is performed directly to a set of MIs with UT weight identified in
Ref. [98]. The UT MIs are further expanded onto a basis of special functions f
that is built out of the MI components, as proposed in Ref. [182]. We refer to this
basis of special functions as the master integral function basis. Subtracting the UV
and IR poles from the bare helicity amplitudes and performing Laurent expansion
in the dimensional regulator ε, we arrive at the following expression for the finite
remainders:

F (L) =
∑

i

ri(x)mi(f) , (3.3.3)

wheremi(f) are monomials of the special functions and ri are rational functions of the
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Figure 3.3: Maximal topologies present in the computation of the
two-loop pp→ bb̄H amplitudes. They were previously also used in
Ref. [182]. The massive particle is marked with a bold dashed line.
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MTs x. It is important to note that the definition of the UT MIs involves three square
roots. One is related to the pseudo-scalar invariant tr5, which captures the parity-odd
part of the spinor expressions and is present already in the coefficients. The other
two square roots are associated with the three-mass triangle Gram determinants:

∆(1)
3 = 2

√
(p23 · p5)2 − p2

5s23 , ∆(2)
3 = 2

√
(p12 · p5)2 − p2

5s12 , (3.3.4)

where pij = pi + pj. They are not rationalised by the MT parametrisation and
may therefore be problematic for the finite field setup. We overcome this issue by
absorbing the three square roots into the definition of the UT MIs, which is possible
because they appear only as overall normalisations of the latter. As a result, they are
contained in the monomials mi(f) in Eq. 3.3.3 and do not appear in the amplitude
reconstruction. We note that in our computation, while the tr5 originating from the
UT MIs is absorbed in mi(f), the tr5 already present in the coefficients is rationalised
by the MT parametrisation, Eq. 3.3.2.

At this stage, we have an algorithm which computes the coefficients of the special
function monomials, ri(x) in Eq. 3.3.4, numerically over finite fields for each of
the independent helicity configurations of the two processes b̄bggH and b̄bq̄qH. We
emphasise that from the start of our numerical algorithm until reaching ri(x), the
computation is done within one system of FiniteFlow graphs. The last step is the
functional reconstruction of the rational coefficients. This task is made challenging
by the high polynomial degrees, which are shown in the third column of Tables 3.1
and 3.2. We tackle the complexity of the reconstruction through the strategy already
used in Refs. [182, 187]. We refer to Ref. [187] for a thorough discussion, and give
here only a brief outline.

The first step of the strategy consists in fitting the linear relations among the rational
coefficients. These linear relations are then used to express the rational coefficients
in terms of a set of linearly independent coefficients, which are chosen to have the
lowest possible degrees. The degrees of the independent rational coefficients are
given in the fourth column of Tables 3.1 and 3.2.

The second step of our reconstruction strategy consists of determining the factors in
the denominators of the rational coefficients. The analytic structure of the special
functions is determined by the set of letters corresponding to the canonical DEs
satisfied by the MIs. In other words, the singularities of the special functions and of
their discontinuities are located on the hypersurfaces where any of the letters vanish
(or go to infinity). It is therefore natural to expect that the rational coefficients which
multiply the special functions should feature poles which are similarly linked to the
letters. This motivates us to include the letters into an ansatz for the denominators
of the coefficients. Since the helicity amplitudes also contain phase information, we



78 Chapter 3. Two-loop helicity amplitudes for pp → bb̄H production

must include spinor structures as well. It is then simple to check, on a univariate slice
of the amplitude, whether the terms in the ansatz are present in the denominators
or not. For our amplitudes, we find the following list to be sufficient:{

〈ij〉 , [ij] , 〈i|p5|j] , sij , sij − skl , si5 − p2
5 , p

2
5 , tr5 ,∆1 ,∆2 ,

s15(s13 + s34)− p2
5s34 , s25(s24 + s34)− p2

5s34

}
,

(3.3.5)

where the indices i, j in the spinor expressions vary from 1 to 4, while the indices
i, j, k, l in the Mandelstam invariants vary from 1 to 5. The various free indices in
each of the factors are understood to be different from each other. Here, the ansatz
of Eq. 3.3.5 allows us to determine the denominators entirely, as well as some factors
in the numerators.

Having determined the denominators of the rational coefficients, we can proceed to
the third and last step of our reconstruction strategy: a univariate partial fraction
decomposition ‘on the fly’. We find that, with the parameterisation of the external
kinematics given by Eq. 3.3.2, partial fractioning with respect to x5 is the most
convenient choice. The partial fraction decomposition of multivariate functions has
recently drawn a lot interest as a powerful tool to simplify the analytic expres-
sions of scattering amplitudes. A number of new approaches have been proposed,
which make use of algebraic geometry techniques to handle the multivariate case
efficiently [188–192]. However, these algorithms are applied to known analytic ex-
pressions, i.e. after the rational reconstruction has been performed. On the contrary,
our univariate partial fraction decomposition can be performed within the finite field
setup itself, which consequently simplifies the reconstruction of the coefficients. The
algorithm makes use of the knowledge of the denominators to construct an ansatz
for the decomposition into partial fractions with respect to the chosen variable. The
coefficients of this ansatz can then be solved for and reconstructed. To this end,
we perform a further matching of their factors against the ansatz in Eq. 3.3.5. The
matched factors are then removed, and the remaining functions are reconstructed
with FiniteFlow’s reconstruction algorithm (see Section 2.6.2). The degrees of the
rational coefficients which remain to be reconstructed are shown in the fifth column
of Tables 3.1 and 3.2. Note that after partial fractioning, the denominators are not
entirely determined from the ansatz in Eq. 3.3.5. The univariate partial fraction
decomposition in fact introduces spurious factors in the denominators. The latter
could be determined as well, but we refrain from doing so as it does not reduce the
complexity of the reconstruction.

Following the strategy outlined above, we reconstructed the partial finite remainders
for the independent mostly-plus helicity configurations of the subprocesses b̄bggH
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b̄bggH helicity con-
figurations

ri(x) independ-
ent ri(x)

partial
fraction in

x5

number of
points

F (2),1 + + ++ 63/57 52/46 20/6 3361

+ + +− 135/134 119/120 28/22 24901

+ +−− 105/111 105/111 22/12 4797

F (2),nf + + ++ 45/41 45/41 16/6 1381

+ + +− 94/95 94/95 17/6 1853

+ +−− 89/95 62/69 18/3 2492

F (2),n2
f + + ++ 12/8 9/7 0/0 3

+ + +− 11/16 11/16 3/0 22

+ +−− 12/20 8/16 8/0 242

Table 3.1: Maximum numerator/denominator polynomial degrees
of the finite remainder coefficients ri(x) in Eq. 3.3.3 at each stage of
our reconstruction steps, together with the number of sample points
needed for the analytic reconstruction in the b̄bggH subprocess, for
the various closed fermion loop contributions.

b̄bq̄qH helicity con-
figurations

ri(x) independ-
ent ri(x)

partial
fraction in

x5

number of
points

F (2),1 + + +− 82/81 69/70 24/16 10326

F (2),nf + + +− 28/30 25/24 8/6 379

F (2),n2
f + + +− 6/11 6/11 3/0 22

Table 3.2: Maximum numerator/denominator polynomial degrees
of the finite remainder coefficients ri(x) in Eq. 3.3.3 at each stage of
our reconstruction steps, together with the number of sample points
needed for the analytic reconstruction in the b̄bq̄qH subprocess, for
the various closed fermion loop contributions.

and b̄bq̄qH. The mostly-minus helicity finite remainders can be obtained by parity
conjugation. Moreover, the finite remainders for the helicity configuration + +−+
can be obtained by swapping 1 ↔ 2, 3 ↔ 4 in the + + +− finite remainders, as
discussed in Section 3.2.1 for the tree-level amplitudes. This symmetry follows from
the colour structure and thus holds at any loop order. We could therefore evaluate
the + +−+ finite remainders by permuting numerically the + + +− ones, as we do
in order to get all the other helicity configurations from the independent ones. By
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permuting numerically, we mean that we obtain the values of the permuted finite
remainders by evaluating the unpermuted ones at permuted points. This is possible
because our approach to the evaluation of the special functions, which we discuss
in Section 3.4, handles the analytic continuation to any region automatically. Each
numerical permutation therefore amounts to one more evaluation for each point. The
permutation that takes from + + +− to + +−+ is however peculiar, as it is covered
by the basis of special functions defined in Ref. [182]. We can thus reconstruct
the finite remainders for both helicity configurations directly in terms of the same
basis of special functions. This is much more convenient, as it reduces the number
of permutations which need to be carried out numerically, this way decreasing the
global evaluation time of the finite remainders. For this reason, we reconstructed the
analytic expression of the + +−+ finite remainders as well, and include the + +−+
configuration in the independent helicity set in the following sections. The relation
with the + + +− configuration constitutes a non-trivial check of our results, which
we discuss in Section 3.5.

3.4 A Custom Basis of Special Functions for the
Finite Remainders

The one and two-loop finite remainders are expressed as combinations of rational
coefficients — functions of the MTs in Eq. 3.3.2 — and monomials of square roots
and elements of the MI function basis {f (w)

i }. The latter were classified in Ref. [182]
so as to span the cyclic permutations of the planar five-particle integrals with one
massive off-shell leg up to two loops. The function space of the finite remainders
is however simpler than that of the integrals and of the amplitudes. This becomes
particularly clear when we express the special functions in terms of CIIs [90], which
we have introduced in Section 2.9.1. Here, we will write the special functions as:

[
Wi1 , . . . ,Win

]
s0

(s) =
∫ 1

0
dt
d logWin

(γ(t))
dt

[
Wi1 , . . . ,Win−1

]
s0

(γ(t)) , (3.4.1)

where {d logWi} are the logarithmic integration kernels and their arguments Wi

are algebraic functions of the external kinematics. The cumulative dependence on
external kinematics is denoted by s, while s0 is an arbitrary reference point, and
γ is an arbitrary contour in the phase space going from γ(0) = s0 to γ(1) = s.
The iteration starts with []s0(s) := 1. The transcendental weight of the special
functions is then trivially given by n in Eq. 3.4.1. At two loops up to order ε0

iterated integrals with transcendental weight up to four are required. In our case, the
integration kernels are given by the letters {Wi} of the alphabet defined in Ref. [98].
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Although they may look rather abstract, CIIs offer several important advantages.
Most importantly, they implement automatically all the functional relations which
would otherwise be hidden in a representation in terms of other types of functions,
such as GPLs. This property was exploited in Ref. [182] to construct the MI
function basis {f (w)

i }. The expression in terms of CIIs of the MI basis functions can
be obtained through their definition in terms of MI components given in Ref. [182],
and the canonical DEs for the MIs given in Ref. [98] (see Ref. [182] for a thorough
discussion). Another important benefit of using iterated integrals is that their
analytic structure is beautifully manifest: an iterated integral may have singularities
or branch points only where one of its letters vanishes or diverges. Expressing the
special functions in the finite remainders in terms of CIIs therefore highlights their
analytic structure. Indeed this unveils important simplifications: certain letters,
which are present in the expressions of the MIs, are absent in the finite remainders.
In other words, certain branch cuts of the integrals drop out of the finite remainders.
We observe the same pattern noticed for the Wbb̄ amplitudes in Ref. [182]. One letter,
W49 = tr5, is present in the bare amplitudes but absent in the finite remainders.
This pattern of the pseudo-scalar invariant tr5 has already been observed explicitly
in many massless two-loop five-particle finite remainders [113,190,193–201], and is
linked to an underlying cluster algebra structure [202]. Since this letter is invariant
under permutations of the external massless legs (up to a sign), we expect it to
drop out from the finite remainders in general. In addition, six letters, Wi with
i = 16, 17, 27, 28, 29, 30, are present in the two-loop integrals but drop out already
at the level of the bare amplitudes (truncated at order ε0 at two loops). This set of
letters is not closed under all permutations of the external massless legs, and the
generality of their absence is therefore less clear. It would be of great interest to
uncover the physical principle underlying these simplifications.

The simplifications of the analytic structure mentioned above require the interplay
among various elements of the MI function basis {f (w)

i } of Ref. [182]. In other words,
the separate terms of the finite remainders may have spurious branch cuts which
cancel out in the sum. It is therefore convenient to construct a new, ad hoc basis
of special functions where the properties of the finite remainders are manifest. In
addition to being more elegant from the theoretical point of view, such a basis is
also much more convenient from the practical point of view. Evaluating the MI
function basis {f (w)

i } in fact requires handling integration kernels — letters — which
eventually cancel out in the objects we are interested in evaluating. It is desirable
that these cancellations take place analytically rather than numerically, so that the
spurious kernels are avoided altogether. For this reason we need a new basis of
special functions where these properties are manifest, and an approach to evaluate
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it which bypasses the MI function basis {f (w)
i } and its unnecessary complexity.

We thus construct a new basis of special functions, which we label by {h(w)
i }, where

w = 1, 2, 3, 4 denotes the transcendental weight. This new basis contains only those
linearly independent combinations of functions f (w)

i which are actually present in the
finite remainders, and whose iterated integral expression is free of the letters Wi with
i = 16, 17, 27, 28, 29, 30, 49. We dub this basis finite remainder function basis, as
opposed to the MI function basis {f (w)

i }. This leads to an important simplification in
the expressions of the finite remainders, which are then expressed as combinations of
rational coefficients and monomials in the h(w)

i ’s and the square roots. In particular,
only 23 weight-4 functions {h(4)

i }23
i=1 are required, to be compared with the 113

weight-4 functions in the MI function basis. Since the evaluation of the weight-4
functions is the most expensive step in the evaluation of the finite remainders, this
reduction has a strong positive impact on the total evaluation time. Note that we
have also improved the MI basis {f (w)

i } of Ref. [182] by identifying relations among
the higher weight functions and products of lower weight ones which were originally
missed. We achieved this following the approach of Ref. [182], but evaluating the
boundary values with higher accuracy.

In order to evaluate numerically the finite remainder function basis {h(w)
i }, we apply

the method of the generalised power series expansion [183]. This approach has
already found several successful applications to the evaluation of MIs from the DEs
they satisfy [98, 99, 107, 108, 183, 203, 204]. Here, following Ref. [182], we apply it
directly to the basis of special functions. This method can be applied to the finite
remainder and MI function bases because they too, like the MI bases they stem from,
satisfy systems of DEs in the canonical form [84]. This follows from the fact that the
functions in the bases {h(w)

i } and {f (w)
i } are by construction pure (see Section 2.9.3).

Thus, due to their UT weight, we can write any h(w)
i , for w > 0, in terms of CIIs as:

h
(w)
i (s) =

∑
I=(i1,...,iw)

c
(i)
I

[
Wi1 , . . . ,Wiw

]
s0

(s) , (3.4.2)

for some rational constant coefficients c(i)
I

1. Moreover, the purity condition in
Eq. 2.9.18 follows straightforwardly from the differential of CIIs:

d
[
Wi1 , . . . ,Win

]
s0

(s) = d logWin
(s)

[
Wi1 , . . . ,Win−1

]
s0

(s) , (3.4.3)

where we note that the derivatives of logWi are algebraic functions and hence have
transcendental weight 0. The purity of the function basis therefore implies that the
vector of all weight-w functions in the finite remainder basis, ~h(w) =

(
h

(w)
1 , h

(w)
2 , . . .

)T
,

1In general the iterated integrals in Eq. 3.4.2 include also transcendental constants, such as π
and ζ(3). We neglect them here to simplify the presentation.
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satisfies a DE of the form:

d~h(w) =
∑

j

b
(w)
j d logWj

 ~h(w−1) , (3.4.4)

for w > 1, where bj are constant rational matrices. The matrices b(w)
j can be determ-

ined easily from the iterated integral expression of the functions through Eq. 3.4.3.
In general, the derivatives of the weight-w functions may involve weight-(w − 1)
functions which are not needed to express the finite remainders. These must be
included in the basis as well, in order to be able to write down the DEs. So, strictly
speaking, the finite remainder function basis {h(w)

i } contains all linearly independent
functions which appear in the finite remainders and in the derivatives of the basis
itself. The DEs Eq. 3.4.4 for all weights can be put together in one system by defining
the vector of all the functions in the finite remainder basis as:

~h =
(
ε4~h(4) , ε3~h(3) , ε2~h(2) , ε~h(1) , 1

)T
, (3.4.5)

where ε is an auxiliary parameter with transcendental weight −1, so that the vector
~h is pure with transcendental weight 0. The full basis ~h then satisfies a system of
DEs in the canonical form [84]:

d~h = ε

( 49∑
i=1

ai d logWi

)
~h , (3.4.6)

where the constant matrices ai are strictly upper block triangular, with the blocks
given by the matrices b(w)

i in the DEs Eq. 3.4.4 for the various weights. This is in
direct analogy to the canonical DEs for the MIs we saw in Eq. 2.9.14. However,
this system of DEs for the vector ~h is much simpler than that for the MIs. First,
it contains only the letters which do appear in the finite remainders, i.e. ai = 0 for
i = 16, 17, 27, 28, 29, 30, 49. Second, while the DEs for the MIs contain information
about all the orders in ε, the system Eq. 3.4.6 encodes only those orders which
are relevant for the finite remainders, i.e. up to ε4. The constant matrices ai are
in fact nilpotent with degree 5, i.e. (ai)5 = 0 for any i, which follows from their
strictly upper triangular form. The process-dependent basis identified for the finite
remainder has a practical advantage, since we find a significant reduction in the
number of weight four functions which dominate the total evaluation times. In this
case, we find a reduction from 113 to 23 weight four functions, which gives a rough
measure of the improvement.

The MI function basis defined in Ref. [182], and thus also the finite remainder function
basis constructed here, cover the planar integral families only in those permutations
of the external massless legs which preserve the cyclic ordering of the particles. The
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other permutations cannot be expressed analytically in terms of functions of these
bases only. Nonetheless, thanks to our numerical evaluation strategy, we can obtain
the values of any permutation σ of the finite remainder basis functions by evaluating
them in the standard orientation at permuted points:

σ
[
h

(w)
i

]
(X) = h

(w)
i [σ (X)] . (3.4.7)

This is possible because we evaluate the finite remainder function basis {h(w)
i } by

solving the system of DEs Eq. 3.4.6 numerically with the method of the general-
ised power series expansions [183]. For this purpose, we make use of the public
Mathematica package DiffExp [142]. In order to compute the boundary values,
i.e. the values of the functions at some base point, we relate the finite remainder
functions to MI components using the definition of the MI function basis [182], and
evaluate the latter through their analytic expression in terms of GPLs [94, 95, 205]
provided in Refs. [111, 122, 206]. We evaluate the GPLs numerically with the C++
library GiNaC [96]. We provide in ancillary files the DEs 3.4.6 and the values of the
finite remainder functions at six points, one for each 2 → 3 scattering region with
massless incoming particles, with (at least) 200-digit accuracy. Using this informa-
tion, the generalised power series expansion method allows us to evaluate the finite
remainder function basis reliably anywhere in the phase space. This technique in
fact handles the analytic continuation automatically, so that also the permutations
required to evaluate the complete finite remainders starting from the partial ones —
as shown in Eqs. 3.2.8 for the amplitudes — as well as the other helicity configura-
tions can be performed numerically straightforwardly. We assessed the reliability of
this evaluation approach by checking the convergence of the finite remainders close
to the spurious poles of the rational coefficients. We discuss this and other checks
in the next section.

3.5 Further Validation

The finite remainders are defined by subtracting the expected UV and IR poles from
the bare amplitudes. Therefore, the fact that all the poles in ε cancel out, so that
our expressions for the finite remainders are indeed finite, is already a strong check
of the validity of our results. We have also checked that our amplitudes are correctly
normalised by comparing the spin and colour averaged squared tree-level amplitudes
with full colour dependence against MadGraph [207]. On top of that, we performed
a number of additional checks, which we discuss in the next subsections.
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3.5.1 Direct computation of the squared finite remainders

We checked the helicity amplitudes derived in this work against a squared matrix
element computation, carried out independently following the approach used in the
previous work on ud̄→ Wbb̄ [182]. In the squared matrix element computation the
two-loop amplitude is interfered with the tree-level amplitude analytically. After
manipulating the Dirac traces, the loop numerators contain only scalar products
(ki ·kj, ki ·pj, pi ·pj), that can be mapped easily onto propagator denominators. This
way we derive an analytic form of the two-loop squared matrix element written as a
linear combination of scalar Feynman integrals. The squared matrix element is then
processed further through IBP reduction to obtain the MI representation, followed
by mapping of the MIs onto the basis of special functions, subtraction of UV and
IR singularities, and finally Laurent expansion in ε. All these steps are carried out
numerically over finite fields within the FiniteFlow framework. The squared mat-
rix element computation uses the Conventional Dimensional Regularisation (CDR)
scheme, where internal and external momenta live in d = 4 − 2ε dimensions. We
find complete agreement with this approach and the helicity amplitudes in the HV
scheme at the level of the squared finite remainders.

3.5.2 Renormalisation scale dependence

The analytic expressions of the one- and two-loop finite remainders have been derived
with the renormalisation scale µ set to µ = 1. The dependence of the finite remainders
on the renormalisation scale can be determined by restoring the µ dependence
of the strong and Yukawa couplings (αs → αsµ

2ε, yb → ybµ
ε), and by replacing

(−sij)−ε → (−µ2/sij)ε in the I1 operators defined in Eqs. 3.2.14—3.2.15, which enter
the pole terms in Eqs. 3.2.11—3.2.12. In order to capture the scale dependence of
the finite remainders, we define the difference:

δF (L),i(µ2) = F (L),i(µ2)− F (L),i(µ2 = 1) , (3.5.1)

where the dependence on the kinematic variables is understood. The difference
δF (L),i(µ2) is entirely determined by the finite remainders evaluated at µ2 = 1 —
which we reconstructed analytically — and logarithms of µ2. For the b̄bggH finite
remainders, it is given by:

δF (1),1(µ2) = 31
6 A

(0) log(µ2) , (3.5.2)

δF (1),nf (µ2) = −2
3A

(0) log(µ2) , (3.5.3)
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δF (2),1(µ2) = log(µ2)
{(

1261
54 −

11
72π

2 + 9ζ3

)
A(0) + 53

6 F
(1),1(1)

}
+ 1643

72 A(0) log2(µ2) ,

(3.5.4)

δF (2),nf (µ2) = log(µ2)
{(
− 241

27 + π2

36

)
A(0) − 4

3F
(1),1(1) + 53

6 F
(1),nf (1)

}

− 115
18 A

(0) log2(µ2) , (3.5.5)

δF (2),n2
f (µ2) = log(µ2)

(
20
27A

(0) − 4
3F

(1),nf (1)
)

+ 4
9A

(0) log2(µ2) , (3.5.6)

while for the b̄bq̄qH finite remainders, it is given by:

δF (1),1(µ2) = 31
6 A

(0) log(µ2) , (3.5.7)

δF (1),nf (µ2) = −2
3A

(0) log(µ2) , (3.5.8)

δF (2),1(µ2) = log(µ2)
{(

5093
216 −

11
12π

2 + 14ζ3

)
A(0) + 53

6 F
(1),1(1)

}
+ 1643

72 A(0) log2(µ2) ,

(3.5.9)

δF (2),nf (µ2) = log(µ2)
{(
− 329

54 + π2

6

)
A(0) − 4

3F
(1),1(1) + 53

6 F
(1),nf (1)

}

− 115
18 A

(0) log2(µ2) , (3.5.10)

δF (2),n2
f (µ2) = −4

3F
(1),nf (1) log(µ2) + 4

9A
(0) log2(µ2) . (3.5.11)

To check that our results for the finite remainders have the correct scale dependence,
we evaluate them at two kinematic points related by a rescaling by some positive
factor a:

~s = (s12, s23, s34, s45, s15, p
2
5) ,

~s
′
= a~s = (as12, as23, as34, as45, as15, ap

2
5) .

(3.5.12)

We then verify numerically that the finite remainders satisfy the following relation:

F (L),i(1, a~s) + δF (L),i(a, a~s)
A(0)(a~s)

= F (L),i(1, ~s)
A(0)(~s)

, (3.5.13)

where we extended the notation of the finite remainders and tree-level amplitudes
to take into account their dependence on the phase space point ~s.
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3.5.3 Relation between + + +− and + + −+

The partial finite remainders for the single-minus helicity configurations, + + +−
and + +−+, are related by a permutation of the external particles:

F (L)(1+
b̄
, 2+

b , 3−
g , 4+

g , 5H) = −F (L)(2+
b̄
, 1+

b , 4+
g , 3−

g , 5H) ,
F (L)(1+

b̄
, 2+

b , 3−
q̄ , 4+

q , 5H) = F (L)(2+
b̄
, 1+

b , 4+
q̄ , 3−

q , 5H) .
(3.5.14)

Permuting the special functions is however non-trivial, and may in general require
analytic continuation. The permuted special functions are defined by:(

σ ◦ ~h
)

({pi}) = ~h({pσ(i)}) , (3.5.15)

where σ denotes the permutation (12345)→ (21435) of the external particles, and
{pi} denotes the dependence on the external momenta. In order to check the relations
Eq. 3.5.14 analytically, we need to express the permuted functions (σ ◦~h) in terms of
the ones in the standard orientation, ~h. To perform this operation in an algorithmic
and robust way, we resort to the system of DEs in Eq. 3.4.6 satisfied by the finite
remainder function basis. The permuted functions in fact satisfy the permuted DEs:

d(σ ◦ ~h) = ε

[ 49∑
i=1

ai d log (σ ◦Wi)
]

(σ ◦ ~h) . (3.5.16)

Permuting the letters Wi is however trivial, as they only involve algebraic functions.
Since the alphabet is closed by construction under this permutation, we obtain an
explicit system of DEs for the permuted special functions:

d(σ ◦ ~h) = ε

( 49∑
i=1

a′
i d logWi

)
(σ ◦ ~h) . (3.5.17)

The latter can straightforwardly be solved in terms of CIIs (see Ref. [182] for a
thorough discussion). In order to be comparable with the solution of the system
Eq. 3.4.6 which defines the finite remainder function basis ~h, we must make sure
that the same boundary point is used when solving both systems of DEs in terms of
iterated integrals. The boundary values can be obtained numerically with arbitrary
precision using the expressions in terms of GPLs of Refs. [111,122,206], as discussed
at the end of Section 3.4. Using the DEs Eq. 3.5.17, we can then express the permuted
finite remainder special functions in terms of the ones in the original orientation
through CIIs. Once that is done, the right-hand sides of Eqs. 3.5.14 are written in
terms of the same special function basis as the left-hand sides. Since the rational
coefficients can be permuted analytically trivially, we can immediately verify that
our results for the one- and two-loop finite remainders satisfy the relations given by
Eqs. 3.5.14.
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3.5.4 Convergence near spurious poles

The rational coefficients in the finite remainders contain spurious poles, namely
poles which are not related to the physical singularities of the amplitudes. When
evaluating at a phase space point infinitesimally close to a spurious pole — but at
a finite distance from all physical poles — the rational coefficients diverge, whereas
the finite remainders must stay finite. This can only occur through large numerical
cancellations involving both the coefficients and the special functions. Verifying
this behaviour constitutes both a check on our analytic expressions for the finite
remainders and a stress test of our evaluation approach for the special functions. We
do it as follows. First, we use the factor matching strategy discussed in Section 3.3,
with the ansatz given by Eq. 3.3.5. This allows us to determine that the spurious
poles in the coefficients are associated with the following denominator factors:

{Pk} =
{
〈i|p5|j] , tr5 ,∆1 ,∆2 , s15 − s23 , s15 − s24 , s13 − s25 , s14 − s25 , s15 − s34 ,

s25 − s34 , s14 − s35 , s23 − s45 , s15(s13 + s34)− p2
5s34 , s25(s24 + s34)− p2

5s34

}
,

(3.5.18)
where i, j ∈ {1, 2, 3, 4} with i 6= j. Next, for each factor Pk in Eq. 3.5.18, we construct
a one-dimensional slice of the phase space, parametrised by a parameter δ, such that
Pk = δ. As we probe the small-δ region, all the other factors in Eq. 3.5.18 and the
factors associated with the physical singularities — (pi + pj)2 and pi · pj — must
stay finite, i.e. they must neither diverge nor vanish. This ensures that we target
a specific spurious pole, rather than multiple at once, and that we stay away from
the physical singularities. Finally, we evaluate the finite remainders on these slices
for increasingly small values of δ. We evaluate the special functions with 64-digit
accuracy. Our analytic expressions for the finite remainders exhibit the expected
behaviour: as δ approaches zero the rational coefficients diverge, while the finite
remainders converge to finite values.

3.6 Results

The analytic expressions of the independent one- and two-loop finite remainders
are provided in the ancillary files of Ref [1]. We present them as combinations of
linearly independent rational coefficients and monomials of the square roots and of
the finite remainder basis functions. The rational coefficients are expressed in terms
of the MTs defined in Eq. 3.3.2. We evaluate the finite remainder function basis
numerically by integrating the DEs of Eq. 3.4.6 with the method of the generalised
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series expansions. We also provide Mathematica scripts which illustrate how to
evaluate the finite remainders interfered with the tree-level amplitudes for all the
partonic channels contributing to the process pp→ bb̄H, which we label as:

gg : g(−p3) + g(−p4)→ b̄(p1) + b(p2) +H(p5) ,
qq̄ : q(−p3) + q̄(−p4)→ b̄(p1) + b(p2) +H(p5) ,
q̄q : q̄(−p3) + q(−p4)→ b̄(p1) + b(p2) +H(p5) ,
bb̄ : b(−p3) + b̄(−p4)→ b̄(p1) + b(p2) +H(p5) ,
b̄b : b̄(−p3) + b(−p4)→ b̄(p1) + b(p2) +H(p5) ,
bb : b(−p3) + b(−p4)→ b(p1) + b(p2) +H(p5) ,
b̄b̄ : b̄(−p3) + b̄(−p4)→ b̄(p1) + b̄(p2) +H(p5) .

(3.6.1)

The interference between the finite remainders and the tree-level amplitudes summed
over colour and helicity is given at leading colour by:

∑
colour

∑
helicity

A(0)∗F (L) =: g4
sy

2
bn

LNα
c H(L) , (3.6.2)

where α = 3 for gg and α = 2 for all the other channels, and the reduced squared
finite remainders, H(L), are given explicitly for each channel by:

H(L)
gg =

∑
helicity

[
A(0)(1b̄, 2b, 3g, 4g, 5H)

]∗
F (L)(1b̄, 2b, 3g, 4g, 5H)

+
∑

helicity

[
A(0)(1b̄, 2b, 4g, 3g, 5H)

]∗
F (L)(1b̄, 2b, 4g, 3g, 5H) , (3.6.3)

H(L)
qq̄ =

∑
helicity

[
A(0)(1b̄, 2b, 3q̄, 4q, 5H)

]∗
F (L)(1b̄, 2b, 3q̄, 4q, 5H) , (3.6.4)

H(L)
q̄q =

∑
helicity

[
A(0)(1b̄, 2b, 4q̄, 3q, 5H)

]∗
F (L)(1b̄, 2b, 4q̄, 3q, 5H) , (3.6.5)

H(L)
bb̄ =

∑
helicity

[
A(0)(1b̄, 2b, 3q̄, 4q, 5H) + A(0)(3b̄, 4b, 1q̄, 2q, 5H)

]∗
×
[
F (L)(1b̄, 2b, 3q̄, 4q, 5H) + F (L)(3b̄, 4b, 1q̄, 2q, 5H)

]
+

∑
helicity

[
A(0)(1b̄, 4b, 3q̄, 2q, 5H) + A(0)(3b̄, 2b, 1q̄, 4q, 5H)

]∗
×
[
F (L)(1b̄, 4b, 3q̄, 2q, 5H) + F (L)(3b̄, 2b, 1q̄, 4q, 5H)

]
, (3.6.6)

H(L)
b̄b =

∑
helicity

[
A(0)(1b̄, 2b, 4q̄, 3q, 5H) + A(0)(4b̄, 3b, 1q̄, 2q, 5H)

]∗
×
[
F (L)(1b̄, 2b, 4q̄, 3q, 5H) + F (L)(4b̄, 3b, 1q̄, 2q, 5H)

]
+

∑
helicity

[
A(0)(1b̄, 3b, 4q̄, 2q, 5H) + A(0)(4b̄, 2b, 1q̄, 3q, 5H)

]∗
×
[
F (L)(1b̄, 3b, 4q̄, 2q, 5H) + F (L)(4b̄, 2b, 1q̄, 3q, 5H)

]
, (3.6.7)
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H(L)
bb =

∑
helicity

[
A(0)(3b̄, 1b, 4q̄, 2q, 5H) + A(0)(4b̄, 2b, 3q̄, 1q, 5H)

]∗
×
[
F (L)(3b̄, 1b, 4q̄, 2q, 5H) + F (L)(4b̄, 2b, 3q̄, 1q, 5H)

]
+

∑
helicity

[
A(0)(3b̄, 2b, 4q̄, 1q, 5H) + A(0)(4b̄, 1b, 3q̄, 2q, 5H)

]∗
×
[
F (L)(3b̄, 2b, 4q̄, 1q, 5H) + F (L)(4b̄, 1b, 3q̄, 2q, 5H)

]
, (3.6.8)

H(L)
b̄b̄ =

∑
helicity

[
A(0)(1b̄, 3b, 2q̄, 4q, 5H) + A(0)(2b̄, 4b, 1q̄, 3q, 5H)

]∗
×
[
F (L)(1b̄, 3b, 2q̄, 4q, 5H) + F (L)(2b̄, 4b, 1q̄, 3q, 5H)

]
+

∑
helicity

[
A(0)(1b̄, 4b, 3q̄, 2q, 5H) + A(0)(2b̄, 3b, 1q̄, 4q, 5H)

]∗
×
[
F (L)(1b̄, 4b, 3q̄, 2q, 5H) + F (L)(2b̄, 3b, 1q̄, 4q, 5H)

]
. (3.6.9)

We evaluate the permutations of the finite remainders numerically. The analytic
continuation is performed by adding a small positive imaginary part to each sij and
to p2

5, which is done automatically by DiffExp.

To facilitate future checks, we provide here the benchmark evaluation at a physical
point corresponding to the pp→ bb̄H scattering process:

s12 = 49
576 , s23 = −15337

2048 , s34 = 63
4 , s45 = −288491

38912 ,

s15 = 455
64 , p2

5 = 7 , tr5 = i49
√

50998583
1400832 , (3.6.10)

which corresponds to the following values of the MTs:

x1 = 49
576 , x2 = −77405

76608 − i
√

50998583
76608 , x3 = −557251

411874 + i95
√

50998583
411874 ,

x4 = −2817
32 , x5 = −11290

41629 − i2
√

50998583
41629 , x6 = −370917

4256 . (3.6.11)

The values of the bare two-loop amplitudes normalised by the tree-level amplitudes,
Â(L) = A(L)/A(0), for the independent mostly-plus helicity configurations of the
subprocesses 0→ b̄bggH and 0→ b̄bq̄qH are given in Tables 3.3 and 3.4. Table 3.5
shows the values of the two-loop reduced squared finite remainders H(2). Analogous
tables for the one-loop amplitudes are given in Appendix E.

To demonstrate the suitability of our results for phenomenological applications,
we present the evaluation of the finite remainders interfered with the tree-level
amplitudes on a univariate slice of the phase space. For this purpose, we parametrise
the momenta for the scattering processes Eq. 3.2.1 in terms of angles and energy
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b̄bggH helicity ε−4 ε−3 ε−2 ε−1 ε0

Â(2),1 ++++ 4.5 −11.9857 +
9.42478i

1.38005−
40.6951i

37.5629 +
74.9878i

−160.364−
16.4633i

+++− 4.5 −11.9857 +
9.42478i

11.3257−
12.3672i

−26.8161 +
82.1522i

−142.327−
160.925i

++−+ 4.5 −11.9857 +
9.42478i

2.69154−
41.4561i

35.9446 +
68.3748i

−132.233−
11.7912i

++−− 4.5 −11.9857 +
9.42478i

21.8803−
71.2779i

85.0932 +
67.5004i

−293.742 +
11.2118i

Â(2),nf ++++ 0 0.5 −0.177826+
1.04486i

−0.769158−
3.80277i

−5.39544 +
7.05528i

+++− 0 0.5 −0.192856+
1.0472i

1.4513 +
2.42621i

−3.57357 +
44.5555i

++−+ 0 0.5 −0.192856+
1.0472i

−0.467396−
4.03798i

−3.83854 +
2.69906i

++−− 0 0.5 0.987798 +
0.631652i

3.957−
5.16329i

33.7155−
38.6759i

Â(2),n2
f ++++ 0 0 0 0.00334−

0.000519914i
0.00266436+
0.0210796i

+++− 0 0 0 0 0

++−+ 0 0 0 0 0

++−− 0 0 0 0.262368−
0.0923434i

0.532893 +
1.66516i

Table 3.3: Numerical values of the bare b̄bggH partial amplitudes at
two loops (normalised to the tree-level amplitude) at the kinematic
point in Eq. 3.6.11 for the four independent helicity configurations
and the various closed fermion loops contributions.

fractions of the final state as:

p1 = y1
√
s

2 (1 , 1 , 0 , 0) ,

p2 = y2
√
s

2 (1 , cos θ ,− sin θ sinφ ,− sin θ cosφ) ,

p3 =
√
s

2 (−1 , 0 , 0 ,−1) ,

p4 =
√
s

2 (−1 , 0 , 0 , 1) ,

(3.6.12)

while p5 is fixed by momentum conservation, p5 = −p1−p2−p3−p4. We have chosen



92 Chapter 3. Two-loop helicity amplitudes for pp → bb̄H production

b̄bq̄qH helicity ε−4 ε−3 ε−2 ε−1 ε0

Â(2),1 +++− 2 −6.81012 25.5694 +
17.9036i

−60.3404−
6.4188i

48.2991−
125.381i

++−+ 2 −6.81012 22.4573 +
14.9001i

−60.7797 +
3.42105i

96.4449−
180.941i

Â(2),nf +++− 0 1.66667 −4.60863 +
4.18879i

13.2979−
5.52188i

4.96804 +
95.7191i

++−+ 0 1.66667 −4.60863 +
4.18879i

11.2232−
7.52422i

−1.06892 +
93.2862i

Â(2),n2
f +++− 0 0 0.444444 −0.969043+

2.79253i
−6.91677−

6.08868i

++−+ 0 0 0.444444 −0.969043+
2.79253i

−6.91677−
6.08868i

Table 3.4: Numerical values of the bare b̄bq̄qH partial amplitudes at
two loops (normalised to the tree level amplitude) at the kinematic
point in Eq. 3.6.11 for the four independent helicity configurations
and the various closed fermion loops contributions.

channel Re H(2),1 Re H(2),nf Re H(2),n2
f

gg 156680.6267 −41215.80337 405.9379563

qq̄ 0.09391314268 −0.02045942258 −0.004225713438

q̄q 0.3494872243 −0.08069122736 −0.004225713438

bb̄ 48640.80398 −26530.01855 2458.442153

b̄b −141130.5373 42183.03094 3711.445449

bb/b̄b̄ −53679.25708 1988.662899 894.7895467

Table 3.5: Numerical values of the two-loop reduced squared finite
remainders H(2) defined in Eqs. 3.6.3—3.6.9 at the kinematic point
in Eq. 3.6.11 for the various closed fermion loops contributions and
the scattering channels specified in Eq. 3.6.1.

the particle with momentum p1 to be produced at an angle of π/2 with respect to
the beam axis. Requiring that the Higgs boson is on-shell, p2

5 = m2
H , constrains the

angle θ as:

cos θ = 1 + 2
y1y2

(
1− y1 − y2 −

m2
H

s

)
. (3.6.13)
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To restrict the kinematics to a one-dimensional slice, we choose:

s = 1 , φ = 1
10 , y1 = 3

5 , mH = 1
10 . (3.6.14)

The reality of the angle θ then restricts the free parameter y2 to the interval
y2 ∈ [ 39

100 ,
39
40 ]. In order to evaluate the finite remainders for all the processes shown in

Eq. 3.6.1, we need to compute the finite remainder special functions at 16 permuta-
tions of each phase space point, as can be seen explicitly in Eqs. 3.6.3—3.6.9. We
do this by integrating the system of canonical DEs in Eq. 3.4.6 with DiffExp using
rationalised values of the invariants. The need for rational values arises from the fact
that the series expansion method, implemented in DiffExp, is very sensitive to the
values of input parameters, as it requires high precision throughout the intermediate
steps. For each permutation of each point, we compute the ‘distance’ (technically
speaking, the number of segments into which the integration contour is divided by
DiffExp) from the six reference points provided in the ancillary files, and choose the
closest one as the initial point for the integration. In Fig. 3.4, we plot the values of
the one- and two-loop reduced squared finite remainders for all the processes defined
in Eq. 3.6.1 as functions of the parameter y2.

We stress that the purpose of the plots in Fig. 3.4 is merely to demonstrate that our
results for the finite remainders can be evaluated reliably in the physical scattering
region. Nothing can be inferred about the convergence of the perturbative expansion
at the cross section level. One interesting feature which can be appreciated from
Fig. 3.4 is the appearance of a loop-induced peak in the finite remainders for the
channel q̄q. The peak is absent at tree level for the same channel and up to two loops
for qq̄. The latter channel is related to q̄q by the exchange 3 ↔ 4 of the external
particles. We observe that the peak stems from the values of the finite remainder
function basis, while the rational coefficients are not enhanced in that region. In
order to pinpoint more precisely the origin of this phenomenon, we construct the
explicit analytic expressions for some of the special functions which exhibit the peak,
starting from their iterated integral expression obtained by solving the system of
canonical DEs in Eq. 3.4.6. For instance:

h
(2)
4 = 2 Li2

(
1− s15

p2
5

)
+ 2 Li2

(
1− s23

s15

)
− π2

4 + 1
2 log2

(
p2

5

)
+ 1

2 log2 (−s45) + 2 log2 (s15)

− 1
2 log2 (−s23)− 2 log (s15) log (s15 − s23) + log2 (s15 − s23) + log

(
p2

5

)
log (−s23)

− 2 log
(
p2

5

)
log (s15)− log

(
p2

5

)
log (−s14) + 2 log (s15) log (−s14)− log (−s23) log (−s14)

+ iπ

[
log

(
p2

5

)
− 2 log (s15) + 2 log (s15 − s23)− log (−s23)− log (−s14)

]
,

(3.6.15)
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Figure 3.4: Reduced squared finite remainders H(L) at tree level,
one and two loops evaluated on the one-dimensional phase space
slice defined in Eq. 3.6.12, as functions of the variable y2, for the
channels defined in Eq. 3.6.1.

which is well defined in the s34 physical scattering region. The analytic continuation
to any other region is obtained by adding a small positive imaginary part to each
sij and to p2

5. We checked that the values of h(2)
4 as given by Eq. 3.6.15 (and of its

permutations) agree with the evaluation through the generalised series expansion.
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The function h
(2)
4 exhibits no peak on the phase space sliced defined by Eqs. 3.6.12

and 3.6.14, and indeed the finite remainder for the channel qq̄ does not exhibit
such feature. The permutation 3 ↔ 4 of h(2)

4 , which contributes to q̄q, is instead
peaked around y2 ≈ 0.5566. Thanks to the analytic expression Eq. 3.6.15, we can
identify the source of the peak in the logarithms of s24, which originate from the
log(−s23)’s in Eq. 3.6.15 upon swapping 3↔ 4. Indeed, the tree-level amplitude for
the subprocess 0 → b̄bq̄qH, given by Eq. 3.2.23, is manifestly free of 1/〈23〉 poles.
The 0→ b̄bq̄qH diagrams with a 1/s23 pole would come with a loop and so end up
scaling as log(−s23). While log(−s23) is not enhanced on the one-dimensional slice
under consideration, its 3↔ 4 permutation log(−s24), which contributes to H(L)

q̄q for
L = 1, 2, is peaked at y2 ≈ 0.5566, where s24 reaches its minimum absolute value
on the slice. The tree-level amplitudes for the channel gg instead do have poles at
s23 = 0, which can be seen explicitly in Eq. 3.2.22. Since H(L)

gg with L = 1, 2 receive
contributions from the partial finite remainders in both the standard orientation and
with the swap 3↔ 4, as shown in Eq. 3.6.3, their plot in Fig. 3.4 (a) exhibits this
peak already at tree level. The same holds for the bb and b̄b channels, as can be
seen in Figs. 3.4 (d) and (f).

Also in Fig. 3.4, we observe divergences at y2 = 39/100 for the processes bb̄ and b̄b.
This divergence is associated with the propagator 1/s12, which can only appear in
processes with two pairs of bottom quarks. In Eqs. 3.6.6 and 3.6.7 we can see the qq̄
fermion pairs can appear with momenta p1 and p2, which is not the case for other
processes. All the other features of the plots in Fig. 3.4 can be similarly understood
in terms of tree-level propagators going on shell.

3.7 Summary

In this chapter, we have presented an analytic form for the two-loop QCD amp-
litudes to the process pp → bb̄H. It is the first complete set of helicity amplitudes
provided for a 2 → 3 scattering process with an off-shell leg. In contrast to the
recent pp→ Wbb̄ computation of Ref. [182], which used the squared matrix element
method (see Section 2.3) and Mandelstam invariants, we have constructed a rational
parametrisation of the external kinematics in terms of momentum twistors. We
have also improved on the function basis presented in Ref. [182] by identifying the
missing relations between higher weight functions and products of lower weight ones.
Moreover, we have used this basis to derive another one better suited to our finite
remainders. The rational coefficients of the remainders were extracted from multiple
evaluations over finite fields and IBP reduction. We obtained relatively compact
results after determining the linear relations between the coefficients and performing
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a univariate partial fraction decomposition on the fly. The final expressions were
evaluated using the method of generalised series expansions as implemented in the
DiffExp code [142].

The expressions have been validated in a number of ways and we observe that they
exhibit a smooth behaviour in all scattering regions. Evaluation times appear to
be suitable for phenomenological applications, especially since we have not tried to
optimise the route through the phase space evaluations as has been done in other
applications of the method [98,99,108,203,204].

The techniques presented here show promise for applications to other important
scattering processes such as pp→ V + 2j and pp→ H + 2j. We point out that the
bases of pure MIs required for the non-planar topologies needed in these computations
were made available in literature after the completion of our work [125].



Chapter 4

Two-loop helicity amplitudes for
pp → W ±γj production

In this chapter, we present the computation of the two-loop leading colour QCD
helicity amplitudes for yet another process, pp→ W (→ lν)γ + j. We implement a
complete reduction of the amplitudes, including the leptonic decay of the W -boson,
using finite field arithmetic and extract the analytic finite remainders using a recently
identified basis of special functions. Simplified analytic expressions are obtained after
considering permutations of a rational kinematic parametrisation and multivariate
partial fractioning. We demonstrate efficient numerical evaluation of the two-loop
colour and helicity summed finite remainders for physical kinematics, and hence the
suitability for phenomenological applications.

This chapter largely follows the structure of the previous one. In Section 4.2, we
describe the structure of the amplitudes for pp → Wγj up to two loops, paying
particular attention to the description of the decay of the W boson. In Section 4.3,
we describe the finite field reduction setup used to extract the finite remainders, and
propose an approach to simplify the analytic expressions of the latter based on a
systematic search for a better parametrisation of the kinematics in terms of MTs. We
describe a number of validation tests on our results in Section 4.4, and then present
numerical results for the colour and helicity summed finite remainders in Section 4.5.
We give our summary and outlook for the future in Section 4.6. Complete analytic
expressions associated with the work in this chapter are provided in the ancillary
files of Ref. [2].
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4.1 Introduction

Processes with a pair of electroweak vector bosons (W±, Z, γ) offer a wide range
of observables which can test electroweak couplings and probe the Higgs sector of
the SM. In particular, the production of a W boson in association with a photon
(pp → Wγ) is one of the processes observed at the LHC with relatively large
cross sections where clean signatures can be acquired when the W boson decays
leptonically. Wγ production enables direct access to the WWγ triple gauge boson
coupling, which can be modified in certain new physics scenarios. Both ATLAS and
CMS experiments have measured the Wγ process [208–213] and set the limit on the
anomalous WWγ coupling.

Predictions for pp → W±γ are available through to next-to-next-to-leading order
(NNLO) in QCD [214–216] and NLO in the electroweak (EW) coupling [217,218] as
well as combined NNLO in QCD and NLO in EW [219]. The colourless final state
makes the process well suited for the qT [220] and N -jettiness [221,222] subtraction
methods as implemented within the Matrix [223] and MCFM [224] Monte Carlo event
generators, respectively. Resummed predictions including parton shower effects
are now available [225], making this one of the most precisely known theoretical
predictions. Experimental measurements are constantly improving and provide rich
opportunities for precision SM tests [213,226]. In order to suppress different types
of backgrounds in the experimental analysis, it is a common practice to divide the
measurement according to the jet multiplicities, i.e. Wγ+0 jet, Wγ+1 jet, Wγ+2
jets, etc. Increasing the precision of the theoretical predictions for each of the jet
bins amounts to computing higher order corrections to Wγ production in association
with additional jets.

In this chapter, we present the first computation of the two-loop helicity amplitudes
for the process pp→ W±(→ l±ν)γ + j. The amplitude-level ingredients we provide
will give useful information for future precision measurements of anomalous couplings
and potentially for complete global fits of the Standard Model Effective Theory
(SMEFT). A fully differential computation of Wγ + j at NNLO in QCD would also
open up the possibility of N3LO QCD predictions for Wγ production.

4.2 Structure of the Amplitudes

We compute the two-loop amplitudes for the production of a W+ boson in association
with a photon and a jet at hadron colliders, where the W+ boson decays to a positron
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Figure 4.1: Sample two-loop Feynman diagrams for W+γj produc-
tion.

and an electron neutrino (pp→ νee
+γj), in the leading colour approximation:

0→ γ(p1, h1) + ū(p2, h2) + g(p3, h3) + d(p4, h4) + νe(p5, h5) + e+(p6, h6) . (4.2.1)

For simplicity, we henceforth denote this process as W+γj production. Sample
two-loop Feynman diagrams contributing at leading colour are shown in Figs. 4.1
and 4.2. The colour decomposition of the W+γj L-loop amplitude is given by:

A(L)
6 (1γ, 2ū, 3g, 4d, 5ν , 6ē) =

√
2eg2

Wgs n
L (T a3) ī2

i4
A

(L)
6 (1γ, 2ū, 3g, 4d, 5ν , 6ē) , (4.2.2)

where n = mεαs/(4π), αs = g2
s/(4π), mε = i(4π)εe−εγE , ε = (4 − d)/2 is the

dimensional regulator, and T a are the generators of SU(Nc) in the fundamental
representation, normalised according to tr(T aT b) = δab. We denote by e, gW and gs

the electron charge, the weak and strong coupling constants, respectively. The W+γj

amplitude can be further decomposed according to the source of photon radiation:

A
(L)
6 =

[
QuA

(L)
6,u +QdA

(L)
6,d +

(∑
q

Qq

)
A

(L)
6,q

]
P (s56)

+ (Qu −Qd)
[
A

(L)
6,e + A

(L)
6,WP (s56)

]
P (s156) ,

(4.2.3)

where sij = (pi+pj)2 and sijk = (pi+pj +pk)2, Qu and Qd are the up- and down-quark
charges respectively, the sum runs over the quark flavours q, while:

P (s) = 1
s−M2

W + iMW ΓW

, (4.2.4)

is the denominator factor of the W boson propagator. MW and ΓW are the mass
and decay width of the W boson, respectively. The sub-amplitudes A(L)

6,i in Eq. 4.2.3
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Figure 4.2: Sample two-loop Feynman diagrams for W+γj produc-
tion containing a closed fermion loop. A(2),nf

6,q vanishes due to Furry’s
theorem.

are categorised as follows:

• A
(L)
6,u : the photon is radiated off the u quark;

• A
(L)
6,d : the photon is radiated off the d quark;

• A
(L)
6,W : the photon is radiated off the W boson;

• A
(L)
6,e : the photon is radiated off the positron;

• A
(L)
6,q : the photon is radiated off the internal quark loop.

We stress that the sub-amplitudes are not separately gauge invariant in the elec-
troweak sector. Using the relation [216]:

P (s56)P (s156) = 1
s156 − s56

[
P (s56)− P (s156)

]
(4.2.5)

we can rewrite Eq. 4.2.3 as:

A
(L)
6 = Qu

[
A

(L)
6,u + 1

s156 − s56
A

(L)
6,W

]
P (s56) +Qd

[
A

(L)
6,d −

1
s156 − s56

A
(L)
6,W

]
P (s56)

+ (Qu −Qd)
[
A

(L)
6,e −

1
s156 − s56

A
(L)
6,W

]
P (s156) +

(∑
q

Qq

)
A

(L)
6,q P (s56) , (4.2.6)
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such that the combinations of sub-amplitudes in the square brackets and A
(L)
6,q are

the gauge invariant pieces. We further decompose the sub-amplitudes according to
their closed fermion loop contributions. At leading colour, we have:

A
(1)
6,i = NcA

(1),1
6,i ,

A
(2)
6,i = N2

cA
(2),1
6,i +NcnfA

(2),nf

6,i ,

A
(2)
6,q = NcA

(2),1
6,q ,

(4.2.7)

where i = u, d,W, e, and nf is the number of massless quark flavours running in the
loop. We note that A(L)

6,q vanishes at tree level and one loop, while at two loops it
includes non-planar contributions, and thus will not be considered in this work.

The coupling of the W boson to fermions involves vector and axial-vector (V − A)
vertices in the form of γµ(1 − γ5)/2. The massless fermion pairs that are coupled
to the W boson are connected to the external states and the V − A coupling fixes
the helicity of the fermion pairs. Therefore, we only need to take into account the
vector coupling of the W boson to fermions when computing the helicity amplitudes.
The contributing helicity configurations are:

A
(L)
6 (1±

γ , 2+
ū , 3±

g , 4−
d , 5−

ν , 6+
ē ) .

We choose +++−−+ and −++−−+ as the independent helicity configurations and focus
on them. We obtain the amplitudes in the other helicity configurations from the
independent ones by suitably permuting the external momenta and conjugating
space-time parity.

The sub-amplitudes A(L)
6,u and A

(L)
6,d are related by:

A
(L)
6,u(1h1

γ , 2+
ū , 3h3

g , 4−
d , 5h5

ν , 6h6
ē ) = A

(L)
6,d (1h1

γ , 4−
ū , 3h3

g , 2+
d , 5h5

ν , 6h6
ē ) . (4.2.8)

As a result, we can limit ourselves to computing the A(L)
6,d sub-amplitudes with the

following helicity configurations:

A
(L)
6,d (1±

γ , 2±
ū , 3±

g , 4∓
d , 5−

ν , 6+
ē ) .

The independent helicity amplitudes for A(L)
6,u are then obtained through:

A
(L)
6,u(1±

γ , 2+
ū , 3+

g , 4−
d , 5−

ν , 6+
ē ) = A

(L)
6,d (1±

γ , 4−
ū , 3+

g , 2+
d , 5−

ν , 6+
ē ) . (4.2.9)

The pole structure of the unrenormalised W+γj amplitudes in the HV scheme at
one and two loops is given by [23–26]:

P
(1)
6 = 2I1(ε) + β0

2ε , (4.2.10)
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P
(2)
6 = 2I1(ε)

(
Â

(1)
6 −

β0

2ε

)
+ 4I2(ε) + 3β0

2ε Â
(1)
6 −

3β2
0

8ε2 + β1

4ε , (4.2.11)

where Â(1)
6 is the unrenormalised one-loop amplitude divided by the tree-level amp-

litude. The I2(ε) operator is given by:

I2(ε) = −1
2I1(ε)

[
I1(ε) + β0

ε

]
+ N(ε)
N(2ε)

[
β0

2ε + γcusp
1
8

]
I1(2ε) +H(2)(ε) , (4.2.12)

while the I1(ε) operator is given at leading colour by:

I1(ε) = −Nc

N(ε)
2

(
1
ε2 + 3

4ε + β0

4Ncε

)[
(−s23)−ε + (−s34)−ε

]
, (4.2.13)

where N(ε) = eεγE/Γ(1− ε) and:

H(2)(ε) = 1
16ε

{(
2γq

1 + γg
1

)
− γcusp

1

(
γq

0
2 + γg

0
4

)
+ π2

8 β0γ
cusp
0

(
CF + CA

2

)}
. (4.2.14)

The β-function coefficients and anomalous dimensions are tabulated in Appendix D.
We stress that the pole terms in Eqs. 4.2.10 and 4.2.11 include both the UV and IR
singularities. We then extract the L-loop partial finite remainder by subtracting the
poles P (L)

6 from the unrenormalised partial amplitude A(L)
6 and sending ε to 0:

F
(L)
6 = lim

ε→0

[
A

(L)
6 − P

(L)
6 A

(0)
6

]
. (4.2.15)

The finite remainder F (L)
6 follows the same decomposition as the unrenormalised

partial amplitude A(L)
6 (see Eqs. 4.2.3 and 4.2.7):

F
(L)
6 =

[
QuF

(L)
6,u +QdF

(L)
6,d

]
P (s56) + (Qu −Qd)

[
F

(L)
6,e + F

(L)
6,WP (s56)

]
P (s156) ,

(4.2.16)
with:

F
(1)
6,i = NcF

(1),1
6,i + nfF

(1),nf

6,i ,

F
(2)
6,i = N2

c F
(2),1
6,i +NcnfF

(2),nf

6,i + n2
fF

(2),n2
f

6,i ,
(4.2.17)

where i = u, d,W, e. We note that, although the bare sub-amplitudes A
(1),nf

6,i

and A
(2),n2

f

6,i vanish, there are finite contributions to the finite remainders F (1),nf

6,i

and F
(2),n2

f

6,i from the UV renormalisation and IR subtraction terms specified in
Eqs. 4.2.10 and 4.2.11. As discussed below Eqs. 4.2.7, we defer the computation of
F

(2)
6,q , as it involves the non-planar integrals.

For the charge-conjugated process, i.e. pp→ ν̄ee
−γj, we consider the amplitudes for:

0→ γ(p1, h1) + d̄(p2, h2) + g(p3, h3) + u(p4, h4) + e−(p5, h5) + ν̄e(p6, h6) ,
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which we denote by W−γj production. The amplitudes for W−γj production can
be obtained from the W+γj results through the following relation:

A
(L)
6 (1−h1

γ , 2+
d̄
, 3−h3

g , 4−
u , 5−

e , 6+
ν̄ ) =

[
A

(L)
6 (1h1

γ , 4+
ū , 3h3

g , 2−
d , 6−

ν , 5+
ē )
]

〈ij〉↔[ij]
. (4.2.18)

4.3 Amplitude Computation

In this section, we describe the computation of the two-loop W+γj amplitudes in
the leading colour approximation. To derive their analytic form, we closely (albeit
with certain departures) follow the framework adopted throughout Chapter 3 and
described extensively in Chapter 2. Crucially, apart from the techniques presented so
far, in this work we also make use of the the four-dimensional projector method [227,
228], which we will introduce soon.

Instead of computing the loop amplitudes using the full six-particle kinematics, we
detach the leptonic decay of the W boson from the amplitude and only compute the
W -production amplitudes. For the A(L)

6,u and A(L)
6,d sub-amplitudes, the W -production

amplitude is a five-point amplitude with an off-shell leg (denoted by A
(L)

µ
5,u/d), while

for the A(L)
6,W and A

(L)
6,e sub-amplitudes, the W -production amplitude is a four-point

amplitude with an off-shell leg (denoted by A(L)µ
4 ):

A
(L)
6,u/d(p1, p2, p3, p4, p5, p6) = A

(L)µ
5,u/d(p1, p2, p3, p4, pW ) LA,µ(p5, p6) , (4.3.1)

A
(L)
6,e/W (p1, p2, p3, p4, p5, p6) = A

(L)µ
4 (p2, p3, p4, p̃W ) Le/W

B,µ (p1, p5, p6) , (4.3.2)

where pW = p5 + p6 and p̃W = p1 + p5 + p6; Le
B,µ (LW

B,µ) is the decay current with
the photon emitted from the positron (W boson), and LA,µ is simply the W+ → νe+

decay current. The QCD corrections affect only the W -production amplitudes A(L)µ
5,u/d

and A
(L)µ
4 . We adopt the same decomposition for the finite remainders:

F
(L)
6,u/d(p1, p2, p3, p4, p5, p6) = F

(L)µ
5,u/d(p1, p2, p3, p4, pW ) LA,µ(p5, p6) , (4.3.3)

F
(L)
6,e/W (p1, p2, p3, p4, p5, p6) = F

(L)µ
4 (p2, p3, p4, p̃W ) Le/W

B,µ (p1, p5, p6) . (4.3.4)

In the next subsections, we discuss the computation of F (L)µ
5,d and F

(L)µ
4 . We recall

that F (L)
6,u can be obtained from F

(L)
6,d through the amplitude-level relation given in

Eq. 4.2.8, which we rewrite here for the finite remainders:

F
(L)
6,u (1h1

γ , 2+
ū , 3h3

g , 4−
d , 5h5

ν , 6h6
ē ) = F

(L)
6,d (1h1

γ , 4−
ū , 3h3

g , 2+
d , 5h5

ν , 6h6
ē ) . (4.3.5)

We begin by describing how we parameterise the kinematics. Next, we discuss how
we decompose the W -production five- and four-particle amplitudes, in Sections 4.3.2
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and 4.3.3 respectively, using the projector method. Section 4.3.4 is devoted to
the finite-field setup which we use to reconstruct the analytic expressions of the
finite remainders as linear combinations of rational coefficients and monomials of
independent special functions. In Section 4.3.5, we present a strategy which allows us
to simplify dramatically the expressions of the coefficients. Finally, in Section 4.3.6 we
discuss how our analytic results for the minimal set of independent finite remainders
can be used efficiently to evaluate numerically all the contributions to the squared
finite remainder summed over helicity and colour.

4.3.1 Kinematics

In this section, we describe the kinematics of the process W+γj in Eq. 4.2.1. All the
external momenta pµ

i are massless:

p2
i = 0 ∀ i = 1, . . . , 6 , (4.3.6)

and taken to be outgoing, so that momentum conservation is:

6∑
i=1

pi = 0 . (4.3.7)

We consider the external momenta pµ
i to live in a four-dimensional Minkowski space.

As a result, there are eight independent scalar invariants, which we choose as:

~s6 = {s12, s23, s34, s45, s56, s16, s123, s234} . (4.3.8)

We also use the pseudo-scalar invariant tr5, defined in Eq. 3.2.6, which captures the
parity information of the phase space.

Only a subset of these invariants are relevant for the computation of A(L)µ
5,d , which

has five-point kinematics with an external massive particle. We choose the following
independent five-point scalar invariants for computing A(L)µ

5,d :

~s5 = {s12, s23, s34, s123, s234, s56} , (4.3.9)

together with tr5. Even fewer variables are relevant for A(L)µ
4 . Since the latter has

four-point kinematics with an external massive particle, no pseudo-scalar invariant
can be formed and it is thus independent of tr5. Moreover, it depends only on three
of the scalar invariants in ~s5. Nonetheless, we view it as a function of ~s5 in order to
have a homogeneous setup.

When attaching the W -boson decay currents (LA,µ and Le/W
B,µ ) to A(L)µ

5,d and A(L)µ
4 (see

Eqs. 4.3.1 and 4.3.2), we find it convenient to describe the massless six-point kinemat-
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ics using a parametrisation based on MTs. We adopt the following parametrisation
(see the discussion in Section 2.5):

Z =


1 0 y1 y2 y3 y4

0 1 1 1 1 1
0 0 0 x5

x2
x6 1

0 0 1 1 x7 1− x8
x5

 , (4.3.10)

where we used the short-hand notation yi = ∑i
j=1

∏j
k=1

1
xk

. The eight MTs xi are
related to the external momenta through:

x1 = s12 , x2 = −tr+(1234)
s12s34

, x3 = −tr+(1345)
s45s13

, x4 = −tr+(1456)
s14s56

,

x5 = s23

s12
, x6 = −tr+(15(3 + 4)2)

s12s15
, x7 = tr+(51(2 + 3)(2 + 3 + 4))

s15s23
, x8 = s123

s12
,

(4.3.11)

with tr±(ij · · · kl) = tr((1 ± γ5)/pi/pj
· · · /pk/pl

)/2. Note that the MTs xi in general
transform in a non-trivial way under space-time parity. We implement the action
of parity on MT expressions as a change of MTs which leave unchanged the scalar
invariants and flips the sign of tr5. The definition of the parity-flipped MTs can be
obtained by trading tr+ for tr− in Eqs. 4.3.11.

4.3.2 Structure of the five-particle W -production
amplitudes

We decompose the five-point W -production amplitude A
(L)µ
5,d using the external

momenta (p1, p2, p3, p4) as the spanning basis:

A
(L)µ
5,d = pµ

1a
(L)
1 + pµ

2a
(L)
2 + pµ

3a
(L)
3 + pµ

4a
(L)
4 . (4.3.12)

The coefficients a(L)
i can be obtained by inverting the system of equations:

a
(L)
i =

4∑
j=1

(
∆−1

)
ij
Ã

(L)
5,j , (4.3.13)

where:

∆ij = pi · pj , (4.3.14)
Ã

(L)
5,i = pi · A

(L)
5,d . (4.3.15)

The contracted amplitudes Ã
(L)
5,i are computed by first generating the five-point

process with an on-shell W boson, followed by replacing the W -boson polarisation



106 Chapter 4. Two-loop helicity amplitudes for W ±γj production

vector by the four external momenta in the spanning basis, (p1, p2, p3, p4). We then
apply tensor decomposition, taking into account the four-dimensional nature of the
external states as proposed in Refs. [227,228], to express each contracted amplitude
Ã

(L)
5,i as a linear combination of 8 independent tensor structures {Tj}8

j=1:

Ã
(L)
5,i =

8∑
j=1

Tjα
(L)
i,j , (4.3.16)

where:

T1 = ū(p4)/p1v(p2) p2 · ε(p1, q1) p2 · ε(p3, q3) ,
T2 = ū(p4)/p1v(p2) p2 · ε(p1, q1) p4 · ε(p3, q3) ,
T3 = ū(p4)/p1v(p2) p4 · ε(p1, q1) p2 · ε(p3, q3) ,
T4 = ū(p4)/p1v(p2) p4 · ε(p1, q1) p4 · ε(p3, q3) , (4.3.17)
T5 = ū(p4)/p3v(p2) p2 · ε(p1, q1) p2 · ε(p3, q3) ,
T6 = ū(p4)/p3v(p2) p2 · ε(p1, q1) p4 · ε(p3, q3) ,
T7 = ū(p4)/p3v(p2) p4 · ε(p1, q1) p2 · ε(p3, q3) ,
T8 = ū(p4)/p3v(p2) p4 · ε(p1, q1) p4 · ε(p3, q3) .

Here, q1 and q3 are arbitrary reference vectors for the photon and the gluon polar-
isation states, respectively. We set q1 = p3 and q3 = p1 throughout our computation.
The tensor coefficients α(L)

i,j can be obtained by:

α
(L)
i,j =

8∑
k=1

(
Θ−1

)
jk

∑
pol
T †

k Ã
(L)
5,i , (4.3.18)

where:

Θij =
∑
pol
T †

i Tj . (4.3.19)

The gluon and photon polarisation sums follow from Eq. 1.1.12. We also specify
the helicity states of the spinors and polarisation vectors in the tensor structures
{Tj}8

j=1:

T
h1h2h3h4
1 = ū(p4, h4)/p1v(p2, h2) p2 · ε(p1, q1, h1) p2 · ε(p3, q3, h3) ,
T

h1h2h3h4
2 = ū(p4, h4)/p1v(p2, h2) p2 · ε(p1, q1, h1) p4 · ε(p3, q3, h3) ,
T

h1h2h3h4
3 = ū(p4, h4)/p1v(p2, h2) p4 · ε(p1, q1, h1) p2 · ε(p3, q3, h3) ,
T

h1h2h3h4
4 = ū(p4, h4)/p1v(p2, h2) p4 · ε(p1, q1, h1) p4 · ε(p3, q3, h3) , (4.3.20)
T

h1h2h3h4
5 = ū(p4, h4)/p3v(p2, h2) p2 · ε(p1, q1, h1) p2 · ε(p3, q3, h3) ,
T

h1h2h3h4
6 = ū(p4, h4)/p3v(p2, h2) p2 · ε(p1, q1, h1) p4 · ε(p3, q3, h3) ,
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T
h1h2h3h4
7 = ū(p4, h4)/p3v(p2, h2) p4 · ε(p1, q1, h1) p2 · ε(p3, q3, h3) ,
T

h1h2h3h4
8 = ū(p4, h4)/p3v(p2, h2) p4 · ε(p1, q1, h1) p4 · ε(p3, q3, h3) ,

from which we obtain the contracted helicity amplitudes:

Ã
(L),h1h2h3h4
5,i =

8∑
j,k=1

T
h1h2h3h4
j

(
Θ−1

)
jk
Ã(L)

5,k i , (4.3.21)

with:

Ã(L)
5,k i =

∑
pol
T †

k Ã
(L)
5,i . (4.3.22)

We carry out the same decomposition for the five-particle finite remainder F (L)µ
5,d ,

arriving at the following formula for the contracted helicity finite remainders:

F̃
(L),h1h2h3h4
5,i =

8∑
j,k=1

T
h1h2h3h4
j

(
Θ−1

)
jk
F̃ (L)

5,k i , (4.3.23)

where:

F̃ (L)
5,k i =

∑
pol
T †

k pi µ F
(L)µ
5,d . (4.3.24)

As discussed in Section 4.2, the independent helicity configurations which we need
to compute are: {

F̃
(L),+++−
5,i , F̃

(L),−++−
5,i , F̃

(L),+−++
5,i , F̃

(L),−−++
5,i

}
. (4.3.25)

We note that it is possible to compute directly the contracted finite remainders F̃ (L)
5,i

without specifying the helicity states. In our setup, however, such a computation
would lead to more complicated analytic expressions as compared to the results
obtained for the contracted helicity amplitudes.

4.3.3 Structure of the four-particle W -production
amplitudes

The four-particle W -production amplitude A(L)µ
4 has been computed in the context

of W + 1j production at the LHC (qq̄ → Wg) [214], which is a crossing of the
e+e− → qq̄g amplitude [229]. In our case, it is convenient to express A(L)µ

4 in terms
of the same special function basis as A(L)µ

5,d . This guarantees a uniform combination
of the different contributions to the full amplitude. We therefore re-derive the A(L)µ

4

amplitude using our computational framework. We decompose the A(L)µ
4 amplitude
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using the following tensor structures [229]:

A
(L)µ
4 (p2, p3, p4) =

7∑
i=1

b
(L)
i Y µ

i , (4.3.26)

where:

Y µ
1 = ū(p4)/p3v(p2) ε3 · p4 p

µ
4 − p3 · p4 ū(p4)/ε3v(p2) pµ

4

− (p2 · p4 + p3 · p4)
[
ū(p4)/p3v(p2) εµ

3 − ū(p4)/ε3v(p2) pµ
3

]
,

Y µ
2 = ū(p4)/p3v(p2) ε3 · p4 p

µ
3 − p3 · p4 ū(p4)/ε3v(p2) pµ

3

− (p2 · p3 + p3 · p4)
[
ū(p4)/p3v(p2) εµ

3 − ū(p4)/ε3v(p2) pµ
3

]
,

Y µ
3 = ū(p4)/p3v(p2) ε3 · p4 p

µ
2 − p3 · p4 ū(p4)/ε3v(p2) pµ

2

− (p2 · p3 + p2 · p4)
[
ū(p4)/p3v(p2) εµ

3 − ū(p4)/ε3v(p2) pµ
3

]
, (4.3.27)

Y µ
4 = ū(p4)/p3v(p2) ε3 · p2 p

µ
4 − p2 · p3 ū(p4)/ε3v(p2) pµ

4 ,

Y µ
5 = ū(p4)/p3v(p2) ε3 · p2 p

µ
3 − p2 · p3 ū(p4)/ε3v(p2) pµ

3 ,

Y µ
6 = ū(p4)/p3v(p2) ε3 · p2 p

µ
2 − p2 · p3 ū(p4)/ε3v(p2) pµ

2 ,

Y µ
7 = p3 · p4 ū(p4)γµv(p2) ε3 · p2 − p2 · p3 ū(p4)γµv(p2) ε3 · p4

− (p2 · p3)
[
ū(p4)/p3v(p2) εµ

3 − ū(p4)/ε3v(p2) pµ
3

]
.

The coefficients b(L)
i can be determined through:

b
(L)
i =

∑
j

(
Ω−1

)
ij
Ã

(L)
4,j , (4.3.28)

where:

Ωij =
∑
pol
Y µ†

i Yjµ , (4.3.29)

Ã
(L)
4,i =

∑
pol
Y µ†

i A
(L)
4 µ . (4.3.30)

The gluon polarisation sum follows from Eq. 1.1.12. We note that the tensor struc-
tures in Eq. 4.3.27 are different from the ones employed in Ref. [229]. Here, we start
from 12 tensor structures that are linearly independent in 4 dimensions [227,228] and
reduce them to 7 by imposing Ward identities. Since A(L)µ

4 is a four-point amplitude,
it does not depend on tr5. For the sake of uniformity, we express it in terms of
the five-point Mandelstam invariants ~s5, Eq. 4.3.9. In contrast to the computation
of A(L)µ

5,d , here we derive the contracted amplitudes Ã(L)
4,i directly without specifying

the helicity states, since the four-point computation is relatively simple. The heli-
city states for the tensor structures Y i

µ are specified when the decay currents are
attached, following Eq. 4.3.2. Once again, we perform the same decomposition on
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the corresponding four-particle finite remainder F (L)µ
4 . The resulting formula for the

contracted finite remainders is:

F̃
(L)
4,i =

∑
pol
Y µ†

i F
(L)
4 µ . (4.3.31)

4.3.4 Amplitude reduction and analytic reconstruction

In this section, we present the analytic computation of the contracted five- and four-
particle finite remainders, F̃ (L),h1h2h3h4

5,i Eq. 4.3.23 and F̃
(L)
4,i Eq. 4.3.31 respectively,

at one and two loops. We adopt the framework used in Chapter 3 based on Feynman
diagrams and functional reconstruction from numerical sampling over finite fields.

In order to use the finite field technique, we need to have a rational parametrisation
of the kinematics. However, just as in Chapter 3, the pseudo-scalar invariant tr5

in the five-particle kinematics leads (through Eq. 3.2.7) to the appearance of the
square root

√
∆5. This issue may be dealt with in two ways: either parameterise the

kinematics to explicitly rationalise
√

∆5, or parameterise the finite remainders such
that the dependence on tr5 is analytic and so it never enters the computations within
finite fields. In the previous chapter, we followed a mixed approach. On one hand,
tr5 which captures the parity information of the coefficients in the finite remainders
was explicitly rationalised using MTs. On the other hand, tr5 which appears in the
overall prefactors of the canonical MIs was normalised away and restored at the end
of the computation.

Here, we do not rationalise tr5 using MTs. Instead, we organise our workflow such
that the dependence on tr5 is fully analytic. Note that tr5 can enter the computation
in three distinct ways. First, it can originate from the γ5 in the axial coupling of the
W boson. As discussed in Section 4.2, we set up the computation so that only the
vector coupling of W is used. Second, while it is still true that we need tr5 to capture
the parity-odd part of the spinor-helicity expressions, it enters the contracted helicity
finite remainder in Eq. 4.3.23 only through the spanning basis elements T h1h2h3h4

j ,
which are known analytically and do not need to be reconstructed over finite fields.
Finally, tr5 present in the definitions of the canonical MIs is normalised away just as
in Chapter 31. With this setup, the only parts of the contracted finite remainders
which need to be reconstructed are rational functions of the scalar invariants ~s5 only,
and can thus be sampled numerically over finite fields.

1In addition to
√

∆5, the overall prefactors of the canonical MIs contain other square roots,√
∆(i)

3 for i = 1, 2, 3, which we also normalise away and restore afterwards [98,121]. We have already

seen two of them in Eq. 3.3.4. Here, the third one is needed:
√

∆(3)
3 = 2

√
(p13 · p5)2 − p2

5s13.
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The starting point of our computation is the expression of the W -production five-
and four-particle amplitudes, A(L)µ

5,d and A(L)µ
4 , in terms of Feynman diagrams. Using

QGRAF [35], we find 20 diagrams for A(1),1µ
5,d , 231 diagrams for A(2),1µ

5,d , 32 diagrams
for A(2),nf µ

5,d , 7 diagrams for A(1),1µ
4 , 74 diagrams for A(2),1µ

4 , and 13 diagrams for
A

(2),nf µ
4 . We want to obtain analytic, IBP-compatible expressions for the contracted

amplitudes, Ã(L),h1h2h3h4
5,i and Ã(L)

4,i . For the four-point amplitude A(L)µ
4 , we apply the

projectors and sum over all polarisation states as in Eq. 4.3.30. For the five-point
amplitude A(L)µ

5,d , we contract by the external momenta and apply the projectors, as
in Eqs. 4.3.15 and 4.3.22, respectively. We then rewrite the resulting expressions in
terms of scalar Feynman integrals belonging to the 15 maximal topologies shown
in Fig. 3.3. We carry out all these operations analytically using Mathematica
and FORM [184, 185] scripts. As a result, we obtain analytic expressions for Ã(L)

5,i k,
Eq. 4.3.22, and Ã

(L)
4,i , Eq. 4.3.30, as linear combinations of scalar Feynman integrals

with rational coefficients functions of ~s5. In order to obtain the contracted helicity-
amplitudes Ã(L),h1h2h3h4

5,i from the Ã(L)
5,i k’s, we further need to multiply by the spanning

basis elements T h1h2h3h4
j and by the inverse of Θ, as shown in Eq. 4.3.21. We do

these operations (including the inversion of Θ) numerically within the finite field
framework.

We reduce the scalar integrals to the canonical MIs identified in Ref. [98], which we
modified so as to re-absorb the square roots. We generate the IBP relations [65]
using LiteRed [29] in Mathematica, and solve them numerically over finite fields
using the Laporta algorithm [230] through FiniteFlow’s linear solver. We then
perform a Laurent expansion of the rational coefficients around ε = 0, and map the
canonical MIs onto square roots and the special function basis of Ref. [182] up to the
required order in ε. We label the special function basis by {fk}. We truncate the ε
expansion at order ε2 at one loop and at order ε0 at two loops. Finally, we subtract
the UV/IR poles as in Eq. 4.2.15 and define the contracted finite remainders:

F̃
(L),h1h2h3h4
5,i = Φh1h2h3h4

5
∑

j

[
q

h1h2h3h4
i,j (~s5) + tr5 r

h1h2h3h4
i,j (~s5)

]
monj

(
tr5,

√
∆(l)

3 , {fk}
)
,

F̃
(L)
4,i =

∑
j

ti,j (~s5) monj

(
tr5,

√
∆(l)

3 , {fk}
)
, (4.3.32)

where monj(x, y, . . .) denotes monomials in x, y, . . ., while qh1h2h3h4
i,j , rh1h2h3h4

i,j and
ti,j are rational functions of ~s5. Note that we pull out from the five-particle finite
remainders an arbitrary phase factor Φh1h2h3h4

5 carrying all the helicity weights, so
that the coefficients qh1h2h3h4

i,j and r
h1h2h3h4
i,j are scalar and hence functions of ~s5

only. We recall that the helicity configuration is assigned to the four-particle finite
remainders when attaching the decay current, as discussed in Section 4.3.3. The
cancellation of the poles at this stage provides a robust check of the result prior to
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the rational reconstruction. Furthermore, it typically leads to simplifications which
make the finite remainders easier to reconstruct than the bare amplitudes. This
chain of operations is implemented in FiniteFlow.

Finally, we need to reconstruct the rational coefficients of the contracted finite
remainders from their numerical values. Following Refs. [1,182,187,194], we perform
a number of optimisations to reduce the number of required sample points. We follow
the strategy outlined in Ref. [187]. First of all, we set s12 = 1. We recover the analytic
dependence on s12 a posteriori through dimensional analysis. Then, similarly to the
workflow outlined in Section 3.3, we fit the Q-linear relations among the rational
coefficients, and solve them so as to express the most complicated coefficients in
terms of the simplest ones. Third, we perform the matching of remaining coefficients
with an ansatz of factors on a random univariate phase space slice modulo a large
prime number. Contrary to the ansatz presented in Eq. 3.3.5, here we do not need
to include phase-dependent spinor structures. For this set of amplitudes, we find the
following ansatz sufficient:{
s12 , s23 , s34 , s23 + s34 , s23 − s234 , s234 − s34 , s123 − s56 , s234 − s56 , s12 − s123 + s23 ,

s12 + s234 − s34 , s23 − s234 + s34 , s12 + s234 − s56 , s12 − s123 − s34 , s123s234 − s23s56 ,

s12 − s123 + s23 − s34 , s123 − s23 + s234 − s56 , s12 + s234 − s34 − s56 ,

s12s234 − s123s234 + s23s234 − s234s34 + s34s56 ,

s12s234 − s123s234 − s234s34 + s23s56 + s34s56 , s12s234 + s2
234 − s234s34 − s234s56 + s34s56 ,

s12s123 + s123s234 − s123s34 − s12s56 − s23s56 , s12s123 − s2
123 − s123s34 − s12s56 + s123s56 ,

s2
12 − s12s123 + s12s234 − s123s234 − 2s12s34 + s123s34 − s234s34 + s2

34 + s23s56 ,

s12s23 − s12s234 + s23s234 − s2
234 − s23s34 + s234s34 − s23s56 + s234s56 − s34s56 ,

λ (s12, s34, s56) , λ (s23, s14, s56) , tr2
5

}
,

(4.3.33)

where λ is the Källen function:

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2bc− 2ca . (4.3.34)

Just as in Chapter 3, we are able to determine entirely the denominators of the
rational coefficients, as well as some of their numerators. In Table 4.1, we show the
impact of this strategy on the highest polynomial degrees of the rational coefficients
which need to be reconstructed for the five-particle contracted finite remainders.
Note that we process all helicity configurations of the five-particle finite remainders
simultaneously, but for the n0

f ones we separate the contractions by the external mo-
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s12 = 1 linear relations factor matching
F̃

(2),1 h1h2h3h4
5,i with i = 1, 2 44/44 41/40 41/0
F̃

(2),1 h1h2h3h4
5,i with i = 3, 4 48/47 42/42 42/0
F̃

(2),nf h1h2h3h4
5,i with i = 1, 2, 3, 4 39/38 26/24 26/0

Table 4.1: Maximal total polynomial degrees of the rational coeffi-
cients of the contracted two-loop five-particle finite remainders at
each stage of the optimisation procedure for the finite field recon-
struction, in the form: numerator/denominator. The coefficients
are functions of the five scalar invariants {s23, s34, s123, s234, s56}
(s12 = 1). The independent helicity configurations Eq. 4.3.25 are
processed simultaneously, while the contractions by the external
momenta for F̃ (2),1 h1h2h3h4

5,i are separated into two subsets to reduce
the memory usage.

menta into two subsets, {p1, p2} and {p3, p4}, to reduce the memory usage. After this
optimisation is done, the rational coefficients are reconstructed using the multivariate
functional reconstruction algorithms implemented in FiniteFlow (see Section 2.6.2).
Note that in contrast to Chapter 3, here we do not find it necessary to perform the
univariate partial fraction decomposition prior to reconstruction.

4.3.5 Simplification of the rational coefficients

The resulting analytic expressions of the rational coefficients of the finite remainders
are rather bulky. The standard approach to simplify them relies on partial fraction
decomposition, either multivariate [188–192,231,232] or univariate with respect to
a suitable variable [1, 182, 187, 233]. For the rational coefficients of the four-point
finite remainders, ti,j (~s5) in Eq. 4.3.32, we achieve a satisfactory simplification
by performing a multivariate partial fraction decomposition with the Mathematica
package MultivariateApart [192], enhanced by Singular [234] for the computation
of the Gröbner bases.

The rational coefficients of the five-particle finite remainders are instead substantially
more involved. In order to simplify them, we look for a parametrisation of the five-
particle kinematics leading to more compact expressions than the scalar invariants
~s5 Eq. 4.3.9. We investigate how the complexity of the expressions varies when using
different MT parametrisations. The pseudoscalar invariant tr5 is given by a rational
function in terms of MTs, and we can thus add up the two terms of the coefficients
of the special function monomials:

(
q

h1h2h3h4
i,j (~s5) + tr5 r

h1h2h3h4
i,j (~s5)

) ∣∣∣∣∣
~s5=~s5(~z)

= u
h1h2h3h4
i,j (~z) , (4.3.35)
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where by ~z = {zi}i=1,...,6 we denote generally the independent MTs. In particular,
we consider the parametrisation proposed in Ref. [1]:

z1 = s12 , z2 = −tr+(1234)
s12s34

,

z3 = tr+(1341(5 + 6)2)
s13 tr+ (14(5 + 6)2) , z4 = s23

s12
,

z5 = −tr−(1(2 + 3)(1 + 5 + 6)(5 + 6)23)
s23 tr−(1(5 + 6)23) , z6 = s456

s12
.

(4.3.36)

In previous applications, such a parametrisation has been used globally, i.e. in all
amplitudes/finite remainders irrespective of their helicity configuration. We find
that this approach does not perform well in this case, and does not lead to a major
simplification in comparison with the expressions in terms of scalar invariants ~s5 and
tr5. The rational parametrisation has the effect of breaking some symmetries in the
kinematic quantities, which results in some configurations being simpler than others.
There is no reason for the parametrisation to be a global choice, and here we exploit
this fact and consider different parametrisations for each helicity configuration.

In practice, we consider all parametrisations which are obtained by permuting the
massless momenta on the right-hand side of Eqs. 4.3.36. For each helicity config-
uration, we determine which permutations of the parametrisation lead to the most
compact expression of the finite remainder at one loop. We then use them at two
loops and select the one which results in the simplest expressions. We perform the
change of variables over finite fields within the FiniteFlow framework, and measure
the ‘simplicity’ of the rational coefficients in terms of their numerator/denominator
polynomial degrees, which can be determined without reconstructing the coefficients
in terms of the new variables. Once the ‘best’ parametrisation ~s5 = ~s5(~z) is chosen for
each helicity configuration, we reconstruct the analytic expression of the coefficients
in terms of the new variables ~z. For this purpose, we make use of the finite field
algorithm for univariate partial fraction decomposition presented in Refs. [182,187].
We choose the variable to partial fraction with respect to so as to minimise the
polynomial degrees of the separate terms of the decomposition. Breaking down the
coefficients into univariate partial fractions simplifies the subsequent multivariate
partial fraction decomposition, which we perform using MultivariateApart [192]
enhanced with Singular [234]. We apply it to each term of the univariate partial
fraction decomposition separately, which is convenient as each term is by itself much
simpler than the full coefficient. This is possible because MultivariateApart’s al-
gorithm commutes with summation by design. The spurious poles introduced by the
univariate partial fraction decomposition therefore cancel out after the multivariate
partial fraction decomposition. In summary, our algorithm for the simplification of
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the rational coefficients of the five-particle finite remainders is the following:

1. Try all permutations of a given MT parametrisation on the one-loop expressions
and select a few which lead to the lowest polynomial degrees.

2. Apply the parametrisations selected at step 1 on the two-loop rational coeffi-
cients and choose the one which leads to the lowest polynomial degree.

3. Decompose the two-loop coefficients in terms of the new variables into uni-
variate partial fractions with respect to the variable which leads to the lowest
polynomial degrees in the separate terms.

4. Decompose into multivariate partial fractions the separate terms of the uni-
variate partial fractions using the algorithm of Ref. [192], and sum them up
cancelling the spurious poles.

In hindsight, the first three steps could have been implemented prior to the original
reconstruction in Section 4.3.4. We did not attempt this approach, because we did
not need any further optimisation to reconstruct the coefficients of the W -production
five-particle finite remainders. However, we believe that this strategy may be useful
in future applications.

We apply this procedure separately on each of the helicity configurations, leading
to different parametrisations for each of them. The resulting expressions for the
coefficients are remarkably more compact than the original ones in terms of the scalar
invariants ~s5. For the most complicated finite remainder, we achieved a compression
in the file size of more than two orders of magnitude. The evaluation time of the
rational coefficients is similarly improved.

4.3.6 Numerical evaluation and permutations of the
amplitudes

In order to obtain the values of all the amplitudes in all the possible scattering chan-
nels, we need to evaluate the minimal set of independent objects we reconstructed
for different permutations of the external momenta (see e.g. Eq. 4.2.8 for an explicit
example). In this subsection, we discuss how we implement this operation in an
efficient way at the level of the numerical evaluation.

We denote a generic permutation of the external momenta by:

σ = (σ1σ2σ3σ4σ5σ6) , (4.3.37)
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where the σi’s take distinct values in {1, 2, 3, 4, 5, 6}, such that the action of σ on an
external momentum is given by:

σ ◦ pi = pσi
. (4.3.38)

Not all S6 permutations of {1, 2, 3, 4, 5, 6} are needed for this application. The re-
quired permutations belong to the subset S4×Z2, i.e. they are obtained by composing
an S4 permutation of {p1, p2, p3, p4} and a Z2 exchange of {p5, p6}. In particular, p5

and p6 need to be exchanged in order to obtain the W−γj amplitudes according to
Eq. 4.2.18. Only the S4 permutations are relevant for the W -production amplitudes
(and hence for the special functions), since p5 and p6 enter them only in the sum
p5 + p6 (see e.g. Eqs. 4.3.1 and 4.3.2). The Z2 exchange is relevant only for the
leptonic currents (LA,µ and L

e/W
B,µ ), which are rational functions.

Given a generic amplitude/finite remainder A, function of the external momenta
{pi}, we define its permutation σ as:

(σ ◦ A) ({pi}) = A ({σ ◦ pi}) . (4.3.39)

In other words, we can obtain the value of the permuted amplitude by evaluating
the amplitude in the original orientation of the external momenta at a permuted
phase space point. While this operation is trivial for the rational functions, it is
in general very subtle for the special functions. The reason is that a permutation
in general maps the phase space point to a different scattering region. This would
require a complicated analytic continuation, since the special functions have a very
intricate branch cut structure.

One way to overcome this problem is to evaluate the special functions numerically
using the generalised series expansion method [141], implemented in the public
Mathematica package DiffExp [142], as done in Chapter 3. Within this method,
the analytic continuation can be carried out systematically. However, this approach
requires that, for each phase space point where we want to evaluate the permuted
amplitudes, we evaluate the special functions at as many points as the number of
needed permutations.

For phase space points in the physical scattering region, we can adopt a much more
efficient evaluation strategy: we use the C++ package PentagonFunctions++ [121],
which allows us to evaluate in the physical scattering region a larger basis of special
functions, named ‘one-mass pentagon functions’. We denote them by {gi}. For this
purpose we translate the MI function basis {fi} of Ref. [182] (see Section 3.4) to the
one-mass pentagon function basis {gi} implemented in PentagonFunctions++. The
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translation takes the form:

fi =
∑

j

wij monj ({gk}) , (4.3.40)

where wij ∈ Q, and the sum runs over all the required monomials of the one-mass
pentagon functions {gk}. We obtain the transformation rules Qq. 4.3.40 by matching
the expressions of the MIs in terms of special functions given in Ref. [182] with that
of Ref. [121]. The advantage of the one-mass pentagon functions with respect to
the function basis {fi} or Ref. [182] is that their evaluation through the package
PentagonFunctions++ is extremely efficient, and their design allows us to generate
the values of all S4 permutations of the functions from those at the unpermuted
phase space point. The one-mass pentagon function basis {gi} is in fact closed under
S4 permutations. This means that, for any σ ∈ S4, we can express the permuted
one-mass pentagon functions evaluated at a given phase space point as a combination
of the unpermuted pentagon functions evaluated at the same point:

(σ ◦ gi) (~s5, tr5) =
∑

j

Σ(σ)
ij monj [{gk (~s5, tr5)}] , (4.3.41)

where Σ(σ)
ij ∈ Q, and we spelled out the dependence on the kinematics for the sake

of clarity. These transformation rules are provided in Ref. [121].1 This strategy is
advantageous because it minimises the number of evaluations of the special functions,
which is the most time-consuming step in the numerical evaluation of the colour and
helicity summed squared amplitudes.

It is worth highlighting the special behaviour of the pseudoscalar invariant tr5 in
this chain of operations. In the physical scattering regions, the reality of the mo-
menta implies that tr2

5 < 0. In other words, tr5 is purely imaginary. The library
PentagonFunctions++ always assumes that Im [tr5] > 0. The sign of tr5, however,
may change upon the action of an odd-signature permutation:

σ ◦ tr5 = sign(σ) tr5 , (4.3.42)

or space-time parity. The values of the one-mass pentagon functions for a negative
imaginary part of tr5 can be obtained by flipping the sign of a subset of functions
specified in Ref. [121]. In our setup, however, we do not need to do so. As discussed

1Note that Ref. [121] has a different labelling of the external momenta. Moreover, the package
PentagonFunctions++ works in a specific physical scattering region (the s45 channel using the
notation of Ref. [121]). A relabelling and a further permutation of the momenta are required to
use PentagonFunctions++ in the scattering region relevant for our application. We implemented
these operations in the Mathematica evaluation script provided in the ancillary files, and refer to
the original work, Ref. [121], for a discussion of how to use PentagonFunctions++ in a physical
region different from the default one.
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in Section 4.3.4, we reduce the amplitudes to manifestly scalar MIs, and group
together the special functions and the square roots arising from the definition of the
canonical MIs. As a result, the monomials of special functions and square roots in
the finite remainders Eq. 4.3.32 are scalar as well. Any sign change in the pentagon
functions due to permutations or space-time parity is therefore compensated by that
of the accompanying factor of tr5, and we can thus evaluate both with a value of
tr5 such that Im [tr5] > 0 — as by default in PentagonFunctions++ — regardless of
the permutations or space-time parity. We must only keep track of the sign of tr5 in
the rational coefficients (see Eq. 4.3.32), which enters our final expressions for the
five-particle finite remainders through the values of the MTs, and is determined by
the values of the external momenta through its definition Eq. 3.2.6. The same holds
for the other square roots in the problem,

√
∆(i)

3 , which appear only in the special
function monomials. The polynomials ∆(i)

3 are positive in the physical scattering
regions. We adopt the convention of Ref. [121] that their square roots are positive,√

∆(i)
3 > 0, as done in PentagonFunctions++.

In conclusion, we reconstruct the analytic expressions for the minimal set of independ-
ent finite remainders, and generate the values of the remaining ones by permuting
the former at the numerical evaluation stage. We do this by evaluating the rational
coefficients at permuted points, whereas we obtain the values of all permutations
of the special functions from the values of the functions at the original phase space
point only. This allows us to minimise the amount of analytic data, whose size may
otherwise become problematic, and at the same time evaluate the results efficiently.

4.4 Validation

In this section, we discuss a number of validations performed on the analytic results
derived in this work. First, let us remind the reader that the quantities that we
reconstructed analytically are the L-loop finite remainders, where the UV and IR
poles contained in the L-loop bare amplitudes are cancelled by the pole terms
according to Eq. 4.2.15. These pole cancellations already provide a strong consistency
check of our calculation. In the following subsections, we present further checks.

4.4.1 Comparison against full six-point computation

In order to verify the analytic expressions obtained by detaching the leptonic decay
current as described in Section 4.3, we cross-check them against the helicity amp-
litudes obtained by computing the six-point process directly using a framework that



118 Chapter 4. Two-loop helicity amplitudes for W ±γj production

has been applied to the computation of several two-loop amplitudes [1,187,235,236].
We perform the full six-point computation numerically using the MT parametrisation
Eq. 4.3.11 by assigning rational values to the variables x1, . . . , x8 in the coefficients
and treating the special functions symbolically. We derive numerical results for all
the sub-amplitudes — A

(L)
6,u , A(L)

6,d , A(L)
6,W and A

(L)
6,e — in all four contributing helicity

configurations. We find full numerical agreement between the two approaches. This
provides a further robust check of our analytic computation, where we derived ana-
lytic expressions only for the independent helicity configurations and obtained the
remaining ones by complex conjugation and permutation of the external momenta.

4.4.2 Gauge invariance

The gauge-invariance structure of the W+γj amplitude is slightly complicated by
the different sources of photon emission, as discussed in Section 4.2. The individual
sub-amplitudes (A(L)

6,i with i = u, d,W, e) are not separately gauge invariant in the
electroweak (EW) sector. Only linear combinations of them, defined in Eq. 4.2.6,
are. We rewrite them here for convenience:{

A
(L)
6,u + 1

s156 − s56
A

(L)
6,W , A

(L)
6,d −

1
s156 − s56

A
(L)
6,W , A

(L)
6,e −

1
s156 − s56

A
(L)
6,W

}
.

(4.4.1)
We verify explicitly that these combinations satisfy the EW Ward identity by repla-
cing the photon polarisation vector with its momentum (ε(p1)→ p1) and checking
that the resulting expressions vanish.

The QCD Ward identity (performed by replacing the gluon polarisation vector
with its momentum, ε(p3) → p3), instead, is already satisfied by the individual
sub-amplitudes. We checked this explicitly as well.

We further demonstrate the gauge invariance by evaluating the helicity amplitudes
using two different sets of reference momenta for the photon and gluon polarisation
vectors (q1 and q3), finding perfect agreement.

4.4.3 Renormalisation scale dependence

Similarly to Section 3.5.2, we restore the renormalisation scale dependence of the
L-loop finite remainders by adding to them the terms:

δF
(1),1
6

(
µ2
)

= 11
6 A

(0)
6 log

(
µ2
)
, (4.4.2)

δF
(1),nf

6

(
µ2
)

= −1
3A

(0)
6 log

(
µ2
)
, (4.4.3)
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δF
(2),1
6

(
µ2
)

= log(µ2)
{(

1813
216 −

11
36π

2 + 8ζ3

)
A

(0)
6 + 11

2 F
(1),1
6 (1)

}
+ 121

24 A
(0)
6 log2(µ2) ,

(4.4.4)

δF
(2),nf

6

(
µ2
)

= log(µ2)
{(

π2

18 −
77
18

)
A

(0)
6 − F

(1),1
6 (1) + 11

2 F
(1),nf

6 (1)
}
− 11

6 A
(0)
6 log2(µ2) ,

(4.4.5)

δF
(2),n2

f

6

(
µ2
)

= log(µ2)
{

10
27A

(0)
6 − F

(1),nf

6 (1)
}

+ 1
6A

(0)
6 log2(µ2) . (4.4.6)

The dependence on the external momenta is understood. We then verify that the
µ-dependent finite remainders satisfy the correct scaling relations by evaluating them
at two phase space points and checking the relation Eq. 3.5.13.

4.4.4 Tree-level and one-loop checks

We validated the tree-level and one-loop amplitudes derived in this chapter against
the results available in literature. For the tree-level amplitude, we compared our heli-
city amplitudes against the analytic results presented in Ref. [216] and additionally,
for the full colour tree-level squared matrix elements, against Madgraph5 [207] for
both processes W+γj and W−γj. As for the one-loop amplitudes, we compared our
results against the leading colour contributions of the W+γj amplitudes presented
in Ref. [216]. In all cases we find perfect agreement. We would like to point out that
our choice of reference vectors for the photon and the gluon is different from the one
used in Ref. [216]. For this reason, we compared the gauge invariant combinations of
sub-amplitudes shown in Eq. 4.4.1. This check therefore further validates the gauge
invariance of our result.

4.4.5 Four-point amplitude comparison

We performed a cross check of the four-point amplitudes A(L)µ
4 which contribute to

the sub-amplitudes A(L)
6,W and A

(L)
6,e against the results provided in Ref. [214] for the

scattering process qq̄ → V g. In Ref. [214], analytic results are presented for the
helicity coefficients which are linear combinations of the form factors b(L)

i in Eq. 4.3.26,
evaluated at µ2 = s234. In order to enable a direct comparison for the one- and
two-loop leading colour finite remainders, we recomputed the A(L)µ

4 amplitudes in
Eq. 4.3.26 using the tensor structures employed in Ref. [214]. Since we compute the
finite remainders with µ2 = 1, we obtain the results at µ2 = s234 using the formulae
to restore the dependence on µ shown in Section 4.4.3. We obtain perfect numerical
agreement for the helicity coefficients. We further check that the four-particle finite
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remainders F (L)µ
4 computed using the tensor structures of Ref. [214] match the ones

we derived using the tensor structures defined in Section 4.3.3 after contracting them
with the decay currents according to Eq. 4.3.4.

4.5 Results

The analytic expressions for the five- and four-point contracted amplitudes (Ã(L)
5,i

and Ã(L)
4,i ), at one and two loops, together with the decay currents (LA,µ, Le

B,µ, LW
B,µ)

and the relevant projection matrices (∆, Eq. 4.3.14 and Ω, Eq. 4.3.29) are provided
in the ancillary files of Ref. [2]. The amplitudes are presented as linear combinations
of independent rational coefficients that multiply a monomial basis of square roots
and special functions.

We confirm the observations pointed out in Section 3.4 about the cancellation of the
pentagon functions involving certain letters [1,182,233]. Once again, we observe that
the functions involving the letters {W16,W17,W27,W28,W29,W30} (in the notation of
Ref. [98]) are present in the contributing integrals but drop out from the amplitudes
truncated1 at order ε0 and that the functions involving the letter W49 = tr5 are
present in the amplitudes and drop out from the finite remainders. It is worth noting
that these cancellations occur already at the level of the separate sub-amplitudes A(L)

6,i

and sub-finite remainders F (L)
6,i , and not just for their gauge-invariant combinations.

The ancillary files of Ref. [2] include a Mathematica script to demonstrate the as-
sembly of both the W+γj and W−γj amplitudes, and to perform the numerical evalu-
ation of the finite remainders at a given kinematic point. We evaluate the special func-
tions in the physical scattering region using the package PentagonFunctions++ [121],
as discussed in Section 4.3.6. We use the following configuration of momenta:

−p2 − p4 → p1 + p3 + p5 + p6 , (4.5.1)

to define the six scattering channels for pp→ W+γj production:

ud̄ : u(−p2) + d̄(−p4)→ γ(p1) + g(p3) + νe(p5) + e+(p6) ,
d̄u : d̄(−p2) + u(−p4)→ γ(p1) + g(p3) + νe(p5) + e+(p6) ,
ug : u(−p2) + g(−p4)→ γ(p1) + d(p3) + νe(p5) + e+(p6) ,
gu : g(−p2) + u(−p4)→ γ(p1) + d(p3) + νe(p5) + e+(p6) ,

1This holds for the set of independent amplitudes we reconstructed explicitly, which receive
contributions only from the cyclic permutations of the MIs. Since the set of letters Z is not closed
under all S4 permutations, these letters are present in some of the permuted amplitudes which
contribute to the helicity and colour summed squared finite remainders.
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d̄g : d̄(−p2) + g(−p4)→ γ(p1) + ū(p3) + νe(p5) + e+(p6) ,
gd̄ : g(−p2) + d̄(−p4)→ γ(p1) + ū(p3) + νe(p5) + e+(p6) , (4.5.2)

and similarly for pp→ W−γj production:

dū : d(−p2) + ū(−p4)→ γ(p1) + g(p3) + e−(p5) + ν̄e(p6) ,
ūd : ū(−p2) + d(−p4)→ γ(p1) + g(p3) + e−(p5) + ν̄e(p6) ,
dg : d(−p2) + g(−p4)→ γ(p1) + u(p3) + e−(p5) + ν̄e(p6) ,
gd : g(−p2) + d(−p4)→ γ(p1) + u(p3) + e−(p5) + ν̄e(p6) ,
ūg : ū(−p2) + g(−p4)→ γ(p1) + d̄(p3) + e−(p5) + ν̄e(p6) ,
gū : g(−p2) + ū(−p4)→ γ(p1) + d̄(p3) + e−(p5) + ν̄e(p6) . (4.5.3)

The interference between the L-loop finite remainders and the tree-level amplitudes
summed over colour and helicity in the leading colour approximation is given by:

∑
colour

∑
helicity

A(0)∗
6 F (L)

6 =: 2e2g4
Wg

2
sn

LN2
c H(L) , (4.5.4)

where the reduced squared finite remainder H(L) is defined by:

H(L) =
∑

helicity
A

(0)∗
6 F

(L)
6 , (4.5.5)

for all scattering channels given in Eqs. 4.5 and 4.5. The reduced squared finite
remainder obeys the same decomposition according to the closed fermion loop con-
tributions as F (L)

6 :

H(1) = NcH(1),1 + nfH(1),nf ,

H(2) = N2
cH(2),1 +NcnfH(2),nf + n2

fH(2),n2
f .

(4.5.6)

We present a benchmark evaluation at the following phase space point in the physical
scattering region specified by Eq. 4.5.1 (the momenta are given in units of GeV):

p1 = (88.551333054,−22.100690287, 40.080353191,−75.805430956) ,
p2 = (−500, 0, 0,−500) ,
p3 = (328.32941922,−103.84961188,−301.93375538, 76.494921387) ,
p4 = (−500, 0, 0, 500) ,
p5 = (152.35810946,−105.88095966,−97.709638326, 49.548385226) ,
p6 = (430.76113825, 231.83126183, 359.56304052,−50.237875657) ,

(4.5.7)
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with tr5 = 2.167055i · 1010 GeV4. We take the W boson mass and width to be:

MW = 80.4109 GeV , ΓW = 2.0467 GeV . (4.5.8)

High precision values for the phase space point in Eq. 4.5.7 as well as the input
parameters in Eq. 4.5.8 are provided in the ancillary files. We present in Tables 4.2
and 4.3 the values of the bare two-loop amplitudes normalised to the tree-level
amplitudes in the ud̄ scattering channel for each individual sub-amplitude:

Â
(L),j
6,i =

A
(L),j
6,i

A
(0)
6,i

, (4.5.9)

for i = u, d,W, e and the two closed fermion loop contributions specified in Eq. 4.2.7,
namely j = 1, nf . The results are presented only for the two independent helicity con-
figurations (+++−−+ and −++−−+). We note that the numerical results in Tables 4.2
and 4.3, presented separately for the sub-amplitudes Au, Ad, AW and Ae, are gauge
dependent. We used q1 = p3 and q3 = p1, where q1(q3) is the reference momentum for
the photon (gluon) polarisation vector. Gauge invariant quantities can be obtained
using Eq. 4.2.6. This enables comparisons already for the smaller building blocks of
the amplitude, rather than just the full amplitude. For example, the sub-amplitudes
AW and Ae can be derived by attaching the Le/W

B,µ (p1, p5, p6) decay currents to the
already available qq̄ → Wg amplitude [214]. Indeed, we performed this check, as
described in Section 4.4.5. In Table 4.4, we show the values of the two-loop reduced
squared finite remainders normalised to the reduced squared tree-level amplitudes:

Ĥ(L) = H
(L)

H(0) , (4.5.10)

for all channels of both pp→ W+γj and pp→ W−γj production. We give analogous
tables for the one-loop amplitudes in Appendix E. In order to show the suitability
and stability of our evaluation strategy, we present in Fig. 4.3 the evaluation of the
reduced squared finite remainders on a one-dimensional slice of the physical phase
space for all channels of W+γj production. We begin by parameterising the momenta
of the one-mass five-particle process relevant for the W -production amplitudes as:

pµ
1 = u1

√
s

2 (1, 1, 0, 0) ,

pµ
2 =
√
s

2 (−1, 0, 0,−1) ,

pµ
3 = u2

√
s

2 (1, cos θ,− sinφ sin θ,− cosφ sin θ) ,

pµ
4 =
√
s

2 (−1, 0, 0, 1) .

(4.5.11)
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helicity ε−4 ε−3 ε−2 ε−1 ε0

Â
(2),1
6,u +++−−+ 2 -49.5288 603.232 +

4.18740i
−4813.11−

82.3401i
28289.7 +
713.980i

−++−−+ 2 -49.5288 605.560 +
1.03233i

−4867.68−
10.1740i

28904.1−
84.4212i

Â
(2),1
6,d +++−−+ 2 -49.5288 606.017 +

4.37613i
−4883.27−

87.6955i
29148.2 +
787.284i

−++−−+ 2 -49.5288 604.589 +
4.36093i

−4848.83−
90.4281i

28743.3 +
856.481i

Â
(2),1
6,W +++−−+ 2 -49.5288 605.100 +

3.07126i
−4859.29−

58.7793i
28844.2 +
480.026i

−++−−+ 2 -49.5288 605.637 +
2.40762i

−4871.59−
43.1992i

28978.3 +
302.671i

Â
(2),1
6,e +++−−+ 2 -49.5288 605.140 +

2.93702i
−4860.19−

55.6437i
28853.6 +
444.669i

−++−−+ 2 -49.5288 606.606 +
2.97710i

−4894.35−
56.2398i

29236.9 +
444.300i

Table 4.2: Bare two-loop helicity sub-amplitudes (normalised to
the tree-level amplitudes as in Eq. 4.5.9) without any closed fermion
loop contribution for W+γj production in the ud̄ scattering channel
evaluated at the kinematic point given in Eq. 4.5.7. The results are
shown for the two independent helicity configurations and obtained
with q1 = p3 and q3 = p1 where q1 (q3) is the reference momentum
for the photon (gluon) polarisation vector.

We fix the value of cos θ by requiring that:

(p5 + p6)2 = M2
ll , (4.5.12)

where M2
ll is the invariant mass of the leptonic pair. We then parameterise the

momenta of the leptonic pair:

pµ
5 = u3

√
s

2 (1, cos θll,− sinφll sin θll,− cosφll sin θll) , (4.5.13)

and p6 follows from momentum conservation. We fix u3 by requiring that p2
6 = 0. In

order to define a univariate phase space slice, we choose:

s = 104 GeV2 , Mll = 60 GeV , φ = 1
10 , u1 = 1

7 , θll = π

2 , φll = π

3 .

(4.5.14)

The remaining variable, u2, is constrained to the interval [87/175, 29/50]. We chose
these values arbitrarily so that the slice crosses a number of spurious poles, i.e.
points where the rational coefficients diverge, whereas the finite remainders stay
finite. We checked explicitly that, while approaching such spurious poles, the values
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helicity ε−4 ε−3 ε−2 ε−1 ε0

Â
(2),nf

6,u +++−−+ 0 0.333333 -7.39369 79.8302 +
1.39580i

−556.215−
14.3791i

−++−−+ 0 0.333333 -7.39369 80.6063 +
0.34411i

−570.821 +
1.89741i

Â
(2),nf

6,d +++−−+ 0 0.333333 -7.39369 80.7586 +
1.45871i

−576.048−
17.8798i

−++−−+ 0 0.333333 -7.39369 80.2827 +
1.45364i

−566.721−
19.4318i

Â
(2),nf

6,W +++−−+ 0 0.333333 -7.39369 80.4531 +
1.02375i

−569.113−
9.88866i

−++−−+ 0 0.333333 -7.39369 80.6321 +
0.802539i

−572.278−
6.31448i

Â
(2),nf

6,e +++−−+ 0 0.333333 -7.39369 80.4664 +
0.979007i

−569.368−
9.14880i

−++−−+ 0 0.333333 -7.39369 80.9551 +
0.992365i

−577.544−
9.72557i

Table 4.3: Bare two-loop helicity sub-amplitudes (normalised to
the tree-level amplitudes as in Eq. 4.5.9) with one closed fermion
loop for W+γj production in the ud̄ scattering channel evaluated
at the kinematic point given in Eq. 4.5.7. The results are shown
for the two independent helicity configurations and obtained with
q1 = p3 and q3 = p1 where q1 (q3) is the reference momentum for
the photon (gluon) polarisation vector.

of the rational coefficients become larger and larger, while the finite remainders
converge. We evaluated the pentagon functions in quadruple precision using the
PentagonFunctions++ library, and the rational coefficients in Mathematica with
64-digit accuracy. This is a robust check of the stability of the evaluation, since the
convergence requires large numerical cancellations among various terms of the finite
remainders. Fig. 4.3 shows the plots of the reduced squared finite remainders up
to the two-loop order for all channels of W+γj production on the univariate phase
space slice defined above.

4.6 Summary

In this chapter, we have presented the two-loop leading colour QCD helicity amp-
litudes for the process W±γj for the first time. We have obtained relatively compact
analytic expressions that can be efficiently evaluated across the full physical phase
space. We constructed the colour and helicity summed finite remainders, and per-
formed several validation tests.



4.6. Summary 125

W+γj Re Ĥ(2),1 Re Ĥ(2),nf Re Ĥ(2),n2
f

ud̄ 483.506205134 -222.568846475 22.1747738519
d̄u 462.732386147 -219.389809502 22.1747738519
ug 894.669569294 -309.802310098 24.2425489305
gu 796.031872994 -288.292629199 23.3127252902
d̄g 954.097242371 -317.336400774 24.2425489305
gd̄ 898.961273740 -302.856612446 23.3127252902

W−γj Re Ĥ(2),1 Re Ĥ(2),nf Re Ĥ(2),n2
f

dū 498.332524932 -222.702160434 22.1747738519
ūd 732.600496818 -268.121335492 22.1747738519
dg 1786.14253164 -305.863467669 24.2425489305
gd 1612.34790163 -407.732735568 23.3127252902
ūg 320.710353060 -152.382317276 24.2425489305
gū 1300.37372328 -375.944229843 23.3127252902

Table 4.4: Reduced squared finite remainders (normalised to the
reduced squared tree level amplitudes) for all closed fermion loop
contributions and scattering channels evaluated at the kinematic
point given in Eq. 4.5.7 for both pp → W+γj and pp → W−γj
production.

To obtain the best possible theoretical predictions, it will be necessary to improve
upon the leading colour approximation taken in this chapter. While it is expected
that the leading colour contribution dominates, a quantitative statement is not
possible without explicit computation. Sub-leading colour corrections require non-
planar topologies to be taken into account, and represent a considerable increase in
analytic and algebraic complexity. We point out that the bases of pure MIs required
for the non-planar topologies have been recently made available in literature after
the completion of our work [125].

We hope that our approach to the simplification of the reconstructed amplitudes will
be of use in subsequent amplitude computations. An improved understanding of how
a rational parametrisation can be tuned to simplify a particular rational coefficient
would certainly be of great value. We expect this to be of particular importance
when dealing with sub-leading colour and non-planar configurations, in which many
different orderings appear simultaneously. It would also be interesting to study
the effect of this method on the reconstruction of the amplitude, i.e. whether the
reconstruction is performed in terms of sij, tr5 variables or a rational parametrisation.

Our work opens the path for precision predictions for pp → W±γj production at
NNLO accuracy in the strong coupling. Naturally, a detailed phenomenological study
should also include EW corrections, which are known to dominate the QCD ones in
some phase space regions of vector boson production. For example, for the process
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Figure 4.3: Reduced squared finite remainders H(L) at tree level,
one and two loops, evaluated on the univariate phase space slice
defined by Eqs. 4.5.11, 4.5.12 and 4.5.13, with the parameters given
in Eq. 4.5.14, for all channels of W+γj production defined in Eq. 4.5.

pp→ W±j, the NLO EW corrections can reach up to 50% of the LO, as compared
to 10% for the NNLO QCD ones [237–241]. Although less pronounced, NLO EW
effects are also significant for pp → W±γ production [215–218, 225]. Therefore, it
will be of great importance to study such corrections to the pp→ W±γj process as
well in order to achieve more reliable predictions across the full phase space.



Chapter 5

Two-loop QED helicity amplitudes
for 0 → `¯̀γγ∗ scattering

In this chapter, we present the computation of the two-loop QED helicity amplitudes
for the scattering of a lepton pair with an off-shell and an on-shell photon, 0→ `¯̀γγ∗,
using the approximation of massless leptons. We express all MIs relevant for the
scattering of four massless particles with a single external off-shell leg up to two loops
in a basis of algebraically independent GPLs, which guarantees an efficient numerical
evaluation and compact analytic representations of the amplitudes. Analytic forms
of the amplitudes are reconstructed from numerical evaluations over finite fields. Our
results complete the amplitude-level ingredients contributing to the N3LO predictions
of electron-muon scattering, eµ→ eµ, which are required to meet the precision goal
of the future MUonE experiment.

The chapter is organised as follows. After an introduction to the topic in Section 5.1,
we describe our decomposition of the helicity amplitudes and detail how we express
the off-shell currents in Section 5.2. Then, in Section 5.3 we discuss our computation
of analytic amplitudes by numerical evaluations over finite fields. In Section 5.4,
we present the computation of the Feynman integrals in terms of a basis of special
functions. We provide useful technical details in the appendices. In Appendix A, we
discuss how we handle permutations of the integral families in the IBP reduction.
The relevant families of Feynman integrals are defined in Appendix F. Appendix G
is devoted to the analytic continuation of the special functions to the physical
kinematic regions. Finally, details of the UV renormalisation and IR factorisation
which determine the pole structure of the amplitudes can be found in Appendix C.3.
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5.1 Introduction

The MUonE experiment [242–245] will measure the hadronic running of the elec-
tromagnetic coupling α using low-energy elastic electron-muon scattering, eµ→ eµ.
This will enable a new and precise determination of the hadronic vacuum polarisa-
tion (HVP) contribution aHVP

µ [246,247] to the muon anomalous magnetic moment
aµ. This is required in light of the recent tensions between experimental [248],
SM data-driven [249], and lattice QCD [250] results for aµ. Increasing the pre-
cision of the theoretical predictions for eµ → eµ scattering is a high priority for
the planned MUonE experiment [251, 252] and has seen good progress in the last
few years [253–257]. The recent completion of full NNLO QED corrections [258]
indicates that N3LO corrections in differential distributions are required to meet
MUonE’s precision goal of 10 parts per million. Electron-line corrections, meaning
corrections to the subprocess with the muon line stripped off (e → eγ∗), are the
dominant corrections [258], and a collaborative project was started to perform their
fixed-order calculation at N3LO [259]. With the triple-virtual corrections now avail-
able [260–262], the main missing ingredient is the real-double-virtual (RVV) matrix
element (e → eγγ∗) at two loops. While these contributions could be extracted
from amplitudes in the literature [214,229,263], our direct computation provides the
massless RVV contribution in a complete and compact form.

Another application of the 0→ `¯̀γγ∗ amplitudes is in electron-positron annihilation
experiments [264]. They are required for initial-state corrections in predictions of the
ratio of hadron-to-muon production in e+e− collisions, which is an important input
for existing SM predictions of aHVP

µ [265]. The two-loop amplitudes contribute to
RVV corrections to e+e+ → γ∗ in direct scan measurements, while radiative return
measurements concern corrections to e+e− → γγ∗ [249]. In the latter configuration,
the e+e− beam has a fixed centre-of-mass energy of a few GeV and the on-shell
photon originates from initial state radiation (ISR). The energy lost to the ISR
photon is used to effectively scan over the energies of the decay of the off-shell
photon. A differential cross section of, for example, γ∗ → hadrons with respect to
the centre-of-mass energy of the decay, dσ/ds, can be extracted from measurements
of the differential cross section with respect to the energy of the ISR photon, dσ/dEγ .
State-of-the-art predictions for these measurements are currently at NLO [265]. We
provide the two-loop e+e− → γγ∗ amplitudes required for the double-virtual (VV)
corrections at NNLO, although the bottleneck remains in the hadronic decay.

Our amplitudes are calculated in the approximation of massless leptons. In the
NNLO massive eµ→ eµ cross section calculation [258], the authors obtain photonic
corrections (those with no closed fermion loops), using a small-mass expansion [266–
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268] applied to the two-loop amplitudes with massless electrons for the VV correc-
tions. This approximation relies on the electron mass being much smaller than any
other scale, which is valid in the bulk of phase space. Further splitting the photonic
corrections, they take the subset of electron-line corrections and find that the relative
difference to the true massive NNLO differential cross section is generally around
10−3α2, where α is the fine-structure constant, which is negligible compared to the
10−5 precision goal. The approximation breaks down in soft and collinear regions,
where they treat the amplitudes using IR factorisation [269–271], and is not used
for contributions including closed fermion loops [268, 272]. Our amplitudes can be
used analogously for the RVV corrections at N3LO.

A key ingredient for computing the scattering amplitudes are analytic expressions for
the required Feynman integrals. Complete analytic results for four-point processes
up to two loops are already available in the literature [273–275]. Expansions of these
integrals up to higher orders in the dimensional regularisation parameter ε have also
been reconsidered recently [276], in view of their usage for N3LO corrections to 2→ 2
processes in QCD [277, 278]. The state of the art for integrals with this kinematic
configuration has reached three loops [279–282]. We revisit the computation of
the one- and two-loop integrals following the approach of Refs. [112, 114, 121, 125,
182] based on the construction of a basis of independent special functions, which
gives a unique and uniform representation of all the required Feynman integrals
up to transcendental weight four. This enables a more efficient computation of the
amplitudes using the modern workflow based on finite field arithmetic, and leads to
more compact expressions. We give explicit expressions for the basis functions in
terms of GPLs which can be evaluated in an efficient and stable way throughout the
physical phase space. We compute all crossings of all massless one- and two-loop
four-particle Feynman integrals with an external off-shell leg, so that our results for
the integrals may be of use for any scattering process with these kinematics.

5.2 Structure of the amplitude

We calculate the one- and two-loop QED corrections to the process:

0→ `(p1, h1) + ¯̀(p2, h2) + γ(p3, h3) + γ∗(p4) , (5.2.1)

which we call 0→ `¯̀γγ∗ for short. Here, ` denotes an on-shell massless lepton and
γ (γ∗) an on-shell (off-shell) photon, while hi and pi are the helicity and momentum
of the ith particle. We take the external momenta pi to be all outgoing. They satisfy
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the following momentum-conservation and on-shell conditions:

4∑
i=1

pµ
i = 0 , p2

i = 0 ∀ i = 1, 2, 3 . (5.2.2)

The single-off-shell four-particle phase space is described by three independent scalar
invariants, which we choose as:

~s := {s12, s23, s4} , (5.2.3)

where si...j := (pi+. . .+pj)2. We use dimensional regularisation in the HV scheme [33],
with D = 4− 2ε spacetime dimensions and four-dimensional external momenta.

Because of the off-shell photon in the process, the helicity amplitudesAµ(1`, 2¯̀, 3γ, 4γ
∗)

are actually off-shell currents carrying a free Lorentz index. We consider the per-
turbative QED expansion of the helicity amplitudes:

Aµ(1`, 2¯̀, 3γ, 4γ
∗) = g2

e

∑
L≥0

(
nε

α

4π

)L

A(L)µ(1`, 2¯̀, 3γ, 4γ
∗) , (5.2.4)

with prefactor nε = i (4π)εe−εγE , electromagnetic coupling ge, and α = g2
e/(4π). We

truncate the expansion at L = 2 loops. We set the renormalisation scale µR to 1
throughout the computation and restore the dependence on it in the final analytic
result by dimensional analysis. For the bare amplitudes, we have that:

A(L)µ(µR) =
(
µ2ε

R

)L
A(L)µ(µR = 1) . (5.2.5)

There are two independent helicity configurations (h1, h2, h3), which we take as:

{−+− , −+ +} . (5.2.6)

We derive the analytic expressions for these helicity amplitudes. We obtain the
remaining helicity configurations, {+−+ , +−−}, through parity transformation
(see Appendix C of Ref. [283]).

We decompose the loop-level helicity amplitudes A(L)µ into gauge-invariant subamp-
litudes A(L)

i,j

µ
, where the subscript i counts the number of closed massless fermion

loops and j the number of external photons attached to closed fermion loops. The
non-zero contributions are:

A(1)µ = A(1)
0,0

µ
+ nlA

(1)
1,1

µ
, (5.2.7a)

A(2)µ = A(2)
0,0

µ
+ nl

(
A(2)

1,0
µ

+A(2)
1,1

µ
+A(2)

1,2
µ)

+ n2
lA

(2)
2,1

µ
, (5.2.7b)

where nl denotes the number of charged lepton flavours running in the loops. Rep-
resentative Feynman diagrams contributing to these subamplitudes are illustrated
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Figure 5.1: Representative Feynman diagrams for the subamp-
litudes defined in Eq. 5.2.7. The off-shell external leg is indicated
by a bold line.
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in Fig. 5.1. Amplitudes with a closed fermion loop attached to an odd number of
photons vanish by Furry’s theorem.

We decompose the amplitude and subamplitude currents as:

A(L)µ =
4∑

k=1
a

(L)
k qµ

k , A(L)
i,j

µ
=

4∑
k=1

a
(L)
i,j;k q

µ
k , (5.2.8)

using the following basis written in the spinor-helicity formalism:

qµ
k = pµ

k ∀ k = 1, 2, 3 , qµ
4 = 〈2|p3p1σ

µ|2]− 〈1|p3p2σ
µ|1]

2s12
. (5.2.9)

Note that q4 is orthogonal to the momenta pi by construction; one can in fact show
that qµ

4 ∝ εµνρσq1νq2ρq3σ. The subamplitude coefficients a(L)
i,j;k can be related to the

amplitude ones a(L)
k through Eq. 5.2.7.

The scattering amplitudes M(L) for fully on-shell processes (for instance, for 0 →
e−e+γµ−µ+) are obtained by contracting the amplitude currents A(L)µ (for 0 →
e−e+γγ∗) with a suitable decay current Vµ (in this example, γ∗ → µ−µ+) as:

M(L) := A(L) · V =
4∑

k=1
a

(L)
k (qk · V) . (5.2.10)

In this manner, the on-shell amplitudes M(L) are given by the scalar product
between the vector of coefficients (a(L)

1 , . . . , a
(L)
4 ), and that of decay-vector contrac-

tions (q1 · V , . . . , q4 · V). The coefficients a(L)
k depend on the helicities of the three

on-shell particles in Eq. 5.2.1, while the decay vector Vµ depends on the helicities
of the particles the off-shell photon decays to. The helicity-summed interference
between the L1-loop and the L2-loop matrix elements is then given by:

M(L1,L2) = 1
4
∑
~h

M(L1)
~h

∗
M(L2)

~h
, (5.2.11)

where the subscripts ~h indicates the helicities of all on-shell particles — that is,
including the decay products of the off-shell photon — and the overall constant
factor averages over the helicities of the incoming particles.

The output of the computation described in Section 5.3 is the set of four projections
A(L)

i,j · qk for each helicity configuration listed in Eq. 5.2.6. From these, we determine
the subamplitude coefficients a(L)

i,j;k by inverting Eq. 5.2.8 as:

a
(L)
i,j;k =

4∑
m=1

(
G−1

)
km

(
A(L)

i,j · qm

)
, (5.2.12)

where G is the Gram matrix of the vectors qi, that is, the matrix of entries Gij := qi·qj
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for i, j = 1, . . . , 4. At loop level, we write the subamplitude coefficients as:

a
(L)
i,j;k =

4−2L∑
w=−2L

∑
r

cr,w monr(F ) εw, (5.2.13)

where monr(F ) are monomials of special functions F (see Section 5.4), and the
coefficients cr,w are rational functions of the kinematics. We drop the dependence
on i, j, k, and L on the right-hand side of Eq. 5.2.13 for compactness. We truncate
the Laurent expansion around ε = 0 to the orders required for computing NNLO
predictions. We express the coefficients cr,w as Q-linear combinations of a smaller set
of linearly-independent coefficients (see Section 5.3). The analytic expressions of the
latter are given explicitly in terms of MTs. We simplify these expressions through a
multivariate partial fraction decomposition using MultivariateApart [192], and by
collecting the common factors.

In the ancillary files of Ref. [284], the directory amplitudes/ contains Mathematica
files describing the bare helicity subamplitude currents A(L)

i,j

µ
by their coefficients

a
(L)
i,j;k in the form of Eq. 5.2.13. The Mathematica script current.m is a reference

implementation of the numerical evaluation of the bare amplitude coefficients a(L)
k in

Eq. 5.2.13, including summation of subamplitudes in Eq. 5.2.7, treatment of depend-
ent helicities, and renormalisation scale restoration in Eq. 5.2.5. The Mathematica
script evaluation.wl demonstrates the construction of the five-particle on-shell amp-
litudes in Eq. 5.2.10 for the process 0→ e−e+γµ−µ+, and their helicity-summation
to obtain the squared matrix elements in Eq. 5.2.11. The results of the script are
checked against a reference point included in reference_point.json.

We perform the following checks of our amplitudes:

Ward identity We verify the gauge invariance of the subamplitudes A(L)
i,j

µ
by check-

ing that they vanish on replacing the on-shell photon’s polarisation vector with
its momentum.

One-loop crosscheck We successfully crosscheck our one-loop nl = 0 helicity-
summed matrix element contracted with the decay γ∗ → µ−µ+ against the
QED NLO electron-line corrections for eµ→ eµγ obtained with McMule [285,
286].

Finite remainder We verify that the ε-poles of the bare amplitudes have the
structure predicted by UV renormalisation and IR factorisation [23–26, 287].
We then subtract the expected poles and define finite remainders at one and
two loops as:

F (1)µ =
[
A(1)µ

− 3
2
β0

ε
A(0)µ

]
− Z(1)A(0)µ

, (5.2.14a)
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F (2)µ =
[
A(2)µ

− 5
2
β0

ε
A(1)µ

−
(
−15

8
β2

0

ε2 + 3
4
β1

ε

)
A(0)µ

]
− Z(2)A(0)µ

− Z(1)F (1)µ
,

(5.2.14b)

where the square brackets separate renormalisation of UV poles from sub-
traction of IR poles. The derivation of these formulae follows the procedure
outlined in Appendix C.3. The coefficients Z(L) are given in Appendix D.

5.3 Setup of the calculation

In this section, we briefly outline the workflow we use to calculate our amplitudes.
For an in-depth discussion, we refer the reader to Chapter 2. Firstly, we generate
all Feynman diagrams contributing to Eq. 5.2.1 using QGRAF [35]. Each diagram
is then replaced with the corresponding Feynman rules for vertices, propagators,
and external states, leading to a collection of D-dimensional Feynman integrals.
Next, we filter the integrals according to Eqs. 5.2.4 and 5.2.7 using a collection of
Mathematica and FORM scripts [184,185]. Within each subamplitude A(L)

i,j

µ
, we then

collect the integrals according to their topology, by which we mean a unique set
of denominators. At this point, the subamplitudes are sums of Feynman integrals
over distinct integral topologies, with the numerators given by linear combinations
of monomials that depend on the loop as well as the external momenta. To work
with the projected helicity subamplitudes A(L)

i,j · qk, we specify the polarisations of
external particles according to Eq. 5.2.6, as well as the projector qµ

k of the off-shell
photon from Eq. 5.2.9.

It is natural to express helicity-dependent objects using the spinor-helicity formalism.
Then, the monomials of loop momenta contain the following scalar products and
spinor strings:{

ki · kj, ki · pj, 〈ij〉, [ij], 〈i|ki|j], 〈i|p4|j], 〈i|kip4|j〉, [i|kip4|j]
}
. (5.3.1)

Their coefficients, on the other hand, are composed of the same type of objects, but
do not contain any dependence on loop momenta ki. Similarly to our previous work,
we express these coefficients using a rational parametrisation in terms of MTs. The
single-off-shell four-particle phase space p is obtained from a massless five-particle
parametrisation q (defined in Appendix A of Ref. [187] with {x2 ↔ x4, x3 ↔ x5})
according to:

pi = qi ∀i = 1, 2, 3, p4 = q4 + q5 . (5.3.2)
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The MTs xi are then related to the scalar invariants ~s through:

s12 = x1 , s23 = x1x2 , s4 = x1x3 . (5.3.3)

The phase information for the helicity configurations of Eq. 5.2.6 is restored using
the following phase factors:

Φ(−+ +) = 〈12〉
〈23〉2

, Φ(−+−) = [12]
[13]2

, (5.3.4)

which in our MT parametrisation are given by:

Φ(−+ +) = x2
1 , Φ(−+−) = − 1

x1(1 + x2 − x3)2 . (5.3.5)

We refer to Appendix C of Ref. [283] for a thorough discussion of how to restore the
phase information in a MT parametrisation.

This marks the start of our finite field sampling procedure [47]. Firstly, we define the
set of maximal topologies, i.e. topologies with the maximum number of propagators
allowed by our kinematic configuration. In Fig. 5.2, we present these maximal
topologies in an arbitrary ordering of the external momenta (we give their explicit
definitions in Appendix F). Several orderings of the external momenta are relevant for
the amplitudes, and we treat them as distinct families. Next, we map all topologies
present so far onto one of these maximal topologies. The loop momenta dependent
objects of Eq. 5.3.1 are then expressed through the nine inverse propagators and ISPs
associated with the chosen maximal topology. In this way, each subamplitude is now
a sum of integrals compatible with IBP reduction [65, 288], while their coefficients
depend on the external kinematics and ε. We generate the required IBP relations
using LiteRed [29]. The resulting IBP system is then solved using the Laporta
algorithm [69] with FiniteFlow’s linear solver to yield the reduction of all the
integrals present within our maximal topologies onto a much smaller subset of
MIs. We choose the MIs such that they satisfy DEs in the canonical form [84] (see
Section 5.4.1).

In many amplitude applications, multiple permutations of the ordered topologies
(such as the ones in Fig. 5.2) can appear. In this case, it might be beneficial to use an
optimised strategy for the IBP reduction which performs the reduction in the ordered
families only and then permutes the solutions onto the desired ‘unordered’ families.
This permutation can be implemented numerically within finite fields, thus avoiding
the need to work with large analytic IBP solutions. Overall, this approach allows us
to reduce the time and memory consumption required for the IBP reduction stage,
which often proves to be the bottleneck of the whole computation. We describe this
strategy in detail in Appendix A.
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Figure 5.2: The two-loop amplitudes include six ordered integ-
ral families: three penta-triangles, a double-box, and two crossed
double-boxes. All are planar except for the crossed double-boxes.
The off-shell external leg is indicated by a bold line. External legs
have outgoing momenta.
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After IBP reduction, each projected helicity subamplitude A(L)
i,j · qk is written as a

linear combination of MIs multiplied by rational coefficients of ε and the kinematic
variables. We now write the MIs in terms of a basis of special functions up to the
required order in ε (see Section 5.4). Finally, we Laurent expand the amplitude
around ε = 0, the deepest pole being 1/ε2L at L loops. The only step left is to
reconstruct the rational coefficients of the special-function monomials from their
samples over finite fields. To simplify this task, we employ chosen strategies already
described in Section 3.3. Specifically, we look for Q-linear relations among the
rational coefficients of each helicity subamplitude, which allows us to select those
coefficients for reconstruction which have the lowest degrees. Then, we employ the
technique of matching the denominators of the rational coefficients against an ansatz.
Here, we use the following factors:{

〈ij〉, [ij], 〈i|p4|j], sij − sk4, si4 − s4, s4

}
, (5.3.6)

for all i, j, k = 1, 2, 3 such that i 6= j 6= k. This list includes denominator factors
of the DEs satisfied by the MIs (listed in Eq. 5.4.2), as well as spinor structures
aimed at capturing the phase information of helicity amplitudes. We reconstruct
the analytic form of the remaining rational functions using FiniteFlow’s built-in
multivariate functional reconstruction algorithm (see Section 2.6).

Finally, we note that further simplification strategies can be used for more compu-
tationally demanding processes. We refer the reader to Section 4.3.5 and Refs. [187,
283,289–291].

5.4 Computation of the master integrals

The MIs for the relevant integral families were computed analytically in Refs. [273,
274,276] (see also Ref. [275] for a thorough discussion of the analytic continuation).
We revisit this computation to obtain expressions for the MIs which are better
suited to the workflow discussed above. To this end, we compute the MIs for all
permutations of the external legs in terms of a basis of special functions, following
the approach of Refs. [112,114,121,125,182]. In other words, we express the relevant
Feynman integrals in terms of a set of special functions which are algebraically
independent. Having such a unified and unique representation for all permutations
of the integral families allows for simplifications and cancellations among different
permutations. This leads to a simpler expression of the amplitudes and to a more
efficient functional reconstruction within the finite field setup. We emphasise that
our results cover all MIs required for computing any two-loop four-particle amplitude
with a single external off-shell leg, and not just the ones present in this work.
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We discuss the construction of the basis in Section 5.4.1, and how we express it in
terms of GPLs in Section 5.4.2. Finally, we give some details about the numerical
evaluation and the checks we performed in Section 5.4.3.

5.4.1 Construction of the special function basis

We follow the strategy presented in Ref. [125]. The starting point are the DEs
satisfied by the MIs for each family [28, 78, 83, 292, 293]. Let T label an integral
family, e.g. the double-box in Fig. 5.2b for an arbitrary permutation of the external
massless momenta. We choose a basis of pure master integrals #  »MIT , that is, a basis
which satisfies DEs in the canonical form [84]:

d #  »MIT (~s; ε) = ε

( 7∑
i=1

A
(T )
i d logwi(~s)

)
· #  »MIT (~s; ε) . (5.4.1)

Here, d is the total differential, df := ds12 ∂s12f + ds23 ∂s23f + ds4 ∂s4f , A(T )
i are

constant (|MIT | × |MIT |) matrices, where |MIT | is the number of MIs of the family T ,
and:

w1 = s12 , w2 = s23 , w3 = s12 + s23 , w4 = s12 − s4 ,

w5 = s23 − s4 , w6 = s12 + s23 − s4 , w7 = s4

(5.4.2)

are the ‘letters’. We find such canonical bases by a mixture of methods: the package
DlogBasis [294], the analysis of results in the literature for related integral families
(massless two-loop five-point planar integrals [110] and two-loop four-point integrals
with two massive external legs [295, 296]), and a set of heuristic rules (see e.g.
Ref. [89]). We normalise the MIs such that their expansion around ε = 0 starts from
order ε0:

#  »MIT (~s; ε) =
∑
k≥0

εk #  »MI(k)
T (~s) . (5.4.3)

For the purpose of computing two-loop scattering amplitudes up to their finite part
(i.e., up to order ε0), it suffices to restrict our attention to k ≤ 4. Since the MIs
satisfy canonical DEs, Eq. 5.4.1, the ε-order of the MI coefficients #  »MI(k)

T (~s) equals
their transcendental weight [84]. We compute the derivatives of the MIs using
FiniteFlow [48] and LiteRed [29]. We do so only for the integral families with the
ordering of the external momenta shown in Fig. 5.2, and obtain those for all other
orderings of the external massless legs by permutation. We provide the definition
of the pure MIs and the corresponding DEs for all one- and two-loop four-point
one-mass families in Fig. 5.2 in the folder pure_mi_bases/ of the ancillary files of
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Ref. [284].

In order to solve the DEs in Eq. 5.4.1, we need boundary values, i.e., values of all
MIs up to order ε4 at a phase-space point. Due to the simplicity — by today’s
standards — of the integrals under consideration, an arbitrary (non-singular) phase-
space point would do. Nonetheless, we make a more refined choice following some
of the criteria of Refs. [114, 121]. We choose the following point in the s12 channel
(see Appendix G),

~s0 =
(

2, −1
2 , 1

)
, (5.4.4)

motivated by two principles: that it is symmetric under the permutations which
preserve the s12 channel (i.e., swapping p1 ↔ p2), and that it contains few distinct
prime factors. The first condition reduces the number of permuted integral families
we need to evaluate in order to obtain the boundary values. The second condition
reduces the number of independent transcendental constants appearing in the bound-
ary values, which simplifies the construction of the basis of special functions. The
order-ε0 boundary values #  »MI(0)

T are rational constants. We obtain them up to their
overall normalisation by solving the ‘first-entry conditions’ [297], i.e., by requiring
the absence of unphysical branch cuts in the solutions. We fix the overall normalisa-
tion and the higher-order boundary values #  »MI(k)

T (~s0) (for 1 ≤ k ≤ 4) by evaluating
all MIs with AMFlow [146] (interfaced to FiniteFlow [48] and LiteRed [29]) at ~s0

with at least 60-digit precision. We anticipate from Section 5.4.2 that, although we
use floating-point boundary values, our results in terms of GPLs are fully analytic.

The canonical DEs in Eq. 5.4.1 and the boundary values for all integral families are
the input for the algorithm of Ref. [125] for constructing a basis of special functions.
We refer to the original work for a thorough discussion. Out of all MI coefficients up
to transcendental weight 4, the algorithm selects a subset, denoted F := {F (k)

i (~s)},
which satisfy two constraints. First, they are algebraically independent, that is, there
are no polynomial functional relations among them. Second, the MI coefficients of
all families (including all permutations of the external massless legs) up to transcend-
ental weight 4 are expressed as polynomials in the {F (k)

i (~s)} and the zeta values
ζ2 = π2/6 and ζ3. For example, an arbitrary weight-2 MI coefficient MI(2)(~s) has the
general form

MI(2)(~s) =
3∑

i=1
ci F

(2)
i (~s) +

4∑
i≤j=1

dij F
(1)
i (~s)F (1)

j (~s) + e ζ2 , (5.4.5)

with ci, dij, e ∈ Q. This special subset of MI coefficients, {F (k)
i (~s)}, constitutes our

special function basis. We give the number of functions in the basis in Table 5.1.
Note that there is freedom in the choice of which MI coefficients make up the basis.



140 Chapter 5. Two-loop 0 → `¯̀γγ∗ QED helicity amplitudes

Weight Number of basis functions
1 4
2 3
3 20
4 67

Table 5.1: Number of functions {F (k)
i } in the basis weight by weight.

We make use of this freedom to choose as many basis elements as possible from the
one-loop family, then complement them with coefficients from the planar two-loop
families, and finally complete them with coefficients from the non-planar two-loop
families. In this way, no two-loop MI coefficients appear in the one-loop amplitudes,
and no non-planar two-loop MI coefficients appear in those amplitudes where only
planar diagrams contribute (as is often the case in the leading colour approximation
of QCD).

The folder mi2func/ of the ancillary files [284] contains the expression of all MI
coefficients (for all one- and two-loop integral families in all permutations of the
external massless legs) up to weight 4 in terms of our special function basis. This
result enables the efficient amplitude computation strategy based on finite field
arithmetic discussed in Section 5.3. However, at this stage the basis functions
{F (k)

i } are expressed in terms of CIIs [90] and numerical boundary values #  »MI(k)(~s0).
This representation is excellent for investigating the analytic properties of Feynman
integrals and amplitudes, but it is not readily suitable for an efficient numerical
evaluation. In the next section, we discuss how we construct a representation of the
function basis in terms of GPLs and zeta values which is well suited for an efficient
and stable numerical evaluation.

5.4.2 Expression in terms of GPLs

Since the letters in Eq. 5.4.2 are rational and linear in all variables, we can solve the
canonical DEs in Eq. 5.4.1 algorithmically in terms of GPLs (see Section 2.9.2 for
their definition). Order by order in ε, the solution is given by:

#  »MI(k)
T (~s) =

7∑
i=1

A
(T )
i ·

∫
γ

d log
(
wi(~s = γ)

)
#  »MI(k−1)

T

(
~s = γ

)
+~b

(k)
T , (5.4.6)

starting from the constant weight-0 boundary values #  »MI(0)
T determined in the previous

subsection. Here, γ is a path connecting an arbitrary base point ~sbase to the end
point ~s. The weight-k constants ~b(k)

T are given by the values of the integrals at the
base point, ~b(k)

T = #  »MI(k)
T (~sbase). For ~sbase, we may use the boundary point ~s0 in

Eq. 5.4.4, so that the constants ~b(k)
T coincide with the boundary values determined
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numerically in the previous section. We follow a different approach, which allows us
to trade all numerical constants in the expressions for zeta values.

We find it convenient to change variables from (s12, s23, s4) to (z1, z2, s4), with:

z1 = s12

s4
, z2 = s23

s4
. (5.4.7)

In this way, there is only one dimensionful variable, s4, the dependence on which is
fixed as an overall factor by dimensional analysis. We then integrate the canonical
DEs as in Eq. 5.4.6 along the following piece-wise path in the (z1, z2, s4) space:

(0, 0, 0) γ1−→ (z1, 0, 0) γ2−→ (z1, z2, 0) γ3−→ (z1, z2, s4) . (5.4.8)

Since the Feynman integrals are divergent at the chosen base point, the latter is
understood in a regularised sense (we refer to Section 4 of Ref. [92] for a thorough
discussion). Choosing (0, 0, 0) as base point has the important benefit of removing
spurious transcendental numbers that would pollute the solution were we to choose
a base point where the integrals are finite. As we will see below, only zeta values
appear. Roughly speaking, we define regularised, finite values ~b(k)

T := Reg #  »MI(k)
T (~sbase)

by introducing a regulator and formally setting to 0 the (divergent) logarithms of
the regulator. Since the integrals are finite at a generic end point ~s, the divergences
at the base point must cancel out with divergences arising in the integration. We
can thus drop all these divergences. Provided that we do it consistently between the
integration and the base point values ~b(k)

T , this leads to a finite and unique result.
In practice, we fix the finite base point values ~b(k)

T by matching the solution #  »MI(k)
T

evaluated at the boundary point ~s0 against the boundary values discussed in the
previous subsection.

We therefore keep the ~b(k)
T as symbols and integrate the canonical DEs as in Eq. 5.4.6

along the path in Eq. 5.4.8 up to weight 4. We parameterise each piece of the path
in Eq. 5.4.8 linearly. For instance, γ2(t) = (z1, t, 0), with t ∈ [0, z2].

• The γ1 integration leads to GPLs with indices in {0, 1} and argument z1.

• The γ2 integration leads to GPLs with indices in {0, 1, 1− z1,−z1} and argu-
ment z2.

• The γ3 integration leads to powers of log(−s4), fixed by dimensional analysis.

Once we have obtained expressions for all MIs in terms of GPLs and symbolic
constants ~b(k)

T , we equate them to the numerical boundary values at ~s0, and solve for
the ~b(k)

T . We use GiNaC [96, 298] to evaluate the GPLs numerically. Finally, we use
the PSLQ algorithm [299] to express the ensuing values of ~b(k)

T in terms of ζ2 and ζ3.
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As a result, we obtain a fully analytic representation of all MIs — and thus of our
special function basis {F (k)

i } — in terms of GPLs and zeta values, up to weight 4.

Contrary to the functions in the basis {F (k)
i }, the GPLs in their representation

satisfy functional relations. We make use of this freedom to optimise our expressions
in view of their numerical evaluation by reducing the number of distinct GPLs that
need to be evaluated. First, we use the shuffle algebra of GPLs to push all trailing
zeros into logarithms (see Eq. 2.9.17b). Next, we employ the scaling relation:

G(a1, . . . , an;x) = G
(
a1

x
, . . . ,

an

x
; 1
)
, (5.4.9)

which holds for x, an 6= 0. As a result, all GPLs have argument 1 and indices:

l0 = 0 , l1 = s4

s12
, l2 = s4

s23
, l3 = s4 − s12

s23
, l4 = −s12

s23
. (5.4.10)

Finally, we decompose the GPLs to Lyndon words [300] using PolyLogTools [301];
we refer to the latter work for a thorough explanation, and give here only a simple
example. This procedure requires that we choose a symbolic ordering of the GPL
indices. We choose l0 ≺ l1 ≺ l2 ≺ l3 ≺ l4, meaning that l1 is greater than l0, and
so on. Consider the GPL G(l1, l0; 1), whose indices are not sorted according to the
ordering above, since l1 � l0. We can use the shuffle algebra of GPLs to rewrite it
in terms of GPLs whose indices are sorted according to the chosen ordering:

G(l1, l0; 1) = G(l0; 1)G(l1; 1)−G(l0, l1; 1) . (5.4.11)

Doing this consistently throughout all expressions reduces the number of higher-
weight GPLs in favour of products of lower-weight ones, which are cheaper to
evaluate numerically. To maximise the impact in this sense, we tested all possible
orderings of the indices and selected the one — given above — which minimises
the number of weight-4 GPLs. The resulting representation of the function basis
contains 4 weight-1, 6 weight-2, 19 weight-3, and 25 weight-4 GPLs, as well as 3
logarithms:

log(s12/s4) , log(s23/s4) , log(−s4) . (5.4.12)

We write the latter in terms of logarithms rather than GPLs as they play an important
role in the factorisation of the IR divergences in the scattering amplitudes (see
Appendix C.3 for the IR structure of the amplitudes we compute here). We stress
that log(−s4) is the only function of a dimensionful argument in our representation
of the function basis.

We provide in the folder mi2func/ of the ancillary files [284] the expression of the
basis functions {F (k)

i } in terms of GPLs, logarithms, ζ2 and ζ3.
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It is important to stress that the GPLs are multi-valued functions. For unit argument,
there is a pole on the integration contour whenever one of the indices lies between 0
and 1. In this case, the contour must be deformed in the complex plane, either above
or below the pole, leading to different branches. Our GPLs are thus well-defined only
in the kinematic region where all GPL indices in Eq. 5.4.10 are either less than 0 or
greater than 1, and we need s4 < 0 for the argument of all logarithms in Eq. 5.4.12
to be positive. We discuss how to analytically continue the GPLs and the logarithms
in Eq. 5.4.12 to the kinematic regions of interest in Appendix G.

5.4.3 Performance and validation

We validated our results for the MIs of all families by cross-checking them against
values obtained with AMFlow [146] at several random points in all the physical
kinematic regions discussed in Appendix G. Furthermore, we find agreement with
the results of Ref. [276]. We employ GiNaC to evaluate the GPLs.

Our results allow for an efficient and stable evaluation of the MIs, and are thus ready
for immediate deployment in phenomenology. Indeed, the amplitudes we computed
in this work have already been implemented in McMule [285, 286] to provide the
real-double-virtual electron-line corrections to eµ→ eµ scattering. The evaluation
is efficient, running at ≈ 130 events per second in the bulk of the phase space [302]
using handyG [303] for the evaluation of the GPLs.
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Conclusions

In this thesis, we presented selected techniques needed for precision calculations of
high-multiplicity loop scattering amplitudes. Such calculations constitute a crucial
ingredient of the LHC precision programme, which aims to bring the theoretical
uncertainties to the percent level and below. We started by discussing the general
framework for computing predictions for physical observables using the machinery of
QFT. Having established the key role of the scattering amplitude in this process, we
described the challenges associated with their computation in practice. We dedicated
Chapter 2 to a detailed discussion of a variety of tools employed to overcome these
challenges. In particular, we showed how the use of finite fields helps us tackle
the daunting algebraic complexity present in state-of-the-art calculations. We also
noted the importance of the IBP reduction, which hugely reduces the number of
integrals that need to be computed for the amplitude. This led us to the technique of
differential equations, and in particular differential equations in the canonical form,
which can be used to evaluate bases of pure master integrals with unexpected ease.

We applied the techniques presented in the first part of this thesis to three processes
at the cutting edge of QCD and QED computations. First, we computed the two-
loop helicity amplitudes for the production of the Higgs boson in association with
a bottom-quark pair. This five-point process with a massive external leg is of great
phenomenological interest, since an improved measurement of the bottom-quark
Yukawa coupling could help constrain certain supersymmetric models which affect
this coupling. In order to speed up the reconstruction of the analytic form of the
rational coefficients from their numerical samples over finite fields, we implemented
several optimisation tools which lower the complexity of this task. Moreover, ex-
ploiting the differential equation technique, we constructed a special function basis
for the finite remainder of the amplitude which can be efficiently evaluated across
the full phase space.
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The second computation we tackled was the production of the W boson in associ-
ation with a photon and a jet. Here, the W boson was assumed to further decay
into a lepton pair, which allowed us to apply the familiar five-point kinematics with
one off-shell leg to the scattering of six massless particles. Studying Wγ + n(jet)
production grants access to the WWγ coupling, which can also be affected by new
physics scenarios. In this work, we employed a new technique for simplifying the
reconstructed functional coefficients based on a systematic search for the optimal
rational parametrisation. In the future, this technique can be readily implemented
also before reconstruction as an additional node of finite field operations, such that
the search will not suffer from the algebraic complexity. Finally, in contrast to the
previous set of amplitudes, we employed the tailored set of one-mass pentagon func-
tions for the expansion of master integrals. These functions have the key advantage
of being closed under the permutations of the massless momenta, which allows us
to significantly reduce the number of kinematic points at which they have to be
evaluated in order to serve a phenomenologically useful role.

Finally, we switched our focus to QED, computing the two-loop amplitudes for
the scattering of a lepton pair with an off-shell and an on-shell photon. Our work
completes the amplitude-level ingredients contributing to the N3LO predictions of
electron-muon scattering eµ→ eµ, which are required to meet the precision goal of
the MUonE experiment. Here, the lower multiplicity meant that the reconstruction
of analytic expressions from finite fields did not pose as serious a challenge as for
the previous two processes. Instead, we focused on optimising the setup of the IBP
reduction by exploiting numerical permutations of the IBP solutions obtained within
a small set of families with specific orderings of external legs. This method allowed
us to decrease the time and memory consumption of the IBP reduction stage, which
becomes especially important in the case of processes with many integral families.
Furthermore, we have constructed a basis of algebraically independent GPLs needed
for the master integrals relevant to any scattering process of four massless particles
with a single external off-shell leg up to two loops. This guarantees an efficient
numerical evaluation and a compact analytic representation of the amplitudes.

Looking forward into the future, computations of amplitudes of higher multiplicity
and loop order than the ones considered in this thesis are naturally going to present
serious challenges. While we should be careful not to take the number of Feynman
diagrams as a definitive measure of complexity, we can obtain its rough estimate by
looking at how this number scales as we add more external legs to a given process.
For example, adding an extra gluon to the b̄bq̄qH channel of pp→ bb̄H production
in Chapter 3 increases the number of diagrams from 720 to 10142. Similarly, for the
b̄bggH channel, the number grows from 3690 to 57478. Six-point kinematics with
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zero or one off-shell external legs means eight and nine Mandelstam invariants in
the problem, respectively, which greatly increases the complexity even when using
the finite field reconstruction technique. In terms of the IBP relations, while the
three-loop, four-point kinematics with up to one off-shell leg has received significant
attention already (see Ref. [304] and references therein), much less is known about
the two-loop, six-point case even in a fully massless configuration [305,306].

We would also like to point out the recent computation of the pure master integral
bases for all two-loop integrals for five-particle kinematics with an off-shell leg [125],
which appeared in literature after the completion of the work presented in this
thesis. The full set of pure bases for this kinematic configuration opens the door
to a new range of computations, such as pp → H + 2j and pp → Wγγ at NNLO,
as well as the sub-leading colour corrections to the processes in Chapters 3 and 4.
As a preliminary estimate, we observe that the inclusion of the non-planar families
increases the finite field reconstruction time by as much as an order of magnitude.
We remark that this problem can be alleviated by using IBP relations simplified
using syzygy relations [307–313]. We refer the reader to Ref. [314] for details.

Overall, we believe that the work presented in this thesis represents a valuable
contribution to the study of scattering amplitudes. We hope that the detailed
introductory material serves as a useful reference for those new to the subject.
With more and more data pouring in from the LHC and future colliders, it is clear
that further breakthroughs in our computational techniques are needed to fully
control the NNLO frontier and move towards the N3LO one. The Les Houches
wishlist [4] continuously calls for new theoretical results, of which the scattering
amplitudes are a key ingredient. Finally, we remark that, at some point in the
future, obtaining analytic results for the amplitudes might become unfeasible and
one should also consider pursuing a robust method for their numerical computation
instead. Such numerical results can then be used further to produce predictions for
the associated cross sections. From the perspective of phenomenology, this approach
might become more efficient than first computing fully analytic amplitudes and
subsequently evaluating them at chosen phase space points.
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Optimised IBP reduction for
amplitudes with many permuted
families

In this appendix, we discuss how we can incorporate the IBP reduction in our
workflow in a more efficient way, particularly when the amplitude includes many
permutations of the same integral families. We exploit this method when computing
the amplitudes presented in Chapter 5. We start by pointing out a certain fact
related to Eq. 2.8.11: the number of MIs for all families considered together is not
the same as the sum of numbers of MIs for these families considered separately. That
is:

|MI| ≡ |MI⋃
T
| ≤

∑
T ∈

maximal
topologies

|MIT | , (A.1)

where ⋃T indicates the union of all maximal topologies T . This statement might
seem somewhat surprising. Indeed, if we formulate one big system of IBP relations
between integrals in all the families and perform the IBP reduction, the resultant
MI basis is equal to the sum of the bases obtained by solving smaller systems of
IBP relations within each family one by one. This is because IBP relations, by
construction, cannot include integrals from different families. However, it turns out
that integrals belonging to sectors other than the top sector can often be mapped
between families (see Fig. A.1 for an easy to understand example). Therefore, an
amplitude reduced using NT separate IBP systems contains leftover MIs that can be
further reduced onto each other with the help of non-IBP mappings. To avoid this
redundancy, we typically build a combined system which covers all the families in
the problem. It contains the pure IBP relations, as well as the additional inter-family
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Figure A.1: A simple example of possible non-IBP relations between
integrals within different (maximal) topologies. Integrals in lower
sectors often map to each other. The bold line indicates the massive
momentum, p5, while red crosses denote a removed denominator, i.e.
the corresponding νi is 0. Here, diagrams (a) and (b) both collapse
onto diagram (c). Such relations are often hard to discover just
from analysing the propagators of the integrals, especially if the
two families use vastly different conventions for loop momentum
routing. However, a visual representation often makes spotting
these relations trivial.

mappings1. Unfortunately, for large NT , this often leads to a prohibitively expensive
computation and may even constitute the main bottleneck of the whole workflow.

There is, however, a more efficient way of performing the reduction. Recall that
the integral families fed into the reduction are defined by their propagators and
ISPs. Specialising to the five-particle case, each family can therefore be denoted
as T (ijklm), where T is the family type and ijklm is an ordering of the external
momenta within that type (understood as ijklm ≡ pi, . . . , pm). Note that in the
presence of an internal or external mass, we need to further distinguish between
topology subtypes based on the position of this mass. For example, we refer to the
topology of Fig. A.1a as ‘zzz penta-box(12345)’, and to that of Fig. A.1b as ‘mzz
hexa-triangle(52134)’ (we follow the naming convention of Ref. [98]).

Consider two families which are of the same (sub)type and differ only by a permuta-
tion σ ≡ (σi, . . . , σm) which preserves the position of any massive legs. Then, we can
write T ′ = (σ ◦ T )(ijklm) = T (σi, . . . , σm) and the IBP reduction of any integral
IT

′(ν) can be expressed by permuting the reduction of IT (ν) according to σ:

IT (ijklm)(ν) =
|MIT |∑
i=1

ci(p, ε)×MIT (ijklm), i

=⇒ IT
′(ν) =

|MIT |∑
i=1

ci(σ(p), ε)×MIT
′
, i . (A.2)

1In practice, these mappings are found by comparing integrals based on their representation in
terms of the U and F Symanzik polynomials (see Section 4 of Ref. [29] and also Ref. [231]).
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Here, p denotes the collective dependence on the external momenta pi, . . . , pm, with
σ(p) ≡ pσi

, . . . , pσm
. The new reduction coefficients c′

i = ci(σ(p), ε) are computed as
a permutation of the external kinematics in the old coefficients ci(p, ε), while the
new master integrals MIT

′ are obtained by permuting the external momenta in the
propagators and ISPs of MIT

1.

In our applications, the reduction coefficients ci will most often be parametrised
by the momentum twistors x. Then, since they will be rational functions of x
and ε, permuting the external kinematics to obtain c′

i is trivial. Moreover, the
rationality means that this approach to IBP reduction is perfectly compatible with
the finite field sampling procedure. From Eq. A.2, we can see that permuting the
coefficients amounts to evaluating them at a permuted phase-space point. This is
also equivalent to a change of the kinematic variables, which is an operation that
can be easily implemented in FiniteFlow2 [48]. Thus, we never have to know and
permute the analytic form of the coefficients, which leads to a significant reduction
in the computational cost. Overall, for an integral family with n massless particles,
we do not need to explicitly perform the IBP reduction in up to n! permutations of
it. In fact, we only need to do it once — in an arbitrarily chosen permutation of this
family, which we label T (σid). Then, the reduction of any permutation of this family
is obtained by considering σ such that σ ◦ σid brings us onto the target family, that
is T ′ = (σ ◦ T )(σid), and applying the steps above.

Let us now discuss a small issue with this new strategy. As pointed out in the
beginning of this section, the total number of MIs after the reduction is smaller than
the sum of MIs in the individual families. This redundancy is not taken care of in
the approach we have described above, since the reduction is performed only within
the main families T (σid) and then permuted to cover all needed permutations. Thus,
the inter-family mappings between the MIs are not found and the reduced amplitude
will contain MIs which are in fact not fully linearly independent. Strictly speaking,
there is no requirement for the amplitude to be expressed in terms of independent
objects. However, it is desirable to do so, as this ensures that any cancellations
happen analytically and prevents instabilities or issues with precision during the
numerical evaluation of the amplitude. Moreover, it is more computationally efficient,
as it reduces the number of independent coefficients that have to be processed when
expanding the amplitude into special functions (see Section 2.11).

In practice, we obtain these missing relations between MIs by performing their
1In the case of pure MIs, which are often defined as combinations of integrals IT , we also need

to permute any potential kinematic prefactor of these integrals according to σ.
2When working with the sij variables, the permutation sσ(ij) will in general take us outside

of their minimal set, but we can always express the new Mandelstam variables through the same
minimal set using momentum conservation and on-shell conditions.
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reduction in the ‘traditional’ approach (i.e. all families included together in one
system) in LiteRed. This expresses the MIs from all families in terms of the truly
independent ones:

MIi =
|MI|∑

j

fij(p, ε)×MIj i ∈
{

1, . . . ,
∑
T

|MIT |
}
. (A.3)

Here, i runs over the ‘naive’ MIs of all maximal topologies and |MI| is the number
of truly independent MIs in the sense of Eq. A.1. We stress that this additional
reduction of the naive MIs does not present such a high complexity as the reduction
needed for the amplitude itself. Firstly, the identities generated through the Laporta
algorithm only need to cover the rank and number of dotted propagators present
in the MI bases, rather than the full amplitude. Secondly, an extremely useful
property of UT integrals1 is that any linear relation between them cannot contain a
dependence on the kinematic variables, i.e. f(p, ε)→ f(ε) in Eq. A.3. This is simply
because adding such kinematic factors would break the canonical form of the DEs and
would imply that at least one of these integrals was not in fact UT. Thus, when using
UT bases, which has become the standard in modern amplitude computations, this
additional reduction can be performed with the kinematic variables set to random
numeric values (subject to momentum conservation). Finally, all the missing relations
between MIs can be worked out once and for all — they will be applicable to any
process at the same loop order and number of particles (and masses), since the IBP
reduction is specific only to the kinematic setup.

Having obtained the missing relations between the naive MIs, we apply them to our
amplitude and collect the coefficients of the true, linearly independent MIs. Overall,
we find that this alternative approach performs much better than the previously
employed strategy of considering all integral families together in one shared system.
The benefit grows with the number of permutations of the maximal topologies,
since including additional families in the IBP system is expensive, but numerically
permuting the solution from one family onto another is cheap.

1We discuss the UT property of integrals in Section 2.9.3.



Appendix B

Symbols

B.1 Introduction

In this appendix, we introduce another useful concept related to DEs and iterated
integrals. We begin by noting that the representation of the solution to the ε-
form DEs in Eq. 2.9.9 is not unique. Most generally, the answer is written using
Chen’s iterated integrals (CIIs) [90]. However, as pointed out above Eq. 2.9.15, if
the ‘letters’ are rational in at least one variable, CIIs can be expressed in terms
of GPLs [93]. This has the advantage that robust and stable numerical evaluation
of GPLs is available (see Refs. [96, 298, 315]). On the downside, contrary to CIIs,
GPLs contain a large degree of redundancy in the sense that they satisfy extra
functional relations, obscuring possible simplifications and cancellations. Other
representations apart from CIIs and GPLs are also possible. Due to the conjecture
pointed out in Section 2.9.3, typically we will be interested in computing the DE
solution up to transcendental weight 4. Another remarkable conjecture exists: any
transcendental function of weight k < 4 can be expressed in terms of the usual
logarithms and polylogarithms Lik only [316,317], while at weight k = 4 all functions
can be expressed in terms of Li4(x),Li2,2(x, y) and weight-4 products of lower-weight
functions1 [93]. Here, the classical polylogarithms Lin(z) are defined as:

Lin(z) =
∞∑

k=1

zk

kn , |z| < 1, n ∈ N , (B.1.1)

1See Section 6 of Ref. [318], which considers this problem for the spanning set of functions with
k ≤ 4 in the special case of Harmonic Polylogarithms (GPLs with all indices ai ∈ {0,±1}).
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while the multiple polylogarithms (GPLs) Lim1,...,mk
are their multi-index, multi-

variable generalisations [95,301]:

Lim1,...,mn
(z1, . . . , zn) =

∑
0<k1<...<kn

z
k1
1 . . . zkn

n

k
m1
1 . . . kmn

n

(B.1.2a)

=
∞∑

kn=1

zkn
n

kmn
n

kn−1∑
kn−1=1

z
kn−1
n−1

k
mn−1
n−1

. . .
k2−1∑
k1=1

z
k1
1
k

m1
1

, |zi| < 1, mi ∈ N .

(B.1.2b)

Note that in these two definitions, |zi| < 1, but the functions can be analytically
continued to cover regions where |zi| ≥ 1. The Lim1,...,mk

GPLs can be viewed as the
series representation of the GPLs defined in Eq. 2.9.15. They are related through
the following equation [318]:

Lim1,...,mn
(z1, . . . , zn) = (−1)n G

(
~0mn−1,

1
zn

, . . . ,~0m1−1,
1

z1 . . . zn

; 1
)
, (B.1.3)

where ~0m denotes a vector of zeros of length m. For example, the aforementioned
Li2,2(x, y) can be written as:

Li2,2(x, y) = G

(
0, 1
y
, 0, 1

xy
; 1
)
. (B.1.4)

Overall, the solution to the canonical DEs written in terms of special functions rather
than CIIs is likely to contain a large degree of redundancy. Moreover, due to the
abundance of representations, it is not easy to choose the most appropriate set of
functions or even verify if two expressions are equivalent. We would like to have a
tool which can find relations between transcendental functions and be representation
independent. To this end, we introduce the notion of a ‘symbol’ [317, 318]. After
giving its definition and properties, we will demonstrate its power based on several
illustrative examples. To motivate our effort, we remark that the main result of
Ref. [317] was the application of the symbol to re-write a 17-page expression for a
quantity known as the two-loop, six-point remainder function (related to Wilson
loops) in N = 4 SYM [319, 320] as a remarkably compact combination of classical
polylogarithms that fits on just a handful of lines.

B.2 Definition and properties

The symbol of a CII with d log kernels is defined as:

S
(∫

γ
d logw1 · . . . · d logwn

)
≡ w1 ⊗ . . .⊗ wn . (B.2.1)
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We can think of it as an elementary n-fold tensor where each entry wi is implicitly
understood as its corresponding d log. It satisfies certain properties that we would
expect from the behaviour of logarithms1:

A⊗ (ab)⊗B = A⊗ a⊗B + A⊗ b⊗B , (B.2.2a)

A⊗
(
a

b

)
⊗B = A⊗ a⊗B − A⊗ b⊗B , (B.2.2b)

A⊗ an ⊗B = n(A⊗ a⊗B) , (B.2.2c)

where A,B are elementary tensors and a, b are algebraic functions. Note that in the
last line, n becomes a coefficient in front of the symbol, rather than a part of it.
Moreover, a symbol which contains a constant (not only rational) vanishes:

A⊗ c⊗B = 0 , (B.2.3)

which can be understood as a consequence of d log c = 0. This means that, when
working with the symbol, we are insensitive to constants, including transcendental
ones like π.

Since CIIs are defined as repeated integrations over some kernels (see Eq. 2.9.13),
the total differential acts on the symbol defined through Eq. B.2.1 as:

d(w1 ⊗ . . .⊗ wn) = d logwn (w1 ⊗ . . .⊗ wn−1) . (B.2.4)

This property goes hand in hand with the definition of pure functions in Eq. 2.9.18.
Crucially, it can be reversed and allows us to define the symbol recursively [317]. For
a transcendental function F with T (F ) = k whose total differential can be written
as:

dF =
∑

i

fi d logwi , (B.2.5)

where fi are functions with T (fi) = k − 1, we have:

S(F ) =
∑

i

S(fi)⊗ wi . (B.2.6)

The starting point of the recursion is the ‘empty’ symbol: S(1). Let us see how to
use this definition. For now, we will focus on the classical polylogarithms Lin(z). In
this case, we will need the symbol of a single weight-1 function — the logarithm:
S(logw) = w, which can itself be obtained using Eqs. B.2.5 and B.2.6. Here, the w
on the RHS is understood as an elementary tensor in the sense of Eq. B.2.1. This
immediately allows us to obtain the symbol of any Lin. Note that the weight-1

1For a detailed discussion of symbol properties, see Ref. [318].
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polylogarithm is just the normal logarithm:

Li1(z) = − log(1− z) . (B.2.7)

Moreover, the following iterative definition holds:

Lin(z) =
∫ z

0

dt
t

Lin−1(t) , n > 1 , (B.2.8)

which is equivalent to the differential relation:

dLin(z) = (d log z)Lin−1(z) , n > 1 . (B.2.9)

Thus, Eqs. B.2.6 and B.2.7 give:

S(Li1(z)) = −(1− z) ,
S(Li2(z)) = −(1− z)⊗ z ,

...
S(Lin(z)) = −(1− z)⊗ z ⊗ . . .⊗ z︸ ︷︷ ︸

n−1 times

. (B.2.10)

Note that in deriving the first line, we used S(−f) = −S(f) and this minus sign
cannot be dropped or absorbed, i.e. S(Li1(z)) 6= (z − 1). Moreover, it should
not be confused with the symbol expression −1 ⊗ (1 − z), which vanishes due to
Eq. B.2.3. To avoid confusion, the symbol is often written using square brackets, e.g.
S(Li2(z)) = −[1− z, z].

The symbol of the GPLs can be obtained recursively in a similar manner. We will
need the differential equivalent of the integral definition in Eq. 2.9.15 [94]:

dG(an−1, . . . , a1; an) =
n−1∑
i=1

G(an−1, . . . , âi, . . . , a1; an) d log
(
ai − ai+1

ai − ai−1

)
, (B.2.11)

where a1, . . . , an are unique non-zero indices, a0 is understood as 0 and âi denotes
the index that should be removed in a particular GPL. The starting point of the
recursion is the symbol of the ‘empty’ GPL, defined as the empty symbol:

S(G(; z)) = [ ] . (B.2.12)

Clearly, the reader will now understand why we mentioned the alternative notation
for the symbol. We can now move up on the recursion ladder by one step:

dG(a; z) = G(; z) d log
(
a− z
a

)
. (B.2.13)
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Then, the weight-1 GPL has the symbol:

S(G(a; z)) =
[
a− z
a

]
= [a− z]− [a] . (B.2.14)

Proceeding in this manner, we can then calculate the symbols of all GPLs with
higher weights.

We also need to know how to obtain the symbol of a product of functions, e.g.
S(log(z)Li2(z)). To this end, we point out that the CIIs satisfy so-called shuffle
relations1. Specialising to the case of GPLs, we have:

G(~a; z)G(~b; z) =
∑

~c=~a�~b

G(~c; z) . (B.2.15)

The shuffle product ~a�~b denotes all possible ways of permuting the union of indices
~a and ~b such that the ordering of indices within each set is preserved. Perhaps a
simple example illustrates this definition better:

G(a1, a2; z)G(b1, b2; z) = G(a1, a2, b1, b2; z) +G(a1, b1, a2, b2; z) +G(a1, b1, b2, a2; z)
+G(b1, a1, a2, b2; z) +G(b1, a1, b2, a2; z) +G(b1, b2, a1, a2; z) .

(B.2.16)

Therefore, the shuffle relations allow us to write a product of GPLs of weight |~a|
and |~b| as a linear combination of GPLs of weight |~a| + |~b|. Thus, we can now
calculate the symbol of the product S(log(z)Li2(z)) by expressing the two functions
as special instances of GPLs, taking the shuffle product of these GPLs according to
Eq. B.2.15 and finally mapping the symbol over the resultant sum of higher-weight
GPLs. However, it is often easier to follow an alternative route, which arises due to
the fact that:

S(f1f2) = S(f1)× S(f2) , (B.2.17)

where the RHS is understood as the shuffle product of the individual symbols. Indeed,
the symbol itself inherits the shuffle algebra:

(w1 ⊗ . . .⊗ wn)× (v1 ⊗ . . .⊗ vm) =
∑

~z= ~w�~v

(z1 ⊗ . . .⊗ zn+m) . (B.2.18)

Therefore, in our example we may simply write:

S(log(z)Li2(z)) = (z)× (−(1− z)⊗ z)
= −z ⊗ (1− z)⊗ z − 2(1− z)⊗ z ⊗ z (B.2.19)

1For this simple weight-3 function, its symbol can be obtained more directly by taking the
differential and using Eq B.2.6. Nonetheless, we find it illustrative to introduce the shuffle product,
as it becomes useful in more complicated cases.
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= −[z, 1− z, z]− 2[1− z, z, z] .

In the last line, we have again used the alternative notation in order to make the
position of the minus sign and a constant absolutely clear.

B.3 Examples

Overall, we see that thanks to symbols of the classical polylogarithms, Eq. B.2.10,
and GPLs, Eq. B.2.14, as well as the symbol shuffling, Eq. B.2.18, and finally the
relation in Eq. B.1.3, we can now compute the symbol of any function that may
appear in the weight-4 function basis. Thinking ahead to our amplitude applications,
it is clear that the symbol will allow us to find relations between linearly dependent
objects such as GPLs and express our results in a much more compact form. Having
expended the effort of understanding the last few pages, let us enjoy the fruits of
our labour sprouting in the form of several illustrative examples.

Example 1
Given a functional relation, we can check its validity — but only up to constants.
More precisely, while we can never prove with full certainty that an identity is valid
by looking at its symbols, we can definitely show that an identity is not correct
by proving that the symbols do not match up. The symbols allow us to fix the
most complicated part of the identities. What is left is essentially boundary values,
which can be determined for example by evaluating both sides of the relation at a
numerical point. Consider the well-known dilogarithm reflection identity:

Li2(1− z) = −Li2(z)− log(z) log(1− z) + π2

6 , (B.3.1)

valid in the domain z ∈ C \ {(−∞, 0] ∪ [1,∞)}. For the two dilogarithms, we can
straightforwardly use Eq. B.2.10, while for the product of ordinary logs we need to
use the shuffle algebra. At the symbol level, the identity reads:

−[z, 1− z] = +[1− z, z]− [z]� [1− z] . (B.3.2)

Taking the shuffle product leaves the two sides equal. Thus, we managed to verify
that the identity holds — up the factor of π2/6, which we can easily find by evaluating
the rest of the identity at e.g. z = 1.

Example 2
If we’re trying to construct a functional relation, the symbol can also help us to fix
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the coefficients of the functions. Let us conjecture another identity:

Li2
(1
z

)
= aLi2(z) + b log2(−z) + c , (B.3.3)

where a, b, c are rational constants. Then, at the symbol level:

−
[
1− 1

z
,
1
z

]
= −a[1− z, z] + b[−z]� [−z]

[z − 1, z]− [z, z] = −a[z − 1, z] + 2b[z] , (B.3.4)

To get to the second line, we have expanded the LHS using the symbol properties
in Eqs. B.2.2 and B.2.3, while on the RHS we used [−x] = [x], which is a direct
consequence of these properties. Thus, a = −1, b = −1/2. We still need to fix the
so-called ‘beyond the symbol terms’. These include not only the weight-2 constants
such as π2, but also products of weight-1 constants with a log. The latter type can
be often fixed by differentiating both sides of the identity, thus producing a relation
at a lower weight. In this case, differentiating Eq. B.3.3 with the known values of a
and b shows that no log×constant terms are missing. Hence, only weight-2 constants
are allowed in c and we can fix it by evaluating the identity at a chosen value of z.
In this way, we find:

Li2
(1
z

)
= −Li2(z)−

1
2 log2(−z)− π2

6 , z ∈ C \ [0, ∞) , (B.3.5)

which is indeed a well-known dilogarithm relation. Finally, the reader might wonder
why we have conjectured log(−z) instead of log(z). After all, as pointed out above,
both these functions have the same symbol — [z]. The reason is simple: swapping
the sign of the argument in the log would mean that there is no domain in which
all the functions in this relation are well-defined and they would consequently have
to be analytically continued.

Example 3
For more complicated identities, calculating the symbol by hand becomes unfeasible.
Consider the following weight-3 relation:

Li3(z) = −Li3
(

z

z − 1

)
− Li3(1− z)

+ 1
6 log3(1− z)− 1

2 log(z) log2(1− z) + 1
6π

2 log(1− z) + ζ(3) , (B.3.6)

which holds for z ∈ C \ {(−∞, 0]∪ [1,∞)}. The symbol of the LHS is trivial thanks
to Eq. B.2.10:

S(Li3(z)) = −[1− z, z, z] . (B.3.7)

The RHS requires much more work, namely repeated application of shuffle products
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and symbol properties in Eq. B.2.2. These operations can be easily automated, how-
ever. In particular, we make use of the Mathematica package PolyLogTools [301],
which enables the computation of symbols of arbitrary combinations of GPLs. In-
deed, with the help of this package, it is trivial to verify that the sum of symbols of
the terms on the RHS is equal to Eq. B.3.7.

The PolyLogTools package introduces several powerful tools related to the sym-
bol. In particular, we point out its functionality related to the so-called ‘fibration
basis’. Given a GPL expression F whose letters (i.e. the arguments) satisfy certain
conditions, it is possible to write it in the following form:

F =
∑

i

ci G(~ai; x) , (B.3.8)

for some variable x, where ~ai are independent of x and the coefficients ci include
only those GPLs that are independent of x (see Ref. [301] and references therein).
The GPLs appearing on the RHS of this formula are known as the fibration basis.
Moreover, it is also possible to ‘integrate’ a symbol: given a symbol tensor S, it
is possible to find a fibration basis such that S(F ) = S. This means that we can
determine the functional form corresponding to a symbol expression (up to beyond-
the-symbol terms).

B.4 Relation to canonical DEs and
discontinuities

Let us now take a step back and make a connection between the symbols and the
differential equations satisfied by master integrals. In Section 2.9, we saw that by
making a suitable change of basis, it is possible to construct MIs such that the
corresponding DEs are in the canonical form of Eq. 2.9.9. Then, their solution is
given by a path-ordered exponential of the ε-free DE matrix Ã. This exponential is
understood through its series expansion, leading to repeated integrations over kernels
dictated by Ã. Further, we introduced the notion of uniform transcendentality
and an even stronger condition on ‘pure’ functions, Eq. 2.9.18, which says that
the transcendental weight of pure functions is lowered by 1 upon differentiation.
Moreover, we learned that the solution of any canonical DEs is pure and vice versa

— a given basis of pure functions will satisfy the canonical DEs. We should therefore
be able to write down these DEs in a way which makes the purity property manifest.
Indeed, notice that the differential equivalent of Eq. 2.9.12 is:

d #  »MI(k) = dÃ #  »MI(k−1) ∀k > 0, d #  »MI(0) = 0 . (B.4.1)
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If we specialise to the cases where the DE matrix can be written in the d log form
of Eq. 2.9.14, then (for k > 0) this becomes:

d #  »MI(k) =
(∑

i

ai d logwi

)
#  »MI(k−1) . (B.4.2)

Note that #  »MI(0) must be a vector of constants due to its vanishing derivative. This
means that the leading term in the Laurent expansion of pure MIs does not contain
any kinematic dependence.

We can use Eq. B.4.2 to express the solution of the canonical DEs up to and including
weight n in the following form:

#  »MI(n) =
∑

α1,...,αn

~cα1,...,αn

∫
d logwα1 . . . d logwαn

, n > 0 . (B.4.3)

Note that each coefficient ~cα1,...,αn
is a vector of rational numbers — they are calcu-

lated from the products of matrices ai, which are dotted into the weight-0 vector
#  »MI(0). Naturally, to obtain explicit values for #  »MI(n), we need to supply the integra-
tion contour. Nonetheless, the symbol, which discards this information, can still tell
us a lot about the analytic structure of the solution. It can be trivially read off from
the above equation:

S
(

#  »MI(n)
)

=
∑

α1,...,αn

~cα1,...,αn
[wα1 , . . . , wαn

] . (B.4.4)

It turns out that the first entry of the symbol encodes its branch cut structure. In
particular, a Feynman integral with the symbol [wα1 , . . . , wαn

] has a discontinuity
if wα1 = 0 or ∞. Of course, singular points of Feynman integrals are not random
and we expect them to be connected to special values of the Mandelstam variables.
Indeed, there exists a so-called first-entry condition which states that ~cα1,...,αn

= 0 if
wα1 6= sij, i.e. a symbol cannot appear in the solution of the DEs if its first letter is
not a Mandelstam variable with a physical discontinuity1 [297]. This turns out to
be a very strong condition which in many cases fixes the values of #  »MI(0) up to an
overall normalisation factor. Beyond the first entry, the structure of the symbols is
further constrained by the so-called Steinmann relations, which state that there is
no double continuity associated with overlapping channels [322–325]. Overall, such
conditions created by physical principles constrain the structure of the symbols and
canonical DEs. This is evident when studying the pure MI bases relevant to this
thesis (see Refs. [98,99]).

1Strictly speaking, it is the absence of discontinuities at certain points that implies the first-entry
condition, but this statement should not be inverted. In fact, it is possible to write an amplitude
using a function which satisfies the first-entry condition, yet has the forbidden singularity. See
Section 3 of Ref. [321] for an explicit example.



Appendix C

Derivation of the pole structure

In this appendix, we provide a detailed derivation of the full pole structure of the
pp→ bb̄H amplitudes presented in Eqs. 3.2.11 to 3.2.17. We do this for completeness,
but also in the hope of illuminating the procedure, which can be far from obvious.
The pole structure of the pp→ W±γj amplitudes can be derived similarly. We also
outline the related calculation for the 0→ `¯̀γγ∗ QED amplitudes of Chapter 5.

C.1 UV singularities

Let us start with the UV singularities. Renormalising the amplitude amounts to
replacing the bare couplings xB in the Lagrangian with the physical ones:

xB = ZxxR . (C.1.1)

The renormalisation factors are expanded as Zx = 1 + δx, where δx are the coun-
terterms added to the bare Lagrangian and which are designed precisely to cancel
out the divergences. Thus, we can think of renormalisation as absorbing the infin-
ities from xB into Zx. Then, working with the renormalised parameters xR in the
Lagrangian is known as ‘renormalised perturbation theory’. Let us now see how to
achieve that. Specialising to the pp→ bb̄H process of Chapter 3, the bare amplitude
admits the following expansion (similar to that of Eq. 1.4.5):

AB = aByb,B

(
A

(0)
B + aBA

(1)
B + a2

BA
(2)
B + . . .

)
, (C.1.2)

where aB = αs,B/(4π) and αs,B, yb,B are the bare strong coupling constant and the
bare Yukawa coupling of the b quark1. We will work in the MS scheme and make

1See Refs. [326, 327] for details, but note the difference of α
1/2
s,B as the leading power due to

one fewer jet and, in the second reference, the expansion in powers of αs,B/(2π), which introduces
relative factors of 2 with respect to our convention.
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the following replacements for the two couplings1:

αs,B = Sε Zαs
αs,R(µR), (C.1.3)

yb,B = Zy yb,R(µR) , (C.1.4)

where µR is the renormalisation scale. The factor Sε = eεγE (4π)−ε cancels out with
the mε factor extracted from the colour-ordered amplitudes in Eq. 3.2.8 and so
will be dropped in the following discussion. The renormalisation factors themselves
admit a perturbative expansion in the renormalised strong coupling constant:

Zαs
= 1 + aRr1 + a2

Rr2 +O
(
a3

R

)
, (C.1.5)

Zy = 1 + aRs1 + a2
Rs2 +O

(
a3

R

)
, (C.1.6)

where aR = αs,R/(4π). Substituting Eqs. C.1.3 through C.1.6 into Eq. C.1.2, we
obtain the amplitude expansion in terms of the renormalised parameters:

AR = aRyb,R

(
A

(0)
R + aRA

(1)
R + a2

BA
(2)
R + . . .

)
, (C.1.7)

with the individual amplitudes given by:

A
(0)
R = A

(0)
B ,

A
(1)
R = A

(1)
B + 2A(0)

B (r1 + s1) , (C.1.8)
A

(2)
R = A

(2)
B + 2A(1)

B (2r1 + s1) + 4A(0)
B (r2 + r1s1 + s2) .

The coefficients r1, r2, s1, s2 are listed in Appendix D. Note that we use their values
as given in Ref. [327] for the sake of consistency, but in Eq. C.1.8 we have rescaled
them by powers of 2 to make them compatible with our expansion. Overall, we see
that each UV-finite amplitude A(L)

R is defined by adding to the bare amplitude A(L)
B

terms related to the β-function whose ε poles cancel out the UV divergences. This
completes the renormalisation of the pp→ bb̄H amplitudes in Chapter 3.

C.2 IR singularities

The renormalised amplitudes A(L)
R are only UV-finite — the IR divergences remain.

The IR pole structure of two-loop amplitudes in massless gauge theories was originally
derived in Ref. [23] and later extended in Refs. [24–26]. Here, we provide a brief
summary of these results, followed by their application to the process pp→ bb̄H.

1We treat all quarks as massless, while the wave function counterterm in the massless on-shell
scheme is 0 (see Section 3.2 for an explanation as to why we use a mixed renormalisation scheme).
Therefore, we only renormalise the strong coupling constant and the b quark Yukawa coupling.
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C.2.1 Overview of IR singularities

The MS-renormalised amplitudes A(L)
R admit the following structure1:

A
(1)
R = 2I(1)(ε)A(0)

R + F (1) , (C.2.1)
A

(2)
R = 2I(1)(ε)A(1)

R + 4I(2)(ε)A(0)
R + F (2) . (C.2.2)

The IR-divergent part is determined by amplitudes at lower loop order, while the full
amplitude also receives a finite part F (L), which is the genuinely new contribution
that needs to be computed. The pole operators I(L)(ε) are given by [23]:

I(1)(ε) = 1
2

eεγE

Γ(1− ε)
∑

i

(
1
ε2 −

γi
0

2ε
1

T 2
i

)∑
j 6=i

Tj · Tj

(
µ2

R

−sij

)ε

, (C.2.3)

I(2)(ε) = e−εγE Γ(1− 2ε)
Γ(1− ε)

(
γcusp

1
8 + β0

2ε

)
I(1)(2ε)− 1

2I(1)(ε)
(

I(1)(ε) + β0

ε

)
+ H

(2)
RS (ε) ,

(C.2.4)

where sij = 2σij pi · pj with σij = +1 if both momenta are incoming or outgoing and
σij = −1 otherwise. The values of the β-function coefficients and the anomalous
dimensions are given in Appendix D. We remark that the one-loop pole operator
I(1)(ε) is independent of the regularisation scheme, while the two-loop operator
I(2)(ε) is not. Its dependence enters through the quantity H

(2)
RS(ε), which contains

O (1/ε) poles only:

H
(2)
RS (ε) = 1

16ε
∑

i

(
γi

1 −
1
4γ

cusp
1 γi

0 + π2

16β0γ
cusp
0 Ci

)

+ ifabc

24ε
∑

(i,j,k)
T a

i T b
j T c

k ln
(
−sij

−sjk

)
ln
(
−sjk

−ski

)
ln
(
−ski

−sij

)
(C.2.5)

− ifabc

128εγ
cusp
0

∑
(i,j,k)

T a
i T b

j T c
k

(
γi

0

Ci

− γj
0
Cj

)
ln
(
−sij

−sjk

)
ln
(
−ski

−sij

)
,

where the sum runs over unordered tuples (i, j, k) of distinct parton indices. As
pointed out in Ref. [24], the last two lines appear only because the pole operators
I(L)(ε) in Ref. [23] were not defined in a minimal scheme, but also include terms finite
in ε. Due to colour conservation, they contribute only if the amplitude contains at
least four partons. Additionally, the last line appears only for more than 4 partons
due to momentum conservation. More importantly, these last two lines produce
terms subleading in Nc. Thus, in the leading-colour approximation, we will neglect
them and use the first line only.

1Note that similarly to the previous section, we rescale I(1)(ε) and I(2)(ε) by 2 and 22, respect-
ively, to account for the different expansion parameter aR in Ref. [23].
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Overall, despite the intimidating appearance of the formulas above, it can be appreci-
ated that the only non-trivial piece of deriving the IR pole structure of the two-loop
amplitudes is due to the operators T a

i , which we will refer to as ‘colour insertion
operators’. Each T a

i acts on the colour structure of the amplitude by inserting a
gluon with the adjoint index a onto the parton i. The rules are as follows:

• T a
c : δbc = −ifabc if c is a gluon,

• T a
i : δij = +(T a)ij if i is an outgoing quark,

• T a
i : δji = −(T a)ji if i is an outgoing antiquark,

• T a
i : δji = −(T a)ji if i is an incoming quark,

• T a
i : δij = +(T a)ij if i is an incoming antiquark.

We find it very helpful to use pictures akin to Feynman diagrams to better understand
these rules (see Fig. C.1). Before applying them to our process of interest, it is useful
to note that the product of two colour insertion operators, Ti · Tj ≡ T a

i T a
j , trivially

commutes:
Ti · Tj = Tj · Ti , (C.2.6)

while for i = j the action of the product gives the quadratic Casimir of the appro-
priate representation of SU(Nc):

T 2
i = Ci , (C.2.7)

with Cq = Cq̄ = CF and Cg = CA. Moreover, due to colour conservation:

n∑
i=1

T a
i |An〉 = 0 , (C.2.8)

∑
(i,j)

Ti · Tj = −
∑

i

T 2
i = −

∑
i

Ci , (C.2.9)

where |An〉 denotes a vector in the n-dimensional colour space, with An being the
UV-renormalised amplitude of n coloured partons1. These equations can be used
to check whether we have applied the colour insertion operators to our amplitude
correctly.

C.2.2 Application to pp → bb̄H amplitudes

We now have all the tools to derive the IR pole structure of the pp→ bb̄H amplitudes
in Chapter 3. First of all, we note that by applying the first line of Eq. C.2.5 to the

1For a description of the colour-space formalism, see Ref. [328].
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b c
T a

c : = −i
b c

a

gluon

j i
T a

i : = +
j i

a

outgoing
quark

j i
T a

i : = −
j i

a

outgoing
antiquark

i j
T a

i : = −
i j

a

incoming
quark

i j
T a

i : = +
i j

a

incoming
antiquark

Figure C.1: Graphical representation of the action of the colour
insertion operators on partons. The dot • indicates a Feynman
diagram vertex and allows us to distinguish between incoming and
outgoing quarks and antiquarks. The fundamental and antifunda-
mental indices should be read in the direction opposite to fermion
flow, while the adjoint indices in the three-point gluon vertex should
be read anticlockwise.
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ī1
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ī3
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 − 1
Nc


Figure C.2: The colour structure of a sample diagram contributing
to the b̄bq̄qH channel at tree level. We employ the Fierz iden-
tity to write (T a) ī3

i4
(T a) ī1

i2
= TF

(
δ

ī1
i4
δ

ī3
i2
− 1

Nc
δ

ī1
i2
δ

ī3
i4

)
. Note that

particles 3 and 4 have to be crossed into the final state to corres-
pond to the process definition in Eq. 3.2.2, where all particles are
outgoing. Thus, we should treat them as an outgoing antiquark
and an outgoing quark, respectively, when applying the rules from
Fig. C.1.

b̄bq̄qH and b̄bggH channels, Eqs. 3.2.16 and 3.2.17 follow trivially. Then, to derive
the two-loop pole operator I(2)(ε), we only need to concern ourselves with the action
of the colour insertion operators T a

i within I(1)(ε).

The b̄bq̄qH channel

As the first step, we write down all the colour structures that appear in the relevant
Feynman diagrams. Note that factors such as Nc, TF , CA or CF are not considered a
part of these structures — we only include δ-functions, fundamental generators (T a) j̄

i

and the structure constants fabc. For this channel, we find two colour structures (see
Fig. C.2):

c =
(
δ

ī1
i4
δ

ī3
i2

δ
ī1

i2
δ

ī3
i4

)T
. (C.2.10)

Then, the action of the products Ti · Tj produces linear combinations of these
structures, which we encode in the matrices Cij defined as follows:

Ti · Tj : c = Cijc . (C.2.11)

Note that we do not have to compute Cij for all possible combinations of partons
i and j. Due to Eq. C.2.7, all Cii are diagonal and their entries are given by the
quadratic Casimirs Ci in the relevant representation. Moreover, the commutativity
property Eq. C.2.6 further reduces the number of necessary computations. Overall,
for n coloured partons, we only need to compute n(n+ 1)/2 matrices.

As an example, let us see how the operator product T1 · T4 acts on the two colour
structures in this channel. Applying the rules listed in Fig. C.1 (remember that
particle 3 is treated as an outgoing antiquark, while particle 4 as an outgoing quark),
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ī3

ī1
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Figure C.3: A pictorial representation of the action of the colour
insertion operators T1 ·T4 on the colour factors (a): δ ī1

i4
δ

ī3
i2

and (b):
δ

ī1
i2
δ

ī3
i4
.

we obtain:

T1 · T4 : δ ī1
i4
δ

ī3
i2

= −(T aT a) ī1
i4
δ

ī3
i2

= −CF δ
ī1

i4
δ

ī3
i2
, (C.2.12)

T1 · T4 : δ ī1
i2
δ

ī3
i4

= −(T a) ī1
i2

(T a) ī3
i4

= −TF

(
δ

ī1
i4
δ

ī3
i2
− 1
Nc

δ
ī1

i2
δ

ī3
i4

)
, (C.2.13)

where in both lines we have used the Fierz identity in the last equality. Perhaps a
graphical representation of these operations in Fig. C.3 is once again more illustrative.
We can now read off the matrix C14:

C14 =
−CF 0
−TF

TF

Nc

 . (C.2.14)

In the same manner, we need to obtain the remaining matrices Cij. Needless to say,
performing these operations by hand (or even using their diagrammatical equival-
ents) becomes tedious and extremely prone to errors. We therefore automate this
task in Mathematica and make use of the package ColorMath [329] to achieve the
simplifications of the various colour structures that arise as a result of applying the
colour insertion operators. We make sure to verify that Eq. C.2.9 holds as a check
on our calculations.

Once all the matrices Cij have been computed, we have all the information needed to
act with the pole operators I(L) on the renormalised amplitudes A(L)

R and subtract
the IR singularities. Note that if we want to retain full colour dependence, for each
colour-ordered amplitude the subtraction will involve multiple lower-loop amplitudes
with different colour factors. However, within the leading-colour approximation the
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situation is much simpler as the pole operators become diagonal. Indeed, replacing
each Ti ·Tj with the corresponding Cij (and each T 2

i with the corresponding quadratic
Casimir Ci), we retain only the highest power of Nc to find:

I
(1)
b̄bq̄qH

= −Nc

N(ε)
2

( 1
ε2 + 3

2ε

) (
(−s23)−ε + (−s14)−ε

)1 0
0 1

 , (C.2.15)

where N(ε) = eεγE/Γ(1− ε). Moreover, it turns out that the second colour factor
δ

ī1
i2
δ

ī3
i4

always appears suppressed by 1/Nc with respect to the first factor δ ī1
i4
δ

ī3
i2

, as
can be appreciated from our simple example in Fig. C.2. Thus, in the leading-colour
approximation, we simply drop it. This justifies the decomposition in Eq. 3.2.8 and
completes the derivation of the pole operator I(1)

b̄bq̄qH
in Eq. 3.2.14, which now acts

solely on the amplitude associated with the colour factor δ ī1
i4
δ

ī3
i2

.

Finally, we combine the UV and IR poles in a single operator P (L) which we can use
to subtract both types of divergences from the amplitude. Substituting Eq. C.1.8 into
Eqs. C.2.1 and C.2.2, we obtain the finite part:

F (1) = A
(1)
R − 2I(1)(ε)A(0)

R

= A
(1)
B + 2A(0)

B (r1 + s1)− 2I(1)(ε)A(0)
B

= A
(1)
B − 2

(
I(1)(ε)− r1 − s1

)
︸ ︷︷ ︸

P
(1)

A
(0)
B , (C.2.16)

F (2) = A
(2)
R − 2I(1)(ε)A(1)

R − 4I(2)(ε)A(0)
R

= A
(2)
B + 2A(1)

B (2r1 + s1) + 4A(0)
B (r2 + r1s1 + s2)

− 2I(1)(ε)
(
A

(1)
B + 2A(0)

B (r1 + s1)
)
− 4I(2)(ε)A(0)

B

= A
(2)
B −

(
2I(1)(ε)

(
Â

(1)
B + 2r1 + 2s1

)
+ 4I(2)(ε)− 2(2r1 + s1)Â(1)

B − 4(r2 + r1s1 + s2)
)

︸ ︷︷ ︸
P

(2)

A
(0)
B ,

(C.2.17)
where Â(1)

B is the one-loop bare amplitude divided by the tree-level amplitude. Thus,
to obtain the finite remainders, we simply subtract the operators P (1) and P (2)

(multiplied by the tree-level amplitude) from the bare amplitudes A(1)
B and A

(2)
B .

The b̄bggH channel

The derivation of the pole structure in the b̄bggH channel follows exactly the same
steps as described in the previous section. However, we believe it is still useful to
outline it, since there are a few subtleties that we did not have to take care of in the
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Figure C.4: The colour structure of a sample diagram contribut-
ing to the b̄bggH channel at tree level. It is also a graphical rep-
resentation of the relation which defines the structure constants,
ifabc(T c) ī1

i2
= (T aT b) ī1

i2
− (T bT a) ī1

i2
.

case of the b̄bggH channel. First of all, here we find three colour structures:

c =
(
(T a3T a4) ī1

i2
(T a4T a3) ī1

i2
δ

ī1
i2
δab
)T

. (C.2.18)

While the first two factors can be spotted in a naive analysis of tree-level diagrams
such as Fig. C.4, the third factor appears only at loop level. Thus, from a practical
point of view, it is useful to have an automated routine which is able to extract the
colour structure of all diagrams up to the desired loop order.

Just as before, we apply all the needed combinations of the Ti · Tj operators on
the colour structures in c and extract the matrices Cij. We then know how to act
with the pole operator I

(1)
b̄bggH

on the renormalised amplitude A(L)
R in this channel.

Again, in the leading-colour approximation, the pole operator is diagonal, i.e. there
is no mixing of different colour structures. However, contrary to I

(1)
b̄bq̄qH

, it is not
proportional to the identity matrix. We find:

I
(1)
b̄bggH

= −Nc

N(ε)
2


I1 0 0
0 I2 0
0 0 I3

 ,

where:

I1 = I2 =
(

1
ε2 + 3

4ε + β0

4Ncε

)(
(−s23)−ε + (−s14)−ε

)
+
(

1
ε2 + β0

2Ncε

)
(−s34)−ε ,

I3 =
( 1
ε2 + 3

2ε

)
(−s12)−ε +

(
2
ε2 + β0

2Ncε

)
(−s34)−ε . (C.2.19)

As in the previous section, the last colour factor is always suppressed by 1/Nc with
respect to the first two and we simply drop it. This completes the derivation of the
b̄bggH leading-colour decomposition, Eq. 3.2.8, and its pole operators, Eq. 3.2.15.

A careful reader might be alarmed by the presence of the β0/Nc term at leading
colour. Indeed, since β0 = 11

3 CA − 4
3TFnf and CA = Nc, we would expect only the

11/3 contribution to survive. However, in most applications the number of light
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fermions circulating in closed loops is nf = 4 or 5, thus nf/Nc ≈ O (1). It is therefore
reasonable to retain the nf term as well and the whole contribution is written in
terms of the first β function coefficient as β0/Nc. This also provides the motivation
for the decomposition in Eqs. 3.2.9 and 3.2.10.

C.3 Pole structure of the QED process
0 → `¯̀γγ

∗

To derive the pole structure of the process 0→ `¯̀γγ∗ in Chapter 5, we depart from
the procedure described above. In particular, in QED there is no colour structure,
therefore applying the colour insertion operators would not make sense here. Instead,
we follow the approach found in Refs. [24–26,287] and provide a brief outline below.

We renormalise the QED coupling constant by trading the bare coupling, αB, for
the renormalised one, αR, through:

αB = αR(µR)Zα

(
αR(µR)

)
µ2ε

R Sε , (C.3.1)

with Sε = eεγE (4π)−ε. The renormalisation factor Zα in the MS scheme is [330,331]:

Zα(α) = 1− α

4π
β0

ε
−
(
α

4π

)2
(
−β

2
0

ε2 + 1
2
β1

ε

)
+O

(
α3
)
. (C.3.2)

The QED β-function is defined from the renormalised coupling as:

dαR(µR)
d lnµR

=
[
−2 ε+ β

(
αR(µR)

)]
αR(µR) , (C.3.3)

and expanded as:

β(α) = −2 α

4π
∑
k≥0

βk

(
α

4π

)k

, (C.3.4)

with:

β0 = −4
3nl , β1 = −4nl . (C.3.5)

The photon wave function renormalisation factor is ZA = Zα, which we include due
to the external off-shell photon. The complete renormalisation procedure is then:

Aµ
R(αR) = Z

1
2
A(αR)Aµ

B(αB) , (C.3.6)

where αB is expressed in terms of αR through Eq. C.3.1.
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The IR poles of the renormalised amplitude factorise as [23–26,287]:

Aµ
R(αR) = Z(αR)Fµ(αR) , (C.3.7)

so that Z(αR) captures all IR poles and Fµ is a finite remainder. We obtain the
explicit two-loop expression of the IR factor Z(αR) by choosing QED parameters
(CA = 0, CF = 1, and TF = 1) in the non-abelian gauge-theory expressions of
Ref. [25]. We expand it as:

Z(α) =
∑
k≥0

Z(L)
(
α

4π

)L

. (C.3.8)

The coefficients Z(L) up to two loops are given by:

Z(0) = 1 , Z(1) = Γ′
0

4ε2 + Γ0

2ε , Z(2) = Z(1)2

2 − 3β0Γ′
0

16ε3 + Γ′
1 − 4β0Γ0

16ε2 + Γ1

4ε . (C.3.9)

They are expressed in terms of the anomalous dimension Γ:

Γ = γcusp ln
(
−s12

µ2

)
+ 2γl + γA, (C.3.10)

and its derivative:

Γ′ ≡ ∂Γ
∂ lnµ = −2γcusp . (C.3.11)

Here, γcusp is the cusp anomalous dimension, while γl and γA are the lepton’s and
the photon’s collinear anomalous dimensions, respectively. We expand all anomalous
dimensions y ∈ {Γ, γi} as:

y = α

4π
∑
k≥0

yk

(
α

4π

)k

. (C.3.12)

Their zeroth- and first-order coefficients are listed in Appendix D.

Putting together the subtraction of UV and IR poles and expanding the resulting
finite remainder Fµ(αR) in αR leads to the definitions in Eq. 5.2.14.
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Renormalisation Constants

The bottom-quark Yukawa renormalisation constants are [162,326]:

r1 = −β0

2ε , (D.1)

r2 = β2
0

4ε2 −
β1

8ε , (D.2)

s1 = −3CF

2ε , (D.3)

s2 = 3
8ε2

(
3C2

F + β0CF

)
− 1

8ε

(
3C2

F

2 + 97
6 CFCA −

10
3 CFTFnf

)
, (D.4)

where the first two β function coefficients are:

β0 = 11
3 CA −

4
3TFnf , (D.5)

β1 = 34
3 C

2
A −

20
3 CATFnf − 4CFTFnf , (D.6)

with CA = Nc, CF = TF (N2
c − 1)/Nc.

The zeroth and first-order coefficients of the anomalous dimensions are given by [25]:

γg
0 = − 11

3 CA + 4
3TFnf , (D.7)

γg
1 = C2

A

(
−692

27 + 11π2

18 + 2ζ3

)
+ 4CFTFnf + CATFnf

(
256
27 −

2π2

9

)
, (D.8)

γq
0 = − 3CF , (D.9)

γq
1 = C2

F

(
−3

2 + 2π2 − 24ζ3

)
+ CFCA

(
−961

54 −
11π2

6 + 26ζ3

)

+ CFTFnf

(
130
27 + 2π2

3

)
, (D.10)

γl
0 =− 3 , (D.11)
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γl
1 =− 3

2 + 2π2 − 24 ζ3 + nf

(130
27 + 2

3π
2
)
, (D.12)

γA
0 =− β0 , (D.13)
γA

1 =− β1 , (D.14)
γcusp

0 = 4 , (D.15)

γcusp
1 =

(
268
9 −

4π2

3

)
CA −

80
9 TFnf . (D.16)

We emphasise that while in QCD we have Nc = 3 and usually set TF = 1/2 or 1,
when working in QED one needs to set CA = 0, CF = 1 and TF = 1 in the expressions
listed above.



Appendix E

One-Loop Results

In this appendix, we collect the numerical results relevant to the amplitudes presented
in Chapters 3 and 4. Tables E.1 and E.3 show the bare one-loop amplitudes for the
two processes pp→ bb̄H and pp→ W±γj, respectively. Tables E.2 and E.4 show the
corresponding reduced squared tree-level amplitudes H(0) and the reduced squared
one-loop finite remainders.
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b̄bggH helicity ε−2 ε−1 ε0 ε1 ε2

Â(1),1 ++++ −3 3.07857−
3.14159i

0.317351 +
8.42128i

−1.25257−
8.56907i

25.8294−
4.35648i

+++− −3 3.07857−
3.14159i

−2.99786−
1.02133i

2.86487−
28.7164i

30.3093−
26.3373i

++−+ −3 3.07857−
3.14159i

−0.119814+
8.67497i

−1.43041−
5.33656i

19.6373−
0.110475i

++−− −3 3.07857−
3.14159i

−6.51606 +
18.6156i

−21.7849 +
24.0036i

−24.6605 +
55.6878i

Â(1),nf ++++ 0 0 −0.005010+
0.000779871i

−0.00700827−
0.0150298i

0.0109029−
0.0163643i

+++− 0 0 0 0 0
++−+ 0 0 0 0 0
++−− 0 0 −0.393552+

0.138515i
−0.793221−

1.11035i
0.635641−
1.48796i

b̄bq̄qH helicity ε−2 ε−1 ε0 ε1 ε2

Â(1),1 +++− −2 2.48840 −9.99430−
8.95182i

2.20899−
24.3401i

4.76962−
27.6604i

++−+ −2 2.48840 −8.43825−
7.45006i

7.21741−
24.6383i

13.6369−
20.4876i

Â(1),nf +++− 0 −0.666667 0.726782−
2.09440i

2.29387 +
2.28325i

−2.54017 +
0.316127i

++−+ 0 −0.666667 0.726782−
2.09440i

2.29387 +
2.28325i

−2.54017 +
0.316127i

Table E.1: Numerical values of the bare b̄bggH and b̄bq̄qH partial
amplitudes at one loop (normalised to the tree-level amplitude) at
the kinematic point in Eq. 3.6.11 for the four independent helicity
configurations and the various closed fermion loops contributions.

channel H(0) Re H(1),1 Re H(1),nf

gg 1121.375369 4905.689964 204.1069797
qq̄ 0.001095232986 −0.008958148524 0.0007959961305
q̄q 0.001095232986 0.01182947634 0.0007959961305
bb̄ 738.4111805 5948.275150 −2005.976183
b̄b 774.9861507 −8346.007933 −2253.325645

bb/b̄b̄ 71.81424881 −678.1382010 −243.5040325

Table E.2: Numerical values of the tree-level reduced squared
amplitudesH(0) and one-loop reduced squared finite remaindersH(1)

defined in Eqs. 3.6.3-3.6.9 at the kinematic point in Eq. 3.6.11 for
the closed fermion loops contributions and the scattering channels
specified in Eq. 3.6.1.
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helicity ε−2 ε−1 ε0 ε1 ε2

Â(1),1
u +++−−+ -2 23.8477 −138.615−

2.09370i
523.949 +
12.3666i

−1448.23−
21.7701i

−++−−+ -2 23.8477 −139.779−
0.516164i

535.218−
2.01397i

−1503.32 +
46.1044i

Â
(1),1
d +++−−+ -2 23.8477 −140.008−

2.18806i
539.871 +
13.7461i

−1538.48−
30.4669i

−++−−+ -2 23.8477 −139.294−
2.18046i

532.471 +
15.2170i

−1499.51−
44.3866i

Â
(1),1
W +++−−+ -2 23.8477 −139.550−

1.53563i
534.185 +
8.26368i

−1503.99−
6.62167i

−++−−+ -2 23.8477 −139.818−
1.20381i

536.639 +
5.03856i

−1515.10 +
9.39205i

Â(1),1
e +++−−+ -2 23.8477 −139.570−

1.46851i
534.360 +
7.61926i

−1504.71−
3.48177i

−++−−+ -2 23.8477 −140.303−
1.48855i

541.353 +
7.64165i

−1538.44−
2.31498i

Table E.3: Bare one-loop helicity sub-amplitudes (normalised to
the tree-level amplitudes as in Eq. 4.5.9) without any closed fermion
loop contribution for W+γj production in the ud̄ scattering channel
evaluated at the kinematic point given in Eq. 4.5.7. The results are
shown for the two independent helicity configurations and obtained
with q1 = p3 and q3 = p1 where q1 (q3) is the reference momentum
for the photon (gluon) polarisation vector.

W+γj H(0) [×10−10 GeV−4] Re Ĥ(1),1 Re Ĥ(1),nf

ud̄ 32.9224527109 -20.4269208141 4.22462265354
d̄u 35.8863373066 -20.0350027848 4.22462265354
ug 4.84655650134 -26.9389515414 4.45445318051
gu 15.2151742999 -25.3235043118 4.37533965902
d̄g 9.18270882925 -28.3542876136 4.45445318051
gd̄ 26.4333120479 -27.3120879601 4.37533965902

W−γj H(0) [×10−10 GeV−4] Re Ĥ(1),1 Re Ĥ(1),nf

dū 48.5521763841 -20.5759435967 4.22462265354
ūd 5.60724308955 -25.0921274652 4.22462265354
dg 0.161819754065 -53.2745933316 4.45445318051
gd 2.59919214772 -35.7387232774 4.37533965902
ūg 0.471356750696 -25.5067063821 4.45445318051
gū 27.6357549618 -32.8902240077 4.37533965902

Table E.4: Reduced squared tree-level amplitude (absolute) and
reduced squared one-loop finite remainders (normalised to the re-
duced squared tree amplitudes) for the various closed fermion loop
contributions and scattering channels of both pp → W+γj and
pp→ W−γj production, evaluated at the kinematic point given in
Eq. 4.5.7.



Appendix F

Definition of the four-point
integral families

For each two-loop integral family T corresponding to one of the maximal topologies
shown in Fig. 5.2, the Feynman integrals have the form:

jT (a1, . . . , a9) = e2εγE

∫ d4−2εk1

iπ2−ε

d4−2εk2

iπ2−ε

1
D

a1
T,1 . . . D

a9
T,9

. (F.1)

The sets {DT,1, . . . , DT,9} contain seven (inverse) propagators and two ISPs (a8, a9 ≤
0). For the maximal topologies under consideration, they are given by1:

• penta-triangle, mzz configuration:{
k2

1, (k1 + p1 + p2 + p3)2, (k1 + p2 + p3)2, (k1 + p3)2, k2
2, (k2 − p3)2,

(k1 + k2)2, (k2 − p1 − p2 − p3)2, (k2 − p2 − p3)2
}
,

(F.2)

• penta-triangle, zmz configuration:{
k2

1, (k1 − p1)2, (k1 + p2 + p3)2, (k1 + p3)2, k2
2, (k2 − p3)2, (k1 + k2)2,

(k2 + p1)2, (k2 − p2 − p3)2
}
,

(F.3)

• penta-triangle, zzz configuration:{
k2

1, (k1 − p1)2, (k1 − p1 − p2)2, (k1 − p1 − p2 − p3)2, k2
2, (k2 + p1 + p2 + p3)2,

(k1 + k2)2, (k2 + p1)2, (k2 + p1 + p2)2
}
,

(F.4)

1We use a naming convention analogous to that of Ref. [98].
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• planar double-box:{
k2

1, (k1 − p1)2, (k1 − p1 − p2)2, k2
2, (k2 + p1 + p2 + p3)2, (k2 + p1 + p2)2,

(k1 + k2)2, (k1 − p1 − p2 − p3)2, (k2 + p1)2
}
,

(F.5)

• crossed double-box, mz configuration:{
k2

1, (k1 + p1 + p2 + p3)2, (k1 + p2 + p3)2, k2
2, (k2 − p2)2, (k1 + k2)2,

(k1 + k2 + p3)2, (k1 + p3)2, (k2 − p1 − p2 − p3)2
}
,

(F.6)

• crossed double-box, zz configuration:{
k2

1, (k1 − p1)2, (k1 − p1 − p2)2, k2
2, (k2 − p3)2, (k1 + k2)2,

(k1 + k2 − p1 − p2 − p3)2, (k1 − p1 − p2 − p3)2, (k2 + p1)2
}
.

(F.7)

We also use the one-loop (one-mass) box family, made of the following integrals:

jbox(a1, a2, a3, a4) = eεγE

∫ d4−2εk

iπ2−ε

1
D

a1
box,1D

a2
box,2D

a3
box,3D

a4
box,4

, (F.8)

with the four inverse propagators Dbox,i:{
k2

1, (k1 − p1)2, (k1 − p1 − p2)2, (k1 − p1 − p2 − p3)2
}
. (F.9)

Feynman’s prescription for the imaginary parts of all propagators is implicit.

These family definitions (strictly with the ordering of inverse propagators and ISPs
shown above) correspond to the integrals j[family,a1,...] that build the canonical
MI bases provided in the pure_mi_bases/ directory of the ancillary files [284]. In
this notation, each j[...] represents a Feynman integral within a given integral
family, while the numbers ai refer to the powers of its propagators and ISPs.
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Analytic continuation

In Chapter 5, we analytically continue the GPLs by adding a small positive (or
negative) imaginary part to the GPL indices li in Eq. 5.4.10 whenever they fall
between 0 and 1. The imaginary part of each index prescribes how to deform the
integration contour around the pole associated with it. We do similarly for the
logarithms in Eq. 5.4.12. To this end, following Ref. [275], we change variables from
(s12, s23, s4) to (s12, s23, s13), with s4 = s12 + s23 + s13. We then add a small positive
imaginary part to the new variables:

s12 −→ s12 + i c1 δ , s23 −→ s23 + i c2 δ , s13 −→ s13 + i c3 δ , (G.1)

where c1, c2 and c3 are arbitrary positive constants, and δ is a positive infinitesimal.
Finally, we check whether this substitution gives a positive or negative imaginary
part to each GPL index li. This depends on the domain of the kinematic variables.
We focus on three kinematic regions which are of phenomenological interest. The
analytic continuation for any other region may be obtained similarly.

Electron-line corrections to e−µ− → e−µ−γ. To define the domain of the
kinematic variables relevant for this application, we embed the four-particle off-
shell process of Eq. 5.2.1 in the five-particle process e−µ− → e−µ−γ. We then
determine the kinematic constraints for the five-particle process (see e.g. Appendix A
of Ref. [121]), and from them derive the constraints on the four-point off-shell
kinematics. The result is:

Peµ→eµγ := {~s : s12 < 0 ∧ s23 < 0 ∧ 0 < s13 < −s12 − s23} . (G.2)

The GPL index l4 = −s12/s23 is always negative in Peµ→eµγ, hence no analytic
continuation is required. The other three indices may instead fall between 0 and 1.
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Index Peµ→eµγ Peē→γγ
∗ Pγ

∗→eēγ

l1 − + 0
l2 − 0 0
l3 − 0 0
l4 0 0 0

Table G.1: Imaginary parts of the GPL indices defined by Eq. 5.4.10
in the three kinematic regions discussed in Appendix G. The symbol
+ (−) denotes a positive (negative) imaginary part, while 0 means
no analytic continuation is needed.

Let us study l1. Changing variables from s4 to s13 and adding imaginary parts as in
Eq. G.1 gives:

l1 = s12 + s13 + s23

s12
+ iδ
s2

12
[(c2 + c3)s12 − c1(s13 + s23)] +O

(
δ2
)
. (G.3)

The imaginary part of l1 may be either negative or positive in Peµ→eµγ . However, it
is strictly negative in the subregion of Peµ→eµγ where 0 < l1 < 1. We therefore assign
a negative imaginary part to l1 whenever 0 < l1 < 1 in Peµ→eµγ . The analysis of the
other indices follows similarly, and is summarised in Table G.1. The arguments of
the three logarithms in Eq. 5.4.12 are positive in Peµ→eµγ.

Corrections to e−e+ → γγ∗. The relevant domain of the kinematic variables
in this case can be derived directly for the four-point kinematics, and is typically
named the s12 channel. It is given by:

Peē→γγ
∗ := {~s : s23 < 0 ∧ s13 < 0 ∧ s12 > −s23 − s13} . (G.4)

The GPL indices l2, l3 and l4 can never fall between 0 and 1 in Peē→γγ
∗ , and hence

require no analytic continuation. We instead need to add a positive imaginary part to
l1. In this region, also the logarithms in Eq. 5.4.12 need to be analytically continued.
The argument of log(s12/s4) is positive in Peē→γγ

∗ . By adding imaginary parts to
the arguments of the other logarithms and studying them where the arguments are
negative in Peē→γγ

∗ , we determine that the analytic continuation is achieved through
the following replacements:

log(s23/s4) −→ log(−s23/s4) + iπ , log(−s4) −→ log(s4)− iπ . (G.5)

Corrections to the decay γ∗ → e−e+γ. The relevant domain of the kinematic
variables is:

Pγ
∗→eēγ := {~s : s12 > 0 ∧ s23 > 0 ∧ s13 > 0} . (G.6)
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All GPL indices li in Eq. 5.4.10 are either li < 0 or li > 1, hence no analytic
continuation is required. The same holds for the first two logarithms in Eq. 5.4.12,
whose arguments are positive. The only function which needs to be analytically
continued is log(−s4). We achieve this by replacing:

log(−s4) −→ log(s4)− iπ . (G.7)

The information about the imaginary parts of the GPL indices can be fed into
the publicly available libraries for evaluating these functions numerically, such as
FastGPL [332], GiNaC [96, 298], and handyG [303]. This typically leads to longer
evaluation times with respect to GPLs which do not need analytic continuation.
We find that this is not an issue for the planned applications of our results (see
Section 5.4.3). Nonetheless, we note that a more performant evaluation may be
achieved by tailoring the GPL representation to the kinematic region of interest
in such a way that no GPLs require analytic continuation. We refer the reader to
Refs. [275,276] for a detailed discussion.
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