142 research outputs found

    e-SAFE: Secure, Efficient and Forensics-Enabled Access to Implantable Medical Devices

    Full text link
    To facilitate monitoring and management, modern Implantable Medical Devices (IMDs) are often equipped with wireless capabilities, which raise the risk of malicious access to IMDs. Although schemes are proposed to secure the IMD access, some issues are still open. First, pre-sharing a long-term key between a patient's IMD and a doctor's programmer is vulnerable since once the doctor's programmer is compromised, all of her patients suffer; establishing a temporary key by leveraging proximity gets rid of pre-shared keys, but as the approach lacks real authentication, it can be exploited by nearby adversaries or through man-in-the-middle attacks. Second, while prolonging the lifetime of IMDs is one of the most important design goals, few schemes explore to lower the communication and computation overhead all at once. Finally, how to safely record the commands issued by doctors for the purpose of forensics, which can be the last measure to protect the patients' rights, is commonly omitted in the existing literature. Motivated by these important yet open problems, we propose an innovative scheme e-SAFE, which significantly improves security and safety, reduces the communication overhead and enables IMD-access forensics. We present a novel lightweight compressive sensing based encryption algorithm to encrypt and compress the IMD data simultaneously, reducing the data transmission overhead by over 50% while ensuring high data confidentiality and usability. Furthermore, we provide a suite of protocols regarding device pairing, dual-factor authentication, and accountability-enabled access. The security analysis and performance evaluation show the validity and efficiency of the proposed scheme

    Security Trade-offs in Cyber Physical Systems: A Case Study Survey on Implantable Medical Devices

    Get PDF
    The new culture of networked systems that offer everywhere accessible services has given rise to various types of security trade-offs. In fact, with the evolution of physical systems that keep getting integrated with cyber frameworks, cyber threats have far more critical effects as they get reflected on the physical environment. As a result, the issue of security of cyber physical systems requires a special holistic treatment. In this paper, we study the trade-off between security, safety and availability in such systems and demonstrate these concepts on implantable medical devices as a case study. We discuss the challenges and constraints associated with securing such systems and focus on the trade-off between security measures required for blocking unauthorized access to the device, and the safety of the patient in emergency situations where such measures must be dropped to allow access. We analyze the up to date proposed solutions and discuss their strengths and limitations

    Towards Security and Privacy in Networked Medical Devices and Electronic Healthcare Systems

    Get PDF
    E-health is a growing eld which utilizes wireless sensor networks to enable access to effective and efficient healthcare services and provide patient monitoring to enable early detection and treatment of health conditions. Due to the proliferation of e-health systems, security and privacy have become critical issues in preventing data falsification, unauthorized access to the system, or eavesdropping on sensitive health data. Furthermore, due to the intrinsic limitations of many wireless medical devices, including low power and limited computational resources, security and device performance can be difficult to balance. Therefore, many current networked medical devices operate without basic security services such as authentication, authorization, and encryption. In this work, we survey recent work on e-health security, including biometric approaches, proximity-based approaches, key management techniques, audit mechanisms, anomaly detection, external device methods, and lightweight encryption and key management protocols. We also survey the state-of-the art in e-health privacy, including techniques such as obfuscation, secret sharing, distributed data mining, authentication, access control, blockchain, anonymization, and cryptography. We then propose a comprehensive system model for e-health applications with consideration of battery capacity and computational ability of medical devices. A case study is presented to show that the proposed system model can support heterogeneous medical devices with varying power and resource constraints. The case study demonstrates that it is possible to signicantly reduce the overhead for security on power-constrained devices based on the proposed system model

    Security Issues in Healthcare Applications Using Wireless Medical Sensor Networks: A Survey

    Get PDF
    Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are highly sensitive. Therefore, security is a paramount requirement of healthcare applications, especially in the case of patient privacy, if the patient has an embarrassing disease. This paper discusses the security and privacy issues in healthcare application using WMSNs. We highlight some popular healthcare projects using wireless medical sensor networks, and discuss their security. Our aim is to instigate discussion on these critical issues since the success of healthcare application depends directly on patient security and privacy, for ethic as well as legal reasons. In addition, we discuss the issues with existing security mechanisms, and sketch out the important security requirements for such applications. In addition, the paper reviews existing schemes that have been recently proposed to provide security solutions in wireless healthcare scenarios. Finally, the paper ends up with a summary of open security research issues that need to be explored for future healthcare applications using WMSNs

    On the Security and Privacy of Implantable Medical Devices

    Get PDF

    On the Security and Privacy of Implantable Medical Devices

    Get PDF

    Wireless remote patient monitoring on general hospital wards.

    Get PDF
    A novel approach which has potential to improve quality of patient care on general hospital wards is proposed. Patient care is a labour-intensive task that requires high input of human resources. A Remote Patient Monitoring (RPM) system is proposed which can go some way towards improving patient monitoring on general hospital wards. In this system vital signs are gathered from patients and sent to a control unit for centralized monitoring. The RPM system can complement the role of nurses in monitoring patients’ vital signs. They will be able to focus on holistic needs of patients thereby providing better personal care. Wireless network technologies, ZigBee and Wi-Fi, are utilized for transmission of vital signs in the proposed RPM system. They provide flexibility and mobility to patients. A prototype system for RPM is designed and simulated. The results illustrated the capability, suitability and limitation of the chosen technology

    Networking Architecture and Key Technologies for Human Digital Twin in Personalized Healthcare: A Comprehensive Survey

    Full text link
    Digital twin (DT), refers to a promising technique to digitally and accurately represent actual physical entities. One typical advantage of DT is that it can be used to not only virtually replicate a system's detailed operations but also analyze the current condition, predict future behaviour, and refine the control optimization. Although DT has been widely implemented in various fields, such as smart manufacturing and transportation, its conventional paradigm is limited to embody non-living entities, e.g., robots and vehicles. When adopted in human-centric systems, a novel concept, called human digital twin (HDT) has thus been proposed. Particularly, HDT allows in silico representation of individual human body with the ability to dynamically reflect molecular status, physiological status, emotional and psychological status, as well as lifestyle evolutions. These prompt the expected application of HDT in personalized healthcare (PH), which can facilitate remote monitoring, diagnosis, prescription, surgery and rehabilitation. However, despite the large potential, HDT faces substantial research challenges in different aspects, and becomes an increasingly popular topic recently. In this survey, with a specific focus on the networking architecture and key technologies for HDT in PH applications, we first discuss the differences between HDT and conventional DTs, followed by the universal framework and essential functions of HDT. We then analyze its design requirements and challenges in PH applications. After that, we provide an overview of the networking architecture of HDT, including data acquisition layer, data communication layer, computation layer, data management layer and data analysis and decision making layer. Besides reviewing the key technologies for implementing such networking architecture in detail, we conclude this survey by presenting future research directions of HDT

    Cybersecurity and the Digital Health: An Investigation on the State of the Art and the Position of the Actors

    Get PDF
    Cybercrime is increasingly exposing the health domain to growing risk. The push towards a strong connection of citizens to health services, through digitalization, has undisputed advantages. Digital health allows remote care, the use of medical devices with a high mechatronic and IT content with strong automation, and a large interconnection of hospital networks with an increasingly effective exchange of data. However, all this requires a great cybersecurity commitment—a commitment that must start with scholars in research and then reach the stakeholders. New devices and technological solutions are increasingly breaking into healthcare, and are able to change the processes of interaction in the health domain. This requires cybersecurity to become a vital part of patient safety through changes in human behaviour, technology, and processes, as part of a complete solution. All professionals involved in cybersecurity in the health domain were invited to contribute with their experiences. This book contains contributions from various experts and different fields. Aspects of cybersecurity in healthcare relating to technological advance and emerging risks were addressed. The new boundaries of this field and the impact of COVID-19 on some sectors, such as mhealth, have also been addressed. We dedicate the book to all those with different roles involved in cybersecurity in the health domain

    A Novel Deep Learning Strategy for Classifying Different Attack Patterns for Deep Brain Implants

    Get PDF
    Deep brain stimulators (DBSs), a widely used and comprehensively acknowledged restorative methodology, are a type of implantable medical device which uses electrical stimulation to treat neurological disorders. These devices are widely used to treat diseases such as Parkinson, movement disorder, epilepsy, and psychiatric disorders. Security in such devices plays a vital role since it can directly affect the mental, emotional, and physical state of human bodies. In worst-case situations, it can even lead to the patient's death. An adversary in such devices, for instance, can inhibit the normal functionality of the brain by introducing fake stimulation inside the human brain. Nonetheless, the adversary can impair the motor functions, alter impulse control, induce pain, or even modify the emotional pattern of the patient by giving fake stimulations through DBSs. This paper presents a deep learning methodology to predict different attack stimulations in DBSs. The proposed work uses long short-term memory, a type of recurrent network for forecasting and predicting rest tremor velocity. (A type of characteristic observed to evaluate the intensity of the neurological diseases) The prediction helps in diagnosing fake versus genuine stimulations. The effect of deep brain stimulation was tested on Parkinson tremor patients. The proposed methodology was able to detect different types of emulated attack patterns efficiently and thereby notifying the patient about the possible attack. - 2013 IEEE.This work was supported by the Qatar National Research Fund (a member of Qatar Foundation) through NPRP under Grant 8-408-2-172.Scopu
    corecore